Science.gov

Sample records for overexpressing human breast

  1. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Choi, Jae Ho; Khanal, Tilak; Park, Bong Hwan; Tran, Thu Phuong; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-12-01

    Piperine is a bioactive component of black pepper, Piper nigrum Linn, commonly used for daily consumption and in traditional medicine. Here, the molecular mechanisms by which piperine exerts antitumor effects in HER2-overexpressing breast cancer cells was investigated. The results showed that piperine strongly inhibited proliferation and induced apoptosis through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level. Blockade of ERK1/2 signaling by piperine significantly reduced SREBP-1 and FAS expression. Piperine strongly suppressed EGF-induced MMP-9 expression through inhibition of AP-1 and NF-?B activation by interfering with ERK1/2, p38 MAPK, and Akt signaling pathways resulting in a reduction in migration. Finally, piperine pretreatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression. PMID:23870999

  2. Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer

    PubMed Central

    Li, Peng; Xiang, Tingxiu; Li, Hongzhong; Li, Qianqian; Yang, Bing; Huang, Jing; Zhang, Xiang; Shi, Yuan; Tan, Jinxiang; Ren, Guosheng

    2015-01-01

    Extracellular matrix (ECM) is closely correlated with the malignant behavior of breast cancer cells. Hyaluronan (HA) is one of the main components of ECM, and actively regulates cell adhesion, migration and proliferation by interacting with specific cell surface receptors such as CD44 and RHAMM. HA synthase 2 (HAS2) catalyzes the sysnthesis of HA, but its role in breast tumorigenesis remains unclear. This study assessed the roles of HAS2 in malignant behavior of human breast cancer and sought to provide mechanistic insights into the biological and pivotal roles of HAS2. We observed HAS2 was overexpressed in breast cancer cell lines and invasive duct cancer tissues, compared with the nonmalignant breast cell lines and normal breast tissues. In addition, a high level of HAS2 expression was statistically correlated with lymph node metastasis. Functional assays showed that knockdown of HAS2 expression inhibited breast tumor cell proliferation in vivo and in vitro, through the induction of apoptosis or cell cycle arrest. Further studies showed that the HA were elevated in breast cancer, and HAS2 could upregulate HA expression. In conclusion, HAS2-HA system influences the biological characteristics of human breast cancer cells, and HAS2 may be a potential prognostic marker and therapeutic target in breast cancer. PMID:26722395

  3. Human epidermal growth factor receptor family-targeted therapies in the treatment of HER2-overexpressing breast cancer.

    PubMed

    Eroglu, Zeynep; Tagawa, Tomoko; Somlo, George

    2014-02-01

    Breast cancer characterized by overexpression of human epidermal growth factor receptor 2 (HER2) has been associated with more aggressive disease progression and a poorer prognosis. Although an improved understanding of breast cancer pathogenesis and the role of HER2 signaling has resulted in significant survival improvements in the past 20 years, resistance to HER2-targeted therapy remains a concern. A number of strategies to prevent or overcome resistance to HER2-targeted therapy in breast cancer are being evaluated. This article provides a comprehensive review of (a) the role of HER2 signaling in breast cancer pathogenesis, (b) potential receptor and downstream therapeutic targets in breast cancer to overcome resistance to HER2-targeted therapy, and (c) clinical trials evaluating agents targeting one or more members of the HER family and/or downstream pathways for the treatment of breast cancer, with a focus on metastatic disease. PMID:24436312

  4. Human Epidermal Growth Factor Receptor Family-Targeted Therapies in the Treatment of HER2-Overexpressing Breast Cancer

    PubMed Central

    Eroglu, Zeynep; Tagawa, Tomoko

    2014-01-01

    Breast cancer characterized by overexpression of human epidermal growth factor receptor 2 (HER2) has been associated with more aggressive disease progression and a poorer prognosis. Although an improved understanding of breast cancer pathogenesis and the role of HER2 signaling has resulted in significant survival improvements in the past 20 years, resistance to HER2-targeted therapy remains a concern. A number of strategies to prevent or overcome resistance to HER2-targeted therapy in breast cancer are being evaluated. This article provides a comprehensive review of (a) the role of HER2 signaling in breast cancer pathogenesis, (b) potential receptor and downstream therapeutic targets in breast cancer to overcome resistance to HER2-targeted therapy, and (c) clinical trials evaluating agents targeting one or more members of the HER family and/or downstream pathways for the treatment of breast cancer, with a focus on metastatic disease. PMID:24436312

  5. FAK overexpression and p53 mutations are highly correlated in human breast cancer

    PubMed Central

    Golubovskaya, Vita M.; Conway, Kathleen; Edmiston, Sharon N.; Tse, Chiu-Kit; Lark, Amy L.; Livasy, Chad A.; Moore, Dominic; Millikan, Robert C.; Cance, William G.

    2009-01-01

    Focal Adhesion Kinase (FAK) is overexpressed in a number of tumors, including breast cancer. Another marker of breast cancer tumorigenesis is the tumor suppressor gene p53 that is frequently mutated in breast cancer. In the present study, our aim was to find a correlation between FAK overexpression, p53 expression and mutation status in a population-based series of invasive breast cancer tumors from the Carolina Breast Cancer Study. Immunohistochemical analyses of 622 breast cancer tumors revealed that expression of FAK and p53 were highly correlated (P = 0.0002) and FAK positive tumors were 1.8 times more likely to be p53 positive compared to FAK negative tumors [odds ratio (OR) = 1.8; 95% Confidence Interval (CI) 1.2 – 2.8, adjusted for age, race and stage at diagnosis]. Tumors positive for p53 expression showed higher intensity of FAK staining (P<0.0001) and higher percent of FAK positive staining (P<0.0005). From the same study, we evaluated 596 breast tumors for mutations in the p53 gene, using SSCP (single strand conformational polymorphism) and sequencing. Statistical analyses were performed to determine the correlation between p53 mutation status and FAK expression in these tumors. We found that FAK expression and p53 mutation were positively correlated (P<0.0001) and FAK positive tumors were 2.5 times more likely to be p53 mutation positive compared to FAK negative tumors [adjusted OR = 2.5, 95% CI 1.6–3.9]. This is the first analysis demonstrating a high correlation between FAK expression and p53 mutations in a population-based series of breast tumors. PMID:19521985

  6. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17

    SciTech Connect

    Tomasetto, C.; Regnier, C.; Basset, P.

    1995-08-10

    We have performed differential screening of a human metastatic lymph node cDNA library to identify genes possibly involved during breast cancer progression. We have identified four novel genes overexpressed in malignant tissues. They were all located between q11 and q21.3, a region known to contain the c-erbB-2 oncogene and the BRCA1 breast carcinomas, and overexpression of three of them was dependent on gene amplification in breast cancer cell lines. These findings further support the concept that human chromosome 17 specifically carries genes possibly involved in breast cancer progression. 61 refs., 3 figs., 4 tabs.

  7. Protein O-glucosyltransferase 1 overexpression downregulates p16 in BT474 human breast cancer cells

    PubMed Central

    JIN, GANG; CAO, ZHIGANG; SUN, XILIN; WANG, KAI; HUANG, TAO; SHEN, BAOZHONG

    2014-01-01

    Protein O-glucosyltransferase 1 (POGLUT1) is a novel gene that was initially isolated and identified from the bone marrow cells of patients with myelodysplastic syndrome/acute myeloid leukemia. Previous findings have suggested that POGLUT1 promotes the proliferation of U937 human tissue lymphoma cells. Furthermore, POGLUT1 has been identified in other tissues, including the mammary glands, lymph nodes, intestine, liver and spleen. In the present study, in order to investigate the function and target of POGLUT1 in BT474 breast cancer cells, the effect of POGLUT1 on cell proliferation, differentiation, apoptosis and key proteins in the transforming growth factor (TGF)-?1 signaling pathway was investigated in BT474 cells. The overexpression of POGLUT1 in the presence of TGF-?1 was found to significantly enhance cell viability. Flow cytometric and quantitative polymerase chain reaction analyses revealed that POGLUT1 had an effect on the cell cycle and inhibited the TGF-?1-induced transcriptional upregulation of p16, a major cyclin-dependent kinase inhibitor (CDKI). Furthermore, phosphorylated (p)-Smad3, which has a key role in mediating the TGF-? antiproliferative response, was greatly inhibited by exogenous POGLUT1, suggesting a role for POGLUT1 in the TGF-?1-mediated signaling pathway in the BT474 cell cycle. However, no significant changes were observed in the expression of other CDKIs or in cell apoptosis. The findings of the present study show that the increase in BT474 cell viabilty induced by POGLUT1 is associated with POGLUT1-induced inhibition of the transcriptional upregulation of p16 by TGF-?1, which may be a result of the inhibition of p-Smad3. PMID:25009645

  8. Biological effects of stable overexpression of aromatase in human hormone-dependent breast cancer cells.

    PubMed

    Macaulay, V M; Nicholls, J E; Gledhill, J; Rowlands, M G; Dowsett, M; Ashworth, A

    1994-01-01

    Aromatase is a key enzyme in the conversion of androstenedione and testosterone to oestrone and oestradiol. Intratumoral aromatase activity is expressed by around 70% of breast carcinomas, but it is not clear what effect this has on the tumour phenotype. To address this question we expressed human aromatase in hormone-dependent MCF-7 breast cancer cells. Clone Arom. 1 expressed aromatase at 1,000 times the endogenous level in wild-type (WT) cells. Clone Arom. 2 incorporated the expression construct but did not express aromatase at levels above WT. There was no morphological difference between the two clones and WT, all three cell lines expressed oestrogen receptor at equivalent levels, and all manifested a mitogenic response to oestradiol. In steroid-depleted medium Arom. 1 cells showed significant growth enhancement over WT and Arom. 2, and this growth advantage was increased by exogenous androstenedione or testosterone. Both the enzyme activity and androgen-stimulated growth of Arom. 1 cells were completely reversible by aromatase inhibitor CGS 16949A. The Arom. 1 cell line may contribute to the development of an in vivo model of intratumoral aromatase, to study the biological significance of this phenomenon. PMID:8286214

  9. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    SciTech Connect

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S; Bissell, Mina J

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasis suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene expression and morphological-biosynthetic-growth aspects of breast differentiation in this model system. While the basement membrane microenvironment is capable of directing the differentiation of normal human breast cells, neoplastic transformation abrogates this relationship, suggesting that intrinsic cellular events are also critical to this process. The data identify nm23-H1 gene expression as one of these events, suggesting an important role in the modulation of cellular responsiveness to the microenvironment. The data also identify previously unknown growth inhibitory effects of nm23-H1 gene overexpression.

  10. Gene amplification and overexpression of PRDM14 in breast cancers.

    PubMed

    Nishikawa, Noriko; Toyota, Minoru; Suzuki, Hiromu; Honma, Toshio; Fujikane, Tomoko; Ohmura, Tousei; Nishidate, Toshihiko; Ohe-Toyota, Mutsumi; Maruyama, Reo; Sonoda, Tomoko; Sasaki, Yasushi; Urano, Takeshi; Imai, Kohzoh; Hirata, Koichi; Tokino, Takashi

    2007-10-15

    Several genes that encode PR (PRDI-BF1 and RIZ) domain proteins (PRDM) have been linked to human cancers. To explore the role of the PR domain family genes in breast carcinogenesis, we examined the expression profiles of 16 members of the PRDM gene family in a panel of breast cancer cell lines and primary breast cancer specimens using semiquantitative real-time PCR. We found that PRDM14 mRNA is overexpressed in about two thirds of breast cancers; moreover, immunohistochemical analysis showed that expression of PRDM14 protein is also up-regulated. Analysis of the gene copy number revealed that PRDM14 is a target of gene amplification on chromosome 8q13, which is a region where gene amplification has frequently been detected in various human tumors. Introduction of PRDM14 into cancer cells enhanced cell growth and reduced their sensitivity to chemotherapeutic drugs. Conversely, knockdown of PRDM14 by siRNA induced apoptosis in breast cancer cells and increased their sensitivity to chemotherapeutic drugs, suggesting that up-regulated expression of PRDM14 may play an important role in the proliferation of breast cancer cells. That little or no expression of PRDM14 is seen in noncancerous tissues suggests that PRDM14 could be an ideal therapeutic target for the treatment of breast cancer. PMID:17942894

  11. A Pretherapy Biodistribution and Dosimetry Study of Indium-111-Radiolabeled Trastuzumab in Patients with Human Epidermal Growth Factor Receptor 2-Overexpressing Breast Cancer

    PubMed Central

    Raubitschek, Andrew; Yamauchi, Dave; Williams, Lawrence E.; Wu, Anna M.; Yazaki, Paul; Shively, John E.; Colcher, David; Somlo, George

    2010-01-01

    Abstract Purpose The purposes of this study were to evaluate the organ biodistribution, pharmacokinetics, immunogenicity, and tumor uptake of 111Indium (111In)-MxDTPA-trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancers and to determine whether 90Y-MxDTPA-trastuzumab should be evaluated in subsequent clinical therapy trials. Experimental Design Patients with HER2-overexpressing breast cancers who were to undergo planned trastuzumab therapy first received unlabeled trastuzumab (4–8?mg/kg IV), followed 4 hours later by 5 mCi 111In-MxDTPA-trastuzumab (10?mg antibody). Serial blood samples, 24-hour urine collections, and nuclear scans were performed at defined time points for 7 days. Results Eight (8) patients received 111In-MxDTPA-trastuzumab, which was well tolerated with no adverse side-effects. Three (3) of 7 patients with known lesions demonstrated positive imaging on nuclear scans. No antiantibody responses were observed for 2 months postinfusion. Organ doses (cGy/mCi) assuming radiolabeling with 90Y were 19.9 for heart wall, 17.6 for liver, 4.6 for red marrow, and 2.8 for the whole body. Tumor doses ranged from 24 to 172 cGy/mCi. Conclusions In summary, results from this study indicate that 90Y-MxDTPA-trastuzumab is an appropriate agent to evaluate in therapy trials. No evidence of an immune response to 111In-MxDTPA-trastuzumab was detected, predicting for the ability to administer multiple cycles. With the exception of cardiac uptake, pharmacokinetics and organ biodistribution were comparable to other 90Y-labeled monoclonal antibodies previously evaluated in the clinic. Cardiac uptake was comparable to hepatic uptake and therefore predicted to not be prohibitively high as to result in dose-limiting cardiotoxicity. PMID:20707718

  12. Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells.

    PubMed

    Ren, Tian-nian; Wang, Jing-song; He, Yun-mian; Xu, Chang-liang; Wang, Shu-zhen; Xi, Tao

    2011-12-01

    SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase that plays an important role in transcriptional regulation in human carcinogenesis. It can specifically methylate histone H3 at lysine 4 and activate the transcription of a set of downstream genes, including several oncogenes (e.g., N-myc, CrkL, Wnt10b, RIZ and hTERT) and genes involved in the control of cell cycle (e.g., CyclinG1 and CDK2) and signal transduction (e.g., STAT1, MAP3K11 and PIK3CB). To determine the effects of SMYD3 over-expression on cell proliferation, we transfected SMYD3 into MDA-MB-231 cells and found that these cells showed several transformed phenotypes as demonstrated by colony growth in soft agar. Besides, we show here that down-regulation of SMYD3 could induce G1-phase cell cycle arrest, indicating the potent induction of apoptosis by SMYD3 knockdown. These results suggest the regulatory mechanisms of SMYD3 on the acceleration of cell cycle and facilitate the development of strategies that may inhibit the progression of cell cycle in breast cancer cells. PMID:20957523

  13. LETM1 overexpression is correlated with the clinical features and survival outcome of breast cancer

    PubMed Central

    Li, Nan; Zheng, Yahui; Xuan, Chouhui; Lin, Zhenhua; Piao, Longzhen; Liu, Shuangping

    2015-01-01

    Background: Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome. However, high-level expression of LETM1 has been correlated with multiple human malignancies, suggesting roles in carcinogenesis and tumor progression. This study is aimed to explore the clinicopathological characteristics and prognostic value of LETM1 overexpression in breast cancer. Methods: Immunohistochemical (IHC) staining, and immunofluorescence (IF) were performed to examine LETM1 expression in breast cancer cell line/tissues compared with adjacent normal tissues. Statistical analysis was applied to evaluate the correlation between LETM1 overexpression and the clinicopathological features of breast cancer. Survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient survival was analyzed using the Cox proportional hazard models. Results: LETM1 protein showed cytoplasmic staining pattern in breast cancer. The strongly positive rate of LETM1 protein was 61.6% (98/159) in breast cancer, which was significantly higher than in DCIS (29.7%, 11/37), hyperplasia (16.7%, 3/18) and adjacent normal breast tissues (15.9%, 7/44). High-level expression of LETM1 protein was correlated with lymph node metastasis, poor differentiation, late clinical stage, disease-free survival (DFS) and overall survival (OS) rates in breast cancer. Moreover, multivariate analysis suggested that LETM1 emerged as a significant independent prognostic factor along with clinical stage of patients with breast cancer. Conclusions: LETM1 plays an important role in the progression of breast cancer. High level expression of LETM1 is an independent poor prognostic factor of breast cancer. PMID:26722481

  14. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    SciTech Connect

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  15. Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation.

    PubMed Central

    Schneider, E.; Yamazaki, H.; Sinha, B. K.; Cowan, K. H.

    1995-01-01

    Preincubation of etoposide-resistant human MCF7 breast cancer cells (MCF7/VP) with buthionine sulphoximine (BSO) resulted in their sensitisation to etoposide and vincristine. Chemosensitisation was accompanied by elevated intracellular drug levels. In contrast, simultaneous exposure to BSO did not result in increased drug accumulation. Similar, but quantitatively smaller, effects were also observed when sensitive wild-type MCF7/WT cells were treated with BSO. In agreement with its effect on drug accumulation, BSO pretreatment also increased VP-16-stimulated cleavable complex formation between DNA topoisomerase II and cellular DNA. BSO treatment also led to a significant increase in acid-precipitable VP-16 levels in MCF7/VP, but not MCF7/WT cells. In contrast, no clear effects of BSO on drug efflux were observed and drug retention was only minimally increased after BSO treatment of both MCF7/WT and MCF7/VP cells and no difference between the two cell lines was detected. Thus, chemosensitisation by BSO appeared to be mediated through increased intracellular drug concentrations and/or protein binding. PMID:7710938

  16. SNEV overexpression extends the life span of human endothelial cells

    SciTech Connect

    Voglauer, Regina; Chang, Martina Wei-Fen; Dampier, Brigitta; Wieser, Matthias; Baumann, Kristin; Sterovsky, Thomas; Schreiber, Martin; Katinger, Hermann; Grillari, Johannes . E-mail: j.grillari@iam.boku.ac.at

    2006-04-01

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells.

  17. Overexpression of the fat mass and obesity associated gene (FTO) in breast cancer and its clinical implications

    PubMed Central

    Tan, Aihua; Dang, Yiwu; Chen, Gang; Mo, Zengnan

    2015-01-01

    Background and purpose: Incidence of breast cancer is increasing and seems to be associated with fatty foods, metabolism, and so on. The fat mass and obesity associated gene (FTO) has been intensively investigated in diabetes, obesity and the other diseases. Previous studies have reported that FTO SNPs are associated with breast cancer risk. Here, we investigated the expression of FTO in human breast cancer tissues and its relationship with the clinicopathological features. Methods: In this retrospective study, tissues from 79 patients with breast cancer were collected, as well as 43 cases of adjacent breast tissues. Immunohistochemistry was used to detect the expression of FTO. Statistical analysis was performed to assess the association between FTO expression and the clinicopathological features of breast cancer. Results: FTO was expressed in both mammary epithelial and breast cancer tissues, but with different degree. The expression level of FTO in breast cancer tissues was significantly higher than that in the adjacent breast tissues (P < 0.001). The percentage of FTO-positive expression in cases with hormone receptor (HR) negative and HER2 amplification was significantly higher than that in those with HR positive and HER2 negative (P = 0.001, P < 0.001). The positivity rate of FTO in breast cancer with P53 positive and histological grade 3 seemed to be higher than that with P53 negative and histological grade 1 or 2, respectively (P = 0.077, P = 0.082). There was no association between FTO expression and age, T stage, LN status, TNM stage, Ki67, and BMI in breast cancer. Besides, FTO expression in HER2-overexpressed subtype was significantly higher than that in Triple-negative and Luminal A/B1 subtypes (P < 0.001). Conclusion: Our study suggests that FTO expression may have a vital role in the carcinogenesis of breast cancer, especially in HER2-overexpressed breast cancer. PMID:26722548

  18. EPIDEMIOLOGY Body mass index and HER-2 overexpression in breast cancer

    E-print Network

    EPIDEMIOLOGY Body mass index and HER-2 overexpression in breast cancer patients over 50 years Purpose In breast cancer, in vitro as well as in vivo experiments have shown an inverse relationship, operable breast cancer were evaluated the evening prior to surgery for body weight, height, abdominal

  19. HSET overexpression fuels tumor progression via centrosome clustering-independent mechanisms in breast cancer patients

    PubMed Central

    Pannu, Vaishali; Rida, Padmashree C.G.; Ogden, Angela; Turaga, Ravi Chakra; Donthamsetty, Shashikiran; Bowen, Nathan J.; Rudd, Katie; Gupta, Meenakshi V.; Reid, Michelle D.; Cantuaria, Guilherme; Walczak, Claire E.; Aneja, Ritu

    2015-01-01

    Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival. HSET/KifC1, a kinesin-like minus-end directed microtubule motor has recently found fame as a crucial centrosome clustering molecule. Here we show that HSET promotes tumor progression via mechanisms independent of centrosome clustering. We found that HSET is overexpressed in breast carcinomas wherein nuclear HSET accumulation correlated with histological grade and predicted poor progression-free and overall survival. In addition, deregulated HSET protein expression was associated with gene amplification and/or translocation. Our data provide compelling evidence that HSET overexpression is pro-proliferative, promotes clonogenic-survival and enhances cell-cycle kinetics through G2 and M-phases. Importantly, HSET co-immunoprecipitates with survivin, and its overexpression protects survivin from proteasome-mediated degradation, resulting in its increased steady-state levels. We provide the first evidence of centrosome clustering-independent activities of HSET that fuel tumor progression and firmly establish that HSET can serve both as a potential prognostic biomarker and as a valuable cancer-selective therapeutic target. PMID:25788277

  20. Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression.

    PubMed

    Stewart, Jonathan; James, Jacqueline; McCluggage, Glenn W; McQuaid, Stephen; Arthur, Kenneth; Boyle, David; Mullan, Paul; McArt, Darragh; Yan, Benedict; Irwin, Gareth; Harkin, D Paul; Zhengdeng, Lei; Ong, Chee-Wee; Yu, Jia; Virshup, David M; Salto-Tellez, Manuel

    2015-03-01

    The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2. PMID:25258105

  1. Induction of fibronectin by HER2 overexpression triggers adhesion and invasion of breast cancer cells.

    PubMed

    Jeon, Myeongjin; Lee, Jeongmin; Nam, S J; Shin, Incheol; Lee, J E; Kim, Sangmin

    2015-04-10

    Fibronectin (FN), an extracellular matrix ligand, plays a pivotal role in cell adhesion, migration, and oncogenic transformation. Aberrant FN expression is associated with poor prognoses in various types of cancer, including breast cancer. In the current study, we investigated the relationship between FN induction and HER2 expression in breast cancer cells. Our results showed that the level of FN expression increased in response to HER family ligands, EGF and TGF-? in a time- and dose-dependent manner. On the other hand, EGF-induced FN expression decreased in response to trastuzumab, which is a HER2-targeted monoclonal antibody. However, EGF-induced FN expression was not affected by trastuzumab in JIMT-1 breast cancer cells, which are trastuzumab insensitive cells. Next, we introduced the HER2 gene into MDA-MB231 cells to verify the relationship between FN and HER2. The level of FN expression significantly increased in HER2-overexpressed MDA-MB231 cells. In contrast, the induction of FN by HER2 was significantly decreased in response to trastuzumab treatment. In addition, the induction of FN by HER2 was down-regulated by the MEK 1/2 specific inhibitor, U0126. Using conditioned culture media of vec- and HER2-overexpressed MDA-MB231 cells, we observed the cell morphology, adhesion, and invasion of MDA-MB231 cells. Interestingly, in conditioned culture media of HER2-overexpressed MDA-MB231 cells, the cell morphology was altered, and adhesion and invasion of MDA-MB231 cells significantly increased. In addition, our results showed that recombinant human FN augmented cell adhesion and invasion of MDA-MB231 cells while these inductions decreased in response to an FN inhibitor. Therefore, we demonstrated that the induction of FN by HER2 triggers cell adhesion and invasion capacities. PMID:25743092

  2. Ano1/TMEM16A Overexpression Is Associated with Good Prognosis in PR-Positive or HER2-Negative Breast Cancer Patients following Tamoxifen Treatment

    PubMed Central

    Wu, Huizhe; Guan, Shu; Sun, Mingli; Yu, Zhaojin; Zhao, Lin; He, Miao; Zhao, Haishan; Yao, Weifan; Wang, Enhua; Jin, Feng; Xiao, Qinghuan; Wei, Minjie

    2015-01-01

    The calcium-activated chloride channel Ano1 (TMEM16A) is overexpressed in many tumors. Although Ano1 overexpression is found in breast cancer due to 11q13 amplification, it remains unclear whether signaling pathways are involved in Ano1 overexpression during breast cancer tumorigenesis in vivo. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) have been known to contribute to breast cancer progression. It is unclear whether Ano1 is associated with clinical outcomes in breast cancer patients with different ER, PR and HER2 status. In the present study, we investigated the Ano1 expression in 431 patients with invasive ductal breast carcinoma and 46 patients with fibroadenoma, using immunohistochemistry, and analyzed the association between Ano1 expression and clinical characteristics and outcomes of breast cancer patients with different ER, PR, and HER2 status. Ano1 was overexpressed in breast cancer compared with fibroadenoma. Ano1 was significantly more associated with breast cancer with the lower clinical stage (stage I or II), or triple-negative status. Mostly importantly, Ano1 overexpression was associated with good prognosis in patients with the PR-positive or HER2-negative status, and in patients following tamoxifen treatment. Multivariate Cox regression analysis showed that Ano1 overexpression was a prognostic factor for longer overall survival in PR-positive or HER2-negative patients, and a predictive factor for longer overall survival in patients following tamoxifen treatment. Our findings suggest that Ano1 may be a potential marker for good prognosis in PR-positive or HER2-negative patients following tamoxifen treatment. The PR and HER2 status defines a subtype of breast cancer in which Ano1 overexpression is associated with good prognosis following tamoxifen treatment. PMID:25961581

  3. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids

    PubMed Central

    Rodríguez, Cristina E.; Reidel, Sara I.; Bal de Kier Joffé, Elisa D.; Jasnis, Maria A.; Fiszman, Gabriel L.

    2015-01-01

    Multicellular tumor spheroids represent a 3D in vitro model that mimics solid tumor essential properties including assembly and development of extracellular matrix and nutrient, oxygen and proliferation gradients. In the present study, we analyze the impact of 3D spatial organization of HER2-overexpressing breast cancer cells on the response to Trastuzumab. We cultured human mammary adenocarcinoma cell lines as spheroids with the hanging drop method and we observed a gradient of proliferating, quiescent, hypoxic, apoptotic and autophagic cells towards the inner core. This 3D organization decreased Trastuzumab sensitivity of HER2 over-expressing cells compared to monolayer cell cultures. We did not observe apoptosis induced by Trastuzumab but found cell arrest in G0/G1 phase. Moreover, the treatment downregulated the basal apoptosis only found in tumor spheroids, by eliciting protective autophagy. We were able to increase sensitivity to Trastuzumab by autophagy inhibition, thus exposing the interaction between apoptosis and autophagy. We confirmed this result by developing a resistant cell line that was more sensitive to autophagy inhibition than the parental BT474 cells. In summary, the development of Trastuzumab resistance relies on the balance between death and survival mechanisms, characteristic of 3D cell organization. We propose the use of spheroids to further improve the understanding of Trastuzumab antitumor activity and overcome resistance. PMID:26360292

  4. Overexpression of Vascular Endothelial Growth Factor 189 in Breast Cancer Cells Leads to Delayed Tumor Uptake with Dilated Intratumoral Vessels

    PubMed Central

    Hervé, Marie-Astrid; Buteau-Lozano, Hélène; Vassy, Roger; Bieche, Ivan; Velasco, Guillaume; Pla, Marika; Perret, Gérard; Mourah, Samia; Perrot-Applanat, Martine

    2008-01-01

    Vascular endothelial growth factor (VEGF) is essential for breast cancer progression and is a relevant target in anti-angiogenesis. Although VEGF121 and VEGF165, the fully or partially secreted isoforms, respectively, have been the focus of intense studies, the role of the cell-associated VEGF189 isoform is not understood. To clarify the contribution of VEGF189 to human mammary carcinogenesis, we established several clones of MDA-MB-231 cells stably overexpressing VEGF189 (V189) and VEGF165 (V165). V189 and V165 clones increased tumor growth and angiogenesis in vivo. Remarkably, V165 induced the most rapid tumor uptake, whereas V189 increased vasodilation. In vitro overexpression of VEGF165 and VEGF189 increases the proliferation and chemokinesis of these cancer cells. Interestingly, overexpression of VEGF189 increased cell adhesion on fibronectin (1.9-fold) and vitronectin (1.6-fold), as compared to VEGF165, through ?5?1 and ?v?5 integrins. Using the BIACore system we demonstrated for the first time that VEGF189 binds directly to neuropilin-1, which is strongly expressed in MDA-MB-231 cells. In contrast, VEGF-R2 was not significantly expressed and VEGF-R1 was expressed at low level. Our in vitro results suggest an autocrine effect of VEGF189 on breast cancer cells, probably through neuropilin-1. In conclusion, our data indicate that VEGF189 participates in mammary tumor growth through both angiogenesis and nonangiogenic functions. Whether VEGF189 overexpression is correlated to prognosis in human breast tumors remains to be established. PMID:18079435

  5. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

    PubMed

    Siafaka, P; Betsiou, M; Tsolou, A; Angelou, E; Agianian, B; Koffa, M; Chaitidou, S; Karavas, E; Avgoustakis, K; Bikiaris, D

    2015-12-01

    The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5 %) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor. PMID:26543021

  6. Prognostic significance of p53 overexpression in primary breast cancer; a novel luminometric immunoassay applicable on steroid receptor cytosols.

    PubMed

    Borg, A; Lennerstrand, J; Stenmark-Askmalm, M; Fernö, M; Brisfors, A; Ohrvik, A; Stål, O; Killander, D; Lane, D; Brundell, J

    1995-05-01

    A novel quantitative luminometric immunoassay (LIA) has been developed for the measurement of wild-type and mutant p53 protein in extracts from breast tumour tissue. The LIA was found to yield reliable estimates of p53 expression in cytosol samples routinely prepared for steroid receptor analysis as compared with results obtained with immunohistochemical analysis. The LIA was evaluated on 205 primary breast tumour cytosols prepared for steroid receptor analysis and stored frozen at -80 degrees C for 6-8 years, p53 protein being detected in 65% of the samples (range 0.01-23 ng mg-1 protein). Using an arbitrary cut-off value of 0.15 ng mg-1 protein, 30% of the tumours were classified as manifesting p53 overexpression. Significant and independent correlations were found to exist between p53 overexpression and shorter disease-free (P < 0.001) and overall survival (P = 0.039) at a median duration of follow-up of 50 months. p53 overexpression was related to low oestrogen receptor content and high proliferation rate (S-phase fraction). No relationship was found to tumour size or the presence of lymph node metastasis. Three tumours possessed an extremely high p53 content (> 10 ng mg-1 protein), all of which were of medullary or high-grade ductal type, oestrogen and progesterone receptor negative, DNA non-diploid, had S-phase fractions of > 22% and recurred within 1-2 years. In summary, a new sensitive and quantitative LIA suitable for routine analysis of p53 protein in steroid receptor cytosol preparations from breast tumours has been developed to confirm the prognostic importance of p53 protein accumulation in human breast cancer. PMID:7734292

  7. siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model

    PubMed Central

    Liang, Yulong; Gao, Hong; Lin, Shiaw-Yih; Goss, John A.; Brunicardi, Francis C.; Li, Kaiyi

    2010-01-01

    Cyclin E is aberrantly expressed in many types of cancer including breast cancer. High levels of the full length as well as the low molecular weight isoforms of cyclin E are associated with poor prognosis of breast cancer patients. Notably, cyclin E overexpression is also correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. In this study, we used siRNA to target cyclin E overexpression and assessed its ability to suppress breast cancer growth in nude mice. Our results revealed that cyclin E siRNA could effectively inhibit overexpression of both full length and low molecular weight isoforms of cyclin E. We found that depletion of cyclin E promoted apoptosis of cyclin E-overexpressing cells and blocked their proliferation and transformation phenotypes. Significantly, we further demonstrated that administration of cyclin E siRNA could inhibit breast tumor growth in nude mice. In addition, we found that cyclin E siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture and this combination greatly suppressed the tumor growth in mice. In conclusion, our results indicate that cyclin E, which is overexpressed in 30% of breast cancer, may serve as a novel and effective therapeutic target. More importantly, our study clearly demonstrates a very promising therapeutic potential of cyclin E siRNA for treating the cyclin E-overexpressing breast cancers, including the very malignant triple-negative breast cancers. PMID:20877462

  8. HER-2/neu overexpression and in vitro chemosensitivity to CMF and FEC in primary breast cancer.

    PubMed

    Konecny, G; Fritz, M; Untch, M; Lebeau, A; Felber, M; Lude, S; Beryt, M; Hepp, H; Slamon, D; Pegram, M

    2001-09-01

    Available clinical and experimental data on the effect of HER-2/neu overexpression on chemosensitivity are controversial. It was the purpose of this in vitro study to define the association between HER-2/neu overexpression and the sensitivity to the chemotherapeutic drug combinations of cyclophosphamide, methotrexate and 5-fluorouracil (CMF) and 5-fluorouracil, epirubicin and cyclophosphamide (FEC) of breast cancer cells derived from 140 chemotherapy-naïve patients at the time of primary surgery. Both drug combinations were tested at six different concentrations ranging from 6.25-200% peak plasma concentration (PPC). Immunohistochemical detection of HER-2/neu overexpression was performed with the HER-2/neu antibodies, CB11, TAB250 and AO485, in the same tumor specimens. Immunoreactions were determined as negative (0/1+), weakly positive (2+) and strongly positive (3+). However, the antibodies varied in their degrees of sensitivity. Breast cancer samples with strong (3+) HER-2/neu overexpression demonstrated 90% growth inhibition (IC90) at significantly lower PPC values, using the CB11 (p = 0.048), TAB250 (p = 0.007) and AO485 (p < or =0.01) antibodies, and showed 50% growth inhibition (IC50) at significantly lower PPC values, using the CB11 antibody (p = 0.01) compared to their counterparts with lower levels of HER-2/neu expression. When analyzing the group of patients with intermediate and strong HER-2/neu overexpression (2+ and 3+), an association between HER-2/neu overexpression and increased chemosensitivity was seen with the TAB250 (p = 0.044) and AO485 (p = 0.032) antibodies, but not with the CB11 antibody (p =0.8) at the IC90 level. Differences in chemosensitivity between samples with strong HER-2/neu overexpression and those with lower levels were then analyzed separately for CMF and FEC. Both regimens achieved 90% tumor growth inhibition at lower PPC values in samples with strong HER-2/neu overexpression (3+) compared to their counterparts with lower expression levels (AO485 p = 0.011 for CMF, and p = 0.09 for FEC). Cumulative concentration-response plots of tumors responding in vitro with 90% tumor cell inhibition showed a stronger dose dependence for both CMF and FEC among tumor samples with strong HER-2/neu overexpression compared to those with lower levels of expression. In conclusion, the data show that HER-2/neu overexpression was not associated with in vitro drug resistance to CMF or FEC. In contrast, tumors with strong HER-2/neu overexpression demonstrated increased dose-dependent in vitro sensitivity to both the FEC and CMF regimens. PMID:11759828

  9. Effect of Oncoxin Oral Solution in HER2-Overexpressing Breast Cancer.

    PubMed

    Hernández-García, Susana; González, Verena; Sanz, Eduardo; Pandiella, Atanasio

    2015-10-01

    One of the most aggressive breast cancer subtypes includes tumors with high expression of HER2. Gene expression and functional studies have shown a link between HER2 overexpression and oxidative stress. Because of this, we hypothesized that Oncoxin Oral Solution (OOS), a composite product that contains several antioxidants, could have an antitumoral effect against HER2+ tumors. Dose-response studies, biochemical and cytometric assessment of the effect of OOS on cell cycle and apoptosis, and drug combination analyses were performed on BT474 and SKBR3 cells, 2 HER2-overexpressing breast cancer cell lines. OOS reduced the proliferation of these cells, and augmented the action of lapatinib, a HER2 inhibitor used in the breast cancer clinic. Moreover, OOS decreased growth of HER2+ tumors in mice. Mechanistically, OOS provoked cell cycle blockade through upregulation of p27 expression and downregulation of cyclin D levels. OOS also caused apoptotic cell death in HER2+ breast cancer cells, as indicated by increases in PARP cleavage as well as upregulation of caspase 8 and caspase 3 activities. These results demonstrate an antitumoral action of OOS in preclinical models of HER2+ breast cancer and suggest that it can be used with anti-HER2 therapies currently adopted as standard of care in the oncology clinic. PMID:26241555

  10. MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers

    PubMed Central

    Mohseni, Morassa; Cidado, Justin; Croessmann, Sarah; Cravero, Karen; Cimino-Mathews, Ashley; Wong, Hong Yuen; Scharpf, Rob; Zabransky, Daniel J.; Abukhdeir, Abde M.; Garay, Joseph P.; Wang, Grace M.; Beaver, Julia A.; Cochran, Rory L.; Blair, Brian G.; Rosen, D. Marc; Erlanger, Bracha; Argani, Pedram; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2014-01-01

    Tamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth. We found MACROD2 is amplified and overexpressed in metastatic tamoxifen-resistant tumors. Transgene overexpression of MACROD2 in breast cancer cell lines results in tamoxifen resistance, whereas RNAi-mediated gene knock down reverses this phenotype. MACROD2 overexpression also leads to estrogen independent growth in xenograft assays. Mechanistically, MACROD2 increases p300 binding to estrogen response elements in a subset of ER regulated genes. Primary breast cancers and matched metastases demonstrate MACROD2 expression can change with disease evolution, and increased expression and amplification of MACROD2 in primary tumors is associated with worse overall survival. These studies establish MACROD2 as a key mediator of estrogen independent growth and tamoxifen resistance, as well as a potential novel target for diagnostics and therapy. PMID:25422431

  11. Preferred genetic evolutionary sequences in human breast cancer: A case study

    SciTech Connect

    Shackney, S.E.; Smith, C.A.; Pollice, A.A.

    1995-09-01

    Multiparameter flow cytometry studies were performed on the cells of an aggressive human breast cancer at the time of diagnosis and at relapse. The aneuploid cells that overexpressed large amounts of both HER-2/neu and ras survived intensive chemotherapy and were responsible for tumor relapse. At relapse, these cells were shown to overexpress simultaneously at least five oncogenes: HER-2/neu, ras, EGF receptor, p53 and c-myc. A partial reconstruction of the genetic evolutionary sequence in this tumor indicated that HER-2/neu overexpression was an early step in the sequence. Subsequent HER-2/neu overexpression, EGF receptor overexpression and p53 protein overexpression were each associated with ras overexpression. The data suggest that ploidy and oncogene overexpression cannot be used as independent clinical prognostic factors. The ability to characterize tumors according to the degree of advancement in the genetic evolutionary might serve as a basis for genetic staging for adjuvant therapy. 5 refs., 5 figs.

  12. CHL1 is involved in human breast tumorigenesis and progression

    SciTech Connect

    He, Li-Hong; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Ma, Qin; Shi, Ye-Hui; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Ge, Jie; Zhao, Hong-Meng; Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Li, Shu-Fen; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Tong, Zhong-Sheng; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  13. GLO1 Overexpression in Human Malignant Melanoma

    PubMed Central

    Bair, Warner B; Cabello, Christopher M; Uchida, Koji; Bause, Alexandra S; Wondrak, Georg T

    2010-01-01

    Glyoxalase I [lactoylglutathione lyase (EC 4.4.1.5) encoded by GLO1] is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. Based on the hypothesis that GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells, we examined GLO1 expression status in human melanoma tissue. Quantitative RT-PCR analysis of a cDNA tissue array containing 40 human melanoma tissues (stages III and IV) and 13 healthy controls revealed pronounced upregulation of GLO1 expression at the mRNA level. Immunohistochemical analysis of a melanoma tissue microarray confirmed upregulation of glyoxalase 1 protein levels in malignant melanoma tissue versus healthy human skin. Consistent with an essential role of GLO1 in melanoma cell defense against methylglyoxal cytotoxicity, siRNA interference targeting GLO1-expression (siGLO1) sensitized A375 and G361 human metastatic melanoma cells towards the antiproliferative, apoptogenic, and oxidative stress-inducing activity of exogenous methylglyoxal. Protein adduction by methylglyoxal was increased in siGLO1-transfected cells as revealed by immunodetection using a monoclonal antibody directed against the major methylglyoxal-derived epitope argpyrimidine that detected a single band of methylglyoxal-adducted protein in human LOX, G361, and A375 total cell lysates. Using 2D-proteomics followed by mass spectrometry the methylglyoxal-adducted protein was identified as heat shock protein 27 (Hsp27; HSPB1). Taken together, our data suggest a function of GLO1 in the regulation of detoxification and target-adduction by the glycolytic byproduct methylglyoxal in malignant melanoma. PMID:20093988

  14. Over-expression of EPS15 is a favorable prognostic factor in breast cancer.

    PubMed

    Dai, Xiaofeng; Liu, Zhaoqi; Zhang, Shihua

    2015-10-13

    As a crucial player in terminating growth factor signaling, EPS15 plays important roles in many malignancies including breast cancer. To explore the potential association of EPS15 with the clinical outcome of breast cancer, we conducted gene expression survival analysis using six independent datasets, checked its expression quantitative loci and their associated genes, and explored the networking of these genes with EPS15. Our results show that over-expression of EPS15 is significantly associated with a favorable clinical outcome of breast cancer, especially in tumors harbouring a positive estrogen receptor status. 21 unique SNPs were found to be associated with EPS15 expression. Among the neighboring genes of these SNPs, five (MTUS1, DOCK5, MSRA, SLIT3 and SKAP1) are genetically connected with EPS15 and its physical partners. These genes including EPS15 also show significant concurrent expressions, and four exhibit distinct relevance regarding patient survival. High expressions of EPS15 and MSRA show a distinct combinatorial favorable survival, suggesting the clinical relevance of their co-activation. In summary, over-expression of EPS15 is a potential favorable prognostic marker in breast cancer, which can be used clinically alone or together with other genes such as MSRA to avail therapeutic decision-making. PMID:26289382

  15. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer.

    PubMed

    Mironchik, Yelena; Winnard, Paul T; Vesuna, Farhad; Kato, Yoshinori; Wildes, Flonne; Pathak, Arvind P; Kominsky, Scott; Artemov, Dmitri; Bhujwalla, Zaver; Van Diest, Paul; Burger, Horst; Glackin, Carlotta; Raman, Venu

    2005-12-01

    Aggressive cancer phenotypes are a manifestation of many different genetic alterations that promote rapid proliferation and metastasis. In this study, we show that stable overexpression of Twist in a breast cancer cell line, MCF-7, altered its morphology to a fibroblastic-like phenotype, which exhibited protein markers representative of a mesenchymal transformation. In addition, it was observed that MCF-7/Twist cells had increased vascular endothelial growth factor (VEGF) synthesis when compared with empty vector control cells. The functional changes induced by VEGF in vivo were analyzed by functional magnetic resonance imaging (MRI) of MCF-7/Twist-xenografted tumors. MRI showed that MCF-7/Twist tumors exhibited higher vascular volume and vascular permeability in vivo than the MCF-7/vector control xenografts. Moreover, elevated expression of Twist in breast tumor samples obtained from patients correlated strongly with high-grade invasive carcinomas and with chromosome instability, particularly gains of chromosomes 1 and 7. Taken together, these results show that Twist overexpression in breast cancer cells can induce angiogenesis, correlates with chromosomal instability, and promotes an epithelial-mesenchymal-like transition that is pivotal for the transformation into an aggressive breast cancer phenotype. PMID:16322226

  16. NRBP1 is downregulated in breast cancer and NRBP1 overexpression inhibits cancer cell proliferation through Wnt/?-catenin signaling pathway

    PubMed Central

    Wei, Hong; Wang, Hongbin; Ji, Qiao; Sun, Jiawei; Tao, Lin; Zhou, Xianli

    2015-01-01

    Nuclear receptor binding protein 1 (NRBP1) is a highly conserved protein that is ubiquitously expressed across cell types in humans. NRBP1 has been recently identified as an adaptor protein. It has been suggested that it plays important roles in cellular homeostasis and the pathophysiology of cancer. To determine whether NRBP1 is involved in the pathophysiology of breast cancer, we performed a correlation study between the expression level of NRBP1 and the clinicopathological features in 92 breast cancer patients. A strong correlation was detected between NRBP1 expression and advanced histopathology grades, tumor, node, and metastasis stage, tumor diameter, lymph node involvement, as well as the recurrence of breast cancer in 92 tested patients. The tumor tissues from patients also expressed lower NRBP1 than did adjacent healthy tissues. Furthermore, we overexpressed NRBP1 in MCF-7 and MDA-MB-231 breast cancer cell lines and found NRBP1 upregulation-inhibited cell proliferation by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Blocking the autocrine Wnt signaling pathway by LGK974 could remove the NRBP1-overexpression-induced inhibition in breast cancer cells. The results of this study suggest that NRBP1 plays a tumor-suppressive role in breast cancer pathophysiology, which likely acts through the Wnt/?-catenin signaling pathway. PMID:26715855

  17. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer

    PubMed Central

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-01-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-?B) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-?B nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-?B nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-?B activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-?B binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-?B activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis. PMID:25990213

  18. Cooperation between Dmp1 Loss and Cyclin D1 Overexpression in Breast Cancer

    PubMed Central

    Zhu, Sinan; Mott, Ryan T.; Fry, Elizabeth A.; Taneja, Pankaj; Kulik, George; Sui, Guangchao; Inoue, Kazushi

    2014-01-01

    Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1–cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1–induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1+/+;MMTV-cyclin D1 and Dmp1+/+;MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer. PMID:23938323

  19. Clinical implications of HER-2/neu overexpression and proteolytic activity imbalance in breast cancer.

    PubMed

    Swellam, Menha; Arab, Lobna R Ezz El; Bushnak, Hussein A

    2007-06-01

    The aggressive biological behavior of invasive and metastatic cancer is considered to be the most insidious and life-threatening aspect for breast cancer patients. It is mostly the result of changes in many molecular characteristics of tumor cells, including alterations in gene expression and the balance of proteolytic activity. The objective of this study was to determine the level of MMP-2, its natural inhibitor TIMP-2, their ratio and HER-2/neu as diagnostic and prognostic factors. Markers were analyzed in 240 tissue samples categorized into 96 benign breast disease and 144 breast cancer patients. Enzyme linked immunosorbent assay procedure was used to evaluate the level of MMP-2 and TIMP-2 in the cell lysate, HER-2/neu in the membrane fraction, and steroid hormone receptors (ER and PgR) in the cytosol fraction. Breast cancer patients were followed-up for three years. Receiver operating characteristic curves were used to determine the cutoff points for the investigated factors. Positive values for all investigated factors were significantly increased in breast cancer patients compared to benign ones. Mean levels for all investigated factors were significantly correlated with lymph node and hormone receptor status, while MMP-2 and TIMP-2 were correlated with tumor grade (P < 0.05). In Univariate analysis, positive MMP-2, MMP-2/TIMP-2, HER-2/neu overexpression, higher tumor grade, late clinical stages and positive lymph nodes status were significantly associated with relapse. By multivariate analysis, all aforementioned factors apart from tumor grade were independent variables. Thus, the investigated markers are constructive for biologic aggressiveness of breast cancer and MMP-2/TIMP-2 ratio might be a new significant marker in early diagnosis and estimate prognosis in breast cancer. PMID:17613170

  20. R-RAS2 overexpression in tumors of the human central nervous system.

    PubMed

    Gutierrez-Erlandsson, Sylvia; Herrero-Vidal, Pedro; Fernandez-Alfara, Marcos; Hernandez-Garcia, Susana; Gonzalo-Flores, Sandra; Mudarra-Rubio, Alberto; Fresno, Manuel; Cubelos, Beatriz

    2013-01-01

    Malignant tumors of the central nervous system (CNS) are the 10th most frequent cause of cancer mortality. Despite the strong malignancy of some such tumors, oncogenic mutations are rarely found in classic members of the RAS family of small GTPases. This raises the question as to whether other RAS family members may be affected in CNS tumors, excessively activating RAS pathways. The RAS-related subfamily of GTPases is that which is most closely related to classical Ras and it currently contains 3 members: RRAS, RRAS2 and RRAS3. While R-RAS and R-RAS2 are expressed ubiquitously, R-RAS3 expression is restricted to the CNS. Significantly, both wild type and mutated RRAS2 (also known as TC21) are overexpressed in human carcinomas of the oral cavity, esophagus, stomach, skin and breast, as well as in lymphomas. Hence, we analyzed the expression of R-RAS2 mRNA and protein in a wide variety of human CNS tumors and we found the R-RAS2 protein to be overexpressed in all of the 90 CNS cancer samples studied, including glioblastomas, astrocytomas and oligodendrogliomas. However, R-Ras2 was more strongly expressed in low grade (World Health Organization grades I-II) rather than high grade (grades III-IV) tumors, suggesting that R-RAS2 is overexpressed in the early stages of malignancy. Indeed, R-RAS2 overexpression was evident in pre-malignant hyperplasias, both at the mRNA and protein levels. Nevertheless, such dramatic changes in expression were not evident for the other two subfamily members, which implies that RRAS2 is the main factor triggering neural transformation. PMID:24148564

  1. Anti-Her-2/neu antibody induces apoptosis in Her-2/neu overexpressing breast cancer cells independently from p53 status

    PubMed Central

    Brodowicz, T; Kandioler, D; Tomek, S; Ludwig, C; Rudas, M; Kunstfeld, R; Koestler, W; Hejna, M; Budinsky, A; Wiltschke, C; Zielinski, C C

    2001-01-01

    Anti-Her-2/neu antibody is known to induce apoptosis in HER-2/neu overexpressing breast cancer cells. However, exact regulatory mechanisms mediating and controlling this phenomenon are still unknown. In the present study, we have investigated the effect of anti-Her-2/neu antibody on apoptosis of HER-2/neu overexpressing human breast cancer cell lines SK-BR-3, HTB-24, HTB-25, HTB-27, HTB-128, HTB-130 and HTB-131 in relation to p53 genotype and bcl-2 status. SK-BR-3, HTB-24, HTB-128 and HTB-130 cells exhibited mutant p53, whereas wild type p53 was found in HTB-25, HTB-27 and HTB-131 cells. All seven cell lines weakly expressed bcl-2 protein (10–20%). Anti-Her-2/neu antibody, irrespective of p53 and bcl-2 status, induced apoptosis in all 7 cell lines dose- and time-dependently and correlated with Her-2/neu overexpression. In addition, incubation of cell lines with anti-Her-2/neu antibody did not alter p53 or bcl-2 expression. Anti-HER-2/neu antibody did not induce apoptosis in HER-2/neu negative HBL-100 and HTB-132 cell lines. Our results indicate that within the panel of tested breast cancer cell lines, anti-Her-2/neu antibody-induced apoptosis was independent from the presence of intact p53. © 2001 Cancer Research Compaign http://www.bjcancer.com PMID:11742500

  2. Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients

    PubMed Central

    Panse, J; Friedrichs, K; Marx, A; Hildebrandt, Y; Luetkens, T; Bartels, K; Horn, C; Stahl, T; Cao, Y; Milde-Langosch, K; Niendorf, A; Kröger, N; Wenzel, S; Leuwer, R; Bokemeyer, C; Hegewisch-Becker, S; Atanackovic, D

    2008-01-01

    The abilities of chemokines in orchestrating cellular migration are utilised by different (patho-)biological networks including malignancies. However, except for CXCR4/CXCL12, little is known about the relation between tumour-related chemokine expression and the development and progression of solid tumours like breast cancer. In this study, microarray analyses revealed the overexpression of chemokine CXCL13 in breast cancer specimens. This finding was confirmed by real-time polymerase chain reaction in a larger set of samples (n=34) and cell lines, and was validated on the protein level performing Western blot, ELISA, and immunohistochemistry. Levels of CXCR5, the receptor for CXCL13, were low in malignant and healthy breast tissues, and surface expression was not detected in vitro. However, we observed a strong (P=0.0004) correlation between the expressions of CXCL13 and CXCR5 in breast cancer tissues, indicating a biologically relevant role of CXCR5 in vivo. Finally, we detected significantly elevated serum concentrations of CXCL13 in patients with metastatic disease (n=54) as compared with controls (n=44) and disease-free patients (n=48). In conclusion, CXCL13 is overexpressed within breast cancer tissues, and increased serum levels of this cytokine can be found in breast cancer patients with metastatic disease pointing to a role of CXCL13 in the progression of breast cancer, suggesting that CXCL13 might serve as a useful therapeutic target and/or diagnostic marker in this malignancy. PMID:18781150

  3. Overexpression of Id1 in transgenic mice promotes mammary basal stem cell activity and breast tumorigenesis

    PubMed Central

    Won, Hee-Young; Jang, Ki-Seok; Min, Kyueng-Whan; Jang, Si-Hyong; Woo, Jong-Kyu; Oh, Seung Hyun; Kong, Gu

    2015-01-01

    Inhibitor of differentiation/DNA binding (Id)1 is a crucial regulator of mammary development and breast cancer progression. However, its effect on stemness and tumorigenesis in mammary epithelial cells remains undefined. Herein, we demonstrate that Id1 induces mammary tumorigenesis by increasing normal and malignant mammary stem cell (MaSC) activities in transgenic mice. MaSC-enriched basal cell expansion and increased self-renewal and in vivo regenerative capacity of MaSCs are observed in the mammary glands of MMTV-Id1 transgenic mice. Furthermore, MMTV-Id1 mice develop ductal hyperplasia and mammary tumors with highly expressed basal markers. Id1 also increases breast cancer stem cell (CSC) population and activity in human breast cancer lines. Moreover, the effects of Id1 on normal and malignant stem cell activities are mediated by the Wnt/c-Myc pathway. Collectively, these findings provide in vivo genetic evidence of Id1 functions as an oncogene in breast cancer and indicate that Id1 regulates mammary basal stem cells by activating the Wnt/c-Myc pathway, thereby contributing to breast tumor development. PMID:25938540

  4. Overexpression of MMP Family Members Functions as Prognostic Biomarker for Breast Cancer Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Ren, Fanghui; Tang, Ruixue; Zhang, Xin; Madushi, Wickramaarachchi Mihiranganee; Luo, Dianzhong; Dang, Yiwu; Li, Zuyun; Wei, Kanglai; Chen, Gang

    2015-01-01

    Background Matrix metalloproteinases (MMPs) are regarded to be relevant to the prognosis of breast cancer. Numerous studies have confirmed the association between MMPs and tumor growth, invasion and metastasis in breast cancer. However, their prognostic values for survival in patients with breast cancer remain controversial. Hence, a meta-analysis was performed to clarify a more accurate estimation of the role of MMPs on prognosis of breast cancer patients. Method A systemic electronic search was conducted in PubMed, Embase and Web of science databases to identify eligible studies, which were associated with the relationship between MMPs and prognosis of breast cancer. The correlation in random-effect model was evaluated by using the hazard ratios (HRs) and 95% confidence intervals (CIs). Results A total of 28 studies covering 4944 patients were included for meta-analysis. A summary hazard ratio (HR) of all studies was calculated, as well as the sub-group HRs. The combined HRs calculated by either univariate or multivariate analysis both suggested that overexpression of MMPs had an unfavorable impact on overall survival (OS) (HR = 1.694, 95%CI: 1.347–2.129, P < 0.001; HR = 1.611, 95%CI: 1.419–1.830, P < 0.001, respectively). And the univariate analysis showed that patients with overexpression of MMPs had worse relapse-free survival (RFS) (HR = 1.969, 95%CI: 1.460–2.655, P < 0.001) in all eligible studies. In the sub-group analyses, HRs of MMP-9 positivity with poor OS were 1.794 (95%CI: 1.330–2.420, P < 0.001) and 1.709 (95%CI: 1.157–2.526, P = 0.007) which were separately evaluated by univariate and multivariate analysis. A small number of articles demonstrated that MMP-2 overexpression was not related with shorter OS (HR = 1.400, 95%CI: 0.610–3.029, P = 0.427). Four studies included in the OS analysis of MMPs expression in serum suggested that positive expression of serum MMPs may be an unfavorable factor (HR = 1.630, 95%CI: 1.065–2.494) for breast cancer patients. No publication bias was observed in the current meta-analysis. Conclusions Our findings suggested that MMPs overexpression (especially MMP-9, MMP-2, MMPs overexpression in serum) might indicate a higher risk of poor prognosis in breast cancer. Larger prospective studies are further needed to estimate the prognostic values of MMPs overexpression. PMID:26270045

  5. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. PAX6 overexpression is associated with the poor prognosis of invasive ductal breast cancer

    PubMed Central

    XIA, XIANGHOU; YIN, WENJUAN; ZHANG, XIPING; YU, XINGFEI; WANG, CHEN; XU, SHENHUA; FENG, WEILIANG; YANG, HONGJIAN

    2015-01-01

    Paired box 6 (PAX6) plays a significant role in the development of human neuroectodermal epithelial tissues. Previous studies have suggested that the PAX6 promoter is hypermethylated in breast cancer and that it is involved in breast cancer cell proliferation. The present study aimed to investigate the expression of PAX6 in invasive breast cancer tissues, and to evaluate its prognostic significance. Immunohistochemistry (IHC) was used to detect PAX6 expression on a breast cancer tissue microarray containing tissues from 111 patients. Associations of PAX6 expression with staging and prognosis were analyzed. PAX6 was mainly expressed in the nucleus. The PAX6 staining intensity was not associated with age, histological grade, lymph node status, tumor size, or progesterone receptor and human epidermal growth factor receptor 2 expression (all P>0.05). A high level of PAX6 staining was more frequent in estrogen receptor (ER)-negative cases compared with ER-positive cases (43.9 vs. 25.7%; P=0.049). After a median follow-up time of 110 months, the patients with low PAX6 expression exhibited an improved survival rate compared with the patients with high PAX6 expression (P<0.001). Cox analysis showed a worse survival rate in the patients with high PAX6 staining (hazard ratio, 3.458; 95% confidence interval, 1.575–7.593; P=0.002). In conclusion, high tumor PAX6 staining intensity by IHC was associated with a poor prognosis in breast cancer patients. PMID:26622698

  7. Human cancers overexpress genes that are specific to a variety of normal human tissues

    PubMed Central

    Lotem, Joseph; Netanely, Dvir; Domany, Eytan; Sachs, Leo

    2005-01-01

    We have analyzed gene expression data from three different kinds of samples: normal human tissues, human cancer cell lines, and leukemic cells from lymphoid and myeloid leukemia pediatric patients. We have searched for genes that are overexpressed in human cancer and also show specific patterns of tissue-dependent expression in normal tissues. Using the expression data of the normal tissues, we identified 4,346 genes with a high variability of expression and clustered these genes according to their relative expression level. Of 91 stable clusters obtained, 24 clusters included genes preferentially expressed either only in hematopoietic tissues or in hematopoietic and one to two other tissues; 28 clusters included genes preferentially expressed in various nonhematopoietic tissues such as neuronal, testis, liver, kidney, muscle, lung, pancreas, and placenta. Analysis of the expression levels of these two groups of genes in the human cancer cell lines and leukemias identified genes that were highly expressed in cancer cells but not in their normal counterparts and, thus, were overexpressed in the cancers. The different cancer cell lines and leukemias varied in the number and identity of these overexpressed genes. The results indicate that many genes that are overexpressed in human cancer cells are specific to a variety of normal tissues, including normal tissues other than those from which the cancer originated. It is suggested that this general property of cancer cells plays a major role in determining the behavior of the cancers, including their metastatic potential. PMID:16339305

  8. Overexpression of HER2/neu as a Prognostic Value in Iranian Women With Early Stage Breast Cancer; A Single Institute Study

    PubMed Central

    Mirtavoos Mahyari, Hanifeh; Khosravi, Adnan; Mirtavoos Mahyari, Zeinab; Esfahani Monfared, Zahra; Khosravi, Negin

    2014-01-01

    Background: Patients with early stage breast cancer with same treatment strategy can have markedly different outcomes. Human epidermal growth factor receptor 2 (HER2/nue) gene amplification or the subsequent overexpression of protein has been proved to be associated with patient's outcome and response to anthracyclins-based regimens. Objectives: This study assessed prognostic value of HER2/nue marker in patients with early stage breast cancer who received adjuvant chemotherapy with anthracyclins-based regimens. Materials and Methods: Fifty tissue samples from patients with primary breast cancer of moderate risk receiving sequential adjuvant chemotherapy with anthracyclins-based regimens were assessed to evaluate HER2/nue gene status (quantified by Immunohistochemistry and fluorescence in situ hybridization) retrospectively. Besides, correlation of HER2/neu with patients' characteristics and outcome was studied. Results: HER2/neu amplification was identified in 19 (38%) of 50 patients. No significant difference regarding HER2/neu status was seen in clinic pathological characteristics of patients. Although Progression Free Survival (PFS) was shorter in HER2 overexpressed group, but uni/multivariate analysis adjusted for HER2 overexpression, nodal involvement, hormone receptor status, age and tumor size revealed no significant predictive and/or prognostic value for HER2 regarding PFS. Conclusions: This study on a limited number of patients treated with adjutant anthracyclins-based regimens, revealed that HER2/neu is not a unique strong predictor for outcome, thus according to combination of HER2/neu status and other clinical factors, it is necessary to distinguish patients at high risk of recurrence. PMID:25763209

  9. Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines

    SciTech Connect

    Lee, Won Jae; Roberts-Thomson, Sarah J.; Monteith, Gregory R. . E-mail: G.Monteith@pharmacy.uq.edu.au

    2005-11-25

    There is evidence to suggest that plasma membrane Ca{sup 2+}-ATPase (PMCA) isoforms are important mediators sssof mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184B5 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study.

  10. HOXB7-S3 inhibits the proliferation and invasion of MCF-7 human breast cancer cells

    PubMed Central

    MA, RUI; ZHANG, DAN; HU, PENG-CHAO; LI, QUN; LIN, CONG-YAO

    2015-01-01

    Homeobox B7 (HOXB7) has been found to be overexpressed in numerous types of human cancer. However, the role of HOXB7 in breast cancer remains to be elucidated. The aim of the present study was to investigate the effects of HOXB7 on the proliferation and invasion of breast cancer cells. Initially, reverse transcription quantitative polymerase chain reaction and western blotting were respectively employed to detect the mRNA and protein expression levels of the HOXB7 gene in the MDA-MB-231 and MCF-7 human breast cancer cell lines. Subsequently, small interfering RNAs designed to interfere with the expression of HOXB7 were used to knockdown the expression of HOXB7 in the MCF-7 cell line, the effects of which on cell proliferation, the apoptotic rate and invasion capacity were measured using a Cell Counting kit-8 assay, flow cytometry and transwell chambers, respectively. The results demonstrated that HOXB7 mRNA and protein were all overexpressed in MDA-MB-231 and MCF-7 breast cancer cell lines. Furthermore, HOXB7-S3 effectively inhibited the proliferation and invasion of MCF-7 breast cancer cells. In conclusion, these results demonstrated that HOXB7 may be a potential therapeutic target in human breast cancer. PMID:26135503

  11. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients

    PubMed Central

    Park, Y H; Park, M J; Ji, S H; Yi, S Y; Lim, D H; Nam, D H; Lee, J-I; Park, W; Choi, D H; Huh, S J; Ahn, J S; Kang, W K; Park, K; Im, Y-H

    2009-01-01

    In patients with human epidermal growth factor receptor-2 (HER2)-overexpressing breast cancer, treatment with trastuzumab has been shown to markedly improve the outcome. We investigated the role of trastuzumab on brain metastasis (BM) in HER2-positive breast cancer patients. From 1999 to 2006, 251 patients were treated with palliative chemotherapy for HER2-positive metastatic breast cancer at Samsung Medical Center. The medical records of these patients were analysed to study the effects of trastuzumab on BM prevalence and outcomes. Patients were grouped according to trastuzumab therapy: pre-T (no trastuzumab therapy) vs post-T (trastuzumab therapy). The development of BM between the two treatment groups was significantly different (37.8% for post-T vs 25.0% for pre-T, P=0.028). Patients who had received trastuzumab had longer times to BM compared with patients who were not treated with trastuzumab (median 15 months for post-T group vs 10 months for pre-T group, P=0.035). Time to death (TTD) from BM was significantly longer in the post-T group than in the pre-T group (median 14.9 vs 4.0 months, P=0.0005). Extracranial disease control at the time of BM, 12 months or more of progression-free survival of extracranial disease and treatment with lapatinib were independent prognostic factors for TTD from BM. PMID:19240719

  12. Overexpression of Human Cripto-1 in Transgenic Mice Delays Mammary Gland Development and Differentiation and Induces Mammary Tumorigenesis

    PubMed Central

    Sun, Youping; Strizzi, Luigi; Raafat, Ahmed; Hirota, Morihisa; Bianco, Caterina; Feigenbaum, Lionel; Kenney, Nicholas; Wechselberger, Christian; Callahan, Robert; Salomon, David S.

    2005-01-01

    Overexpression of Cripto-1 has been reported in several types of human cancers including breast cancer. To investigate the role of human Cripto-1 (CR-1) in mammary gland development and tumorigenesis, we developed transgenic mice that express the human CR-1 transgene under the regulation of the whey acidic protein (WAP) promoter in the FVB/N mouse background. The CR-1 transgene was detected in the mammary gland of 15-week-old virgin WAP-CR-1 female mice that eventually developed hyperplastic lesions. From mid-pregnancy to early lactation, mammary lobulo-alveolar structures in WAP-CR-1 mice were less differentiated and delayed in their development due to decreased cell proliferation as compared to FVB/N mice. Early involution, due to increased apoptosis, was observed in the mammary glands of WAP-CR-1 mice. Higher levels of phosphorylated AKT and MAPK were detected in mammary glands of multiparous WAP-CR-1 mice as compared to multiparous FVB/N mice suggesting increased cell proliferation and survival of the transgenic mammary gland. In addition, more than half (15 of 29) of the WAP-CR-1 multiparous female mice developed multifocal mammary tumors of mixed histological subtypes. These results demonstrate that overexpression of CR-1 during pregnancy and lactation can lead to alterations in mammary gland development and to production of mammary tumors in multiparous mice. PMID:16049342

  13. RecQL4 Helicase Amplification Is Involved in Human Breast Tumorigenesis

    PubMed Central

    Chi, Zhenfen; Liu, Jing; Guo, Dan; Lu, Xuemei; Hei, Tom K.; Balajee, Adayabalam S.; Zhao, Yongliang

    2013-01-01

    Breast cancer occur both in hereditary and sporadic forms, and the later one comprises an overwhelming majority of breast cancer cases among women. Numerical and structural alterations involving chromosome 8, with loss of short arm (8p) and gain of long arm (8q), are frequently observed in breast cancer cells and tissues. In this study, we show that most of the human breast tumor cell lines examined display an over representation of 8q24, a chromosomal locus RecQL4 is regionally mapped to, and consequently, a markedly elevated level of RecQL4 expression. An increased RecQL4 mRNA level was also observed in a majority of clinical breast tumor samples (38/43) examined. shRNA-mediated RecQL4 suppression in MDA-MB453 breast cancer cells not only significantly inhibit the in vitro clonogenic survival and in vivo tumorigenicity. Further studies demonstrate that RecQL4 physically interacts with a major survival factor-survivin and its protein level affects survivin expression. Although loss of RecQL4 function due to gene mutations causally linked to occurrence of human RTS with features of premature aging and cancer predisposition, our studies provide the evidence that overexpression of RecQL4 due to gene amplification play a critical role in human breast tumor progression. PMID:23894508

  14. Epigenetic Mechanisms Leading to Overexpression of HMGA Proteins in Human Pituitary Adenomas

    PubMed Central

    D’Angelo, Daniela; Esposito, Francesco; Fusco, Alfredo

    2015-01-01

    Overexpression of the high-mobility group A (HMGA)1 and HMGA2 proteins is a feature of all human pituitary adenoma (PAs) subtypes. However, amplification and/or rearrangement of the HMGA2 have been described in human prolactinomas, but rarely in other pituitary subtypes, and no genomic amplification of HMGA1 was detected in PAs. Here, we summarize the functional role of HMGA proteins in pituitary tumorigenesis and the epigenetic mechanisms contributing to HMGA overexpression in these tumors focusing on recent studies indicating a critical role of non-coding RNAs in modulating HMGA protein levels. PMID:26137461

  15. Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast.

    PubMed

    Boström, Pia; Sainio, Annele; Kakko, Tanja; Savontaus, Mikko; Söderström, Mirva; Järveläinen, Hannu

    2013-01-01

    The small extracellular matrix proteoglycan decorin which possesses a potent antitumor activity has been shown to be present in various amounts in the stroma of several tumors including those of the breast. Regarding decorin in breast malignancies the published data are conflicting, i.e., whether breast cancer cells express it or not. Here, we first compared decorin gene expression levels between healthy human breast tissue and selected types of human breast cancer using GeneSapiens databank. Next, we localized decorin mRNA in tissue specimen of normal human breast, intraductal breast papillomas and various histologic types of human breast cancer using in situ hybridization (ISH) with digoxigenin-labeled RNA probes for decorin. We also examined the effect of decorin transduction on the behavior of cultured human breast cancer MCF7 cells. Analysis of GeneSapiens databank revealed that in various human breast cancers decorin expression is significant. However, ISH results clearly demonstrated that human breast cancer cells independently of the type of the cancer do not express decorin mRNA. This was also true for papilloma-forming cells of the human breast. Indeed, decorin gene expression in healthy human breast tissue as well as in benign and malignant tumors of human breast was shown to take place solely in cells of the original stroma. Decorin transduction using decorin adenoviral vector in decorin-negative MCF7 cells resulted in a significant decrease in the proliferation of these cells and changed cell cohesion. Decorin-transduced MCF7 cells also exhibited increased apoptosis. In conclusion, our study shows that in human breast tissue only cells of the original stroma are capable of decorin gene expression. Our study also shows that transduction of decorin in decorin-negative human breast cancer cells markedly modulates the growth pattern of these cells. PMID:23007289

  16. Systems consequences of amplicon formation in human breast cancer

    E-print Network

    Inaki, Koichiro

    Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples ...

  17. Excretion of drugs in human breast milk

    SciTech Connect

    Welch, R.M.; Findlay, J.W.

    1981-01-01

    The present report briefly discusses some of the morphological, physiological, and compositional aspects of animal and human breast milk and how these characteristics might be important for the accumulation of drugs and foreign compounds. In addition, a study is described confirming the presence of caffeine, codeine, morphine, phenacetin, acetaminophen, and salicylic acid in the breast milk of a lactating mother following oral administration of a combination analgesic containing aspirin, phenacetin, caffeine, and codeine. Although the study is limited to one subject, it has provided critically needed data on the rates of appearance in, and elimination of these drugs from, breast milk. A similar amount of information is presented on phenacetin, also a component of the analgesic mixture, which has not been previously reported to enter human milk. The distribution of these drugs between the slightly more acidic breast milk and the relatively neutral plasma is consistent with their weakly basic, acidic, or relatively neutral properties. In general, the study shows that codeine and morphine milk concentrations are higher than, salicylic acid milk levels are much lower than, and phenacetin, caffeine, and acetaminophen milk concentrations are relatively similar to their respective plasma levels. It is projected, from estimated steady-state milk concentrations of the drugs and their metabolites studied, that very low percentages of the therapeutic dosages (less than 0.7%) would be excreted in mother's milk, too low an amount to be clinically significant to the infant.

  18. Lead Optimization of 2-Cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides for Targeting the HER-2 Overexpressed Breast Cancer Cell Line SKBr-3.

    PubMed

    Bhat, Mashooq A; Al-Dhfyan, Abdullah; Naglah, Ahmed M; Khan, Azmat Ali; Al-Omar, Mohamed A

    2015-01-01

    Lead derivatives of 2-cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides 1-18 were synthesized, characterized and evaluated in vitro against HER-2 overexpressed breast cancer cell line SKBr-3. All the compounds showed activity against HER-2 overexpressed SKBr-3 cells with IC50 = 17.44 ± 0.01 µM to 53.29 ± 0.33 µM. (2Z)-2-(3-Hydroxybenzylidene)-N-(3-methoxyphenyl)hydrazinecarbothioamide (12, IC50 = 17.44 ± 0.01 µM) was found to be most potent compound of this series targeting HER-2 overexpressed breast cancer cells compared to the standard drug 5-fluorouracil (5-FU) (IC50 = 38.58 ± 0.04 µM). Compound 12 inhibited the cellular proliferation via DNA degradation. PMID:26457700

  19. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours

    PubMed Central

    Tomlinson, Victoria AL; Newbery, Helen J; Wray, Naomi R; Jackson, Juliette; Larionov, Alexey; Miller, William R; Dixon, J Michael; Abbott, Catherine M

    2005-01-01

    Background The tissue-specific translation elongation factor eEF1A2 was recently shown to be a potential oncogene that is overexpressed in ovarian cancer. Although there is no direct evidence for an involvement of eEF1A2 in breast cancer, the genomic region to which EEF1A2 maps, 20q13, is frequently amplified in breast tumours. We therefore sought to establish whether eEF1A2 expression might be upregulated in breast cancer. Methods eEF1A2 is highly similar (98%) to the near-ubiquitously expressed eEF1A1 (formerly known as EF1-?) making analysis with commercial antibodies difficult. We have developed specific anti-eEF1A2 antibodies and used them in immunohistochemical analyses of tumour samples. We report the novel finding that although eEF1A2 is barely detectable in normal breast it is moderately to strongly expressed in two-thirds of breast tumours. This overexpression is strongly associated with estrogen receptor positivity. Conclusion eEF1A2 should be considered as a putative oncogene in breast cancer that may be a useful diagnostic marker and therapeutic target for a high proportion of breast tumours. The oncogenicity of eEF1A2 may be related to its role in protein synthesis or to its potential non-canonical functions in cytoskeletal remodelling or apoptosis. PMID:16156888

  20. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic ?-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the ?5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  1. Overexpression of TGF-?1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    SciTech Connect

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-08-08

    Highlights: • Continuous TGF-?1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-?1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-?1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-?) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-? up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-?1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-?1. The results revealed that continuous overexpression of TGF-?1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-?1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-?1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  2. A canine model of Alzheimer's disease generated by overexpressing a mutated human amyloid precursor protein.

    PubMed

    Lee, Geun-Shik; Jeong, Yeon Woo; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Moon, Changjong; Hyun, Sang Hwan; Hwang, Kyu-Chan; Kim, Nam-Hyung; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2014-04-01

    Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and ?-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD. PMID:24481173

  3. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh.

    PubMed

    Noman, A S; Uddin, M; Rahman, M Z; Nayeem, M J; Alam, S S; Khatun, Z; Wahiduzzaman, M; Sultana, A; Rahman, M L; Ali, M Y; Barua, D; Ahmed, I; Islam, M S; Aboussekhra, A; Yeger, H; Farhat, W A; Islam, S S

    2016-01-01

    Dysregulation of Hedgehog (Hh) signaling pathway has been documented in mammary gland development and breast cancer (BC) progression. Despite the remarkable progress in therapeutic interventions, BC related mortality in Bangladesh increased in the last decade. Triple negative breast cancer (TNBC) still presents a critical therapeutic challenge. Thus effective targeted therapy is urgently needed. In this study, we report the clinicopathological characteristics and prognosis of BC patients from Bangladesh. Routine immunohistochemical analysis and high throughput RNA-Seq data from the TCGA library were used to analyze the expression pattern and association of high and low level of Shh expression in a collection of BC patients with a long-term follow-up. High levels of Shh were observed in a subset of BC tumors with poor prognostic pathological features. Higher level of Shh expression correlated with a significantly poorer overall survival of patients compared with patients whose tumors expressed a low level of Shh. These data support the contention that Shh could be a novel biomarker for breast cancer that is involved in mediating the aggressive phenotype of BC. We propose that BC patients exhibiting a higher level of Shh expression, representing a subset of BC patients, would be amenable to Shh targeted therapy. PMID:26727947

  4. The Cooperation between hMena Overexpression and HER2 Signalling in Breast Cancer

    E-print Network

    Di Modugno, Francesca

    hMena and the epithelial specific isoform hMena11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena11a expression and phosphorylates ...

  5. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For crystallization, E3 samples were prepared with and without His-tag. To minimize the aggregation of E3, apo- and holo- forms of E3s were tested, as well as a mutated E3. Dynamic light scattering measurements revealed that the E3 preparations without His-tag and substrate are highly monodispersive with regard to homodimers. Consequent crystallization trials of this E3 preparation led to single crystals of E3 grown by the vapor diffusion method. Crystals were obtained within a few days from solution containing poly (ethylene glycol) monomethyl ether 5000 as a precipitant. Autoindexing and integration of the X-ray diffraction data showed that E3 crystals belong to an orthorhombic system with unit cell parameters a-- 123. 1, b= 165.3 and c=214.3A. Further optimization of protein preparation and crystallization experiments for the structural determination will be discussed.

  6. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria . E-mail: m.barile@biologia.uniba.it

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.

  7. Expression and regulation of Cyr61 in human breast cancer cell lines.

    PubMed

    Tsai, Miaw-Sheue; Bogart, Daphne F; Li, Patricia; Mehmi, Inderjit; Lupu, Ruth

    2002-01-31

    We have shown that Cyr61, an angiogenic regulator, is overexpressed in invasive and metastatic human breast cancer cells and tumor biopsies. We have further demonstrated that Cyr61 promotes acquisition of estrogen-independence and anti-estrogen resistance in vivo in breast cancer cells. Moreover, we have demonstrated that Cyr61 induces tumor formation and tumor vascularization in vivo, events mediated through the activation of the MAPK and the Akt signaling pathways. Here we investigate how Cyr61 expression is regulated in both estrogen receptor (ER)-positive and ER-negative breast cancer cells. We demonstrate that Cyr61 mRNA and protein expression is inducible by estrogen and anti-estrogens in ER-positive breast cancer cells. We show that a labile protein as well as a negative regulator might be involved in Cyr61 expression in estrogen-dependent breast cancer cells. Other important regulators of Cyr61 expression in breast cancer cells that we found are the phorbol ester TPA, vitamin D, and retinoic acid. TPA causes positive regulation of Cyr61 expression in ER-positive MCF-7 cells. Vitamin D induces a transient stimulatory effect on Cyr61 gene expression. Lastly, retinoic acid has a negative effect on Cyr61 expression and downregulates its expression in MCF-7 cells. Interestingly, most of these effects are not seen in aggressive breast cancer cells that do not express ER and express high levels of Cyr61, such as the MDA-MB-231 cells. Our results are in agreement with our knowledge that Cyr61 promotes tumor growth, and that tumor-promoting agents have a positive impact on cells that express low levels of Cyr61, such as the ER-positive breast cancer cells; however, these agents have no significant effect on cells that express high levels of Cyr61. Our findings suggest an association between increased Cyr61 expression and an aggressive phenotype of breast cancer cells. PMID:11840342

  8. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    PubMed Central

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 ?M nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  9. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells.

    PubMed

    Burks, Scott R; Macedo, Luciana F; Barth, Eugene D; Tkaczuk, Katherine H; Martin, Stuart S; Rosen, Gerald M; Halpern, Howard J; Brodie, Angela M; Kao, Joseph P Y

    2010-11-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 ?M nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  10. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ? CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ? The pro-angiogenic effects of CYP4Z1 have been studied in vitro and in vivo. ? CYP4Z1 regulates expression and production of VEGF-A and TIMP-2. ? CYP4Z1-induced angiogenesis is associated with PI3K and ERK1/2 activation. ? CYP4Z1 may be an attractive target for anti-cancer therapy.

  11. Dystonia, facial dysmorphism, intellectual disability and breast cancer associated with a chromosome 13q34 duplication and overexpression of TFDP1: case report

    PubMed Central

    2013-01-01

    Background Dystonia is a movement disorder characterized by involuntary sustained muscle contractions causing twisting and repetitive movements or abnormal postures. Some cases of primary and neurodegenerative dystonia have been associated with mutations in individual genes critical to the G1-S checkpoint pathway (THAP1, ATM, CIZ1 and TAF1). Secondary dystonia is also a relatively common clinical sign in many neurogenetic disorders. However, the contribution of structural variation in the genome to the etiopathogenesis of dystonia remains largely unexplored. Case presentation Cytogenetic analyses with the Affymetrix Genome-Wide Human SNP Array 6.0 identified a chromosome 13q34 duplication in a 36 year-old female with global developmental delay, facial dysmorphism, tall stature, breast cancer and dystonia, and her neurologically-normal father. Dystonia improved with bilateral globus pallidus interna (GPi) deep brain stimulation (DBS). Genomic breakpoint analysis, quantitative PCR (qPCR) and leukocyte gene expression were used to characterize the structural variant. The 218,345 bp duplication was found to include ADPRHL1, DCUN1D2, and TMCO3, and a 69 bp fragment from a long terminal repeat (LTR) located within Intron 3 of TFDP1. The 3' breakpoint was located within Exon 1 of a TFDP1 long non-coding RNA (NR_026580.1). In the affected subject and her father, gene expression was higher for all three genes located within the duplication. However, in comparison to her father, mother and neurologically-normal controls, the affected subject also showed marked overexpression (2×) of the transcription factor TFDP1 (NM_007111.4). Whole-exome sequencing identified an SGCE variant (c.1295G?>?A, p.Ser432His) that could possibly have contributed to the development of dystonia in the proband. No pathogenic mutations were identified in BRCA1 or BRCA2. Conclusion Overexpression of TFDP1 has been associated with breast cancer and may also be linked to the tall stature, dysmorphism and dystonia seen in our patient. PMID:23849371

  12. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells.

    PubMed

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F; Mayol, Xavier; Cano, Amparo; Hernández-Muñoz, Inmaculada

    2014-04-30

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgf?-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy. PMID:24742605

  13. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    PubMed Central

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M. M.; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of “de novo” FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPAR? pathway. Inhibition of the mTORC1 pathway markers, p70S6?K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPAR? selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPAR? activity. This reprogramming was inhibited by DHA. PMID:26640797

  14. Protein Profiling of Human Breast Tumor Cells Identifies Novel Biomarkers Associated with Molecular Subtypes*S?

    PubMed Central

    Gonçalves, Anthony; Charafe-Jauffret, Emmanuelle; Bertucci, François; Audebert, Stéphane; Toiron, Yves; Esterni, Benjamin; Monville, Florence; Tarpin, Carole; Jacquemier, Jocelyne; Houvenaeghel, Gilles; Chabannon, Christian; Extra, Jean-Marc; Viens, Patrice; Borg, Jean-Paul; Birnbaum, Daniel

    2008-01-01

    Molecular subtypes of breast cancer with relevant biological and clinical features have been defined recently, notably ERBB2-overexpressing, basal-like, and luminal-like subtypes. To investigate the ability of mass spectrometry-based proteomics technologies to analyze the molecular complexity of human breast cancer, we performed a SELDI-TOF MS-based protein profiling of human breast cell lines (BCLs). Triton-soluble proteins from 27 BCLs were incubated with ProteinChip arrays and subjected to SELDI analysis. Unsupervised global hierarchical clustering spontaneously discriminated two groups of BCLs corresponding to “luminal-like” cell lines and to “basal-like” cell lines, respectively. These groups of BCLs were also different in terms of estrogen receptor status as well as expression of epidermal growth factor receptor and other basal markers. Supervised analysis revealed various protein biomarkers with differential expression in basal-like versus luminal-like cell lines. We identified two of them as a carboxyl terminus-truncated form of ubiquitin and S100A9. In a small series of frozen human breast tumors, we confirmed that carboxyl terminus-truncated ubiquitin is observed in primary breast samples, and our results suggest its higher expression in luminal-like tumors. S100A9 up-regulation was found as part of the transcriptionally defined basal-like cluster in DNA microarrays analysis of human tumors. S100A9 association with basal subtypes as well as its poor prognosis value was demonstrated on a series of 547 tumor samples from early breast cancer deposited in a tissue microarray. Our study shows the potential of integrated genomics and proteomics profiling to improve molecular knowledge of complex tumor phenotypes and identify biomarkers with valuable diagnostic or prognostic values. PMID:18426791

  15. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation.

    PubMed

    Caffarel, María M; Sarrió, David; Palacios, José; Guzmán, Manuel; Sánchez, Cristina

    2006-07-01

    It has been proposed that cannabinoids are involved in the control of cell fate. Thus, these compounds can modulate proliferation, differentiation, and survival in different manners depending on the cell type and its physiopathologic context. However, little is known about the effect of cannabinoids on the cell cycle, the main process controlling cell fate. Here, we show that Delta(9)-tetrahydrocannabinol (THC), through activation of CB(2) cannabinoid receptors, reduces human breast cancer cell proliferation by blocking the progression of the cell cycle and by inducing apoptosis. In particular, THC arrests cells in G(2)-M via down-regulation of Cdc2, as suggested by the decreased sensitivity to THC acquired by Cdc2-overexpressing cells. Of interest, the proliferation pattern of normal human mammary epithelial cells was much less affected by THC. We also analyzed by real-time quantitative PCR the expression of CB(1) and CB(2) cannabinoid receptors in a series of human breast tumor and nontumor samples. We found a correlation between CB(2) expression and histologic grade of the tumors. There was also an association between CB(2) expression and other markers of prognostic and predictive value, such as estrogen receptor, progesterone receptor, and ERBB2/HER-2 oncogene. Importantly, no significant CB(2) expression was detected in nontumor breast tissue. Taken together, these data might set the bases for a cannabinoid therapy for the management of breast cancer. PMID:16818634

  16. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. PMID:26283155

  17. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPAR? and C/EBP? compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. PMID:26471299

  18. Screening of HER2 Overexpressed Breast Cancer Subtype In Vivo by the Validation of High-Performance, Long-Term, and Noninvasive Fluorescence Tracer.

    PubMed

    Ding, Jie; Zhou, Ying; Li, Jingjing; Jiang, Liping; He, Zhiwei; Zhu, Jun-Jie

    2015-12-15

    The high-performance and noninvasive screening of heterogeneous tumor subtypes in vivo is particularly desirable for the diagnosis and symptomatic treatment of cancer. Therefore, we report a near-infrared (NIR) fluorescence tracer "smartly identified HER2" (SI-HER2) for rapid, accurate, and highly specific screening of HER2 overexpressed breast cancer. An antibody against HER2 protein receptor, EP1045Y, was conjugated with NIR emitting CdSeTe/CdS/ZnS QDs via polyhistidine-driven self-assembly approach. The further adsorption of black hole quencher 3 on antibody enabled a "turn on" fluorescence response of the fluorescence tracer to HER2 protein receptor. Aside from the capability of differentiating the HER2 overexpressed MCF-7 cells from its counterparts, the fluorescence tracer can also accurately and rapidly identify the HER2 overexpressed breast tumor subtype in two tumors-bearing mouse model, providing a platform for the investigation of advanced pathways to distinguish the different breast cancer subtypes. PMID:26598802

  19. Impact of SOCS3 overexpression on human skeletal muscle development in vitro.

    PubMed

    Caldow, Marissa K; Steinberg, Gregory R; Cameron-Smith, David

    2011-07-01

    The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has been identified as a crucial factor for myogenesis. The STAT3 isoform is essential for satellite cell migration and myogenic differentiation as it mediates the expression of muscle specific myogenic factors. The SOCS (suppressors of cytokine signaling) family of proteins down-regulates STAT activation. Primary human skeletal muscle cells were isolated and cultured to investigate the effect of SOCS3 adenoviral overexpression on myotube maturation. It was demonstrated that STAT3 inhibition did not influence myotube development or survival. Moreover, SOCS3 overexpression enhances the mRNA expression of downstream targets of STAT3, c-FOS and VEGF. These increases were correlated with enhanced mRNA expression of genes associated with muscle maturation and hypertrophy. Thus SOCS3 influences myoblast differentiation and SOCS3 may be significant in regulating the activity of genes previously identified as transcriptionally regulated by STAT3. PMID:21478033

  20. Over-expression of miR-675 in formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer patients

    PubMed Central

    Zhai, Ling-Ling; Wang, Peng; Zhou, Ling-Yu; Yin, Jia-Yu; Tang, Qin; Zhang, Tin-Juan; Wang, Yu-Xin; Yang, Dong-Qin; Lin, Jiang; Deng, Zhao-Qun

    2015-01-01

    Background: Dysregulation of miR-675 has been found in a variety of solid tumors. MiR-675 has been suggested as having both oncogenic and tumor suppression properties in cancer. However, there is no evidence whether miR-675 is involved in breast cancer. The objective of this study was to evaluate the expression status of miR-675 and its clinical relevance in breast cancer patients. Methods: The expression level of miR-675 was detected in 100 breast cancer patients and 38 cancer-free controls using real-time quantitative PCR. The clinicopathological characteristics of miR-675 in breast cancer were also investigated. All statistical analyses were performed using SPSS 20.0. Results: The study showed that miR-675 was significantly up-regulated in breast cancer patients compared with controls (P < 0.01). There was no significant difference in age, lymph nodes stage, ER status and PR status between patients with and without miR-675 over-expression (P > 0.05). The frequency of miR-675 over-expression was higher in the patients of histological grade I-II than in others (50% versus 9%, P = 0.011). The expression level of miR-675 had a high correlation with miR-24/93/98/378 in breast cancer patients. Conclusions: Taken together, our study demonstrated that miR-675 in formalin-fixed paraffin-embedded (FFPE) tissues might serve as a good source for biomarker discovery and breast cancer validation. PMID:26379923

  1. Mutations in p53 as potential molecular markers for human breast cancer

    SciTech Connect

    Runnebaum, I.B.; Nagarajan, M.; Bowman, M.; Soto, D.; Sukumar, S. )

    1991-12-01

    Based on the high incidence of loss of heterozygosity for loci on chromosome 17p in the vicinity of the p53 locus in human breast tumors. The authors investigated the frequency and effects of mutations in the p53 tumor suppressor gene in mammary neoplasia. They examined the p53 gene in 20 breast cancer cell lines and 59 primary breast tumors. Northern blot analysis, immunoprecipitation, and nucleotide sequencing analysis revealed aberrant mRNA expression, over-expression of protein, and point mutations in the p53 gene in 50% of the cell line tested. A multiplex PCR assay was developed to search for deletions in the p53 genomic locus. Multiplex PCR of genomic DNA showed that up to 36% of primary tumors contained aberrations in the p53 locus. Mutations in exons 5-9 of the p53 gene were found in 10 out of 59 (17%) of the primary tumors studied by single-stranded conformation polymorphism analysis. They conclude that, compared to amplification of HER2/NEU, MYC, or INT2 oncogene loci, p53 gene mutations and deletions are the most frequently observed genetic change in breast cancer related to a single gene. Correlated to disease status, p53 gene mutations could prove to be a valuable marker for diagnosis and/or prognosis of breast neoplasia.

  2. Overexpression of human ?-defensin 2 promotes growth and invasion during esophageal carcinogenesis

    PubMed Central

    Shi, Ni; Jin, Feng; Zhang, Xiaoli; Clinton, Steven K.; Pan, Zui; Chen, Tong

    2014-01-01

    Human ?-defensin 2 (HBD-2) is an antimicrobial peptide produced by mucosal surfaces in response to microbial exposure or inflammatory cytokines. Although HBD-2 is expressed in the esophagus in response to stress and infectious agents, little is known regarding its expression and functional role in esophageal carcinogenesis. In the current investigation, normal esophagus and N-nitrosomethylbenzylamine (NMBA)-induced precancerous and papillomatous lesions of the rat esophagus were characterized for HBD-2 encoding gene Defb4 and protein. HBD-2 was found to be overexpressed in esophagi of rats treated with NMBA compared to animals in control group. Results of Real-time PCR, Western blot and immunohistochemistry demonstrated a positive correlation between the overexpression of HBD-2 and the progression of rat squamous cell carcinogenesis (SCC) in the esophagus. We also observed that HBD-2 is overexpressed in tumor tissues removed from patients with esophageal SCC. Moreover, Defb4 silencing in vitro suppresses the tumor cell proliferation, mobility and invasion in esophageal SCC cell line KYSE-150. The results from this study provide experimental evidence that HBD-2 may play an oncogenic role in the initiation and progression of esophageal SCC and thus serves as a target for chemopreventive and therapeutic interventions. PMID:25226614

  3. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    SciTech Connect

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness; Cook-Moreau, Jeanne; Beneytout, Jean-Louis; Liagre, Bertrand

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-?B dependent. Inhibition of NF-?B reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ? Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ? Cyclopamine and jervine induce COX-2 overexpression. ? COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ? Apoptotic potential of jervine is restrained by NF-?B pathway activation. ? PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  4. The human chemokine receptor CCRL2 suppresses chemotaxis and invasion by blocking CCL2-induced phosphorylation of p38 MAPK in human breast cancer cells.

    PubMed

    Wang, Lei-Ping; Cao, Jun; Zhang, Jian; Wang, Bi-Yun; Hu, Xi-Chun; Shao, Zhi-Min; Wang, Zhong-Hua; Ou, Zhou-Luo

    2015-11-01

    The human chemokine receptor CCRL2 is a member of the atypical chemokine receptor family. CCRL2 is unable to couple with G-proteins and fails to induce classical chemokine signaling for the highly conserved DRYLAIV motif essential for signaling has been changed to QRYLVFL. We investigated whether CCRL2 is involved in the chemotaxis, invasion, and proliferation of human breast cancer cells. Firstly, expression of CCRL2 was determined in six breast cancer cell lines by real-time RT-PCR and Western blot. Then, we established stable cell lines overexpressing CCRL2 to explore the function of CCRL2 in chemotaxis and invasion by transwell assays, and the signaling downstream was further investigated. The effect of CCRL2 on proliferation was detected by colony formation assays and tumor xenograft study. We found that stable overexpression of CCRL2 in MDA-MB-231 and BT-549 cells attenuated the chemotaxis and invasion stimulated by its ligand CCL2. CCRL2 inhibits p38 MAPK (p38) phosphorylation and up-regulates the expression of E-cadherin. This effect was eliminated by the inhibitor of p38 MAPK. CCRL2 inhibited the growth of breast cancer cells in vitro and in vivo. Our results suggest that CCRL2 functions as a tumor suppressor in human breast cancer cells. PMID:26487662

  5. Presence of CTAK/CCL27, MCP-3/CCL7 and LIF in human colostrum and breast milk.

    PubMed

    Radillo, Oriano; Norcio, Alessia; Addobbati, Riccardo; Zauli, Giorgio

    2013-01-01

    Human colostrum and breast milk are known to contain high levels of cytokines and chemokines, which are thought to contribute to the development of the newborn. The aim of this study was to investigate the difference in the presence and levels of 21 soluble cytokines and chemokines in paired samples of human colostrum (day 2 after delivery) and breast milk (day 4-5 after delivery) by using the multiplex technology. Of the 21 cytokine investigated in 10 pairs of samples, only ?-NGF was absent in both colostrum and milk, while INF-?2, SCF and TNF-? were present in colostrum but not in human milk. As a general rule, colostrum contained higher concentrations of cytokines and chemokines with respect to breast milk. The majority of cytokines, detected in colostrum alone or in colostrum and human milk (IL-1?, IL-2R?, IL-3, IL-16, IL-18, GRO-?, HGF, IFN-?2, M-CSF, MIF, MIG, TNF-?, SDF-1?, TRAIL) have been described in previous studies, while for the first time we describe the presence of additional cytokines either in colostrum alone (SCF) or in both colostrum and breast milk (CTAK/CCL27, MCP-3/CCL7, LIF). Our data confirm and expand previous studies showing that some cytokines/chemokines, which might contribute to the development of the gastro-intestinal and nervous systems, are overexpressed in human colostrum and breast milk, and might contribute to the development of these systems. PMID:23040056

  6. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  7. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    SciTech Connect

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ? Plant cyclopeptide RA-V kills human breast cancer cells. ? RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ? RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ? Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  8. Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

    PubMed Central

    Ohta, Naomi; Ishiguro, Susumu; Kawabata, Atsushi; Uppalapati, Deepthi; Pyle, Marla; Troyer, Deryl; De, Supriyo; Zhang, Yongqing; Becker, Kevin G.; Tamura, Masaaki

    2015-01-01

    Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species’ breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression. PMID:25942583

  9. Biological roles of human bone morphogenetic protein 9 in the bone microenvironment of human breast cancer MDA-MB-231 cells

    PubMed Central

    Wang, Wei; Weng, Yaguang; Ren, Wei; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Jiang, Yayun; Chen, Yingying; Zhou, Lan; He, Tongchuan; Zhang, Yan

    2015-01-01

    Bone marrow stroma plays a critical role in the bone metastasis of breast cancer. Bone marrow-derived mesenchymal stem cells (BMSC) are critical to facilitate cancer progression. Human bone morphogenetic protein 9 (BMP9) is the most potent osteogenic factor and one of bone-stored growth factors involved in both promotion and inhibition of different cancers. However, it is unclear whether BMP9 correlates with the bone metastasis of breast cancer. This study was to evaluate the role of BMP9 in the interaction between BMSC and breast cancer cells (BCC). To determine whether BMP9 is able to block the tumor promoting effect of BMSC, an in vitro model was developed using breast cancer MDA-MB-231 cells co-cultured with bone marrow-derived mesenchymal stem cells HS-5 with-BMP9 overexpression. The expressions of metastasis-related genes were detected to identify important factors mediating the role of BMP9 in breast cancer cells. Results showed BMP9 could inhibit invasion and promote apoptosis of MDA-MB-231 cells. The expressions of interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2) and monocyte chemoattratctant protein-1 (MCP-1) decreased in the MDA-MB-231 cells of BMP9 over-expression group, and the expressions of epithelial-mesenchymal transition (EMT)-related molecules was also reduced. On the other hand, the expression of stromal cell derived factor-1 (SDF-1) decreased in HS-5 cells of BMP9 over-expression group. Taken together, BMP9 is able to inhibit the migration and promote the apoptosis of breast cancer by regulating the interaction between MDA-MB-231 cells and HS-5 cells in which SDF-1/CXCR4-PI3K pathway and EMT are involved. PMID:26550465

  10. Establishment of a canine model of human type 2 diabetes mellitus by overexpressing phosphoenolypyruvate carboxykinase.

    PubMed

    Jeong, Yeon Woo; Lee, Geun-Shik; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Hyun, Sang Hwan; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2012-08-01

    Dogs are useful models for studying human metabolic diseases such as type 2 diabetes mellitus due to similarities in physiology, anatomy and life styles with humans. Somatic cell nuclear transfer (SCNT) facilitates the production of transgenic dogs. In this study, we generated transgenic dogs expressing the phosphoenolpyruvate carboxykinase (PEPCK) gene, which is closely involved in the pathogenesis of type 2 diabetes mellitus. In addition, we assessed the cloning efficiency associated with adult or fetal (cloned or natural mating) fibroblasts as a nuclear source. Cloning efficiency was determined by the fusion, pregnancy and cloning rates. The fusion rates were significantly high for fibroblasts from cloned fetuses, but the pregnancy and cloning rates were relatively high for cells from normal fetuses. Based on these data, fetal fibroblasts were selected as the nuclear donor for SCNT and genetically engineered to overexpress the PEPCK gene and dual selection marker genes controlled by the PEPCK promoter. The transgenic cells were introduced into oocytes and transferred into five recipient dogs, resulting in two pregnancies. Finally, three puppies were born and confirmed by microsatellite analysis to be genetically identical to the donor. One puppy successfully overexpressed PEPCK mRNA and protein in the liver. This canine disease model may be useful for studying the pathogenesis and/or therapeutic targets of type 2 diabetes mellitus. PMID:22580743

  11. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  12. Osterix transcriptional factor is involved in the metastasis of human breast cancers

    PubMed Central

    DAI, QIANG-SHENG; ZHOU, HONG-YAN; WU, ZHUANG-HONG; LONG, JIAN-TING; SHAO, NAN; CHEANG, TUCK-YUN; WANG, SHEN-MING

    2015-01-01

    The transcriptional factor Osterix is specifically expressed in bone tissues to regulate the differentiation and maturation of osteoblasts. Recent studies have also identified the expression of Osterix in a number of cancer tissues, such as kidney and lung cancers. However, the association of Osterix with the metastasis of breast cancers has never been reported. The present study, for the first time, provides evidence supporting the involvement of Osterix in breast cancer metastasis. Western blotting was employed to investigate the expression of Osterix in a number of human breast cancer cell lines with different metastatic features. Gain-of-function and loss-of-function experiments were performed in MCF7 cells (low level of metastasis) and MDA-MB-361 cells (high level of metastasis). The expression of several metastasis-associated genes was analyzed by western blotting and quantitative polymerase chain reaction. A firefly luciferase-based reporter gene assay was conducted in order to study whether Osterix regulated the promoter activities of the MMP2 and MMP9 genes, which play critical roles in cancer metastasis. The results showed that Osterix was highly expressed in the MDA-MB-231 and MDA-MB-361 cells, but was not detectable in the MCF7 cells. The overexpression of Osterix in the MCF7 cells promoted the expression of VEGF, MMP9 and ?-catenin, while downregulating the expression of E-cadherin. In addition, suppression of Osterix expression in the MDA-MB-361 cells reversed the alteration of VEGF, MMP9, ?-catenin and E-cadherin expression. A reporter gene assay suggested that Osterix activated MMP2 and MMP9 promoter activity. In conclusion, Osterix is involved in the metastasis of human breast cancer and may be a target for the efficient treatment of human breast cancers.

  13. PED is overexpressed and mediates TRAIL resistance in human non-small cell lung cancer

    PubMed Central

    Zanca, Ciro; Garofalo, Michela; Quintavalle, Cristina; Romano, Giulia; Acunzo, Mario; Ragno, Pia; Montuori, Nunzia; Incoronato, Mariarosaria; Tornillo, Luigi; Baumhoer, Daniel; Briguori, Carlo; Terracciano, Luigi; Condorelli, Gerolama

    2008-01-01

    PED (phosphoprotein enriched in diabetes) is a death-effector domain (DED) family member with a broad anti-apoptotic action. PED inhibits the assembly of the death-inducing signalling complex (DISC) of death receptors following stimulation. Recently, we reported that the expression of PED is increased in breast cancer cells and determines the refractoriness of these cells to anticancer therapy. In the present study, we focused on the role of PED in non-small cell lung cancer (NSCLC), a tumour frequently characterized by evasion of apoptosis and drug resistance. Immunohistochemical analysis of a tissue microarray, containing 160 lung cancer samples, indicated that PED was strongly expressed in different lung tumour types. Western blotting performed with specimens from NSCLC-affected patients showed that PED was strongly up-regulated (>6 fold) in the areas of tumour compared to adjacent normal tissue. Furthermore, PED expression levels in NSCLC cell lines correlated with their resistance to tumour necrosis factor related apoptosis-inducing ligand (TRAIL)-induced cell death. The involvement of PED in the refractoriness to TRAIL-induced cell death was investigated by silencing PED expression in TRAIL-resistant NSCLC cells with small interfering (si) RNAs: transfection with PED siRNA, but not with cFLIP siRNA, sensitized cells to TRAIL-induced cell death. In conclusion, PED is specifically overexpressed in lung tumour tissue and contributes to TRAIL resistance. PMID:18284607

  14. Activation of rapid oestrogen signalling in aggressive human breast cancers

    PubMed Central

    Poulard, Coralie; Treilleux, Isabelle; Lavergne, Emilie; Bouchekioua-Bouzaghou, Katia; Goddard-Léon, Sophie; Chabaud, Sylvie; Trédan, Olivier; Corbo, Laura; Le Romancer, Muriel

    2012-01-01

    Oestrogen receptors can mediate rapid activation of cytoplasmic signalling cascades by recruiting Src and PI3K. However, the involvement of this pathway in breast cancer remains poorly defined. We have previously shown that methylation of ER? is required for the formation of the ER?/Src/PI3K complex and that ER? is hypermethylated in a subset of breast cancers. Here, we used Proximity Ligation Assay to demonstrate that this complex is present in the cytoplasm of breast cancer cell lines as well as formalin-fixed, paraffin-embedded tumours. Of particular interest, the analysis of 175 breast tumours showed that overexpression of this complex in a subset of breast tumours correlates to the activation of the downstream effector Akt. Survival analysis revealed that high expression of this complex is an independent marker of poor prognosis and associated with reduced disease-free survival. Our data introduces the new concept that the rapid oestrogen pathway is operative in vivo. It also provides a rationale for patient stratification defined by the activation of this pathway and the identification of target therapies. PMID:23065768

  15. Inhibition of Cell Growth and Induction of Apoptosis by Antrodia camphorata in HER-2/neu-Overexpressing Breast Cancer Cells through the Induction of ROS, Depletion of HER-2/neu, and Disruption of the PI3K/Akt Signaling Pathway

    PubMed Central

    Lee, Chuan-Chen; Yang, Hsin-Ling; Way, Tzong-Der; Kumar, K. J. Senthil; Juan, Ying-Chen; Cho, Hsin-Ju; Lin, Kai-Yuan; Hsu, Li-Sung; Chen, Ssu-Ching; Hseu, You-Cheng

    2012-01-01

    Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Immunoblot analysis demonstrated that HER-2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by the suppression of PI3K/Akt, and their downstream effectors GSK-3? and ?-catenin. Notably, AC-treatment induced apoptotic cell death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release, caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against human HER-2/neu-overexpressing breast cancers. PMID:22701509

  16. Bovine Leukemia Virus DNA in Human Breast Tissue

    PubMed Central

    Shen, Hua Min; Jensen, Hanne M.; Choi, K. Yeon; Sun, Dejun; Nuovo, Gerard

    2014-01-01

    Bovine leukemia virus (BLV), a deltaretrovirus, causes B-cell leukemia/lymphoma in cattle and is prevalent in herds globally. A previous finding of antibodies against BLV in humans led us to examine the possibility of human infection with BLV. We focused on breast tissue because, in cattle, BLV DNA and protein have been found to be more abundant in mammary epithelium than in lymphocytes. In human breast tissue specimens, we identified BLV DNA by using nested liquid-phase PCR and DNA sequencing. Variations from the bovine reference sequence were infrequent and limited to base substitutions. In situ PCR and immunohistochemical testing localized BLV to the secretory epithelium of the breast. Our finding of BLV in human tissues indicates a risk for the acquisition and proliferation of this virus in humans. Further research is needed to determine whether BLV may play a direct role in human disease. PMID:24750974

  17. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    SciTech Connect

    Watanabe, H.; Grubb, J.H.; Sly, W.S. )

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.

  18. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways

    PubMed Central

    Guerram, Mounia; Jiang, Zhen-Zhou; Yousef, Bashir Alsiddig; Hamdi, Aida Mejda; Hassan, Hozeifa Mohamed; Yuan, Zi-Qiao; Luo, Hou-Wei; Zhu, Xiong; Zhang, Lu-Yong

    2015-01-01

    Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers. PMID:26068969

  19. Clinical impact of human breast milk metabolomics.

    PubMed

    Cesare Marincola, Flaminia; Dessì, Angelica; Corbu, Sara; Reali, Alessandra; Fanos, Vassilios

    2015-12-01

    Metabolomics is a research field concerned with the analysis of metabolome, the complete set of metabolites in a given cell, tissue, or biological sample. Being able to provide a molecular snapshot of biological systems, metabolomics has emerged as a functional methodology in a wide range of research areas such as toxicology, pharmacology, food technology, nutrition, microbial biotechnology, systems biology, and plant biotechnology. In this review, we emphasize the applications of metabolomics in investigating the human breast milk (HBM) metabolome. HBM is the recommended source of nutrition for infants since it contains the optimal balance of nutrients for developing babies, and it provides a range of benefits for growth, immunity, and development. The molecular mechanisms beyond the inter- and intra-variability of HBM that make its composition unique are yet to be well-characterized. Although still in its infancy, the study of HBM metabolome has already proven itself to be of great value in providing insights into this biochemical variability in relation to mother phenotype, diet, disease, and lifestyle. The results of these investigations lay the foundation for further developments useful to identify normal and aberrant biochemical changes as well as to develop strategies to promote healthy infant feeding practices. PMID:25689794

  20. In vitro methods to culture primary human breast epithelial cells.

    PubMed

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro. PMID:23179844

  1. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    PubMed Central

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. PMID:22841774

  2. Rad: A member of the Ras family overexpressed in muscle of type II diabetic humans

    SciTech Connect

    Reynet, C.; Kahn, C.R. )

    1993-11-26

    To identify the gene or genes associated with insulin resistance in Type II (non-insulin-dependent) diabetes mellitus, subtraction libraries were prepared from skeletal muscle of normal and diabetic humans and screened with subtracted probes. Only one clone out of 4000 was selectively overexpressed in Type II diabetic muscle as compared to muscle of non-diabetic or Type I diabetic individuals. This clone encoded a new 290 kilodalton member of the Ras-guanosine triphosphatase superfamily and was termed Rad (Ras associated with diabetes). Messenger ribonucleic acid of Rad was expressed primarily in skeletal and cardiac muscle and was increased an average of 8.6-fold in the muscle of Type II diabetics as compared to normal individuals.

  3. Overexpression of Long Non-Coding RNA HOTAIR Promotes Tumor Growth and Metastasis in Human Osteosarcoma

    PubMed Central

    Wang, Bo; Su, Yun; Yang, Qun; Lv, Decheng; Zhang, Weiguo; Tang, Kai; Wang, Hong; Zhang, Rui; Liu, Yang

    2015-01-01

    Human osteosarcoma usually presented a high tendency to metastatic spread and caused poor outcomes, however, the underlying mechanism was still largely unknown. In the present study, using a series of in vitro experiments and an animal model, we investigated the roles of HOX antisense intergenic RNA (HOTAIR) during the proliferation and invasion of osteosarcoma. According with our results, HOTAIR was commonly overexpressed in osteosarcoma, which significantly correlated with advanced tumor stage, highly histological grade and poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of HOTAIR could notably suppress cellular proliferation, inhibit invasion and decrease the secretion of MMP2 and MMP9 in osteosarcoma. Collectively, our results suggested that HOTAIR might be a potent therapeutic target for osteosarcoma. PMID:25728753

  4. High-mobility group A1 proteins are overexpressed in human leukaemias.

    PubMed Central

    Pierantoni, Giovanna Maria; Agosti, Valter; Fedele, Monica; Bond, Heather; Caliendo, Irene; Chiappetta, Gennaro; Lo Coco, Francesco; Pane, Fabrizio; Turco, Maria Caterina; Morrone, Giovanni; Venuta, Salvatore; Fusco, Alfredo

    2003-01-01

    High-mobility group A (HMGA) proteins are non-histone nuclear proteins that bind DNA and several transcription factors. They are involved in the regulation of chromatin structure and function. HMGA protein expression is low in normal adult tissues, but abundant during embryonic development and in several human tumours. Rearrangements of the HMGA genes have been frequently detected in human benign tumours of mesenchymal origin, e.g. lipomas, lung hamartomas and uterine leiomiomas. HMGA proteins have been implicated in the control of cell growth and differentiation of the pre-adipocytic cell line 3T3-L1. In an attempt to better understand the role of HMGA1 proteins in haematological neoplasias and in the differentiation of haematopietic cells, we have investigated their expression in human leukaemias and in leukaemic cell lines induced to terminal differentiation. Here we report HMGA1 overexpression in most fresh human leukaemias of different origin and in several leukaemic cell lines. Moreover, differentiation of three cell lines towards the megakaryocytic phenotype was associated with HMGA1 protein induction, whereas induction of erythroid and monocytic differentiation generally resulted in reduced HMGA1 expression. PMID:12573034

  5. Do dogs harbour risk factors for human breast cancer?

    PubMed

    Laumbacher, B; Fellerhoff, B; Herzberger, B; Wank, R

    2006-01-01

    We ask consulting patients regularly whether they keep pets in order to identify zoonotic factors. It became apparent that patients with breast carcinoma (N=69) owned significantly more often dogs but not cats compared to age matched female controls. We compared the frequencies of dog and pet ownership with data from public available statistics on women (N=1320) of the same age group in Bavaria. The most striking result was that more than twice the number of patients kept dogs permanently in the last 10 years and at the time of interrogation as compared to control individuals at the time of interrogation (p=0.0000003, relative risk 3.5). Further internet search on the morbidity of breast carcinoma showed in dogs a protracted course of disease and metastases into lung, liver and bones, resembling the course of disease in human breast cancer. In contrast with this, breast cancer presented in cats a dramatically short course and the main but unusual location of metastasis presents in the hind legs. A recent publication in Norway reported on a high frequency (53.3%) of breast carcinomas in 14,401 investigated dogs. Which transmissible factor or factors come into question? Variants of the mouse mammary tumor virus (MMTV) can productively replicate in human cells and in different animals, including dogs. Many investigators, but not all, could identify MMTV-like sequences in sporadic human breast cancer. MMTV or MMTV-like sequences have not been investigated in canine breast carcinomas until now. It is also conceivable that other microbes from the dog, for example bacteria, could participate in the first steps of carcinogenesis in human. It was recently shown that bartonella species promote vascularization and prevent apoptosis of infected cells with the same methods as helicobacter pylori. Our considerations require further research. Epidemiologic cohort studies and identification of potential carcinogenic microbial factors will prove or disprove our hypothesis that risk factors from dogs could contribute to the carcinogenesis of human breast cancer. PMID:16516398

  6. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    PubMed

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer. PMID:25454514

  7. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    SciTech Connect

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan; and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images were in general agreement with real human images. The Singlet approach offered more realistic contrast as compared to the Doublet approach, but at the expense of air bubbles and air pockets that formed during the filling process. Conclusions: The presented physical breast phantoms and their matching virtual breast phantoms offer realistic breast anatomy, patient variability, and ease of use, making them a potential candidate for performing both system quality control testing and virtual clinical trials.

  8. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    PubMed Central

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  9. Immunotherapy of human tumour xenografts overexpressing the EGF receptor with rat antibodies that block growth factor-receptor interaction.

    PubMed Central

    Modjtahedi, H.; Eccles, S.; Box, G.; Styles, J.; Dean, C.

    1993-01-01

    Athymic mice bearing xenografts of human tumours that overexpress the receptor (EGFR) for EGF and TGF alpha have been used to evaluate the therapeutic potential of three new rat monoclonal antibodies (mAbs) directed against two distinct epitopes on the extracellular domain of the human EGFR. The antibodies, ICR16 (IgG2a), ICR62 (IgG2b) and ICR64 (IgG1), have been shown (Modjtahedi et al., 1993) to be potent inhibitors of the growth in vitro of a number of human squamous cell carcinomas because they block receptor-ligand interaction. When given i.p. at 200 micrograms dose, the three antibodies were found to induce complete regression of xenografts of the HN5 tumour if treatment with antibody commenced at the time of tumour implantation (total doses: ICR16, 3.0 mg; ICR62, 1.2 mg; ICR64, 2.2 mg). More importantly when treatment was delayed until the tumours were established (mean diam. 0.5 cm) both ICR16 and ICR62 induced complete or almost complete regression of the tumours. Furthermore, treatment with a total dose of only 0.44 mg of ICR62 was found to induce complete remission of xenografts of the breast carcinoma MDA-MB 468, but ICR16 was less effective at this dose of antibody and only 4/8 tumours regressed completely. ICR16 and ICR62 were poor inhibitors of the growth in vitro of the vulval carcinoma A431, but both induced a substantial delay in the growth of xenografts of this tumour and 4/8 tumours regressed completely in the mice treated with ICR62 (total dose 2.2 mg). Although ICR16 and ICR64 were more effective than ICR62 as growth inhibitors in vitro, ICR62 was found to be substantially better at inducing regression of the tumour xenografts due perhaps to additional activation of host immune effector functions by the IgG2b antibody. We conclude that these antibodies may be useful therapeutic agents that can be used alone without conjugation to other cytotoxic moieties. PMID:7679281

  10. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    PubMed Central

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J.

    2011-01-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells. PMID:22254082

  11. Comprehensive molecular portraits of human breast tumours.

    PubMed

    2012-10-01

    We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer. PMID:23000897

  12. Comprehensive molecular portraits of human breast tumors

    PubMed Central

    2012-01-01

    Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer. PMID:23000897

  13. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  14. Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma

    PubMed Central

    2011-01-01

    Background By using cDNA microarray analysis, we identified a G protein-coupled receptor, GPR39, that is significantly up-regulated in ESCC. The aim of this study is to investigate the role of GPR39 in human esophageal cancer development, and to examine the prevalence and clinical significance of GPR39 overexpression in ESCC. Methods The mRNA expression level of GPR39 was analyzed in 9 ESCC cell lines and 50 primary ESCC tumors using semi-quantitative RT-PCR. Immunohistochemistry was used to assess GPR39 protein expression in tissue arrays containing 300 primary ESCC cases. In vitro and in vivo studies were done to elucidate the tumorigenic role of GPR39 in ESCC cells. Results We found that GPR39 was frequently overexpressed in primary ESCCs in both mRNA level (27/50, 54%) and protein level (121/207, 58.5%), which was significantly associated with the lymph node metastasis and advanced TNM stage (P < 0.01). Functional studies showed that GPR39 has a strong tumorigenic ability. Introduction of GPR39 gene into ESCC cell line KYSE30 could promote cell proliferation, increase foci formation, colony formation in soft agar, and tumor formation in nude mice. The mechanism by which amplified GPR39 induces tumorigenesis was associated with its role in promoting G1/S transition via up-regulation of cyclin D1 and CDK6. Further study found GPR39 could enhance cell motility and invasiveness by inducing EMT and remodeling cytoskeleton. Moreover, depletion of endogenous GPR39 by siRNA could effectively decrease the oncogenicity of ESCC cells. Conclusions The present study suggests that GPR39 plays an important tumorigenic role in the development and progression of ESCC. PMID:21352519

  15. Overexpression of Wip1 Is Associated with Biologic Behavior in Human Clear Cell Renal Cell Carcinoma

    PubMed Central

    Liu, Sulai; Qi, Lin; Han, Weqing; Wan, Xinxing; Jiang, Shusuan; Li, Yuan; Xie, Yu; Liu, Longfei; Zeng, Fuhua; Liu, Zhizhong; Zu, Xiongbing

    2014-01-01

    Wild-type p53-induced phosphatase (Wip1 or PPM1D) has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of Wip1 in RCC remains unclear. The present study investigated its abnormal expression and dysfunctions in clear cell renal cell carcinoma (ccRCC) in vitro. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of Wip1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both), and upregulation of Wip1 was significantly associated with depth of invasion (P<0.001), Distant metastasis (P?=?0.001), lymph node status (P<0.001) and Fuhrman grade (P<0.001). Wip1 knockdown inhibited the proliferation, migration and invasion of 786-O and RLC-310 cells, whereas Wip1 overexpression promoted the growth and aggressive phenotype of 786-O and RLC-310 cells in vitro. The uni- and multivariate analyses indicated that expression of Wip1 was an independent predictor for survival of ccRCC patients (P?=?0.003, P?=?0.027 respectively). Wip1- negative patients had a higher tumor-free/overall survival rate than patients with high Wip1 expression (P?=?0.001, P?=?0.002 respectively). Overexpression of Wip1 is useful in the prediction of survival in ccRCC patients. PMID:25334029

  16. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    PubMed

    Cadavez, Lisa; Montane, Joel; Alcarraz-Vizán, Gema; Visa, Montse; Vidal-Fàbrega, Laia; Servitja, Joan-Marc; Novials, Anna

    2014-01-01

    In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP). The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR), perturbing endoplasmic reticulum (ER) homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP) or protein disulfite isomerase (PDI), and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA) or 4-phenylbutyrate (PBA), alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes. PMID:25010593

  17. Early Human Papilloma Virus (HPV) Oncogenic Influences in Breast Cancer

    PubMed Central

    Ngan, Christopher; Lawson, James S.; Clay, Rosemary; Delprado, Warick; Whitaker, Noel J.; Glenn, Wendy K.

    2015-01-01

    BACKGROUND Human papilloma viruses (HPVs) may act early in breast oncogenesis (“hit-and-run” phenomena). METHODS The authors used immunohistochemistry for the identification of HPV E7 oncogenic protein expression in 32 sets of benign and subsequent breast cancer specimens from the same Australian patients. RESULTS HPV E7 oncoprotein was clearly expressed in the nuclei of 23 (72%) of the 32 benign specimens and 20 (62.5%) of the subsequent 32 breast cancer specimens in the same patients. There was no HPV E7 protein expression in seven (30%) of the 23 breast cancer specimens that had prior HPV E7 protein-positive benign breast biopsies in the same patients. CONCLUSIONS This observation suggests that HPV oncogenic influences occur early in some breast cancers. This finding confirms the previous observations. This early influence of HPVs may be the reason why there is no increase in the prevalence of HPV-associated breast cancer in immunocompromised patients as compared to HPV-associated cervical cancer. PMID:26691275

  18. Interferon Regulatory Factor Expression in Human Breast Cancer

    PubMed Central

    Doherty, Gerard M.; Boucher, Leslie; Sorenson, Kathy; Lowney, Jennifer

    2001-01-01

    Objective To investigate the expression of interferon regulatory factors 1 and 2 (IRF-1 and IRF-2) in human breast cancer. Summary Background Data Interferon regulatory factors 1 and 2 are transcription factors in the interferon gamma signal transduction pathway. IRF-1 acts as the effector arm of the interferon gamma response; IRF-2 binds to the same DNA consensus sequence and opposes IRF-1 activity. Previous work in the authors’ laboratory has shown the tumor suppressor activity of IRF-1 expression and the oncogenic effect of IRF-2 in human and murine tumor models, including human breast cancer cell lines. The authors’ hypothesis is that this pathway is involved in human tumor development, and alterations in the expression of IRF-1 and IRF-2 may occur in breast cancer tissue compared with normal breast tissue, and between more and less differentiated breast cancers. Methods Formalin-fixed paraffin-embedded human archival tissue specimens were obtained from 33 patients with pure ductal carcinoma in situ (DCIS) and 49 women with invasive ductal cancer. Adjacent areas of normal breast tissue were assayed in 31 women. These specimens were stained with polyclonal IRF-1 and IRF-2 antibodies using an avidin–biotin–peroxidase complex technique after epitope retrieval. Results Most normal breast tissue showed expression of IRF-1 and no expression of IRF-2 by immunohistochemistry. High-grade DCIS or node-positive invasive ductal cancers were less likely to express the tumor suppressor IRF-1 than normal tissue. More strikingly, high-grade DCIS and invasive ductal cancers were much more likely to express the oncogenic IRF-2 protein than was normal tissue. Conclusions Expression of IRF-1 and IRF-2 is altered in human breast cancer compared with normal adjacent tissue. The loss of IRF-1 expression is consistent with tumor suppressor loss and the development of IRF-2 expression with oncogenic activation. These data support the hypothesis that this pathway is involved in human breast oncogenesis, which warrants further investigation regarding prognostic and therapeutic implications. PMID:11323500

  19. Molecular Signaling Involved in Oxysterol-Induced ?1-Integrin Over-Expression in Human Macrophages

    PubMed Central

    Gargiulo, Simona; Gamba, Paola; Testa, Gabriella; Sottero, Barbara; Maina, Marco; Guina, Tina; Biasi, Fiorella; Poli, Giuseppe; Leonarduzzi, Gabriella

    2012-01-01

    The hypercholesterolemia-atherosclerosis association is now established; hypercholesterolemia may induce vascular-cell activation, subsequently increasing expression of adhesion molecules, cytokines, chemokines, growth factors, and other key inflammatory molecules. Among inflammatory molecules expressed by vascular cells, integrins play a critical role in regulating macrophage activation and migration to the site of inflammation, by mediating cell-cell and cell-extracellular matrix interactions. The main lipid oxidation products present in oxidized LDL that may be responsible for inflammatory processes in atherogenesis, are cholesterol oxidation products, known as oxysterols. This study demonstrates the effect of an oxysterol mixture, compatible with that detectable in human hypercholesterolemic plasma, on the expression and synthesis of ?1-integrin in cells of the macrophage lineage. The molecular signaling whereby oxysterols induce ?1-integrin up-regulation is also comprehensively investigated. Over-expression of ?1-integrin depends on activation of classic and novel members of protein kinase C and extracellular signal-regulated kinases 1 and 2, as well as of the up-stream G-protein (Gq and G13), c-Src, and phospholipase C. In addition, the localization of ?1-integrin in advanced human carotid plaques is highlighted, marking its importance in atherosclerotic plaque progression. PMID:23203064

  20. GFAP expression and social deficits in transgenic mice overexpressing human sAPP?

    PubMed Central

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-01-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPP?), the product of ?-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPP? protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPP? and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPP? levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPP? (TgsAPP? mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPP? mice, and those derived from wild-type mice treated with sAPP?, displayed suppressed ?-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPP? levels are observed in subsets of individuals with autism and TgsAPP? mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  1. Epigenetic and transcriptional determinants of the human breast

    PubMed Central

    Gascard, Philippe; Bilenky, Misha; Sigaroudinia, Mahvash; Zhao, Jianxin; Li, Luolan; Carles, Annaick; Delaney, Allen; Tam, Angela; Kamoh, Baljit; Cho, Stephanie; Griffith, Malachi; Chu, Andy; Robertson, Gordon; Cheung, Dorothy; Li, Irene; Heravi-Moussavi, Alireza; Moksa, Michelle; Mingay, Matthew; Hussainkhel, Angela; Davis, Brad; Nagarajan, Raman P.; Hong, Chibo; Echipare, Lorigail; O’Geen, Henriette; Hangauer, Matthew J.; Cheng, Jeffrey B.; Neel, Dana; Hu, Donglei; McManus, Michael T.; Moore, Richard; Mungall, Andrew; Ma, Yussanne; Plettner, Patrick; Ziv, Elad; Wang, Ting; Farnham, Peggy J.; Jones, Steven J.M.; Marra, Marco A.; Tlsty, Thea D.; Costello, Joseph F.; Hirst, Martin

    2015-01-01

    While significant effort has been dedicated to the characterization of epigenetic changes associated with prenatal differentiation, relatively little is known about the epigenetic changes that accompany post-natal differentiation where fully functional differentiated cell types with limited lifespans arise. Here we sought to address this gap by generating epigenomic and transcriptional profiles from primary human breast cell types isolated from disease-free human subjects. From these data we define a comprehensive human breast transcriptional network, including a set of myoepithelial- and luminal epithelial-specific intronic retention events. Intersection of epigenetic states with RNA expression from distinct breast epithelium lineages demonstrates that mCpG provides a stable record of exonic and intronic usage, whereas H3K36me3 is dynamic. We find a striking asymmetry in epigenomic reprogramming between luminal and myoepithelial cell types, with the genomes of luminal cells harbouring more than twice the number of hypomethylated enhancer elements compared with myoepithelial cells. PMID:25690954

  2. PTEN and NEDD4 in Human Breast Carcinoma.

    PubMed

    Chen, Yilun; van de Vijver, Marc J; Hibshoosh, Hanina; Parsons, Ramon; Saal, Lao H

    2016-01-01

    PTEN is an important tumor suppressor gene that antagonizes the oncogenic PI3K/AKT signaling pathway and has functions in the nucleus for maintaining genome integrity. Although PTEN inactivation by mutation is infrequent in breast cancer, transcript and protein levels are deficient in >25 % of cases. The E3 ubiquitin ligase NEDD4 (also known as NEDD4-1) has been reported to negatively regulate PTEN protein levels through poly-ubiquitination and proteolysis in carcinomas of the prostate, lung, and bladder, but its effect on PTEN in the breast has not been studied extensively. To investigate whether NEDD4 contributes to low PTEN levels in human breast cancer, we analyzed the expression of these proteins by immunohistochemistry across a large Swedish cohort of breast tumor specimens, and their transcript expression levels by microarrays. For both NEDD4 and PTEN, their transcript expression was significantly correlated to their protein expression. However, comparing NEDD4 expression to PTEN expression, either no association or a positive correlation was observed at the protein and transcript levels. This unexpected observation was further corroborated in two independent breast cancer cohorts from The Netherlands Cancer Institute and The Cancer Genome Atlas. Our results suggest that NEDD4 is not responsible for the frequent down-regulation of the PTEN protein in human breast carcinoma. PMID:26276352

  3. Aberrant hypomethylation-mediated CD147 overexpression promotes aggressive tumor progression in human prostate cancer.

    PubMed

    Liang, Yu-Xiang; Mo, Ru-Jun; He, Hui-Chan; Chen, Jia-Hong; Zou, Jun; Han, Zhao-Dong; Lu, Jian-Ming; Cai, Chao; Zeng, Yan-Ru; Zhong, Wei-De; Wu, Chin-Lee

    2015-05-01

    Our previous study revealed the potential role of CD147 in human prostate cancer (PCa). Here, we investigated the CD147 promoter methylation status and the correlation with tumorigenicity in human PCa. CD147 mRNA and protein expression levels were both significantly higher in the 4 PCa cell lines, than in the 2 non-tumorigenic benign human prostatic epithelial cell lines (all P<0.01). We showed hypomethylation of promoter regions of CD147 in PCa cell lines with significant CD147 expression as compared to non-tumorigenic benign human prostatic epithelial cell lines slowly expressing CD147. Additionally, the treatment of methylated cell lines with 5-aza-2'-deoxycytidine increased CD147 expression significantly in low-expressing cell lines and also activated the expression of matrix metalloproteinase (MMP)-2, which may be one of the most important downstream targets of CD147. Furthermore, PCa tissues displayed decreased DNA methylation in the promoter region of CD147 compared to the corresponding non-cancerous prostate tissues, and methylation intensity correlated inversely with the CD147 mRNA levels. There was a significant negative correlation between CD147 mRNA levels and the number of methylated sites in PCa tissues (r=-0.467, P<0.01). In conclusion, our data offer convincing evidence for the first time that the DNA promoter hypomethylation of CD147 may be one of the regulatory mechanisms involved in the cancer-related overexpression of CD147 and may play a crucial role in the tumorigenesis of PCa. PMID:25813864

  4. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells.

    PubMed

    Parihar, Mordhwaj S; Parihar, Arti; Fujita, Masayo; Hashimoto, Makoto; Ghafourifar, Pedram

    2009-10-01

    Overexpression of alpha-synuclein and oxidative stress has been implicated in the neuronal cell death in Parkinson's disease. Alpha-synuclein associates with mitochondria and excessive accumulation of alpha-synuclein causes impairment of mitochondrial functions. However, the mechanism of mitochondrial impairment caused by alpha-synuclein is not fully understood. We recently reported that alpha-synuclein associates with mitochondria and that overexpression of alpha-synuclein causes nitration of mitochondrial proteins and release of cytochrome c from the mitochondria [Parihar M.S., Parihar A., Fujita M., Hashimoto M., Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008a;65:1272-1284]. The present study shows that overexpression of alpha-synuclein A53T or A30P mutants or wild-type in human neuroblastoma cells augmented aggregation of alpha-synuclein. Immunoblotting and immuno-gold electron transmission microscopy show localization of alpha-synuclein aggregates within the mitochondria of overexpressing cells. Overexpressing cells show increased mitochondrial reactive oxygen species, increased protein tyrosine nitration, decreased mitochondrial transmembrane potential, and hampered cellular respiration. These findings suggest an important role for mitochondria in cellular responses to alpha-synuclein. PMID:19460457

  5. Excretion of paracetamol in human breast milk.

    PubMed

    Bitzén, P O; Gustafsson, B; Jostell, K G; Melander, A; Wåhlin-Boll, E

    1981-01-01

    Breast milk and plasma levels of paracetamol were monitored in 3 lactating women after ingestion of a single 500 mg dose of paracetamol. The paracetamol concentrations were consistently lower in milk, with a mean milk/plasma AUC ratio of 0.76. This value was in close agreement with the milk/plasma partition ratio of 0.81 found in vitro, and could be related to quantitative binding differences between the two fluids. The half-lives of paracetamol in plasma and breast milk were almost identical, with an overall mean of 2.7 h. As less than 0.1% of the maternal dose would be present in 100 ml milk, breast feeding need not be discontinued due to paracetamol treatment in conventional dosage. PMID:7262173

  6. Overexpression of p28/gankyrin in human hepatocellular carcinoma and its clinical significance

    PubMed Central

    Fu, Xiao-Yong; Wang, Hong-Yang; Tan, Lu; Liu, Shu-Qin; Cao, Hui-Fang; Wu, Meng-Chao

    2002-01-01

    AIM: To investigate the expression of p28/gankyrin gene and its role in the carcinogenetic process of human hepatocellular carcinoma (HCC). METHODS: 64 specimens of HCC and para-carcinoma tissues, 22 specimens of non-tumor liver tissues (7 normal, 15 cirrhosis), 10 specimens of normal human tissues and 5 hepatoma cell lines were studied for the expression of p28/gankyrin by Northern blot. The expression of p28/gankyrin protein was detected immunohistochemically by using the specific polyclonal antibody. RESULTS: Northern blot analysis indicated that the expression of p28/gankyrin mRNA was intensively distributed in brain and heart, weakly in lung, spleen and muscle, undetectable in digestive system including liver, pancreas, stomach, small and large intestines. p28/gankyrin mRNA was absent in normal liver, weakly detected in liver cirrhosis and in 18 of 64 para-carcinoma liver tissues. In contrast, the expression of p28/gankyrin mRNA was intensively detected in all 5 hepatoma cell lines tested, markedly increased in 57 of 64 and moderately increased in 5 of 64 HCC samples. In comparison with liver cirrhosis and para-carcinoma liver tissues, the average expression of p28/gankyrin mRNA in HCC was increased 3.6- (2.901 ± 0.507 vs 0.805 ± 0.252, P < 0.05) and 5.2-fold (2.901 ± 0.507 vs 0.557 ± 0.203, P < 0.01), respectively. In addition, p28/gankyrin mRNA expression level was higher in HCC with portal vein tumor thrombus and microscopic hepatic vein involvement (P = 0.021 and P = 0.047, respectively). The overexpression of p28/gankyrin protein in HCC was targeted in hepatic tumor cells, not in bile duct cells and other interstitial cells. CONCLUSION: Overexpression of p28/gankyrin in HCC plays an important role and contributes to the metastasis potential in the process of carcinogenesis. p28/gankyrin may become a specific biological tissue marker for the pathological diagnosis of HCC. PMID:12174370

  7. Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors.

    PubMed

    Amemiya, Y; Yang, W; Benatar, T; Nofech-Mozes, S; Yee, A; Kahn, H; Holloway, C; Seth, Arun

    2011-04-01

    Previously, we have shown that insulin-like growth factor binding protein-7 (IGFBP-7) expression is inversely correlated with disease progression in breast cancer and is associated with poor outcome. To further investigate the role of IGFBP-7 in the growth and metastatic behavior of breast cancer, primary breast tumors and metastatic tumors derived from the same patients were analyzed for IGFBP-7 expression. Immunohistochemical analysis revealed that IGFBP-7 is downregulated in half of the human metastatic breast tumors tested. IGFBP-7 has been linked to suppression of oncogenic pathways and can directly restore cellular senescence in melanomas, leading to their regression. It is possible that breast tumors with metastatic potential have escaped from IGFBP-7-induced suppression by its down-regulation. Twenty-two human primary breast tumor specimens were transplanted into human-bone NOD/SCID mice. One of the two triple negative primary breast tumors was serially xenotransplanted more than five times. Each serial transplant resulted in increased tumor take and rate of growth. Expression of IGFBP-7 was downregulated upon each serial implantation. To investigate the role of IGFBP-7 in breast tumor suppression, IGFBP-7 was overexpressed in the triple negative MDA-MB-468 human breast cancer line by stable transfection of a pSec-tag2-IGFBP-7 vector. The parental MDA-MB-468 breast cancer cells expressed extremely low levels of endogenous IGFBP-7. The production of IGFBP-7 protein by the MDA-MB-468 cells stably transfected with IGFBP-7 was confirmed by immunoblotting with anti-IGFBP-7 antibody. Ectopic overexpression of IGFBP-7 significantly reduced the growth of the IGFBP-7 transfected MDA-MB-468 cells compared to the parental MDA-MB-468 cells. We also assessed the role of IGFBP-7 on cell migration, a key determinant of malignant progression and metastasis. When parental MDA-MB-468 cells were treated with various amounts of conditioned medium derived from the IGFBP-7 overexpressing cell line, a significant difference in cell migration rate was observed between untreated and treated cells. IGFBP-7 strongly suppressed the phosphorylation of the mitogen-activated protein kinases (MAPK) ERK-1/2, suggesting that IGFBP-7 mediates its anti-proliferative effects through negative feedback signaling. Levels of phospho-ERK-1/2 were higher in the parental MDA-MB-468 than in IGFBP-7-expressing cells derived from it. When injected subcutaneously into NOD/SCID mice, the increased expression of IGFBP-7 in the MDA-MB-468 transfected cells reduced the rate of tumor growth in comparison to the parental MDA-MB-468 controls. These results suggest that the growth of breast cancer could be prevented by the forced expression of IGFBP-7 protein. PMID:20464481

  8. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation

    SciTech Connect

    Diermeier, Simone; Horvath, Gabor; Knuechel-Clarke, Ruth; Hofstaedter, Ferdinand; Szoellosi, Janos; Brockhoff, Gero . E-mail: Gero.Brockhoff@klinik.uni-regensburg.de

    2005-04-01

    Background: Growth factors and Herceptin specifically and differentially modulate cell proliferation of tumor cells. However, the mechanism of action on erbB-receptor level is incompletely understood. We evaluated Herceptin's capacity to modulate erbB-receptor activation and interaction on the cell surface level and thereby potentially impair cell proliferation of HER2/neu (c-erbB2) overexpressing breast cancer cells, both in the presence and absence of relevant growth factors. Methods: BT474 and SK-BR-3 breast cancer cell lines were treated with Epidermal Growth Factor (EGF), Heregulin, and with Herceptin in different combinations. Kinetics of cell proliferation were evaluated flow cytometrically based on BrdU-labeling. Fluorescence Resonance Energy Transfer, ELISAs and phosphorylation site specific Western Blotting was performed to investigate erbB-receptor interaction and activation. Results: EGF induced EGFR/EGFR and EGFR/c-erbB2 interactions correlate with stimulation of cell proliferation in BT474 cells. Both homo- and heterodimerization are considerably less pronounced in SK-BR-3 cells and heterointeraction is additionally reduced by EGF treatment, causing inhibition of cell proliferation. Heregulin stimulates cell proliferation extensively in both cell lines. Herceptin drives BT474 cells more efficiently into quiescence than it does with SK-BR-3 cells and thereby blocks cell cycle progress. In SK-BR-3 Herceptin treatment causes c-erbB2 phosphorylation of Y877 and Y1248, EGF induces Y877 and Y1112 phosphorylation. The Y1112 phosphorylation site, activated by EGF in SK-BR-3 cell, is bypassed in BT474. In addition the inhibitory capacity of Herceptin on BT474 and SK-BR-3 cell proliferation depends on the presence and absence of growth factors to a various extent. Conclusion: The growth inhibitory effect of Herceptin on c-erbB2 overexpressing breast cancer cells is considerably modulated by EGFR coexpression and consequently EGFR/c-erbB2 homo- and heterointeractions, as well as the presence or absence of growth factors. C-erbB2 overexpression alone is insufficient to predict the impact of growth factors and antibodies on cell proliferation. The optimization and specification of therapeutic approaches based on erbB-receptor targeting requires to account for EGFR coexpression as well as the potential presence of erbB-receptor relevant growth factors.

  9. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    SciTech Connect

    Zhang, Huiying; Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 ; Newman, Donna R.; Bonner, James C.; Sannes, Philip L.

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ? Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ? Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ? HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  10. Overexpression of the ? Subunit of Human Chorionic Gonadotropin Promotes the Transformation of Human Ovarian Epithelial Cells and Ovarian Tumorigenesis

    PubMed Central

    Guo, Xiaoqing; Liu, Guangzhi; Schauer, Isaiah G.; Yang, Gong; Mercado-Uribe, Imelda; Yang, Fan; Zhang, Shiwu; He, Yuanli; Liu, Jinsong

    2011-01-01

    Ovarian carcinoma is the most lethal gynecologic malignancy, however underlying molecular events remain elusive. Expression of human chorionic gonadotropin ? subunit (?-hCG) is clinically significant for both trophoblastic and nontrophoblastic cancers; however, whether ?-hCG facilitates ovarian epithelial cell tumorigenic potential remains uncharacterized. Immortalized nontumorigenic ovarian epithelial T29 and T80 cells stably overexpressing ?-hCG were examined for alterations in cell cycle and apoptotic status by flow cytometry, expression of proteins regulating cell cycle and apoptosis by Western blot, proliferation status by MTT assay, anchorage-independent colony formation, and mouse tumor formation. Immunoreactivity for ?-hCG was evaluated using mouse xenografts and on human normal ovarian, fallopian tube, endometrium, and ovarian carcinoma tissues. T29 and T80 cells overexpressing ?-hCG demonstrated significantly increased proliferation, anchorage-independent colony formation, prosurvival Bcl-XL protein expression, G2-checkpoint progression, elevated cyclins E/D1 and Cdk 2/4/6, and decreased apoptosis. Collectively, these transformational alterations in phenotype facilitated increased xenograft tumorigenesis (P < 0.05). Furthermore, ?-hCG immunoreactivity was elevated in malignant ovarian tumors, compared with normal epithelial expression in ovaries, fallopian tube, and endometrium (P < 0.001). Our data indicate that elevated ?-hCG transforms ovarian surface epithelial cells, facilitating proliferation, cell cycle progression, and attenuated apoptosis to promote tumorigenesis. Our results further decipher the functional role and molecular mechanism of ?-hCG in ovarian carcinoma. ?-hCG may contribute to ovarian cancer etiology, which introduces a new therapeutic intervention target for ovarian cancer. PMID:21763678

  11. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone.

    PubMed

    Thibaudeau, Laure; Taubenberger, Anna V; Holzapfel, Boris M; Quent, Verena M; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D; Dalton, Paul D; Power, Carl A; Hollier, Brett G; Hutmacher, Dietmar W

    2014-02-01

    The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276

  12. Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3

    PubMed Central

    Luan, Yongxin; Zhang, Shuyan; Zuo, Ling; Zhou, Lixiang

    2015-01-01

    Background Glioblastoma multiforme is one of the most deadly forms of brain cancer. We investigated the regulatory effects of microRNA-100 (miR-100) on cell proliferation, migration, and chemosensitivity in human glioblastoma. Methods miR-100 expression was assessed by quantitative real-time polymerase chain reaction in both glioblastoma cells and human tumors. Lentiviruses of miR-100 mimics and inhibitors were transfected into U251 and T98G cells. The regulatory effects of either overexpressing or downregulating miR-100 on glioblastoma were evaluated by a viability assay, growth assay, migration assay, chemosensitivity assay, and an in vivo tumor transplantation assay. Expression of fibroblast growth factor receptor 3 (FGFR3), the bioinformatically predicted target of miR-100, was examined by Western blot in glioblastoma. FGFR3 was then ectopically overexpressed in U251 and T98G cells, and its effects on miR-100-mediated cancer regulation were evaluated by growth, migration, and chemosensitivity assays. Results MiR-100 was markedly downregulated in both glioblastoma cell lines and human tumors. Overexpressing miR-100 through lentiviral transfection in U251 and T98G cells significantly inhibited cancer growth (both in vitro and in vivo) and migration and increased chemosensitivity to cisplatin and 1, 3-bis (2-chloroethyl)-l-nitrosourea, whereas downregulation of miR-100 had no effects on development of cancer. FGFR3 was directly regulated by miR-100 in glioblastoma. Ectopically overexpressing FGFR3 was able to ameliorate the anticancer effects of upregulation of miR-100 on glioblastoma growth, migration, and chemosensitivity. Conclusion MiR-100 was generally downregulated in glioblastoma. Overexpressing miR-100 had anticancer effects on glioblastoma, likely through regulation of FGFR3. The MiR-100/FGFR3 signaling pathway might be a biochemical target for treatment in patients with glioblastoma. PMID:26604796

  13. Human breast milk: A review on its composition and bioactivity.

    PubMed

    Andreas, Nicholas J; Kampmann, Beate; Mehring Le-Doare, Kirsty

    2015-11-01

    Breast milk is the perfect nutrition for infants, a result of millions of years of evolution, finely attuning it to the requirements of the infant. Breast milk contains many complex proteins, lipids and carbohydrates, the concentrations of which alter dramatically over a single feed, as well as over lactation, to reflect the infant's needs. In addition to providing a source of nutrition for infants, breast milk contains a myriad of biologically active components. These molecules possess diverse roles, both guiding the development of the infants immune system and intestinal microbiota. Orchestrating the development of the microbiota are the human milk oligosaccharides, the synthesis of which are determined by the maternal genotype. In this review, we discuss the composition of breast milk and the factors that affect it during the course of breast feeding. Understanding the components of breast milk and their functions will allow for the improvement of clinical practices, infant feeding and our understanding of immune responses to infection and vaccination in infants. PMID:26375355

  14. Human cancers overexpress genes that are specific to a variety of normal human tissues

    E-print Network

    Domany, Eytan

    expression, and analysis of global gene expression detected changes in gene regulation in different types, October 27, 2005 We have analyzed gene expression data from three different kinds of samples: normal human identified 4,346 genes with a high variability of expression and clustered these genes according

  15. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2+ breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry

    PubMed Central

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí;aEsther; Sánchez del Pino, Manuel M.; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-01-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article “Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry” (Calderón-González et al. [1] in press). PMID:26217805

  16. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2(+) breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry.

    PubMed

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí aEsther; Sánchez Del Pino, Manuel M; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-09-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article "Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry" (Calderón-González et al. [1] in press). PMID:26217805

  17. The use of ?-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to ?7 nAChR-overexpressing breast cancer.

    PubMed

    Mei, Dong; Lin, Zhiqiang; Fu, Jijun; He, Bing; Gao, Wei; Ma, Ling; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Lu, Wanliang; Zhou, Demin; Zhang, Qiang

    2015-02-01

    Alpha7 nicotinic acetylcholine receptor (?7 nAChR), a ligand-gated ion channel, is increasingly emerging as a new tumor target owing to its expression specificity and significancy for cancer. In an attempt to increase the targeted drug delivery to the ?7 nAChR-overexpressing tumors, herein, ?-conotoxin ImI, a disulfide-rich toxin with highly affinity for ?7 nAChR, was modified on the PEG-DSPE micelles (ImI-PMs) for the first time. The DLS, TEM and HPLC detections showed the spherical nanoparticle morphology about 20 nm with negative charge and high drug encapsulation. The ligand modification did not induce significant differences. The immunofluorescence assay confirmed the expression level of ?7 nAChR in MCF-7 cells. In vitro and in vivo experiments demonstrated that the ?7 nAChR-targeted nanomedicines could deliver more specifically and faster into ?7 nAChR-overexpressing MCF-7 cells. Furthermore, fluo-3/AM fluorescence imaging technique indicated that the increased specificity was attributed to the ligand-receptor interaction, and the inducitivity for intracellular Ca(2+) transient by ImI was still remained after modification. Moreover, paclitaxel, a clinical frequently-used anti-tumor drug for breast cancer, was loaded in ImI-modified nanomedicines to evaluate the targeting efficacy. Besides of exhibiting greater cytotoxicity and inducing more cell apoptosis in vitro, paclitaxel-loaded ImI-PMs displayed stronger anti-tumor efficacy in MCF-7 tumor-bearing nu/nu mice. Finally, the active targeting system showed low systemic toxicity and myelosuppression evidenced by less changes in body weight, white blood cells, neutrophilic granulocyte and platelet counts. In conclusion, ?7 nAChR is also a promising target for anti-tumor drug delivery and in this case, ?-conotoxin ImI-modified nanocarrier is a potential delivery system for targeting ?7 nAChR-overexpressing tumors. PMID:25542793

  18. Simultaneous topographic and recognition imaging of epidermal growth factor receptor (EGFR) on single human breast cancer cells.

    PubMed

    Xiao, Lifu; Chen, Qian; Wu, Yangzhe; Qi, Xiaojun; Zhou, Anhong

    2015-10-01

    Epidermal growth factor receptor (EGFR) plays an important role in signaling pathway of the development of breast cancer cells. Since EGFR overexpresses in most breast cancer cells, it is regarded as a biomarker molecule of breast cancer cells. Here we demonstrated a new AFM technique-topography and recognition (TREC) imaging-to simultaneously obtain highly sensitive and specific molecular recognition images and high-resolution topographic images of EGFR on single breast cancer cells. PMID:26002322

  19. Can estrogen receptor overexpression in normal tissues due to previous estrogen deprivation explain the fulvestrant efficacy in breast cancer therapy?

    PubMed

    Kurbel, Sven

    2012-12-01

    Fulvestrant is a down-regulator of estrogen receptors (ERs) with still evolving optimal dosage for ER-positive breast cancer patients. The CONFIRM phase III trial in women with advanced breast cancer proved fulvestrant 500-mg to be associated with a longer time till progression (TTP) than the 250-mg schedule. Detailed results suggest that the fulvestrant in both schedules depended on the previous endocrine therapy. All complete responses and the only significant TTP difference between the two schedules was found among women previously treated with tamoxifen (TAM) and not in women after aromatase inhibitors (AIs). Noting that TAM competes with estrogen binding to ERs is important, so the optimal TAM dosage produces drug concentrations comparable to concentrations of available ER ligands. All AIs diminish production of the main ER ligand, so the optimal AI dosage depends on the overall pool of aromatase molecules in the body. Both treatments are not directly related to the pool of available ERs in the body. Here proposed interpretation is that estrogen deprivation due to years of endocrine breast cancer therapy increases ER expression in breast cancer cells and in other healthy estrogen target tissues. The breast cancer exposure to fulvestrant depends on the presence of all ERs in the body. Only when this overall pool is sufficiently saturated with fulvestrant, we can expect to achieve some breast cancer response due to down-regulation of ER in cancer tissue. The CONFIRM data suggest that among patients switching from TAM to fulvestrant, only the 500-mg schedule could down-regulate the moderately enlarged total body ER pool and thus induce breast cancer regression. In patients switching from previous AI treatments, both 250 and 500-mg schedules were unable to prolong the TTP, suggesting that in both doses, fulvestrant showed no efficacy since the overall ER pool was more enlarged after AIs. Fulvestrant might be more effective before TAM and AIs, in the first line endocrine therapy of metastatic breast cancer, since an unaltered ER pool in normal tissues is expected in this setting. PMID:23062772

  20. Emotional memory impairments induced by AAV-mediated overexpression of human ?-synuclein in dopaminergic neurons of the ventral tegmental area.

    PubMed

    Alvarsson, A; Caudal, D; Björklund, A; Svenningsson, P

    2016-01-01

    Parkinson's disease (PD) is associated with extensive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta, but neuronal loss is also found in the ventral tegmental area (VTA). The VTA projects to areas involved in cognitive and emotional processes, including hippocampus, amygdala, nucleus accumbens and prefrontal cortex, and has thus been proposed to play a role in emotional memory impairments in PD. Since the formation of ?-synuclein inclusions throughout the central nervous system is a pathological hallmark of PD, we studied the progressive effects of ?-synuclein overexpression in the VTA on motor functions, emotional behaviour and emotional memory. Adeno-associated viral (AAV) vectors encoding either human ?-synuclein or green fluorescent protein (GFP) were injected stereotactically into the VTA, and behaviour was monitored 3 and 8 weeks following AAV injection. At week 8, there was a 22% reduction of TH+ neurons in the VTA. We demonstrate that ?-synuclein overexpression in dopaminergic neurons of the VTA induced mild motor deficits that appeared 3 weeks following AAV-?-synuclein injection and were aggravated at week 8. No depressive- or anxiety-like behaviours were found. To address emotional memory, we used the passive avoidance test, a one-trial associative learning paradigm based on contextual conditioning which requires minimal training. Interestingly, emotional memory impairments were found in ?-synuclein overexpressing animals at week 8. These findings indicate that ?-synuclein overexpression induces progressive memory impairments likely caused by a loss of function of mesolimbic dopaminergic projections. PMID:26341317

  1. Ocular input for human melatonin regulation: relevance to breast cancer

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  2. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth

    E-print Network

    Wahl, Geoffrey M.

    and characterized, but its role in human breast cancer remains elusive. Although Wnt inhibitors are in early clinical development, it is unclear whether they will be of therapeutic benefit to breast cancer patients, and subsequently, to which ones. To address this, we generated a panel of Wnt re- porting human breast cancer cell

  3. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    PubMed Central

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg’s theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka’s stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR—the master switch of cellular catabolism and anabolism—in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1–60, and TRA-1–81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44+ and ALDEFLUOR-stained ALDHbright cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic ? 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep cells. Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway. PMID:23974095

  4. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies

    PubMed Central

    Li, Bo; Xu, Hui; Li, Zhen; Yao, Mingfei; Xie, Meng; Shen, Haijun; Shen, Song; Wang, Xinshi; Jin, Yi

    2012-01-01

    Background Multidrug resistance (MDR) mediated by the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs), consisting of a dimethyldidodecylammonium bromide (DMAB)-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp. Methods Doxorubicin (DOX), a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF)-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR) cells. Results This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50) value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT) assay, correlated with the strong nuclear retention of the drug. Conclusion The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR. PMID:22275834

  5. Ezrin phosphorylation on tyrosine 477 regulates invasion and metastasis of breast cancer cells

    E-print Network

    Mak, Hannah

    Background The membrane cytoskeletal crosslinker, ezrin, a member of the ERM family of proteins, is frequently over-expressed in human breast cancers, and is required for motility and invasion of epithelial cells. Our group ...

  6. Development and Evaluation of a Cetuximab-based Humanized Single Chain Antibody Against EGFR-overexpressing Tumors.

    PubMed

    Veisi, K; Farajnia, S; Zarghami, N; Khorshid, H R K; Samadi, N; Safdari, Y; Ahmadzadeh, V

    2015-12-01

    Production of humanized single chain antibodies (hscFv) can potentially be a powerful solution to limitations imposed by large size and murine nature of cetuximab. The present study describes generation of a cetuximab-based hscFv using CDR-grafting method. Cetuximab CDRs were grafted on frameworks selected from human germline antibody sequence repertoire. The strategy employed in selecting human sequences was the highest sequence similarity of variable domains between human and parental antibodies as well as similarity in the CDRs canonical structures. To maintain the binding affinity, the parental vernier zone residues were retained murine in hscFv. Recombinant hscFv was expressed in E. coli and affinity purified by Ni-NTA column. The potency of hscFv in targeting EGFR was evaluated using A431, a cell line over-expressing EGFR. Dot blot and ELISA tests were used to assess the reactivity and MTT assay to evaluate the growth inhibition of hscFv on A431 cell line. The humanization of cetuximab variable regions resulted in 22.2% increase in humanness of hscFv. Reactivity analyses of hscFv on A431 cells showed better binding affinity and higher growth inhibition effect (2.6 times) comparing to murine counterpart. In conclusion, hscFv produced in this study displayed reduced potential immunogenicity as well as enhanced cytotoxic effect on EGFR- overexpressing tumor cells. PMID:25333654

  7. Characterization of human breast cancer by scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, ?m) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  8. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs

    PubMed Central

    2013-01-01

    Introduction Breast cancer is a genetically and phenotypically complex disease. To understand the role of miRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer cell lines to identify miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations. Methods Using a microarray carrying LNA™ modified oligonucleotide capture probes), expression levels of 725 human miRNAs were measured in 51 breast cancer cell lines. Differential miRNA expression was explored by unsupervised cluster analysis and was then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. Results Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 breast cancer cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of breast cancer cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group, 39 miRNAs were associated with ERBB2 overexpression and 24 with E-cadherin gene mutations, which are frequent in this subtype of breast cancer cell lines. In contrast, 31 miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in breast cancer cell lines that are not of luminal origin. Thirty miRNAs were associated with p16INK4 status while only a few miRNAs were associated with BRCA1, PIK3CA/PTEN and TP53 mutation status. Twelve miRNAs were associated with DNA copy number variation of the respective locus. Conclusion Luminal-basal and epithelial-mesenchymal associated miRNAs determine the subdivision of miRNA transcriptome of breast cancer cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4a or E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of these genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of breast cancer cell lines, which can be exploited for functional studies of clinically important miRNAs. PMID:23601657

  9. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions. • Overexpression of FABP3 inhibits cell growth but advanced the MSC survival under hypoxia. • Overexpression of FABP3 down-regulate the cell cycle and stem cell signaling pathways.

  10. Overexpression of MicroRNA-200c Predicts Poor Outcome in Patients with PR-Negative Breast Cancer

    PubMed Central

    Tuomarila, Marie; Luostari, Kaisa; Soini, Ylermi; Kataja, Vesa

    2014-01-01

    Micro-RNAs are small, noncoding RNAs that act as tumor suppressors or oncogenes. MiR-200c is a member of the miR-200 family; it is known to be dysregulated in invasive breast carcinoma. MiR-200c maintains the epithelial-mesenchymal transition and inhibits cell migration and invasion. Recent studies showed that miR-200c regulated steroid hormone receptors, estrogen receptors (ER), and progesterone receptors (PR). The present study aimed to detect miR-200c in 172 invasive breast carcinoma cases selected from a prospective cohort enrolled in Kuopio, Eastern Finland, between 1990 and 1995. MiR-200c expression was determined with relative q-PCR, and results were compared to clinicopathological variables and patient outcome. We found that PR status combined with miR-200c expression was a significant marker of outcome. High miR-200c expression was associated with reduced survival in PR-negative cases (n?=?68); low miR-200c expression indicated reduced survival in PR-positive cases (n?=?86) (Cox regression: P?=?0.002, OR?=?3.433; and P?=?0.004, OR?=?4.176, respectively). In PR-negative cases, high miR-200c expression was associated with shortened relapse-free survival (Cox regression: P?=?0.001, OR?=?3.613); increased local/distant recurrence (Logistic regression: P?=?0.006, OR?=?3.965); and more frequent distant metastasis (Logistic regression: P?=?0.015, OR?=?3.390). We also found that high grade and low stage tumors were positively correlated with high miR-200c expression (Logistic regression for high grade tumors: P?=?0.002, OR?=?2.791 and for high stage tumors: P?=?0.035, OR?=?0.285). Our results indicated that miR-200c may play a role in invasive breast carcinoma. Furthermore, miR-200c combined with PR status provided a refined predictor of outcome. In future, a larger study is required to confirm our results. This data may provide a basis for new research target–progesterone receptor–regulated microRNAs in breast cancer. PMID:25329395

  11. FT-Raman spectroscopy study of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  12. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    PubMed Central

    Petrosyan, Agavni; Hsieh, I-Hui; Phillips, John P.; Saberi, Kourosh

    2015-01-01

    Mutation of the human gene superoxide dismutase (hSOD1) is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease). Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF) as a function of age (5 to 50 days). Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking) behavior in late life when flies had lost the ability to fly (age ? 60 d). hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life. PMID:25983632

  13. Depressive-like phenotype induced by AAV-mediated overexpression of human ?-synuclein in midbrain dopaminergic neurons.

    PubMed

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing ?-synuclein called Lewy bodies. Viral vector-induced overexpression of ?-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human ?-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8weeks post-injection. We report that nigral ?-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-?-synuclein group exhibited modest, but significant motor impairments 8weeks after vector administration. The AAV-?-synuclein group displayed depressive-like behavior in the forced swim test after 3weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of ?-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated ?-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to alterations in proteins involved in synaptic plasticity. PMID:26363495

  14. Overexpression of ?2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis

    PubMed Central

    Patil, Shilpa A.; Bshara, Wiam; Morrison, Carl; Chandrasekaran, E. V.; Matta, Khushi L.; Neelamegham, Sriram

    2014-01-01

    Glycan structure alterations during cancer regulate disease progression and represent clinical biomarkers. The study determined the degree to which changes in glycosyl transferase activities during cancer can be related to aberrant cell-surface tumor associated carbohydrate structures (TACA). To this end, changes in sialyltransferase (sialylT), fucosyltransferase (fucT) and galactosyltransferase (galT) activity were measured in normal and tumor tissue using a miniaturized enzyme activity assay and synthetic glycoconjugates bearing terminal LacNAc Type-I (Gal?1,3GlcNAc), LacNAc Type-II (Gal?1,4GlcNAc), and mucin core-1/Type-III (Gal?1,3GalNAc) structures. These data were related to TACA using tissue microarrays containing 115 breast and 26 colon cancer specimen. The results show that primary human breast and colon tumors, but not adjacent normal tissue, express elevated ?1,3 galT and ?2,3sialylT activity that can form ?2,3sialylated Type-III glycans (Sia?2,3Gal?1,3GalNAc). Prostate tumors did not exhibit such elevated enzymatic activities. ?1,3/4fucT activity was higher in breast, but not colon tissue. The enzymology based prediction of enhanced ?2,3sialylated Type-III structures in breast tumors was verified using histochemical analysis of tissue sections and tissue microarrays. Here, the binding of two markers that recognize Gal?1,3GalNAc (peanut lectin and mAb A78-G/A7) was elevated in breast tumor, but not normal control, only upon sialidase treatment. These antigens were also upregulated in colon tumors though to a lesser extent. ?2,3sialylated Type-III expression correlated inversely with patient HER2 expression and breast metastatic potential. Overall, enzymology measurements of glycoT activity predict glycan structure changes during cancer. High expression of the ?2,3sialylated T-antigen O-glycans occur in breast tumors. A transformation from linear core-1 glycan to other epitopes may accompany metastasis. PMID:25142811

  15. Migratory Behavior of Breast Cancer Cells in Conditioned Medium from Human Osteosarcoma Cells

    E-print Network

    Chiao, Jung-Chih

    Migratory Behavior of Breast Cancer Cells in Conditioned Medium from Human Osteosarcoma Cells at Arlington Introduction: The American Cancer Society has estimated that 1 out of 8 women in their lifetime may develop breast cancer. Once breast cancer has metastasized, the rate of survival plummets to 22

  16. A human breast cell model of preinvasive to invasive transition.

    PubMed

    Rizki, Aylin; Weaver, Valerie M; Lee, Sun-Young; Rozenberg, Gabriela I; Chin, Koei; Myers, Connie A; Bascom, Jamie L; Mott, Joni D; Semeiks, Jeremy R; Grate, Leslie R; Mian, I Saira; Borowsky, Alexander D; Jensen, Roy A; Idowu, Michael O; Chen, Fanqing; Chen, David J; Petersen, Ole W; Gray, Joe W; Bissell, Mina J

    2008-03-01

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from preinvasive to invasive phenotype as it may occur "spontaneously" in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted basement membrane cultures. These cells remained noninvasive; however, unlike their nonmalignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher-grade tumors. To find functionally significant changes in transition from preinvasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between preinvasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP9, MMP13, MMP15, and MMP17 was up-regulated in the invasive cells. Using small interfering RNA-based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which preinvasive breast cells could acquire invasiveness in a metaplastic context. PMID:18316601

  17. Detection of Human Papillomavirus DNA in Patients with Breast Tumor in China

    PubMed Central

    Li, Jie; Ding, Jie; Zhai, Kan

    2015-01-01

    The presence of HPV in breast tissue and the potential causal association between human papillomavirus (HPV) and breast cancer (BC) remains controversial. The aim of the present study was to compare the HPV prevalence in BC tissues, adjacent normal breast tissues and breast benign disease tissues and to investigate the possible association between HPV and breast tumor development in Chinese women. Paraffin-embedded specimens from 187 pairs of BCs including tumor and normal breast tissue adjacent to tumors and 92 breast benign lesions between June 2009 and July 2014 were investigated by nested polymerase chain reaction (PCR) and type-specific PCR, respectively. With strictly quality control, HPV positive infection was detected in three BC tissues. No HPV positive infection was detected in all normal breast tissue adjacent to tumors and benign breast tissues. Through our detailed analysis, rare HPV infection in this study suggests that HPV might not be associated with BC progression. PMID:26295705

  18. Overexpression of Nuclear Protein Kinase CK2 ? Catalytic Subunit (CK2?) as a Poor Prognosticator in Human Colorectal Cancer

    PubMed Central

    Hsu, Jung-Chin; Li, Chien-Feng; Fang, Chia-Lang; Lai, Hsi-Chin; Hseu, You-Cheng; Lin, Yi-Feng; Uen, Yih-Huei

    2011-01-01

    Background Colorectal cancer (CRC) is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. The purpose of this study is to investigate the involvement of nuclear protein kinase CK2 ? subunit (CK2?) in tumor progression, and in the prognosis of human CRC. Methodology/Principal Findings Expression levels of nuclear CK2? were analyzed in 245 colorectal tissues from patients with CRC by immunohistochemistry, quantitative real-time PCR and Western blot. We correlated the expression levels with clinicopathologic parameters and prognosis in human CRC patients. Overexpression of nuclear CK2? was significantly correlated with depth of invasion, nodal status, American Joint Committee on Cancer (AJCC) staging, degree of differentiation, and perineural invasion. Patients with high expression levels of nuclear CK2? had a significantly poorer overall survival rate compared with patients with low expression levels of nuclear CK2?. In multi-variate Cox regression analysis, overexpression of nuclear CK2? was proven to be an independent prognostic marker for CRC. In addition, DLD-1 human colon cancer cells were employed as a cellular model to study the role of CK2? on cell growth, and the expression of CK2? in DLD-1 cells was inhibited by using siRNA technology. The data indicated that CK2?-specific siRNA treatment resulted in growth inhibition. Conclusions/Significance Taken together, overexpression of nuclear CK2? can be a useful marker for predicting the outcome of patients with CRC. PMID:21359197

  19. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer

    PubMed Central

    Chen, Jianping; Song, Cailu; Yang, Lu; Liu, Peng; Wang, Neng; Xie, Xinhua; Lin, Xiaoti; Xie, Xiaoming

    2015-01-01

    Triple-negative breast cancer is the most aggressive breast cancer subtype. The aim of our study was to investigate the functional role of both miR-101 and MCL-1 in the sensitivity of human triple-negative breast cancer (TNBC) to paclitaxel. We found that the expression of miR-101 was strongly decreased in triple-negative breast cancer tissues and cell lines. The expression of miR-101 was not associated with clinical stage or lymph node infiltration in TNBC. Ectopic overexpression of miR-101 inhibit growth and induced apoptosis in vitro and suppressed tumorigenicity in vivo. MCL-1 was significantly overexpressed in most of the TNBC tissues and cell lines. Luciferase assay results confirmed MCL-1 as a direct target gene of miR-101. MiR-101 inhibited MCL-1 expression in TNBC cells and transplanted tumors. There was a negative correlation between the level of expression of miR-101 and MCL-1 in TNBC tissues. Suppression of MCL-1 enhanced the sensitivity of MDA-MB-435 cells to paclitaxel. Furthermore, miR-101 increased paclitaxel sensitivity by inhibiting MCL-1 expression. Our findings provide significant insight into the molecular mechanisms of TNBC carcinogenesis and may have clinical relevance for the development of novel, targeted therapies for TNBC. PMID:26036638

  20. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  1. Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease

    PubMed Central

    Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K

    2014-01-01

    Previously, we have demonstrated that interleukin-4 receptor ? (IL-4R?) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4R? expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran–Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4R? over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4R? is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2R?C and IL-13R?1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4R? overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4R? immunostaining (?2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ? 0.0001). Similarly, 9% stage I tumors were positive for IL-4R? (?2+) compared to 84% stage II (P ? 0.0001) and 100% stages III–IV tumors (P ? 0.0001). IL-13R?1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2R?C was not expressed. Ten normal bladder specimens demonstrated ?1+ staining for IL-4R? and IL-13R?1 and no staining for IL-2R?C. These results demonstrate that IL-4R? is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4R? may be a bladder tumor-associated protein and a prognostic biomarker. PMID:25208941

  2. Overexpression and lack of copy number variation in the BMI-1 gene in human glioma

    PubMed Central

    MADATHAN KANDY, SIBIN; ISHWARA BHAT, DHANANJAYA; CHOPPAVARAPU, LAVANYA; SUVATHA, ARATI; GHATI KASTURIRANGAN, CHETAN

    2015-01-01

    Malignant gliomas are neoplasms of the brain that are associated with a poor prognosis. The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) gene is one of the major cancer stem cell factors responsible for treatment failure in glioma. In the present study, the DNA-RNA-protein alterations in the BMI-1 gene were assessed in 50 glioma samples. Copy number variations in the BMI-1 gene were analyzed using SYBR® Green quantitative polymerase chain reaction. Gene expression analysis was performed using a Taqman assay and protein quantitation was performed using western blotting. A comparative Ct analysis showed the absence of copy number variations in all glioma samples. BMI-1 mRNA expression was found to be overexpressed in 36 out of 50 samples (72.0%), and 37 out of 50 samples showed overexpression (74.0%) of BMI-1 protein; this was statistically significant when compared with non-glioma tissues. It was observed that the protein and RNA expression in glioma were concordant. In this study on the BMI-1 gene, transcription and translation in glioma were observed and BMI-1 overexpression was found to be a common phenomenon. PMID:26722333

  3. Insulin-like growth factor 1 receptor expression in breast cancer tissue and mammographic density

    PubMed Central

    SUN, WOO-YOUNG; YUN, HYO-YOUNG; SONG, YOUNG-JIN; KIM, HEON; LEE, OK-JUN; NAM, SEOK-JIN; KOO, JA-SEUNG

    2015-01-01

    The aim of this study was to evaluate the association between insulin-like growth factor 1 receptor (IGF-1R) expression in breast cancer tissue and mammographic density and the clinical significance of IGF-1R overexpression. A total of 167 patients with primary invasive breast cancer were analyzed. Mammographic breast density and IGF-1R overexpression were correlated with clinicopathological parameters and analyzed by overall survival (OS) and disease-free survival (DFS). Increased breast tissue density was significantly associated with age, body mass index, menopausal status, histological grade and IGF-1R overexpression in the univariate analysis and with age (P=0.001), histological grade (P=0.045) and IGF-1R overexpression (P=0.021) in the multivariate analysis. IGF-1R overexpression was significantly associated with dense breast tissue in patients aged >40 years (P=0.002). IGF-1R overexpression in breast cancer in premenopausal women was associated with human epidermal growth factor receptor 2 (HER-2) positivity (P=0.016) and worse DFS (P=0.0414). There was no significant difference in OS and DFS between dense and non-dense breast tissue. IGF-1R expression in breast cancer tissue was significantly associated with mammographic breast tissue density in patients aged >40 years. It appears that IGF-1R expression in breast cancer tissue plays an important role in breast cancer in patients with dense breast tissue. In premenopausal women, IGF-1R overexpression in breast cancer tissue was significantly associated with HER-2 positivity and poor DFS. PMID:26137269

  4. Targeted fluorescent magnetic nanoparticles for imaging of human breast cancer

    PubMed Central

    Sun, Jing; Teng, Zhao-Gang; Tian, Ying; Wang, Jian-Dong; Guo, Yang; Kim, Dong-Hyun; Larson, Andrew C; Lu, Guang-Ming

    2014-01-01

    Magnetic nanoclusters coated with ruthenium (II) complexes doped with silica (fluorescent magnetic nanoparticles or FMNPs) could be used for magnetic resonance imaging (MRI) and optical imaging (OI) of human breast cancer. To achieve the targeting imaging of tumors, the peptide cyclic-arginine-glycine-aspartic acid (RGD) was chosen as the probe for specific targeting integrin ?v?3 over expressed in human breast cancer MDA-MB-231 cells. The cytotoxicity tests in vitro showed little toxicity of the synthesized RGD-FMNPs with the size of 150 nm. The in vivo study also showed no obvious acute toxicity after the injection of RGD-FMNPs in mice bearing MDA-MB-231 tumors. After 24 hours of co-culture with MDA-MB-231 cells, the cellular uptake of RGD-FMNPs significantly increased compared to that of FMNPs. T2-weighted (T2W) MRI demonstrated a negative enhancement in mice injected with RGD-FMNPs approximately three times of that injected with FMNPs (12.867 ± 0.451 ms vs. 4.833 ± 0.513 ms, P < 0.05). The Prussian blue staining results confirmed more RGD-FMNPs accumulated around the tumors than FMNPs. These results demonstrated the potential application of RGD-FMNPs as a targeting molecular probe for detection of breast cancer using MRI and OI. The synthesized RGD-FMNPs could be potentially used for biomedical imaging in the future. PMID:25663971

  5. Overexpression of the chimeric plasmin-resistant VEGF165/VEGF183 (132-158) protein in murine breast cancer induces distinct vascular patterning adjacent to tumors and retarded tumor growth.

    PubMed

    Zhang, Hui-Yong; Fan, Bing-Lin; Wu, Xin-Sheng; Mu, Ling-Min; Wang, Wen-Feng; Zhu, Wu-Ling

    2015-02-01

    A chimeric plasmin?resistant vascular endothelial growth factor (VEGF)165/VEGF183 (132-158) protein, named as VEGF183 (according to the nomenclature of VEGF), designed by a previous study, was demonstrated to have an enhanced affinity for the extracellular matrix (ECM) amongst other bioactivities. However, it is now accepted that mutant VEGFs frequently demonstrate different angiogenic activities and produce different vascular patterning from the parental molecule. The present study hypothesized that VEGF183, due to its enhanced binding affinity to the ECM, would exhibit a different angiogenic activity and produce a different vascular patterning compared to those of VEGF165. Murine breast cancer EMT?6 cells were manipulated to stably overexpress VEGF165 or VEGF183. These cells were then inoculated intradermally into BALB/c mice in order to monitor the formation of vascular patterning in skin proximal to tumors. In vivo angiogenesis experiments revealed that overexpression of VEGF183 in murine breast cancer cells resulted in irregular, disorganized and dense vascular patterning as well as induced a significant inhibition of tumor growth compared with that of VEGF165. In addition, allograft tumor immunochemical assays of VEGF183?overexpressing tumors demonstrated significantly lower vascular densities than those of VEGF165?overexpressing tumors; however, VEGF183 tumors had a significantly enlarged vascular caliber. Conversely, cell wound healing experiments revealed that VEGF183?overexpressing EMT?6 cells had significantly decreased migration rates compared with those of VEGF165?overexpressing EMT?6 cells. In conclusion, the results of the present study supported the hypothesis that the altered ECM affinity of VEGF induced structural alterations to vasculature. In addition, these results provided a novel insight into VEGF design and indirect evidence for the function of exon 8 in VEGF. [Corrected] PMID:25373557

  6. Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development.

    PubMed

    Taneja, Pankaj; Maglic, Dejan; Kai, Fumitake; Sugiyama, Takayuki; Kendig, Robert D; Frazier, Donna P; Willingham, Mark C; Inoue, Kazushi

    2010-11-15

    Human epidermal growth factor receptor 2 (HER2) overexpression stimulates cell growth in p53-mutated cells while it inhibits cell proliferation in those with wild-type p53, but the molecular mechanism is unknown. The Dmp1 promoter was activated by HER2/neu through the phosphatidylinositol-3'-kinase-Akt-NF-?B pathway, which in turn stimulated Arf transcription. Binding of p65 and p52 subunits of NF-?B was shown to the Dmp1 promoter and that of Dmp1 to the Arf promoter on HER2/neu overexpression. Both Dmp1 and p53 were induced in premalignant lesions from mouse mammary tumor virus-neu mice, and mammary tumorigenesis was significantly accelerated in both Dmp1+/- and Dmp1-/- mice. Selective deletion of Dmp1 and/or overexpression of Tbx2/Pokemon was found in >50% of wild-type HER2/neu carcinomas, although the involvement of Arf, Mdm2, or p53 was rare. Tumors from Dmp1+/-, Dmp1-/-, and wild-type neu mice with hemizygous Dmp1 deletion showed significant downregulation of Arf and p21Cip1/WAF1, showing p53 inactivity and more aggressive phenotypes than tumors without Dmp1 deletion. Notably, endogenous hDMP1 mRNA decreased when HER2 was depleted in human breast cancer cells. Our study shows the pivotal roles of Dmp1 in HER2/neu-p53 signaling and breast carcinogenesis. PMID:21062982

  7. Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma

    PubMed Central

    2010-01-01

    Background Since hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, it is still important to understand hepatocarcinogenesis mechanisms and identify effective markers for tumor progression to improve prognosis. Amplification and overexpression of Tropomyosin3 (TPM3) are frequently observed in HCC, but its biological meanings have not been properly defined. In this study, we aimed to elucidate the roles of TPM3 and related molecular mechanisms. Methods TPM3-siRNA was transfected into 2 HCC cell lines, HepG2 and SNU-475, which had shown overexpression of TPM3. Knockdown of TPM3 was verified by real-time qRT-PCR and western blotting targeting TPM3. Migration and invasion potentials were examined using transwell membrane assays. Cell growth capacity was examined by colony formation and soft agar assays. Results Silencing TPM3 resulted in significant suppression of migration and invasion capacities in both HCC cell lines. To elucidate the mechanisms behind suppressed migration and invasiveness, we examined expression levels of Snail and E-cadherin known to be related to epithelial-mesenchymal transition (EMT) after TPM3 knockdown. In the TPM3 knockdown cells, E-cadherin expression was significantly upregulated and Snail downregulated compared with negative control. TPM3 knockdown also inhibited colony formation and anchorage independent growth of HCC cells. Conclusions Based on our findings, we formulate a hypothesis that overexpression of TPM3 activates Snail mediated EMT, which will repress E-cadherin expression and that it confers migration or invasion potentials to HCC cells during hepatocarcinogenesis. To our knowledge, this is the first evidence that TPM3 gets involved in migration and invasion of HCCs by modifying EMT pathway. PMID:20356415

  8. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells

    PubMed Central

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A.

    2013-01-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ER?) in human breast cancer cells. However, the mechanism underlying the potential regulation of ER? expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ER?-positive MCF7 and T47D and ER?-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ER?. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ER? expression, suggesting that ODC plays an important role in regulation of ER? expression. Decrease of ER? expression by ODC siRNA altered the mRNA expression of a subset of ER? response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ER? minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ER? minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  9. Elevation of Soluble Guanylate Cyclase Suppresses Proliferation and Survival of Human Breast Cancer Cells

    PubMed Central

    Chen, Chen-Yu; Shiah, Shine-Gwo; Kung, Hsing-Jien; King, Kuang-Liang; Su, Liang-Chen; Chang, Shi-Chuan; Chang, Chung-Ho

    2015-01-01

    Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of ?1 and ?1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC ?1 and sGC?1 mRNAs. However, levels of sGC?1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGC?1 and sGC?1 in MDA-MB-231 cells but only sGC?1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGC?1 in MDA-MB-231 cells and promoter of sGC?1 in MCF-7 cells were methylated. Promoter hypermethylation of sGC?1 and sGC?1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells. PMID:25928539

  10. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation.

    PubMed

    De Petrocellis, L; Melck, D; Palmisano, A; Bisogno, T; Laezza, C; Bifulco, M; Di Marzo, V

    1998-07-01

    Anandamide was the first brain metabolite shown to act as a ligand of "central" CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 microM and 83-92% maximal inhibition at 5-10 microM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 microM anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55, 940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.1-0.5 microM) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  11. Differential regulation of human Eag1 channel expression by serum and epidermal growth factor in lung and breast cancer cells

    PubMed Central

    Acuña-Macías, Isabel; Vera, Eunice; Vázquez-Sánchez, Alma Yolanda; Mendoza-Garrido, María Eugenia; Camacho, Javier

    2015-01-01

    Oncogenic ether à-go-go-1 (Eag1) potassium channels are overexpressed in most primary human solid tumors. Low oxygen and nutrient/growth factor concentrations play critical roles in tumorigenesis. However, the mechanisms by which tumor cells survive and proliferate under growth factor-depleted conditions remain elusive. Here, we investigated whether serum-deprived conditions and epidermal growth factor (EGF) regulate Eag1 expression in human lung and breast cancer cells. The human cancer cell lines A549 and MCF-7 (from the lungs and breast, respectively) were obtained from the American Type Culture Collection and cultured following the manufacturer’s recommendations. Eag1 gene and protein expression were studied by real-time PCR and immunocytochemistry, respectively. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and ERK1/2 phosphorylation was investigated by Western blot. Serum-deprived conditions increased Eag1 mRNA and protein expression in both cell lines. This Eag1 upregulation was prevented by EGF and the ERK1/2 inhibitor U0126 in only lung cancer cells; vascular endothelial growth factor did not prevent Eag1 upregulation. Our results suggest that Eag1 may act as a survival and mitogenic factor under low-serum and nutrient conditions and may be a clinical target during the early stages of tumor development. PMID:26527881

  12. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  13. Role of human neutrophil gelatinase associated lipocalin (NGAL) and Matrix Metalloproteinase-9 (MMP-9) overexpression in neoplastic colon polyps

    PubMed Central

    Odabasi, Mehmet; Yesil, Atakan; Ozkara, Selvinaz; Paker, Nurcan; Ozkan, Sevil; Eris, Cengiz; Yildiz, Mehmet Kamil; Abuoglu, Hac? Hasan; Gunay, Emre; Teke?in, Kemal

    2014-01-01

    To explore the role of Human neutrophil gelatinase associated lipocalin (NGAL) and Matrix Metalloproteinase-9 (MMP-9) overexpression in neoplastic polyps and might used as a marker to separate those from non-noeplastic polyps. The study was performed on total 65 cases, 40% (n = 26) of them females and 60% (n = 39) of them males, in Haydarpasa Numune Education and Research Hospital between March 2012 and June 2012. The assessment of immunostained sections was performed by a random principle by one experinced pathologists to the clinico-pathological data. NGAL expression was based on the presence of cytoplasmic and membranous staining. The NGAL intensities of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). The NGAL prevalences of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). The NGAL ID scores of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). We could hypothesize that NGAL and MMP-9 overexpression in neoplastic polyps might be used as a marker to separate those from non-noeplastic polyps. However, in this study, we determined that NGAL overexpression could not distinguish dysplasia from adenocancer. Finally, we suggest NGAL and MMP-9 as an immunohistochemical marker for colonic dysplasia. To determine dysplasia in early steps of colorectal adenoma-carcinoma sequence, it could help to determine new targets in preventive cancer therapy for colorectal cancer. We suggest development of standards for study method, introduction to routine practice by investigating in future studies including many patients. PMID:25356142

  14. A polymorphic variant in human MDM4 associates with accelerated age of onset of estrogen receptor negative breast cancer

    PubMed Central

    Kulkarni, Diptee A.; Vazquez, Alexei; Haffty, Bruce G.; Bandera, Elisa V.; Hu, Wenwei; Sun, Yvonne Y.; Toppmeyer, Deborah L.; Levine, Arnold J.; Hirshfield, Kim M.

    2009-01-01

    Murine double minute 4 (MDM4) shares significant structural homology with murine double minute 2 (MDM2) and interacts and regulates transcriptional activity of the tumor suppressor p53. In tumors with wild-type p53, there is often overexpression of MDM2 or MDM4 leading to functional inactivation of p53. A single-nucleotide polymorphism (SNP) in the promoter of human MDM2 (SNP309) was shown to associate with increased MDM2 expression and increased risk of cancer. This study evaluated the association of a SNP in human MDM4 (C>T) with age of onset of breast cancer in two independent cohorts. In cohort 1 of 675 patients, the average age of diagnosis for women with estrogen receptor (ER)-positive and ER-negative breast cancers was 53.2 and 48 years, respectively. In this cohort, homozygous variant (TT) carriers developed ER-negative carcinomas at an earlier age than homozygous wild-type (CC) or heterozygous (TC) such that the age at diagnosis was accelerated by 5.0 years (P?=?0.018). This association was validated in a second cohort of breast cancer patients (n?=?148), where TT carriers with ER-negative cancer developed the disease 3.8 years earlier than CC carriers (P?=?0.006). The effect was more pronounced in Caucasians with ER-negative ductal carcinomas with TT homozygotes developing disease 7.5 years (P =?0.031) and 6.2 years (P?=?7?×?10?5) earlier than CC carriers in cohorts 1 and 2, respectively. No association was seen in ER-positive ductal cancers suggesting that the SNP in MDM4 only has a functional association in ER-negative breast cancer. PMID:19762336

  15. Expression of cyclin kinase subunit 2 in human breast cancer and its prognostic significance

    PubMed Central

    Wang, Jiani; Xu, Lihua; Liu, Yu; Chen, Jianning; Jiang, Hua; Yang, Shaojiang; Tan, Huo

    2014-01-01

    Cyclin kinase subunit 2 (CKS2) protein is a small cyclin-dependent kinase-interacting protein, which is essential for the first metaphase/anaphase transition of mammalian meiosis. CKS2 is up-regulated in various malignancies, suggesting that CKS2 maybe an oncogene. However, data on its expression pattern and clinical relevance in breast cancer are unknown. The aim of this study is to investigate CKS2 expression and its prognostic significance in breast cancer. The CKS2 expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction (RT-PCR) and Western blotting analysis in paired breast cancer tissues and the adjacent normal tissues. The expression of CKS2 protein in 126 specimens of breast cancer was determined by immunohistochemistry assay. The relations between CKS2 expression and clinicopathological features were analyzed. The result show the expression of CKS2 mRNA and protein was higher in breast cancer than the adjacent normal tissues. Compared with adjacent normal breast tissues, Overexpression of CKS2 was detected in 56.3% (71/126) patients. Overexpression of CKS2 was significantly associated with large tumor size (P = 0.035), poor cellular differentiation (P = 0.016), lack expression of progesterone receptor (P = 0.006), and decreased overall survival (P = 0.001). In multivariate analysis, CKS2 expression was an independent prognostic factor for overall survival (Hazard ratio [HR] = 3.404, 95% confidence interval [CI] 1.482-7.818; P = 0.004). CKS2 is up-regulated in breast cancer and associated with large tumor size, lack expression of progesterone receptor, poor tumor differentiation and survival. CKS2 may serve as a good prognostic indicator for patients with breast cancer. PMID:25674223

  16. High risk human papillomavirus and Epstein Barr virus in human breast milk

    PubMed Central

    2012-01-01

    Background Multiple viruses, including human immunodeficiency virus, Epstein Barr virus (EBV) and mouse mammary tumour virus have been identified in human milk. High risk human papillomavirus (HPV) sequences have been identified in breast cancer. The aim of this study is to determine if viral sequences are present in human milk from normal lactating women. Findings Standard (liquid) and in situ polymerase chain reaction (PCR) techniques were used to identify HPV and EBV in human milk samples from normal lactating Australian women who had no history of breast cancer. High risk human papillomavirus was identified in milk samples of 6 of 40 (15%) from normal lactating women - sequencing on four samples showed three were HPV 16 and one was HPV 18. Epstein Barr virus was identified in fourteen samples (33%). Conclusion The presence of high risk HPV and EBV in human milk suggests the possibility of milk transmission of these viruses. However, given the rarity of viral associated malignancies in young people, it is possible but unlikely, that such transmission is associated with breast or other cancers. PMID:22937830

  17. Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation

    PubMed Central

    Song, F-f; Xia, L-l; Ji, P; Tang, Y-b; Huang, Z-m; Zhu, L; Zhang, J; Wang, J-q; Zhao, G-p; Ge, H-l; Zhang, Y; Wang, Y

    2015-01-01

    Human DCTPP1 (dCTP pyrophosphatase 1), also known as XTP3-transactivated protein A, belongs to MazG-like nucleoside triphosphate pyrophosphatase (NTP-PPase) superfamily. Being a newly identified pyrophosphatase, its relevance to tumorigenesis and the mechanisms are not well investigated. In the present study, we have confirmed our previous study that DCTPP1 was significantly hyperexpressed in breast cancer and further demonstrated its strong association with tumor progression and poor prognosis in breast cancer. Knockdown of DCTPP1 in breast cancer cell line MCF-7 cells remarkably retarded proliferation and colony formation in vitro. The capacity of mammosphere formation of MCF-7 was suppressed with the silence of DCTPP1, which was consistent with the enhanced mammosphere-forming ability in DCTPP1-overexpressed MDA-MB-231 cells. To further dissect the mechanisms of DCTPP1 in promoting tumor cell growth and stemness maintenance, its biochemical properties and biological functions were investigated. DCTPP1 displayed bioactive form with tetrameric structure similar to other MazG domain-containing pyrophosphatases based on structure simulation. A substrate preference for dCTP and its methylated or halogen-modified derivatives over the other canonical (deoxy-) NTPs was demonstrated from enzymatic assay. This substrate preference was also proved in breast cancer cells that the intracellular 5-methyl-dCTP level increased in DCTPP1-deficient MCF-7 cells but decreased in DCTPP1-overexpressed MDA-MB-231 cells. Moreover, global methylation level was elevated in DCTPP1-knockdown MCF-7 cells or mammosphere-forming MCF-7 cells but decreased significantly in DCTPP1-overexpressed MDA-MB-231 cells and its mammospheres. Our results thus indicated that human DCTPP1 was capable of modulating the concentration of intracellular 5-methyl-dCTP. This in turn affected global methylation, contributing to a known phenomenon of hypomethylation related to the cancer cell growth and stemness maintenance. Our current investigations point to the pathological functions of DCTPP1 overexpression in breast cancer cells with aberrant dCTP metabolism and epigenetic modification. PMID:26075750

  18. On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells

    PubMed Central

    Akagi, Takanori; Kato, Kei; Kobayashi, Masashi; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2015-01-01

    Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer. PMID:25928805

  19. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    PubMed

    Akagi, Takanori; Kato, Kei; Kobayashi, Masashi; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2015-01-01

    Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer. PMID:25928805

  20. Overexpression of the pituitary tumor transforming gene upregulates metastasis in malignant neoplasms of the human salivary glands

    PubMed Central

    LIU, JIA; WANG, YUGUANG; HE, HONG; JIN, WULONG; ZHENG, RONG

    2015-01-01

    Salivary gland malignant neoplasms (SGMNs) represent a group of malignant solid tumors with heterogeneity in their cellular make-up, which causes difficulty with regard to the immunohistochemical confirmation of their cytological features. In the present study, overexpression of the pituitary tumor transforming gene (PTTG) was evaluated in human mucoepidermoid carcinoma specimens with a submaxillary salivary gland origin by immunohistochemical analysis, western blot analysis and reverse transcription quantitative polymerase chain reaction. In addition, a SGMN cell line was constructed, namely A-253 PTTG (+), which overexpressed PTTG. Subsequently, the regulatory role of PTTG in the proliferation and migration of A-253 cells was investigated. The immunohistochemical results demonstrated that there was a higher rate of PTTG-positive cells in the SGMN tissues when compared with the control submaxillary salivary gland tissues. Furthermore, PTTG expression at a mRNA and protein level was significantly higher in the SGMN specimens when compared with the control specimens. In addition, the rates of proliferation and migration of the A-253 PTTG (+) cells were significantly higher compared with the A-253 PTTG (-) cells. Therefore, PTTG was demonstrated to play an important role in SGMN cell proliferation and migration, and may subsequently be a notable marker for SGMN diagnosis and a potential target for anticancer therapy.

  1. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  2. Overexpression of transforming growth factor type III receptor restores TGF-?1 sensitivity in human tongue squamous cell carcinoma cells

    PubMed Central

    Li, Duo; Xu, Dongyang; Lu, Zhiyong; Dong, Xingli; Wang, Xiaofeng

    2015-01-01

    The transforming growth factor type III receptor (T?RIII), also known as ?-glycan, is a multi-functional sensor that regulates growth, migration and apoptosis in most cancer cells. We hereby investigated the expression of T?RIII in clinical specimens of tongue squamous cell carcinoma (TSCC) and the underlying mechanism that T?RIII inhibits the growth of CAL-27 human oral squamous cells. The TSCC tissues showed a significant decrease in T?RIII protein expression as detected by immunohistochemistry (IHC) and western blot analysis. Transfection of T?RIII-containing plasmid DNA dramatically promoted TGF-?1 (10 ng/ml)-induced decrease in cell viability, apoptosis and cell arrest at the G0-/G1-phase. Moreover, transient overexpression of T?RIII enhanced the TGF-?1-induced cyclin-dependent kinase inhibitor 2b (CDKN2b) and p38 protein activity, but did not affect the activities of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK1/2) in CAL-27 cells. These results suggest overexpression of T?RIII receptor restored TGF-?1 sensitivity in CAL-27 cells, which may provide some new insights on exploiting this molecule therapeutically. PMID:26205654

  3. Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha?synuclein in oligodendrocytes

    PubMed Central

    Tank, Jens; da Costa?Goncalves, Andrey C.; Kamer, Ilona; Qadri, Fatimunnisa; Ubhi, Kiren; Rockenstein, Edward; Diedrich, André; Masliah, Eliezer; Gross, Volkmar; Jordan, Jens

    2014-01-01

    Abstract Mice overexpressing human alpha?synuclein in oligodendrocytes (MBP1???syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long?term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1???syn mice and 11 wild?type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross?spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (?21 ± 8 vs. ?10 ± 5 mmHg, P = 0.240) and to clonidine (?8 ± 3 vs. ?5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (?188 ± 21 vs. ?163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha?synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age. PMID:25428949

  4. Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Controls Efflux Transport of Hesperetin Sulfates in Sulfotransferase 1A3-Overexpressing Human Embryonic Kidney 293 Cells.

    PubMed

    Sun, Hua; Wang, Xiao; Zhou, Xiaotong; Lu, Danyi; Ma, Zhiguo; Wu, Baojian

    2015-10-01

    Sulfonation is an important metabolic pathway for hesperetin. However, the mechanisms for the cellular disposition of hesperetin and its sulfate metabolites are not fully established. In this study, disposition of hesperetin via the sulfonation pathway was investigated using human embryonic kidney (HEK) 293 cells overexpressing sulfotransferase 1A3. Two monosulfates, hesperetin-3'-O-sulfate (H-3'-S) and hesperetin-7-O-sulfate (H-7-S), were rapidly generated and excreted into the extracellular compartment upon incubation of the cells with hesperetin. Regiospecific sulfonation of hesperetin by the cell lysate followed the substrate inhibition kinetics (Vmax = 0.66 nmol/min per mg, Km = 12.9 ?M, and Ksi= 58.1 ?M for H-3'-S; Vmax = 0.29 nmol/min per mg, Km = 14.8 ?M, and Ksi= 49.1 ?M for H-7-S). The pan-multidrug resistance-associated protein (MRP) inhibitor MK-571 at 20 ?M essentially abolished cellular excretion of both H-3'-S and H-7-S (the excretion activities were only 6% of the control), whereas the breast cancer resistance protein-selective inhibitor Ko143 had no effects on sulfate excretion. In addition, knockdown of MRP4 led to a substantial reduction (>47.1%; P < 0.01) in sulfate excretion. Further, H-3'-S and H-7-S were good substrates for transport by MRP4 according to the vesicular transport assay. Moreover, sulfonation of hesperetin and excretion of its metabolites were well characterized by a two-compartment pharmacokinetic model that integrated drug uptake and sulfonation with MRP4-mediated sulfate excretion. In conclusion, the exporter MRP4 controlled efflux transport of hesperetin sulfates in HEK293 cells. Due to significant expression in various organs/tissues (including the liver and kidney), MRP4 should be a determining factor for the elimination and body distribution of hesperetin sulfates. PMID:26239185

  5. Nuclear factor-?B plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells

    PubMed Central

    Oida, Kumiko; Matsuda, Akira; Jung, Kyungsook; Xia, Yan; Jang, Hyosun; Amagai, Yosuke; Ahn, Ginnae; Nishikawa, Sho; Ishizaka, Saori; Jensen-Jarolim, Erika; Matsuda, Hiroshi; Tanaka, Akane

    2014-01-01

    Since more than 75% of breast cancers overexpress estrogen receptors (ER), endocrine therapy targeting ER has significantly improved the survival rate. Nonetheless, breast cancer still afflicts women worldwide and the major problem behind it is resistance to endocrine therapy. We have previously shown the involvement of nuclear factor-?B (NF-?B) in neoplastic proliferation of human breast cancer cells; however, the association with the transformation of ER-positive cells remains unclear. In the current study, we focused on roles of NF-?B in the hormone dependency of breast cancers by means of ER-positive MCF-7 cells. Blocking of NF-?B signals in ER-negative cells stopped proliferation by downregulation of D-type cyclins. In contrast, the MCF-7 cells were resistant to NF-?B inhibition. Under estrogen-free conditions, the ER levels were reduced when compared with the original MCF-7 cells and the established cell subline exhibited tamoxifen resistance. Additionally, NF-?B participated in cell growth instead of the estrogen-ER axis in the subline and consequently, interfering with the NF-?B signals induced additive anticancer effects with tamoxifen. MMP-9 production responsible for cell migration, as well as the cell expansion in vivo, were suppressed by NF-?B inhibition. Therefore, we suggest that NF-?B is a master switch in both ER-positive and ER-negative breast cancers. PMID:24531845

  6. Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBP?

    PubMed Central

    Grandinetti, KB; Stevens, TA; Ha, S; Salamone, RJ; Walker, JR; Zhang, J; Agarwalla, S; Tenen, DG; Peters, EC; Reddy, VA

    2012-01-01

    Lung cancer is the most common cause of cancer-related mortality worldwide. Here, we report elevated expression of tribbles homolog 2 (TRIB2) in primary human lung tumors and in non-small cell lung cancer cells that express low levels of differentiation-inducing transcription factor CCAAT/enhancer-binding protein alpha (C/EBP?). In approximately 10–20% of cases, elevated TRIB2 expression resulted from gene amplification. TRIB2 knockdown was found to inhibit cell proliferation and in vivo tumor growth. In addition, TRIB2 knockdown led to morphological changes similar to C/EBP? overexpression and correlated with increased expression and activity of C/EBP?. TRIB2-mediated regulation of C/EBP? was found to occur through the association of TRIB2 with the E3 ligase TRIM21. Together, these data identify TRIB2 as a potential driver of lung tumorigenesis through a mechanism that involves downregulation of C/EBP?. PMID:21399661

  7. Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBP?.

    PubMed

    Grandinetti, K B; Stevens, T A; Ha, S; Salamone, R J; Walker, J R; Zhang, J; Agarwalla, S; Tenen, D G; Peters, E C; Reddy, V A

    2011-07-28

    Lung cancer is the most common cause of cancer-related mortality worldwide. Here, we report elevated expression of tribbles homolog 2 (TRIB2) in primary human lung tumors and in non-small cell lung cancer cells that express low levels of differentiation-inducing transcription factor CCAAT/enhancer-binding protein alpha (C/EBP?). In approximately 10-20% of cases, elevated TRIB2 expression resulted from gene amplification. TRIB2 knockdown was found to inhibit cell proliferation and in vivo tumor growth. In addition, TRIB2 knockdown led to morphological changes similar to C/EBP? overexpression and correlated with increased expression and activity of C/EBP?. TRIB2-mediated regulation of C/EBP? was found to occur through the association of TRIB2 with the E3 ligase TRIM21. Together, these data identify TRIB2 as a potential driver of lung tumorigenesis through a mechanism that involves downregulation of C/EBP?. PMID:21399661

  8. Mode of action of the retrogene product SNAI1P, a SNAIL homolog, in human breast cancer cells.

    PubMed

    Mittal, Mukul K; Myers, Jeremy N; Bailey, Charvann K; Misra, Smita; Chaudhuri, Gautam

    2010-03-01

    SNAI1P, a protein coded by a retrogene, is a member of the SNAI family of E2-box binding transcriptional repressors. To evaluate whether the mode of action of SNAI1P is similar to those of the other predominant members of the SNAI family, we studied its action on human claudin 7 (CLDN7) gene promoter which has seven E2-boxes. We over-expressed FLAG-tagged SNAI1P in MCF7 and MDA-MB-468 cells. SNAI1P inhibited the expression of CLDN7 in these recombinant cells. SNAI1P also inhibited cloned CLDN7 gene promoter activity in human breast cancer cells. ChIP assays revealed that SNAI1P is recruited on the CLDN7 gene promoter along with the co-repressor CtBP1 and the effector HDAC1. Treatment of the cells with trichostatin A, an inhibitor of HDAC1, abrogated the repressor activity of SNAI1P. These data suggest that SNAI1P inhibits CLDN7 gene promoter epigenetically in breast cancer cells through chromatin remodeling. PMID:19277896

  9. Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells

    PubMed Central

    Han, Sei-Myoung; Han, Sang-Hun; Coh, Ye-Rin; Jang, Goo; Chan Ra, Jeong; Kang, Sung-Keun; Lee, Hee-Woo; Youn, Hwa-Young

    2014-01-01

    Mesenchymal stem cells (MSCs) are attractive candidates for clinical repair or regeneration of damaged tissues. Oct4 and Sox2, which are essential transcription factors for pluripotency and self-renewal, are naturally expressed in MSCs at low levels in early passages, and their levels gradually decrease as the passage number increases. Therefore, to improve MSC proliferation and stemness, we introduced human Oct4 and Sox2 for conferring higher expansion and differentiation capabilities. The Oct4-IRES-Sox2 vector was transfected into human adipose tissue MSCs (ATMSCs) by liposomal transfection and used directly. Oct4 and Sox2 were successfully transfected into ATMSCs, and we confirmed maintenance of MSC surface markers without alterations in both red fluorescent protein (RFP) (control) and Oct4/Sox2-ATMSCs. Enhanced proliferative activity of Oct4/Sox2-ATMSCs was shown by WST-1 assay, and this result was further confirmed by cell counting using trypan blue exclusion for a long period. In addition, FACs cell cycle analysis showed that there was a reduction in the fraction of Oct4/Sox2-ATMSCs in G1 with a concomitant increase in the fraction of cells in S, compared with RFP-ATMSCs. Increased levels of cyclin D1 were also seen in Oct4/Sox2-ATMSCs, indicating acceleration in the transition of cells from G1 to S phase. Furthermore, Oct4/Sox2-overexpressing ATMSCs showed higher differentiation abilities for adipocytes or osteoblasts than controls. The markers of adipogenic or osteogenic differentiation were also upregulated by Oct4/Sox2 overexpression. The improvement in cell proliferation and differentiation using Oct4/Sox2 expression in ATMSCs may be a useful method for expanding the population and increasing the stemness of ATMSCs. PMID:24946789

  10. Effect of the overexpression of BRCA2 unclassified missense variants on spontaneous homologous recombination in human cells.

    PubMed

    Balia, Cristina; Galli, Alvaro; Caligo, Maria Adelaide

    2011-10-01

    Breast Cancer 2 gene (BRCA2) mutation carriers have a 45% chance of developing breast cancer and a 11% risk of developing ovarian cancer by the age of 70. While hundreds of BRCA2-truncating mutations have been associated with an increased cancer risk in carriers, the contribution of unclassified variants (UCVs) to cancer risk remains largely undefined. BRCA2-defective cells show a high degree of chromosome instability. Although a functional assay based on the BRCA2 capability to stimulate DSB-induced homologous recombination (HR) as a way to classify UCVs has been proposed, so far no data are available concerning the effect of BRCA2 UCVs on spontaneous HR. In this study, we proposed a novel functional HR-based assay that determines the effect of the transient overexpression of the BRCA2 variant on spontaneous HR. This assay will help one in the difficult task of classifying UCVs, and it will give more information on how BRCA2 may induce genome instability and on the basic mechanism of BRCA2-induced tumourigenesis. We chose 11 BRCA2 UCVs not previously described or classified in other articles, and distributed along the entire BRCA2-coding region. They are as follows: G173V, D191V, S286P, M927V, T1011R, L1019V, N1878K, S2006R, R2108C, G2353R and V3091I. Basically, because the expression of BRCA2wt and the neutral variants did not increase spontaneous HR, we classified the variants G173V, S286P, M927V, T1011R and L1019V as HR-negative and presumed that they were not pathogenic. The HR-positive variants, D191V, N1878K, S2006R, R2108C, G2353R, and V3091I, which increased HR as much as the cancer-associated variant G2748D, could probably be classified as pathogenic. We observed that all our variants in the C-terminus of the protein behaved differently from the wt, suggesting a role for this protein region in spontaneous HR. PMID:21671020

  11. Screening and functional analysis of a differential protein profile of human breast cancer

    PubMed Central

    LIU, FU-JUN; WANG, XUE-BO; CAO, AI-GUO

    2014-01-01

    To improve the understanding of the enriched functions of proteins and to identify potential biomarkers in human breast cancer, the present study constructed a differentially expressed protein profile by screening immunohistochemistry maps of human breast cancer proteins. A total of 1,688 proteins were found to be differentially expressed in human breast cancer, including 773 upregulated and 915 downregulated proteins. Of these proteins, secreted and membrane proteins were screened and clustered, and more enriched biological functions and pathways were presented in the upregulated protein profiles. Furthermore, altered serum levels of peroxiredoxin (PRDX)2, PRDX6, cathepsin (CTS)B and CTSD were detected by ELISA assay. The present study provides a novel global mapping of potential breast cancer biomarkers that could be used as background to identify the altered pathways in human breast cancer, as well as potential cancer targets. PMID:24932247

  12. [Proteomic expression analysis of human colorectal cancer: of soluble overexpressed proteins].

    PubMed

    Krasnov, G S; Khankin, S L; Bukurova, Iu A; Zatsepina, O G; Oparina, N Iu; Garbuz, D G; Ershov, A N; Mashkova, T D; Karpov, V L; Beresten', S F

    2009-01-01

    Colon cancer is one of the leading causes of cancer deaths in developed countries due to the absence of tumor specific markers for early diagnosis of the disease, providing adequate sensitivity. Search for diagnostic markers of various types of cancer by proteomic approaches has been limited by large differences in protein centration. We used preliminary extraction of major cellular proteins by 0.2 M sodium chloride in presence of nonionic detergent NP-40 in order to raise the sensitivity of the 2D PAGE detection of low-abundant soluble proteins, some of which may penetrate in blood circulation during carcinogenesis. Application of this procedure prior to 2D comparative analysis of proteomes of normal tissues and matched colon cancer specimens led to selection of ten proteins, which are frequently overexpressed in colon adenocarcinomas. Mass-spectrometric identification of selected proteins led to discovery of two novel protein markers of colon tumors--TAF9 and CISH. Low level of CISH expression in various tissues suggests that it is a novel prospective marker for diagnosis of colon cancer. PMID:19807022

  13. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells.

    PubMed

    Masamura, S; Santner, S J; Heitjan, D F; Santen, R J

    1995-10-01

    Genetic and environmental factors can modulate the level of sensitivity to various hormones, including estrogens. Enhanced sensitivity to estradiol (E2) has been demonstrated in several biological conditions, such as in sheep during the nonbreeding season, in untreated patients with Turner's syndrome, and in the prepubertal state in normal girls. We postulated that secondary responses to hormonal therapy in patients with breast cancer could also result from enhanced E2 sensitivity, developing as an adaptive mechanism to E2 deprivation. The present study used the MCF-7 human breast cancer cell line as a model system to test the concept that enhanced sensitivity to E2 may occur as a result of adaptation to low E2 levels. After depriving MCF-7 cells of estrogens in tissue culture medium for periods of 1-6 months, we established conditions under which replication could be stimulated maximally by 10(-14)-10(-15) mol/L E2. In contrast, wild-type cells not exposed to estrogen deprivation required 10(-10) mol/L E2 to grow at the same rate. Further, the concentration of the antiestrogen, ICI 164384, needed to inhibit growth by 50% in estrogen-deprived cells was much lower than that required in wild-type cells (i.e. 10(-15) vs. 10(-9) mol/L). Nude mice implanted with these estrogen-deprived cells demonstrated an earlier appearance of palpable tumors in response to E2 than animals bearing wild-type cells. Reexposure to 10(-10)-10(-9) mol/L E2, either in vivo or in vitro, returned these cells to the level of estrogen sensitivity observed in wild-type cells. Taken together, these observations suggest that breast cancer cells can adapt to low levels of estrogens by enhancing their sensitivity to E2. PMID:7559875

  14. Effects of Recombinant Human Prolactin on Breast Milk Composition

    PubMed Central

    Powe, Camille E.; Puopolo, Karen M.; Newburg, David S.; Lönnerdal, Bo; Chen, Ceng; Allen, Maureen; Merewood, Anne; Worden, Susan

    2011-01-01

    OBJECTIVE: The objective of this study was to determine the impact of recombinant human prolactin (r-hPRL) on the nutritional and immunologic composition of breast milk. METHODS: We conducted 2 trials of r-hPRL treatment. In the first study, mothers with documented prolactin deficiency were given r-hPRL every 12 hours in a 28-day, open-label trial. In the second study, mothers with lactation insufficiency that developed while they were pumping breast milk for their preterm infants were given r-hPRL daily in a 7-day, double-blind, placebo-controlled trial. Breast milk characteristics were compared before and during 7 days of treatment. RESULTS: Among subjects treated with r-hPRL (N = 11), milk volumes (73 ± 36 to 146 ± 54 mL/day; P < .001) and milk lactose levels (155 ± 15 to 184 ± 8 mmol/L; P = .01) increased, whereas milk sodium levels decreased (12.1 ± 2.0 to 8.3 ± 0.5 mmol/L; P = .02). Milk calcium levels increased in subjects treated with r-hPRL twice daily (2.8 ± 0.6 to 5.0 ± 0.9 mmol/L; P = .03). Total neutral (1.5 ± 0.3 to 2.5 ± 0.4 g/L; P = .04) and acidic (33 ± 4 to 60 ± 6 mg/L; P = .02) oligosaccharide levels increased in r-hPRL-treated subjects, whereas total daily milk immunoglobulin A secretionwas unchanged. CONCLUSIONS: r-hPRL treatment increased milk volume and induced changes in milk composition similar to those that occur during normal lactogenesis. r-hPRL also increased antimicrobially active oligosaccharide concentrations. These effects were achieved for women with both prolactin deficiency and lactation insufficiency. PMID:21262884

  15. Overexpression of chromokinesin KIF4 inhibits proliferation of human gastric carcinoma cells both in vitro and in vivo.

    PubMed

    Gao, Jie; Sai, Ningning; Wang, Chengqin; Sheng, Xiehuang; Shao, Qianqian; Zhou, Chengjun; Shi, Yanqiu; Sun, Shanzhen; Qu, Xun; Zhu, Changjun

    2011-02-01

    Gastric carcinoma is a common type of malignant tumors and is associated with high death rates. The pathogenesis of gastric carcinoma is still unclear, and increasing evidence shows that many factors contribute to this process. Chromokinesin KIF4 is involved in multiple critical cellular processes. Recently, it has become apparent that KIF4 plays a crucial suppressive role in tumorigenesis. However, the role of KIF4 in human gastric cancer is still unclear. In this study, we examined expression profiles of KIF4 in gastric carcinoma specimens and generated gastric cancer cells that stably express GFP-KIF4 fusion protein (designated as BGC-GFP-KIF4 cells) followed by cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and soft agar colony-formation assays. Simultaneously, we further examined the capability of tumor formation of BGC-GFP-KIF4 cells in nude mice. The results showed that among 23 gastric carcinoma specimens, 13 cases (56.6%) had lower expression of KIF4 compared with corresponding adjacent tissues. In addition, there was a significant correlation between low expression of KIF4 and poor differentiation of tumor (P = 0.024). Overexpression of KIF4 in BGC cells inhibited cell proliferation in vitro, as well as their ability to form tumors in vivo. Our findings suggest that human chromokinesin KIF4 functions as an inhibitor of gastric cancer cell proliferation and might serve as a novel biological target to cure human gastric carcinoma. PMID:20711700

  16. Overexpression of human DNA polymerase ? (Pol ?) in a Burkitt's lymphoma cell line affects the somatic hypermutation rate

    PubMed Central

    Ruiz, José F.; Lucas, Daniel; García-Palomero, Esther; Saez, Ana I.; González, Manuel A.; Piris, Miguel A.; Bernad, Antonio; Blanco, Luis

    2004-01-01

    DNA polymerase ? (Pol ?) is a DNA-dependent DNA polymerase closely related to terminal deoxynucleotidyl transferase (TdT), and prone to induce template/primer misalignments and misincorporation. In addition to a proposed general role in non-homologous end joining of double-strand breaks, its mutagenic potential and preferential expression in secondary lymphoid tissues support a role in somatic hypermutation (SHM) of immunoglobulin genes. Here, we show that human Pol ? protein is expressed in the nucleus of centroblasts obtained from human tonsils, forming a characteristic foci pattern resembling that of other DNA repair proteins in response to DNA damage. Overexpression of human Pol ? in Ramos cells, in which the SHM process is constitutive, augmented the somatic mutations specifically at the variable (V) region of the immunoglobulin genes. The nature of the mutations introduced, mostly base substitutions, supports the contribution of Pol ? to mutation of G and C residues during SHM. In vitro analysis of Pol ? misincorporation on specific templates, that mimic DNA repair intermediates and correspond to mutational hotspots, indicated that many of the mutations observed in vivo can be explained by the capacity of Pol ? to induce transient template/primer misalignments. PMID:15520469

  17. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province ; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ? Fulvestrant radiosensitizes MCF-7 cells. ? Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ? Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  18. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit

    PubMed Central

    Li, Yue-Hui; Liu, Yan; Li, Yan-Dong; Liu, Yan-Hong; Li, Feng; Ju, Qiang; Xie, Ping-Li; Li, Guan-Cheng

    2012-01-01

    AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor ? subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang’s liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 ?mol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC. PMID:22690081

  19. Cigarette Smoking Induces Overexpression of a Fat-Depleting Gene AZGP1 in the Human

    PubMed Central

    Vanni, Holly; Kazeros, Angeliki; Wang, Rui; Harvey, Ben-Gary; Ferris, Barbara; De, Bishnu P.; Carolan, Brendan J.; Hübner, Ralf-Harto; O'Connor, Timothy P.; Crystal, Ronald G.

    2009-01-01

    Background: Smokers weigh less and have less body fat than nonsmokers. Increased body fat and weight gain are observed following smoking cessation. To assess a possible molecular mechanism underlying the inverse association between smoking and body weight, we hypothesized that smoking may induce the expression of a fat-depleting gene in the airway epithelium, the cell population that takes the brunt of the stress of cigarette smoke. Methods: To assess whether smoking up-regulates expression in the airway epithelium of genes associated with weight loss, microarray analysis was used to evaluate genes associated with fat depletion in large airway epithelial samples obtained by fiberoptic bronchoscopy from healthy smokers and healthy nonsmokers. As a candidate gene we further evaluated the expression of ?2-zinc-glycoprotein 1 (AZGP1), a soluble protein that stimulates lipolysis, induces a reduction in body fat in mice, is associated with the cachexia related to cancer, and is known to be expressed in secretory cells of lung epithelium. AZGP1 protein expression was assessed by Western analysis and localization in the large airway epithelium by immunohistochemistry. Results: Both microarray and TaqMan analysis demonstrated that AZGP1 messenger RNA levels were higher in the large airway epithelium of healthy smokers compared to healthy nonsmokers (p < 0.05, all comparisons). Western analysis of airway biopsy specimens from smokers compared with those from nonsmokers demonstrated up-regulation of AZGP1 at the protein level, and immunohistochemical analysis demonstrated up-regulation of AZGP1 in secretory as well as neuroendocrine cells of smokers. Conclusions: In the context that AZGP1 is involved in lipolysis and fat loss, its overexpression in the airway epithelium of chronic smokers may represent one mechanism for the weight difference in smokers vs nonsmokers. PMID:19188554

  20. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells

    SciTech Connect

    Anisowicz, A.; Bardwell, L.; Sager, R.

    1987-10-01

    Comparison by subtractive hybridization of mRNAs revealed a moderately abundant message in highly tumorigenic CHEF/16 cells present at very low levels in closely related nontumorigenic CHEF/18 cells. After cloning and sequencing the corresponding cDNA, computer comparison showed closest homology with the human connective tissue-activating peptide III (CTAP III). The human tumor cell cDNA hybridizing with the Chinese hamster clone was isolated, sequenced, and found to have closer similarity to the Chinese hamster gene than to CTAP III. Thus, the cloned cDNAs from Chinese hamster and human cells represent a different gene, named gro. Studies of its transcriptional regulation have shown that expression is tightly regulated by growth status in normal Chinese hamster and human cells and relaxed in the tumorigenic cells so far examined.

  1. Overexpression of E2F3 promotes proliferation of functional human ? cells without induction of apoptosis

    PubMed Central

    Rady, Brian; Chen, Yanmei; Vaca, Pilar; Wang, Qian; Wang, Yong; Salmon, Patrick; Oberholzer, José

    2013-01-01

    The mechanisms that control proliferation, or lack thereof, in adult human ? cells are poorly understood. Controlled induction of proliferation could dramatically expand the clinical application of islet cell transplantation and represents an important component of regenerative approaches to a functional cure of diabetes. Adult human ? cells are particularly resistant to common proliferative targets and often dedifferentiate during proliferation. Here we show that expression of the transcription factor E2F3 has a role in regulating ?-cell quiescence and proliferation. We found human islets have virtually no expression of the pro-proliferative G1/S transcription factors E2F1–3, but an abundance of inhibitory E2Fs 4–6. In proliferative human insulinomas, inhibitory E2Fs were absent, while E2F3 is expressed. Using this pattern as a “roadmap” for proliferation, we demonstrated that ectopic expression of nuclear E2F3 induced significant expansion of insulin-positive cells in both rat and human islets. These cells did not undergo apoptosis and retained their glucose-responsive insulin secretion, showing the ability to reverse diabetes in mice. Our results suggest that E2F4–6 may help maintain quiescence in human ? cells and identify E2F3 as a novel target to induce proliferation of functional ? cells. Refinement of this approach may increase the islets available for cell-based therapies and research and could provide important cues for understanding in vivo proliferation of ? cells. PMID:23907129

  2. Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein.

    PubMed

    Vu, Thu Trang Thi; Koo, Bon-Kyung; Song, Jung-A; Chong, Seon-Ha; Park, Cho Rong; Nguyen, Minh Tan; Jeong, Boram; Ryu, Han-Bong; Seong, Jae Young; Jang, Yeon Jin; Robinson, Robert Charles; Choe, Han

    2015-03-01

    Human chemokine (C-C motif) ligand 2 (hCCL2) is a small cytokine in the CC chemokine family that attracts monocytes, memory T lymphocytes, and natural killer cells to the site of tissue injury- or infection-induced inflammation. hCCL2 has been implicated in the pathogeneses of diseases characterized by monocytic infiltrates, including psoriasis, rheumatoid arthritis, atherosclerosis, multiple sclerosis, and insulin-resistant diabetes. The prokaryotic overexpression of hCCL2 has been investigated previously in an attempt to develop biomedical applications for this factor, but this has been hampered by protein misfolding and aggregation into inclusion bodies. In our present study, we screened 7 protein tags-Trx, GST, MBP, NusA, His8, PDI, and PDIb'a'-for their ability to allow the soluble overexpression of hCCL2. Three tags-MBP, His8, and PDI-solubilized more than half of the expressed hCCL2 fusion proteins. Lowering the expression temperature to 18 °C significantly further improved the solubility of all fusion proteins. MBP was chosen for further study based on its solubility, expression level, ease of purification, and tag size. MBP-CCL2 was purified using conventional chromatography and cleaved using TEV or Factor Xa proteases. Biological activity was assessed using luciferase and cell migration assays. Factor Xa-cleaved hCCL2 was found to be active and TEV-cleaved hCCL2 showed relatively less activity. This is probably because the additional glycine residues present at the N-terminus of hCCL2 following TEV digestion interfere with the binding of hCCL2 to its receptor. PMID:25391768

  3. Association of OPN overexpression with tumor stage, differentiation, metastasis and tumor progression in human laryngeal squamous cell carcinoma

    PubMed Central

    Chen, Jianqiu; Zhu, Chunsheng; He, Zhen; Geng, Min; Li, Guojun; Tao, Xiaofeng; Zhang, Fenghua

    2015-01-01

    Background: Osteopontin (OPN) is overexpressed in many human tumors and involved in promotion of cancer cells by regulating various facets of tumor progression such as cell proliferation, invasion and metastasis. To understand roles of OPN in tumor progression of laryngeal squamous cell carcinoma (LSCC) or develop molecular marker for prognosis and treatment of LSCC, we thus explore biological function of OPN and correlation with p53 in LSCC. Methods: The expression of OPN and p53 in tumor tissues of LSCC was determined immunohistochemically in both LSCC and adjacent normal tissues. Lentivirus vector with RNAi small hairpin gene sequence of OPN (named LV-shOPN) was transfected into Hep-2 cells. OPN expression was detected by Western blotting assay and the viability and invasive ability of Hep-2 cells were examined by MTS and transwell assay. Results: We found that OPN and p53 protein expressions were significantly higher in LSCC tumor tissues than adjacent normal tissues (76.2% vs. 23.8% for OPN and 63.8% vs. 15.2% for p53, all P < 0.001). OPN expression was also significantly correlated with p53 expression, tumor stage, grade and the presence of lymph node. The constructed LV-shOPN effectively inhibited the OPN expression, viability and invasive ability of Hep-2 cells (all P < 0.050). Conclusion: Taken together, OPN is overexpressed in LSCC. OPN expression is correlated with p53 expression, tumor progression and lymph node metastasis. Additionally, RNAi silencing of OPN expression can significantly inhibit tumor viability and invasion ability of Hep-2 cells. Thus, OPN may be considered as a marker and potential gene targeting therapy in LSCC. PMID:26221249

  4. Multiplexed ion beam imaging (MIBI) of human breast tumors

    PubMed Central

    Angelo, Michael; Bendall, Sean C.; Finck, Rachel; Hale, Matthew B.; Hitzman, Chuck; Borowsky, Alexander D.; Levenson, Richard M.; Lowe, John B.; Liu, Scot D.; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P.

    2014-01-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression employed as part of the diagnostic work-up for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded (FFPE) human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI will provide new insights by integrating tissue microarchitecture with highly multiplexed protein expression patterns, and will be valuable for basic research, drug discovery and clinical diagnostics. PMID:24584119

  5. Development of Anatomically Realistic Numerical Breast Phantoms with Accurate Dielectric Properties for Modeling Microwave Interactions with the Human Breast

    PubMed Central

    Zastrow, Earl; Davis, Shakti K.; Lazebnik, Mariya; Kelcz, Frederick; Van Veen, Barry D.; Hagness, Susan C.

    2008-01-01

    Computational electromagnetics models of microwave interactions with the human breast serve as an invaluable tool for exploring the feasibility of new technologies and improving design concepts related to microwave breast cancer detection and treatment. In this paper we report the development of a collection of anatomically realistic 3D numerical breast phantoms of varying shape, size, and radiographic density which can be readily used in FDTD computational electromagnetics models. The phantoms are derived from T1-weighted magnetic resonance images (MRIs) of prone patients. Each MRI is transformed into a uniform grid of dielectric properties using several steps. First, the structure of each phantom is identified by applying image processing techniques to the MRI. Next, the voxel intensities of the MRI are converted to frequency-dependent and tissue-dependent dielectric properties of normal breast tissues via a piecewise-linear map. The dielectric properties of normal breast tissue are taken from the recently completed large-scale experimental study of normal breast tissue dielectric properties conducted by the Universities of Wisconsin and Calgary. The comprehensive collection of numerical phantoms is made available to the scientific community through an online repository. PMID:19126460

  6. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer

    PubMed Central

    Slotky, Merav; Shapira, Ma'anit; Ben-Izhak, Ofer; Linn, Shai; Futerman, Boris; Tsalic, Medy; Hershko, Dan D

    2005-01-01

    Introduction Loss of the cell-cycle inhibitory protein p27Kip1 is associated with a poor prognosis in breast cancer. The decrease in the levels of this protein is the result of increased proteasome-dependent degradation, mediated and rate-limited by its specific ubiquitin ligase subunits S-phase kinase protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1). Skp2 was recently found to be overexpressed in breast cancers, but the role of Cks1 in these cancers is unknown. The present study was undertaken to examine the role of Cks1 expression in breast cancer and its relation to p27Kip1 and Skp2 expression and to tumor aggressiveness. Methods The expressions of Cks1, Skp2, and p27Kip1 were examined immunohistochemically on formalin-fixed, paraffin-wax-embedded tissue sections from 50 patients with breast cancer and by immunoblot analysis on breast cancer cell lines. The relation between Cks1 levels and patients' clinical and histological parameters were examined by Cox regression and the Kaplan–Meier method. Results The expression of Cks1 was strongly associated with Skp2 expression (r = 0.477; P = 0.001) and inversely with p27Kip1 (r = -0.726; P < 0.0001). Overexpression of Cks1 was associated with loss of tumor differentiation, young age, lack of expression of estrogen receptors and of progesterone receptors, and decreased disease-free (P = 0.0007) and overall (P = 0.041) survival. In addition, Cks1 and Skp2 expression were increased by estradiol in estrogen-dependent cell lines but were down-regulated by tamoxifen. Conclusion These results suggest that Cks1 is involved in p27Kip1 down-regulation and may have an important role in the development of aggressive tumor behavior in breast cancer. PMID:16168119

  7. Therapeutic targeting of casein kinase 1? in breast cancer.

    PubMed

    Rosenberg, Laura H; Lafitte, Marie; Quereda, Victor; Grant, Wayne; Chen, Weimin; Bibian, Mathieu; Noguchi, Yoshihiko; Fallahi, Mohammad; Yang, Chunying; Chang, Jenny C; Roush, William R; Cleveland, John L; Duckett, Derek R

    2015-12-16

    Identification of specific drivers of human cancer is required to instruct the development of targeted therapeutics. We demonstrate that CSNK1D is amplified and/or overexpressed in human breast tumors and that casein kinase 1? (CK1?) is a vulnerability of human breast cancer subtypes overexpressing this kinase. Specifically, selective knockdown of CK1?, or treatment with a highly selective and potent CK1? inhibitor, triggers apoptosis of CK1?-expressing breast tumor cells ex vivo, tumor regression in orthotopic models of triple-negative breast cancer, including patient-derived xenografts, and tumor growth inhibition in human epidermal growth factor receptor 2-positive (HER2(+)) breast cancer models. We also show that Wnt/?-catenin signaling is a hallmark of human tumors overexpressing CK1?, that disabling CK1? blocks nuclear accumulation of ?-catenin and T cell factor transcriptional activity, and that constitutively active ?-catenin overrides the effects of inhibition or silencing of CK1?. Thus, CK1? inhibition represents a promising strategy for targeted treatment in human breast cancer with Wnt/?-catenin involvement. PMID:26676609

  8. Identification of Genes Expressed in Premalignant Breast Disease by Microscopy-Directed Cloning

    NASA Astrophysics Data System (ADS)

    Jensen, Roy A.; Page, David L.; Holt, Jeffrey T.

    1994-09-01

    Histopathologic study of human breast biopsy samples has identified specific lesions which are associated with a high risk of development of invasive breast cancer. Presumably, these lesions (collectively termed premalignant breast disease) represent the earliest recognizable morphologic expression of fundamental molecular events that lead to the development of invasive breast cancer. To study molecular events underlying premalignant breast disease, we have developed a method for isolating RNA from histologically identified lesions from frozen human breast tissue. This method specifically obtains mRNA from breast epithelial cells and has identified three genes which are differentially expressed in premalignant breast epithelial lesions. One gene identified by this method is overexpressed in four of five noncomedo ductal carcinoma in situ lesions and appears to be the human homologue of the gene encoding the M2 subunit of ribonucleotide reductase, an enzyme involved in DNA synthesis.

  9. Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels

    PubMed Central

    Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan

    2012-01-01

    Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5–72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer. PMID:23056178

  10. HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models

    E-print Network

    Lindquist, Susan

    HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models Luke of Medical Oncology, Dana­Farber Cancer Institute, Boston, MA 02215; d Synta Pharmaceuticals, Lexington, MA breast cancers is limited by the nearly inevitable de- velopment of acquired resistance. Efforts to block

  11. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2).

    PubMed

    Römermann, Kerstin; Helmer, Renate; Löscher, Wolfgang

    2015-06-01

    Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One hypothesis to explain AED resistance suggests that seizure-induced overexpression of efflux transporters at the blood-brain barrier (BBB) restricts AEDs to reach their brain targets. Various studies examined whether AEDs are substrates of P-glycoprotein (Pgp; MDR1; ABCB1), whereas information about the potential role of breast cancer resistance protein (BCRP; ABCG2) is scanty. We used a highly sensitive in vitro assay (concentration equilibrium transport assay; CETA) with MDCKII cells transduced with murine Bcrp1 or human BCRP to evaluate whether AEDs are substrates of this major efflux transporter. Six of 7 AEDs examined, namely phenytoin, phenobarbital, carbamazepine, levetiracetam, topiramate, and valproate, were not transported by Bcrp at therapeutic concentrations, whereas lamotrigine exhibited a marked asymmetric, Bcrp-mediated transport in the CETA, which could be almost completely inhibited with the Bcrp inhibitor Ko143. Significant but less marked transport of lamotrigine was determined in MDCK cells transfected with human BCRP. Lamotrigine is also a substrate of human Pgp, so that this drug is the first AED that has been identified as a dual substrate of the two major human efflux transporters at the BBB. Previous in vivo studies have demonstrated a synergistic or cooperative role of Pgp and Bcrp in the efflux of dual substrates at the BBB, so that transport of lamotrigine by Pgp and BCRP may be an important mechanism of pharmacoresistance in epilepsy patients in whom both transporters are overexpressed. PMID:25645391

  12. Analyses of Resected Human Brain Metastases of Breast Cancer Reveal the Association between Up-regulation of Hexokinase 2 and Poor Prognosis

    PubMed Central

    Palmieri, Diane; Fitzgerald, Daniel; Shreeve, S. Martin; Hua, Emily; Bronder, Julie L.; Weil, Robert J.; Davis, Sean; Stark, Andreas M.; Merino, Maria J.; Kurek, Raffael; Mehdorn, H. Maximilian; Davis, Gary; Steinberg, Seth M.; Meltzer, Paul S.; Aldape, Kenneth; Steeg, Patricia S.

    2009-01-01

    Brain metastases of breast cancer appear to be increasing in incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser captured epithelial cells from resected human brain metastases of breast cancer compared to unlinked primary breast tumors. The tumors were matched for histology, TNM stage and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases which included, surprisingly, many genes associated with metastasis. Q-PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAM?3, SIAH, STHMN3 and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P), in vitro. Knockdown of HK2 expression in 231-BR cells using shRNA reduced cell proliferation when cultures were maintained in glucose limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival post-craniotomy (P=0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target. PMID:19723875

  13. Overexpression of Telomerase Protects Human and Murine Lung Epithelial Cells from Fas- and Bleomycin-Induced Apoptosis via FLIP Upregulation

    PubMed Central

    Arish, Nissim; Cohen, Pazit Y.; Golan-Gerstl, Regina; Fridlender, Zvi; Dayan, Mark Richter; Zisman, Philip; Breuer, Raphael; Wallach-Dayan, Shulamit B.

    2015-01-01

    High doses of bleomycin administered to patients with lymphomas and other tumors lead to significant lung toxicity in general, and to apoptosis of epithelial cells, in particular. Apoptosis of alveolar epithelium is an important step in the pathogenesis of bleomycin-induced pulmonary fibrosis. The Fas-FasL pathway is one of the main apoptotic pathways involved. Telomerase is a ribonucleoprotein RNA-dependent DNA polymerase complex consisting of an RNA template and a catalytic protein, telomerase reverse transcriptase (TERT). Telomerase also possess extra-telomeric roles, including modulation of transcription of anti-apoptotic genes, differentiation signals, and more. We hypothesized that telomerase overexpression affects Fas-induced epithelial cell apoptosis by an extra-telomeric role such as regulation of anti-apoptotic genes, specifically FLICE-like inhibitory protein (FLIP). Telomerase in mouse (MLE) and human (A549) lung epithelial cell lines was upregulated by transient transfection using cDNA hTERT expression vector. Telomerase activity was detected using a real-time PCR-based system. Bleomycin, and bleomycin-induced Fas-mediated apoptosis following treatment with anti-Fas activating mAb or control IgG, were assessed by Annexin V staining, FACS analysis, and confocal microscopy; caspase cleavage by Western blot; FLIP or Fas molecule detection by Western blot and flow cytometry. hTERT transfection of lung epithelial cells resulted in a 100% increase in their telomerase activity. Fas-induced lung epithelial cell apoptosis was significantly reduced in hTERT-transfected cells compared to controls in all experiments. Lung epithelial cells with increased telomerase activity had higher levels of FLIP expression but membrane Fas expression was unchanged. Upregulation of hTERT+ in human lung epithelial cells and subsequent downregulation of FLIP by shFLIP-RNA annulled hTERT-mediated resistance to apoptosis. Telomerase-mediated FLIP overexpression may be a novel mechanism to confer protection from apoptosis in bleomycin-exposed human lung epithelial cells. PMID:25951185

  14. Eukaryotic translation initiation factor 3, subunit C is overexpressed and promotes cell proliferation in human glioma U-87 MG cells

    PubMed Central

    HAO, JINMIN; LIANG, CHAOHUI; JIAO, BAOHUA

    2015-01-01

    Disrupted protein translation is prevalent in tumours. Eukaryotic translation initiation factors (eIFs) were found to play an important role in various tumours. However, the involvement of eIFs in glioma remains to be elucidated. The present study explored the expression and the role of eIF 3, subunit C (eIF3c) in human glioma. The expression of eIF3c in glioma tissues was evaluated by immunohistochemistry. The impact of eIF3c inhibition on U-87 MG was explored in vitro and in vivo by lentivirus-mediated siRNA targeting eIF3c. The results revealed that overexpression of eIF3c was present in glioma tissues. Knockdown of eIF3c significantly impaired cell proliferation and colony formation, further induced cell cycle arrest and apoptosis in the U-87 MG cell line. Furthermore, tumoursphere formation in the U-87 MG glioma xenograft model was blocked by eIF3c knockdown. The involvement of eIF3c in the tumorigenesis of glioma was confirmed, suggesting eIF3c may be a promising therapy target in human glioma. PMID:26137101

  15. PKR Inhibition Rescues Memory Deficit and ATF4 Overexpression in ApoE ?4 Human Replacement Mice.

    PubMed

    Segev, Yifat; Barrera, Iliana; Ounallah-Saad, Hadile; Wibrand, Karin; Sporild, Ida; Livne, Adva; Rosenberg, Tali; David, Orit; Mints, Meshi; Bramham, Clive R; Rosenblum, Kobi

    2015-09-23

    Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD. We have previously demonstrated that the most prevalent genetic risk factor for AD, the ApoE4 allele, is correlated with increased phosphorylation of the translation factor eIF2?. In the present study, we tested the possible involvement of additional members of the eIF2? pathway and identified increased mRNA expression of negative transcription factor ATF4 (aka CREB2) both in human and a mouse model expressing the human ApoE4 allele. Furthermore, injection of a PKR inhibitor rescued memory impairment and attenuated ATF4 mRNA increased expression in the ApoE4 mice. The results propose a new mechanism by which ApoE4 affects brain function and further suggest that inhibition of PKR is a way to restore ATF4 overexpression and memory impairment in early stages of sporadic AD. Significance statement: ATF4 mRNA relative quantities are elevated in ApoE4 allele carriers compared with noncarrier controls. This is true also for the ApoE ?4 human replacement mice. ApoE4 mice injected with PKR inhibitor (PKRi) demonstrate a significant reduction in ATF4 expression levels 3 h after one injection of PKRi. Treatment of ApoE4 human replacement mice with the PKRi before learning rescues the memory impairment of the ApoE4 AD model mice. We think that these results propose a new mechanism by which ApoE4 affects brain function and suggest that inhibition of PKR is a way to restore memory impairment in early stages of sporadic AD. PMID:26400930

  16. Over-expression of Senescence Marker Protein-30 decreases reactive oxygen species in human hepatic carcinoma Hep G2 cells.

    PubMed

    Handa, Setsuko; Maruyama, Naoki; Ishigami, Akihito

    2009-10-01

    Senescence Marker Protein-30 (SMP30) is an androgen-independent factor that decreases with aging. We recently characterized SMP30 as a gluconolactonase (GNL) involved in the biosynthetic pathway of vitamin C and established that SMP30 knockout mice could not synthesize vitamin C in vivo. Although mice normally synthesize vitamin C, humans are prevented from doing so by mutations that have altered the gluconolactone oxidase gene during evolution. Even the SMP30/GNL present abundantly in the human liver does not synthesize vitamin C in vivo. To clarify the functions of this SMP30/GNL, we transfected the human SMP30/GNL gene into the human liver carcinoma cell line, Hep G2. The resulting Hep G2/SMP30 cells expressed approximately 10.9-fold more SMP30/GNL than Hep G2/pcDNA3 mock-transfected control cells. Examination of SMP30/GNL's impact on the state of oxidative stress in these cells revealed that formation of the reactive oxygen species (ROS) of mitochondrial and post-mitochondrial fractions from Hep G2/SMP30 cells decreased by a significant 24.0% and 18.1%, respectively, compared to those from Hep G2/pcDNA3 cells. Lipid peroxidation levels in Hep G2/SMP30 cells similarly decreased. Moreover, levels of the antioxidants superoxide dismutase (SOD) and glutathione (GSH) in Hep G2/SMP30 cells were a significant 42.6% and 62.4% lower than those in Hep G2/pcDNA3 cells, respectively. Thus, over-expression of SMP30/GNL in Hep G2 cells contributed to a decrease of ROS formation accompanied by decreases of lipid peroxidation, SOD activity and GSH levels. PMID:19801822

  17. Overexpression of IRS2 in isolated pancreatic islets causes proliferation and protects human {beta}-cells from hyperglycemia-induced apoptosis

    SciTech Connect

    Mohanty, S.; Spinas, G.A.; Maedler, K.; Zuellig, R.A.; Lehmann, R.; Donath, M.Y.; Trueb, T.; Niessen, M. . E-mail: markus.niessen@usz.ch

    2005-02-01

    Studies in vivo indicate that IRS2 plays an important role in maintaining functional {beta}-cell mass. To investigate if IRS2 autonomously affects {beta}-cells, we have studied proliferation, apoptosis, and {beta}-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that {beta}-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a {beta}-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of {beta}-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human {beta}-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve {beta}-cell function. Our results indicate that IRS2 acts autonomously in {beta}-cells in maintenance and expansion of functional {beta}-cell mass in vivo.

  18. Increased Infectivity of Anchorless Mouse Scrapie Prions in Transgenic Mice Overexpressing Human Prion Protein

    PubMed Central

    Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-01-01

    ABSTRACT Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection. PMID:25810548

  19. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  20. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, MA; Sunter, NJ; Fordham, SE; Long, A; Masic, D; Russell, LJ; Harrison, CJ; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, CM; Onel, K; Scott, K; Scott, D; Travis, LB; May, FEB; Allan, JM

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  1. c-MYC is a radiosensitive locus in human breast cells.

    PubMed

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-09-17

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  2. Epidermal growth factor-like proteins in breast fluid and human milk

    SciTech Connect

    Connolly, J.M.; Rose, D.P.

    1988-01-01

    Epidermal growth factor (EGF), and the transforming growth factor-..cap alpha.. (TGF-..cap alpha..) family of proteins, which also bind to the EGF receptor, have been associated with human breast cancer. The total EGF-like proteins were determined by a radioreceptor assay, and TGF-..cap alpha.. by radioimmunoassay, in human milk and breast fluid samples. The breast fluids were collected by nipple aspiration from health premenopausal women. Both the 24 milks and 18 breast fluids assayed contained EGF-like proteins, at concentrations ranging from 32-600 ng/ml and 62-654 ng/ml respectively. Immunoreactive TGF-..cap alpha.. proteins were detected at higher levels in 21 breast fluids than in 24 milk samples.

  3. Automated quantification of aligned collagen for human breast carcinoma prognosis

    PubMed Central

    Bredfeldt, Jeremy S.; Liu, Yuming; Conklin, Matthew W.; Keely, Patricia J.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries. PMID:25250186

  4. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer

    PubMed Central

    2014-01-01

    Background While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. Methods We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630’s regulation of mRNA, proteins and their phosphorylated forms. Results We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630’s regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Conclusions Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients’ response to HER-targeting drugs. PMID:24655723

  5. Antipsychotic treatment in breast cancer patients.

    PubMed

    Rahman, Tahir; Clevenger, Charles V; Kaklamani, Virginia; Lauriello, John; Campbell, Austin; Malwitz, Kari; Kirkland, Robert S

    2014-06-01

    Special consideration is required when prescribing antipsychotic drugs for patients with an existing diagnosis of breast cancer. The package inserts of all approved antipsychotics contain precautions regarding their administration in this patient group. These drugs are well known to elevate serum prolactin levels to varying degrees. Overexpression of the prolactin receptor is seen in more than 95% of human breast cancers. Many genes that are activated by the prolactin receptor are associated with tumorigenesis and cancer cell proliferation. The authors discuss the pathophysiology, clinical implications, and pertinent preclinical data and make specific recommendations regarding the use of antipsychotics in patients with breast cancer. PMID:24880509

  6. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  7. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization

    SciTech Connect

    Hashiguchi, Kohtaro; Ozaki, Masumi; Kuraoka, Isao; Saitoh, Hisato; Department of New Frontier Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto; Global COE Program, Global Initiative Center for Pulsed Power Engineering, Kumamoto University, Kumamoto

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A human cell line expressing a mouse Nip45 has facilitated Nip45 analysis. Black-Right-Pointing-Pointer Nip45 does not effectively inhibit polySUMOylation in vivo. Black-Right-Pointing-Pointer Nip45 interacts directly with SUMO and SUMO chains. Black-Right-Pointing-Pointer Nip45 accumulates at PML bodies in response to proteasome inhibition. -- Abstract: The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.

  8. Mst1 overexpression inhibited the growth of human non-small cell lung cancer in vitro and in vivo.

    PubMed

    Xu, C M; Liu, W W; Liu, C J; Wen, C; Lu, H F; Wan, F S

    2013-08-01

    Mammalian STE20-like kinase 1 (Mst1) ubiquitously encodes serine threonine kinase, which is a 59-kDa class II GC kinase that shares 76% identity in amino-acid sequence with MST2, and is the closest mammalian homolog of Drosophila Hippo protein kinase, a major inhibitor of cell proliferation in Drosophila. Recent studies have shown that Mst1 and Mst2 perform tumor-suppressor function in a redundant manner and were originally identified as pro-apoptotic cytoplasmic kinases important for controlling cell growth, proliferation, apoptosis and organ size. We used recombinant eukaryotic expression vector containing human wild-type Mst1 gene to transfect human non-small cell lung cancer (NSCLC) A549 cells in vitro and in vivo. The results showed that Mst1 overexpression inhibited cell proliferation and induced apoptosis of A549 cells, promoted Yes-associated protein (YAP) (Ser127) phosphorylation and downregulated the transcriptional level of Cystein-rich protein connective tissue growth factor (CTGF), amphiregulin (AREG) and Survivin. In human NSCLC-cell-A549-xenograft models, Mst1 gene or cisplatin alone suppressed the growth of tumors and increased the cytoplasm-positive expression levels of YAP and Phospho-YAP (Ser127) proteins; however, their combination had the strongest anticancer effects. Overall, Mst1 has an important role in inhibiting the growth of NSCLC in vitro and in vivo; its antiproliferative effect is associated with induction of apoptosis through promotion of the cytoplasmic localization and phosphorylation of YAP protein at Ser127 site, indicating that Mst1 may be developed as a promising therapeutic target for NSCLC. PMID:23928732

  9. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis

    PubMed Central

    Aronow, Bruce J.; Tong, Wilson S.; Manka, David; Tang, Yaoliang; Bogdanov, Vladimir Y.; Unruh, Dusten; Blomkalns, Andra L.; Piegore, Mark G.; Weintraub, Daniel S.; Rudich, Steven M.; Kuhel, David G.; Hui, David Y.; Weintraub, Neal L.

    2013-01-01

    Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells. PMID:23737535

  10. Alteration of copper physiology in mice overexpressing the human Menkes protein ATP7A.

    PubMed

    Ke, Bi-Xia; Llanos, Roxana M; Wright, Magali; Deal, Yolanda; Mercer, Julian F B

    2006-05-01

    The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively). PMID:16397091

  11. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes

    PubMed Central

    Fertig, Elana J.; Lee, Esak; Pandey, Niranjan B.; Popel, Aleksander S.

    2015-01-01

    Breast cancer is a heterogeneous disease, having multiple subtypes with different malignant phenotypes. The triple-negative breast cancer, or basal breast cancer, is highly aggressive, metastatic, and difficult to treat. Previously, we identified that key molecules (IL6, CSF2, CCL5, VEGFA, and VEGFC) secreted by tumor cells and stromal cells in basal breast cancer can promote metastasis. It remains to assess whether these molecules function similarly in other subtypes of breast cancer. Here, we characterize the relative gene expression of the five secreted molecules and their associated receptors (GP130, GMRA, GMRB, CCR5, VEGFR2, NRP1, VEGFR3, NRP2) in the basal, HER2 (human epidermal growth factor receptor 2) positive, luminal A, and luminal B subtypes using high throughput data from tumor samples in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). IL6 and CCL5 gene expression are basal breast cancer specific, whereas high gene expression of GP130 was observed in luminal A/B. VEGFA/C and CSF2?mRNA are overexpressed in HER2 positive breast cancer, with VEGFA and CSF2 also overexpressed in basal breast cancer. Further study of the specific protein function of these factors within their associated cancer subtypes may yield personalized biomarkers and treatment modalities. PMID:26173622

  12. STMN1 overexpression correlates with biological behavior in human cutaneous squamous cell carcinoma.

    PubMed

    Li, Xingyu; Wang, Lulu; Li, Tiejun; You, Bo; Shan, Yin; Shi, Si; Qian, Li; Cao, Xiaolei

    2015-11-01

    Stathmin 1 (STMN1) is an important molecule in regulating cellular microtubule dynamics and promoting microtubule depolymerization in interphase and late mitosis. Evidences showed that STMN1 was up-regulated in many cancers, but there was no report about the roles of STMN1 in human cutaneous squamous cell carcinoma (cSCC). Here, we confirmed significant upregulation of STMN1 in cSCC tissues and cell lines compared with non-tumor counterparts. STMN1 upregulation was associated with the proliferation, migration, invasion and apoptosis of cSCC cells. The results suggested that STMN1 may play an important role in the development and tumor progression of cSCC. PMID:26235036

  13. Overexpression of miR-221 inhibits proliferation and promotes apoptosis of human astrocytoma cells

    PubMed Central

    Qiu, Dong; Sun, Yi-Chang

    2015-01-01

    microRNAs (miRNAs) play tumor-promoting roles in a variety of tumors. This study investigated the expression of miRNA-211 (miR-221) in human astrocytoma, and its effect on proliferation and apoptosis of human astrocytoma cells in vitro. miR-221 expression was detected in 10 astrocytoma tissues and 4 adjacent tissues by real-time quantitative PCR (qRT-PCR). miR-221 expression in situ was significantly higher in astrocytoma tissues than in adjacent tissues (P<0.05). To determine whether the upregulation of miR-221 could be associated with tumor development or progression, a synthetic miR-221 mimic was transiently transfected into U251 astrocytoma cells in vitro. qRT-PCR confirmed that the mimic significantly increased the expression of miR-221 in these cells. An MTT colorimetric assay indicated that proliferation was significantly higher in U251 cells transfected with miR-221 mimic than in scramble-transfected control cells (P<0.05). Further analysis of miR-221 transfected cells by flow cytometry revealed an altered cell cycle progression, with more cells in S and G1 phase, as well as an inhibition of apoptosis (P<0.05). These findings indicate that the upregulation of miR-221 in astrocytoma tissues may be associated with development or progression of these tumors. Thus, miR-221 should be explored as a potential molecular marker for the diagnosis and treatment of astrocytoma. PMID:26191177

  14. A53T Human ?-Synuclein Overexpression in Transgenic Mice Induces Pervasive Mitochondria Macroautophagy Defects Preceding Dopamine Neuron Degeneration

    PubMed Central

    Xie, Zhiguo; Turkson, Susie

    2015-01-01

    In vitro evidence suggests that the inefficient removal of damaged mitochondria by macroautophagy contributes to Parkinson's disease (PD). Using a tissue-specific gene amplification strategy, we generated a transgenic mouse line with human ?-synuclein A53T overexpression specifically in dopamine (DA) neurons. Transgenic mice showed profound early-onset mitochondria abnormalities, characterized by macroautophagy marker-positive cytoplasmic inclusions containing mainly mitochondrial remnants, which preceded the degeneration of DA neurons. Genetic deletion of either parkin or PINK1 in these transgenic mice significantly worsened mitochondrial pathologies, including drastically enlarged inclusions and loss of total mitochondria contents. These data suggest that mitochondria are the main targets of ?-synuclein and their defective autophagic clearance plays a significant role during pathogenesis. Moreover, endogenous PINK1 or parkin is indispensable for the proper autophagic removal of damaged mitochondria. Our data for the first time establish an essential link between mitochondria macroautophagy impairments and DA neuron degeneration in an in vivo model based on known PD genetics. The model, its well-defined pathologies, and the demonstration of a main pathogenesis pathway in the present study have set the stage and direction of emphasis for future studies. PMID:25609609

  15. Overexpression of CDCA2 in Human Squamous Cell Carcinoma: Correlation with Prevention of G1 Phase Arrest and Apoptosis

    PubMed Central

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Bukawa, Hiroki; Tanzawa, Hideki

    2013-01-01

    Cell division cycle associated 2 (CDCA2) recruits protein phosphatase 1 to chromatin to antagonize activation of ataxia telangiectasia mutated (ATM)-dependent signal transduction. ATM kinase plays a critical role in the DNA damage response and its phosphorylation cascade to inhibit the p53-MDM2 interaction, which releases p53 to induce p21 and G1 cell-cycle arrest. However, the relevance of CDCA2 to human malignancy including oral squamous cell carcinoma (OSCC) is unknown. In the current study, we found that CDCA2 expression was up-regulated in OSCC cell lines. Functional studies with shRNA system showed that knockdown of CDCA2 significantly (P<0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase and up-regulating the cyclin-dependent kinase inhibitors (p21Cip1, p27Kip1, p15INK4B, and p16INK4A). CDCA2 knockdown also promoted apoptosis after treatment with the DNA damage reagent, cisplatin. In clinical samples, the CDCA2 protein expression level in primary OSCCs was significantly (P<0.05) greater than in matched normal oral tissues (67/85, 79%). Furthermore, CDCA2-positive cases were correlated significantly (P<0.05) with high cancer progression. Our results showed for the first time that CDCA2 frequently is overexpressed in OSCCs and might be associated closely with OSCC progression by preventing cell-cycle arrest and apoptosis. PMID:23418564

  16. Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells.

    PubMed

    Hernández-Reséndiz, Ileana; Román-Rosales, Alejandra; García-Villa, Enríque; López-Macay, Ambar; Pineda, Erika; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Alvarez-Ríos, Elizabeth; Gariglio, Patricio; Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara

    2015-12-01

    The role of p53 as modulator of OxPhos and glycolysis was analyzed in HeLa-L (cells containing negligible p53 protein levels) and HeLa-H (p53-overexpressing) human cervix cancer cells under normoxia and hypoxia. In normoxia, functional p53, mitochondrial enzyme contents, mitochondrial electrical potential (??m) and OxPhos flux increased in HeLa-H vs. HeLa-L cells; whereas their glycolytic enzyme contents and glycolysis flux were unchanged. OxPhos provided more than 70% of the cellular ATP and proliferation was abolished by anti-mitochondrial drugs in HeLa-H cells. In hypoxia, both cell proliferations were suppressed, but HeLa-H cells exhibited a significant decrease in OxPhos protein contents, ??m and OxPhos flux. Although glycolytic function was also diminished vs. HeLa-L cells in hypoxia, glycolysis provided more than 60% of cellular ATP in HeLa-H cells. The energy metabolism phenotype of HeLa-H cells was reverted to that of HeLa-L cells by incubating with pifithrin-?, a p53-inhibitor. In normoxia, the energy metabolism phenotype of breast cancer MCF-7 cells was similar to that of HeLa-H cells, whereas p53shRNAMCF-7 cells resembled the HeLa-L cell phenotype. In hypoxia, autophagy proteins and lysosomes contents increased 2-5 times in HeLa-H cells suggesting mitophagy activation. These results indicated that under normoxia p53 up-regulated OxPhos without affecting glycolysis, whereas under hypoxia, p53 down-regulated both OxPhos (severely) and glycolysis (weakly). These p53 effects appeared mediated by the formation of p53-HIF-1? complexes. Therefore, p53 exerts a dual and contrasting regulatory role on cancer energy metabolism, depending on the O?level. PMID:26434996

  17. Breast Cancer In Women Infographic

    Cancer.gov

    This infographic shows the Breast Cancer Subtypes in Women. It’s important for guiding treatment and predicting survival. Know the Science: HR = Hormone receptor. HR+ means tumor cells have receptors for the hormones estrogen or progesterone, which can promote the growth of HR+ tumors. Hormone therapies like tamoxifen can be used to treat HR+ tumors. HER2 = Human epidermal growth Factor receptor, HER2+ means tumor cells overexpress (make high levels of) a protein, called HE2/neu, which has been shown to be associated with certain aggressive types of breast cancer. Trastuzumab and some other therapies can target cells that overexpress HER2. HR+/HER2, aka “LuminalA”. 73% of all breast cancer cases: best prognosis, most common subtype for every race, age, and poverty level. HR-/HER2, aka “Triple Negative”: 13% of all breast cancer cases, Worst prognosis, Non-Hispanic blacks have the highest rate of this subtype at every age and poverty level. HR+/HER2+, aka “Luminal B”, 10% of all breast cancer cases, little geographic variation by state. HR-/HER2+, aka”HER2-enriched”, 5% of all breast cancer cases, lowest rates for all races and ethnicities. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  18. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines.

    PubMed

    Bergman, A M; Pinedo, H M; Talianidis, I; Veerman, G; Loves, W J P; van der Wilt, C L; Peters, G J

    2003-06-16

    Gemcitabine (2',2'-difluorodeoxycytidine) is a deoxycytidine analogue that is activated by deoxycytidine kinase (dCK) to its monophosphate and subsequently to its triphosphate dFdCTP, which is incorporated into both RNA and DNA, leading to DNA damage. Multidrug resistance (MDR) is characterised by an overexpression of the membrane efflux pumps P-glycoprotein (P-gP) or multidrug resistance-associated protein (MRP). Gemcitabine was tested against human melanoma, non-small-cell lung cancer, small-cell lung cancer, epidermoid carcinoma and ovarian cancer cells with an MDR phenotype as a result of selection by drug exposure or by transfection with the mdr1 gene. These cell lines were nine- to 72-fold more sensitive to gemcitabine than their parental cell lines. The doxorubicin-resistant cells 2R120 (MRP1) and 2R160 (P-gP) were nine- and 28-fold more sensitive to gemcitabine than their parental SW1573 cells, respectively (P<0.01), which was completely reverted by 25 micro M verapamil. In 2R120 and 2R160 cells, dCK activities were seven- and four-fold higher than in SW1573, respectively, which was associated with an increased dCK mRNA and dCK protein. Inactivation by deoxycytidine deaminase was 2.9- and 2.2-fold decreased in 2R120 and 2R160, respectively. dFdCTP accumulation was similar in SW1573 and its MDR variants after 24 h exposure to 0.1 micro M gemcitabine, but dFdCTP was retained longer in 2R120 (P<0.001) and 2R160 (P<0.003) cells. 2R120 and 2R160 cells also incorporated four- and six-fold more [(3)H]gemcitabine into DNA (P<0.05), respectively. P-glycoprotein and MRP1 overexpression possibly caused a cellular stress resulting in increased gemcitabine metabolism and sensitivity, while reversal of collateral gemcitabine sensitivity by verapamil also suggests a direct relation between the presence of membrane efflux pumps and gemcitabine sensitivity. PMID:12799644

  19. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib

    PubMed Central

    Dufour, Robin; Daumar, Pierre; Mounetou, Emmanuelle; Aubel, Corinne; Kwiatkowski, Fabrice; Abrial, Catherine; Vatoux, Catherine; Penault-Llorca, Frédérique; Bamdad, Mahchid

    2015-01-01

    The triple negative basal-like (TNBL) breast carcinoma is an aggressive and unfavorable prognosis disease. Inhibitors of poly(ADP-ribose) polymerase such as Olaparib could represent a promising targeted therapy but their sensitivity against Multidrug Resistance proteins (MDR), which causes resistance, is not well defined. Thus, our work focused on the analysis of P-gp and BCRP coexpression in the SUM1315 TNBL human cell line, in correlation with Olaparib intracellular concentration. Western blot analyses showed a clear coexpression of P-gp and BCRP in SUM1315 cells. A low cytotoxic Olaparib treatment clearly led to an increased expression of both BCRP and P-gp in these cells. Indeed, after 1.5?h of treatment, BCRP expression was increased with a 1.8 fold increase rate. Then, P-gp took over from 3?h to 15?h with an average increase rate of 1.8 fold, and finally returned to control value at 24?h. HPLC-UV analyses showed that, in the same treatment conditions, the intracellular Olaparib concentration increased from 1?h to 3?h and remained relatively stable until 24?h. Results suggest that the resistance mechanism induced by Olaparib in TNBL SUM1315 cell line may be overpassed if a cytotoxic and stable intracellular level of the drug can be maintained. PMID:26234720

  20. Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells

    PubMed Central

    2013-01-01

    Introduction Signal transducers and activators of transcription 3 (STAT3) signaling is constitutively activated in various cancers including breast cancer and has emerged as a novel potential anti-cancer target. STAT3 has been demonstrated to be a target of sorafenib, and a protein tyrosine phosphatase Src homology 2-domain containing tyrosine phosphatase 1 (SHP-1) has been demonstrated to downregulate p-STAT3 via its phosphatase activity. Here, we tested the efficacy of two sorafenib analogues, SC-1 and SC-43, in breast cancer cells and examined the drug mechanism. Methods Breast cancer cell lines were used for in vitro studies. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was examined by flow cytometry and western blot. Signal transduction pathways in cells were assessed by western blot. In vivo efficacy of sorafenib, SC-1 and SC-43 was tested in xenografted nude mice. Results SC-1 and SC-43 induced more potent apoptosis than sorafenib, in association with downregulation of p-STAT3 and its downstream proteins cyclin D1 and survivin in a dose-dependent manner in breast cancer cell lines (HCC-1937, MDA-MB-468, MDA-MB-231, MDA-MB-453, SK-BR3, MCF-7). Overexpression of STAT3 in MDA-MB-468 cells protected the cells from apoptosis induced by sorafenib, SC-1 and SC-43. Moreover, SC-1 and SC-43 upregulated SHP-1 activity to a greater extent than sorafenib as measured by in vitro phosphatase assays. Knockdown of SHP-1 by siRNA reduced apoptosis induced by SC-1 and SC-43. Importantly, SC-1 and SC-43 showed more efficacious antitumor activity and p-STAT3 downregulation than sorafenib in MDA-MB-468 xenograft tumors. Conclusions Novel sorafenib analogues SC-1 and SC-43 induce apoptosis through SHP-1 dependent STAT3 inactivation and demonstrate greater potency than sorafenib in human breast cancer cells. PMID:23938089

  1. Production of immunoreactive polymorphonuclear leucocyte elastase in human breast cancer cells: possible role of polymorphonuclear leucocyte elastase in the progression of human breast cancer.

    PubMed Central

    Yamashita, J. I.; Ogawa, M.; Ikei, S.; Omachi, H.; Yamashita, S. I.; Saishoji, T.; Nomura, K.; Sato, H.

    1994-01-01

    Breast cancer cells are known to express various proteolytic enzymes, which make them invasive and favour their dissemination to distant sites. However, it is unclear whether breast cancer cells have the ability to produce polymorphonuclear leucocyte elastase (PMN-E). We measured immunoreactive (ir) PMN-E content in the conditioned medium of two breast cancer cell lines, MCF-7 and ZR-75-1, and two normal breast epithelial cell lines, HBL-100 and Hs 578Bst, using a highly specific and sensitive enzyme immunoassay. Furthermore, ir-PMN-E content was determined in tissue extracts from 62 human breast cancers. ir-PMN-E content in the culture medium of MCF-7 cells and ZR-75-1 cells increased as a function of time, regardless of the presence or absence of oestradiol. On the other hand, no detectable ir-PMN-E was secreted into the culture medium of HBL-100 and Hs 578Bst cells. ir-PMN-E was detectable in 59 of 62 tissue extracts prepared from human breast cancers, the concentration ranging from 0.12 to 19.17 micrograms per 100 mg of protein. When 62 breast cancer specimens were categorised into four groups in terms of clinical stage, ir-PMN-E content in breast cancer tissue was significantly higher in stage III (8.90 +/- 5.13 micrograms 100 mg-1 protein) and stage IV (12.19 +/- 5.44 micrograms 100 mg-1 protein) patients than in stage I (1.64 +/- 1.54 micrograms 100 mg-1 protein) and stage II (4.23 +/- 3.74 micrograms 100 mg-1 protein) patients. Breast cancer patients with high levels of ir-PMN-E showed significantly shorter disease-free survival and overall survival than those with low levels of ir-PMN-E at the cut-off point of 8.99 micrograms 100 mg-1 protein. In the multivariate analysis, ir-PMN-E content was found to be a significant prognostic factor for disease recurrence and death in human breast cancer. PMID:8286213

  2. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer

    PubMed Central

    Liu, Deli; Xiong, Huan; Ellis, Angela E.; Northrup, Nicole C.; Rodriguez, Carlos O.; O'Regan, Ruth M.; Dalton, Stephen; Zhao, Shaying

    2014-01-01

    Spontaneously occurring canine mammary cancer (MC) represents an excellent model of human breast cancer but is greatly understudied. To better utilize this valuable resource, we performed whole genome sequencing, whole exome sequencing, RNA-seq and/or high density arrays on 12 canine MC cases, including 7 simple carcinomas and four complex carcinomas. Canine simple carcinomas, which histologically match human breast carcinomas, harbor extensive genomic aberrations, many of which faithfully recapitulate key features of human breast cancer. Canine complex carcinomas, which are characterized by proliferation of both luminal and myoepithelial cells and are rare in human breast cancer, appear to lack genomic abnormalities. Instead, these tumors have about 35 chromatin-modification genes downregulated, and are abnormally enriched with active histone modification H4-acetylation while aberrantly depleted with repressive histone modification H3K9me3. Our findings indicate the likelihood that canine simple carcinomas arise from genomic aberrations whereas complex carcinomas originate from epigenomic alterations, reinforcing their unique value. Canine complex carcinomas offer an ideal system to study myoepithelial cells, the second major cell lineage of the mammary gland. Canine simple carcinomas, which faithfully represent human breast carcinomas at the molecular level, provide indispensable models for basic and translational breast cancer research. PMID:25082814

  3. Weightlessness acts on human breast cancer cell line MCF-7

    NASA Astrophysics Data System (ADS)

    Vassy, J.; Portet, S.; Beil, M.; Millot, G.; Fauvel-Lafève, F.; Gasset, G.; Schoevaert, D.

    2003-10-01

    Because cells are sensitive to mechanical forces, weightlessness might act on stress-dependent cell changes. Human breast cancer cells MCF-7, flown in space in a Photon capsule, were fixed after 1.5, 22 and 48 h in orbit. Cells subjected to weightlessness were compared to 1g in-flight and ground controls. Post-flight, fluorescent labeling was performed to visualize cell proliferation (Ki-67), three cytoskeleton components and chromatin structure. Confocal microscopy and image analysis were used to quantify cycling cells and mitosis, modifications of the cytokeratin network and chromatin structure. Several main phenomena were observed in weightlessness: The perinuclear cytokeratin network and chromatin structure were looser. More cells were cycling and mitosis was prolonged. Finally, cell proliferation was reduced as a consequence of a cell-cycle blockade. Microtubules were altered in many cells. The results reported in the first point are in agreement with basic predictions of cellular tensegrity. The prolongation of mitosis can be explained by an alteration of microtubules. We discuss here the different mechanisms involved in weightlessness alteration of microtubules: i) alteration of their self-organization by reaction-diffusion processes, and a mathematical model is proposed, ii) activation or desactivation of microtubules stabilizing proteins, acting on both microtubule and microfilament networks in cell cortex.

  4. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent (San Francisco, CA)

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  5. Poly(ADP-ribose) polymerase-1 mRNA expression in human breast cancer: a meta-analysis.

    PubMed

    Gonçalves, Anthony; Finetti, Pascal; Sabatier, Renaud; Gilabert, Marine; Adelaide, José; Borg, Jean-Paul; Chaffanet, Max; Viens, Patrice; Birnbaum, Daniel; Bertucci, François

    2011-05-01

    Although poly(ADP-ribose) polymerase-1 (PARP1) inhibition is a recent promising therapy in breast cancer, PARP1 expression in this disease is not known. Using DNA microarray and array-based comparative genomic hybridization (arrayCGH), we examined PARP1 mRNA expression and copy number alterations in 326 invasive breast cancer samples and normal breast (NB) samples. A meta-analysis was performed on a large public retrospective gene expression data set (n = 2,485) to analyze correlation between PARP1 mRNA expression and molecular subtypes and clinico-pathological parameters. PARP1 was overexpressed in 58% of cancers, and its expression was heterogeneous between tumors. ArrayCGH data revealed an association between mRNA overexpression and gain/amplification at the PARP1 locus (P < 1.0E-8). Meta-analysis showed that PARP1 expression was higher in basal breast cancers (P < 1.0E-72), but overexpression was also found in other subtypes. PARP1 expression correlated with high grade, medullary histological type, tumor size, and worse metastasis-free survival (MFS; HR = 1.12 [1.04-1.22], P = 0.004) and overall survival (OS; HR = 1.16 [1.04-1.29], P = 0.006). In multivariate analysis, PARP1 expression had an independent prognostic value for MFS, which was restricted to patients untreated with any adjuvant chemotherapy. These data demonstrate overexpression of PARP1 in a large number of breast cancers and support the development of PARP inhibitors in basal subtype, but also potentially in other breast cancer subtypes. PMID:21069454

  6. TC-1 overexpression promotes cell proliferation in human non-small cell lung cancer that can be inhibited by PD173074.

    PubMed

    Lei, Jie; Li, Wenhai; Yang, Ye; Lu, Qiang; Zhang, Na; Bai, Guangzhen; Zhong, Daixing; Su, Kai; Liu, Boya; Li, Xiaofei; Wang, Yunjie; Wang, Xiaoping

    2014-01-01

    Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC. PMID:24941347

  7. TC-1 Overexpression Promotes Cell Proliferation in Human Non-Small Cell Lung Cancer that Can Be Inhibited by PD173074

    PubMed Central

    Zhang, Na; Bai, Guangzhen; Zhong, Daixing; Su, Kai; Liu, Boya; Li, Xiaofei; Wang, Yunjie; Wang, Xiaoping

    2014-01-01

    Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC. PMID:24941347

  8. A preliminary study of the effect of ECRG4 overexpression on the proliferation and apoptosis of human laryngeal cancer cells and the underlying mechanisms.

    PubMed

    Jia, Jianping; Dai, Song; Sun, Xinghe; Sang, Yuehong; Xu, Zhenming; Zhang, Jie; Cui, Xiaofeng; Song, Jinhui; Guo, Xing

    2015-10-01

    Human esophageal cancer?related gene 4 (ECRG4) is a potential tumor suppressor gene isolated from human esophageal epithelial cells. Studies have shown that ECRG4 effectively inhibits the proliferation of tumor cells and induces apoptosis. However, the role of ECRG4 in laryngeal cancer has not yet been clearly defined. In this study, a human laryngeal cancer cell line stably overexpressing ECRG4 was established. The effect of ECRG4 on the proliferation and apoptosis of laryngeal cancer cells and the associated mechanisms were investigated. The Hep?2 human laryngeal carcinoma cell line exhibited a low basal level of ECRG4 expression and was selected for the present study. The eukaryotic expression plasmid pcDNA3.1?ECRG4 was constructed and introduced into Hep?2 cells by transfection reagents. Western blot analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining confirmed high?level expression of ECRG4. The 3?(4, 5?dimethylthiazol?2?yl)?2,5?diphenyltetrazolium bromide assay and colony formation assay showed that ECRG4 overexpression suppressed the proliferative capacity of laryngeal cancer cells in vitro. Cell cycle analysis showed that ECRG4 induced cell cycle arrest at the G0/G1 phase. Flow cytometric analysis and Hoechst staining demonstrated that overexpression of ECRG4 significantly induced apoptosis. Western blot analysis confirmed that Bcl?2?associated X protein, cleaved?caspase?3 and cleaved?poly (ADP?ribose) polymerase were upregulated in the apoptotic process, whereas B?cell lymphoma 2 was downregulated. In conclusion, overexpression of ECRG4 inhibited laryngeal cancer cell proliferation and induced cancer cell apoptosis. Therefore, ECRG4 exhibits potential as an effective target in gene therapy for laryngeal cancer. PMID:26165988

  9. A preliminary study of the effect of ECRG4 overexpression on the proliferation and apoptosis of human laryngeal cancer cells and the underlying mechanisms

    PubMed Central

    JIA, JIANPING; DAI, SONG; SUN, XINGHE; SANG, YUEHONG; XU, ZHENMING; ZHANG, JIE; CUI, XIAOFENG; SONG, JINHUI; GUO, XING

    2015-01-01

    Human esophageal cancer-related gene 4 (ECRG4) is a potential tumor suppressor gene isolated from human esophageal epithelial cells. Studies have shown that ECRG4 effectively inhibits the proliferation of tumor cells and induces apoptosis. However, the role of ECRG4 in laryngeal cancer has not yet been clearly defined. In this study, a human laryngeal cancer cell line stably overexpressing ECRG4 was established. The effect of ECRG4 on the proliferation and apoptosis of laryngeal cancer cells and the associated mechanisms were investigated. The Hep-2 human laryngeal carcinoma cell line exhibited a low basal level of ECRG4 expression and was selected for the present study. The eukaryotic expression plasmid pcDNA3.1-ECRG4 was constructed and introduced into Hep-2 cells by transfection reagents. Western blot analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining confirmed high-level expression of ECRG4. The 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay showed that ECRG4 over-expression suppressed the proliferative capacity of laryngeal cancer cells in vitro. Cell cycle analysis showed that ECRG4 induced cell cycle arrest at the G0/G1 phase. Flow cytometric analysis and Hoechst staining demonstrated that overexpres-sion of ECRG4 significantly induced apoptosis. Western blot analysis confirmed that Bcl-2-associated X protein, cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase were upregulated in the apoptotic process, whereas B-cell lymphoma 2 was downregulated. In conclusion, overexpression of ECRG4 inhibited laryngeal cancer cell proliferation and induced cancer cell apoptosis. Therefore, ECRG4 exhibits potential as an effective target in gene therapy for laryngeal cancer. PMID:26165988

  10. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    PubMed

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. Cancer Prev Res; 8(12); 1174-83. ©2015 AACR. PMID:26487401

  11. DEAD-box helicase DP103 defines metastatic potential of human breast cancers

    PubMed Central

    Shin, Eun Myoung; Sin Hay, Hui; Lee, Moon Hee; Goh, Jen Nee; Tan, Tuan Zea; Sen, Yin Ping; Lim, See Wee; Yousef, Einas M.; Ong, Hooi Tin; Thike, Aye Aye; Kong, Xiangjun; Wu, Zhengsheng; Mendoz, Earnest; Sun, Wei; Salto-Tellez, Manuel; Lim, Chwee Teck; Lobie, Peter E.; Lim, Yoon Pin; Yap, Celestial T.; Zeng, Qi; Sethi, Gautam; Lee, Martin B.; Tan, Patrick; Goh, Boon Cher; Miller, Lance D.; Thiery, Jean Paul; Zhu, Tao; Gaboury, Louis; Tan, Puay Hoon; Hui, Kam Man; Yip, George Wai-Cheong; Miyamoto, Shigeki; Kumar, Alan Prem; Tergaonkar, Vinay

    2014-01-01

    Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-?B. In turn, NF-?B signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-?–activated kinase-1 (TAK1) phosphorylation of NF-?B–activating I?B kinase 2 (IKK2), leading to increased NF-?B activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-?B–mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-?B feedback loop promotes constitutive NF-?B activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment. PMID:25083991

  12. The Roles of MicroRNA-122 Overexpression in Inhibiting Proliferation and Invasion and Stimulating Apoptosis of Human Cholangiocarcinoma Cells

    PubMed Central

    Liu, Ning; Jiang, Fan; He, Tian-Lin; Zhang, Jun-Kuan; Zhao, Juan; Wang, Chun; Jiang, Gui-Xing; Cao, Li-Ping; Kang, Peng-Cheng; Zhong, Xiang-Yu; Lin, Tian-Yu; Cui, Yun-Fu

    2015-01-01

    Our study investigated whether microRNA-122 (miR-122) played important roles in the proliferation, invasion and apoptosis of human cholangiocarcinoma (CC) cells. QBC939 and RBE cells lines were chosen and divided into five groups: miR-122 mimic group, anti-miR-122 group, negative control (NC) group, mock group and blank group. MiR-122 expression was measured by qRT-PCR. Roles of miR-122 in cell proliferation, apoptosis and invasion were investigated using MTT assay, flow cytometer and Transwell invasion assay, respectively. MiR-122 expression was lower in CC tissues and QBC939 cell than that in normal bile duct tissues, HCCC-9810 and RBE cells. In both QBC939 and RBE cells lines, miR-122 expression was higher in miR-122 mimic group than that in NC group, mock group and blank group; opposite results were found in anti-miR-122 group. Cell proliferation and invasion were remarkably inhibited in miR-122 mimic group after 48?h/72?h transfection, while apoptotic cells numbers were much greater in miR-122 mimic group; the opposite results were obtained from anti-miR-122 group (all P?overexpression might play pivotal roles in inhibiting proliferation, stimulating apoptosis and suppressing invasion of CC cells, suggesting a new target for CC diagnosis and treatment. PMID:26686459

  13. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    NASA Astrophysics Data System (ADS)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  14. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans.

    PubMed

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A; Schweiger, Martin; Arridge, Simon R; Schnall, Mitchell D; Yodh, Arjun G

    2007-05-28

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising. PMID:19546980

  15. Final overall survival analysis of a phase II trial evaluating vinorelbine and lapatinib in women with ErbB2 overexpressing metastatic breast cancer.

    PubMed

    Janni, Wolfgang; Sarosiek, Tomasz; Karaszewska, Boguslawa; Pikiel, Joanna; Staroslawska, Elzbieta; Potemski, Piotr; Salat, Christoph; Brain, Etienne; Caglevic, Christian; Briggs, Kathryn; Mahood, Kim; DeSilvio, Michelle; Marini, Luca; Papadimitriou, Christos

    2015-12-01

    Lapatinib plus capecitabine (lap+cap) is approved as treatment for patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC), who have progressed on prior trastuzumab in the metastatic setting. We previously reported progression-free survival (PFS), overall survival (OS) and safety results from this open-label, multicentre, phase II study (VITAL; NCT01013740) conducted in women with HER2 positive MBC, to evaluate the efficacy and safety of lap plus vinorelbine (lap+vin), an important chemotherapy option for MBC, compared with lap+cap. In total, 112 patients were randomised 2:1 to treatment with lap+vin (N = 75) or lap+cap (N = 37). Results showed that the median PFS (primary endpoint) and OS (secondary endpoint) post-randomisation were comparable between treatment arms, with no new safety signals detected. Here, we assessed the final OS in this study at 40 months post-randomisation. At the time of final analyses, 24 (32%) patients were ongoing in the lap+vin arm, compared with 14 (38%) patients in the lap+cap arm (92% in both arms had discontinued treatment). Median OS in the lap+vin arm was 23.3 months (95% confidence intervals [CI]: 18.5, 31.1), compared with 20.3 months (95% CI: 16.4, 31.8) in the lap+cap arm. The median follow-up in the lap+vin arm was 18.86 months (95% CI: 10.68, 26.02), compared with 19.38 (95% CI: 25.56) months in the lap+cap arm. Similar rates of death (56-57%) were observed in both arms. The final OS was consistent with the previously reported data and suggest that lap+vin offers an effective treatment option for women with HER2-positive MBC. PMID:26384789

  16. Recurrent Breast Abscesses due to Corynebacterium kroppenstedtii, a Human Pathogen Uncommon in Caucasian Women

    PubMed Central

    Le Flèche-Matéos, Anne; Berthet, Nicolas; Lomprez, Fabienne; Arnoux, Yolande; Le Guern, Anne-Sophie; Leclercq, India; Burguière, Ana Maria; Manuguerra, Jean-Claude

    2012-01-01

    Background. Corynebacterium kroppenstedtii (Ck) was first described in 1998 from human sputum. Contrary to what is observed in ethnic groups such as Maori, Ck is rarely isolated from breast abscesses and granulomatous mastitis in Caucasian women. Case Presentation. We herein report a case of recurrent breast abscesses in a 46-year-old Caucasian woman. Conclusion. In the case of recurrent breast abscesses, even in Caucasian women, the possible involvement of Ck should be investigated. The current lack of such investigations, probably due to the difficulty to detect Ck, may cause the underestimation of such an aetiology. PMID:23008788

  17. Human T47D-ER? breast cancer cells with tetracycline-dependent ER? expression reflect ER?/ER? ratios in rat and human breast tissue.

    PubMed

    Evers, N M; van de Klundert, T M C; van Aesch, Y M; Wang, S; de Roos, W K; Romano, A; de Haan, L H J; Murk, A J; Ederveen, A G H; Rietjens, I M C M; Groten, J P

    2013-09-01

    T47D-ER? breast cancer cells with tetracycline-dependent ER? expression and constant ER? expression can be used to investigate effects of varying ER?/ER? ratios on estrogen-induced cellular responses. This study defines conditions at which ER?/ER? ratios in T47D-ER? cells best mimic ER?/ER? ratios in breast and other estrogen-sensitive tissues in vivo in rat as well as in human. Protein and mRNA levels of ER? and ER? were analyzed in T47D-ER? cells exposed to a range of tetracycline concentrations and compared to ER? and ER? levels found in breast, prostate, and uterus from rat and human origin. The ER?/ER? ratio in T47D-ER? cells exposed to >150ng/ml tetracycline is comparable to the ratio found in rat mammary gland and in human breast tissue. The ER?/ER? ratio of other estrogen-sensitive rat and human tissues can also be mimicked in T47D-ER? cells. The ER?/ER? ratio found in MCF-7 and native T47D breast cancer cell lines did not reflect ratios in analyzed rat and human tissues, which further supports the use of T47D-ER? cells as model for estrogen-responsive tissues. Using 17?-estradiol and the T47D-ER? cells under the conditions defined to mimic various tissues it could be demonstrated how these different tissues vary in their proliferative response. PMID:23680332

  18. Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors.

    PubMed

    Suzuki, M; Tanaka, M; Iwase, T; Naito, Y; Sugimura, H; Kino, I

    1993-07-15

    A human ovarian yolk sac tumor cDNA library was screened for homeobox genes with an oligonucleotide probe under low stringent condition. Three homeobox genes were isolated, two of which were identified as HHO.c1 and HB24. The third was highly homologous with the mouse Hox-8 gene and was designated as HOX-8. Studies on RNAs from 25 human tumor tissues and cell lines showed that the profile of HOX-8 expression was different from those of HHO.c1 and HB24. The expression of HOX-8 was not detected in hematopoietic tumor cells, in which HHO.c1 and HB24 were highly expressed. HOX-8 was expressed at higher levels in a variety of tumors of epithelial origin than in their corresponding normal tissues more frequently than HHO.c1 and HB24. All three homeobox genes were highly expressed in a yolk sac tumor, an immature tumor of gonadal origin. These results suggest that HOX-8 plays a more important role in human tumors of epithelial origin than those of hematopoietic origin. PMID:7687426

  19. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts

    PubMed Central

    Nguyen, Long V.; Cox, Claire L.; Eirew, Peter; Knapp, David J. H. F.; Pellacani, Davide; Kannan, Nagarajan; Carles, Annaick; Moksa, Michelle; Balani, Sneha; Shah, Sohrab; Hirst, Martin; Aparicio, Samuel; Eaves, Connie J.

    2014-01-01

    Genomic and phenotypic analyses indicate extensive intra- as well as intertumoral heterogeneity in primary human malignant cell populations despite their clonal origin. Cellular DNA barcoding offers a powerful and unbiased alternative to track the number and size of multiple subclones within a single human tumour xenograft and their response to continued in vivo passaging. Using this approach we find clone-initiating cell frequencies that vary from ~1/10 to ~1/10,000 cells transplanted for two human breast cancer cell lines and breast cancer xenografts derived from three different patients. For the cell lines, these frequencies are negatively affected in transplants of more than 20,000 cells. Serial transplants reveal five clonal growth patterns (unchanging, expanding, diminishing, fluctuating or of delayed onset), whose predominance is highly variable both between and within original samples. This study thus demonstrates the high growth potential and diverse growth properties of xenografted human breast cancer cells. PMID:25532760

  20. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-01

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins. PMID:26535413

  1. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo

    PubMed Central

    Abrahamsson, Annelie; Dabrosin, Charlotta

    2015-01-01

    Extracellular circulating microRNAs (miRNAs) have been suggested to be biomarkers for disease monitoring but data are inconsistent, one reason being that blood miRNA is of heterogeneous origin. Here, we sampled extracellular microRNAs locally in situ using microdialysis. Three different cohorts of women were included; postmenopausal women with ongoing breast cancer investigated within the cancer and in normal adjacent breast tissue, postmenopausal women investigated in their normal healthy breast and subcutaneous fat before and after six weeks of tamoxifen therapy, premenopausal women during the menstrual cycle. Samples were initially screened using TaqMan array cards with subsequently absolute quantification. 124 miRNA were expressed in microdialysates. After absolute quantifications extracellular miRNA-21 was found to be significantly increased in breast cancer. In addition, the levels were significantly higher in pre-menopausal breast tissue compared with postmenopausal. In breast tissue of pre-menopausal women miRNA-21 exhibited a cyclic variation during the menstrual cycle and in postmenopausal women six weeks of tamoxifen treatment decreased miRNA-21 suggesting that this miRNA may be important for breast carcinogenesis. None of these changes were found in plasma or microdialysates from subcutaneous fat. Our data revealed tissue specific changes of extracellular circulating miRNAs that would be otherwise unraveled using blood samples. PMID:26008976

  2. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer.

    PubMed

    Boulbes, Delphine R; Arold, Stefan T; Chauhan, Gaurav B; Blachno, Korina V; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W; Bartholomeusz, Chandra; Ladbury, John E; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J

    2015-03-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers. PMID:25435280

  3. Cytokine Receptor CXCR4 Mediates Estrogen-Independent Tumorigenesis, Metastasis, and Resistance to Endocrine Therapy in Human Breast Cancer

    PubMed Central

    Rhodes, Lyndsay V.; Short, Sarah P.; Neel, Nicole F.; Salvo, Virgilio A.; Zhu, Yun; Elliott, Steven; Wei, Yongkun; Yu, Dihua; Sun, Menghong; Muir, Shannon E.; Fonseca, Juan P.; Bratton, Melyssa R.; Segar, Chris; Tilghman, Syreeta L.; Sobolik-Delmaire, Tammy; Horton, Linda W.; Zaja-Milatovic, Snjezana; Collins-Burow, Bridgette M.; Wadsworth, Scott; Beckman, Barbara S.; Wood, Charles E.; Fuqua, Suzanne A.; Nephew, Kenneth P.; Dent, Paul; Worthylake, Rebecca A.; Curiel, Tyler J.; Hung, Mien-Chie; Richmond, Ann; Burow, Matthew E.

    2011-01-01

    Estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer patients. Metastasis has been associated with chemokine signaling through the SDF-1–CXCR4 axis. Thus, the development of estrogen independence and endocrine therapy resistance in breast cancer patients may be driven by SDF-1–CXCR4 signaling. Here we report that CXCR4 overexpression is indeed correlated with worse prognosis and decreased patient survival irrespective of the status of the estrogen receptor (ER). Constitutive activation of CXCR4 in poorly metastatic MCF-7 cells led to enhanced tumor growth and metastases that could be reversed by CXCR4 inhibition. CXCR4 overexpression in MCF-7 cells promoted estrogen independence in vivo, whereas exogenous SDF-1 treatment negated the inhibitory effects of treatment with the anti-estrogen ICI 182,780 on CXCR4-mediated tumor growth. The effects of CXCR4 overexpression were correlated with SDF-1–mediated activation of downstream signaling via ERK1/2 and p38 MAPK (mitogen activated protein kinase) and with an enhancement of ER-mediated gene expression. Together, these results show that enhanced CXCR4 signaling is sufficient to drive ER-positive breast cancers to a metastatic and endocrine therapy-resistant phenotype via increased MAPK signaling. Our findings highlight CXCR4 signaling as a rational therapeutic target for the treatment of ER-positive, estrogen-independent breast carcinomas needing improved clinical management. PMID:21123450

  4. The fractional viscoelastic response of human breast tissue cells

    NASA Astrophysics Data System (ADS)

    Carmichael, B.; Babahosseini, H.; Mahmoodi, S. N.; Agah, M.

    2015-07-01

    The mechanical response of a living cell is notoriously complicated. The complex, heterogeneous characteristics of cellular structure introduce difficulties that simple linear models of viscoelasticity cannot overcome, particularly at deep indentation depths. Herein, a nano-scale stress-relaxation analysis performed with an atomic force microscope reveals that isolated human breast cells do not exhibit simple exponential relaxation capable of being modeled by the standard linear solid (SLS) model. Therefore, this work proposes the application of the fractional Zener (FZ) model of viscoelasticity to extract mechanical parameters from the entire relaxation response, improving upon existing physical techniques to probe isolated cells. The FZ model introduces a new parameter that describes the fractional time-derivative dependence of the response. The results show an exceptional increase in conformance to the experimental data compared to that predicted by the SLS model, and the order of the fractional derivative (?) is remarkably homogeneous across the populations, with a median value of 0.48 ± 0.06 for the malignant population and 0.51 ± 0.07 for the benign. The cells’ responses exhibit power-law behavior and complexity not associated with simple relaxation (SLS, ? = 1) that supports the application of a fractional model. The distributions of some of the FZ parameters also preserve the distinction between the malignant and benign sample populations seen from the linear model and previous results while including the contribution of fast-relaxation behavior. The resulting viscosity, measured by a composite relaxation time, exhibits considerably less dispersion due to residual error than the distribution generated by the linear model and therefore serves as a more powerful marker for cell differentiation.

  5. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries.

    PubMed

    Kim, Joon-Woo; Isobe, Tomohiko; Muto, Mamoru; Tue, Nguyen Minh; Katsura, Kana; Malarvannan, Govindan; Sudaryanto, Agus; Chang, Kwang-Hyeon; Prudente, Maricar; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke

    2014-12-01

    In this study, the concentrations of 10 organophosphorus flame retardants (PFRs) were determined in 89 human breast milk samples collected from Japan, the Philippines and Vietnam. Among the targeted PFRs, tris(2-chloroexyl) phosphate (TCEP) and triphenyl phosphate (TPHP) were the predominant compounds and were detected in more than 60% of samples in all three countries. The concentrations of PFRs in human breast milk were significantly higher (p<0.05) in the Philippines (median 70 ng g(-1) lipid wt.) than those in Japan (median 22 ng g(-1) lipid wt.) and Vietnam (median 10 ng g(-1) lipid wt.). The present results suggest that the usage of products containing PFRs in the Philippines is higher than those of Japan and Vietnam. Comparing with a previous literature survey in Sweden, the levels of PFRs in human breast milk from the Philippines were 1.5-2 times higher, whereas levels in Japan and Vietnam were 4-20 times lower, suggesting that these differences might be due to their variation in the usage of flame-retarded products utilized in each country. When daily intake of PFRs to infants via human breast milk was estimated, some individuals accumulated tris(2-butoxyethyl) phosphate (TBOEP) and TCEP were close to reference dose (RfD). This is the first report to identify PFRs in human breast milk samples from Asian countries. PMID:24630247

  6. A novel assay to assess the effectiveness of antiangiogenic drugs in human breast cancer.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many cytotoxic drugs maintain antiangiogenic properties, but there are no human, tumor-based assays to evaluate their antiangiogenic potential. We used a fibrin-thrombin clot-based angiogenesis model to evaluate the angiogenic response of human breast cancer to various cytotoxic agents commonly used...

  7. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    NASA Astrophysics Data System (ADS)

    Chen, L.; Boone, J. M.; Abbey, C. K.; Hargreaves, J.; Bateni, C.; Lindfors, K. K.; Yang, K.; Nosratieh, A.; Hernandez, A.; Gazi, P.

    2015-04-01

    The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40?mm) simulated projection images of the breast. Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11?mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33?mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33, 0.71, 1.5 and 2.9?mm were representative of breast CT; the average 43?mm slice thickness served to simulate simulated projection images of the breast. The percent correct of the human observer’s responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p < 0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1?mm lesion diameter lesions. For example, the average of three radiologist’s performance for 3?mm diameter lesions was 92% correct for thin section breast CT images while it was 67% for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1?mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11?mm. The average radiologist performance outperformed that of the average physicist observer, however trends in performance were similar. Human observers demonstrate significantly better mass-lesion detection performance on thin-section CT images of the breast, compared to thick-section simulated projection images of the breast.

  8. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts

    PubMed Central

    2013-01-01

    Background Human breast cancer is a heterogeneous disease consisting of multiple molecular subtypes. Genetically engineered mouse models are a useful resource for studying mammary cancers in vivo under genetically controlled and immune competent conditions. Identifying murine models with conserved human tumor features will facilitate etiology determinations, highlight the effects of mutations on pathway activation, and should improve preclinical drug testing. Results Transcriptomic profiles of 27 murine models of mammary carcinoma and normal mammary tissue were determined using gene expression microarrays. Hierarchical clustering analysis identified 17 distinct murine subtypes. Cross-species analyses using three independent human breast cancer datasets identified eight murine classes that resemble specific human breast cancer subtypes. Multiple models were associated with human basal-like tumors including TgC3(1)-Tag, TgWAP-Myc and Trp53-/-. Interestingly, the TgWAPCre-Etv6 model mimicked the HER2-enriched subtype, a group of human tumors without a murine counterpart in previous comparative studies. Gene signature analysis identified hundreds of commonly expressed pathway signatures between linked mouse and human subtypes, highlighting potentially common genetic drivers of tumorigenesis. Conclusions This study of murine models of breast carcinoma encompasses the largest comprehensive genomic dataset to date to identify human-to-mouse disease subtype counterparts. Our approach illustrates the value of comparisons between species to identify murine models that faithfully mimic the human condition and indicates that multiple genetically engineered mouse models are needed to represent the diversity of human breast cancers. The reported trans-species associations should guide model selection during preclinical study design to ensure appropriate representatives of human disease subtypes are used. PMID:24220145

  9. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    SciTech Connect

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2?-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. - Highlights: • Isoliquiritigenin induces growth inhibition and apoptosis in human breast cancer. • The proapoptotic action of isoliquiritigenin has been studied in vitro and in vivo. • Arachidonic acid metabolic network mediates isoliquiritigenin-induced apoptosis. • PI3K/Akt deactivation is asssociated with isoliquiritigenin-induced apoptosis. • Isoliquiritigenin may be a multi-target drug in the treatment of breast cancer.

  10. EVIDENCE FOR THE PRESENCE OF MUTAGENIC ARYL AMINES IN HUMAN BREAST MILK AND DNA ADDUCTS IN EXFOLIATED BREAST-DUCT EPITHELIAL CELLS

    EPA Science Inventory

    Aromatic (AA) and heterocyclic amines (HAA) are ubiquitous environmental mutagens present in combustions emissions, fried meats, tobacco smoke, etc., and are suspect human mammary carcinogens. To determine the presence of aryl amines in breast tissue and fluid, we examined exfol...

  11. Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion

    PubMed Central

    2013-01-01

    Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells. PMID:23289900

  12. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma

    SciTech Connect

    Howlett, Anthony R; Bailey, Nina; Damsky, Caroline; Petersen, Ole W; Bissell, Mina J

    1994-11-28

    We previously established a rapid three-dimensional assay for discrimination of normal and malignant human breast epithelial cells using a laminin-rich reconstituted basement membrane. In this assay, normal epithelial cells differentiate into well-organized acinar structures whereas tumor cells fail to recapitulate this process and produce large, disordered colonies. The data suggest that breast acinar morphogenesis and differentiation is regulated by cell-extracellular matrix (ECM) interactions and that these interactions are altered in malignancy. Here, we investigated the role of ECM receptors (integrins) in these processes and report on the expression and function of potential laminin receptors in normal and tumorigenic breast epithelial cells. Immmunocytochemical analysis showed that normal and carcinoma cells in a three-dimensional substratum express profiles of integrins similar to normal and malignant breast tissues in situ. Normal cells express {alpha}1, {alpha}2, {alpha}3, {alpha}6, {beta}1 and {beta}4 integrin subunits, whereas breast carcinoma cells show variable losses, disordered expression, or down regulation of these subunits. Function-blocking experiments using inhibitory antiintegrin subunit antibodies showed a >5-fold inhibition of the formation of acinar structures by normal cells in the presence of either anti-{beta}1 or anti-{alpha}3 antibodies, whereas anti-{alpha}2 or -{alpha}6 had little or no effect. In experiments where collagen type I gels were used instead of basement membrane, acinar morphogenesis was blocked by anti-{beta}1 and -{alpha}2 antibodies but not by anti-{alpha}3. These data suggest a specificity of integrin utilization dependent on the ECM ligands encountered by the cell. The interruption of normal acinar morphogenesis by anti-integrin antibodies was associated with an inhibition of cell growth and induction of apoptosis. Function-blocking antibodies had no inhibitory effect on the rate of tumor cell growth, survival or capacity to form colonies. Thus under our culture conditions breast acinar formation is at least a two-step process involving {beta}1-integrin-dependent cellular growth followed by polarization of the cells into organized structures. The regulation of this pathway appears to be impaired or lost in the tumor cells, suggesting that tumor colony formation occurs by independent mechanisms and that loss of proper integrinmediated cell-ECM interaction may be critical to breast tumor formation.

  13. New NCI-N87-derived human gastric epithelial line after human telomerase catalytic subunit over-expression

    PubMed Central

    Saraiva-Pava, Kathy; Navabi, Nazanin; Skoog, Emma C; Lindén, Sara K; Oleastro, Mónica; Roxo-Rosa, Mónica

    2015-01-01

    AIM: To establish a cellular model correctly mimicking the gastric epithelium to overcome the limitation in the study of Helicobacter pylori (H. pylori) infection. METHODS: Aiming to overcome this limitation, clones of the heterogenic cancer-derived NCI-N87 cell line were isolated, by stably-transducing it with the human telomerase reverse-transcriptase (hTERT) catalytic subunit gene. The clones were first characterized regarding their cell growth pattern and phenotype. For that we measured the clones’ adherence properties, expression of cell-cell junctions’ markers (ZO-1 and E-cadherin) and ability to generate a sustained transepithelial electrical resistance. The gastric properties of the clones, concerning expression of mucins, zymogens and glycan contents, were then evaluated by haematoxylin and eosin staining, Periodic acid Schiff (PAS) and PAS/Alcian Blue-staining, immunocytochemistry and Western blot. In addition, we assessed the usefulness of the hTERT-expressing gastric cell line for H. pylori research, by performing co-culture assays and measuring the IL-8 secretion, by ELISA, upon infection with two H. pylori strains differing in virulence. RESULTS: Compared with the parental cell line, the most promising NCI-hTERT-derived clones (CL5 and CL6) were composed of cells with homogenous phenotype, presented higher relative telomerase activities, better adhesion properties, ability to be maintained in culture for longer periods after confluency, and were more efficient in PAS-reactive mucins secretion. Both clones were shown to produce high amounts of MUC1, MUC2 and MUC13. NCI-hTERT-CL5 mucins were shown to be decorated with blood group H type 2 (BG-H), Lewis-x (Lex), Ley and Lea and, in a less extent, with BG-A antigens, but the former two antigens were not detected in the NCI-hTERT-CL6. None of the clones exhibited detectable levels of MUC6 nor sialylated Lex and Lea glycans. Entailing good gastric properties, both NCI-hTERT-clones were found to produce pepsinogen-5 and human gastric lipase. The progenitor-like phenotype of NCI-hTERT-CL6 cells was highlighted by large nuclei and by the apical vesicular-like distribution of mucin 5AC and Pg5, supporting the accumulation of mucus-secreting and zymogens-chief mature cells functions. CONCLUSION: These traits, in addition to resistance to microaerobic conditions and good responsiveness to H. pylori co-culture, in a strain virulence-dependent manner, make the NCI-hTERT-CL6 a promising model for future in vitro studies. PMID:26074691

  14. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  15. Exposure to the polyester PET precursor—terephthalic acid induces and perpetuates DNA damage-harboring non-malignant human breast cells

    PubMed Central

    Luciani-Torres, Maria Gloria; Moore, Dan H.; Dairkee, Shanaz H.

    2015-01-01

    Identification of early perturbations induced in cells from non-cancerous breast tissue is critical for understanding possible breast cancer risk from chemical exposure. We have demonstrated previously that exposure to the ubiquitous xenoestrogens, bisphenol A (BPA) and methyl paraben, promotes the hallmarks of cancer in non-malignant human high-risk donor breast epithelial cells (HRBECs) isolated from several donors. Here we show that terephthalic acid (TPA), a major chemical precursor of polyethylene terephthalate (PET) containers used for the storage of food and beverages, increased the ER?: ER? ratio in multiple HRBEC samples, suggesting an estrogenic effect. Although, like BPA and methyl paraben, TPA also promoted resistance to tamoxifen-induced apoptosis, unlike these chemicals instead of inducing an increased S-phase fraction, TPA treatment arrested cell proliferation. DNA-PK, ATM and members of the MRN complex, known to be involved in DNA damage sensor and effector proteins, were elevated indicating induction of DNA strand breaks. Early DNA damage checkpoint response, mediated through p53/p21, led to G1 arrest in TPA-exposed cells. Removal of TPA from the growth medium resulted in the rapid induction of BCL2, increasing the ratio of anti-: pro-apoptotic proteins, together with overexpression of Cyclin A/CDK2 proteins. Consequently, despite elevated p53pSer15 and H2AXpSer139, indicating sustained DNA damage, TPA exposed cells resumed robust growth rates seen prior to TPA exposure. The propensity for the perpetuation of DNA aberrations that activate DNA damage pathways in non-malignant breast cells justifies careful consideration of human exposure to TPA, particularly at vulnerable life stages. PMID:25411358

  16. Degradation of endothelial basement membrane by human breast cancer cell lines

    SciTech Connect

    Yee, C.; Shiu, R.P.

    1986-04-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of (35S)methionine-labeled and (3H)proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer.

  17. Mer receptor tyrosine kinase is frequently overexpressed in human non-small cell lung cancer, confirming resistance to erlotinib

    PubMed Central

    Wang, Linxiong; Yang, Na; Wang, Yadi; Wei, Huafeng

    2015-01-01

    Mer is a receptor tyrosine kinase (RTK) with oncogenic properties that is often overexpressed or activated in various malignancies. Using both immunohistochemistry and microarray analyses, we demonstrated that Mer was overexpressed in both tumoral and stromal compartments of about 70% of non-small cell lung cancer (NSCLC) samples relative to surrounding normal lung tissue. This was validated in freshly harvested NSCLC samples; however, no associations were found between Mer expression and patient features. Although Mer overexpression did not render normal lung epithelial cell tumorigenic in vivo, it promoted the in vitro cell proliferation, clonogenic colony formation and migration of normal lung epithelial cells as well as NSCLC cells primarily depending on MAPK and FAK signaling, respectively. Importantly, Mer overexpression induced resistance to erlotinib (EGFR inhibitor) in otherwise erlotinib-sensitive cells. Furthermore, Mer-specific inhibitor rendered erlotinib-resistant cells sensitive to erlotinib. We conclude that Mer enhances malignant phenotype and pharmacological inhibition of Mer overcomes resistance of NSCLC to EGFR-targeted agents. PMID:25826078

  18. Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells.

    PubMed

    Monte, Leonardo G; Santi-Gadelha, Tatiane; Reis, Larissa B; Braganhol, Elizandra; Prietsch, Rafael F; Dellagostin, Odir A; E Lacerda, Rodrigo Rodrigues; Gadelha, Carlos A A; Conceição, Fabricio R; Pinto, Luciano S

    2014-03-01

    The anti-tumor effects of a newly-discovered lectin, isolated from okra, Abelmoschus esculentus (AEL), were investigated in human breast cancer (MCF7) and skin fibroblast (CCD-1059 sk) cells. AEL induced significant cell growth inhibition (63 %) in MCF7 cells. The expression of pro-apoptotic caspase-3, caspase-9, and p21 genes was increased in MCF7 cells treated with AEL, compared to those treated with controls. In addition, AEL treatment increased the Bax/Bcl-2 ratio in MCF7 cells. Flow cytometry also indicated that cell death (72 %) predominantly occurred through apoptosis. Thus, AEL in its native form promotes selective antitumor effects in human breast cancer cells and may represent a potential therapeutic to combat human breast cancer. PMID:24129958

  19. Kinesin-1 Translocation along Human Breast Cancer Cell Microtubules in Vitro

    NASA Astrophysics Data System (ADS)

    Shojania Feizabadi, Mitra; Jun, Yonggun

    2015-03-01

    A principle approach to better understand intra-cellular microtubule based transport is to study such it in vitro. Such in vitro examinations have predominantly used microtubules polymerized from bovine brain tubulin, but motor function can also in principle be affected by the specific tubulin isotypes present in different cells. The human breast cancer cells carry different beta tubulin isotype distribution. However, it is entirely unknown whether transport along the microtubules is different in these cells. In this work we have characterized, for the first time, the translocation specifications of kinesin-1 along human breast cancer cell microtubules polymerized in vitro. We found that as compared with the translocation along bovine brain microtubules, kinesin-1 shows a fifty percent shorter processive run length and slightly slower velocity under similar experimental conditions. These first time results support the regulatory role of tubulin isotypes in regards to motor protein translocations, and quantify the translocation specifications of kinesin-1 along microtubules of human breast cancer cells.

  20. Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model

    NASA Astrophysics Data System (ADS)

    Nair, Maya S.; Ghosh, Nirmalya; Raju, Narisetti Sundar; Pradhan, Asima

    2002-07-01

    We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (mu's) and the absorption coefficient (mua) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.

  1. Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells.

    PubMed

    Takeda, Shuso; Okazaki, Hiroyuki; Ikeda, Eriko; Abe, Satomi; Yoshioka, Yasushi; Watanabe, Kazuhito; Aramaki, Hironori

    2014-01-01

    Metastases are known to be responsible for approximately 90% of breast cancer-related deaths. Cyclooxygenase-2 (COX-2) is involved not only in inflammatory processes, but also in the metastasis of cancer cells; it is expressed in 40% of human invasive breast cancers. To comprehensively analyze the effects of cannabidiolic acid (CBDA), a selective COX-2 inhibitor found in the fiber-type cannabis plant (Takeda et al., 2008), on COX-2 expression and the genes involved in metastasis, we performed a DNA microarray analysis of human breast cancer MDA-MB-231 cells, which are invasive breast cancer cells that express high levels of COX-2, treated with CBDA for 48 hr at 25 µM. The results obtained revealed that COX-2 and Id-1, a positive regulator of breast cancer metastasis, were down-regulated (0.19-fold and 0.52-fold, respectively), while SHARP1 (or BHLHE41), a suppressor of breast cancer metastasis, was up-regulated (1.72-fold) and CHIP (or STUB1) was unaffected (1.03-fold). These changes were confirmed by real-time RT-PCR analyses. Taken together, the results obtained here demonstrated that i) CBDA had dual inhibitory effects on COX-2 through down-regulation and enzyme inhibition, and ii) CBDA may possess the ability to suppress genes that are positively involved in the metastasis of cancer cells in vitro. PMID:25242400

  2. COMBINED PHOTO-ACOUSTIC AND ACOUSTIC IMAGING OF HUMAN BREAST SPECIMENS IN THE MAMMOGRAPHIC GEOMETRY

    PubMed Central

    Xie, Zhixing; Hooi, Fong Ming; Fowlkes, J Brian; Pinsky, Renee W.; Wang, Xueding; Carson, Paul L.

    2013-01-01

    A photo-acoustic volume imaging (PAVI) system was designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3-D ultrasound (AUS). The goal of the work described here was to validate the design and evaluate its performance in human breast tissues for non-invasive imaging of deeply positioned structures covering such geometry. The good penetration of nearinfrared light and high receiving sensitivity of a broad-bandwidth, 572-element, 2-D poly(vinyl difluoride) array at a low center frequency of 1 MHz were used with 20 channel simultaneous acquisition. Pseudo-lesions filled with dilute blood were imaged in three human breast specimens at various depths up to 49 mm. With near-infrared light illumination and 256-sample averaging, the extrapolated maximum depth in imaging a 2.4-mm blood-rich lesion with a 3-dB contrast-to-noise ratio in a compressed breast was 54 mm. Three-dimensional photo-acoustic volume image stacks of the breasts were co-registered with 3-D ultrasound image stacks, suggesting for the first time that PAVI, based on the intrinsic tissue contrast, can visualize tissue interfaces other than those with blood, including the inner skin surface and connective tissue sheets. With the designed system, PAVI revealed satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides in the mammographic geometry with mild compression. PMID:23972486

  3. Expression of Tropomyosin 1 Gene Isoforms in Human Breast Cancer Cell Lines

    PubMed Central

    Dube, Syamalima; Yalamanchili, Santhi; Lachant, Joseph; Abbott, Lynn; Benz, Patricia; Mitschow, Charles; Dube, Dipak K.; Poiesz, Bernard J.

    2015-01-01

    Nine malignant breast epithelial cell lines and 3 normal breast cell lines were examined for stress fiber formation and expression of TPM1 isoform-specific RNAs and proteins. Stress fiber formation was strong (++++) in the normal cell lines and varied among the malignant cell lines (negative to +++). Although TPM1? and TPM1? were the dominant transcripts of TPM1, there was no clear evidence for TPM1? protein expression. Four novel human TPM1 gene RNA isoforms were discovered (?, ?, ?, and ?), which were not identified in adult and fetal human cardiac tissues. TPM1? was the most frequent isoform expressed in the malignant breast cell lines, and it was absent in normal breast epithelial cell lines. By western blotting, we were unable to distinguish between TPM1?, ?, and ? protein expression, which were the only TPM1 gene protein isoforms potentially expressed. Some malignant cell lines demonstrated increased or decreased expression of these isoforms relative to the normal breast cell lines. Stress fiber formation did not correlate with TPM1? RNA expression but significantly and inversely correlated with TPM1? and TPM1? expression, respectively. The exact differences in expression of these novel isoforms and their functional properties in breast epithelial cells will require further study. PMID:26171250

  4. The Role and Regulatory Mechanism of 14-3-3 Sigma in Human Breast Cancer

    PubMed Central

    Ko, SeungSang; Kim, Ji Young; Jeong, Joon; Lee, Jong Eun; Yang, Woo Ick

    2014-01-01

    Purpose 14-3-3 sigma (?) is considered to be an important tumor suppressor and decreased expression of the same has been reported in many malignant tumors by hypermethylation at its promoter or ubiquitin-mediated proteolysis by estrogen-responsive ring finger protein (Efp). In this study, we investigated the significance of 14-3-3 ? expression in human breast cancer and its regulatory mechanism. Methods Efp was silenced using small interfering RNA (siRNA) in the MCF-7 breast cancer cell line in order to examine its influence on the level of 14-3-3 ? protein. The methylation status of the 14-3-3 ? promoter was also evaluated by methylation-specific polymerase chain reaction (PCR). The expression of Efp and 14-3-3 ? in 220 human breast carcinoma tissues was assessed by immunohistochemistry. Other clinicopathological parameters were also evaluated. Results Silencing Efp in the MCF-7 breast cancer cell line resulted in increased expression of 14-3-3 ?. The Efp-positive human breast cancers were more frequently 14-3-3 ?-negative (60.5% vs. 39.5%). Hypermethylation of 14-3-3 ? was common (64.9%) and had an inverse association with 14-3-3 ? positivity (p=0.072). Positive 14-3-3 ? expression was significantly correlated with poor prognosis: disease-free survival (p=0.008) and disease-specific survival (p=0.009). Conclusion Our data suggests that in human breast cancer, the regulation of 14-3-3 ? may involve two mechanisms: ubiquitin-mediated proteolysis by Efp and downregulation by hypermethylation. However, the inactivation of 14-3-3 ? is probably achieved mainly by hypermethylation. Interestingly, 14-3-3 ? turned out to be a very significant poor prognostic indicator, which is in contrast to its previously known function as a tumor suppressor, suggesting a different role of 14-3-3 ? in breast cancer. PMID:25320618

  5. A Novel Bispecific Antibody against Human CD3 and Ephrin Receptor A10 for Breast Cancer Therapy

    PubMed Central

    Inoue, Masaki; Nagano, Kazuya; Mukai, Yohei; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo; Tsunoda, Shin-ichi

    2015-01-01

    Ephrin receptor A10 (EphA10), a transmembrane receptor that binds to ephrin, is a newly identified breast cancer marker protein that has also been detected in HER2-negative tissue. In this study, we report creation of a novel bispecific antibody (BsAb) binding both EphA10 and CD3, thereby forming a bridge between antigens expressed on both tumor and immune cells and promoting recognition of tumor cells by immune cells and redirection of cytotoxic T cells (CTL). This BsAb (EphA10/CD3) was expressed in supernatants of BsAb gene-transfected cells as monomeric and dimeric molecules. Redirected T-cell lysis was observed when monomeric and dimeric BsAb were added to EphA10-overexpressing tumor cells in vitro. Furthermore, dimeric BsAb (EphA10/CD3) was more cytotoxic than monomeric BsAb, with efficient tumor cell lysis elicited by lower concentrations (?10?1 ?g/mL) and a lower effector to target (E/T) cell ratio (E/T = 2.5). Dimeric BsAb (EphA10/CD3) also showed significant anti-tumor effects in human xenograft mouse models. Together, these results revealed opportunities to redirect the activity of CTL towards tumor cells that express EphA10 using the BsAb (EphA10/CD3), which could be tested in future clinical trials as a novel and potent therapeutic for breast cancer tumors. PMID:26678395

  6. Disposition of hop prenylflavonoids in human breast tissue.

    PubMed

    Bolca, Selin; Li, Jinghu; Nikolic, Dejan; Roche, Nathalie; Blondeel, Phillip; Possemiers, Sam; De Keukeleire, Denis; Bracke, Marc; Heyerick, Arne; van Breemen, Richard B; Depypere, Herman

    2010-07-01

    Hop-derived products may contain xanthohumol (XN), isoxanthohumol (IX), and the potent phytoestrogen 8-prenylnaringenin (8-PN). To evaluate the potential health effects of these prenylflavonoids on breast tissue, their concentration, nature of metabolites, and biodistribution were assessed and compared with 17beta-estradiol (E(2)) exposure. In this dietary intervention study, women were randomly allocated to hop (n=11; 2.04 mg XN, 1.20 mg IX, and 0.1 mg 8-PN per supplement) or control (n=10). After a run-in of >or=4 days, three supplements were taken daily for 5 days preceding an aesthetic breast reduction. Blood and breast biopsies were analyzed using HPLC-ESI-MS/MS. Upon hop administration, XN and IX concentrations ranged between 0.72 and 17.65 nmol/L and 3.30 and 31.50 nmol/L, and between 0.26 and 5.14 pmol/g and 1.16 and 83.67 pmol/g in hydrolyzed serum and breast tissue, respectively. 8-PN however, was only detected in samples of moderate and strong 8-PN producers (0.43-7.06 nmol/L and 0.78-4.83 pmol/g). Phase I metabolism appeared to be minor (approximately 10%), whereas extensive glucuronidation was observed (> 90%). Total prenylflavonoids showed a breast adipose/glandular tissue distribution of 38/62 and their derived E(2)-equivalents were negligible compared with E(2) in adipose (384.6+/-118.8 fmol/g, p=0.009) and glandular (241.6+/-93.1 fmol/g, p<0.001) tissue, respectively. Consequently, low doses of prenylflavonoids are unlikely to elicit estrogenic responses in breast tissue. PMID:20486208

  7. Disposition of hop prenylflavonoids in human breast tissue

    PubMed Central

    Bolca, Selin; Li, Jinghu; Nikolic, Dejan; Roche, Nathalie; Blondeel, Phillip; Possemiers, Sam; De Keukeleire, Denis; Bracke, Marc; Heyerick, Arne; van Breemen, Richard B.; Depypere, Herman

    2013-01-01

    Hop-derived products may contain xanthohumol (XN), isoxanthohumol (IX), and the potent phytoestrogen 8-prenylnaringenin (8-PN). To evaluate the potential health effects of these prenylflavonoids on breast tissue, their concentration, nature of metabolites, and biodistribution were assessed and compared to 17?-estradiol (E2) exposure. In this dietary intervention study, women were randomly allocated to hop (n=11; 2.04 mg XN, 1.20 mg IX, and 0.1 mg 8-PN per supplement) or control (n=10). After a run-in of ?4d, 3 supplements were taken daily during 5d preceding an aesthetic breast reduction. Blood and breast biopsies were analyzed using HPLC-ESI-MS/MS. Upon hop administration, XN and IX concentrations ranged between 0.72–17.65 nmol/L and 3.30–31.50 nmol/L, and between 0.26– 5.14 pmol/g and 1.16–83.67 pmol/g in hydrolyzed serum and breast tissue, respectively. 8-PN however, was only detected in samples of moderate and strong 8-PN producers (0.43–7.06 nmol/L and 0.78–4.83 pmol/g). Phase I metabolism appeared to be minor (~10%), whereas extensive glucuronidation was observed (>90%). Total prenylflavonoids showed a breast adipose/glandular tissue distribution of 38/62 and their derived E2-equivalents were negligible compared to E2 in adipose (384.6±118.8 fmol/g, P=0.009) and glandular (241.6±93.1 fmol/g, P<0.001) tissue, respectively. Consequently, low doses of prenylflavonoids are unlikely to elicit estrogenic responses in breast tissue. PMID:20486208

  8. The anandamide analog, Met-F-AEA, controls human breast cancer cell migration via the RHOA/RHO kinase signaling pathway.

    PubMed

    Laezza, Chiara; Pisanti, Simona; Malfitano, Anna Maria; Bifulco, Maurizio

    2008-12-01

    The endocannabinoid system regulates cell proliferation and migration in human breast cancer cells. In this study, we showed that a metabolically stable analog of anandamide, 2-methyl-2'-F-anandamide (Met-F-AEA), inhibited the RHOA activity and caused a RHOA delocalization from the cell membrane to cytosol determining a decrease in actin stress fibers. Overexpression of a dominant negative of RHOA activity and treatment of these cells with a RHO-associated protein kinase (ROCK) inhibitor, Y 27632, mimicked Met-F-AEA effects on actin organization and cell migration. We suggest that the inhibitory effect of Met-F-AEA on tumor cell migration could be related to RHOA-ROCK-dependent signaling pathway. PMID:18676619

  9. The tumor-selective over-expression of the human Hsp70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription.

    PubMed

    Cai, Ling; Zhu, Jing De

    2003-04-01

    The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors, linked to the poor prognosis, being refractory to chemo- and radio-therapies as well as the advanced stage of tumorous lesions in particular. However, both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic. By comparing various upstream segments of the Hsp70 gene for each's ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line, we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression. Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene, but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage for targeting the therapeutic gene expression to human tumors. PMID:12737518

  10. Constitutive Phosphorylation of Aurora-A on Ser51 Induces Its Stabilization and Consequent Overexpression in Cancer

    PubMed Central

    Ogawa, Ikuko; Tatsuka, Masaaki; Kawai, Hidehiko; Pagano, Michele; Takata, Takashi

    2007-01-01

    Background The serine/threonine kinase Aurora-A (Aur-A) is a proto-oncoprotein overexpressed in a wide range of human cancers. Overexpression of Aur-A is thought to be caused by gene amplification or mRNA overexpression. However, recent evidence revealed that the discrepancies between amplification of Aur-A and overexpression rates of Aur-A mRNA were observed in breast cancer, gastric cancer, hepatocellular carcinoma, and ovarian cancer. We found that aggressive head and neck cancers exhibited overexpression and stabilization of Aur-A protein without gene amplification or mRNA overexpression. Here we tested the hypothesis that aberration of the protein destruction system induces accumulation and consequently overexpression of Aur-A in cancer. Principal Findings Aur-A protein was ubiquitinylated by APCCdh1 and consequently degraded when cells exited mitosis, and phosphorylation of Aur-A on Ser51 was observed during mitosis. Phosphorylation of Aur-A on Ser51 inhibited its APCCdh1-mediated ubiquitylation and consequent degradation. Interestingly, constitutive phosphorylation on Ser51 was observed in head and neck cancer cells with protein overexpression and stabilization. Indeed, phosphorylation on Ser51 was observed in head and neck cancer tissues with Aur-A protein overexpression. Moreover, an Aur-A Ser51 phospho-mimetic mutant displayed stabilization of protein during cell cycle progression and enhanced ability to cell transformation. Conclusions/Significance Broadly, this study identifies a new mode of Aur-A overexpression in cancer through phosphorylation-dependent inhibition of its proteolysis in addition to gene amplification and mRNA overexpression. We suggest that the inhibition of Aur-A phosphorylation can represent a novel way to decrease Aur-A levels in cancer therapy. PMID:17895985

  11. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer.

    PubMed

    Hayward, Daniel G; Clarke, Robert B; Faragher, Alison J; Pillai, Meenu R; Hagan, Iain M; Fry, Andrew M

    2004-10-15

    Aneuploidy and chromosome instability are common abnormalities in human cancer. Loss of control over mitotic progression, multipolar spindle formation, and cytokinesis defects are all likely to contribute to these phenotypes. Nek2 is a cell cycle-regulated protein kinase with maximal activity at the onset of mitosis that localizes to the centrosome. Functional studies have implicated Nek2 in regulation of centrosome separation and spindle formation. Here, we present the first study of the protein expression levels of the Nek2 kinase in human cancer cell lines and primary tumors. Nek2 protein is elevated 2- to 5-fold in cell lines derived from a range of human tumors including those of cervical, ovarian, breast, prostate, and leukemic origin. Most importantly, by immunohistochemistry, we find that Nek2 protein is significantly up-regulated in preinvasive in situ ductal carcinomas of the breast as well as in invasive breast carcinomas. Finally, by ectopic expression of Nek2A in immortalized HBL100 breast epithelial cells, we show that increased Nek2 protein leads to accumulation of multinucleated cells with supernumerary centrosomes. These data highlight the Nek2 kinase as novel potential target for chemotherapeutic intervention in breast cancer. PMID:15492258

  12. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv ; Avivi, Camilla; Barshack, Iris; Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-?b activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-?B targets and we show that NF-?B is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  13. Breast Cancer

    MedlinePLUS

    ... Digestive System How the Body Works Main Page Breast Cancer KidsHealth > Kids > Health Problems of Grown-Ups > Diseases & ... for it when they are older. What Is Breast Cancer? The human body is made of tiny building ...

  14. Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid In vitro

    PubMed Central

    Qiao, Han; Wang, Ting-yu; Yan, Wei; Qin, An; Fan, Qi-ming; Han, Xiu-guo; Wang, Yu-gang; Tang, Ting-ting

    2015-01-01

    Aim: Zoledronic acid (ZA), a bisphosphonate, is currently used in combination with chemotherapeutic agents to suppress breast cancer cell proliferation or breast cancer-induced osteolysis. The aim of this study was to investigate the effects of ZA combined with a natural anticancer compound plumbagin (PL) against human breast cancer cells in vitro. Methods: Human breast cancer MDA-MB-231SArfp cells were treated with ZA, PL or a combination of ZA and PL. The cell growth, apoptosis and migration were evaluated using CCK-8 assay, flow cytometry and transwell assay, respectively. The expression of apoptosis-related proteins was measured using real-time PCR and Western blotting. Synergism was evaluated using Compusyn software, and the combination index (CI) and drug reduction index (DRI) values were determined. Results: PL or ZA alone caused mild cytotoxicity (the IC50 value at 24 h was 12.18 and above 100 ?mol/L, respectively). However, the combination of ZA and PL caused a synergistic cytotoxicity (CI=0.26). The DRI values also showed a synergistic effect between PL and ZA, with actual values of 5.52 and 3.59, respectively. Furthermore, PL and ZA synergistically induced apoptosis and inhibited migration of the breast cancer cells. Moreover, the combination of ZA and PL decreased the expression of Notch-1, cleaved PARP, Bcl-2 and Bcl-xl, and increased the expression of cleaved caspase-3, CDKN1A and ID1. When the breast cancer cells were transfected with specific siRNA against Notch-1, the combination of ZA and PL markedly increased the expression of Bcl-2. Conclusion: Combination of ZA and PL synergistically suppresses human breast cancer MDA-MB-231SArfp cells in vitro. PL can inhibit ZA-induced activation of the Notch-1 signaling pathway and subsequently reduce the expression of Bcl-2, thus potentiating cancer cell apoptosis. PMID:26235741

  15. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer

    PubMed Central

    Timoshenko, A V; Chakraborty, C; Wagner, G F; Lala, P K

    2006-01-01

    Increased expression of COX-2 or VEGF-C has been correlated with progressive disease in certain cancers. Present study utilized several human breast cancer cell lines (MCF-7, T-47D, Hs578T and MDA-MB-231, varying in COX-2 expression) as well as 10 human breast cancer specimens to examine the roles of COX-2 and prostaglandin E (EP) receptors in VEGF-C expression or secretion, and the relationship of COX-2 or VEGF-C expression to lymphangiogenesis. We found a strong correlation between COX-2 mRNA expression and VEGF-C expression or secretion levels in breast cancer cell lines and VEGF-C expression in breast cancer tissues. Expression of LYVE-1, a selective marker for lymphatic endothelium, was also positively correlated with COX-2 or VEGF-C expression in breast cancer tissues. Inhibition of VEGF-C expression and secretion in the presence of COX-1/2 or COX-2 inhibitors or following downregulation of COX-2 with COX-2 siRNA established a stimulatory role COX-2 in VEGF-C synthesis by breast cancer cells. EP1 as well as EP4 receptor antagonists inhibited VEGF-C production indicating the roles of EP1 and EP4 in VEGF-C upregulation by endogenous PGE2. Finally, VEGF-C secretion by MDA-MB-231 cells was inhibited in the presence of kinase inhibitors for Her-2/neu, Src and p38 MAPK, indicating a requirement of these kinases for VEGF-C synthesis. These results, for the first time, demonstrate a regulatory role of COX-2 in VEGF-C synthesis (and thereby lymphangiogenesis) in human breast cancer, which is mediated at least in part by EP1/EP4 receptors. PMID:16570043

  16. Characterization of Cognitive Deficits in Rats Overexpressing Human Alpha-Synuclein in the Ventral Tegmental Area and Medial Septum Using Recombinant Adeno-Associated Viral Vectors

    PubMed Central

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration. PMID:23705016

  17. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor

    PubMed Central

    2014-01-01

    Background Acylglycerol kinase (AGK) is reported to be overexpressed in multiple cancers. The clinical significance and biological role of AGK in breast cancer, however, remain to be established. Methods AGK expression in breast cancer cell lines, paired patient tissues were determined using immunoblotting and Real-time PCR. 203 human breast cancer tissue samples were analyzed by immunochemistry (IHC) to investigate the relationship between AGK expression and the clinicopathological features of breast cancer. Functional assays, such as colony formation, anchorage-independent growth and BrdU assay, and a xenograft tumor model were used to determine the oncogenic role of AGK in human breast cancer progression. The effect of AGK on FOXO1 transactivity was further investigated using the luciferase reporter assays, and by detection of the FOXO1 downstream genes. Results Herein, we report that AGK was markedly overexpressed in breast cancer cells and clinical tissues. Immunohistochemical analysis showed that the expression of AGK significantly correlated with patients’ clinicopathologic characteristics, including clinical stage and tumor-nodule-metastasis (TNM) classification. Breast cancer patients with higher levels of AGK expression had shorter overall survival compared to patients with lower AGK levels. We gained valuable insights into the mechanism of AGK expression in breast cancer cells by demonstrating that overexpressing AGK significantly enhanced, whereas silencing endogenous AGK inhibited, the proliferation and tumorigenicity of breast cancer cells both in vitro and in vivo. Furthermore, overexpression of AGK enhanced G1-S phase transition in breast cancer cells, which was associated with activation of AKT, suppression of FOXO1 transactivity, downregulation of cyclin-dependent kinase inhibitors p21 Cip1 and p27 Kip1 and upregulation of the cell cycle regulator cyclin D1. Conclusions Taken together, these findings provide new evidence that AGK plays an important role in promoting proliferation and tumorigenesis in human breast cancer and may serve as a novel prognostic biomarker and therapeutic target in this disease. PMID:24886245

  18. Does Dietary Iodine Regulate Oxidative Stress and Adiponectin Levels in Human Breast Milk?

    PubMed Central

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico

    2014-01-01

    Abstract Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1??M potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. Antioxid. Redox Signal. 20, 847–853. PMID:24001137

  19. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.

    PubMed

    Koushik, Amrita B; Welter, Brenda H; Rock, Michelle L; Temesvari, Lesly A

    2014-03-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen. PMID:24442890

  20. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  1. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells

    SciTech Connect

    Dieudonne, Marie-Noelle; Bussiere, Marianne; Dos Santos, Esther; Leneveu, Marie-Christine; Giudicelli, Yves . E-mail: biochip@wanadoo.fr; Pecquery, Rene

    2006-06-23

    It is well established that obesity is a risk factor for breast cancer and that blood levels of adiponectin, a hormone mainly secreted by white adipocytes, are inversely correlated with the body fat mass. As adiponectin elicits anti-proliferative effects in some cell types, we tested the hypothesis that adiponectin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express adiponectin receptors and respond to human recombinant adiponectin by reducing their growth, AMPkinase activation, and p42/p44 MAPkinase inactivation. Further, we demonstrate that the anti-proliferative effect of adiponectin involves activation of cell apoptosis and inhibition of cell cycle. These findings suggest that adiponectin could act in vivo as a paracrine/endocrine growth inhibitor towards mammary epithelial cells. Moreover, adipose adiponectin production being strongly reduced in obesity, this study may help to explain why obesity is a risk factor of developing breast cancers.

  2. [INVITED] Time reversal optical tomography: Detecting and locating tumors in an ex vivo model human breast

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Alrubaiee, Mohammad; Gayen, S. K.

    2016-03-01

    Time reversal optical tomography (TROT), a recently introduced diffuse optical imaging approach, is used to detect, locate, and obtain cross-section images of tumors inside a "model human breast." The model cancerous breast is assembled as a semi-cylindrical slab of uniform thickness using ex vivo human breast tissues with two pieces of tumors embedded in it. The experimental arrangement used a 750-nm light beam from a Ti:sapphire laser to illuminate an end face (source plane) of the sample in a multi-source probing scheme. A multi-detector signal acquisition scheme measured transmitted light intensity distribution on the other end face (detector plane). The perturbations in light intensity distribution in the detector plane were analyzed using TROT to obtain locations of the tumor pieces in three dimensions and estimate their cross sections. The estimated locations and dimensions of targets are in good agreement with the results of a corroborating magnetic resonance imaging experiment.

  3. Self-assembly structure formation during the digestion of human breast milk.

    PubMed

    Salentinig, Stefan; Phan, Stephanie; Hawley, Adrian; Boyd, Ben J

    2015-01-26

    An infant's complete diet, human breast milk, is the basis for its survival and development. It contains water-soluble and poorly water-soluble bioactive components, metabolic messages, and energy, all of which are made bioavailable during the digestion process in the infant's gastrointestinal tract. Reported is the first discovery of highly geometrically organized structures formed during the digestion of human breast milk under simulated in?vivo conditions using small-angle X-ray scattering and cryogenic transmission electron microscopy. Time of digestion, pH, and bile salt concentration were found to have symbiotic effects gradually tuning the oil-based environment inside the breast milk globules to more water-like structures with high internal surface area. The structure formation is necessarily linked to its function as carriers for poorly water-soluble molecules in the digestive tract of the infant. PMID:25482918

  4. Rottlerin enhances IL-1?-induced COX-2 expression through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells

    PubMed Central

    Park, Eun Jung

    2011-01-01

    Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1? (IL-1?)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1?-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1? significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1? treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1?-induced COX-2 upregulation. However, suppression of protein kinase C ? (PKC ?) expression by siRNA or overexpression of dominant-negative PKC ? (DN-PKC-?) did not abrogate the rottlerin plus IL-1?-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-? (TNF-?), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1?-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells. PMID:21971413

  5. Presence of human papillomavirus in breast cancer and its association with prognostic factors

    PubMed Central

    Fernandes, Andreína; Bianchi, Gino; Feltri, Adriana Pesci; Pérez, Marihorgen; Correnti, María

    2015-01-01

    Breast cancer accounts for 16% of all female cancers worldwide, and in Venezuela, it is the leading cause of death among women. Recently, the presence of high-risk genotypes of human papillomavirus (HPV) has been demonstrated in breast cancer and has been associated with histopathological features of the tumours. In Venezuela, there is no study which determines the association between the presence of HPV in breast cancer and the histopathological features. The aim of this investigation is to evaluate the presence of HPV in the different types of breast cancer, according to their molecular classification, based on the expression of ER, PR, HER2 and Ki67. With this purpose in mind, we assessed the presence of the HPV genome in 24 breast cancer samples diagnosed with infiltrating ductal carcinoma, ductal carcinoma in situ (DCIS) and lobular carcinoma, by the INNO-LIPA genotyping extra kit and the evaluation of the markers ER, PR, HER2, and Ki67 by immunohistochemistry. The viral genome was found in 41.67% of the total number of samples, 51 being the most frequent genotype with 30.77%, followed by types 18 and 33, with 23.08%, respectively. Most tumours were found in the group of luminal A, with a low range of Ki67 expression. The presence of HPV in breast tumours could affect their growth pattern and metastatic power. PMID:26180547

  6. Identification of p53 and Its Isoforms in Human Breast Carcinoma Cells

    PubMed Central

    Mili?evi?, Zorka; Baji?, Vladan; Živkovi?, Lada; Kasapovi?, Jelena; Andjelkovi?, Uroš; Spremo-Potparevi?, Biljana

    2014-01-01

    In breast carcinoma, disruption of the p53 pathway is one of the most common genetic alterations. The observation that the p53 can express multiple protein isoforms adds a novel level of complexity to the outcome of p53 mutations. p53 expression was analysed by Western immunoblotting and immunohistochemistry using monoclonal antibodies DO-7, Pab240, and polyclonal antiserum CM-1. The more frequently p53-positive nuclear staining has been found in the invasive breast tumors. One of the most intriguing findings is that mutant p53 appears as discrete dot-shaped regions within the nucleus of breast cancer cells. In many malignant cells, the nucleolar sequestration of p53 is evident. These observations support the view that the nucleolus is involved directly in the mediation of p53 function or indirectly by the control of the localization of p53 interplayers. p53 expressed in the nuclear fraction of breast cancer cells revealed a wide spectrum of isoforms. p53 isoforms ?Np53 (47?kDa) and ?133p53? (35?kDa), known as dominant-negative repressors of p53 function, were detected as the most predominant variants in nuclei of invasive breast carcinoma cells. The isoforms expressed also varied between individual tumors, indicating potential roles of these p53 variants in human breast cancer. PMID:24511294

  7. Human relevance of rodent prolactin-induced non-genotoxic mammary carcinogenesis: prolactin involvement in human breast cancer and significance for toxicology risk assessments.

    PubMed

    Harvey, Philip W

    2005-01-01

    Prolactin-induced mammary carcinogenesis in rodents, particularly rats, is often stated to be of low toxicological relevance to humans. This opinion appears to have developed from a number of lines of cited evidence. Firstly, there had been long experience of use of dopamine antagonists (that increase prolactin) in human medicine and no evidence of an increase in breast cancer incidence or risk had been reported. Secondly, dopamine agonists (that lower prolactin) had been shown to have no effect in human breast cancer treatment. Thirdly, the actions of prolactin were considered different between rodents and humans. However, recent evidence now suggests that prolactin has a major role in human breast cancer, and the similarity of mechanism with the rodent suggests that prolactin-mediated mammary carcinogenesis in rodents could be of much higher toxicological relevance to humans than previously thought. Large epidemiology studies have upgraded a limited database and shown that dopamine antagonists (both antipsychotics and anti-emetics) increase breast cancer risk, that hyperprolactinaemia is consistently associated with human breast cancer growth, development and poor prognosis, and that prolactin is indeed a mitogen in human breast cancer cells that suppresses apoptosis and upregulates BRCA1. It is now clear that initial studies giving dopamine agonists to breast cancer patients had no effect because breast cancer cells also produced prolactin independently of the pituitary, which remained uncontrolled and unrecognized in early clinical studies. The evidence for the role of prolactin in human breast cancer is now strong and consistent, and is discussed and related to the risk assessment of drugs and chemicals. The conclusion is that it is invalid to suggest that prolactin-induced mammary carcinogenesis in rodents is of low relevance to humans because prolactin can induce an adverse response in the mammary tissue of both rodents and humans alike. Drugs and chemicals causing rodent prolactin-induced mammary carcinogenesis may therefore pose a risk to humans via the same mechanism if exposures also increase prolactin secretion in humans. PMID:15856525

  8. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration

    PubMed Central

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, YY; Liphardt, J; Hwang, ES; Weaver, VM

    2015-01-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive Luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated, macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  9. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini

    PubMed Central

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (? 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function. PMID:26674091

  10. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.

    PubMed

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, Y Y; Liphardt, J; Hwang, E S; Weaver, V M

    2015-10-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  11. Cis-retinol dehydrogenase: 9-cis-retinol metabolism and its effect on proliferation of human MCF7 breast cancer cells

    SciTech Connect

    Paik, Jisun; Blaner, William S.; Swisshelm, Karen . E-mail: kswiss@u.washington.edu

    2005-02-01

    9-Cis-retinoic acid (RA) suppresses cancer cell proliferation via binding and activation of nuclear receptors, retinoid X receptors (RXRs). In vivo, 9-cis-RA is formed through oxidation of 9-cis-retinol by cis-retinol dehydrogenase (cRDH), an enzyme that we characterized previously. Since 9-cis-RA is a potent inhibitor of breast cancer cell proliferation, we hypothesized that overexpression of cRDH in breast cancer cells would result in increased production of 9-cis-RA, which in turn would suppress cell proliferation. To investigate this hypothesis, MCF7 human breast carcinoma cells were transduced with cRDH cDNA (LRDHSN/MCF7), and the growth kinetics and retinoid profiles of cells were examined following treatment with 9-cis-retinol. LRDHSN/MCF7 cells showed a marked reduction in cell numbers (60-80%) upon treatment with 9-cis-retinol compared to vehicle alone. Within 24 h of treatment, approximately 75% of the 9-cis-retinol was taken up and metabolized by LRDHSN/MCF7 cells. Despite the rapid uptake and oxidation of 9-cis-retinol to 9-cis-retinal, 9-cis-RA was not formed in these cells. We detect at least one novel metabolite formed from both 9-cis-retinol and 9-cis-retinal that may play a role in inhibition of MCF7 cell proliferation. Our studies demonstrate that 9-cis-retinol in combination with cRDH inhibits breast cancer cell proliferation by production of retinol metabolites other than RA.

  12. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity

    PubMed Central

    Mamessier, Emilie; Sylvain, Aude; Thibult, Marie-Laure; Houvenaeghel, Gilles; Jacquemier, Jocelyne; Castellano, Rémy; Gonçalves, Anthony; André, Pascale; Romagné, François; Thibault, Gilles; Viens, Patrice; Birnbaum, Daniel; Bertucci, François; Moretta, Alessandro; Olive, Daniel

    2011-01-01

    NK cells are a major component of the antitumor immune response and are involved in controlling tumor progression and metastases in animal models. Here, we show that dysfunction of these cells accompanies human breast tumor progression. We characterized human peripheral blood NK (p-NK) cells and malignant mammary tumor-infiltrating NK (Ti-NK) cells from patients with noninvasive and invasive breast cancers. NK cells isolated from the peripheral blood of healthy donors and normal breast tissue were used as controls. With disease progression, we found that expression of activating NK cell receptors (such as NKp30, NKG2D, DNAM-1, and CD16) decreased while expression of inhibitory receptors (such as NKG2A) increased and that this correlated with decreased NK cell function, most notably cytotoxicity. Importantly, Ti-NK cells had more pronounced impairment of their cytotoxic potential than p-NK cells. We also identified several stroma-derived factors, including TGF-?1, involved in tumor-induced reduction of normal NK cell function. Our data therefore show that breast tumor progression involves NK cell dysfunction and that breast tumors model their environment to evade NK cell antitumor immunity. This highlights the importance of developing future therapies able to restore NK cell cytotoxicity to limit/prevent tumor escape from antitumor immunity. PMID:21841316

  13. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity.

    PubMed

    Mamessier, Emilie; Sylvain, Aude; Thibult, Marie-Laure; Houvenaeghel, Gilles; Jacquemier, Jocelyne; Castellano, Rémy; Gonçalves, Anthony; André, Pascale; Romagné, François; Thibault, Gilles; Viens, Patrice; Birnbaum, Daniel; Bertucci, François; Moretta, Alessandro; Olive, Daniel

    2011-09-01

    NK cells are a major component of the antitumor immune response and are involved in controlling tumor progression and metastases in animal models. Here, we show that dysfunction of these cells accompanies human breast tumor progression. We characterized human peripheral blood NK (p-NK) cells and malignant mammary tumor-infiltrating NK (Ti-NK) cells from patients with noninvasive and invasive breast cancers. NK cells isolated from the peripheral blood of healthy donors and normal breast tissue were used as controls. With disease progression, we found that expression of activating NK cell receptors (such as NKp30, NKG2D, DNAM-1, and CD16) decreased while expression of inhibitory receptors (such as NKG2A) increased and that this correlated with decreased NK cell function, most notably cytotoxicity. Importantly, Ti-NK cells had more pronounced impairment of their cytotoxic potential than p-NK cells. We also identified several stroma-derived factors, including TGF-?1, involved in tumor-induced reduction of normal NK cell function. Our data therefore show that breast tumor progression involves NK cell dysfunction and that breast tumors model their environment to evade NK cell antitumor immunity. This highlights the importance of developing future therapies able to restore NK cell cytotoxicity to limit/prevent tumor escape from antitumor immunity. PMID:21841316

  14. High-risk human papillomavirus (HPV) DNA sequences in metaplastic breast carcinomas of Mexican women

    PubMed Central

    2013-01-01

    Background Metaplastic carcinoma, an uncommon subtype of breast cancer, is part of the spectrum of basal-like, triple receptor-negative breast carcinomas. The present study examined 20 surgical specimens of metaplastic breast carcinomas, for the presence of high-risk Human papillomavirus (HPV), which is suspected to be a potential carcinogenic agent for breast carcinoma. Methods Mastectomy specimens from patients harboring metaplastic breast carcinoma, as defined by the World Health Organization (WHO), and who attended the Instituto Nacional de Cancerologia in Mexico City, were retrieved from the files of the Department of Pathology accumulated during a 16-year period (1995–2008). Demographic and clinical information was obtained from patients’ medical records. DNA was extracted from formalin-fixed, paraffin-embedded tumors and HPV type-specific amplification was performed by means of Polymerase chain reaction (PCR). Quantitative Real-time (RT) PCR was conducted in HPV positive cases. Statistically, the association of continuous or categorical variables with HPV status was tested by the Student t, the Chi square, or Fisher’s exact tests, as appropriate. Results High-risk HPV DNA was detected in eight (40%) of 20 metaplastic breast carcinomas: seven (87.5%) HPV-16 and one (12.5%) HPV-18. Mean age of patients with HPV-positive cases was 49 years (range 24–72 years), the same as for HPV-negative cases (range, 30–73 years). There were not striking differences between HPV?+?and HPV– metaplastic carcinomas regarding clinical findings. Nearly all cases were negative for estrogen, progesterone and Human epidermal growth factor receptor 2 (HER2), but positive for Epidermal growth factor receptor (EGFR). Conclusions High-risk HPV has been strongly associated with conventional breast carcinomas, although the subtle mechanism of neoplastic transformation is poorly understood. In Mexican patients, the prevalence of HPV infection among metaplastic breast carcinomas is higher than in non-metaplastic ones, as so the HPV viral loads; notwithstanding, HPV viral loads show wide variation and remain even lower than cervical and other non-cervical carcinomas, making it difficult to assume that HPV could play a key role in breast carcinogenesis. Further studies are warranted to elucidate the meaning of the presence of high-risk HPVDNA in breast carcinomas. PMID:24083491

  15. Near-infrared imaging of the human breast: complementing hemoglobin concentration maps

    E-print Network

    Fantini, Sergio

    Near-infrared imaging of the human breast: complementing hemoglobin concentration maps; photon migration; hemoglobin; near-infrared spectroscopy. Paper 03044 received Apr. 14, 2003; revised range can penetrate through several cen- timeters of tissue and is highly sensitive to the hemoglobin

  16. Regulation of gene expression in human mammary epithelium: effect of breast pumping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known of the molecular regulation of human milk production because of limitations in obtaining mammary tissue from lactating women. Our objectives were to evaluate whether RNA isolated from breast milk fat globules (MFGs) could be an alternative to mammary biopsies and to determine whether...

  17. EBAG9/RCAS1 in human breast carcinoma: a possible factor in endocrine–immune interactions

    PubMed Central

    Suzuki, T; Inoue, S; Kawabata, W; Akahira, J; Moriya, T; Tsuchiya, F; Ogawa, S; Muramatsu, M; Sasano, H

    2001-01-01

    EBAG9 has been recently identified as an oestrogen responsive gene in MCF-7 human breast carcinoma cells. EBAG9 is identical to RCAS1, a cancer cell surface antigen possibly involved in immune escape. In this study, we examined the expression of EBAG9/RCAS1 in human breast carcinomas using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). EBAG9 immunoreactivity was also associated with various clinicopathological parameters, including intratumoural infiltration of inflammatory cells, to examine the biological significance of EBAG9 in human breast carcinomas. EBAG9 immunoreactivity was detected in the entire surface and cytoplasm of carcinoma cells in 82 out of 91 invasive ductal carcinomas (90.1%). In non-neoplastic mammary glands, EBAG9 immunoreactivity was weakly present on the luminal surface of epithelial cells. Results from RT-PCR (n = 7) were consistent with those of immunohistochemistry. EBAG9 immunoreactivity was significantly associated with estrogen receptor (ER) ? labelling index (P = 0.0081), and inversely associated with the degree of intratumoural infiltration of mononuclear cells (P = 0.0020), or CD3+ T lymphocytes (P = 0.0025). This study suggests that EBAG9 is produced via ER in carcinoma cells and inhibits the intratumoural infiltration of T lymphocytes in the context of a possible endocrine–immune interaction in human breast carcinomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742495

  18. Rap1 Integrates Tissue Polarity, Lumen Formation, and Tumorigenic Potential in Human Breast Epithelial Cells

    E-print Network

    Nelson, Celeste M.

    Rap1 Integrates Tissue Polarity, Lumen Formation, and Tumorigenic Potential in Human Breast disrupt tissue architecture and initiate tumor formation. Here, we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant

  19. Exploring molecular links between lymph node invasion and cancer prognosis in human breast cancer

    E-print Network

    Kim, Sangwoo; Nam, Hojung; Lee, Doheon

    2011-01-01

    molecular links between lymph node invasion and cancer prognosis in human breast cancer, supported by evidences of feasible geneMolecular Cancer Research Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, Love B, Shriver CD: A gene

  20. A comprehensive evaluation of human papillomavirus positive status and p16INK4a overexpression as a prognostic biomarker in head and neck squamous cell carcinoma.

    PubMed

    Deng, Zeyi; Hasegawa, Masahiro; Aoki, Kazuo; Matayoshi, Sen; Kiyuna, Asanori; Yamashita, Yukashi; Uehara, Takayuki; Agena, Shinya; Maeda, Hiroyuki; Xie, Minqiang; Suzuki, Mikio

    2014-07-01

    Head and neck squamous cell carcinoma (HNSCC) patients with human papillomavirus (HPV) infection have better prognosis than those without HPV infection. Although p16(INK4a) expression is used as a surrogate marker for HPV infection, there is controversy as to whether p16(INK4a) reliably indicates HPV infection. Here, to evaluate the accuracy of p16(INK4a) expression for determining HPV infection and the prognostic value of HPV infection and p16(INK4a) expression for HNSCC survival, especially oropharyngeal squamous cell carcinoma (OPSCC) survival, 150 fresh-frozen HNSCC samples were analyzed for HPV DNA, E6/E7 mRNA and p16(INK4a) expression by polymerase chain reaction and immunohistochemistry. p16(INK4a) expression was scored from 0 to 4 according to the percentage of p16(INK4a)-positive cells, with overexpression defined as >40% positive cells. Of the 150 tumor samples tested, 10 tumors were nasopharyngeal, 53 oropharyngeal, 39 hypopharyngeal, 24 laryngeal and 24 were located in the oral cavity. HPV DNA was detected in 47 (31.3%) samples, but only 21 also exhibited HPV mRNA expression. Inter-rater agreement was low between p16(INK4a) expression and HPV DNA presence and between p16(INK4a) expression and HPV mRNA expression, but was good between the combination of HPV DNA status and p16(INK4a) overexpression and HPV mRNA expression. Three-year recurrence-free survival was significantly higher for OPSCC patients who were HPV DNA-positive than for OPSCC patients who were HPV DNA-negative (P=0.008) and for OPSCC patients overexpressing p16(INK4a) than for without overexpressing p16(INK4a) (P=0.034). Multivariate analysis revealed that T1-3 stage and the combination of HPV DNA positivity and p16(INK4a) overexpression predicted significantly better recurrence-free survival. This combination is a more accurate marker for active HPV infection in HNSCC than HPV DNA status or general p16(INK4a)-positive status alone and offers a useful and reliable method for detecting and determining the prognosis of HPV-related HNSCC. PMID:24820457

  1. A comprehensive evaluation of human papillomavirus positive status and p16INK4a overexpression as a prognostic biomarker in head and neck squamous cell carcinoma

    PubMed Central

    DENG, ZEYI; HASEGAWA, MASAHIRO; AOKI, KAZUO; MATAYOSHI, SEN; KIYUNA, ASANORI; YAMASHITA, YUKASHI; UEHARA, TAKAYUKI; AGENA, SHINYA; MAEDA, HIROYUKI; XIE, MINQIANG; SUZUKI, MIKIO

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) patients with human papillomavirus (HPV) infection have better prognosis than those without HPV infection. Although p16INK4a expression is used as a surrogate marker for HPV infection, there is controversy as to whether p16INK4a reliably indicates HPV infection. Here, to evaluate the accuracy of p16INK4a expression for determining HPV infection and the prognostic value of HPV infection and p16INK4a expression for HNSCC survival, especially oropharyngeal squamous cell carcinoma (OPSCC) survival, 150 fresh-frozen HNSCC samples were analyzed for HPV DNA, E6/E7 mRNA and p16INK4a expression by polymerase chain reaction and immunohistochemistry. p16INK4a expression was scored from 0 to 4 according to the percentage of p16INK4a-positive cells, with overexpression defined as >40% positive cells. Of the 150 tumor samples tested, 10 tumors were nasopharyngeal, 53 oropharyngeal, 39 hypopharyngeal, 24 laryngeal and 24 were located in the oral cavity. HPV DNA was detected in 47 (31.3%) samples, but only 21 also exhibited HPV mRNA expression. Inter-rater agreement was low between p16INK4a expression and HPV DNA presence and between p16INK4a expression and HPV mRNA expression, but was good between the combination of HPV DNA status and p16INK4a overexpression and HPV mRNA expression. Three-year recurrence-free survival was significantly higher for OPSCC patients who were HPV DNA-positive than for OPSCC patients who were HPV DNA-negative (P=0.008) and for OPSCC patients over-expressing p16INK4a than for without overexpressing p16INK4a (P=0.034). Multivariate analysis revealed that T1-3 stage and the combination of HPV DNA positivity and p16INK4a overexpression predicted significantly better recurrence-free survival. This combination is a more accurate marker for active HPV infection in HNSCC than HPV DNA status or general p16INK4a-positive status alone and offers a useful and reliable method for detecting and determining the prognosis of HPV-related HNSCC. PMID:24820457

  2. Overexpression of caudal type homeobox transcription factor 2 inhibits the growth of the MGC-803 human gastric cancer cell line in vivo.

    PubMed

    Wei, Weiyuan; Li, Lei; Wang, Xiaotong; Yan, Linhai; Cao, Wenlong; Zhan, Zexu; Zhang, Xiaoshi; Yu, Han; Xie, Yubo; Xiao, Qiang

    2015-07-01

    Caudal type homeobox transcription factor 2 (CDX2) is important in intestinal cell fate specification and multiple lines of evidence have substantiated that CDX2 is important in carcinogenesis of the digestive tract. The CDX2 regulatory network is intricate and remains to be fully elucidated in gastric cancer. The aim of the present study was to examine the effects of CDX2 on the growth of the MGC-803 human gastric cancer cell line in vivo, and to elucidate the mechanism involved. The effects of the overexpression of CDX2 in xenograft tumors of MGC-803 cells was investigated in nude mice through the injection of CDX2 recombinant lentiviral vectors. The tumor size was measured using vernier callipers. The expression levels of CDX2, survivin, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cyclin D1, s-phase kinase-associated protein 2 (Skp2) and c-Myc in the tumor cells were analyzed by western blotting and semi-quantitative reverse transcription polymerase chain reaction. The apoptotic rates were determined using a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The overexpression of CDX2 was observed in the group subjected to the injection of CDX2 recombinant lentiviral vectors. CDX2 had an inhibitory effect on the MGC-803 human gastric cancer cell line and promoted tumor cell apoptosis in vivo. Furthermore, the overexpression of CDX2 upregulated the expression of Bax and downregulated the expression levels of survivin, Bcl-2, cyclin D1, Skp2 and c-Myc in the tumor tissues. These results indicated that CDX2 may serve as a tumor suppressor in gastric cancer, and inhibits gastric cancer cell growth by suppressing the nuclear factor-?B signaling pathway. PMID:25738600

  3. ER? inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer

    PubMed Central

    Wei, Xiao-Long; Dou, Xiao-Wei; Bai, Jing-Wen; Luo, Xiang-Rong; Qiu, Si-Qi; Xi, Di-Di; Huang, Wen-He; Du, Cai-Wen; Man, Kwan; Zhang, Guo-Jun

    2015-01-01

    In human breast cancer, estrogen receptor-? (ER?) suppresses epithelial-mesenchymal transition (EMT) and stemness, two crucial parameters for tumor metastasis; however, the underlying mechanism by which ER? regulates these two processes remains largely unknown. Bmi1, the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog, regulates EMT transition, maintains the self-renewal capacity of stem cells, and is frequently overexpressed in human cancers. In the present study, ER? upregulated the expression of the epithelial marker, E-cadherin, in breast cancer cells through the transcriptional down-regulation of Bmi1. Furthermore, ER? overexpression suppressed the migration, invasion, and EMT of breast cancer cells. Notably, overexpression of ER? significantly decreased the CD44high/CD24low cell population and inhibited the capacity for mammosphere formation in ER?-negative breast cancer cells. In addition, overexpression of Bmi1 attenuated the ER?-mediated suppression of EMT and cell stemness. Immunohistochemistry revealed an inverse association of ER? and Bmi1 expression in human breast cancer tissue. Taken together, our findings suggest that ER? inhibits EMT and stemness through the downregulation of Bmi1. PMID:26023734

  4. Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer.

    PubMed

    Wang, Xuyi; Docanto, Maria M; Sasano, Hironobu; Lo, Camden; Simpson, Evan R; Brown, Kristy A

    2015-02-15

    Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer. PMID:25634217

  5. Human Cytomegalovirus interleukin-10 promotes proliferation and migration of MCF-7 breast cancer cells

    PubMed Central

    Bishop, Robin K.; Valle Oseguera, Cendy A.; Spencer, Juliet V.

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide. While a small fraction of breast cancers have a hereditary component, environmental and behavioral factors also impact the development of cancer. Human cytomegalovirus (HCMV) is a member of the Herpesviridae family that is widespread in the general population and has been linked to several forms of cancer. While HCMV DNA has been found in some breast cancer tissue specimens, we wanted to investigate whether a secreted viral cytokine might have an effect on cancerous or even pre-cancerous cells. HCMV encodes an ortholog of the human cellular cytokine interleukin-10 (IL-10). The HCMV UL111A gene product is cmvIL-10, which has 27% sequence identity to IL-10 and binds the cellular IL-10 receptor (IL-10R) to induce downstream cell signaling. We found that MCF-7 human breast cancer cells express IL-10R and that exposure to cmvIL-10 results in enhanced proliferation and increased chemotaxis of MCF-7 cells. PCR arrays revealed that treatment with cmvIL-10 alters expression of cell adhesion molecules and increases MMP gene expression. In particular, MMP-10 gene expression was found to be significantly up-regulated and this correlated with an increase in cell-associated MMP-10 protein produced by MCF-7 cells exposed to cmvIL-10. These results suggest that the presence of cmvIL-10 in the tumor microenvironment could contribute to the development of more invasive tumors. PMID:26023679

  6. Op18/Stathmin counteracts the activity of overexpressed tubulin-disrupting proteins in a human leukemia cell line

    SciTech Connect

    Sellin, Mikael E. Holmfeldt, Per; Stenmark, Sonja; Gullberg, Martin

    2008-04-01

    Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both {alpha}-tubulin and {beta}-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.

  7. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Graduate School, Chinese Academy of Sciences, Beijing; Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 ; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong; Department of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN 37232

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  8. Glycolaldehyde induces apoptosis in a human breast cancer cell line.

    PubMed

    Al-Maghrebi, May A; Al-Mulla, Fahd; Benov, Ludmil T

    2003-09-01

    Activated phagocytes employ myeloperoxidase to generate glycolaldehyde, 2-hydroxypropanal, and acrolein. Because alpha-hydroxy and alpha,beta-unsaturated aldehydes are highly reactive, phagocyte-mediated formation of these products may play a role in killing bacteria and tumor cells. Using breast cancer cells, we demonstrate that glycolaldehyde inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and Cu,Zn superoxide dismutase, suppresses cell growth, and induces apoptosis. These results suggest that glycolaldehyde might be an important mediator of neutrophil anti-tumor activity. PMID:12921788

  9. miRNA-205 affects infiltration and metastasis of breast cancer

    SciTech Connect

    Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xi’an 710300 ; Liao, Hehe; Deng, Zhiping; Yang, Po; Du, Ning; Zhanng, Yunfeng; Ren, Hong

    2013-11-08

    Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expression level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3? untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.

  10. Overexpression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) is associated with tumour aggressiveness and poor prognosis in human non-small cell lung cancer

    PubMed Central

    Guo, Xuefeng; Chen, Sharon; Li, Shuhua; Wang, Yuefeng; Wang, Liantang

    2014-01-01

    Collagen triple helix repeat-containing 1 (CTHRC1), a novel oncogene, was identified to be aberrantly overexpressed in several malignant tumors. However, the expression profile of CTHRC1 and its clinical significance in non-small cell lung cancer (NSCLC) remain unknown. In this study, we showed that CTHRC1 was evidently overexpressed in human NSCLC tissues and NSCLC cell lines at the protein and mRNA level. Ectopic up-regulation of CTHRC1 in cancer cells resulted in elevated invasive and proliferative abilities, which were attenuated by the specific CTHRC1 siRNA. The biological effect of CTHRC1 on metastasis and proliferation was mediated by the activation of the Wnt/?-catenin pathway. Furthermore, CTHRC1 immunoreactivity was evidently overexpressed in paraffin-embedded NSCLC tissues (212/292, 72.60%) in comparison to corresponding adjacent non-cancerous tissues (6/66, 9.09%) (p<0.001). Clinicopathologic analysis showed that CTHRC1 expression was significantly correlated with differentiation degree (p<0.001), clinical stage (p<0.001), T classification (p<0.001), lymph node metastasis (p=0.013) and distant metastasis (p<0.001). Kaplan-Meier analysis revealed that patients with high CTHRC1 expression had poorer overall survival rates than those with low CTHRC1 expression. Multivariate analysis indicated that CTHRC1 expression was an independent prognostic factor for the overall survival of NSCLC patients. Collectively, CTHRC1 plays important roles in NSCLC progression, and the evaluation of CTHRC1 expression could serve as a potential marker for metastasis progression and prognosis in NSCLC patients. PMID:25238260

  11. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2

    PubMed Central

    Neumann, Alexander J.; Gardner, Oliver F. W.; Williams, Rebecca; Alini, Mauro; Archer, Charles W.; Stoddart, Martin J.

    2015-01-01

    Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-?1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a potential alterative cell source for cartilage tissue engineering applications. PMID:26292283

  12. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    SciTech Connect

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-10-15

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER{alpha} signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ER{alpha} was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER{alpha}-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER{alpha}-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  13. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    NASA Astrophysics Data System (ADS)

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  14. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment

    PubMed Central

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-01-01

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1?, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy. PMID:25992773

  15. First Evidence that Ecklonia cava-Derived Dieckol Attenuates MCF-7 Human Breast Carcinoma Cell Migration

    PubMed Central

    Kim, Eun-Kyung; Tang, Yujiao; Kim, Yon-Suk; Hwang, Jin-Woo; Choi, Eun-Ju; Lee, Ji-Hyeok; Lee, Seung-Hong; Jeon, You-Jin; Park, Pyo-Jam

    2015-01-01

    We investigated the effect of Ecklonia cava (E. cava)-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6?-biecko, and 2,7?-phloroglucinol-6,6?-bieckol) were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1–100 µM) was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol. PMID:25830682

  16. First evidence that Ecklonia cava-derived dieckol attenuates MCF-7 human breast carcinoma cell migration.

    PubMed

    Kim, Eun-Kyung; Tang, Yujiao; Kim, Yon-Suk; Hwang, Jin-Woo; Choi, Eun-Ju; Lee, Ji-Hyeok; Lee, Seung-Hong; Jeon, You-Jin; Park, Pyo-Jam

    2015-04-01

    We investigated the effect of Ecklonia cava (E. cava)-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6'-biecko, and 2,7?-phloroglucinol-6,6'-bieckol) were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1-100 µM) was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol. PMID:25830682

  17. No association between HPV positive breast cancer and expression of human papilloma viral transcripts.

    PubMed

    Gannon, Orla M; Antonsson, Annika; Milevskiy, Michael; Brown, Melissa A; Saunders, Nicholas A; Bennett, Ian C

    2015-01-01

    Infectious agents are thought to be responsible for approximately 16% of cancers worldwide, however there are mixed reports in the literature as to the prevalence and potential pathogenicity of viruses in breast cancer. Furthermore, most studies to date have focused primarily on viral DNA rather than the expression of viral transcripts. We screened a large cohort of fresh frozen breast cancer and normal breast tissue specimens collected from patients in Australia for the presence of human papilloma virus (HPV) DNA, with an overall prevalence of HPV of 16% and 10% in malignant and non-malignant tissue respectively. Samples that were positive for HPV DNA by nested PCR were screened by RNA-sequencing for the presence of transcripts of viral origin, using three different bioinformatic pipelines. We did not find any evidence for HPV or other viral transcripts in HPV DNA positive samples. In addition, we also screened publicly available breast RNA-seq data sets for the presence of viral transcripts and did not find any evidence for the expression of viral transcripts (HPV or otherwise) in other data sets. This data suggests that transcription of viral genomes is unlikely to be a significant factor in breast cancer pathogenesis. PMID:26658849

  18. No association between HPV positive breast cancer and expression of human papilloma viral transcripts

    PubMed Central

    Gannon, Orla M.; Antonsson, Annika; Milevskiy, Michael; Brown, Melissa A.; Saunders, Nicholas A.; Bennett, Ian C.

    2015-01-01

    Infectious agents are thought to be responsible for approximately 16% of cancers worldwide, however there are mixed reports in the literature as to the prevalence and potential pathogenicity of viruses in breast cancer. Furthermore, most studies to date have focused primarily on viral DNA rather than the expression of viral transcripts. We screened a large cohort of fresh frozen breast cancer and normal breast tissue specimens collected from patients in Australia for the presence of human papilloma virus (HPV) DNA, with an overall prevalence of HPV of 16% and 10% in malignant and non-malignant tissue respectively. Samples that were positive for HPV DNA by nested PCR were screened by RNA-sequencing for the presence of transcripts of viral origin, using three different bioinformatic pipelines. We did not find any evidence for HPV or other viral transcripts in HPV DNA positive samples. In addition, we also screened publicly available breast RNA-seq data sets for the presence of viral transcripts and did not find any evidence for the expression of viral transcripts (HPV or otherwise) in other data sets. This data suggests that transcription of viral genomes is unlikely to be a significant factor in breast cancer pathogenesis. PMID:26658849

  19. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  20. No detection of 'high-risk' human papillomaviruses in a group of Iranian women with breast cancer.

    PubMed

    Ahangar-Oskouee, Mahin; Shahmahmoodi, Shohreh; Jalilvand, Somayeh; Mahmoodi, Mahmood; Ziaee, Abed Ali; Esmaeili, Heidar-Ali; Keshtvarz, Maryam; Pishraft-Sabet, Leila; Yousefi, Maryam; Mollaei-Kandelous, Yaghoob; Mokhtari-Azad, Talat; Nategh, Rakhshandeh

    2014-01-01

    The presence of viral DNA in breast cancer cells is controversial. However, some studies have revealed a possible role for the human papillomavirus in the pathogenesis of breast cancer. The aim of the present study was to investigate the presence of HPV-DNA in breast tissue in a group of Iranian women with and without breast cancer and identification of the detected HPV types. Paraffin-embedded specimens from 65 malignant breast cancer cases and 65 cases with benign breast lesions were investigated for presence of HPV-DNA by nested polymerase chain reaction. We found HPV-DNA in 22 (33.8%) of the breast cancer specimens. All non-cancerous specimens were negative. Low and high-risk HPV types, including HPV-6 (26.2%), HPV-16 (1.5%), HPV-35 (1.5%), HPV-52 (1.5%), and HPV-11 (1.5%) were detected in our study. HPV-6 was the most prevalent type in the breast cancer specimens. Although high-risk HPV types have been shown to have a major role in cervix cancer, there have been no data that support the same relevance for other types of malignancies. Furthermore, presence of low-risk HPV types in malignancies still is a matter of debate. The data presented in this study indicates a strong need for epidemiological studies correlating different HPV types in human breast cancer. PMID:24935597

  1. Cks Overexpression Enhances Chemotherapeutic Efficacy by Overriding DNA Damage Checkpoints

    PubMed Central

    del Rincón, Sonia V.; Widschwendter, Martin; Sun, Dahui; Ekholm-Reed, Susanna; Tat, John; Teixeira, Leonardo K.; Ellederova, Zdenka; Grolieres, Elise; Reed, Steven I.; Spruck, Charles

    2014-01-01

    Cks1 and Cks2 are adaptor-like proteins that bind many cyclin-dependent kinases (Cdks). A wealth of clinical data has shown that Cks proteins are overexpressed in many types of human cancers and this often correlates with increased tumor aggressiveness. Previously, we showed that Cks overexpression abrogates the intra-S phase checkpoint, a major barrier to oncogene-mediated transformation. Interestingly, the intra-S phase checkpoint is crucial for the cellular response to replication stress, a major pathway of apoptosis induction by many chemotherapeutic agents. Here, we demonstrate cancer cells that overexpress Cks1 or Cks2 override the intra-S phase checkpoint in the presence of replication stress-inducing chemotherapies such as 5-Fluorourocil (5-FU) and methotrexate (MTX) leading to enhanced sensitivity in vitro and in vivo. Furthermore, enforced expression of Cks1 in a MTX-resistant breast cancer cell line was found to restore drug sensitivity. Our results suggest that Cks proteins are important determinants of apoptosis induction of replication stress-inducing chemotherapies such as 5-FU. PMID:24858038

  2. OVEREXPRESSION OF BOTH CLOCK AND BMAL1 INHIBITS ENTRY TO S PHASE IN HUMAN COLON CANCER CELLS.

    PubMed

    Sakamoto, Wataru; Takenoshita, Seiichi

    2015-12-19

    Many physiological, biochemical and behavioral processes operate under the circadian rhythm, which is generated by an internal time-keeping mechanism commonly referred to as the biological clock, in almost all organisms from bacteria to mammals. The core circadian oscillator is composed of an autoregulatory transcription-translation feedback loop, in which CLOCK and BMAL1 are positive regulators. A cell has two mechanisms, "cell cycle" and "cell rhythm", the relationship between which remains controversial. Therefore, the aim of this study was to explore the effect of Clock and Bmal1 on cell cycle, especially on the G1 phase, using vectors with the tetracycline operator-repressor system. The present study revealed that simultaneous induction of Bmal1 and Clock had an influential effect on the cell cycle in SW480/T-REx/Clock/Bmal1 cells, in which both Clock and Bmal1 could be induced by tetracycline. The observation that induction of both Clock and Bmal1 inhibited cell growth and the significant increase of the G1 phase proportion of in SW480/T-REx/Clock/Bmal1 cells indicated that entry from the G1 to S phase was inhibited by the induction of Clock and Bmal1. Furthermore, overexpression of Clock and Bmal1 prevented the cells from entering into the G2/M phase induced by Paclitaxel, and made the cells more resistant to the agent. In conclusion, we found that overexpression of both Clock and Bmal1 suppressed cell growth. In addition, the present study raised the possibility that Clock and Bmal1 may in part play a role in preventing the cells from entering G1 to S phase of cell cycle via suppression of CyclinD1 expression, and thus acquiring resistance to Paclitaxel. PMID:26370682

  3. Overexpression of activated Cdc42-associated kinase1 (Ack1) predicts tumor recurrence and poor survival in human hepatocellular carcinoma.

    PubMed

    Wang, Bin; Xu, Tao; Liu, Jingfeng; Zang, Shengbing; Gao, Lingyun; Huang, Aimin

    2014-12-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in China. Recent research suggested that activated Cdc42-associated kinase 1 (Ack1) played an important role in facilitating tumorigenesis, tumor invasion and metastasis. However, the role of Ack1 in HCC is not clear. Herein, the expression level of Ack1 mRNA in 30 fresh HCC specimens (carcinoma, peri-carcinoma and distal-carcinoma tissues) was detected by reverse transcription-polymerase chain reaction (RT-PCR), while the expression of Ack1 protein in 18 fresh HCC specimens (carcinoma, peri-carcinoma and distal-carcinoma tissues) was analyzed by Western blotting. Immunohistochemical (IHC) staining was also employed to assess both the expression level and distribution of Ack1 protein in HCC tissues collected from 173 lesions, so as to study the correlations between Ack1 protein expression and other HCC-related clinicopathologic parameters. The results showed that both Ack1 mRNA and protein were significantly over-expressed in HCC tissues than that of either peri-carcinoma or distal-carcinoma tissues (P < 0.001, P = 0.012, respectively), while there was no significant difference between peri-carcinoma and distal-carcinoma tissues. Furthermore, the results of IHC indicated that the rates of Ack1 expressions in the patients with capsular invasion, hepatic vessel involvement and recurrence were higher than without above three conditions (P = 0.037, P = 0.036, P = 0.019, respectively), whereas the patients with overexpression of Ack1 protein had low survival rate (P = 0.007). Ack1 expression, tumor size and recurrence were independently related to survival (P = 0.014, P = 0.018, P < 0.001, respectively). Thus, the level of Ack1 is associated with tumor invasion potential, and the expression of Ack1 plays an important role as predictor of recurrence and poor outcome in HCC patients. PMID:25445114

  4. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    SciTech Connect

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  5. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    SciTech Connect

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  6. Quantitation of fixative-induced morphologic and antigenic variation in mouse and human breast cancers

    PubMed Central

    Cardiff, Robert D; Hubbard, Neil E; Engelberg, Jesse A; Munn, Robert J; Miller, Claramae H; Walls, Judith E; Chen, Jane Q; Velásquez-García, Héctor A; Galvez, Jose J; Bell, Katie J; Beckett, Laurel A; Li, Yue-Ju; Borowsky, Alexander D

    2013-01-01

    Quantitative Image Analysis (QIA) of digitized whole slide images for morphometric parameters and immunohistochemistry of breast cancer antigens was used to evaluate the technical reproducibility, biological variability, and intratumoral heterogeneity in three transplantable mouse mammary tumor models of human breast cancer. The relative preservation of structure and immunogenicity of the three mouse models and three human breast cancers was also compared when fixed with representatives of four distinct classes of fixatives. The three mouse mammary tumor cell models were an ER + /PR + model (SSM2), a Her2 + model (NDL), and a triple negative model (MET1). The four breast cancer antigens were ER, PR, Her2, and Ki67. The fixatives included examples of (1) strong cross-linkers, (2) weak cross-linkers, (3) coagulants, and (4) combination fixatives. Each parameter was quantitatively analyzed using modified Aperio Technologies ImageScope algorithms. Careful pre-analytical adjustments to the algorithms were required to provide accurate results. The QIA permitted rigorous statistical analysis of results and grading by rank order. The analyses suggested excellent technical reproducibility and confirmed biological heterogeneity within each tumor. The strong cross-linker fixatives, such as formalin, consistently ranked higher than weak cross-linker, coagulant and combination fixatives in both the morphometric and immunohistochemical parameters. PMID:23399853

  7. Mutational analysis of multiple tumor suppressor 1 (MTS1) gene in human primary breast tumors and established breast tumor cell lines

    SciTech Connect

    Xu, L.; Sgroi, D.; Sterner, C.

    1994-09-01

    A putative tumor suppressor gene on the short arm of human chromosome 9 has been identified recently and named as multiple tumor suppressor 1 (MTS1). MTS1 is identical to the previously identified cyclin-dependent kinase-4 inhibitor gene p16, a cell cycle regulatory protein. Frequent homozygous deletions of MTS1 gene has been documented recently in cell lines derived from different types of tumors including breast tumors, suggesting that MTS1 is a tumor suppressor gene that is probably involved in a variety of human tumors. To determine the frequency of MTS1 mutations in primary breast tumors, we screened 39 primary breast tumors (16 lobular carcinoma and 23 ductal carcinoma) and 5 established breast tumor cell lines by utilizing single stranded conformational polymorphism (SSCP) analysis. SSCP analysis was carried out for all 3 exons of the MTS1 gene utilizing primers in the flanking intronic sequences. Two of the five breast cancer tumor cell lines analyzed exhibited deletion of the entire MTS1 gene. However, only one of the thirty-nine primary breast tumors revealed a potential SSCP variation in exon 2 of the MTS1 gene which is currently characterized by sequencing. SSCP analysis also revealed two intragenic polymorphisms, one in exon 2 and one in the 3{prime} untranslated region, that could be used to assay allelic loss directly at the MTS1 locus. These results suggest that the mutation of the MTS1 gene may not be a critical genetic change in the formation of primary breast cancer, and the deletions observed in breast tumor cell lines may be due to product of cell growth in vitro.

  8. Circulating Interleukin-8 levels explain breast cancer osteolysis in mice and humans

    PubMed Central

    Kamalakar, Archana; Bendre, Manali S.; Washam, Charity L.; Fowler, Tristan W.; Carver, Adam; Dilley, Joshua D.; Bracey, John W.; Akel, Nisreen S.; Margulies, Aaron G.; Skinner, Robert A.; Swain, Frances L.; Hogue, William R.; Montgomery, Corey O.; Lahiji, Parshawn; Maher, Jacqueline J.; Leitzel, Kim E.; Ali, Suhail M.; Lipton, Alan; Nicholas, Richard W.; Gaddy, Dana; Suva, Larry J.

    2014-01-01

    Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine Interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients, and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p<0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p<0.05), as measured by NTx levels. In a total of 22 ER+ and 15 ER? primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET–derived full length IL-8(1–77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6–77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7 days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28 days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer. PMID:24486955

  9. Mechanisms of hormonal regulation of CAD gene expression and inhibition by Aryl hydrocarbon receptor agonist in human breast cancer cells 

    E-print Network

    Khan, Shaheen Munawar Ali

    2007-04-25

    The CAD gene is trifunctional and expresses carbamoylphosphate synthetase/aspartate carbamyltransferase/dihydroorotase, which are required for pyrimidine biosynthesis. CAD gene activities are induced in MCF-7 human breast ...

  10. Peroxidatic catecholestrogen production by human breast cancer tissue in vitro.

    PubMed

    Levin, M; Weisz, J; Bui, Q D; Santen, R J

    1987-11-01

    The ability of breast cancer tissues from postmenopausal women to form catechol estrogens was examined by using a product isolation assay. Initial assays were carried out in the presence of either: (a) NADPH, the co-factor for monooxygenase mediated catecholestrogen (CE) formation or; (b) light-activated Tween 80 (LAT-80), a putative organic hydroperoxide co-factor for peroxidatic activity. Under monooxygenase conditions, CE formation by homogenates of 10 tumors did not exceed that obtained with heat denatured tissue. In contrast, 17 of 20 tumors incubated with LAT-80 synthesized significant amounts of CE (8.5 +/- 1.17 2-hydroxyestradiol [2-OH-E2] and 12.8 +/- 2.4 nmol/g protein/10 min 4-hydroxyestradiol [4-OH-E2]). Substitution of cumene hydroperoxide, an organic hydroperoxide, for LAT-80 enhanced estrogen 2/4 hydroxylase (E-2/4-H) activity over 200-fold, making it possible to characterize systematically the peroxidatic activity. The properties of peroxidatic E-2/4-H activity were similar to those of soluble peroxidases isolated from brain, including an acidic pH optimum, localization in the soluble fraction, an apparent Km in the range of 80 microM and an apparent Vmax in the range of 4000 nmol/g/protein/10 min for both 2- and 4-OH-E2. Under optimal assay conditions, peroxidatic E-2/4-H activity was identified in 10 of 13 tumors (2480 +/- 580 nmol/g protein/10 min for 2-OH-E2 and 2790 +/- 600 for 4-OH-E2). The level of activity detected suggests a biological relevance for CE formation by breast cancer tissue. PMID:2824930

  11. A Novel Ribonuclease from Rana Chensinensis and Its Potential for the Treatment of Human Breast Cancer.

    PubMed

    Wang, Zuozhao; Lin, Feng; Liu, Jingbo; Qiu, Fangping

    2015-11-01

    Onconase, a member of the pancreatic RNAase A superfamily of ribonucleases, is a chemotherapeutic agent, which has demonstrated selective antitumor activity in a variety of human malignancies. However, little is known about the mechanisms of it's action on human breast cancer cells. To investigate a novel Onconase from the frog of Rana chensinensis changbaishanensis on human breast cancer cells and the underlying mechanisms, a novel Onconase named Rdchonc from Rana chensinensis changbaishanensis was cloned by polymerase chain reaction. SDS-PAGE revealed that the Rdchonc had a high heterologous expression in Escherichia coli BL21(DE3). The MTT assay indicated that purified Rdchonc was cytotoxic to human breast cancer MCF-7 and MD-MB-231 cells. Treatment with 20??g/mL Rdchonc protein significantly reduced the invasive capacities of MCF-7 and MD-MB-231 cells. Interestingly, the authors found that such inhibitory effort on tumor cell growth induced by Rdchonc treatment may be explained by the regulation of proapoptotic Bcl-2 family proteins and inhibition of MEK/ERK phosphorylation. PMID:26502078

  12. The novel lupus antigen related protein acheron enhances the development of human breast cancer.

    PubMed

    Shao, Rong; Scully, Steve J; Yan, Wei; Bentley, Brooke; Mueller, James; Brown, Christine; Bigelow, Carol; Schwartz, Lawrence M

    2012-02-01

    Acheron (Achn) is a new member of the Lupus antigen family of RNA binding proteins. Previous studies have shown that Achn controls developmental decisions in neurons and muscle. In the human mammary gland, Achn expression is restricted to ductal myoepithelial cells. Microarray analysis and immunohistochemistry have shown that Achn expression is elevated in some basal-like ductal carcinomas. To study the possible role of Achn in breast cancer, we engineered human MDA-MB-231 cells to stably express enhanced green fluorescent protein-tagged wild-type Achn (AchnWT), as well as Achn lacking either its nuclear localization signal (AchnNLS) or its nuclear export signal (AchnNES). In in vitro assays, AchnWT and AchnNES, but not AchnNLS, enhanced cell proliferation, lamellipodia formation, and invasive activity and drove expression of the elevated expression of the metastasis-associated proteins MMP-9 and VEGF. To determine if Achn could alter the behavior of human breast cancer cells in vivo, Achn-engineered MDA-MB-231 cells were injected into athymic SCID/Beige mice. AchnWT and AchnNES-expressing tumors displayed enhanced angiogenesis and an approximately 5-fold increase in tumor size relative to either control cells or those expressing AchnNLS. These data suggest that Achn enhances human breast tumor growth and vascularization and that this activity is dependent on nuclear localization. PMID:21387291

  13. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis

    PubMed Central

    Pece, Salvatore; Serresi, Michela; Santolini, Elisa; Capra, Maria; Hulleman, Esther; Galimberti, Viviana; Zurrida, Stefano; Maisonneuve, Patrick; Viale, Giuseppe; Di Fiore, Pier Paolo

    2004-01-01

    The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in ?50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis. PMID:15492044

  14. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    PubMed Central

    2010-01-01

    Background The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells. PMID:20955597

  15. A phase 2 study of everolimus combined with trastuzumab and paclitaxel in patients with HER2-overexpressing advanced breast cancer that progressed during prior trastuzumab and taxane therapy.

    PubMed

    Hurvitz, Sara A; Dalenc, Florence; Campone, Mario; O'Regan, Ruth M; Tjan-Heijnen, Vivianne C; Gligorov, Joseph; Llombart, Antonio; Jhangiani, Haresh; Mirshahidi, Hamid R; Tan-Chiu, Elizabeth; Miao, Sara; El-Hashimy, Mona; Lincy, Jeremie; Taran, Tetiana; Soria, Jean-Charles; Sahmoud, Tarek; André, Fabrice

    2013-10-01

    Increased activation of the PI3K/Akt/mTOR pathway is a common factor in putative mechanisms of trastuzumab resistance, resulting in dysregulation of cell migration, growth, proliferation, and survival. Data from preclinical and phase 1/2 clinical studies suggest that adding everolimus (an oral mTOR inhibitor) to trastuzumab plus chemotherapy may enhance the efficacy of, and restore sensitivity to, trastuzumab-based therapy. In this phase 2 multicenter study, adult patients with HER2-positive advanced breast cancer resistant to trastuzumab and pretreated with a taxane received everolimus 10 mg/day in combination with paclitaxel (80 mg/m(2) days 1, 8, and 15 every 4 weeks) and trastuzumab (4 mg/kg loading dose followed by 2 mg/kg weekly), administered in 28-day cycles. Endpoints included overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and safety. Fifty-five patients were enrolled; one remained on study treatment at the time of data cutoff. The median number of prior chemotherapy lines for advanced disease was 3.5 (range 1-11). The ORR was 21.8 %, the clinical benefit rate was 36.4 %, the median PFS estimate was 5.5 months (95 % confidence interval [CI]: 4.99-7.69 months), and the median OS estimate was 18.1 months (95 % CI: 12.85-24.11 months). Hematologic grade 3/4 adverse events (AEs) included neutropenia (25.5 % grade 3, 3.6 % grade 4), anemia (7.3 % grade 3), and thrombocytopenia (5.5 % grade 3, 1.8 % grade 4). Nonhematologic grade 3/4 AEs included stomatitis (20.0 %), diarrhea (5.5 %), vomiting (5.5 %), fatigue (5.5 %), and pneumonia (5.5 %), all grade 3. These findings suggest that the combination of everolimus plus trastuzumab and paclitaxel is feasible, with promising activity in patients with highly resistant HER2-positive advanced breast cancer. This combination is currently under investigation in the BOLERO-1 phase 3 trial. PMID:24101324

  16. Unravelling the Mystery of Stem/Progenitor Cells in Human Breast Milk

    PubMed Central

    Fan, Yiping; Chong, Yap Seng; Choolani, Mahesh A.; Cregan, Mark D.; Chan, Jerry K. Y.

    2010-01-01

    Background Mammary stem cells have been extensively studied as a system to delineate the pathogenesis and treatment of breast cancer. However, research on mammary stem cells requires tissue biopsies which limit the quantity of samples available. We have previously identified putative mammary stem cells in human breast milk, and here, we further characterised the cellular component of human breast milk. Methodology/Principal Findings We identified markers associated with haemopoietic, mesenchymal and neuro-epithelial lineages in the cellular component of human breast milk. We found 2.6±0.8% (mean±SEM) and 0.7±0.2% of the whole cell population (WCP) were found to be CD133+ and CD34+ respectively, 27.8±9.1% of the WCP to be positive for Stro-1 through flow-cytometry. Expressions of neuro-ectodermal stem cell markers such as nestin and cytokeratin 5 were found through reverse-transcription polymerase chain reaction (RT-PCR), and in 4.17±0.2% and 0.9±0.2% of the WCP on flow-cytometry. We also established the presence of a side-population (SP) (1.8±0.4% of WCP) as well as CD133+ cells (1.7±0.5% of the WCP). Characterisation of the sorted SP and non-SP, CD133+ and CD133- cells carried out showed enrichment of CD326 (EPCAM) in the SP cells (50.6±8.6 vs 18.1±6.0, P-value ?=?0.02). However, culture in a wide range of in vitro conditions revealed the atypical behaviour of stem/progenitor cells in human breast milk; in that if they are present, they do not respond to established culture protocols of stem/progenitor cells. Conclusions/Significance The identification of primitive cell types within human breast milk may provide a non-invasive source of relevant mammary cells for a wide-range of applications; even the possibility of banking one's own stem cell for every breastfeeding woman. PMID:21203434

  17. Genome-wide analysis of alternative transcripts in human breast cancer.

    PubMed

    Wen, Ji; Toomer, Kevin H; Chen, Zhibin; Cai, Xiaodong

    2015-06-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients' tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve "hub" genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the "hub" genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  18. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    SciTech Connect

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive agents, such as curcumin, effective in suppressing TCC-induced cellular pre-malignancy.

  19. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture

    PubMed Central

    Fridriksdottir, Agla J.; Kim, Jiyoung; Villadsen, René; Klitgaard, Marie Christine; Hopkinson, Branden M.; Petersen, Ole William; Rønnov-Jessen, Lone

    2015-01-01

    Investigating the susceptibility of oestrogen receptor-positive (ERpos) normal human breast epithelial cells (HBECs) for clinical purposes or basic research awaits a proficient cell-based assay. Here we set out to identify markers for isolating ERpos cells and to expand what appear to be post-mitotic primary cells into exponentially growing cultures. We report a robust technique for isolating ERpos HBECs from reduction mammoplasties by FACS using two cell surface markers, CD166 and CD117, and an intracellular cytokeratin marker, Ks20.8, for further tracking single cells in culture. We show that ERpos HBECs are released from growth restraint by small molecule inhibitors of TGF? signalling, and that growth is augmented further in response to oestrogen. Importantly, ER signalling is functionally active in ERpos cells in extended culture. These findings open a new avenue of experimentation with normal ERpos HBECs and provide a basis for understanding the evolution of human breast cancer. PMID:26564780

  20. Momordica cochinchinensis Aril Extract Induced Apoptosis in Human MCF-7 Breast Cancer Cells.

    PubMed

    Petchsak, Phuchong; Sripanidkulchai, Bungorn

    2015-01-01

    Momordica cochinchinensis Spreng (MC) has been used in traditional medicine due to its high carotenoid content. The objective of this study was to investigate mechanisms underlying apoptotic effects of MC on human MCF-7 breast cancer cells. A lycopene-enriched aril extract of MC (AE) showed cytotoxicity and antiestrogenicity to MCF-7 cells. On DAPI staining, AE induced cell shrinkage and chromatin condensation were evident. With flow cytometric analysis, AE increased the percentage of cells in an early apoptosis stage when compared with the control group. RT-PCR analysis showed AE to significantly increase the expression of the proapoptotic bax gene without effect on expression of the anti-apoptotic bcl-2 gene. Moreover, AE enhanced caspase 6, 8 and 9 activity. Taken together, we conclude that AE of MC fruit has anticancer effects on human MCF-7 breast cancer cells by induction of cell apoptosis via both intrinsic and extrinsic pathways of signaling. PMID:26225702

  1. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    SciTech Connect

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Hsp90 is over-expressed in human breast cancer. Black-Right-Pointing-Pointer The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. Black-Right-Pointing-Pointer Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. Black-Right-Pointing-Pointer The tumor growth ratio was decline due to Hsp90 silencing. Black-Right-Pointing-Pointer The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  2. Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53

    SciTech Connect

    Ho, T.-F.; Ma, C.-J.; Lu, C.-H.; Tsai, Yo-Ting; Wei, Y.-H.; Chang, J.-S.; Lai, J.-K.; Cheuh, Pin-Ju; Yeh, C.-T.; Tang, P.-C.; Jingua, T.C.; Ko, J.-L.; Liu, F.-S.; Yen, H.E.

    2007-12-15

    Undecylprodigiosin (UP) is a bacterial bioactive metabolite produced by Streptomyces and Serratia. In this study, we explored the anticancer effect of UP. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47D and one nonmalignant human breast epithelial cell line, MCF-10A, were tested in this study. We found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP's cytotoxic effect is selective for malignant cells. UP's cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspase 9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-X{sub L}, Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP's cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status.

  3. Experimental evaluation of boron neutron capture therapy of human breast carcinoma implanted on nude mice

    NASA Astrophysics Data System (ADS)

    Bose, Satya Ranjan

    2000-06-01

    An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large animal model.

  4. Comment on "Progesterone/RANKL is a major regulatory axis in the human breast".

    PubMed

    Wang, Jun; Gupta, Akash; Hu, Hong; Chatterton, Robert T; Clevenger, Charles V; Khan, Seema A

    2013-12-11

    In vivo menstrual cycle data support the findings by Tanos et al. that progesterone regulates RANKL in an ex vivo microstructure model of the human breast, but dispute the suppression of estradiol on progesterone-stimulated RANKL expression. RANKL responds to progesterone in a three-dimensional organoid culture model under conditions mimicking luteal-phase hormone concentration, suggesting that the microstructure may not be crucial to demonstrate progesterone responsiveness. PMID:24337478

  5. Levels and profiles of brominated and chlorinated contaminants in human breast milk from Thessaloniki, Greece.

    PubMed

    Dimitriadou, Lida; Malarvannan, Govindan; Covaci, Adrian; Iossifidou, Eleni; Tzafettas, John; Zournatzi-Koiou, Vassiliki; Kalantzi, Olga-Ioanna

    2016-01-01

    Human breast milk samples (n=87) collected between July 2004 and July 2005 from primipara and multipara mothers from Thessaloniki, Greece were analysed for six groups of persistent organic pollutants (POPs): polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlordane compounds (CHLs), hexachlorocyclohexane isomers (HCHs) and hexachlorobenzene (HCB). DDTs [median: 410ng/g lipid weight (lw)], PCBs (median: 90ng/g lw) and HCHs (median: 40ng/g lw) were the predominantly identified compounds in all the breast milk samples. Levels of PBDEs (median: 1.5ng/g lw) in human breast milk samples from Thessaloniki, Greece were lower compared to other countries. Maternal age had a positive correlation with most compounds, but not with PBDEs. Women with a higher occupational exposure to PBDEs (i.e., working in office environments) had higher PBDE concentrations than all others and showed strong correlations, especially for BDE 47 and BDE 153. None of the analysed compounds showed any correlation with parity. Based on these levels, the daily intake of each group of POPs via human milk was calculated and compared with the tolerable daily intakes (TDI) or the reference doses (RfD). For the majority of samples (85 out of 87) a higher daily intake of PCBs than the TDI was calculated, while 11 out of 87 samples had a higher HCB intake than the TDI. The TDI and the RfD were not exceeded for DDTs and PBDEs, respectively. This is the first report of brominated flame retardants in human breast milk from Greece. PMID:26367190

  6. Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells

    PubMed Central

    Yaar, Mina; Eller, Mark S; Panova, Izabela; Kubera, John; Wee, Lee Hng; Cowan, Kenneth H; Gilchrest, Barbara A

    2007-01-01

    Introduction Cancer is a leading cause of death in Americans. We have identified an inducible cancer avoidance mechanism in cells that reduces mutation rate, reduces and delays carcinogenesis after carcinogen exposure, and induces apoptosis and/or senescence of already transformed cells by simultaneously activating multiple overlapping and redundant DNA damage response pathways. Methods The human breast carcinoma cell line MCF-7, the adriamycin-resistant MCF-7 (Adr/MCF-7) cell line, as well as normal human mammary epithelial (NME) cells were treated with DNA oligonucleotides homologous to the telomere 3' overhang (T-oligos). SCID mice received intravenous injections of MCF-7 cells followed by intravenous administration of T-oligos. Results Acting through ataxia telangiectasia mutated (ATM) and its downstream effectors, T-oligos induced apoptosis and senescence of MCF-7 cells but not NME cells, in which these signaling pathways were induced to a far lesser extent. In MCF-7 cells, experimental telomere loop disruption caused identical responses, consistent with the hypothesis that T-oligos act by mimicking telomere overhang exposure. In vivo, T-oligos greatly prolonged survival of SCID mice following intravenous injection of human breast carcinoma cells. Conclusion By inducing DNA damage-like responses in MCF-7 cells, T-oligos provide insight into innate cancer avoidance mechanisms and may offer a novel approach to treatment of breast cancer and other malignancies. PMID:17257427

  7. Levels of coplanar PCBs in human breast milk at different times of lactation

    SciTech Connect

    Gonzalez, M.J.; Ramos, L.; Hernandez, L.M.

    1995-03-01

    PCBs are a highly lipophilic group of global pollutants, consisting of 209 congeners which exhibit wide differences in their toxic and biological effects. The coplanar PCB (non-, mono- and di-ortho Chlorine substituted) congeners, the most toxic ones, induce similar toxic effects as 2,3,7,8 TCDD. Thus for risk assessment of exposure to PCBs, the analysis of these coplanar congeners is required. The PCB levels in human breast milk are of specific concern because of the potential health damage which may be caused to the nursing baby. The PCB levels in this sample come from previously accumulated quantities in body fat whose principal source is food, and pass directly to the nursing baby who accumulates the PCBs in adipose tissue. The amount of total PCBs and other organochlorine compounds (OCC) in human milk at different time intervals after birth was reported earlier, but data concerning individual and coplanar PCBs are sparse in the literature. The results from some studies showed a gradual decrease of residual levels in milk and milk fat. However, other research has shown differences in this respect. We present our first result concerning the concentration of 14 individual PCBs (13 coplanars) in breast milk from the same mother, during weeks 8 to 12 of lactation. We related the different concentration variations observed among the individual PCBs to their molecular structure and % fat in human breast milk. 17 refs., 1 fig., 2 tabs.

  8. Human breast epithelium in organ culture: effect of hormones on growth and morphology.

    PubMed

    Strum, J M; Hillman, E A

    1981-01-01

    Normal breast tissue from a 17-year-old girl was grown in organ culture for 3 weeks. A comparison was made between the effects on the epithelium of a defined culture medium containing various combinations of hormones and serum-supplemented medium that has been used to successfully maintain other human tissues for 4 months routinely, and in some cases for up to 1 year. After culture for 3 weeks the explants were exposed to [3H]thymidine and autoradiographs were prepared and evaluated in order to determine labeling indexes. The only serum-free defined medium that permitted any significant survival or labeling of the cells contained insulin + hydroxycortisone + prolactin. However, serum-supplemented medium along gave an even higher labeling index, and this was elevated more in media containing either progesterone or other combinations of hormones. Our study indicates that normal human breast (removed at the early postovulatory stage of the menstrual cycle) can be maintained in a differentiated state for 12 days in serum-supplemented media. By 2 weeks the cells had begun to migrate onto the surface of the explant. They then began to accumulate tonofilaments so that after 3 weeks in culture nearly all of the cells contained tonofilaments. The one exception was found in breast tissue cultured in the presence of human chorionic gonadotropin, where the cells maintained differentiated characteristics, despite the fact that they contained many lysosomes. PMID:7216237

  9. Infrared Spectra of Human Breast Tumor Tissue and Experimental Animal Tumors

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Belkov, M. V.; Skornyakov, I. V.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, H. V.; Kutsenko, I. P.; Sharykina, N. I.; Butra, V. A.

    2015-01-01

    We have used Fourier transform IR spectroscopy methods to conduct comparative studies of human breast tumors and sarcoma 180 tumor grafted into mice. The IR spectral parameters used to identify tumor tissue in mice with the sarcoma 180 strain proved to be identical to the parameters for human breast tissue in cancer. In the presence of a malignant tumor in humans, the most intense C=O vibrational bands in the protein molecules are observed in the interval 1710-1680 cm-1. For a benign tumor, in the IR spectra of breast tissue the intense bands are located in the interval 1670-1650 cm-1. We spectroscopically monitored the diagnosis and the chemotherapy process using the model of sarcoma 180 in mice. As the therapeutic drugs, we used synthesized coordination compounds based on palladium complexes with diphosphonic acid derivatives. We demonstrate the promising potential of palladium complexes with zoledronic acid as an effective cytostatic. In therapy using a palladium complex with zoledronic acid, the effect of tumor growth inhibition is accompanied by a change in its spectral characteristics. The parameters of the IR spectra for tumor tissue after treatment are close to those of the IR spectra for healthy tissue.

  10. Inhibitory Effects of PC-SPESII Herbal Extract on Human Breast Cancer Metastasis

    PubMed Central

    Wang, Xiu-Feng; Du, Jia; Zhang, Tian-Ling; Zhou, Qian-Mei; Lu, Yi-Yu; Zhang, Hui; Su, Shi-Bing

    2013-01-01

    Cancer metastasis is refractory to most forms of chemotherapy. Conventional and alternative drugs, such as Chinese herbal remedies, have been developed to target metastatic cancer cells. In this study, we investigated the effects of PC-SPESII, an herbal formulation, on the migration, invasion, and metastasis of an experimental human breast cancer cell line in vivo and in vitro. PC-SPESII suppressed pulmonary metastasis and tumor growth of MDA-MB-231 human breast cancer xenografts without affecting body weight, liver function, and kidney function. PC-SPESII also inhibited MDA-MB-231 cell migration and invasion in vitro in a dose-dependent manner. Based on ELISA analysis, secretion of MMP-2 and MMP-9, proteins associated with extracellular matrix degradation, was reduced in response to PC-SPESII treatment. Western blot analysis of whole-cell extracts revealed that the levels of proteolytic proteins associated with matrix and base membrane degradation (MMP-2, MMP-9, and uPA) were decreased and the levels of their endogenous inhibitors (TIMP1 and TIMP2) were increased. Moreover, the p38MAPK and SAPK/JNK signaling pathway, which stimulates proteolytic enzymes and matrix degradation, was inhibited by PC-PSESII. Remarkably, cotreatment with PC-PSESII and p38MAPK or SAPK/JNK inhibitors magnified the antimetastatic phenotype. Our results indicate that PC-PSESII impairs human breast cancer metastasis by regulating proteolytic enzymes and matrix dynamics through the p38MAPK and SAPK/JNK pathway. PMID:23878609

  11. Effects of 60-Hz fields, estradiol and xenoestrogens on human breast cancer cells

    SciTech Connect

    Dees, C.; Travis, C.; Garrett, S.; Henley, D.

    1996-10-01

    If exposure to xenoestrogens or electromagnetic fields (EMFs) such as 60 Hz contributes to the etiology of breast cancer, it is likely that they must stimulate the growth of breast cells, damage genetic material or enhance the effects of other mitogenic or mutagenic agents (co-promotion). Therefore, the ability of xenoestrogens or exposure to 60-Hz fields to stimulate the entry of growth-arrested human breast cancer cells into the cell cycle was determined using cyclin-dependent kinase 2 (Cdk2) activity, synthesis of cyclin D1 and cdc2 activity. Exposure of estrogen receptor-positive MCF-7 or T-47D cells to estrogen and xenoestrogens (DDT and Red No.3) increased Cdk2 and cyclin B1-cdc2 activity and cyclin D1 synthesis. Exposure of breast cancer cells to 12 mG or 1 or 9 G electromagnetic fields at 60 Hz failed to stimulate Cdk2 or cyclin B1-cdc2 activity or cyclin D1 synthesis. Simultaneous co-exposure of cells to 60-Hz fields and chemical promoters did not enhance Cdk2 activation above the levels produced by the chemical promoter alone. Estrogen and xenoestrogens also stimulated binding of the estrogen receptor to the estrogen receptor element but the EMF did not. Phorbol 12-myristate 13-acetate (PMA) induced phosphorylation of p53 and pRb105 in MCF-7 cells, but EMF exposure had no effect. DNA-damaging chemotherapeutic agents and Red Dye No. 3 were found to increase p53 site-specific DNA binding in breast cancer cells, but EMF exposure did not. These studies suggest that estrogen and xenoestrogens stimulate growth-arrested breast cancer cells to enter the growth cycle, but EMF exposure does not. Site-specific p53-DNA binding was increased in MCF-7 cells treated with DNA-damaging agents, but not by EMF exposure. EMF exposure does not appear to act as a promoter or DNA-damaging agent for human breast cancer cells in vitro. 34 refs., 10 figs.

  12. Inhibition of cell proliferation by a resveratrol analog in human pancreatic and breast cancer cells.

    PubMed

    Hong, Young Bin; Kang, Hyo Jin; Kim, Hee Jeong; Rosen, Eliot M; Dakshanamurthy, Sivanesan; Rondanin, Riccardo; Baruchello, Riccardo; Grisolia, Giuseppina; Daniele, Simoni; Bae, Insoo

    2009-03-31

    Resveratrol has been reported to possess cancer preventive properties. In this study, we analyzed anti-tumor activity of a newly synthesized resveratrol analog, cis-3,4',5-trimethoxy-3'-hydroxystilbene (hereafter called 11b) towards breast and pancreatic cancer cell lines. 11b treatments reduced the proliferation of human pancreatic and breast cancer cells, arrested cells in the G2/M phase, and increased the percentage of cells in the subG1/G0 fraction. The 11b treatments also increased the total levels of mitotic checkpoint proteins such as BubR1, Aurora B, Cyclin B, and phosphorylated histone H3. Mechanistically, 11b blocks microtubule polymerization in vitro and it disturbed microtubule networks in both pancreatic and breast cancer cell lines. Computational modeling of the 11b-tubulin interaction indicates that the dimethoxyphenyl group of 11b can bind to the colchicine binding site of tubulin. Our studies show that the 11b treatment effects occur at lower concentrations than similar effects associated with resveratrol treatments and that microtubules may be the primary target for the observed effects of 11b. These studies suggest that 11b should be further examined as a potentially potent clinical chemotherapeutic agent for treating pancreatic and breast cancer patients. PMID:19293634

  13. Inhibition of cell proliferation by a resveratrol analog in human pancreatic and breast cancer cells

    PubMed Central

    Hong, Young Bin; Kang, Hyo Jin; Kim, Hee Jeong; Rosen, Eliot M.; Dakshanamurthy, Sivanesan; Rondanin, Riccardo; Baruchello, Riccardo; Grisolia, Giuseppina; Daniele, Simoni

    2009-01-01

    Resveratrol has been reported to possess cancer preventive properties. In this study, we analyzed anti-tumor activity of a newly synthesized resveratrol analog, cis-3,4',5-trimethoxy-3'-hydroxystilbene (hereafter called 11b) towards breast and pancreatic cancer cell lines. 11b treatments reduced the proliferation of human pancreatic and breast cancer cells, arrested cells in the G2/M phase, and increased the percentage of cells in the subG1/G0 fraction. The 11b treatments also increased the total levels of mitotic checkpoint proteins such as BubR1, Aurora B, Cyclin B, and phosphorylated histone H3. Mechanistically, 11b blocks microtubule polymerization in vitro and it disturbed microtubule networks in both pancreatic and breast cancer cell lines. Computational modeling of the 11b-tubulin interaction indicates that the dimethoxyphenyl group of 11b can bind to the colchicine binding site of tubulin. Our studies show that the 11b treatment effects occur at lower concentrations than similar effects associated with resveratrol treatments and that microtubules may be the primary target for the observed effects of 11b. These studies suggest that 11b should be further examined as a potentially potent clinical chemotherapeutic agent for treating pancreatic and breast cancer patients. PMID:19293634

  14. A second generation of physical anthropomorphic 3D breast phantoms based on human subject data

    NASA Astrophysics Data System (ADS)

    Nolte, Adam; Kiarashi, Nooshin; Samei, Ehsan; Segars, W. P.; Lo, Joseph Y.

    2014-03-01

    Previous fabrication of anthropomorphic breast phantoms has demonstrated their viability as a model for 2D (mammography) and 3D (tomosynthesis) breast imaging systems. Further development of these models will be essential for the evaluation of breast x-ray systems. There is also the potential to use them as the ground truth in virtual clinical trials. The first generation of phantoms was segmented from human subject dedicated breast computed tomography data and fabricated into physical models using highresolution 3D printing. Two variations were made. The first was a multi-material model (doublet) printed with two photopolymers to represent glandular and adipose tissues with the greatest physical contrast available, mimicking 75% and 35% glandular tissue. The second model was printed with a single 75% glandular equivalent photopolymer (singlet) to represent glandular tissue, which can be filled independently with an adipose-equivalent material such as oil. For this study, we have focused on improving the latter, the singlet phantom. First, the temporary oil filler has been replaced with a permanent adipose-equivalent urethane-based polymer. This offers more realistic contrast as compared to the multi-material approach at the expense of air bubbles and pockets that form during the filling process. Second, microcalcification clusters have been included in the singlet model via crushed eggshells, which have very similar chemical composition to calcifications in vivo. The results from these new prototypes demonstrate significant improvement over the first generation of anthropomorphic physical phantoms.

  15. 4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH) targets mRNA of the c-FLIP variants and induces apoptosis in MCF-7 human breast cancer cells

    PubMed Central

    Huang, Su; Safa, Ahmad R.; Murphy, Michael P.

    2015-01-01

    Cellular FLICE (FADD-like IL-1?-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor for the tumor necrosis factor-related apoptosis-inducing ligand TRAIL and in drug resistance in human malignancies. c-FLIP is an antagonist of caspases-8 and -10, which inhibits apoptosis and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. c-FLIP is often overexpressed in various human cancers, including breast cancer. Several studies have shown that silencing c-FLIP by specific siRNAs sensitizes cancer cells to TRAIL and anticancer agents. However, systemic use of siRNA as a therapeutic agent is not practical at present. In order to reduce or inhibit c-FLIP expression, small molecules are needed to allow targeting c-FLIP without inhibiting caspases-8 and -10. We used a small molecule inhibitor of c-FLIP, 4-(4-chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH), and show that CMH, but not its inactive analog, downregulated c-FLIPL and c-FLIPS mRNA and protein levels, caused poly(ADP-ribose) polymerase (PARP) degradation, reduced cell survival, and induced apoptosis in MCF-7 breast cancer cells. These results revealed that c-FLIP is a critical apoptosis regulator that can serve as a target for small molecule inhibitors that downregulate its expression and serve as effective targeted therapeutics against breast cancer cells. PMID:20446019

  16. Expression of leukemia/lymphoma-related factor (LRF/POKEMON) in human breast carcinoma and other cancers.

    PubMed

    Aggarwal, Anshu; Hunter, William J; Aggarwal, Himanshu; Silva, Edibaldo D; Davey, Mary S; Murphy, Richard F; Agrawal, Devendra K

    2010-10-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. PMID:20471975

  17. Publicly available human breast cancer data were obtained from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) microarray

    E-print Network

    Kaski, Samuel

    - 2 - Figures Publicly available human breast cancer data were obtained from the National Center data files. Twelve HG-U133 Plus 2.0 affymetrix raw breast cancer series datasets were downloaded from Breast Cancer Patients response profile over 3A-genes Zoom to see details!"#$% !"#%$ !"#&$ !"# !"#% !"## !"#$ !"#$$ !"#&% !"# !"#%$ !"#$ !"#&# !"#%# !"#%& !"#%% !"#%% !"#%' !"#%$ !"#%% !"#%' !"#%' !"#% !"#%& !"#%# !"#% !"#%'$ !"#%' !"#% !"#% !"# !"#% !"#%' !"#%' !"#' !"#%# !"#%$ !"#%& !"#% !"#%' !"#%'' !"#%'# !"# !"#$ !"#& !"#$ !"##% !"##$ !"# !"#& !"# !"#& !"#' !"$# !"$% !"$ !"$' !"#'$ !"$ !"$$ !"$& !"# !"# !"#'' !"# !"# !"#% !"#& !"#% !"#% !"#& !"### !"##& !"#$ !"# !"#% !"#$ !"## !"## !"## !"#%'% !"#% !"#%% !"## !"## !"#$' !"#$ !"# !"#' !"#' !"#%& !"#%' !"### !"#%# !"# !"#$ !"#$& !"#$ !"#'& !"#& !"#&% !"## !"## !"##% !"##% !"#% !"# !"#&' !"## !"#& !"# !"#' !"#' !"# !"# !"#& !"## !"#'% !"# !"# !"#' !"## !"#% !"#% !"# !"# !"#& !"#& !"#&' !"#' !"#% !"## !"#$ !"#$ !"#' !"# !"##& !"#% !"#$ !"## !"#' !"#'$ !"#'# !"# !"#' !"#'' !"# !"#& !"#%'& !"#&$ !"#& !"# !"#$ !"## !"#% !"## !"# !"#% !"#$ !"##' !"# !"## !"# !"#' !"#& !"#& !"#'% !"# !"#% !"##' !"#% !"#%' !"#$ !"#% !"#' !"#&& !"#$ !"#& !"#' !"#% !"# !"# !"'$& !"'#% !"'&%# !"'$% !"'$$ !"'&%$ !"$ !"'$# !"'% !"'$' !"'&% !"'&$# !"'#$ !"'&% !"'&$% !"'# !"'# !"'#& !"'## !"'# !"'#' !"'# !"'&%& !"'&$$ !"'&%% !"'# !"'# !"'&% !"'&% !"'&%' !"#$ !"' !"#& !" !"# !"&% !"$ !"# !"& !"$$ !" !"&# !" !"$ !"# !"& !"% !"$ !" !"& !" !" !"& !" !" !" !"$ !"$ !"# !"&& !"$% !"% !"## !"$' !"& !"#' !"# !"%& !"$ !"$ !"&' !" !"# !"$# !"&$ !" !"% !" !"%% !"' !"$'& !"' !"%' !"$$# !"& !"$# !" !"' !"'# !"# !" !"$$ !"$' !"$% !"# !" !"& !"$## !"$$ !"& !"# !"%$ !"$ !" !"# !"' !"' !" !"% !"$& !"%& !"$$% !"$ !"' !"' !" !"# !"$'% !"$%& !"'%%& !"$'%% !"$'$ !"# !"##%' !"# !"#' !"#'& !" !"'%%% !"$'$' !" !" !"$% !"'%# !"$ !"& !"& !"&% !"$& !"$' !"$& !" !"' !"% !"$'%$ !"'%&' !"$$ !"' !"'%$ !" !"'%&$ !"'&% !"#% !"#' !"# !"#$ !"#' !"# !"#% !"# !"# !"# !"## !"# !"# !"# !"#' !"# !"# !"#$ !"## !"#& !"# !"#& !"'%#% !"'%%$ !"$'# !"#& !"#&# !"#&& !"$& !" !"$$ !"%% !"$& !"$% !"$$' !"$' !"#%& !"$' !"$%' !"$ !"$ !"$'# !"$$ !"$# !"'&$$ !"'&$$ !"& !"'%$ !"'&$% !"'%$$ !"% !"# !"$'% !"'&$$& !"'%$& !"$'$ !"$' !"#%# !"#%& !"$ !"$$ !" !"#% !"$'$ !"$ !" !"'%$% !"$'$ !"#%#$ !"$&' !"#$# !"#%% !"% !"'%# !"$ !" !"'%$ !" !"$'$$ !" !"'%% !"'%%# !"$ !"'%% !"' !"% !"$' !"$''% !"#%&% !"$#' !"$% !"$' !"$## !"$#$ !"$& !"$ !"'&$% !"$%# !"$$% !" !"' !"#' !"#% !"$'% !"'% !"# !"# !"'% !" !"$'#% !"$'$% !"$'' !"'&% !"$ !"'% !" !"$ !"$%$ !"$ !"'&$$ !"' !"'%$' !"$#& !"'&$$$ !"$% !"'&$%# !"'&%' !"$'& !"$'% !" !"# !"$$ !"$& !"$ !"$& !"$' !"$% !"'%$ !"&' !"$' !"'&% !"$ !"$' !"$ !"$$ !"$# !"$'$ !"$' !"$# !"$# !" !"' !" !"$' !"$ !"% !"'%$ !" !"$' !"#% !"$'$ !"$' !"'&$%% !"$ !"$ !"$' !"$' !"#' !"$%$ !"$'' !"'%# !"'%%' !"$& !"$ !"# !"# !"$ !"'%# !"#%#% !"$% !"#%&& !"#%&' !"#%# !"#% !"#%' !"#% !"$'% !"'% !"' !"#%#& !"#%& !"$& !"$'' !"$' !" !"& !"'%'' !"# !" !" !"'%$ !"'%' !"'% !"$' !"$% !"$ !"$#% !"$' !"'%&& !"%$ !"'%' !"&# !" !"'% !"% !"$' !" !"#$ !"'% !"'%# !" !"'&$$% !" !"$% !"# !"$ !"$'$ !"$'$ !"'%% !"'' !"$ !"'&% !"'% !"& !"'%# !" !"' !"'%% !"$# !"$'$ !"'%## !"'%%# !"$'#$ !" !"$'# !"& !"'%% !"'%' !"&$ !" !" !" !"'%$ !"'% !"$'

  18. A human breast cell model of pre-invasive to invasive transition

    SciTech Connect

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  19. Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas.

    PubMed

    Zappasodi, Roberta; Cavanè, Alessandra; Iorio, Marilena V; Tortoreto, Monica; Guarnotta, Carla; Ruggiero, Giusi; Piovan, Claudia; Magni, Michele; Zaffaroni, Nadia; Tagliabue, Elda; Croce, Carlo M; Zunino, Franco; Gianni, Alessandro M; Di Nicola, Massimo

    2014-11-01

    Histone deacetylases (HDAC) extensively contribute to the c-Myc oncogenic program, pointing to their inhibition as an effective strategy against c-Myc-overexpressing cancers. We, thus, studied the therapeutic activity of the new-generation pan-HDAC inhibitor ITF2357 (Givinostat®) against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas (B-NHLs). ITF2357 anti-proliferative and pro-apoptotic effects were analyzed in B-NHL cell lines with c-Myc translocations (Namalwa, Raji and DOHH-2), stabilizing mutations (Raji) or post-transcriptional alterations (SU-DHL-4) in relationship to c-Myc modulation. ITF2357 significantly delayed the in vitro growth of all B-NHL cell lines by inducing G1 cell-cycle arrest, eventually followed by cell death. These events correlated with the extent of c-Myc protein, but not mRNA, downregulation, indicating the involvement of post-transcriptional mechanisms. Accordingly, c-Myc-targeting microRNAs let-7a and miR-26a were induced in all treated lymphomas and the cap-dependent translation machinery components 4E-BP1, eIF4E and eIF4G, as well as their upstream regulators, Akt and PIM kinases, were inhibited in function of the cell sensitivity to ITF2357, and, in turn, c-Myc downregulation. In vivo, ITF2357 significantly hampered the growth of Namalwa and Raji xenografts in immunodeficient mice. Noteworthy, its combination with suboptimal cyclophosphamide, achieved complete remissions in most animals and equaled or even exceeded the activity of optimal cyclophosphamide. Collectively, our findings provide the rationale for testing the clinical advantages of adding ITF2357 to current therapies for the still very ominous c-Myc-overexpressing lymphomas. They equally provide the proof-of-concept for its clinical evaluation in rational combination with the promising inhibitors of B-cell receptor and PI3K/Akt/mTOR axis currently in the process of development. PMID:24648290

  20. Overexpression of the Notch3 receptor and its ligand Jagged1 in human clinically non-functioning pituitary adenomas

    PubMed Central

    LU, RUNCHUN; GAO, HUA; WANG, HONGYUN; CAO, LEI; BAI, JIWEI; ZHANG, YAZHUO

    2013-01-01

    Human clinically non-functioning pituitary adenomas (NFPAs) primarily cause headaches, visual impairment and hypopituitarism due to the effect of the mass of the tumor. Surgery is the first-line treatment for these tumors. To date, no efficacious medical therapy exists for non-functioning adenomas. Previous studies have demonstrated that the Notch3 receptor is involved in the pathogenesis of various types of malignancies, including human NFPAs. The current study focused on the expression of the Notch3 receptor and its ligand Jagged1 in three types of pituitary adenomas and in the normal pituitary gland. Using quantitative real-time RT-PCR assays and western blot analyses, upregulated Notch3 and Jagged1 were observed in human NFPAs, but not in normal human pituitary glands or in hormone-secreting adenomas. Furthermore, Notch3 was positively correlated with Jagged1 at the mRNA and protein levels. These data indicate that Notch3 and Jagged1 may play an important role in the initiation and proliferation of human non-functioning adenomas, and there may be an interaction between Notch3 and Jagged1 in this process. Our study further elucidates the role of the Notch3 signaling pathway in the tumorigenesis of human NFPAs and provides a potential therapeutic target for the medical treatment of these tumors. PMID:23426998

  1. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    SciTech Connect

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  2. Chondrogenesis of human bone marrow-derived mesenchymal stem cells is modulated by complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2.

    PubMed

    Neumann, Alexander J; Alini, Mauro; Archer, Charles W; Stoddart, Martin J

    2013-06-01

    Currently available methods to treat articular cartilage defects still fail to demonstrate satisfactory outcomes for many patients. Functional tissue engineering using human bone marrow-derived mesenchymal stem cells (hMSCs) is a promising alternative approach for the treatment of these defects. This study strived to investigate the combined effect of complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2) on hMSC chondrogenesis. hMSCs were encapsulated in a fibrin hydrogel and seeded into biodegradable polyurethane (PU) scaffolds. A novel three-dimensional transduction protocol was used to transduce cells with an adenovirus encoding for BMP-2 (Ad.BMP-2). Control cells were left untransduced. Cells were cultured for 7 or 28 days in a chondropermessive medium, which lacks any exogenous growth factors. Thereby, the in vivo situation is mimicked more precisely. hMSCs in fibrin-PU composite scaffolds were either left as free-swelling controls or mechanically stimulated using a custom-built bioreactor system that is able to generate joint-like forces. Outcome parameters measured were BMP-2 concentration within the culture medium, and biochemical and gene expression analysis. Mechanical stimulation resulted in an upregulation of chondrogenic genes. Further, glycosaminoglycan (GAG)/DNA ratios were elevated in mechanically stimulated groups. Transduction with Ad.BMP-2 led to a pronounced upregulation of the gene aggrecan and an upregulation of Sox9 message after 7 days. Furthermore, a synergistic effect in combination with mechanical stimulation on collagen 2 message was detected after 7 days. This synergistic increase was more than 8-fold if compared to the additive effect of the application of each stimulus on its own. However, BMP-2 overexpression consistently resulted in a trend toward decreased GAG/DNA ratios in both mechanical stimulated and unloaded groups. PMID:23289669

  3. Human Neural Stem Cells Survive Long Term in the Midbrain of Dopamine-Depleted Monkeys After GDNF Overexpression and Project Neurites Toward an Appropriate Target

    PubMed Central

    Wakeman, Dustin R.; Dodiya, Hemraj B.; Sladek, John R.; Leranth, Csaba; Teng, Yang D.; Samulski, R. Jude

    2014-01-01

    Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%–5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. PMID:24744393

  4. Complete response of severe symptomatic bone marrow metastases from heavily pretreated breast cancer with a 3-weekly trastuzumab schedule. A clinical case.

    PubMed

    Rossi, Antonio; Colantuoni, Giuseppe; Cantore, Nicola; Panico, Luigi; De Chiara, Giovanni; Ferbo, Umberto; Gridelli, Cesare

    2004-01-01

    Overexpression of HER-2/neu in breast cancer has been associated with more aggressive disease and poor overall survival. Trastuzumab, a recombinant humanized monoclonal antibody with high affinity for the HER-2 protein, inhibits the growth of breast cancer cells overexpressing HER-2. Trastuzumab showed, as second-line treatment, 15% of objective response in metastatic breast cancer. Bone marrow metastases are detectable in 23% of the patients with advanced breast cancer at first relapse and this rate increases in patients with metastatic disease. We report a case of a complete response of bone marrow metastases from breast cancer using a 3-weekly trastuzumab schedule, in a heavily pretreated patient with severe symptomatic pancytopenia. PMID:15015614

  5. Perturbational Metabolic Profiling of Human Breast Cancer Cells

    EPA Science Inventory

    A major goal of toxicity testing is to obtain toxicity data for protecting public health and the environment from adverse effects that may be caused by exposure to environmental agents in the air, water, soil and food. The current toxicological studies that target human health ef...

  6. ANTIESTROGENIC GLYCEOLLINS SUPPRESS HUMAN BREAST AND OVARIAN CARCINOMA TUMORIGENESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flavonoid family of phytochemicals, particularly those derived from soy, has received attention regarding their estrogenic activity as well as their effects on human health and disease. The aim of this study was to identify unique soy phytochemicals that had not been previously assessed for est...

  7. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models.

    PubMed

    Liu, Huiping; Patel, Manishkumar R; Prescher, Jennifer A; Patsialou, Antonia; Qian, Dalong; Lin, Jiahui; Wen, Susanna; Chang, Ya-Fang; Bachmann, Michael H; Shimono, Yohei; Dalerba, Piero; Adorno, Maddalena; Lobo, Neethan; Bueno, Janet; Dirbas, Frederick M; Goswami, Sumanta; Somlo, George; Condeelis, John; Contag, Christopher H; Gambhir, Sanjiv Sam; Clarke, Michael F

    2010-10-19

    To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44(+) cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy. PMID:20921380

  8. Antrodia camphorata inhibits proliferation of human breast cancer cells in vitro and in vivo.

    PubMed

    Hseu, You-Cheng; Chen, Ssu-Ching; Chen, Huang-Chi; Liao, Jiuun-Wang; Yang, Hsin-Ling

    2008-08-01

    Antrodia camphorata (A. camphorata) has been shown to induce apoptosis in cultured human breast cancer cells (MDA-MB-231). In this study, we report the effectiveness of the fermented culture broth of A. camphorata in terms of tumor regression as determined using both in vitro cell culture and in vivo athymic nude mice models of breast cancer. We found that the A. camphorata treatment decreased the proliferation of MDA-MB-231 cells by arresting progression through the G1 phase of the cell cycle. This cell cycle blockade was associated with reductions in cyclin D1, cyclin E, CDK4, cyclin A, and proliferating cell nuclear antigen (PCNA), and increased CDK inhibitor p27/KIP and p21/WAF1 in a dose and time-dependent manner. Furthermore, the A. camphorata treatment was effective in delaying tumor incidence in the nude mice inoculated with MDA-MB-231 cells as well as reducing the tumor burden when compared to controls. A. camphorata treatment also inhibited proliferation (cyclin D1 and PCNA) and induced apoptosis (Bcl-2 and TUNEL) when the tumor tissue sections were examined histologically and immunohistochemically. These results suggest that the A. camphorata treatment induced cell cycle arrest and apoptosis of human breast cancer cells both in vitro and in vivo. PMID:18550246

  9. Targeting the Human Epidermal Growth Factor Receptor 2 Pathway in Breast Cancer

    PubMed Central

    Damodaran, Senthilkumar; Olson, Erin M.

    2013-01-01

    The discovery of amplification of human epidermal growth factor receptor 2 (HER2), a member of the epidermal growth factor receptor family, was an important milestone in our understanding of the biology of breast cancers. This heralded the discovery of trastuzumab, a humanized monoclonal antibody targeting HER2. Trastuzumab is the foundation of treatment of HER2-positive breast cancers, demonstrating dramatic responses in patients with metastatic disease. Unfortunately, most tumors will inevitably develop resistance to trastuzumab, necessitating the need for alternate HER2-directed therapeutic approaches. Recent advances in our understanding of the interaction between HER2 and other members of the epidermal growth factor receptor family have led to identification of newer agents, resulting in the expansion of the clinical armamentarium of available agents for the treatment of HER2-positive tumors. In this article, we review the molecular biology of the ERbb receptor family, the use of HER2-targeted agents in early and advanced breast cancer, and the next-generation anti-HER2 agents that are currently in clinical evaluation. PMID:23299030

  10. In Vitro Effects of Herbicides and Insecticides on Human Breast Cells

    PubMed Central

    Rich, Jessica D.; Gabriel, Seth M.; Schultz-Norton, Jennifer R.

    2012-01-01

    Numerous studies have indicated that the pesticides and herbicides used in agricultural processes in the United States and Europe may have detrimental effects upon human health. Many of these compounds have been indicated as potential endocrine and reproductive disruptors, although the studies have examined supraphysiological levels well above the US EPA safe levels for drinking water and have often examined these effects in “model” cell lines such as Chinese hamster ovary cells. We have now examined the cytotoxicity of more environmentally relevant concentrations of four herbicides, acetochlor, atrazine, cyanazine, and simazine, and two insecticides, chlorpyrifos and resmethrin, in three human breast cell lines. Interestingly, cytotoxicity was not observed in the estrogen-dependent MCF-7 mammary epithelial carcinoma cells; rather increases in cell viability were seen for some of the compounds at select concentrations. These results vary greatly from what was observed in the estrogen independent MDA-MB-231 breast cancer cells and the non-cancerous MCF-10A breast cells. This gives insight into how different tumors may respond to pesticide exposure and allows us to make more accurate conclusions about the potential cytotoxicity or, at times, stimulatory actions of these pesticides. PMID:23762632

  11. Dracorhodin Perchlorate Induced Human Breast Cancer MCF-7 Apoptosis through Mitochondrial Pathways

    PubMed Central

    Yu, Jing-hua; Zheng, Gui-bin; Liu, Chun-yu; Zhang, Li-ying; Gao, Hong-mei; Zhang, Ya-hong; Dai, Chun-yan; Huang, Lin; Meng, Xian-ying; Zhang, Wen-yan; Yu, Xiao-fang

    2013-01-01

    Objective: Dracorhodin perchlorate (DP) was a synthetic analogue of the antimicrobial anthocyanin red pigment dracorhodin. It was reported that DP could induce apoptosis in human prostate cancer, human gastric tumor cells and human melanoma, but the cytotoxic effect of DP on human breast cancer was not investigated. This study would investigate whether DP was a candidate chemical of anti-human breast cancer. Methods: The MTT assay reflected the number of viable cells through measuring the activity of cellular enzymes. Phase contrast microscopy visualized cell morphology. Fluorescence microscopy detected nuclear fragmentation after Hoechst 33258 staining. Flowcytometric analysis of Annexin V-PI staining and Rodamine 123 staining was used to detect cell apoptosis and mitochondrial membrane potential (MMP). Real time PCR detected mRNA level. Western blot examined protein expression. Results: DP dose and time-dependently inhibited the growth of MCF-7 cells. DP inhibited MCF-7 cell growth through apoptosis. DP regulated the expression of Bcl-2 and Bax, which were mitochondrial pathway proteins, to decrease MMP, and DP promoted the transcription of Bax and inhibited Bcl-2. Apoptosis-inducing factor (AIF) and cytochrome c which localized in mitochondrial in physiological condition were released into cytoplasm when MMP was decreased. DP activated caspase-9, which was the downstream of mitochondrial pathway. Therefore DP decreased MMP to release AIF and cytochrome c into cytoplasm, further activating caspase 9, lastly led to apoptosis. Conclusion: Therefore DP was a candidate for anti-breast cancer, DP induced apoptosis of MCF-7 through mitochondrial pathway. PMID:23869191

  12. Infracentimetric HER-2 positive breast tumours—review of the literature

    PubMed Central

    da Fonseca Reis Silva, Danilo; Ribeiro, Joana M

    2015-01-01

    Breast cancer is the most common malignant neoplasm in the world among women. As a result of the dissemination of population screening programmes, about half of non-metastatic breast cancers are now diagnosed at stage I. 10–15% of T1abN0 tumours over-express human epidermal growth factor (HER-2). These tumours have a globally excellent prognosis, however, treatment with chemotherapy and/or targeted therapy may further improve outcomes in selected cases. In this article, we will review studies with information on prognosis and benefit of adjuvant therapy for T1abN0 HER-2+ breast cancer. PMID:26635897

  13. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo

    SciTech Connect

    Wang Xiujie . E-mail: xiujiewang@yahoo.com; Yuan Shulan; Wang Jing; Lin Ping; Liu Guanjian; Lu Yanrong; Zhang Jie; Wang, Wendong; Wei Yuquan . E-mail: yuquanwei@mail.sc.cninfo.net

    2006-09-01

    Litchi fruit pericarp (LFP) extract contains significant amounts of polyphenolic compounds and exhibits powerful antioxidative activity against fat oxidation in vitro. The purpose of this study is to confirm the anticancer activity of LFP extract on human breast cancer in vitro and in vivo, and to elucidate the mechanism of its activity. Human breast cancer cells were tested in vitro for cytotoxicity, colony formation inhibition, BrdU incorporation, and gene expression profiling after treatment with LFP extract. Seven nude mice bearing human breast infiltrating duct carcinoma orthotopically were tested for its anticancer activity and expression of caspase-3 in vivo by oral administration of 0.3% (0.3 mg/ml) of LFP water-soluble crude ethanolic extract (CEE) for 10 weeks. LFP extract demonstrated a dose- and time-dependent inhibitory effect on cell growth (IC{sub 5} = 80 {mu}g/ml), and it significantly inhibited colony formation and BrdU incorporation of human breast cancer cells. Oligonucleotide microarray analysis identified 41(1.22%) up-regulated and 129 (3.84%) down-regulated genes after LFP water-soluble CEE treatment; the predominantly up-regulated genes were involved in various biological functions including cell cycle regulation and cell proliferation, apoptosis, signal transduction and transcriptional regulation, and extracellular matrix/adhesion molecules; and down-regulated genes were mainly associated with adhesion, invasion, and malignancy of cancer cells. A 40.70% tumor mass volume reduction and significant increase of casepase-3 protein expression were observed in vivo experiment. The findings in this study suggested that LFP extract might have potential anticancer activity on both ER positive and negative breast cancers, which could be attributed, in part, to its DNA damage effect, proliferating inhibition and apoptosis induction of cancer cells through up-regulation and down-regulation of multiple genes involved in cell cycle regulation and cell proliferation, apoptosis, signal transduction and transcriptional regulation, motility and invasiveness of cancer cells; ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 1 (ADPRTL1), Cytochrome P450, subfamily I (CYP1A1) and Hyaluronan-mediated motility receptor (HMMR) might be the main molecular targets at which LFP water-soluble CEE acted.

  14. Copper, lead and zinc concentrations of human breast milk as affected by maternal dietary practices

    SciTech Connect

    Umoren, J.; Kies, C.

    1986-03-01

    Maternal dietary practices have been found to affect the concentrations of some nutrients in human breast milk. Lead toxicity is a concern in young children. Lead, copper and zinc are thought to compete for intestinal absorption sites. The objective of the current project was to compare copper, lead and zinc contents of breast milk from practicing lacto-vegetarian and omnivore, lactating women at approximately four months post-partum. Analyses were done by atomic absorption spectrophotometry using a carbon rod attachment. Copper concentrations were higher in milk samples from lacto-ovo-vegetarians. Milk samples from the omnivores had the highest lead and zinc concentrations. Lead and copper concentrations in milk were negatively correlated. The higher zinc concentrations in the milk of the omnivore women may have been related to better utilization of zinc from meat than from plant food sources.

  15. Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography.

    PubMed

    South, Fredrick A; Chaney, Eric J; Marjanovic, Marina; Adie, Steven G; Boppart, Stephen A

    2014-10-01

    Successful treatment of breast cancer typically requires surgical removal of the tumor. Optical coherence tomography (OCT) has been previously developed for real-time imaging of the surgical margin. However, it can be difficult to distinguish between normal stromal tissue and cancer tissue based on scattering intensity and structure alone. Polarization-sensitive optical coherence tomography (PS-OCT) is sensitive to form birefringence of biological tissue. We report on the development of a high-speed PS-OCT system and imaging of ex vivo human breast tissue, showing enhanced contrast between healthy and cancerous tissues based upon collagen content confirmed with corresponding histology. These results demonstrate the feasibility of using PS-OCT to supplement structural OCT as a possible method for intraoperative tumor margin evaluation. PMID:25360360

  16. Biochemical distinctions between normal and cancerous human breast tissues obtained from fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhadin, Niclolay N.; Yang, Yuanlong; Ockman, Nathan; Alfano, Robert R.

    1997-08-01

    A novel method for correcting the fluorescence emission and excitation spectra is applied to native fluorescence spectra from normal and cancerous human breast tissues. The method effectively eliminates the distortions produced by internal light-absorption and allows a direct, real-time, correction without any iterative procedures. A simplified photon- diffusion model was used to develop the method. An analysis of both the true fluorescence spectra, and the diffuse reflectance spectra transformed into the ratio of absorption and reduced scattering coefficients, shows distinctive biochemical differences between cancerous and normal breast tissues. The fluorescence spectra feature a lower contribution of NADH and, possibly, collagen and elastin in cancerous tumor tissues as compared with normal tissues. The fluorescence spectra from cancerous tumors also show a lower degree of variability than the spectra from normal tissues. The corrected spectra from cancerous tumors show a greater similarity in their profiles than the non-corrected fluorescence spectra distorted by the internal light- absorption.

  17. Method for breast cancer diagnosis by phase spectrophotometry of human blood plasma

    NASA Astrophysics Data System (ADS)

    Mintser, Ozar P.; Oliinychenko, B. P.

    2012-01-01

    The possibility of breast cancer diagnostics by means of phase structure measurements of laser radiation transformed by human blood plasma samples. The theoretical fundamentals of polarization filtration method for direct phase shifts measurements of microscopic images are provided. The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of blood plasma smears and pathological changes in the mammary gland tissue. The diagnostic criteria of breast cancer nascency are determined.

  18. Method for breast cancer diagnosis by phase spectrophotometry of human blood plasma

    NASA Astrophysics Data System (ADS)

    Mintser, Ozar P.; Oliinychenko, B. P.

    2011-09-01

    The possibility of breast cancer diagnostics by means of phase structure measurements of laser radiation transformed by human blood plasma samples. The theoretical fundamentals of polarization filtration method for direct phase shifts measurements of microscopic images are provided. The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of blood plasma smears and pathological changes in the mammary gland tissue. The diagnostic criteria of breast cancer nascency are determined.

  19. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    NASA Technical Reports Server (NTRS)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  20. Anti-EphA2 Antibodies Decrease EphA2 Protein Levels in Murine CT26 Colorectal and Human MDA-231 Breast Tumors But Do Not Inhibit Tumor Growth

    PubMed Central

    Kiewlich, David; Zhang, Jianhuan; Gross, Cynthia; Xia, Wei; Larsen, Brent; Cobb, Ronald R; Biroc, Sandra; Gu, Jian-Ming; Sato, Takashi; Light, David R; Heitner, Tara; Willuda, Joerg; Vogel, David; Monteclaro, Felipe; Citkowicz, Andrzej; Roffler, Steve R; Zajchowski, Deborah A

    2006-01-01

    Abstract The EphA2 receptor tyrosine kinase has been shown to be over-expressed in cancer and a monoclonal antibody (mAb) that activates and down-modulates EphA2 was reported to inhibit the growth of human breast and lung tumor xenografts in nude mice. Reduction of Eph A2 levels by treatment with anti-EphA2 siRNA also inhibited tumor growth, suggesting that the anti-tumor effects of these agents are mediated by decreasing the levels of EphA2. As these studies employed human tumor xenograft models in nude mice with reagents whose cross-reactivity with murine EphA2 is unknown, we generated a mAb (Ab20) that preferentially binds, activates, and induces the degradation of murine EphA2. Treatment of established murine CT26 colorectal tumors with Ab20 reduced EphA2 protein levels to ? 12% of control tumor levels, yet had no effect on tumor growth. CT26 tumor cell colonization of the lung was also not affected by Ab20 administration despite having barely detectable levels of EphA2. We also generated and tested a potent agonistic mAb against human EphA2 (1G9-H7). No inhibition of human MDA-231 breast tumor xenograft growth was observed despite evidence for >85% reduction of EphA2 protein levels in the tumors. These results suggest that molecular characteristics of the tumors in addition to EphA2 over-expression may be important for predicting responsiveness to EphA2-directed therapies. PMID:16533422

  1. VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells

    SciTech Connect

    Li, Fanni; Li, Chenglin; Zhang, Haiwei; Lu, Zhijian; Li, Zhiyu; You, Qidong; Lu, Na; Guo, Qinglong

    2012-06-01

    It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-?B) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ? We report for the first time that VI-14 possesses anti-cancer properties. ? VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ? VI-14 decreases the activities and expressions of MMP-2/9. ? VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ? VI-14 decreases the nuclear levels and the binding ability of NF-?B and AP-1.

  2. Basic fibroblast growth factor receptors and their prognostic value in human breast cancer.

    PubMed

    Blanckaert, V D; Hebbar, M; Louchez, M M; Vilain, M O; Schelling, M E; Peyrat, J P

    1998-12-01

    We performed a saturation binding study with 125I-labeled FGF (fibroblast growth factor)-2 in a nonselected series of 250 human primary breast cancers. Two hundred twenty-five breast cancer biopsies possessed bFGFR (basic FGF receptor). The median dissociation constant was 0.35 nM (range, 0.014-1.9), and the median concentration was 1126 fmol/mg protein (range, 49-7328). FGFR-1 was localized, using a specific monoclonal antibody, in cancerous cells and in epithelial cells in normal breast or in benign tumors. In all of the tissues studied, light stromal cell staining was also observed. Thus, the localization of FGFR-1 in carcinoma cells supports the hypothesis that an important part of FGF-2 binding reflects binding to FGFR-1. bFGFR concentrations were positively correlated to estrogen receptor and progesterone receptor levels. Cox univariate analyses showed that the bFGFR (> or = upper quartile) was associated to longer relapse-free survival [P = 0.004; RR (risk ratio), 0.46] and overall survival (P = 0.001; RR, 0.35); age, estrogen receptor levels, progesterone receptor levels, node involvement, tumor diameter, and histoprognostic grading were prognostic, also. In Cox multivariate analyses, only the bFGFR, age, node involvement, and histoprognostic grading were prognostic factors; the bFGFR was associated with longer relapse-free survival (P = 0.03; RR, 0.4) and overall survival (P = 0.009; RR, 0.3). The present study confirms that FGF could be an important regulator of human breast cancer growth and that patients with a high level of bFGFR had a better prognosis. PMID:9865904

  3. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells.

    PubMed

    Wang, Shengpeng; Zhong, Zhangfeng; Wan, Jianbo; Tan, Wen; Wu, Guosheng; Chen, Meiwan; Wang, Yitao

    2013-01-01

    Oridonin, a natural tetracycline diterpenoid isolated from Chinese herb Rabdosia rubescens, has been reported to be a potent cytotoxic agent against a wide variety of tumors. However, its effect on highly metastatic breast cancer cells has not been addressed. In this study, we investigated the effects of oridonin on growth, migration and invasion of highly-metastatic human breast cancer cells. Our results showed that oridonin induced potent growth inhibition on human breast cancer cells MCF-7 and MDA-MB-231 in a time- and dose-dependent manner. According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Oridonin triggered the reduction of Bcl-2/Bax ratio, caspase-8, NF-?B (p65), IKK?, IKK?, phospho-mTOR, and increased expression level of cleaved PARP, Fas and PPAR? in a time-dependent manner. Immunofluorescent analysis showed that ?H2AX-containing nuclear foci were significant in oridonin-treated MDA-MB-231 cells. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin ?1 and FAK. In conclusion, oridonin inhibited the growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin ?1/FAK pathway in MDA-MB-231 cells. PMID:23336515

  4. Mammary Epithelial-Specific Disruption of Focal Adhesion Kinase Retards Tumor Formation and Metastasis in a Transgenic Mouse Model of Human Breast Cancer

    PubMed Central

    Provenzano, Paolo P.; Inman, David R.; Eliceiri, Kevin W.; Beggs, Hilary E.; Keely, Patricia J.

    2008-01-01

    Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G2 and G2/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers. PMID:18845837

  5. Noggin Over-Expressing Mouse Embryonic Fibroblasts and MS5 Stromal Cells Enhance Directed Differentiation of Dopaminergic Neurons from Human Embryonic Stem Cells

    PubMed Central

    Lim, Mi-Sun; Shin, Min-Seop; Lee, Soo Young; Minn, Yang-Ki; Hoh, Jeong-Kyu; Cho, Youl-Hee; Kim, Dong-Wook; Lee, Sang-Hun; Kim, Chun-Hyung; Park, Chang-Hwan

    2015-01-01

    Directed methods for differentiating human embryonic stem cells (hESCs) into dopaminergic (DA) precursor cells using stromal cells co-culture systems are already well established. However, not all of the hESCs differentiate into DA precursors using these methods. HSF6, H1, H7, and H9 cells differentiate well into DA precursors, but CHA13 and CHA15 cells hardly differentiate. To overcome this problem, we modified the differentiation system to include a co-culturing step that exposes the cells to noggin early in the differentiation process. This was done using ?-irradiated noggin-overexpressing CF1-mouse embryonic fibroblasts (MEF-noggin) and MS5 stromal cells (MS5-noggin and MS5-sonic hedgehog). After directed differentiation, RT-PCR analyses revealed that engrailed-1 (En-1), Lmx1b, and Nurr1, which are midbrain DA markers, were expressed regardless of differentiation stage. Moreover, tyrosine hydroxylase (Th) and an A9 midbrain-specific DA marker (Girk2) were expressed during differentiation, whereas levels of Oct3/4, an undifferentiated marker, decreased. Immunocytochemical analyses revealed that protein levels of the neuronal markers TH and TuJ1 increased during the final differentiation stage. These results demonstrate that early noggin exposure may play a specific role in the directed differentiation of DA cells from human embryonic stem cells. PMID:26383864

  6. Molecular imaging of human tumor cells that naturally overexpress type 2 cannabinoid receptors using a quinolone-based near-infrared fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng

    2014-07-01

    Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CBR in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CBR-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CBR. To synthesize the CBR-targeted probe (NIR760-Q), a conjugable CBR ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CBR positive cancers and elucidating the role of CBR in the regulation of disease progression.

  7. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    SciTech Connect

    Tan, Can; Zhang, Li-Yang; Chen, Hong; Xiao, Ling; Liu, Xian-Peng; Zhang, Jian-Xiang; Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  8. Overexpression of pro-inflammatory genes and down-regulation of SOCS-1 in human PTC and in hypoxic BCPAP cells.

    PubMed

    De Santis, Elena; Di Vito, Maura; Perrone, Giulietta Anna; Mari, Emanuela; Osti, Maria; De Antoni, Enrico; Coppola, Luigi; Tafani, Marco; Carpi, Angelo; Russo, Matteo A

    2013-02-01

    Hypoxia-inducible factor-1? (HIF-1?) is frequently overexpressed and activated in many cancer types. However, its regulation and function in thyroid carcinomas are only partially known. Aim of our study was to demonstrate that adaptation to the hypoxic micro-environment by human papillary thyroid carcinoma (PTC) cells, in the absence of leukocyte infiltrate, induces a "molecular inflammation" process characterized by the expression of a large set of genes normally involved in inflammation. To address this, tumor, peritumor or normal host tissue from eleven human PTC surgical samples, were separated by laser capture microdissection (LCMD) and studied by real-time quantitative PCR and Western blot. In such condition, we observed an increased expression and activation of HIF-1?, NF-kB and pro-inflammatory genes only in tumor tissues. Importantly, an anti-inflammatory gene such as SOCS-1 was markedly down-regulated in tumor tissue compared to surrounding normal host tissue. Similar results were found in fine-needle aspiration biopsy (FNAB)-derived specimens from PTC and in hypoxic human papillary thyroid tumor cell line, BCPAP. Moreover, we also detected an elevated expression of metalloproteinase-9 (MMP9) both in solid tumor and in hypoxic-treated BCPAP cells. Our findings reveal that, in human PTC tumor, hypoxic conditions are accompanied by up-regulation of pro-inflammatory genes, down-regulation of anti-inflammatory genes and increased expression of MMP9. We propose that a better understanding of the pro- and anti-inflammatory pathways involved in the "molecular inflammation" process even in the absence of leukocyte, may help to clarify progression toward malignancy and may prove useful for new anti-tumor strategy. PMID:23089475

  9. Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells

    PubMed Central

    Zhang, Ming-jun; Liu, Sheng-nan; Xu, Ge; Guo, Ya-nan; Fu, Jian-nan; Zhang, De-chun

    2014-01-01

    Background The existing evidence that nanobacteria (NB) are closely associated with human disease is overwhelming. However, their potential toxicity against cancer cells has not yet been reported. The objective of this study was to investigate the cytotoxic effects of NB and nanohydroxyapatites (nHAPs) against human breast cancer cells and to elucidate the mechanisms of action underlying their cytotoxicity. Methodology/principal findings NB were isolated from calcified placental tissue, and nHAPs were artificially synthesized. The viability of the MDA-MB-231 human breast cancer cell line was tested by using the Kit-8 cell counting kit assay. Apoptosis was examined by transmission electron microscopy and flow cytometry. The endocytosis of NB and nHAPs by MDA-MB-231 cells was initially confirmed by microscopy. Although both NB and nHAPs significantly decreased MDA-MB-231 cell viability and increased the population of apoptotic cells, NB were more potent than nHAPs. After 72 hours, NB also caused ultrastructural changes typical of apoptosis, such as chromatin condensation, nuclear fragmentation, nuclear dissolution, mitochondrial swelling, and the formation of apoptotic bodies. Conclusion/significance In MDA-MB-231 human breast cancer cells, NB and nHAPs exerted cytotoxic effects that were associated with the induction of apoptosis. The effects exerted by NB were more potent than those induced by nHAPs. NB cytotoxicity probably emerged from toxic metabolites or protein components, rather than merely the hydroxyapatite shells. NB divided during culturing, and similar to cells undergoing binary fission, many NB particles were observed in culture by transmission electron microscopy, suggesting they are live microorganisms. PMID:24403832

  10. Safety and efficacy of human breast milk Lactobacillus fermentum CECT 5716. A mini-review of studies with infant formulae.

    PubMed

    López-Huertas, E

    2015-01-01

    Human breast milk has been described as a source of lactic acid bacteria. Lactobacillus fermentum CECT5716 is a human breast milk strain whose probiotic properties, safety and efficacy has been demonstrated in vitro and in vivo, including controlled trials with human adults. Since the origin of this probiotic strain is human breast milk, we aimed to investigate the safety and efficacy of an infant and a follow-on formulas supplemented with this strain of L. fermentum. We carried out two randomised controlled trials: one trial with infants of 6-12 months of age (follow-on formula study) and another one with infants from 1 to 5 months of age (infant formula study). The results from the trials showed that the probiotic formulas were safe, well tolerated and might be useful for the prevention of community-acquired infections. PMID:25519525

  11. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells.

    PubMed

    Chun, Sung Kook; Chung, Sooyoung; Kim, Hee-Dae; Lee, Ju Hyung; Jang, Jaebong; Kim, Jeongah; Kim, Doyeon; Son, Gi Hoon; Oh, Young J; Suh, Young-Ger; Lee, Cheol Soon; Kim, Kyungjin

    2015-11-13

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. PMID:26407844

  12. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells

    PubMed Central

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  13. Revealing Glycoproteins in the Secretome of MCF-7 Human Breast Cancer Cells

    PubMed Central

    Tan, Aik-Aun; Phang, Wai-Mei; Gopinath, Subash C. B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2015-01-01

    Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer. PMID:26167486

  14. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells.

    PubMed

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8-2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  15. Characterization of DNA variants in the human kinome in breast cancer

    PubMed Central

    Agarwal, Divyansh; Qi, Yuan; Jiang, Tingting; Liu, Xiuping; Shi, Weiwei; Wali, Vikram B.; Turk, Benjamin; Ross, Jeffrey S; Fraser Symmans, W; Pusztai, Lajos; Hatzis, Christos

    2015-01-01

    Kinases play a key role in cancer biology, and serve as potential clinically useful targets for designing cancer therapies. We examined nucleic acid variations in the human kinome and several known cancer-related genes in breast cancer. DNA was extracted from fine needle biopsies of 73 primary breast cancers and 19 metastatic lesions. Targeted sequencing of 518 kinases and 68 additional cancer related genes was performed using the SOLiD sequencing platform. We detected 1561 unique, non-synonymous variants in kinase genes in the 92 cases, and 74 unique variants in 43 kinases that were predicted to have major functional impact on the protein. Three kinase groups—CMGC, STE and TKL—showed greater mutational load in metastatic compared to primary cancer samples, however, after correction for multiple testing the difference was significant only for the TKL group (P?=?0.04). We also observed that a higher proportion of histologic grade 1 and 2 cases had high functional impact variants in the SCYL2 gene compared with grade 3 cases. Our findings indicate that individual breast cancers harbor a substantial number of potentially functionally important nucleotide variations in kinase genes, most of which are present in unique combinations and include both somatic and germline functional variants. PMID:26420498

  16. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    SciTech Connect

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu . E-mail: jfchiu@hkucc.hku.hk

    2007-01-15

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor {beta} (TGF{beta}) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGF{beta} treatment, or co-treatment with TGF{beta} inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGF{beta} signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGF{beta} signaling pathway in breast cancer cells.

  17. Characterization of DNA variants in the human kinome in breast cancer.

    PubMed

    Agarwal, Divyansh; Qi, Yuan; Jiang, Tingting; Liu, Xiuping; Shi, Weiwei; Wali, Vikram B; Turk, Benjamin; Ross, Jeffrey S; Fraser Symmans, W; Pusztai, Lajos; Hatzis, Christos

    2015-01-01

    Kinases play a key role in cancer biology, and serve as potential clinically useful targets for designing cancer therapies. We examined nucleic acid variations in the human kinome and several known cancer-related genes in breast cancer. DNA was extracted from fine needle biopsies of 73 primary breast cancers and 19 metastatic lesions. Targeted sequencing of 518 kinases and 68 additional cancer related genes was performed using the SOLiD sequencing platform. We detected 1561 unique, non-synonymous variants in kinase genes in the 92 cases, and 74 unique variants in 43 kinases that were predicted to have major functional impact on the protein. Three kinase groups-CMGC, STE and TKL-showed greater mutational load in metastatic compared to primary cancer samples, however, after correction for multiple testing the difference was significant only for the TKL group (P?=?0.04). We also observed that a higher proportion of histologic grade 1 and 2 cases had high functional impact variants in the SCYL2 gene compared with grade 3 cases. Our findings indicate that individual breast cancers harbor a substantial number of potentially functionally important nucleotide variations in kinase genes, most of which are present in unique combinations and include both somatic and germline functional variants. PMID:26420498

  18. Characterization of DNA variants in the human kinome in breast cancer

    NASA Astrophysics Data System (ADS)

    Agarwal, Divyansh; Qi, Yuan; Jiang, Tingting; Liu, Xiuping; Shi, Weiwei; Wali, Vikram B.; Turk, Benjamin; Ross, Jeffrey S.; Fraser Symmans, W.; Pusztai, Lajos; Hatzis, Christos

    2015-09-01

    Kinases play a key role in cancer biology, and serve as potential clinically useful targets for designing cancer therapies. We examined nucleic acid variations in the human kinome and several known cancer-related genes in breast cancer. DNA was extracted from fine needle biopsies of 73 primary breast cancers and 19 metastatic lesions. Targeted sequencing of 518 kinases and 68 additional cancer related genes was performed using the SOLiD sequencing platform. We detected 1561 unique, non-synonymous variants in kinase genes in the 92 cases, and 74 unique variants in 43 kinases that were predicted to have major functional impact on the protein. Three kinase groups—CMGC, STE and TKL—showed greater mutational load in metastatic compared to primary cancer samples, however, after correction for multiple testing the difference was significant only for the TKL group (P?=?0.04). We also observed that a higher proportion of histologic grade 1 and 2 cases had high functional impact variants in the SCYL2 gene compared with grade 3 cases. Our findings indicate that individual breast cancers harbor a substantial number of potentially functionally important nucleotide variations in kinase genes, most of which are present in unique combinations and include both somatic and germline functional variants.

  19. ‘Proteolytic switching’: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression

    PubMed Central

    MacDougall, J R; Bani, M R; Lin, Y; Muschel, R J; Kerbel, R S

    1999-01-01

    Although it is generally accepted that proteolytic degradation is an important mechanism used by malignant cells in the process of metastasis, comparatively little is known about the regulation of molecules responsible for proteolysis and how they become de-regulated during human tumour progression. Using a genetically related pair of human melanoma cell lines, derived from the same patient at different stages of disease, we analysed differences in the cytokine-mediated regulation of gelatinase B (MMP-9), an enzyme thought to play an important role in cellular invasiveness, and TIMP-1, a physiological inhibitor of this enzyme. Whereas the advanced stage (i.e. metastatic) partner of this pair (WM 239) could produce gelatinase B upon induction with interleukin (IL)-1? or tumour necrosis factor alpha (TNF-?), the early stage (i.e. primary) partner (WM 115) could not. In sharp contrast, we found that TIMP-1 displayed an opposite pattern of induction in these cell lines. Specifically, the early stage cell line, WM 115, demonstrated a marked increase in the production of TIMP-1 when treated with IL-1? or TNF-? whereas the advanced cell line, WM 239, showed no such increase. Treatment with the DNA demethylating agent, 2-deoxy-5-azacytidine, resulted in a marked up-regulation of both gelatinase B and TIMP-1 in both cell lines. It was further found that constitutive overexpression of gelatinase B in WM 239 cells and an additional melanoma cell line (MeWo), derived from a metastatic lesion, was able to greatly enhance lung colonization in an experimental metastasis assay while we did not observe differences in tumorigenicity. From these results we conclude that an altered responsiveness of gelatinase B and TIMP-1 to induction by similar agents is associated with disease progression in human melanoma and that this altered responsiveness can have consequences to the aggressive nature of the disease. © 1999 Cancer Research Campaign PMID:10408860

  20. The human Rgr oncogene is overexpressed in T cell malignancies and induces transformation by acting as a GEF for Ras and Ral

    PubMed Central

    Osei-Sarfo, Kwame; Martello, Laura; Ibrahim, Sherif; Pellicer, Angel

    2011-01-01

    The Ras superfamily of GTPases is involved in the modification of many cellular processes including cellular motility, proliferation and differentiation. Our laboratory has previously identified the RalGDS related (Rgr) oncogene in a DMBA-induced rabbit squamous cell carcinoma and its human orthologue, hRgr. In the present study, we analyzed the expression levels of the human hRgr transcript in a panel of human hematopoietic malignancies and found that a truncated form (diseased-truncated; Dtr-hrgr) was significantly overexpressed in many T-cell derived neoplasms. Although the Rgr proto-oncogene belongs to the RalGDS family of guanine nucleotide exchange factors (GEFs), we show that upon the introduction of hRgr into fibroblast cell lines it is able to elicit the activation of both Ral and Ras GTPases. Moreover, in vitro guanine nucleotide exchange assays confirm that hRgr promotes Ral and Ras activation through GDP dissociation, which is a critical characteristic of GEF proteins. hRgr has guanine nucleotide exchange activity for both small GTPases and this activity was reduced when a point mutation within the catalytic domain (CDC25) of the protein, (cd) Dtr-hRgr, was utilized. These observations prompted the analysis of the biological effects of hRgr and (cd) hRgr expression in cultured cells. Here, we show that hRgr increases proliferation in low serum, increases invasion, reduces anchorage dependence, and promotes the progression into S phase of the cell cycle; properties that are abolished or severely reduced in the presence of the catalytic dead mutant. We conclude that the ability of hRgr to activate both Ral and Ras is responsible for its transformation-inducing phenotype and it could be an important contributor in the development of some T cell malignancies. PMID:21441953

  1. Trastuzumab Emtansine in Treating Older Patients With Human Epidermal Growth Factor Receptor 2-Positive Stage I-III Breast Cancer

    ClinicalTrials.gov

    2015-12-11

    Estrogen Receptor Negative; HER2 Positive Breast Carcinoma; Progesterone Receptor Negative; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIC Breast Cancer

  2. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    SciTech Connect

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi; Li, Wen-Bao; Qu, Xian-Jun

    2013-08-23

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.

  3. The cytotoxic nature of Acanthopanax sessiliflorus stem bark extracts in human breast cancer cells

    PubMed Central

    Thamizhiniyan, Venkatesan; Young-Woong, Choi; Young-Kyoon, Kim

    2015-01-01

    Acanthopanax sessiliflorus, a small woody shrub has traditionally been referred to have anticancer activity, but it has not been scientifically explored so far. Therefore, to investigate the anticancer effects of A. sessiliflorus stem bark extracts (ASSBE), MDA-MB-231 and MCF-7 human breast cancer cells were treated with one of its bioactive fractions, n-hexane (ASSBE-nHF). Cytotoxicity (24 h) was determined by MTT assay and antiproliferative effect was assessed by counting cell numbers after 72 h treatment using hemocytometer. The role of ASSBE-nHF on apoptosis was analysed by annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation pattern and immunoblotting of apoptosis markers. For the assay of enhanced production of ROS and mitochondrial membrane depolarization, specific stains such as DCFH-DA and JC-1 were used, respectively. To understand the mode of action of ASSBE-nHF on MCF-7 cells, cells were pre-treated with antioxidant, n-acetylcysteine. The hexane fraction of ASSBE showed maximum activity towards human breast cancer cells compared to other two fractions at a minimal concentration of 50 ?g/ml. The annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation and immunoblotting assays showed that ASSBE-nHF induces non-apoptotic cell death in MCF-7 and MDA-MB-231 cells. ASSBE-nHF significantly increased the production of ROS and decreased the mitochondrial membrane potential (MMP) in MCF-7 cells. Similarly, it decreased the MMP in MDA-MB-231 cells, but had no effect on ROS production. Further, the cytotoxic effect of ASSBE-nHF in MCF-7 cells was not significantly reversed even in the presence of n-acetylcysteine, an antioxidant. These findings revealed that ASSBE-nHF induces non-apoptotic cell death via mitochondria associated with both ROS dependent and independent pathways in human breast cancer cells. PMID:26587004

  4. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk

    PubMed Central

    Intanon, Montira; Arreola, Sheryl Lozel; Pham, Ngoc Hung; Kneifel, Wolfgang; Haltrich, Dietmar; Nguyen, Thu-Ha

    2014-01-01

    Human milk oligosaccharides (HMO) are prominent among the functional components of human breast milk. While HMO have potential applications in both infants and adults, this potential is limited by the difficulties in manufacturing these complex structures. Consequently, functional alternatives such as galacto-oligosaccharides are under investigation, and nowadays, infant formulae are supplemented with galacto-oligosaccharides to mimic the biological effects of HMO. Recently, approaches toward the production of defined human milk oligosaccharide structures using microbial, fermentative methods employing single, appropriately engineered microorganisms were introduced. Furthermore, galactose-containing hetero-oligosaccharides have attracted an increasing amount of attention because they are structurally more closely related to HMO. The synthesis of these novel oligosaccharides, which resemble the core of HMO, is of great interest for applications in the food industry. PMID:24571717

  5. MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs

    PubMed Central

    Wang, Lu; Zeng, Hao; Wang, Qiang; Zhao, Zibo; Boyer, Thomas G.; Bian, Xiuwu; Xu, Wei

    2015-01-01

    The RNA polymerase II mediator complex subunit 12 (MED12) is frequently mutated in human cancers, and loss of MED12 has been shown to induce drug resistance through activation of transforming growth factor–? receptor (TGF-?R) signaling. We identified MED12 as a substrate for coactivator-associated arginine methyltransferase 1 (CARM1). Not only are the expression levels of CARM1 and MED12 positively correlated, but their high expression also predicts better prognosis in human breast cancers after chemotherapy. MED12 was methylated at R1862 and R1912 by CARM1, and mutation of these sites in cell lines resulted in resistance to chemotherapy drugs. Furthermore, we showed that the methylation-dependent drug response mechanism is distinct from activation of TGF-?R signaling, because methylated MED12 potently suppresses p21/WAF1 transcription. Cells defective in MED12 methylation have up-regulated p21 protein, which correlates with poor prognosis in breast cancer patients treated with chemotherapy. Collectively, this study identifies MED12 methylation as a sensor for predicting response to commonly used chemotherapy drugs in human cancers. PMID:26601288

  6. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression

    SciTech Connect

    Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju; Hur, Hyun; Kim, Jeong-Mi; Han, Ji-Hey; Hwang, Jin-Ki; Park, Byung-Hyun; Park, Jin-Woo; Youn, Hyun Jo; Jung, Sung Hoo; Kim, Byeong-Soo; Jung, Ji-Youn; Lee, Sung-Ho; Park, Chang-Sik; Kim, Jong-Suk

    2011-02-25

    Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whether DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.

  7. Human Breast Milk miRNA, Maternal Probiotic Supplementation and Atopic Dermatitis in Offspring

    PubMed Central

    Simpson, Melanie Rae; Brede, Gaute; Johansen, Jostein; Johnsen, Roar; Storrø, Ola; Sætrom, Pål; Øien, Torbjørn

    2015-01-01

    Background Perinatal probiotic ingestion has been shown to prevent atopic dermatitis (AD) in infancy in a number of randomised trials. The Probiotics in the Prevention of Allergy among Children in Trondheim (ProPACT) trial involved a probiotic supplementation regime given solely to mothers in the perinatal period and demonstrated a ~40% relative risk reduction in the cumulative