Sample records for overriding continental plate

  1. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, Adam; Buffett, Bruce; Becker, Thorsten

    2015-04-01

    The curvature of a subducting plate exerts a key control on the amount of gravitational potential energy that is dissipated via bending during subduction. We use 2-D, numerical subduction models to explore the dependence of the subducting plate curvature, quantified as a radius of curvature, on the thickness of the overriding plate. This dependence is examined for subducting plates with viscous and visco-plastic rheologies. We find that the radius of curvature increases with overriding plate thickness for visco-plastic subducting plates, yet we do not observe this correlation for purely viscous subducting plates. The effective viscosity of the slab hinge is weakened in visco-plastic subducting plates and so external forces on the upper slab surface, which are dependent on overriding plate thickness, play a major role in dictating slab curvature. On Earth, we demonstrate that there is indeed a positive correlation between overriding plate thickness, estimated from seismic tomography, and radius of curvature, derived from earthquake hypocenter distributions. We therefore suggest that weakening of the subducting plate hinge, which occurs in the visco-plastic plates, is important in generating the slab curvature systematics observed on Earth.

  2. Overriding plate thickness control on subducting plate curvature

    NASA Astrophysics Data System (ADS)

    Holt, Adam F.; Buffett, Bruce A.; Becker, Thorsten W.

    2015-05-01

    Subducting plate (SP) curvature exerts a key control on the amount of bending dissipation associated with subduction, and the magnitude of the subduction-resisting bending force. However, the factors controlling the development of SP curvature are not well understood. We use numerical models to quantify the role of SP rheology on the minimum radius of curvature, Rmin. We find that Rmin depends strongly on the SP thickness when the rheology is viscous. This dependence is substantially reduced when the SP behaves plastically, in line with the lack of correlation between Rmin and SP thickness on Earth. In contrast, plasticity leads to a strong positive correlation between Rmin and the overriding plate (OP) thickness. Using an analysis of Rmin versus OP thickness, we show that such a positive correlation exists on Earth. This suggests that OP structure, in conjunction with SP plasticity, is crucial in generating slab curvature systematics on Earth.

  3. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, A.; Buffett, B. A.; Becker, T. W.

    2014-12-01

    The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is found in real subduction zones when the radius of curvature is compared with near-trench overriding lithospheric thickness. We suggest that the thickness of the overriding plate, through controlling the depth extent of the slab suction caused by the strong overriding plate, exerts a primary control on the curvature of subducting lithosphere.

  4. 3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate

    NASA Astrophysics Data System (ADS)

    Mason, W. G.; Moresi, L.; Betts, P. G.

    2008-12-01

    We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.

  5. Trench migration and overriding plate stress in dynamic subduction models

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Becker, T. W.; Buffett, B. A.

    2015-04-01

    On Earth, oceanic plates subduct beneath a variety of overriding plate (OP) styles, from relatively thin and negatively buoyant oceanic OPs to thick and neutrally/positively buoyant continental OPs. The inclusion of an OP in numerical models of self-consistent subduction has been shown to reduce the rate that subducting slabs roll back relative to the equivalent single plate models. We use dynamic, 2-D subduction models to investigate how the mechanical properties, namely viscosity, thickness, and density, of the OP modify the slab rollback rate and the state of stress of the OP. In addition, we examine the role of the subducting plate (SP) viscosity. Because OP deformation accommodates the difference between the slab rollback rate and the far-field OP velocity, we find that the temporal variations in the rollback rate results in temporal variations in OP stress. The slabs in our models roll back rapidly until they reach the lower mantle viscosity increase, at which point the rollback velocity decreases. Concurrent with this reduction in rollback rate is a switch from an OP dominated by extensional stresses to a compressional OP. As in single plate models, the viscosity of the SP exerts a strong control on subducting slab kinematics; weaker slabs exhibit elevated sinking velocities and rollback rates. The SP viscosity also exerts a strong control on the OP stress regime. Weak slabs, either due to reduced bulk viscosity or stress-dependent weakening, have compressional OPs, while strong slabs have dominantly extensional OPs. While varying the viscosity of the OP alone does not substantially affect the OP stress state, we find that the OP thickness and buoyancy plays a substantial role in dictating the rate of slab rollback and OP stress state. Models with thick and/or negatively buoyant OPs have reduced rollback rates, and increased slab dip angles, relative to slabs with thin and/or positively buoyant OPs. Such elevated trench rollback for models with positively buoyant OPs induces extensional stresses in the OP, while OPs that are strongly negatively buoyant are under compression. While rollback is driven by the negative buoyancy of the subducting slab in such models of free subduction, we conclude that the physical properties of the OP potentially play a significant role in modulating both rollback rates and OP deformation style on Earth.

  6. Overriding plate deformation and its energy dissipation in three-dimensional subduction models

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter; Duarte, Joao

    2015-04-01

    Analogue and numerical models of subduction have been used to investigate overriding plate deformation during subduction. However, most models either exclude an overriding plate or impose an external force/velocity. Here, we present three-dimensional buoyancy-driven laboratory subduction models including an overriding plate to study the progressive deformation of the overriding plate during subduction. Considering there is uncertainty in the effective viscosity ratio between the subducting plate and sub-lithospheric upper mantle (?SP/?UM), a variability in overriding plate thickness (TOP), and complexity of the far-field plate boundary conditions in natural subduction zones, we investigate models in which we vary ?SP/?UMfrom 157 to 560, TOP from 1.0 cm to 2.5 cm (scaling to 50-125 km in nature), and far-field plate boundary conditions of the overriding plate and subducting plate. Our results show that the variability of these three parameters has an influence on the patterns of overriding plate deformation. Furthermore, we have used the subduction models to quantify the force (FOPD) that drives overriding plate deformation and the involved energy dissipation rate (?OPD) during such deformation, and we compare them with the negative buoyancy (FBU) and the total potential energy release rate (?BU) of the subducted slab, respectively. In our models of narrow subduction zones (15 cm in experiment, scaling to 750 km in nature) the overriding plate always experiences overall extension during trench retreat. Overall, FOPD/FBU has average values of 0.5-2.5%, with a maximum of 5.0% and ?OPD/?BUhas average values of 0.10-0.30%, with a maximum of 0.70%, which indicate that only a small portion of the negative buoyancy of the subducted slab is used to deform the overriding plate and an even smaller percentage of the slab's potential energy is consumed during overriding plate deformation. In addition, our results show that 2-30% of the overriding plate energy dissipation is dissipated in the forearc region and 14-42% in the region of maximum backarc extension. Finally, our calculated force to deform overriding plate is of comparable magnitude as the ridge push force in nature.

  7. Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous

    E-print Network

    Müller, Dietmar

    Sunda-Java trench kinematics, slab window formation and overriding plate deformation since along the 3200 km long Sunda-Java trench, one of the largest subduction systems on Earth. Combining window underlying the Java­South Sumatra region, and we propose that decreased mantle wedge viscosities

  8. Composition of the continental plates

    USGS Publications Warehouse

    Gilluly, J.

    1954-01-01

    The structures of continental plates and of oceanic basins suggested by several seismologists are utilized to estimate the relative volumes of sial and sima in the earth's crust. It seems that sial of the composition of the average igneous rock constitutes fully 26% and perhaps as much as 43% of the total crust. This ratio is far higher than seems likely if the sial had been entirely derived through fractional crystallization of a basaltic magma. The relative paucity of intermediate rocks as compared with granite and gabbro in the crust points in the same direction. The tentative conclusion is reached that the sial owes a large part of its volume to some process other than fractional crystallization of basalt-possibly to the emanation of low-melting constituents such as water, silica, potassa, soda, and alumina directly from the mantle to the crust. ?? 1954 Springer-Verlag.

  9. The Continental Plates are Getting Thicker.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1986-01-01

    Reviews seismological studies that provide evidence of the existence of continental roots beneath the continents. Suggests, that through the collisions of plate tectonics, continents stabilized part of the mobile mantle rock beneath them to form deep roots. (ML)

  10. Plate Tectonics and Continental Drift: Classroom Ideas.

    ERIC Educational Resources Information Center

    Stout, Prentice K.

    1983-01-01

    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  11. Crustal Structure and Deformation of the Incoming and Overriding Plates of the North Chilean Subduction Zone, 21-23.5S

    NASA Astrophysics Data System (ADS)

    Calahorrano, A.; Ranero, C. R.; Barckhausen, U.; Reichert, C.; Grevemeyer, I.

    2008-12-01

    We present MCS images of the crustal structure of the subduction zone of north Chile. The 50 Ma oceanic Nazca Plate subducts sub-orthogonally below the South American Plate at ~80-90 mm/yr. Here we focus on three reflection lines from Sonne 104 cruise that run perpendicular to the coast for ~450 km, imaging the overriding plate and some ~350 km of the oceanic incoming plate. The ocean plate displays well-defined top of the igneous crust reflections and fairly continuous Moho reflections 2-3 seconds (TWT) deeper. The deepest Moho reflections occur across the Iquique Ridge. The seismic data shows the deformation of the incoming oceanic crust as it approaches the outer rise bulge and bends into the trench. The top of the igneous crust shows clear development of faulting and prominent trenchward dipping reflections appears in the mantle, clearly below the Moho reflection. The bending-related deformation of the incoming plate forming horst-and-graben structures is observed underthursting below the margin. The inter- plate contact is observed about 50 km landward from the deformation front. The trench axis is largely devoid of stratified turbidites. But the three seismic lines show abundant debris from the continental slope accumulates at the slope toe forming a 5-10 km wide sediment prism. The prism is also observable in multibeam bathymetry maps. The landward segment of the frontal prism appears to be partially underthrusting the margin, providing clastic, fluid-rich material to the subduction channel. Thus the amount of fluid-rich sediment in this apparently starved trench seems to be considerable.

  12. Continental tectonics in the aftermath of plate tectonics

    Microsoft Academic Search

    Peter Molnar

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is

  13. Continental tectonics in the aftermath of plate tectonics

    NASA Technical Reports Server (NTRS)

    Molnar, Peter

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.

  14. Resistance of plate motion due to continental deformation (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, M. K.

    2013-12-01

    Convergent plate margins that produce high mountains often induce deformation that extends for hundreds to thousands kilometers inboard of the plate boundary. Buoyancy forces that are derived from this thickened, elevated continental crust are commonly thought to resist further convergence and contribute to changes in plate rates as the balance of forces on a plate boundary evolves. For orogens that develop broad plateau-style topography, the strength of the deforming continent and the distance over which it deforms may also contribute to plate forces, although this forcing has rarely been considered. For example, the post-collisional slowing of India with respect to Eurasia challenges the role of topography as the cause of decreasing convergence rates and instead favors the role of deforming a confined mantle lithosphere as the cause of slowing. Here, geologic evidence suggests that compressional deformation began at the distal extent of the orogen when continental collision initiated and that the majority of deformation since has remained localized along what can be considered to be a stationary boundary. As post-collisional convergence continued, convergence rates have declined exponentially as did the distance across the intervening region of deformation. The decline in rate and distance occurred in tandem such that the bulk average strain rate across the orogen remained constant and is equal to the modern strain rate determined by GPS. For both linear and non-linear constitutive relationships, a constant average strain rate implies constant average stress (or constant forcing). A constant force per unit length of the plate boundary might be explained by the viscous resistance of the deforming continental mantle lithosphere, as opposed to a change in forces that would be expected from the buoyancy of the evolving high topography. A viscous resistance of the continental lithosphere has not previously been considered as a type of plate forcing, and the Indo-Asia orogen may offer one extreme example of such. Other examples include the ongoing Arabian-Eurasia continental collision and the ocean-continent subduction beneath South America, where exponentially decreasing convergence rates and mountain building are also observed. Long-lived, far-field deformation in the Arabian example may provide analogous to the Tibet case where decreasing convergence rates follow a decrease over which that convergence is absorbed by continental deformation. Unlike Tibet and Arabia, the outward expansion of deformation away from the plate boundary in the Andean orogen suggests that bulk strain rates must have decreased through time. Possibly, such differences may be related to time-dependent rheologic changes associated with subduction-related magmatism, changes in the frictional resistance along the plate contact, or the diminished role of viscous resistance in subduction settings compared to their continental collision counterpart.

  15. Linking continental drift, plate tectonics and the thermal state of the Earth's mantle

    E-print Network

    Tackley, Paul J.

    Linking continental drift, plate tectonics and the thermal state of the Earth's mantle T. Rolf a between continental drift, oceanic plate tectonics and the thermal state of the Earth's mantle, by using Arthur Holmes proposed that continental drift and seafloor kinematics are surface expressions of large

  16. Quantifying Continental Overlap in Plate Reconstruction Models for the North Atlantic Using Continental Extension Estimates from Gravity Inversion

    Microsoft Academic Search

    A. Alvey; N. J. Kusznir; T. H. Torsvik; C. Gaina

    2008-01-01

    Plate reconstruction models require knowledge of ocean-continent transition (OCT) location, the amount of continental lithosphere extension experienced during breakup and the breakup age. Gravity inversion has been used to estimate the location of the OCT and to determine lithosphere extension across the rifted margins. The gravity inversion method is carried out in the 3D spectral domain and predicts Moho depth,

  17. Accretion of a Small Continental Fragment to a Larger Continental Plate: Mesozoic Ecuador as a Case-Study Area

    NASA Astrophysics Data System (ADS)

    Massonne, H.

    2013-05-01

    Only a few regions on Earth are appropriate to study processes that have happened in deeper crustal levels during the accretion of a microplate to a larger continental plate. Ecuador is one of these regions where in middle Mesozoic times a small continental fragment collided with the South-American plate. Along the suture between both plates, which occurs close to the present volcanic belt of Ecuador, high-pressure (HP) metamorphic rocks developed. These rocks, which are metapelites, metabasites, and metagranitoids, record processes during the microcontinent-continent collision (Massonne and Toulkeridis, 2012, Int. Geol. Rev. 54). The pressures, determined for the HP rocks, were as high as 14 kbar at temperatures somewhat above 500C. The HP stage was followed by slight heating at the early exhumation. Peak temperatures up to 560C were reached at pressures ?10 kbar. This HP metamorphism was caused by the collision of the microplate with the South-American plate resulting in crustal thickening. The ascent of the HP rocks occurred in an exhumation channel. Before the collision, an oceanic basin existed between these plates. Probably, it was narrow as eclogite bodies are lacking in the N-S trending HP belt of Ecuador. Such bodies, especially if the eclogites had experienced pressures in excess of 20 kbar, are markers of a collision of major continental plates in Phanerozoic times with originally extended oceanic basins between these plates. In a more global context, the narrow ocean between the microplate and the South American continent is assumed to have been the westernmost portion of the Neo-Tethys which had extended to completely separate the two major fragments of former Pangaea before the opening of the southern Atlantic Ocean. This opening caused the closure of the narrow Neo-Tethys segment between the colliding microplate and the South American plate. This segment was bordered by E-W trending transform faults. A fault system (La Palma - El Guayabo fault, Tahuin Dam fault) in southern Ecuador represents the southern termination of the segment and the microplate as well. The northern termination is characterized by faults bordering the Caribbean plate. As the Antarctic Ocean also opened in late Mesozoic times, the addressed transform faults became compressional strike-slip faults which caused crustal thickening during their activity. In their environment HP rocks also formed and were exhumed in an exhumation channel. At the end of the Mesozoic, oceanic crust of the Nasca plate started to be subducted below the accreted microcontinent. This process, which resulted in the formation of the prominent magmatic arc in Ecuador and Columbia in Tertiary times, is still ongoing.

  18. Strain weakening enables continental plate tectonics Frdric GUEYDAN (1), Jacques PRCIGOUT (2) and Laurent G.J. MONTESI (3)

    E-print Network

    Paris-Sud XI, Universit de

    1 Strain weakening enables continental plate tectonics Frdric GUEYDAN (1), Jacques PRCIGOUT (2-scale strain localization and hence enables plate tectonics. No rheological model proposed to date is comprehensive enough to describe both the weakness of plate boundary and rigid-like behaviour of plate interiors

  19. INTRODUCTION The continental promontory of the Eurasian plate in SE

    E-print Network

    Royal Holloway, University of London

    , backarc extension, subduction rollback, strike-slip faulting, mantle plume activity, and differential crustal flow in response to changing forces at the plate edges. Deformation produced by this dynamic model during the Cenozoic, including the South China Sea whose origin remains controversial. To the west

  20. Overloading, Overriding Method Dispatch

    E-print Network

    Carette, Jacques

    Overloading, Overriding and Method Dispatch Upasana Pujari #12;POLYMORPHISM | | poly morphos-time. Resolution based on the dynamic type of the object(s). Uses method dispatch table or Virtual function table

  1. Large earthquakes in stable continental plate interiors: the need for a new paradigm

    NASA Astrophysics Data System (ADS)

    Calais, Eric; Camelbeeck, Thierry; Stein, Seth

    2014-05-01

    The occurrence of large earthquakes in stable continental plate interiors has so far resisted our understanding. Contrary to plate boundary settings, where a balance is achieved over <1000 years between the rates at which strain accumulates and is released in large events, intraplate earthquakes occur in regions where no discernable strain is building up today. In the absence of current strain accumulation, their triggering mechanism remains elusive, as well as the mechanism by which faults having already ruptured in large events might be reloaded to permit sequences of large events, such as in the New Madrid, Central-Eastern U.S., sequence. Earthquake activity in such settings does not seem to be persistent at the location of past large historical earthquakes, which appear to be episodic, clustered and spatially migrating through time. The relationship between long-term geological structures and earthquakes is poorly understood and the ability of intraplate current producing M3-4 events to rupture in M6 and larger earthquakes is unknown. Finally, the fact that the steady-state plate boundary model -- which forms the basis for seismic hazard estimation -- does not seem to hold in continental interiors makes accurate seismic hazard estimation in such setting particularly challenging. We will review these issues and argue that our understanding of earthquakes in continental plate interiors requires a paradigm shift.

  2. Role of plate kinematics and plate-slip-vector partitioning in continental magmatic arcs: Evidence from the Cordillera Blanca, Peru

    SciTech Connect

    McNulty, B.A. [California State Univ., Carson, CA (United States). Dept. of Earth Sciences] [California State Univ., Carson, CA (United States). Dept. of Earth Sciences; Farber, D.L. [Lawrence Livermore National Lab., CA (United States). Inst. of Geophysics and Planetary Physics] [Lawrence Livermore National Lab., CA (United States). Inst. of Geophysics and Planetary Physics; Wallace, G.S.; Lopez, R. [Univ. of California, Santa Cruz, CA (United States). Earth Science Dept.] [Univ. of California, Santa Cruz, CA (United States). Earth Science Dept.; Palacios, O. [Inst. de Geologico Minero y Metalurgico, Lima (Peru)] [Inst. de Geologico Minero y Metalurgico, Lima (Peru)

    1998-09-01

    New structural and geochronological data from the Cordillera Blanca batholith in the Peruvian Andes, coupled with Nazca-South American plate-slip-vector data, indicate that oblique convergence and associated strike-slip partitioning strongly influenced continental magmatic arc evolution. Both the strain field and mode of magmatism (plutonism vs. volcanism) in the late Miocene Peruvian Andes were controlled by the degree to which the arc-parallel component of the plate slip vector was partitioned into the arc. Strong strike-slip partitioning at ca. 8 Ma produced arc-parallel sinistral shear, strike-slip intercordilleran basins and east-west-oriented tension fractures that facilitated emplacement of the Cordillera Blanca batholith (ca. 8.2 {+-} 0.2 Ma). Periods during which the strike-slip component was not partitioned into the arc (ca. 10 and ca. 7 Ma) were associated with roughly arc-normal contraction and ignimbrite volcanism. The data thus support the contention that contraction within continental magmatic arcs favors volcanism, whereas transcurrent shear favors plutonism. The tie between oblique convergence and batholith emplacement in late Miocene Peruvian Andes provides a modern analogue for batholiths emplaced as the result of transcurrent shear in ancient arcs.

  3. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frdric; Cloetingh, Sierd

    2015-08-01

    The initiation and subsequent evolution of intra-plate orogens, resulting from continental plate interior deformation due to transmission of stresses over large distances from the active plate boundaries, is controlled by lateral and vertical strength contrasts in the lithosphere. We present lithospheric-scale analogue models combining 1) lateral strength variations in the continental lithosphere, and 2) different vertical rheological stratifications. The experimental continental lithosphere has a four-layer brittle-ductile rheological stratification. Lateral heterogeneity is implemented in all models by increased crustal strength in a central narrow block. The main investigated parameters are strain rate and strength of the lithospheric mantle, both playing an important role in crust-mantle coupling. The experiments show that the presence of a strong crustal domain is effective in localizing deformation along its boundaries. After deformation is localized, the evolution of the orogenic system is governed by the mechanical properties of the lithosphere such that the final geometry of the intra-plate mountain depends on the interplay between crust-mantle coupling and folding versus fracturing of the lithospheric mantle. Underthrusting is the main deformation mode in case of high convergence velocity and/or thick brittle mantle with a final asymmetric architecture of the deep lithosphere. In contrast, lithospheric folding is dominant in case of low convergence velocity and low strength brittle mantle, leading to the development of a symmetric lithospheric root. The presented analogue modelling results provide novel insights for 1) strain localization and 2) the development of the asymmetric architecture of the Pyrenees.

  4. Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17.

    ERIC Educational Resources Information Center

    Marques, Luis; Thompson, David

    1997-01-01

    This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)

  5. Continental Margin Tectonics Along the Convergent Plate Boundary of Central Chile

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Ranero, C. R.; Diaz, J.; Reichert, C.; Vera, E. E.

    2003-12-01

    Multibeam bathymetry along central Chile provides a detailed map of recent tectonic deformation of the margin and incoming oceanic plate from about 28? S to 36? S. The data were collected during R/V SONNE cruises 101, 102, 104 and 161 and a cruise with R/V Vidal Gormaz. Individual pings were edited and cleaned and the different surveys have been merged after depth calculations using a different measured velocity function for each of them. The oceanic Nazca plate is covered by about 100 m of pelagic sediment and the morphology of the igneous basement is displayed well in the bathymetric maps. The oceanic plate topography changes markedly along the subduction zone and exerts a first order control in the distribution of trench sediment infill and in the tectonic style of deformation of the margin. A major boundary occurs at latitude 32?-33? S where the hotspot volcanic chain of Juan Fernadez is currently subducting. The chain subducts oblique to the margin strike and thus the tectonic boundary has been migrating along the subduction zone through time. South of the area of ridge subduction the trench is filled with turbidites and a 20-40 km wide accretionary prism occurs at the front of the continental slope. The upper slope has a smooth morphology indicative of a quiet tectonic domain. At the current area of ridge subduction and north of it (28?-33?S) the trench has a reduced turbiditic infill. The trench infill seems to be at minimum at 31-32S and slightly larger to the north as the trench axis becomes deeper. Here, a small ridge at the slope toe may indicate that reduced accretion is active. The continental slope is deeper and more rugged that to the south displaying a series of small midslope basins. Here, the continental slope morphotectonic structure is the product of tectonic erosion due to the passage of the volcanic ridge.

  6. Peruvian Trench to Andean Thrust Front: Evidence for Coupling of the Peruvian Flat Slab to the Over-Riding South American Plate

    NASA Astrophysics Data System (ADS)

    Bishop, B.; Beck, S. L.; Zandt, G.; Scire, A. C.; Wagner, L. S.; Long, M. D.; Tavera, H.

    2014-12-01

    In central Peru the combination of an unusually shallow Wadati-Benioff zone and lack of arc volcanism are indicators of flat slab subduction and are associated with both the ongoing subduction of the Nazca Ridge and the prior subduction of the Inca Plateau. Data from the PULSE experiment has allowed us to better constrain the geometry of the southern half of the Peruvian flat slab through analysis of teleseismic receiver functions, Pn and Sn phases from regional intermediate (>100 km depth) and deep (>500 km depth) earthquakes at the margins of the flat slab region, and teleseismic tomgraphy. We observe a low velocity anomaly below the subducted portion of the Nazca Ridge in the teleseismic S-wave tomography. Utilizing both Pn and Sn phases from regional intermediate and deep earthquakes at the margins of the flat slab, we have found significant travel time delays for propagation paths passing through this anomaly, confirming the presence of this low velocity anomaly under the flat slab. This anomaly likely contributes to the buoyancy of this segment of the flat slab, increasing the coupling with the upper plate. Both the teleseismic tomographic and our receiver function results indicate that the southern segment of the Peruvian flat slab extends locally more than 100 km further inboard than previous estimates. As the shallow portion of the slab inboard of the subducting Nazca Ridge is largely aseismic, these new results help to better constrain the geometry of the Peruvian flat slab as it re-subducts back into the mantle. Between 10S and 16S the subducted oceanic crust along the inboard projection of the Nazca Ridge lies at a depth of 60 km to 70 km while subducted crust immediately north and south of the ridge projection lies at depths of 80 km to 90 km suggesting the slab is sinking north and south of the ridge. The unusually shallow depth of the slab along the ridge's projection may indicate that the subducted Nazca Plate is coupled to the South American Plate far inboard from the trench. This coupling may be causing deformation beyond the active Andean thrust front. The Fitzcarrald Arch, a long-wavelength topographic feature along the ridge's projection and east of the edge of Andean deformation, lies immediately inboard of our shallowest observed subducted oceanic crust and may be an example of this coupling induced deformation.

  7. The Break-up and Drifting of the Continental Plates in 2D Models of Convecting Mantle

    NASA Astrophysics Data System (ADS)

    Dal Zilio, L.; Faccenda, M.; Capitanio, F. A.

    2014-12-01

    Since the early theory of Wegener, the break-up and drift of continents have been controversial and hotly debated topics. To assist the interpretation of the break-up and drift mechanisms and its relation with mantle circulation patterns, we carried out a 2D numerical modelling of the dynamics of these processes. Different regimes of upper plate deformation are studied as consequence of stress coupling with convection patterns. Subduction of the oceanic plate and induced mantle flow propagate basal tractions to the upper plate. This mantle drag forces (FMD) can be subdivided in two types: (1) active mantle drag occurring when the flow drives plate motion (FAD), and (2) passive mantle drag (FPD), when the asthenosphere resists plate motion. The active traction generated by the convective cell is counterbalanced by passive mantle viscous drag away from it and therefore tension is generated within the continental plate. The shear stress profiles indicate that break-up conditions are met where the gradient of the basal shear stress is maximised, however the break-up location varies largely depending on the convection style primarily controlled by slab stagnation on the transition zone, avalanching through or subduction in the lower mantle. We found good correspondence between our models and the evolution of convergent margins on Earth, giving precious insights into the break-up and drifting mechanisms of some continental plates, such as the North and South American plates, Calabria and the Japan Arc.

  8. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103W and 89W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, ?, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102W to 95W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94W. West of 102W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.

  9. Uplift along passive continental margins, changes in plate motion and mantle convection

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Chalmers, James A.; Bonow, Johan M.

    2014-05-01

    The origin of the forces that produce elevated, passive continental margins (EPCMs) is a hot topic in geoscience. It is, however, a new aspect in the debate that episodes of uplift coincide with changes in plate motion. This has been revealed, primarily, by studies of the burial, uplift and exhumation history of EPCMs based on integration on stratigraphic landscape analysis, low-temperature thermochronology and evidence from the geological record (Green et al., 2013). In the Campanian, Eocene and Miocene, uplift and erosion affected the margins of Brazil and Africa (Japsen et al., 2012b). The uplift phases in Brazil coincided with main phases of Andean orogeny which were periods of relatively rapid convergence at the Andean margin of South America (Cobbold et al., 2001). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, Japsen et al. (2012b) suggested that all these uplift events have a common cause, which is lateral resistance to plate motion. Because the uplift phases are common to margins of diverging plates, it was also suggested that the driving forces can transmit across the spreading axis; probably at great depth, e.g. in the asthenosphere. Late Eocene, Late Miocene and Pliocene uplift and erosion shaped the elevated margin of southern East Greenland (Bonow et al., in review; Japsen et al., in review). These regional uplift phases are synchronous with phases in West Greenland, overlap in time with similar events in North America and Europe and also correlate with changes in plate motion. The much higher elevation of East Greenland compared to West Greenland suggests dynamic support in the east from the Iceland plume. Japsen et al. (2012a) pointed out that EPCMs are typically located above thick crust/lithosphere that is closely juxtaposed to thinner crust/lithosphere. The presence of mountains along the Atlantic margin of Brazil and in East and West Greenland, close to where continental crust starts to thin towards oceanic crust, illustrates the common association between EPCMs and the edges of cratons. These observations indicate that the elevation of EPCMs may be due to processes operating where there is a rapid change in crustal/lithosphere thickness. Vertical motion of EPCMs may thus be related to lithosphere-scale folding caused by compressive stresses at the edge of a craton (e.g. Cloetingh et al., 2008). The compression may be derived either from orogenies elsewhere on a plate or from differential drag at the base of the lithosphere by horizontal asthenospheric flow (Green et al., 2013). Bonow, Japsen, Nielsen. Global Planet. Change in review. Cloetingh, Beekman, Ziegler, van Wees, Sokoutis, 2008. Geol. Soc. Spec. Publ. (London) 306. Cobbold, Meisling, Mount, 2001. AAPG Bull. 85. Green, Lidmar-Bergstrm, Japsen, Bonow, Chalmers, 2013. GEUS Bull. 2013/30. Japsen, Chalmers, Green, Bonow 2012a, Global Planet. Change 90-91. Japsen, Bonow, Green, Cobbold, Chiossi, Lilletveit, Magnavita, Pedreira, 2012b. GSA Bull. 124. Japsen, Green, Bonow, Nielsen. Global Planet. Change in review.

  10. Lithosphere continental rifting and necking in 3D analogue experiments: role of plate divergence rate.

    NASA Astrophysics Data System (ADS)

    Nestola, Y.; Storti, F.; Cavozzi, C.

    2014-12-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal state of rifted margins. Despite a large number of analogue and numerical modelling studies on lithosphere extension are available in the literature, a quantitative experimental description of lithosphere necking evolution is still lacking. Extensional strain rate and thermal layering of the lithosphere exert a fundamental control on necking shape and evolution. We focused our experimental work on the former parameter and simulated the progression of lithosphere thinning and necking during asymmetric orthogonal rifting at different plate divergence rates. Our models involve a 4-layer mechanical continental lithosphere, which rests on a glucose syrup asthenosphere. Both the topography and the base of the lithosphere were monitored by time-lapse laser scanning. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for the crust, mantle, and lithosphere as a whole. Laser-scanning monitoring provided also a detailed picture of the evolving neck shape, which shows a strong dependency on the strain-rate. At low strain-rates, necking is "boxed" with steep flanks and a flat-lying roof, and few deep basins develop at surface. At high strain-rates, more distributed thinning occurs and isolates portions of less deformed mantle. More distributed deformation affects the model topography. Despite large differences in shape, the aspect ratio (amplitude/wavelength) of the cross-sectional neck shapes converges towards very similar values at the end of the experiments.The significant differences and evolutionary pathways produced by the plate divergence rate on the lithosphere necking profile, suggest that this parameter exert a fundamental control on localization vs. distribution of deformation in the crust as in the whole mechanical lithosphere. Furthermore, it can exert a fundamental control on the time and space distribution of heat flow during rifting. Following up on this we can speculate on the location and timing of synrift magmatism, which is expected to be preferentially produced on one shoulder for slow plate divergence rates, and more widely distributed and delayed at fast divergence rates.

  11. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  12. Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin

    USGS Publications Warehouse

    Holbrook, W.S.; Brocher, T.M.; ten Brink, U.S.; Hole, J.A.

    1996-01-01

    Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.

  13. Plate rotation during continental collision and its relationship with the exhumation of UHP metamorphic terranes: Application to the Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Bottrill, A. D.; van Hunen, J.; Cuthbert, S. J.; Brueckner, H. K.; Allen, M. B.

    2014-05-01

    variation and asynchronous onset of collision during the convergence of continents can significantly affect the burial and exhumation of subducted continental crust. Here we use 3-D numerical models for continental collision to discuss how deep burial and exhumation of high and ultrahigh pressure metamorphic (HP/UHP) rocks are enhanced by diachronous collision and the resulting rotation of the colliding plates. Rotation during collision locally favors eduction, the inversion of the subduction, and may explain the discontinuous distribution of ultra-high pressure (UHP) terranes along collision zones. For example, the terminal (Scandian) collision of Baltica and Laurentia, which formed the Scandinavian Caledonides, resulted in the exhumation of only one large HP/UHP terrane, the Western Gneiss Complex (WGC), near the southern end of the collision zone. Rotation of the subducting Baltica plate during collision may provide an explanation for this distribution. We explore this hypothesis by comparing orthogonal and diachronous collision models and conclude that a diachronous collision can transport continental material up to 60 km deeper, and heat material up to 300C hotter, than an orthogonal collision. Our diachronous collision model predicts that subducted continental margin material returns to the surface only in the region where collision initiated. The diachronous collision model is consistent with petrological and geochonological observations from the WGC and makes predictions for the general evolution of the Scandinavian Caledonides. We propose the collision between Laurentia and Baltica started at the southern end of the collisional zone, and propagated northward. This asymmetric geometry resulted in the counter clockwise rotation of Baltica with respect to Laurentia, consistent with paleomagnetic data from other studies. Our model may have applications to other orogens with regional UHP terranes, such as the Dabie Shan and Papua New Guinea cases, where block rotation during exhumation has also been recorded.

  14. Rev. 03/2012 CREDIT OVERRIDE FORM

    E-print Network

    Rhode Island, University of

    Rev. 03/2012 CREDIT OVERRIDE FORM University of Rhode Island Enrollment Services Override Form Last --------------------------------------------------------------------------------------------------------------------------------------- University of Rhode Island Enrollment Services Override Form Last Name First MI Semester/Year Course Code in reassessment of fees. Academic Dean's Signature College Date The University of Rhode Island is an equal

  15. Numerical Geodynamic Experiments of Continental Collision: Past and Present

    NASA Astrophysics Data System (ADS)

    Gray, Robert

    Research explores deep continental lithosphere (i.e., the continental lower crust and mantle lithosphere) deformation during continental collision. I found that depending on the composition/rheology of the crust and the amount of radiogenic heat production in the crust, three dominant modes of mantle lithosphere deformation evolve under Neoarchean-like conditions: (1) a pure-shear thickening style; (2) an imbrication style; (3) and a "flat-subduction" style. The imbrication and the flat-subduction styles result in the emplacement of "plate-like" mantle lithosphere at depths between 200 km and 325 km. The imbrication style behavior shifts to the "flat-subduction" style behavior after a crustal inversion event. I investigated mature Phanerozoic-style collision and found that it is sensitive to mantle lithosphere density, mantle lithosphere yield stress, lower-crustal strength and to the presence of phase change-related density changes in the lower crust. The early stages of collision are accommodated by subduction of lower crust and mantle lithosphere along a discrete shear zone beneath the overriding plate. Next, the subducting lower crust and mantle lithosphere retreat from the collision zone, permitting the sub-lithospheric mantle to upwell and intrude the overriding plate. Next, the lower crust and mantle lithosphere of the overriding plate delaminate from the overlying crust. This process produces plateau-like uplift. These modeling results are interpreted in the context of available geological and geophysical observables for the Himalayan-Tibetan orogen. I quantitatively investigated the effects that sediment deposition may have on continental lithosphere deformation during collision. In the absence of sedimentation, the early stages of collision are accommodated by subduction of lower crust and mantle lithosphere beneath the overriding plate. Next, the subducting lower crust and mantle lithosphere retreat from the collision zone. This permits the sub-lithospheric mantle to upwell and come into contact with the thickened upper crust. When sedimentation is imposed subduction-like consumption of the subducting plate remains stable. Using numerical geodynamic models, I studied the influence of the pressure-dependence of viscosity on tectonic deformation during collision. At low activation volumes, high convergence rates, and low to moderate initial Moho temperatures the subduction style of mantle lithosphere deformation is dominant. At low activation volumes, high convergence rates, and high initial Moho temperatures distributed pure-shear style deformation occurs. At low activation volumes, low convergence rate, and moderate to high initial Moho temperatures the mantle lithosphere prefers a convective removal style of deformation. Increasing the activation volume of mantle material in either of these three cases changes the style of mantle lithosphere deformation because its viscosity increases non-linearly.

  16. Geologic evidence for the plate driving mechanism: The continental undertow hypothesis and the Australian-Antarctic discordance

    NASA Astrophysics Data System (ADS)

    Alvarez, Walter

    1990-10-01

    Investigations of the pattern of flow in the mantle have been carried out almost exclusively by theoretical geophysicists, mainly fluid dynamicists, because mantle flow has been considered too deep and too disconnected to leave direct traces in surface tectonic geology. This geophysical approach has not yet provided a detailed understanding of mantle flow. The assumption of invisibility of mantle flow from the surface should be reassessed. The tectonic history of gaps in the circum-Pacific ring of continents (Caribbean, Scotia Sea, Australian-Antarctic Discordance) suggests that upper mantle return flow is escaping from the Pacific hemisphere as the Pacific Ocean contracts and is avoiding the regions beneath continents. Major continental masses may thus have the deep roots suggested by some seismologists. If these roots are coupled to the lower mantle, plates that include continents may be driven by "continental undertow." In this case, continental motions may tell us the pattern of lower mantle flow, and the resulting four-celled lower mantle picture is remarkably simple. A key area for testing the continental undertow hypothesis is the Australian-Antarctic Discordance, a low saddle on the spreading ridge between these two continents. In the continental undertow view, upper mantle flow escaping the Pacific is met in the discordance by upper mantle flow originating at the Java-Sumatra trench, with the bathymetric low representing the sink toward which this converging flow is moving. Two new lines of evidence support this interpretation: (1) Isotope geochemistry of ridge basalts from the discordance shows that mantle sources with distinctive Pacific Ocean and Indian Ocean characters meet precisely at the discordance. (2) Seismic tomography reveals cool upper mantle under the discordance, which argues for feeding of this ridge segment laterally, rather than from beneath. Hot spot tracks in and just east of Australia appear to argue against the continental undertow hypothesis but do not allow an unambiguous test of the continental undertow hypothesis. Mantle flow patterns may in fact be partly visible from the surface, and careful evaluation of key regions by tectonic geologists may provide a fruitful approach to understanding mantle dynamics.

  17. Plate rotation during continental collision and its relationship with the exhumation of UHP metamorphic terranes: application to the Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Bottrill, Andrew; van Hunen, Jeroan; Cuthbert, Simon; Allen, Mark; Brueckner, Hannes

    2014-05-01

    Lateral variation and asynchronous onset of collision during the convergence of continents can significantly affect the burial and exhumation of subducting material. We use 3D numerical models for continental collision to discuss how deep burial and exhumation of ultra-high pressure metamorphic rocks are enhanced by oblique convergence and resulting rotation of the colliding plates. Rotation during collision locally favours eduction, the inversion of the subduction process following ocean slab break-off, and may relate to the discontinuous distribution of ultra-high pressure (UHP) terranes along collision zones. For example the terminal (Scandian) collision of Baltica and Laurentia, which formed the Scandinavian Caledonides resulted in the exhumation of only one large high pressure/ultra-high pressure (HP/UHP) terrane, the Western Gneiss Complex (WGC), near the southern end of the collision zone. Rotation of the subducting Baltica plate during collision may provide a likely explanation for this distribution. We explore this hypothesis by comparing orthogonal and oblique collision models and conclude that an oblique collision can transport continental material up to 60km deeper, and heat material up to 300C hotter, than an orthogonal collision. Our oblique collision model predicts that subducted continental margin material returns to the surface only in the region where collision initiated. The oblique collision model is consistent with petrological and geochonological observations from the Western Gneiss Complex and makes predictions for the general evolution of the Scandinavian Caledonides. We propose the collision between Laurentia and Baltica started at the southern end of the collisional zone, and propagated northward. This asymmetric geometry resulted in the counter clockwise rotation of Baltica and the northwards movement of Baltica's rotational pole with respect to Laurentia, consistent with paleomagnetic data from other studies. Our model has applications to others orogens with regional UHP terranes, such as the Dabie Shan and Papua New Guinea cases, where block rotation during exhumation has also been recorded.

  18. Relation of plate kinematic parameters to deformation along the Andean margin from Late Jurassic to the present

    NASA Astrophysics Data System (ADS)

    Maloney, K. T.; Clarke, G. L.; Quevedo, L. E.; Klepeis, K. A.

    2011-12-01

    The geological consequences of temporal and spatial changes in subduction along the Andean margin from 170 Ma to the present were investigated in the context of a recently developed, global plate kinematic model. Geological events recorded by the overriding continental plate, including the development of extensional basins, orogeny and crustal growth accompanied by thickening and/or magmatism, were contrasted with the age of the subducting oceanic slab(s), the absolute plate velocity of South America both normal and parallel to the trench, and the relative convergence velocity between South America and the subducting slab(s) both normal and parallel to the trench. Preliminary results indicate that the absolute velocity of the overriding plate is strongly correlated with the extent of crustal extension; the development of marginal basins floored by oceanic crust occurred only when the absolute plate velocity of South America was directed away from the trench. This condition did not accompany the development of aborted marginal basins. An abrupt increase in relative convergence rates between the South American continent and the subducting slab also often accompanied the initiation of extension in the overriding plate. However, high convergence rates primarily accompanied the development of fold and thrust belts, and were linked with plateau uplift. Inter-dependencies between the various parameters are investigated to build a more complete model of conditions necessary for the development of significant geological events along continental margins controlled by subduction.

  19. Plate Tectonics

    NSDL National Science Digital Library

    Mrs. Rohlfing

    2011-02-03

    Students will go over the main points of plate tectonics, including the theory of continental drift, different types of plate boundaries, seafloor spreading, and convection currents. We have been spending time learning about plate tectonics. We have discussed the theory of continental drift, we have talked about the different types of plate boundaries, we have also learned about seafloor spreading and convection currents. Plate Boundary Diagram Now is your chance ...

  20. Siberian Arctic Continental Margin: Constraints and Uncertainties of Plate Tectonic Models

    NASA Astrophysics Data System (ADS)

    Drachev, S. S.

    2004-12-01

    Siberian Arctic Continental Margin (SACM) reveals a complicated tectonic history resulted from three major events: (1) Mesozoic collisions of various allochtonous blocks with Paleo-Siberian continental margin, (2) Opening of Canada Basin, and (3) Opening of Eurasia Basin. Despite considerable progress was achieved in the past 15 years owing to CDP seismic reflection surveys and satellite observations, some major points of SACM's structure and history are still poorly understood. According to the most accepted model, opening of the Canada Basin led to separation and counterclockwise rotation of North Alaskan-Chukchi Microplate until it collided with Siberian/Omolon margin along South Anyui Suture. However, the time and geometry of the opening are not properly constrained yet. Uniform rotation of North Alaskan-Chukchi Microplate by 66 deg. causes a significant overlap in the East Siberian Sea that cannot be explained by later extension of the SACM. Accepted age of the basin opening is 130-80 Ma, however, geological data show that South Anyui Suture was already completely closed by Aptian. In contrast, Cretaceous flood basalts suggest even later opening of the Canada Basin, which may have begun around 125 Ma. Chukchi Borderland, when remained at its present position, prevents closure of the Amerasia Basin. We suggest it was conjugated to what now the northeastern margin of East Siberian Sea is. Then it was detached from the SACM and moved to the present-day position during spreading episodes within the Arctic basins. However, the time of this event is unconstrained yet. Late Cretaceous-Cenozoic extension of the SACM was related to opening of the Eurasia Basin, and, probably, North Atlantic and Labrador Sea. It led to significant modification of SACM's initial architecture and created several profound rift systems. Extension of northern Laptev Shelf totals at least 190 km, which is about 47 % of the total divergence within adjacent Eurasia Basin. The northern East Siberian and Chukchi seas and Chukchi Borderland are the best candidates to account for some 200 km of the "missing extension". Using all available data we have revised structure and geological history of the SACM and speculated its relationships to the Canadian Arctic Margin in a "pre-Canada Basin" Arctic.

  1. Craton stability and continental lithosphere dynamics during plume-plate interaction

    NASA Astrophysics Data System (ADS)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. A high cratonic root strength is generally considered to be the most important factor. We first perform and discuss new numerical models to investigate craton stability in both Newtonian and non-Newtonian rheology in the stagnant lid regime. The results show that only a modest compositional rheological factor of ??=10 with non-Newtonian rheology is required for the survival of cratonic roots in a stagnant lid regime. A larger rheological factor (100 or more) is needed to maintain similar craton longevity in a Newtonian rheology environment. Furthermore, chemical buoyancy plays an important role on craton stability and its evolution, but could only work with suitable compositional rheology. During their long lifespan, cratons experienced a suite of dynamic, tectonothermal events, such as nearby subduction and mantle plume activity. Cratonic nuclei are embedded in shorter-lived, more vulnerable continental areas of different thickness, composition and rheology, which would influence the lithosphere dynamic when tectonothermal events happen nearby. South Africa provides a very good example to investigate such dynamic processes as it hosts several cratons and there are many episodic thermal events since the Mesozoic as indicated by a spectrum of magmatic activity. We numerically investigate such an integrated system using the topographic evolution of cratons and surrounding lithosphere as a diagnostic observable. The post-70Ma thinning of pericratonic lithosphere by ~50km around Kaapvaal craton (Mather et al., 2011) is also investigated through our numerical models. The results show that the pericratonic lithosphere cools and grows faster than cratons do, but is also more likely to be effected by episodic thermal events. This leads to surface topography change that is significantly larger around the craton than within the craton itself. Given the considerable debate on the uplift history of southern African plateau (Nyblade and Sleep, 2003), our numerical models that encompass lithospheric heterogeneity within cratons could help to achieve a better understanding of this issue.

  2. Partial delamination of continental mantle lithosphere, uplift-related crustmantle decoupling, volcanism and basin formation: a new model for the PlioceneQuaternary evolution of the southern East-Carpathians, Romania

    Microsoft Academic Search

    F. Chalot-Prat; R. Girbacea

    2000-01-01

    A geodynamic model is proposed for the Mid-Miocene to Quaternary evolution of the southern East-Carpathians in order to explain the relationships between shallow and deep geological phenomena that occurred synchronously during late-collision tectonics.In this area, an active volcanic zone cross-cuts since 2My the suture between the overriding TiszaDacia and subducting European continental plates. Mafic calc-alkaline and alkaline magmas (south Harghita

  3. Rapid plate motion variations and continental uplift: a window on the history of asthenospheric flow

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Stotz, Ingo; Bunge, Hans-Peter; Smethurst, Mark; Clark, Stuart; Iaffaldano, Giampiero; Tassara, Andres; Guillocheau, Francois

    2015-04-01

    Since the rifting of Gondwana 150 Myrs ago the South Atlantic Ocean experienced two phases of fast spreading in Late Cretaceous and Oligocene-Miocene, separated by a period of slow spreading around the K-T boundary and concluded by the recent slowdown since the Messinian. At the same time, it is becoming clear that the topographic evolution of Africa is characterized by two main periods of widespread uplift. These periods of uplift are co-eval with the two phases of fast spreading. The present-day situation presents an oceanic basin characterized by a strong topographic gradient with Africa being elevated and South America being depressed by non-isostatic forcing. These observations ' in particular the fast time-scale of plate motion variations ' are difficult to explain via shallow tectonic forces acting in the lithosphere. However, they are completely consistent with the fluid dynamics of a thin and low-viscosity asthenosphere. In particular, they can be easily understood as the result of unsteady pressure-driven flow in such a low-viscosity sublithospheric layer. Moreover, the idea of a thin asthenosphere of low viscosity is corroborated by a number of observations and inferences, ranging from seismic tomography to glacial isostatic adjustment to mineral physics.

  4. What do Great Subduction Earthquakes tell us About Continental Deformation of the Upper Plate in the Central Andes Forearc? Insights From Seismotectonics, Continental Deformation and Coulomb Modelisation Along Southern Peru Margin

    NASA Astrophysics Data System (ADS)

    Audin, L.; Perfettini, H.; Tavera, H.

    2007-05-01

    Subduction of the Nazca plate beneath the Peruvian margin has produced numerous megathrust earthquakes during the last century and still constitutes mature seismic gaps in some places such as in between Ilo (Peru) and Arica (Chile). The rupture zones of the 1604, 1784 and 1868 southern Peru events were partially reactivated by the Arequipa 2001 (Mw = 8.5) seismic event, whose rupture zone was about 350km-long and stopped its propagation towards the south on Ilo Peninsula. Just after the occurrence of 2001 event, some reactivation of continental fault systems are identified and monitored thanks to the Peruvian seismic network and describe continental deformation processes occurring perpendicularly to the trench or parallel to the trench, traducing the continental plate response to major subduction earthquakes and some partitioning of the deformation. The Chololo and associated ( perpendicular to the trench) fault systems define some 80-km-long margin crustal blocks and the major one coincides with the 2001 earthquake southern limit of the rupture zone as it propagated to the south. These blocks are made from Late Jurassic and Cretaceous plutonic rocks from the Coastal Batholith; these are outcropping in some places and are evidenced by the aeromagnetic mapping elsewhere around the area. Northward along the subduction zone, another boundary between two rupture zones of major subduction earthquake was reactivated recently, perpendicularly to the trench, by the seismic crisis of October 2006, M=6.4, near Lima, right at the southern end of the rupture zone of the 1974 event (Mw=8.1).Those boundaries corresponding to discontinuities (lithospheric fault systems) in the upper plate, trending nearly perpendicular to the trench, act as earthquake barriers during rupture of large seismic events. Additionally occurred on 20 of November 2006 another seismic event (Mw=5.6 Neic, Ml=5.3) in Tacna region, showing a reverse focal mechanism compatible with the trend of the Sama Calientes Fault system (parallel to the trench) and a crustal depth of about 20km. Such a magnitud and crustal depth in the area correlates perfectly with the Quaternary geomorphic evidences of tectonic activity along the Sama-Calientes thrust fault in the forearc in Southern Peru. Some questions are raised by the occurrence of such continental seismicity, just after a major subduction event, as none has been registered in the area since more than 40 years. Continental fault systems constitute a key to the understanding of the forearc deformation in the Arica Elbow, where the Andes obliquity with respect to the Nazca plate convergence direction. Also these results suggest that continental deformation should give us clues to define the pattern of segmentation of the subduction zone by studying seismotectonics and its relation to the segmentation of the upper continental plate.

  5. Continental Subduction and Subduction Initiation Leading to Extensional Exhumation of Ultra-High Pressure Rocks During Ongoing Plate Convergence in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Buck, W. R.; Petersen, K. D.

    2014-12-01

    Subduction of continental rocks is necessary to produce ultra-high pressure (UHP) rocks but the mechanism bringing them to the surface is disputed. A major question is whether this involves fairly small diapirs of crust that move up through the mantle or it involves an entire subducted plate that undergoes coherent 'reverse subduction' (sometimes called 'eduction'). Both mechanisms have been invoked to explain the only known region of on-going exhumation of UHP rocks, on the D'Entrecasteaux Islands of Papua New Guinea. Ductile flow fabrics in the island rocks have been used to argue for a diapiric model while constraints on the plate kinematics of the region require relatively large (>100 km) amounts of recent (>6 Myr) extension, supporting eduction as a primary mechanism. A self-consistent thermo-mechanical model of continental subduction shows that eduction can be accompanied by some ductile flow within the crust. Also we show, that subduction and stacking of continental crust can cause a subduction zone to lock up and lead to subduction initiation elsewhere. When this happens the region of earlier continental subduction can reverse direction causing exhumation of rocks from depth of ~100 km followed by localized extension and plate spreading. This can occur even if a region is in overall convergence. Applied to New Guinea our results are consistent with earlier suggestions that extension of the Woodlark Basin was caused by the initiation of the New Britain Trench, as indicated on the attached figure. We suggest that this subduction initiation event triggered eduction that led to exposure of the D'Entrcasteaux Islands and exhumation of the UHP rocks there. Our numerical results are broadly consistent with the recently refined seismic structure of the region around the islands. The model implies that the present-day basement of the ~70 km wide Goodenough Bay, south of the islands, was subducted then exhumed. This can be tested by drilling.

  6. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, ?, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94W and compressive deformation on the continental slope between 94W and 102W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  7. Motion of continental slivers and creeping subduction in the northern Andes

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.; Villegas-Lanza, J. C.; Chlieh, M.; Mothes, P. A.; Rolandone, F.; Jarrin, P.; Cisneros, D.; Alvarado, A.; Audin, L.; Bondoux, F.; Martin, X.; Font, Y.; Rgnier, M.; Valle, M.; Tran, T.; Beauval, C.; Maguia Mendoza, J. M.; Martinez, W.; Tavera, H.; Yepes, H.

    2014-04-01

    Along the western margin of South America, plate convergence is accommodated by slip on the subduction interface and deformation of the overriding continent. In Chile, Bolivia, Ecuador and Colombia, continental deformation occurs mostly through the motion of discrete domains, hundreds to thousands of kilometres in scale. These continental slivers are wedged between the Nazca and stable South American plates. Here we use geodetic data to identify another large continental sliver in Peru that is about 300-400 km wide and 1,500 km long, which we call the Inca Sliver. We show that movement of the slivers parallel to the subduction trench is controlled by the obliquity of plate convergence and is linked to prominent features of the Andes Mountains. For example, the Altiplano is located at the boundary of converging slivers at the concave bend of the central Andes, and the extending Gulf of Guayaquil is located at the boundary of diverging slivers at the convex bend of the northern Andes. Motion of a few large continental slivers therefore controls the present-day deformation of nearly the entire Andes mountain range. We also show that a 1,000-km-long section of the plate interface in northern Peru and southern Ecuador slips predominantly aseismically, a behaviour that contrasts with the highly seismic neighbouring segments. The primary characteristics of this low-coupled segment are shared by ~20% of the subduction zones in the eastern Pacific Rim.

  8. Constraints of mapped and unfolded slabs on Oligocene to present-day Western Mediterranean plate reconstructions: potential role of north Iberia continental delamination

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Te; Wu, Jonny; Wu, Yi-Min; Suppe, John; Sibuet, Jean-Claude; Chevrot, Sebastien

    2015-04-01

    Seismic tomographic images of subducted lithospheric remnants under the western Mediterranean have provided new constraints for Oligocene to present-day plate reconstructions. In this study, we mapped slabs under the western Mediterranean and Iberia from regional seismic tomography (Chevrot et al., 2014; Bezada et al., 2013) and from MITP08 global tomography (Li et al., 2008). A newly developed method was used to unfold (ie. structurally restore) the mapped slabs to a model spherical Earth surface, minimizing area and shape distortion. Slab constraints were input into plate tectonic reconstructions using Gplates software. Our mapping confirms the existence of western Mediterranean slabs including the Betic-Alboran, Algerian, and Calabrian slabs that were previously identified by Spakman and Wortel (2004). When unfolded these mapped slabs fit together in an Oligocene plate reconstruction, within tomographic resolution limits. Slab stretching was not required. Slab segmentation supports the existence of a North Balearic transform. Here we emphasize the potential importance for western Mediterranean tectonics of antoher slab under Iberia that we call the 'mid-Iberia slab'. This slab was first identified by Sibuet et al. (2004) and interpreted to be a Neotethyan suture. We have mapped this slab in detail from recent regional tomography (Chevrot et al., 2014). Our mapped slab is sub-vertical and strikes E-W under the southern margins of the Duero and Ebro basins. We newly interpret this slab to be delaminated northern Iberian continental lithosphere. We propose that continental delamination occurred during the Oligocene and produced uplifted Iberian Meseta topography, internally-drained basins, and high mean elevations that still persist today. We show how Oligocene northern Iberian continental delamination could have initiated subduction and rollback of the western Mediterranean

  9. Cretaceous to Paleogene speed-up and slow-down of India-Asia relative plate convergence: the roles of mantle plumes and continental collision

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, D. J.; Steinberger, B. M.; Doubrovine, P. V.; Gassmller, R.

    2010-12-01

    Most authors prefer an age of collision around 50 Ma between the Tethyan Himalayas -northernmost continental remnants of the Indian plate - and Asia. A popular argument to support this age is a dramatic slow-down of the India-Asia convergence rate from ~18 to ~5 cm/yr between 50 and 35 Ma, interpreted to result from subduction of continental lithosphere at the collision zone. However, an equally dramatic increase of the India-Asia convergence rate occurred between 65 and 50 Ma, from ~8 to 18 cm/yr. The causes of this increase are not well understood, but may reflect the dynamic influence of sublithospheric mantle flow on the India motion. Arrival of hot mantle plumes (e.g. the Deccan plume at ~65 Ma) may both increase the potential gravitational energy of a plate and impose lateral mantle flow accelerating the plate, especially when it contains a thick continental lithospheric root. If the processes responsible for the acceleration ceases to exist, this may generate a slow-down even without a collision. Here we provide estimates of the India-Asia convergence using the India-Eurasia plate circuit. The analysis of reconstruction errors shows that the speed-up and slow-down are robust, with minor variations in peak convergence velocities depending on the choice of North America-Eurasia rotations. We use two numerical codes to assess the kinematic effects of the arrival of a mantle plume at 65 Ma below India on the convergence rates. The numerical models suggest that the arrival of the plume may indeed lead to a 3-4 cm/yr increase in the convergence rate followed by a gradual slow-down with decreasing plume activity, if no changes in the lithosphere-asthenosphere coupling are assumed. However, the plume arrival is likely to weaken the asthenosphere-lithosphere coupling, leading to a more effective slab-pull effect, which may potentially generate larger a driving force, comparable with the observed 65-50 Ma acceleration. In contrast, the sudden slow-down starting at 50 Ma can not be attributed to a decrease in plume forcing, and is best explained by an increase of resisting forces generated by the arrival of continental lithosphere in the subduction zone.

  10. 5 CFR 1320.15 - Independent regulatory agency override authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 false Independent regulatory agency override authority. 1320...THE PUBLIC 1320.15 Independent regulatory agency override authority. (a) An independent regulatory agency which is administered...

  11. 5 CFR 1320.15 - Independent regulatory agency override authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 false Independent regulatory agency override authority. 1320...THE PUBLIC 1320.15 Independent regulatory agency override authority. (a) An independent regulatory agency which is administered...

  12. 5 CFR 1320.15 - Independent regulatory agency override authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 false Independent regulatory agency override authority. 1320...THE PUBLIC 1320.15 Independent regulatory agency override authority. (a) An independent regulatory agency which is administered...

  13. 5 CFR 1320.15 - Independent regulatory agency override authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2011-01-01 false Independent regulatory agency override authority. 1320...THE PUBLIC 1320.15 Independent regulatory agency override authority. (a) An independent regulatory agency which is administered...

  14. STUDENT FINANCIAL AID SERVICES SAP CREDIT RESTRICTION OVERRIDE FORM

    E-print Network

    Bieber, Michael

    STUDENT FINANCIAL AID SERVICES SAP CREDIT RESTRICTION OVERRIDE FORM **Please return this form an override for the 13-credit enrollment restriction required under my SAP Academic Plan because of one (1

  15. A review of Wilson Cycle plate margins: What is the role of mantle plumes in continental break-up along former sutures?

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Torsvik, Trond

    2013-04-01

    It was Tuzo Wilson (1966) who recognised that the different faunal distributions on both sides of the present-day North Atlantic Ocean required the existence of an earlier proto-Atlantic Ocean. The observation that the present-day Atlantic Ocean mainly opened along a former suture was a crucial step in the formulation of the Wilson Cycle theory. The theory implies that collision zones are structures that are able to localize extensional deformation for long times after the collision has waned. We review margin pairs around the Atlantic and Indian Oceans with the aim to evaluate the extent to which oceanic opening used former sutures and to analyse the role of mantle plumes in continental break-up. We aid our analyses with plate tectonic reconstructions using GPlates (www.gplates.org). Already Wilson recognized that Atlantic break-up did not always follow the precise line of previous junction. For example, Atlantic opening did not utilize the Iapetus suture in Great Britain and rather than opening along the younger Rheic suture north of Florida, break-up occurred along the older Pan-African structures south of Florida. As others before us, we find no correlation of suture and break-up age. Often continental break-up occurs some hundreds of Myrs after collision, but it may also take more than a Gyr, as for example for Australia-Antarctica and Congo-So Francisco. This places serious constraints on potential collision zone weakening mechanisms. Several studies have pointed to a link between continental break-up and large-scale mantle upwellings. It is, however, much debated whether plumes use existing rifts as a pathway, or whether plumes play an active role in causing rifting. It is also important to realise that in several cases break-up cannot be related to plume activity. Examples are the Iberia-Newfoundland, Equatorial Atlantic Ocean, and Australia-Antarctica plate margins. For margins that are associated with large igneous provinces (LIPs), we find a positive correlation between break-up age and LIP age. We interpret this to indicate that plumes can aid the factual continental break-up. However, plumes may have been guided towards the rift for margins that experienced a long rift history (e.g., Norway-Greenland), to then trigger the break-up. This could offer a partial reconciliation in the debate of a passive or active role for mantle plumes in continental break-up. (Wilson, J.T., 1966. Did the Atlantic close and then re-open? Nature 211, 676-681)

  16. Numerical modeling of outer rise deformation in the Tonga subduction system: Coupling between outer rise deformation, slab weakening and plate velocities

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Billen, M. I.; Gerya, T.; Saunders, J. K.

    2012-12-01

    During subduction, bending and flexure of oceanic lithosphere generates a topographic bulge seaward of the trench known as the outer rise, which commonly exhibits extensional deformation attributed to slab pull forces and bending stresses. The resulting brittle and viscous deformation may play a significant role in long-term geodynamic processes by limiting the ability of subducted oceanic lithosphere to act as a stress guide driving surface plate motions through slab pull. Recent numerical studies provide varying estimates of slab pull's contribution to surface plate motions [e.g., van Summeren et al. 2012, Ghosh & Holt 2012], while observational constraints suggest old oceanic lithosphere may weaken by 3-4 orders of magnitude as it bends and descends beneath the overriding plate [Arredondo & Billen, 2012]. Preliminary numerical models of outer rise deformation during oceanic-continental convergence (40 Myr oceanic lithosphere) exhibit 10x-150x viscous weakening in the upper plate near the trench, with time-dependent variations related to both changes in slab depth and downgoing-overriding plate coupling (Naliboff et al., in prep). In order to more closely examine the relationship between outer rise deformation, geophysical observations and plate velocities, we consider 2D subduction models of the Tonga subduction system where flow will be strictly driven by upper mantle slab buoyancy as defined by the Slab1.0 model [Hayes et al. 2012]. The resulting subducting plate deformation patterns are compared to observations of outer rise faulting, elastic thickness measurements and outer rise seismicity. While keeping buoyancy forces fixed, we will examine the role of brittle rheology, hydration and downgoing-overriding plate coupling in patterns of subducting plate deformation. These results will provide improved physical understanding of the relationship between slab pull, plate velocities and downgoing plate weakening, and a basis for future work examining the role of additional slab weakening mechanism such as grain size reduction.

  17. Viscoelastic Postseismic Rebound to Strike-Slip Earthquakes in Regions of Oblique Plate Convergence

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.

    1999-01-01

    According to the slip partitioning concept, the trench parallel component of relative plate motion in regions of oblique convergence is accommodated by strike-slip faulting in the overriding continental lithosphere. The pattern of postseismic surface deformation due to viscoelastic flow in the lower crust and asthenosphere following a major earthquake on such a fault is modified from that predicted from the conventual elastic layer over viscoelastic halfspace model by the presence of the subducting slab. The predicted effects, such as a partial suppression of the postseismic velocities by 1 cm/yr or more immediately following a moderate to great earthquake, are potentially detectable using contemporary geodetic techniques.

  18. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  19. Plate Tectonics

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2007-03-21

    The Plate Tectonics SciPack explores the various materials that make up Earth and the processes they undergo to provide a framework for understanding how continents are created and change over time. The focus is on Standards and Benchmarks related to Earth's layers, oceanic and continental plates and the interactions between plates.In addition to comprehensive inquiry-based learning materials tied to Science Education Standards and Benchmarks, the SciPack includes the following additional components:? Pedagogical Implications section addressing common misconceptions, teaching resources and strand maps linking grade band appropriate content to standards. ? Access to one-on-one support via e-mail to content "Wizards".? Final Assessment which can be used to certify mastery of the concepts.Learning Outcomes:Plate Tectonics: Layered Earth? Identify that Earth has layers (not necessarily name them), and that the interior is hotter and more dense than the crust.? Identify the crust as mechanically strong, and the underlying mantle as deformable and convecting.Plate Tectonics: Plates? Identify that the outermost layer of Earth is made up of separate plates.? Choose the correct speed of the motion of plates.? Identify the ocean floor as plate, in addition to the continents (to combat the common idea that only continents are plates, floating around on the oceans).? Recognize that oceans and continents can coexist on the same plate.Plate Tectonics: Plate Interactions? Identify the different interactions between plates.? Discuss what happens as a result of those interactions.Plate Tectonics: Consequences of Plate Interactions? Explain why volcanoes and earthquakes occur along plate boundaries. ? Explain how new sea floor is created and destroyed.? Describe features that may be seen on the surface as a result of plate interactions.Plate Tectonics: Lines of Evidence? Use plate tectonics to explain changes in continents and their positions over geologic time.? Provide evidence for the idea of plates, including the location of earthquakes and volcanoes, continental drift, magnetic orientation of rocks in the ocean floor, etc.

  20. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  1. 4-D Subduction Models Incorporating an Upper Plate

    NASA Astrophysics Data System (ADS)

    Stegman, D.; Capitanio, F. A.; Moresi, L.; Mueller, D.; Clark, S.

    2007-12-01

    Thus far, relatively simplistic models of free subduction have been employed in which the trench and plate kinematics are emergent features completely driven by the negative buoyancy of the slab. This has allowed us to build a fundamental understanding of subduction processes such as the kinematics of subduction zones, the strength of slabs, and mantle flow-plate coupling. Additionaly, these efforts have helped to develop appreciable insight into subduction processes when considering the energetics of subduction, in particular how energy is dissipated in various parts of the system such as generating mantle flow and bending the plate. We are now in a position to build upon this knowledge and shift our focus towards the dynamic controls of deformation in the upper plate (vertical motions, extension, shortening, and dynamic topography). Here, the state of stress in the overriding plate is the product of the delicate balance of large tectonic forces in a highly-coupled system, and must therefore include all components of the system: the subducting plate, the overriding plate, and the underlying mantle flow which couples everything together. We will present some initial results of the fully dynamic 3-D models of free subduction which incorporate an overriding plate and systematically investigate how variations in the style and strength of subduction are expressed by the tectonics of the overriding plate. Deformation is driven in the overriding plate by the forces generated from the subducting plate and the type of boundary condition on the non-subducting side of the overriding plate (either fixed or free). Ultimately, these new models will help to address a range of issues: how the overriding plate influences the plate and trench kinematics; the formation and evolution of back-arc basins; the variation of tractions on the base of the overriding plate; the nature of forces which drive plates; and the dynamics controls on seismic coupling at the plate boundary.

  2. Dynamic evolution of continental and oceanic lithosphere in global mantle convection model with plate-like tectonics and one sided subduction.

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Coltice, Nicolas; Tackley, Paul

    2015-04-01

    Drifting of continents, spreading of the seafloor and subduction at convergent boundaries shape the surface of the Earth. On the timescales of several hundreds of millions of years, divergent boundaries at mid-ocean ridges are created and destroyed in within the Wilson cycle. This controls the evolution of the Earth as it determines the heat loss out. Presence of floating continents facilitates the Earth-like mobile lid style of convection as convective stresses are concentrated on the rheological boundary between oceanic and continental lithosphere. Subducting slabs allow for the surface material to be buried down into the mantle and have an important effect on surface tectonics. The main feature of the subduction zones observed on Earth is that it is single-sided forming the deep trenches. Recently, different numerical models were successful in reproducing one-sided subduction by allowing for the vertical deformation of the Earth surface (Crameri and Tackley 2014). In the meantime, advances were made in modelling continental break-up and formation (Rolf et al. 2014). In this study we perform numerical simulations of global mantle convection in spherical annulus geometry with strongly depth and temperature dependent rheology using StagYY code (Tackley 2008). In these models plate tectonics is generated self-consistently and features one-sided subduction on ocean-ocean plate boundary as well as floating continents. We focus on determining (1) the influence of one-sided subduction on the dynamics of the system (2) formation and breakup of continents. Rerefences: Crameri, F. and P. J. Tackley, Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface, J. Geophys. Res., 119(7), 5921-5942, 2014. Rolf, T., N. Coltice and P. J. Tackley (2014), Statistical cyclicity of the supercontinent cycle, Geophys. Res. Lett. 41, 2014. Tackley, P. J., Modellng compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter, 171 (1-4), 7-18, 2008.

  3. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the P T paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable lid.

  4. Plate Tectonics Quiz

    NSDL National Science Digital Library

    This quiz for younger students asks them 10 questions about plate motions, rock types in continental and oceanic crust, crustal formation and mountain building, the supercontinent Pangea, and the theory of continental drift. A link to a page on continental drift provides information to answer the questions.

  5. How is Silurian-Early Devonian faulting in the North America continental interior related to orogenic processes at plate boundaries? A working hypothesis from the Canadian North

    NASA Astrophysics Data System (ADS)

    Pinet, Nicolas

    2015-04-01

    The Paleozoic Appalachian/Franklinian orogen that rims the North America continent on its eastern and northern sides is comparable in size with Tethyan orogenic belts. However, the far-field effects in the continental interior of the multiple Ordovician to Carboniferous deformation phases that built the orogen were relatively minor if compared with those associated with the Himalayas and Alps, a characteristics related to the high integrated strength of the North American craton. Despite the generally little deformation of the continental interior, two regional-scale tectonic features preserved evidence of significant Paleozoic tectonism: the fault bounded Hudson Bay Central High (HBCH) and the Boothia uplift/Cornwallis fold belt (BUCF) in the Canadian Arctic. In the Hudson Bay intracratonic basin, the lower part of the sedimentary succession (Upper Ordovician to Lower Devonian) is cut by high-angle faults and overlain by a saucer-shape, essentially underformed sedimentary package (Middle to Upper Devonian). The main structural feature is the NNW-trending HBCH that extends for a minimum length of 500 km with normal faults characterized by throws up to 500 m that were mainly active during the Silurian - Early Devonian period. The >700-km long, N-trending BUCF is nearly perpendicular to the deformation front of the Franklinian mobile belt. In its southern segment (Boothia uplift), its western side is characterized by an east-dipping reverse fault zone that puts Precambrian rocks over Paleozoic strata. In its northern segment (Cornwallis fold belt), the Paleozoic succession is involved in open folds and cuts by steeply dipping reverse faults. Syn-tectonic clastic sediments constrain the age of structures to the latest Silurian-Early Devonian. Comparison of the HBCH and BUCF indicates that they are grossly parallel, partly contemporaneous but with different kinematics. This kinematic variability may be explained if they are genetically linked with different segments of the Appalachian/Franklinian orogen. If true, both tectonic features can contribute to the understanding of plate interactions during the Silurian-Early Devonian period. A working hypothesis is proposed in which the HBCH was dynamically linked with the building-up Appalachian orogen located >1400 km to the SE through several grabens where Paleozoic faulting has been inferred. The nearly perpendicular trends of the BUCF and Franklinian mobile belt do not discard a genetic link between both features, as the Franklinian deformation front is much younger (latest Devonian-earliest Carboniferous) than the BUCF. A simple hypothesis, including a major change in strike of the building-up Franklinian orogen north of the Canadian Arctic islands is proposed and successfully accounts for the orientation and kinematic of the BUCF.

  6. 5 CFR 1320.15 - Independent regulatory agency override authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...authority. 1320.15 Section 1320.15 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES CONTROLLING PAPERWORK BURDENS ON THE PUBLIC 1320.15 Independent regulatory agency override authority. (a) An...

  7. 14. INTERIOR, OPERATOR'S HOUSE, FOOTOPERATED LIMITED OVERRIDE SWITCHES New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR, OPERATOR'S HOUSE, FOOT-OPERATED LIMITED OVERRIDE SWITCHES - New York, New Haven & Hartford Railroad, Mystic River Bridge, Spanning Mystic River between Groton & Stonington, Groton, New London County, CT

  8. 19 CFR 102.19 - NAFTA preference override.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY RULES OF ORIGIN Rules of Origin 102.19 NAFTA preference override. (a) Except in the case of goods covered by...

  9. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part II: Introducing Euler Poles Using Baja-North America Relative Plate Motion Across the Gulf of California

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Bennett, S. E. K.; Cashman, S. M.; Dorsey, R. J.; Goodliffe, A. M.; Lamb, M. A.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere (RCL) initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum, including lectures, labs, and in-class activities that can be used as a whole or individually. This component of the curriculum introduces students to the Euler pole description of relative plate motion (RPM) by examining the tectonic interactions of the Baja California microplate and North American plate. The plate boundary varies in rift obliquity along strike, from highly oblique and strike-slip dominated in the south to slightly less oblique and with a larger extensional component in the north. This Google Earth-based exercise provides students with a visualization of RPM using small circle contours of the local direction and magnitude of Baja-North America movement on a spherical Earth. Students use RPM to calculate the fault slip rates on transform, normal, and oblique-slip faults and examine how the varying faulting styles combine to accommodate RPM. MARGINS results are integrated via comparison of rift obliquity with the structural style of rift-related faults around the GOC. We find this exercise to fit naturally into courses about plate tectonics, geophysics, and especially structural geology, given the similarity between Euler pole rotations and stereonet-based rotations of structural data.

  10. Suggestions for Teaching the Principles of Continental Drift in the Elementary School

    ERIC Educational Resources Information Center

    Glenn, William H.

    1977-01-01

    Provides a brief overview of current geographic ideas regarding continental drift and plate tectonics and suggests techniques for illustrating continental motions to elementary school pupils. (Author/DB)

  11. Primordial Ooze and Continental Drift

    NSDL National Science Digital Library

    In this lesson, students will learn that continental plates drift and this affects the layers of the earth. Following a directed reading and discussion, they will perform an experiment in which they use chocolate frosting and graham crackers to simulate tectonic plates sliding about on the mantle.

  12. A critical review of tectonic processes at continental margin orogens

    Microsoft Academic Search

    Steven H. Edelman

    1991-01-01

    A ``cordilleran-type'' orogen has previously been defined as contractional deformation of a continental margin due to subcontinental subduction. The plate tectonic setting of cordilleran-type orogenesis is fundamentally different from that of ``collisional'' orogenesis. Intracontinental orogens such as the Himalayas and Alps form by collision between a continental margin and a continental margin subduction zone. Orogens at continental margins may form

  13. Continental transformrift interaction adjacent to a continental margin: The Levant case study

    E-print Network

    Lyakhovsky, Vladimir

    2013 Accepted 5 August 2014 Available online 16 September 2014 Keywords: Dead Sea Transform Continental of plate-bounding faults such as the Dead Sea Transform (DST) are strongly relat- ed to interactionsContinental transformrift interaction adjacent to a continental margin: The Levant case study Amit

  14. Continental Basaltic Rocks

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2003-12-01

    During the past few decades, geochemical studies of continental basaltic rocks and their petrologic kin have become mainstays of studies of the continental lithosphere. These igneous rocks have taken on such an important role largely because the chemical and isotopic composition of continental basaltic rocks and their mantle (see Chapter 2.05) and crustal xenoliths (see Chapter 3.01) provide the best proxy record available to earth scientists for the chemical and physical evolution of the deep continental lithosphere and underlying mantle, areas that are otherwise resistant to direct study. Keeping this in mind, the primary goal of this chapter is to illustrate how geochemical data can be used both to assess the origin of these rocks and to study the evolution of the continental lithosphere.A complete overview of continental basaltic rocks will not be attempted here, because continental "basalts" come in too wide a range of compositions, and because of the sheer volume of geochemical data available for such rocks worldwide. The scope of the chapter is limited to a discussion of a select group of ultramafic to mafic composition "intraplate" continental igneous rocks consisting primarily of kimberlites, potassic and sodic alkali basalts, and continental flood basalts. Igneous rocks forming at active continental margins, such as convergent or transform plate margins, are important examples of continental magmatism but are not directly discussed here (convergent margin magmas are discussed in Chapters 2.11, 3.11, and 3.18). The geochemistry of intraplate igneous rocks of the ocean basins are covered in Chapters 2.04 and 3.16. Although basaltic magmatism has occurred throughout the Earths history, the majority of the examples presented here are from Mesozoic and Cenozoic volcanic fields due to the more complete preservation of younger continental mafic igneous rocks. While considerable effort has been expended in studying the chemical differentiation of mafic magmas, the present discussion concentrates on the least differentiated basaltic rocks in a given location. Such rocks generally provide the best estimate of the compositions of "primary" magmas generated beneath a given volcanic field, and primary magmas provide the most direct insights into the nature of the magma source regions.

  15. Plate Tectonics: Lines of Evidence

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-11-01

    This Science Object is the fifth of five Science Objects in the Plate Tectonics SciPack. It explores the physical, geographical, and geological evidence for the theory of continental drift and plate tectonics. Plate tectonics provide a unifying framework for understanding Earth processes and history, and is supported by many lines of evidence. Over geologic time, plates move across the globe creating different continents (and positions of continents). Learning Outcomes:? Use plate tectonics to explain changes in continents and their positions over geologic time.? Provide evidence for the idea of plates, including the location of earthquakes and volcanoes, continental drift, magnetic orientation of rocks in the ocean floor, etc.

  16. What do Great Subduction Earthquakes tell us About Continental Deformation of the Upper Plate in the Central Andes Forearc? Insights From Seismotectonics, Continental Deformation and Coulomb Modelisation Along Southern Peru Margin

    Microsoft Academic Search

    L. Audin; H. Perfettini; H. Tavera

    2007-01-01

    Subduction of the Nazca plate beneath the Peruvian margin has produced numerous megathrust earthquakes during the last century and still constitutes mature seismic gaps in some places such as in between Ilo (Peru) and Arica (Chile). The rupture zones of the 1604, 1784 and 1868 southern Peru events were partially reactivated by the Arequipa 2001 (Mw = 8.5) seismic event,

  17. Factors Contributing to CPOE Opiate Allergy Alert Overrides

    PubMed Central

    Ariosto, Deborah

    2014-01-01

    Context Increasing regulatory incentives to computerize provider order entry (CPOE) and connect stores of unvalidated allergy information with the electronic health record (EHR) has created a perfect storm to overwhelm clinicians with high volumes of low or no value drug allergy alerts. Data sources include the patient and family, non-clinical staff, nurses, physicians and medical record sources. There has been little written on how to collect hypersensitivity information suited for drug allergy alerting. Opiates in particular are a frequently ordered class of drugs that have one of the highest rates of allergy alert override and are often a component of pre-populated Computerized Provider Order Entry (CPOE) order sets. Targeted research is needed to reduce alert volume, increase clinician acceptance, and improve patient safety and comfort. Design, Setting, and Patients An FY10 retrospective, quantitative analysis of 30321 unique adults with opiate allergies triggering CPOE alerts at a large academic medical center. Measurements The prevalence of opiates ordered with opiate allergy alerts triggered and overridden is described. The effect of age, race, gender, visit type (medical, procedural), provider type (physician, advance practice nurse), and reaction/severity (e.g. nausea/mild) on the likelihood of provider override of the patients first opiate alert was analyzed using Generalized Estimating Equations (GEE). Results Analysis of a patients first opiate allergy alert (n=2767) showed that only prescriber role had a significant effect on alert override compared with all other variables in the model. Advanced practice nurses (APNs) were generally less likely to override the patients first opiate alert as compared to physicians (GEE, ?=?.793, ?=.001). However, override rates remained high, with 80% for APNs and 90% for physicians. Over half of all discharges had opiates ordered during their stay. Of those, 9.1% of the patients had recorded opiate allergies triggering 25461 CPOE opiate allergy alerts. The largest sub-group of alerts was triggered by gastrointestinal (GI) allergies such as nausea and constipation. Removing these types of non-allergic, low severity GI reactions from the alert pool reduced the first alert volume by 15% and the overall alert volume by 22%. Of note is that a history of codeine allergy triggered a significant volume of opiate alerts, yet was rarely ordered. Conclusion With an increasingly complex, information dependent healthcare culture, clinicians do not have unlimited time and cognitive capacity to interpret and effectively act on high volumes of low value alerts. Drug allergy alerting was one of the earliest and supposedly simplest forms of CPOE clinical decision support (CDS), yet still has unacceptably high override rates. Targeted strategies to exclude GI non-allergic type hypersensitivities, mild overdose, or adverse effects could yield large reductions in overall drug overrides rates. Explicit allergy and severity definitions, staff training, and improved clinical decision support at the point of allergy data input are needed to inform how we process new and re-process historical allergy data. PMID:25954327

  18. Internet Geography: Plate Tectonics

    NSDL National Science Digital Library

    This site is part of GeoNet Internet Geography, a resource for pre-collegiate British geography students and their instructors. This page focuses on the structure of the Earth and the theory of plate tectonics, including continental drift, plate boundaries, the Ring of Fire, and mountains.

  19. Plate-mantle coupling from post-Pangea plate kinematics

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Dietmar Mller, R.; Seton, Maria; Flament, Nicolas

    2015-04-01

    Convection in the Earth's mantle that involves plates at the surfaces gives rise to plate velocities that vary through time and depend on the balance of plate boundary forces, with the present-day providing a snapshot of this ongoing process. However, present-day plate velocities do not capture plate behaviour over geologically representative timeframes and thus cannot be used to evaluate factors limiting plate velocities. Previous studies investigated the effects of continental keels on plate speeds by either using the present-day snapshot or a limited number of reconstructed plate configurations, often leading to conflicting results. For example, an early assumption was that continental keels (especially cratons) were unlikely to impede fast plate motions because India's velocity approached ~20 cm/yr in the Eocene prior to the collision with Eurasia. We employ a modern plate reconstruction approach with evolving global topological plate boundaries for the post-Pangea timeframe (since 200 Ma) to evaluate factors controlling plate velocities. Plate boundary configurations and plate velocities are extracted from the open-source and cross-platform plate reconstruction package GPlates (www.gplates.org) at 1 Myr intervals. For each plate, at each timestep, the area of continental and cratonic lithosphere is calculated to evaluate the effect on plate velocities. Our results support that oceanic plates tend to be 2-3 times faster than plates with large portion of continental plate area, consistent with predictions of numerical models of mantle convection. The fastest plates (~8.5 cm/yr RMS) are dominated by oceanic plate area and high subducting portion of plate perimeter, while the slowest plates (~2.6-2.8 cm/yr RMS) are dominated by continental plate area and bounded by transforms and mid-oceanic ridge segments. Importantly, increasing cratonic fractions (both Proterozoic and Archean lithosphere) significantly impede plate velocities, suggesting that deep continental keels impinge on asthenospheric flow to increase shear traction, thus anchoring the plate in the more viscous mantle transition zone. However, plates with significant cratonic fragments exhibit short-lived (~10 Myr) accelerations, such as the rapid motion of the Indian plate that is correlated with plume head arrivals as recorded by large igneous province (LIPs) emplacement, highlighting the necessity to analyse plate velocities over long geological timeframes. By evaluating factors controlling plate velocities in the post-Pangea timeframe, simple principles can be applied to highlight potential plate velocity artefacts for Paleozoic and earlier times for which no hotspot tracks, nor in-situ seafloor spreading histories, are preserved. Based on the post-Pangea timeframe, a principle that can be applied to pre-Pangea times is that plates with less than ~50% continental area can reach RMS velocities of ~20 cm/yr, while plates with more than 50% continental fraction do not exceed RMS velocities of ~10 cm/yr. Similarly, plates with large portions of continental or cratonic area with RMS velocities exceeding ~15 cm/yr for more than ~10 Myr should be flagged as potential artefacts requiring further justification of plate driving forces in such scenarios.

  20. Plate Tectonics: A Paradigm under Threat.

    ERIC Educational Resources Information Center

    Pratt, David

    2000-01-01

    Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)

  1. Tectonic Settings and Volcanic Activity: Continental volcanic arc & Volcanic-island-arc

    NSDL National Science Digital Library

    The representation depicts the formation of volcanic mountains at plate boundaries when an oceanic plate sinks under a continental plate, and when two oceanic plates collide and one sinks under the other. This representation is found under the "Continental volcanic arc" and "Volcanic island arc" tabs.

  2. Focal mechanism of a shock at the northwestern boundary of the pacific plate: Extensional feature of the oceanic lithosphere and compressional feature of the continental lithosphere

    Microsoft Academic Search

    Kunihiko Shimazaki

    1972-01-01

    First motions of P-wave and S-wave polarization angles for a shallow shock that occurred on July 25, 1965, at about 70 km oceanward from the Kuril trench indicate a double couple dip-slip source with a horizontal tension axis in the direction perpendicular to the trench. This suggests that the Pacific plate in this region is being extended in this direction.

  3. ConcepTest: Plate Tectonic Theory

    NSDL National Science Digital Library

    Which of the following statements is not consistent with plate tectonic theory? a. Continental crust is generally older than oceanic crust. b. The number of plates has changed through time. c. Mountain chains are ...

  4. Mountain Maker- Earth Shaker (Convergent Boundary: oceanic-continental)

    NSDL National Science Digital Library

    The representation depicts plate boundary interactions. The convergent boundary is one part of a larger interactive diagram (the 2nd slider/ arrow from the left), that focuses on an ocean plate pressing against a continental plate. This review specifically addresses the part of the resource dealing with what happens when plates pull apart. The "show intro" link provides instruction for diagram manipulation.

  5. GPS constraints on the kinematics of continental deformation

    USGS Publications Warehouse

    Thatcher, W.

    2003-01-01

    Recent GPS observations from the western United States, New Zealand, central Greece, and Japan indicate that present-day continental deformation is typically focused in narrow deforming zones whose extent is much smaller than the intervening largely inactive regions. However, these narrow zones are heterogeneously distributed, reflecting the inherent heterogeneity of continental lithospheric strength and internal buoyancy. Plate driving and resisting forces stress plate boundary zones and plate interiors and drive deformation. These forces change continuously and discontinuously, leading to continental deformation that typically evolves and migrates with time. Magmatic and tectonic processes alter lithospheric rheology and internal buoyancy and also contribute to the time-varying character of continental deformation.

  6. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Vallurupalli, S.; Evans, J. M.; Bruce, E. N.; Knapp, C. F.

    1995-01-01

    We investigated the effects of voluntary control of breathing on autonomic function in cardiovascular regulation. Variability in heart rate was compared between 5 min of spontaneous and controlled breathing. During controlled breathing, for 5 min, subjects voluntarily reproduced their own spontaneous breathing pattern (both rate and volume on a breath-by-breath basis). With the use of this experimental design, we could unmask the effects of voluntary override of the spontaneous respiratory pattern generator on autonomic function in cardiovascular regulation without the confounding effects of altered respiratory pattern. Results from 10 subjects showed that during voluntary control of breathing, mean values of heart rate and blood pressure increased, whereas fractal and spectral powers in heart rate in the respiratory frequency region decreased. End-tidal PCO2 was similar during spontaneous and controlled breathing. These results indicate that the act of voluntary control of breathing decreases the influence of the vagal component, which is the principal parasympathetic influence in cardiovascular regulation.

  7. Override the controversy: Analytic thinking predicts endorsement of evolution.

    PubMed

    Gervais, Will M

    2015-09-01

    Despite overwhelming scientific consensus, popular opinions regarding evolution are starkly divided. In the USA, for example, nearly one in three adults espouse a literal and recent divine creation account of human origins. Plausibly, resistance to scientific conclusions regarding the origins of species-like much resistance to other scientific conclusions (Bloom & Weisberg, 2007)-gains support from reliably developing intuitions. Intuitions about essentialism, teleology, agency, and order may combine to make creationism potentially more cognitively attractive than evolutionary concepts. However, dual process approaches to cognition recognize that people can often analytically override their intuitions. Two large studies (total N=1324) found consistent evidence that a tendency to engage analytic thinking predicted endorsement of evolution, even controlling for relevant demographic, attitudinal, and religious variables. Meanwhile, exposure to religion predicted reduced endorsement of evolution. Cognitive style is one factor among many affecting opinions on the origin of species. PMID:26072277

  8. Active Arc-Continent Accretion in Timor-Leste: New Structural Mapping and Quantification of Continental Subduction

    NASA Astrophysics Data System (ADS)

    Tate, G. W.; McQuarrie, N.; Bakker, R.; van Hinsbergen, D. J.; Harris, R. A.

    2010-12-01

    The island of Timor represents the active accretion of the Banda volcanic arc to the Australian continental margin. Arc accretion marks the final closure of an ocean basin in the canonic Wilson tectonic cycle, yet the incipient stages as visible now on Timor are still poorly understood. In particular, ocean closure brings continental material into the subduction zone as part of the down-going plate. The positive buoyancy of this subducting continental crust presents a complex problem in crustal dynamics, with possible effects on overall plate motions, migration and/or reversal of the active subduction zone, and the modes of faulting within the upper crust. New mapping in Timor-Leste has provided a detailed view of the structural repetition of Australian continental sedimentary units structurally below overriding Banda Arc material. The central Dili-Same transect begins in the north with the low-grade metamorphic Aileu Formation of Australian affinity, thrust over the time-equivalent more proximal Maubisse Formation to the south. These in turn are thrust over the Australian intra-continental strata, the Triassic Aitutu and the Permian Cribas Formations. The Aitutu and Cribas Formations are deformed in a series of faulted ENE-striking anticlines exposed along the central axis of Timor. The southern end of the transect reveals a 15-km wide piggyback basin of synorogenic marine clays north of another faulted anticline of Aututu and Cribas on the south coast. The eastern Laclo-Barique transect exposes a deeper erosional level, showing three regional NNE-striking thrust faults with approximately 3 km spacing and 50-75 km along-strike extent, each one repeating the Aitutu and Cribas stratigraphy. The strike of Australian-affinity units in the eastern transect is rotated 50-60 degrees to the north compared to the units in the central transect. The Jurassic Wailuli shales and the Bobonaro tectonic mlange act as the upper dcollement between this duplex and the Lolotoi metamorphic basement of the Banda Arc. This mapping provides the opportunity to create balanced structural cross-sections across Timor. New relationships such as the fault repetition of the Cribas and Aitutu Formations in the eastern transect, which were previously mapped as a single anticline, will drastically change cross-sections and increase shortening estimates. An initial cross-section produces a minimum shortening of 320 km, 250 km of which is accommodated by the subduction and underplating of Australian continental material.

  9. Earthquakes, Plate Boundaries, and Depth Indiana Standard Indicators

    E-print Network

    Polly, David

    , volcanoes, trenches, and mountains. ES.1.24 Understand and discuss continental drift, sea-floor spreading of the ocean and continental crust and the depth of earthquakes, and types of plate boundaries where or continental crust? What is the explanation behind the earthquakes that do not occur at plate boundaries? #12

  10. A New Arabia-Africa-Eurasia GPS Velocity Field (1994-2014) and E Mediterranean Block Model: Implications for Continental Deformation in a Zone of Active Plate Interaction

    NASA Astrophysics Data System (ADS)

    Vernant, P.; Floyd, M.; Ozener, H.; Ergintav, S.; Karakhanian, A.; Kadirov, F. A.; Sokhadze, G.; ArRajehi, A.; Nankali, H. R.; Georgiev, I.; Ganas, A.; Paradissis, D.; McClusky, S.; Gomez, F. G.; Reilinger, R. E.

    2014-12-01

    We present new GPS velocities for the Arabia-Africa-Eurasia region determined with GAMIT/GLOBK (>830 velocities) spanning the period 1994-2014. Here we consider the E Mediterranean region of plate interaction. We use DEFNODE software to develop block models and estimate slip rates on major faults and strain of some blocks. The wrms of residual velocities from our new model is 1.3 mm/yr. We identify small E-W extension within the newly defined Anatolian block confined to a 100-200 km wide zone south of the North Anatolian Fault (NAF) reaching 2-3 mm/yr with rates increasing towards the west. Possible causes we consider include, un-modeled postseismic effects of the 1999 Izmit/Duzce earthquake sequence, continuing post-seismic effects of the 20th Century sequence of M>7 earthquakes, and/or toroidal sub-lithospheric flow towards the subducting Hellenic slab. The overall strain rate of the Marmara Sea block is dominantly N-S extension, and the Van block, N-S compression. Present slip rates along the NAF increase from E to W, 22-24 mm/yr along the E to E-central segment and 27-28 mm/yr along the W segment. We quantify extension in the G. of Corinth, central Greece, and G. of Evia; the W, central and E sections of the Hellenic Trench are shortening with extension in the back-arc. The W Hellenic Trench and W Peloponnese have right-lateral strike-slip and the E Hellenic Trench, left-lateral ss. N-S extension (2-4 mm/yr) in N Greece and the N Aegean Sea extends at least to 42N. Arabia-Sinai left-lateral motion across the Dead Sea Fault is ~5 mm/yr along the S segment; significant residual velocities along the N and S segments indicate lower slip rates in the N and require fault segmentation to account for slip rate variations along strike. We identify E-W contraction of the Arabian (Persian) Gulf (~3-5 mm/yr) that extends into the E part of the Arabian Plate. We will quantify and present these and other observed deformation patterns and discuss their tectonic implications.

  11. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust. PMID:17744717

  12. Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.; Spakman, W.

    2015-07-01

    Unravelling causes for absolute plate velocity change and continental dynamic topography change is challenging because of the interdependence of large-scale geodynamic driving processes. Here, we unravel a clear spatio-temporal relation between latest Cretaceous-Early Cenozoic subduction at the northern edge of the Australian plate, Early Cenozoic Australian plate motion changes and Cenozoic topography evolution of the Australian continent. We present evidence for a ?4000 km wide subduction zone, which culminated in ophiolite obduction and arc-continent collision in the New Guinea-Pocklington Trough region during subduction termination, coinciding with cessation of spreading in the Coral Sea, a ?5 cm/yr decrease in northward Australian plate velocity, and slab detachment. Renewed northward motion caused the Australian plate to override the sinking subduction remnant, which we detect with seismic tomography at 800-1200 km depth in the mantle under central-southeast Australia at a position predicted by our absolute plate reconstructions. With a numerical model of slab sinking and mantle flow we predict a long-wavelength subsidence (negative dynamic topography) migrating southward from ?50 Ma to present, explaining Eocene-Oligocene subsidence of the Queensland Plateau, ?330 m of late Eocene-early Oligocene subsidence in the Gulf of Carpentaria, Oligocene-Miocene subsidence of the Marion Plateau, and providing a first-order fit to the present-day, ?200 m deep, topographic depression of the Lake Eyre Basin and Murray-Darling Basin. We propound that dynamic topography evolution provides an independent means to couple geological processes to a mantle reference frame. This is complementary to, and can be integrated with, other approaches such as hotspot and slab reference frames.

  13. Continental arc magmatism in a Mesoproterozoic convergent margin: Petrological and geochemical constraints from the magmatic suite of Kondapalle along the eastern margin of the Indian plate

    NASA Astrophysics Data System (ADS)

    Rao, C. V. Dharma; Santosh, M.

    2011-09-01

    The magmatic suite at Kondapalle represents a Mesoproterozoic (~ ca. 1634 Ma) magmatic arc emplaced in the southern sector of the Eastern Ghats Belt (EGB). Here we present new geological, mineralogical and geochemical data on the various lithological units in this complex including anorthosites, gabbronorites and pyroxenites. The major mineral constituents in these rocks are plagioclase (An 98-57), amphibole (X Mg 0.93-0.52), orthopyroxene (X Mg 0.94-0.51), clinopyroxene (X Mg 0.93-0.63) and chromite (X Mg 0.20-50). The near-absence of plagioclase in the orthopyroxenites, early and abundant crystallization of orthopyroxene, and formation of gabbronorites rather than gabbro or olivine gabbro in the Kondapalle suite are correlated with the features of arc cumulates. The chemistry of chromian spinel and clinopyroxene also displays the trend for arc cumulates. The variations in the anorthite content of plagioclase vs. the Mg# of olivine attest to an arc-related magma source. The rocks display low abundance of incompatible trace elements (Ba, Rb, K and Zr) comparable to the values typically observed in subduction-related magmatic arcs. In trace element N-MORB normalized diagrams, all the rock units show Nb-Ta-Ti-Zr troughs reflecting the features characteristic of arc magmas. We interpret the Kondapalle rocks to represent the root zone of a deeply eroded magmatic arc built during the Mesoproterozoic associated with the subduction of an oceanic lithosphere in a long-lived convergent margin. We identify that the Mesoproterozoic subduction along the eastern margin of the Indian plate generated a wide arc-accretionary complex with an extruded high P-T metamorphic orogen during the final stage of collision. The subduction-accretion process is also supported by recent findings of Mesoproterozoic ophiolite mlanges from this zone, marking the history from the break-up of the Paleoproterozoic Columbia supercontinent to the assembly of the Neoproterozoic Rodinia supercontinent.

  14. Unique Signal Override Plug (USOP) electromagnetic test report

    NASA Astrophysics Data System (ADS)

    Bonn, R. H.

    1990-10-01

    The MC4039 Unique Signal Override Plug (USOP) provides the unique signal for the B90 when fielded on aircraft that are not equipped with unique signal capability. Since the USOP is field installed, the concern is that it might be susceptible to electromagnetic radiation prior to installation on the weapon. This report documents a characterization of the USOP, evaluates various techniques for attaching electromagnetic shields, and evaluates the susceptibility of a fully assembled passive-USOP. Tests conducted evaluated the electromagnetic susceptibility of the passive, unconnected USOP. During normal operation the USOP is powered directly from the weapon. During the course of this test program two prototypes were developed. The prototype 1 USOP internal circuitry contains one SA3727 chip, five diodes, three resistors, and two capacitors; these are mounted on a circular circuit board and contained inside a metal back shell cover, which serves as an electromagnetic shield. The prototype 2 design incorporated four changes. The manufacturer of the SA3727 chip was changed from Lasarray to LSI Logic, the circuit board ground was tied to the case ground through a straight wire, Cl was changed from 1 microfarad to 0.1 microfarads. and the circuit board was changed, as required.

  15. Plate Borders and Mountain Building

    NSDL National Science Digital Library

    Schlumberger Excellence in Educational Development, Inc.

    This page features animations of four different types of plate boundaries, including one animation of the collision of two pieces of continental crust, forming steep mountain ranges. The animations are all presented in flash, and the plate convergence offers a useful, generic view of orogeny.

  16. The Plate Tectonics Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will

  17. Deformation of the overriding slab during incipient subduction in centrifuge modeling and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Mart, Yossi; Goren, Liran; Koyi, Hemin

    2015-04-01

    Analog models of subduction-related structural deformation emphasize the significance of differences in density and friction between the adjacent plates on the distortion of the overriding slab and its possible effect on the subduction procedure. Centrifuge experiments juxtaposed miniaturized lighter and denser lithospheres, which were floating on denser but less viscous asthenosphere. The lithosphere in the tests comprised brittle and ductile strata, which showed diversified styles of deformation, while factors of equivocal tectonic significance, such as lateral push or negative buoyancy, were not introduced into the experiments. The tests show that the juxtaposition of lighter and denser lithospheres would suffice to drive the denser lithosphere as a wedge between the asthenosphere and the lighter lithosphere, and that the rate of the process would depend on the rate of friction between the slabs, as well as on differential viscosity. It seems that the reduced friction in Nature was derived from the generation of serpentinites, which could be the main agent of lubrication. The underthrusting of the denser lithosphere leads to the uplift and collapse of the edge of the lighter slab, where extension, thinning, normal faulting and rifting took place, and diapiric ascent of parts of the ductile layer of the lighter slab occurred along several rifts. The analog experiments were carried out only to the stage where the denser slab was thrust under the lighter one, but the penetration of the lithosphere into the asthenosphere was not achieved. It seems plausible therefore, that only after eclogitization, and the upward motion of serpentinites, increased the density of the underthrust slab, would it dive and penetrate into the asthenosphere. The experiments indicate the plausibility of the constraints imposed on the subduction process by the deformation of the overthrust slab. The normal faults and rifts in the overthrust block could serve as conduits for the ascent of the lighter mineralogical fraction emanating from the heated and pressurized subducting plate, as well as from the upper mantle material displaced by the subducted slab and their accretion on the lighter plate. The denser fraction of the subducting slab would be eclogitized, and thus pull the underthrust slab into the mantle. The experiments suggest further that ocean-continent juxtaposition is not a prerequisite for subduction, which could also initiate between two lithologic slabs of different densities that were juxtaposed due to transform faulting.

  18. Continental Drift

    NSDL National Science Digital Library

    This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 6-8. It focuses on Alfred Wegener's theory of Continental Drift and the evidence used to support it. Using fossil types and maps, students view similarities between continents that led Wegener to conclude that they had once been together as a supercontinent, Pangea. Included are objectives, materials, procedures, discussion questions, evaluation ideas, suggested readings, and vocabulary. There are videos available to order which complement this lesson, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

  19. Mechanical obstacles to the movement of continent-bearing plates

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1985-01-01

    Selected geophysical problems associated with the concept of continental drift as an incidental corollary of plate movement are discussed. The problems include the absence of a suitable plate-driving mechanism for plates with continental leading edges, the absence of the low-velocity zone under shields, and continental roots of 400 to 700 km depths. It is shown that if continental drift occurs, it must use mechanisms not now understood, or that it may not occur at all, plate movement being confined to ocean basins.

  20. Plate T-11: Appalachian Mountains

    NSDL National Science Digital Library

    Appalachian Mountain landforms clearly demonstrate the relation of plate tectonics and structure to geomorphology. The folded rocks record the convergence of two continental plates in Pennsylvanian/Permian time. This page uses text, maps, and remotely sensed imagery to explain the relationship between plate tectonics, geologic structures, and the resulting landforms. It is part of an out-of-print NASA publication entitled 'Geomorphology from Space'. Links to the rest of the book are provided.

  1. Plate Tectonics: Plate Interactions

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-11-01

    This Science Object is the fourth of five Science Objects in the Plate Tectonic SciPack. It identifies the events that may occur and landscapes that form as a result of different plate interactions. The areas along plate margins are active. Plates pushing against one another can cause earthquakes, volcanoes, mountain formation, and very deep ocean trenches. Plates pulling apart from one another can cause smaller earthquakes, magma rising to the surface, volcanoes, and oceanic valleys and mountains from sea-floor spreading. Plates sliding past one another can cause earthquakes and rock deformation. Learning Outcomes:? Explain why volcanoes and earthquakes occur along plate boundaries. ? Explain how new sea floor is created and destroyed.? Describe features that may be seen on the surface as a result of plate interactions.

  2. Iranian Geology and Continental Drift in the Middle East

    Microsoft Academic Search

    Manoochehr Takin

    1972-01-01

    This article summarizes Iranian geology and continental drift in the Middle East. The relation of the two suggests that plate tectonics satisfactorily explain the geological development of the Middle East.

  3. Subducted continental margin imaged i n the Carpathians of Czechoslovakia

    Microsoft Academic Search

    Cestmir Tomek; Jeremy Hall

    1993-01-01

    Deep seismic-reflection data across the frontal part of the Carpathian arc image subducted European continental crust beneath the thick accretionary wedge of the Neogene west Carpathian arc. The upper continental crust of the lower plate is depressed with high curvature to a depth off about 25 km below the arc, but the corresponding Moho appears to be nearly horizontal. Flow

  4. Continental collision and slab break-off: modelling results and implications for topography, trench migration and magmatism

    NASA Astrophysics Data System (ADS)

    Van Hunen, J.; Allen, M. B.; Bottrill, A.; Magni, V.; Kaislaniemi, L.; Neill, I.

    2012-12-01

    The Cenozoic closure of Tethys and collision of Africa and Eurasia is characterized by observables such as significant topographic features, trench migration, and collision-related magmatism. Slab break-off is dynamically expected to occur, and has been suggested on the basis of tomographic images. While often proposed to (partly) explain these observables, slab break-off has not been directly observed. Here, dynamical models of subduction-collision and subsequent slab break-off are discussed to provide more insight into the dynamics of continental collision and slab break-off. These will then be used to relate plate tectonics to surface observations. In particular, slab break-off has been invoked to explain collision-related magmatism. Modelling results provide temporal constraints, since they show how collision of mature oceanic plates like the former Tethys ocean can delay slab break-off until 20-25 Myrs after initial collision. This suggests that slab break-off for the Arabia-Eurasia collision was unlikely to occur before 10-15 Ma, correlating with an upsurge in magmatism on the Turkish-Iranian plateau after this time. Suture-parallel migration of the slab break-off tear has a model speed of 10-15 cm/yr in this case, but can be significantly faster if the closed ocean basin is relatively young. These values fit well with estimates from recent depocentre migrations in southern Italy. Modelling results further suggest slab steepening following the onset of continental collision, which creates a temporary depression above the mantle wedge, well before the onset of slab break-off. Such depression is in line, both temporally and spatially, with Upper Oligocene-Lower Miocene carbonate strata deposited to the NE of the Arabia-Eurasia suture. Such slab steepening furthermore induces trench advance (i.e. trench motion towards the overriding plate), which is in agreement with recorded trench migration along collision zones such as Arabia-Eurasia and India-Eurasia. External forcing (such as mantle flow, or effects of nearby mantle plumes or slabs) is often invoked to explain such trench advance, but our modelling, in which such external forcing is absent, indicates that intrinsic forces might play an important role too. Finally, we discuss implications for the enigmatic magmatism observed along the Arabia-Eurasia collision zone. The composition of the volcanic centres ranges from OIB-like alkali basalts to mature continental arc lavas. Their composition, and spatial and temporal distribution, suggests a correlation with earlier subduction events, but a wide range of geodynamical processes (including local mantle upwellings, lithosphere-asthenosphere boundary instabilities, chemical heterogeneities, and slab windows) may be required to explain this compositional variety.

  5. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trnnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjrn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the rfajkull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive rfajkull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ?350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  6. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trnnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjrn

    2015-01-01

    The magmatic activity (016 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Icelandand especially the rfajkull volcanois characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of SrNdPb abundances and isotope ratios that the primitive rfajkull melts could have assimilated 26% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ?350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  7. An updated digital model of plate boundaries Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA

    E-print Network

    Bird, Peter

    , Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge, oceanic

  8. The buoyancy variation of plate coupling from subduction to collision: an example across the northernmost Manila trench

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2015-04-01

    The Manila trench is the boundary between the South China Sea (SCS) of Eurasian Plate (EU) and Philippine Sea Plate (PSP). The east subducting of SCS is a ceased rifting oceanic crust. To the north, the subduction is obscured and transits to collision extended to the Taiwan orogenesis. The Taiwan Integrated Geodynamics Research (TAIGER) project has implemented several offshore multichannel seismic (MCS) reflection and wide-angle seismic experiments to model the velocity structure of the incipient arc-continental collision. Amongst, along two trench perpendicular transects (MGL0905_23, 25) are associated with ocean bottom seismometer (OBS) deployed in the northern Manila trench. The transect MCS data and tomographic velocity structure provide well constraint on the recognition between the crust and mantle lithosphere that helps to reconstruct synthetic density structure to fit the observation gravity data. The synthetic gravity result along two transects also show that there exists an anomalous high density (~2.97 g/cm3) mass beneath the accretionary prism in the leading edge of overriding plate; however, unfortunately, the MCS and OBS data have no resolution there. Meanwhile, the buoyancies of crust (Hc) and mantle lithosphere (Hm) can be calculated associated with the residual topography based on the isostatic equilibrium. According to the contribution of Hm, the estimation of the plate coupling effect can be approached. Combining two transects data across the northern Manila trench and one profile across the Hengchun Peninsula in southern Taiwan (T29-33, TAICRUST project), a sequence from subduction to collision of plate coupling effect can therefore be evaluated, and also offers the opportunity to examine the lithospheric structure variation in the zone between Taiwan and northernmost Manila trench.

  9. Worldwide distribution of ages of the continental lithosphere derived from a global seismic tomographic model

    E-print Network

    Shapiro, Nikolai

    ). Continental plates do not subduct but oat on the asthenosphere and drift on the surface of the EarthWorldwide distribution of ages of the continental lithosphere derived from a global seismic August 2008 Accepted 27 October 2008 Available online xxxx Keywords: Continental lithosphere Seismic

  10. Continental rifting: a planetary perspective

    SciTech Connect

    Muehlberger, W.R.

    1985-01-01

    The only inner planet that has abundant evidence of regional extension, and the consequent generation of rifts in the earth. The absence of plate motion on the other inner planets limits their rifts to localized bulges or subsidence areas. The rifting of oceanic lithosphere is seldom preserved in the geological record. Thus, such rifting must be inferred via plate tectonic interpretation: if there is rifting, then there must be subduction whose results are commonly well preserved. Modern continental rifts are found in many tectonic settings: continental breakup, extension transverse to collisional stresses, or wide regions of nearly uniform extension. Recognition of these settings in older rocks becomes more difficult the farther back in geologic time you travel. Rift basin fillings typically show rapid lateral and vertical facies and thickness changes, bimodal volcanism, and distinctive rift-drift sequences. Proterozoic rifts and aulacogens are well-documented in North America; ex. Keweenawan, western margin of Labrador fold belt, Belt-Uinta and the Wopmay-Athapuscow regions. Documented Archean rifts are rare. In Quebec, the truncated margin of the Minto craton bounded on the south by a 2.8 Ga greenstone belt implies an earlier rift event. The oldest proposed rift dated at 3.0 Ga contains the Pongola Supergroup in southeastern Africa. The presence of Archean dikes demonstrates a rigid crust and andesites as old as 3.5 Ga imply plate tectonics and thus, at least, oceanic rifting.

  11. Continental Growth and the Sedimentary Record

    NASA Astrophysics Data System (ADS)

    Dhuime, B.; Hawkesworth, C. J.; Robinson, R. A. J.; Cawood, P. A.

    2014-12-01

    Detrital sedimentary rocks provide average samples of the continental crust formed at different times and in different places. Some materials are more susceptible to erosion and/or to preservation bias than others, and one issue is to understand how the compositions of a range of source rocks are then recorded in the sediments. Here we considered two different approaches to model the growth of the continental crust: (i) The variation of Nd isotopes in continental shales with different deposition ages, which requires a correction of the bias induced by preferential erosion of younger rocks through an erosion parameter usually referred to as 'K'. The determination of K, and the extent to which it varies in different erosion systems, thus have fundamental implications for the models of continental growth based on radiogenic isotopes in continental sediments. (ii) The variations in U-Pb, Hf and O isotopes in detrital zircons, from 'modern' sediments sampled worldwide. In this approach, O isotopes are used to screen 'hybrid' Hf model ages (i.e. ages resulting from mixing processes of crustal material from different ages) from Hf model ages that represent actual crust formation ages. These two approaches independently suggest that the continental crust has been generated continuously, but with a marked decrease in the continental growth rate at ~3 Ga. The >4 Ga to ~3 Ga period is characterised by relatively high net rates of continental growth (~3.0 km3.a-1), which are similar to the rates at which new crust is generated, and destroyed, at the present time. Net growth rates are much lower since 3 Ga (~0.8 km3.a-1), which may be attributed to higher rates of destruction of continental crust. The inflexion in the continental growth curve at ~3 Ga indicates a change in the way the crust was generated and preserved. This change may be linked to onset of subduction-driven plate tectonics and discrete subduction zones.

  12. Plate Tectonics Learning Module

    NSDL National Science Digital Library

    Rita Haberlin

    This plate tectonics unit was designed to be used with a college course in physical geography. Subject matter covered includes: the development of the theory including Wegener's Continental Drift Hypothesis and the existence of Pangaea, Harry Hess and his work on sea-floor spreading, and the final theory. It points out that global features such as deep oceanic trenches, mid-ocean ridges, volcanic activity, and the location of earthquake epicenters can now be related to the story of plate tectonics, since most geological activity occurs along plate boundaries. Divergent, convergent and transform plate boundaries are discussed in detail. This module contains a study guide and outline notes, study questions, and practice quizzes. One feature of the module is a web exploration section with links to twelve outside sites that augment the instruction.

  13. Tectonic speed limits from plate kinematic reconstructions

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Mller, R. Dietmar; Seton, Maria; Flament, Nicolas

    2015-05-01

    The motion of plates and continents on the planet's surface are a manifestation of long-term mantle convection and plate tectonics. Present-day plate velocities provide a snapshot of this ongoing process, and have been used to infer controlling factors on the speeds of plates and continents. However, present-day velocities do not capture plate behaviour over geologically representative periods of time. To address this shortcoming, we use a plate tectonic reconstruction approach to extract time-dependent plate velocities and geometries from which root mean square (RMS) velocities are computed, resulting in a median RMS plate speed of ? 4 cm /yr over 200 Myr. Linking tectonothermal ages of continental lithosphere to the RMS plate velocity analysis, we find that the increasing portions of plate area composed of continental and/or cratonic lithosphere significantly reduces plate speeds. Plates with any cratonic portion have a median RMS velocity of ? 5.8 cm /yr, while plates with more than 25% of cratonic area have a median RMS speed of ? 2.8 cm /yr. The fastest plates (? 8.5 cm /yr RMS speed) have little continental fraction and tend to be bounded by subduction zones, while the slowest plates (? 2.6- 2.8 cm /yr RMS speed) have large continental fractions and usually have little to no subducting part of plate perimeter. More generally, oceanic plates tend to move 2-3 times faster than continental plates, consistent with predictions of numerical models of mantle convection. The slower motion of continental plates is compatible with deep keels impinging on asthenospheric flow and increasing shear traction, thus anchoring the plate in the more viscous mantle transition zone. We also find that short-lived (up to ? 10 Myr) rapid accelerations of Africa (?100 and 65 Ma), North America (?100 and 55 Ma) and India (? 130 , 80 and 65 Ma) appear to be correlated with plume head arrivals as recorded by large igneous province (LIPs) emplacement. By evaluating factors influencing plate speeds over the Mesozoic and Cenozoic, our temporal analysis reveals simple principles that can guide the construction and evaluation of absolute plate motion models for times before the Cretaceous in the absence of hotspot tracks and seafloor spreading histories. Based on the post-Pangea plate motions, one principle that can be applied to pre-Pangea times is that plates with less than ? 50% continental area can reach RMS velocities of ? 20 cm /yr, while plates with more than 50% continental fraction do not exceed RMS velocities of ? 10 cm /yr. Similarly, plates with large portions of continental or cratonic area with RMS velocities exceeding ? 15 cm /yr for more than ? 10 Myr should be considered as potential artefacts requiring further justification of plate driving forces in such scenarios.

  14. Plate TectonicsPlate Tectonics Plate TectonicsPlate Tectonics

    E-print Network

    Siebel, Wolfgang

    Plate TectonicsPlate Tectonics #12;Plate TectonicsPlate Tectonics Lithosphere strong, rigid, transform boundaries travel 1 to 11 cm/yr relative to one another #12;14 tectonic plates today #12;Mid asthenosphere that flows 8 large lithospheric plates and 6 smaller ones separated by divergent, convergent

  15. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jrg; Jegen, Marion

    2013-04-01

    The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.

  16. Plus-end Motors Override Minus-end Motors during Transport of Squid Axon Vesicles on Microtubules

    E-print Network

    Muresan, Virgil

    vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are boundPlus-end Motors Override Minus-end Motors during Transport of Squid Axon Vesicles on Microtubules- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction

  17. Cognitive Accessibility and Sentiment OverrideStarting a Revolution: Comment on Fincham et al. (1995)

    Microsoft Academic Search

    Steven R. H. Beach; Joseph Etherton; Dan Whitaker

    1995-01-01

    F. D. Fincham, P. C. Garnier, S. Gano-Phillips, and L. N. Osborne (1995) present a methodology new to the marital arena (reaction time assessment) and use it to illuminate a classic issue in the marital area, sentiment override. In doing so, they highlight the potential of this new methodology for enhancing marital assessment and allowing for the rigorous test of

  18. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling

    NASA Astrophysics Data System (ADS)

    Espurt, Nicolas; Funiciello, Francesca; Martinod, Joseph; Guillaume, Benjamin; Regard, Vincent; Faccenna, Claudio; Brusset, Stphane

    2008-06-01

    We present lithospheric-scale analog models, investigating how the absolute plates' motion and subduction of buoyant oceanic plateaus can affect both the kinematics and the geometry of subduction, possibly resulting in the appearance of flat slab segments, and how it changes the overriding plate tectonic regime. Experiments suggest that flat subductions only occur if a large amount of a buoyant slab segment is forced into subduction by kinematic boundary conditions, part of the buoyant plateau being incorporated in the steep part of the slab to balance the negative buoyancy of the dense oceanic slab. Slab flattening is a long-term process (~10 Ma), which requires the subduction of hundreds of kilometers of buoyant plateau. The overriding plate shortening rate increases if the oceanic plateau is large enough to decrease the slab pull effect. Slab flattening increases the interplate friction force and results in migration of the shortening zone within the interior of the overriding plate. The increase of the overriding plate topography close to the trench results from (1) the buoyancy of the plate subducting at trench and (2) the overriding plate shortening. Experiments are compared to the South American active margin, where two major horizontal slab segments had formed since the Pliocene. Along the South American subduction zone, flat slab segments below Peru and central Chile/NW Argentina appeared at ~7 Ma following the beginning of buoyant slab segments' subduction. In northern Ecuador and northern Chile, the process of slab flattening resulting from the Carnegie and Iquique ridges' subductions, respectively, seems to be active but not completed. The formation of flat slab segments below South America from the Pliocene may explain the deceleration of the Nazca plate trenchward velocity.

  19. Rheology and strength of the Eurasian continental lithosphere in the foreland of the Taiwan collision belt: Constraints from seismicity, flexure, and structural styles

    NASA Astrophysics Data System (ADS)

    Mouthereau, FrDRic; Petit, Carole

    2003-11-01

    Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of 15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.

  20. Why does continental convergence stop

    SciTech Connect

    Hynes, A.

    1985-01-01

    Convergence between India and Asia slowed at 45 Ma when they collided, but continues today. This requires that substantial proportions of the Indian and/or Asian lithospheric mantle are still being subducted. The resulting slab-pull is probably comparable with that from complete lithospheric slabs and may promote continued continental convergence even after collision. Since descending lithospheric slabs are present at all collision zones at the time of collision such continued convergence may be general after continental collisions. It may cease only when there is a major (global) plate reorganization which results in new forces on the convergent continents that may counteract the slab-pull. These inferences may be tested on the late Paleozoic collision between Gondwanaland and Laurasia. This is generally considered to have been complete by mid-Permian time (250 Ma). However, this may be only the time of docking of Gondwanaland with North America, not that of the cessation of convergence. Paleomagnetic polar-wander paths for the Gondwanide continents exhibit consistently greater latitudinal shifts from 250 Ma to 200 Ma than those of Laurasia when corrected for post-Triassic drift, suggesting that convergence continued through late Permian well into the Triassic. It may have been accommodated by crustal thickening under what is now the US Coastal Plain, or by strike-slip faulting. Convergence may have ceased only when Pangea began to fragment again, in which case the cause for its cessation may be related to the cause of continental fragmentation.

  1. Whole Earth Structure and Plate Tectonics

    E-print Network

    Whole Earth Structure and Plate Tectonics Earth Structure (2nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise #12; EarthStructure (2nd ed evolution of Earth: from continental drift (early 1900's) to sea-floor spreading (early 1960's) to plate

  2. The Plate Tectonic Story: A Scientific Jigsaw

    NSDL National Science Digital Library

    This activity has students read and answer questions based upon the article 'The plate tectonic story: a scientific jigsaw.' The article starts with the continental drift theory of Alfred Wegener and adds the evidence from the seafloor to arrive at plate tectonics. It concludes with remarks about mantle dynamics and the future ability to predict earthquakes.

  3. Plate Tectonics: The Scientist Behind the Theory

    NSDL National Science Digital Library

    2005-12-17

    This video segment adapted from A Science Odyssey profiles Alfred Wegener, the scientist who first proposed the theory of continental drift. Initially criticized, his theory was accepted after further evidence revealed the existence of tectonic plates and showed that these plates move.

  4. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones. PMID:25391963

  5. Subduction-Driven Recycling of Continental Margin Lithosphere

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Niu, F.; Palomeras, I.; Thurner, S.; Humphreys, E.; Miller, M. S.; Carbonell, R.; Gallart, J.; Schmitz, M.

    2014-12-01

    While subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, recycling continental lithosphere appears far more complicated and is less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we describe another process that can lead to the loss of continental lithosphere adjacent to a subduction zone: Subducting oceanic plates can entrain and recycle lithospheric mantle from an adjacent continent and disrupt the continental lithosphere far inland from the subduction zone. Seismic images from recent dense broadband arrays on opposite sides of the Atlantic show higher than expected volumes of positive anomalies identified as the subducted Atlantic (ATL) slab under northeastern South America (SA), and the Alboran slab beneath the Gibraltar arc region (GA). The positive anomalies lie under and are aligned with the continental margins at depths greater than 200 km. Closer to the surface we find that the continental margin lithospheric mantle is significantly thinner than expected beneath the orogens adjacent to the subduction zones. Thinner than expected lithosphere extends inland as far as the edges of nearby cratonic cores. These observations suggest that subducting oceanic plates viscously entrain and remove continental mantle lithosphere from beneath adjacent continental margins, modulating the surface tectonics and pre-conditioning the margins for further deformation. The latter can include delamination of the entire lithospheric mantle, as around GA, inferred by results from active and passive seismic experiments. Secondary downwellings develop under the continental interior inland from the subduction zone: We image one under SA and one or more in the past were likely under GA. The process of subduction-driven continental margin lithosphere removal reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these two subduction zones.

  6. What on Earth is Plate Tectonics?

    NSDL National Science Digital Library

    This abbreviated explanation of the subject of plate tectonics is divided into several parts. The first section, entitled Into the Earth, describes the crust, mantle and core of the Earth, while the next section shows a world map with the plates delineated. The section called Action at the Edges uses text and diagrams to explain what is occurring at the plate boundaries. Links lead to a detailed discussion of converging boundaries including ocean-ocean, ocean-continental, and continental-continental. A wide range illustration shows both surface and cross-section views of plate interaction and a link leads to a similar diagram with labels. In the Moving through Time section, a series of color-coded maps is shown, illustrating the relative position of the continents over the past 650 million years. The last section shows a paleogeographic reconstruction of the Earth and explains how paleomagnetism, magnetic anomalies, paleobiogeography, paleoclimatology, and geologic history are used to create it.

  7. Constraints on continental accretion from sedimentation

    NASA Technical Reports Server (NTRS)

    Abbott, Dallas

    1988-01-01

    Heat loss in the ancient Earth was discussed assuming that classical sea floor spreading was the only mechanism. This may be expressed as faster spreading or longer total ridge length. These have important implications as to the size and number of cratonic plates in the distant past, the degree to which they are flooded, the kinds of sediments and volcanics that would be expected, and the amount of recycling of continental material taking place. The higher proportion of marine sedimentary rocks and oceanic volcanics in the Archean, and the relative paucity of evaporites and continental volcanics may in part be due to smaller cratonic blocks. A model was developed of the percentage of continental flooding which utilizes round continents and a constant width of the zone of flooding. This model produces a reasonable good fit to the percentage of flooding on the present day continents.

  8. Leading us not unto temptation: momentary allurements elicit overriding goal activation.

    PubMed

    Fishbach, Ayelet; Friedman, Ronald S; Kruglanski, Arie W

    2003-02-01

    The present research explored the nature of automatic associations formed between short-term motives (temptations) and the overriding goals with which they interfere. Five experimental studies, encompassing several self-regulatory domains, found that temptations tend to activate such higher priority goals, whereas the latter tend to inhibit the temptations. These activation patterns occurred outside of participants' conscious awareness and did not appear to tax their mental resources. Moreover, they varied as a function of subjective goal importance and were more pronounced for successful versus unsuccessful self-regulators in a given domain. Finally, priming by temptation stimuli was found not only to influence the activation of overriding goals but also to affect goal-congruent behavioral choices. PMID:12585805

  9. Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    NASA Technical Reports Server (NTRS)

    Froidevaux, C.; Schubert, G.; Yuen, D. A.

    1976-01-01

    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.

  10. Plate motion

    SciTech Connect

    Gordon, R.G. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  11. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  12. Plate Boundaries

    NSDL National Science Digital Library

    This site provides information on plate boundaries, which are found at the edge of the lithospheric plates and are of three types: convergent, divergent and conservative. Wide zones of deformation are usually characteristic of plate boundaries because of the interaction between two plates. The three boundaries are characterized by their distinct motions which are described in the text and depicted with block diagram illustrations, all of which are animated. There are also two maps that show the direction of motion of the plates. Active links lead to more information on plate tectonics.

  13. The Segmented Overriding Plate and Coupling at the South-Central Chilean Margin (3642S)

    Microsoft Academic Search

    Ron I. Hackney; Helmut P. Echtler; Gerhard Franz; Hans-Jrgen Gtze; Friedrich Lucassen; Dmitriy Marchenko; Daniel Melnick; Uwe Meyer; Sabine Schmidt; Zuzana Tarov; Andrs Tassara; Susann Wienecke

    Identifying the parts of subduction zones that are susceptible to great earthquakes is a challenge that warrants considerable\\u000a attention. In south-central Chile, where the 1960 M\\u000a w 9.5 Valdivia earthquake occurred, we have combined surface geology and gravity data into a three-dimensional density model\\u000a that helps to identify trench-parallel changes in fore-arc properties between 36 and 42 S. In light

  14. Beyond plate tectonics - Looking at plate deformation with space geodesy

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  15. Relict basin closure during initial suturing accommodates continental convergence with minimal crustal shortening or reduction in convergence rates

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Forte, A. M.; Niemi, N. A.; Mumladze, T.; Elashvili, M.; Javakhishvili, Z.; Trexler, C.

    2013-12-01

    In both the Indo-Eurasian and Arabia-Eurasian (Ab-Eu) collisions, documented post-collisional crustal shortening is hundreds to thousands of kilometers less than the amount of plate convergence determined from independent plate reconstructions. We propose that relict-basin closure may help resolve such shortening deficits, based on a synthesis of the late Cenozoic evolution of the Greater Caucasus Mountains in the Ab-Eu collision zone. This range is located ~700 km north of the Bitlis suture and defines the northern margin of the Ab-Eu collision zone between the Black and Caspian seas. The range formed from late Cenozoic tectonic inversion of the Greater Caucasus basin, a relict Mesozoic back-arc basin that originally formed in the Jurassic during north-dipping subduction of Neo-Tethys and rifting of the Lesser Caucasus arc from the southern margin of Eurasia (i.e., Scythia). This basin was originally wide enough to prevent sedimentary exchange of turbidites across it, as shown by provenance studies using U-Pb detrital zircon geochronology. The floor of the relict basin now forms a NE-dipping slab that extends to at least 158 km depth beneath the central and eastern Greater Caucasus, as revealed by a new earthquake compilation. Miocene to Quaternary felsic volcanic and intrusive rocks in the Greater Caucasus have geochemical signatures and eruptive centers similar to those in continental margin arcs. Based on these data we propose the Ab-Eu collision occurred in two stages. The first (soft collision) started when Arabia collided with Eurasia, closed the Bitlis suture, and caused the locus of convergence to jump ~700 km north to the Greater Caucasus basin. Initial exhumation of the Greater Caucasus started at ~25-30 Ma and continued until ~ 5 Ma at rates of a few C/Ma during north-directed subduction of the back-arc basin, with little structural evidence of this crustal shortening preserved. The second phase (hard collision) started at ~ 5 Ma, when the relict basin finally closed and the Lesser Caucasus collided with Scythia and increased exhumation rates by as much as a factor of ten. Relict basin closure appears to have had a significant impact on the mechanical behavior of the Ab-Eu collision and appears to explain why deceleration of plate convergence was delayed 20-25 Myr after initial collision. Specifically, we suggest that initial collision and formation of the Bitlis suture did not significantly impede Ab-Eu convergence because deformation could jump to a relict basin within the overriding plate, continuing apace until that relict basin closed and triggered a switch from soft to hard collision and an associated structural reorganization of the whole Ab-Eu collision zone. Formation of such relict basins is likely common along continental margins during the protracted subduction and terrane accretion that occurs prior to continental collision at the end of a Wilson cycle. The Ab-Eu collision demonstrates the fundamental role that such basins can play in determining the deformational response of a continent during early collision.

  16. Initiation and propagation of shear zones in a heterogeneous continental lithosphere

    SciTech Connect

    Tommasi, A.; Vauchez, A. [CNRS/Universite de Montpellier II (France)] [CNRS/Universite de Montpellier II (France)

    1995-11-10

    Numerical methods were used to investigate the deformation of a continental plate in northeastern Brazil. Of particular interest are the perturbations induced by a stiff compressional deformation of a highly heterogeneous continental lithosphere on the development of a shear zone formed at the termination of a stiff block.

  17. Plate convergence measured by GPS across the Sundaland\\/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia

    Microsoft Academic Search

    C. Rangin; X. Le Pichon; S. Mazzotti; M. Pubellier; N. Chamot-Rooke; M. Aurelio; Andrea Walpersdorf; R. Quebral

    1999-01-01

    The western boundary of the Philippine Sea (PH) Plate in the Philippines and eastern Indonesia corresponds to a wide deformation zone that includes the stretched continental margin of Sundaland, the Philippine Mobile Belt (PMB), extending from Luzon to the Molucca Sea, and a mosaic of continental blocks around the PH\\/Australia\\/Sunda triple junction. The GPS GEODYSSEA data are used to decipher

  18. Plate Tectonics

    NSDL National Science Digital Library

    Smoothstone

    This interactive Flash explores plate tectonics and provides an interactive map where users can identify plate boundaries with name and velocities as well as locations of earthquakes, volcanoes, and hotspots. The site also provides animations and supplementary information about plate movement and subduction. This resource is a helpful overview or review for introductory level high school or undergraduate physical geology or Earth science students.

  19. Plate Tectonics

    NSDL National Science Digital Library

    Mrs. Walls

    2011-01-30

    Create a poster all about Plate Tectonics! Directions: Make a poster about Plate Tectonics. (20 points) Include at least (1) large picture (15 points) on your poster complete with labels of every part (10 points). (15 points) Include at least three (3) facts about Plate Tectonics. (5 points ...

  20. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  1. Tectonic Plates and Plate Boundaries

    NSDL National Science Digital Library

    WGBH Educational Foundation

    2005-12-17

    This interactive activity adapted from NASA features world maps that identify different sections of the Earth's crust called tectonic plates. The locations of different types of plate boundaries are also identified, including convergent, divergent, and transform boundaries.

  2. Continental Oil Scholarship Award

    E-print Network

    Unknown

    2011-08-17

    Siberia. Mainland Siberia is characterized by a harsh continental climate yielding intense mechanical weathering and by the complex fluvial network that drains the area. Terrigenous sediments that reach the Laptev and East Siberian Seas are influenced...

  3. Emergence of modern continental crust about 3 billion years ago

    NASA Astrophysics Data System (ADS)

    Dhuime, Bruno; Wuestefeld, Andreas; Hawkesworth, Chris J.

    2015-07-01

    The continental crust is the principal record of conditions on the Earth during the past 4.4 billion years. However, how the continental crust formed and evolved through time remains highly controversial. In particular, the composition and thickness of juvenile continental crust are unknown. Here we show that Rb/Sr ratios can be used as a proxy for both the silica content and the thickness of the continental crust. We calculate Rb/Sr ratios of the juvenile crust for over 13,000 samples, with Nd model ages ranging from the Hadean to Phanerozoic. The ratios were calculated based on the evolution of Sr isotopes in the period between the TDM Nd model age and the crystallization of the samples analysed. We find that the juvenile crust had a low silica content and was largely mafic in composition during the first 1.5 billion years of Earths evolution, consistent with magmatism on a pre-plate tectonics planet. About 3 billion years ago, the Rb/Sr ratios of the juvenile continental crust increased, indicating that the newly formed crust became more silica-rich and probably thicker. This transition is in turn linked to the onset of plate tectonics and an increase of continental detritus into the oceans.

  4. Subduction-Driven Recycling of Continental Margin Lithosphere

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Bezada, Maximiliano; Niu, Fenglin; Palomeras, Imma; Thurner, Sally; Humphreys, Eugene; Carbonell, Ramon; Gallart, Josep; Schmitz, Michael; Miller, Meghan

    2015-04-01

    Subduction recycling of oceanic lithosphere, a central theme of plate tectonics, is relatively well understood, whereas recycling continental lithosphere is more difficult to recognize, and appears far more complicated. Delamination and localized convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we describe another process that can lead to the loss of continental lithosphere adjacent to a subduction zone: Subducting oceanic plates can entrain and recycle lithospheric mantle from an adjacent continent and disrupt the continental lithosphere far inland from the subduction zone. Seismic images from recent dense broadband seismograph arrays in northeastern South America (SA) and in the western Mediterranean show higher than expected volumes of positive anomalies identified as the subducted Atlantic slab under northeastern SA, and the Alboran slab beneath the Gibraltar arc region (GA). The positive anomalies lie under and are aligned with the continental margins at depths greater than 200 km. Closer to the surface we find that the continental margin lithospheric mantle is significantly thinner than expected beneath the orogens adjacent to the subduction zones. The thinner than expected lithosphere extends inland as far as the edges of nearby cratonic cores. These observations suggest that subducting oceanic plates viscously entrain and remove continental mantle lithosphere from beneath adjacent continental margins, modulating the surface tectonics and pre-conditioning the margins for further deformation. The latter can include delamination of the entire lithospheric mantle, as around GA, inferred by results from active and passive seismic experiments. Viscous removal of continental margin lithosphere creates lithosphere-asthenosphere boundary (LAB) topography which can give rise to secondary downwellings under the continental interior far inland from the subduction zone: We image one under SA and we infer that one or more have occurred in the past under the western Mediterranean. The process of subduction-driven continental margin lithosphere removal reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these two subduction zones.

  5. Geodynamics and The Evolution of Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    R.L. ArmstrongSs (1991) posthumous paper demonstrated that, contrary to conven- tional (and still dominant) geochemical assumption, isotopic data require most con- tinental material to have been fractionated into crust early in Earth history and to have been variably recycled since through the mantle. Recent information confirms predictions implicit in his recycling model. Archean cratonic crust mostly lacks a thick, mafic basal layer and is in bulk more felsic than Proterozoic and younger crust, whereas Archean lithospheric mantle is much more refractory than younger litho- sphere, which becomes markedly more enriched in fusible components with decreas- ing age. The oldest rocks in all Archean cratons are felsic migmatites, plus abundant but subordinate ultramafic, mafic, and anorthositic rocks. Ion-microprobe ages of zir- cons in these gneisses typically scatter from a maximum (currently 4.4 Ga in Yilgarn, and 4.1-3.6 Ga in other cratons) to minima near ages of overlying supracrustal rocks or of remobilization into late domiform batholiths. The gneisses were near wet-solidus temperature for long periods, the felsic protolith may have been mostly fractionated into crust by 4.4 Ga, and these ancient gneisses may dominate middle and lower Archean crust. Setting of formation is unknown, although steep REE patterns sug- gest derivation, by hydrous magmatic fractionation or partial melting, complementary to garnet-rich rocks that comprise geophysical mantle. Waterlaid supracrustal rocksU- first quartzite, then mostly mafic and ultramafic lavaUwere deposited on the basement rocks after 3.5 Ga, and were deformed by gravitational rise of domiform batholiths and sinking of dense synclines. Indicators of plate-tectonic rifting and convergence are widespread in terrains younger than 2 Ga but are wholly lacking in the Archean. Plate tectonics is driven by subduction, which is enabled by top-down cooling of light asthenosphere to form dense oceanic lithosphere. Hinges roll back into subducting plates, and slabs sink broadside, pushing sub-lithospheric mantle back into the oceans from whence they came, forcing spreading therein. Slabs are plated down on, and de- press, the 660-km discontinuity, and are overpassed by overriding plates, like tanks above basal treads, transferring mantle to passively spreading oceans. No compelling evidence indicates plate-tectonic circulation to extend deeper than the 660-km discon- tinuity, and cosmologic and thermodynamic data are incompatible with deep circula- tion. Post-2.0 Ga circulation, with lessening re-fractionation, has made crust gradually more mafic, and upper mantle gradually more felsic.

  6. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating.

    PubMed

    Petrovich, Gorica D; Setlow, Barry; Holland, Peter C; Gallagher, Michela

    2002-10-01

    Organisms eat not only in a response to signals related to energy balance. Eating also occurs in response to "extrinsic," or environmental, signals, including learned cues. Such cues can modify feeding based on motivational value acquired through association with either rewarding or aversive events. We provide evidence that a specific brain system, involving connections between basolateral amygdala and the lateral hypothalamus, is crucial for allowing learned cues (signals that were paired with food delivery when the animal was hungry) to override satiety and promote eating in sated rats. In an assessment of second-order conditioning, we also found that disconnection of this circuitry had no effect on the ability of a conditioned cue to support new learning. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning that may be informative for understanding mechanisms that contribute to eating disorders and more moderate forms of overeating. PMID:12351750

  7. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis

    PubMed Central

    Zeitels, Lauren R.; Acharya, Asha; Shi, Guanglu; Chivukula, Divya; Chivukula, Raghu R.; Anandam, Joselin L.; Abdelnaby, Abier A.; Balch, Glen C.; Mansour, John C.; Yopp, Adam C.; Richardson, James A.

    2014-01-01

    Down-regulation of miR-26 family members has been implicated in the pathogenesis of multiple malignancies. In some settings, including glioma, however, miR-26-mediated repression of PTEN promotes tumorigenesis. To investigate the contexts in which the tumor suppressor versus oncogenic activity of miR-26 predominates in vivo, we generated miR-26a transgenic mice. Despite measureable repression of Pten, elevated miR-26a levels were not associated with malignancy in transgenic animals. We documented reduced miR-26 expression in human colorectal cancer and, accordingly, showed that miR-26a expression potently suppressed intestinal adenoma formation in Apcmin/+ mice, a model known to be sensitive to Pten dosage. These studies reveal a tumor suppressor role for miR-26 in intestinal cancer that overrides putative oncogenic activity, highlighting the therapeutic potential of miR-26 delivery to this tumor type. PMID:25395662

  8. Identifying Plate Tectonic Boundaries for a Virtual Ocean Basin

    NSDL National Science Digital Library

    Stephen Reynolds

    Students observe a virtual ocean basin and two adjacent continental margins. From the characteristics of the sea floor and adjacent land, students infer where plate boundaries might be present. They then predict where earthquakes and volcanoes might occur. Finally, they draw their inferred plate boundaries in cross section.

  9. Plate Tectonics

    NSDL National Science Digital Library

    2006-01-01

    In this lesson, students are introduced to the theory of plate tectonics and explore how the theory was developed and supported by evidence. Through class discussion, videos, and activities, students seek connections between tectonic activity and geologic features and investigate how the theory of plate tectonics evolved.

  10. Intermittent plate tectonics?

    PubMed

    Silver, Paul G; Behn, Mark D

    2008-01-01

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution. PMID:18174440

  11. The Continental Crust.

    ERIC Educational Resources Information Center

    Burchfiel, B. Clark

    1983-01-01

    Continental crust underlies the continents, their margins, and also small shallow regions in oceans. The nature of the crust (much older than oceanic crust) and its dynamics are discussed. Research related to and effects of tectonics, volcanism, erosion, and sedimentation on the crust are considered. (JN)

  12. Oceanic and Continental Crust

    NSDL National Science Digital Library

    Timothy Heaton

    This site contains 25 questions on the topic of oceanic and continental crust, which covers the physical properties and features of the two crust types. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit their answers and are provided immediate verification.

  13. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  14. Caribbean tectonics and relative plate motions

    NASA Astrophysics Data System (ADS)

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.

    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  15. Caribbean tectonics and relative plate motions

    NASA Technical Reports Server (NTRS)

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.

    1984-01-01

    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  16. Late Cenozoic Underthrusting of the Continental Margin off Northernmost California.

    PubMed

    Silver, E A

    1969-12-01

    The presence of magnetic anomaly 3, age 5 million years, beneath the continental slope off northernmost California, is evidence for underthrusting of the continental margin during the late Cenozoic. Folded and faulted strata near the base of the slope attest to deformation of the eastern edge of the turbidite sedimzents in the Gorda Basin; the deformation observed is exactly that expected from underthrusting. The relative motions of three crustal plates also suggest underthrusting, possibly with a major component of right-lateral slip. PMID:17759946

  17. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Saleeby, Jason B.; Bergantz, George

    2015-05-01

    Continental magmatic arcs form above subduction zones where the upper plate is continental lithosphere and/or accreted transitional lithosphere. The best-studied examples are found along the western margin of the Americas. They are Earth's largest sites of intermediate magmatism. They are long lived (tens to hundreds of millions of years) and spatially complex; their location migrates laterally due to a host of tectonic causes. Episodes of crustal and lithospheric thickening alternating with periods of root foundering produce cyclic vertical changes in arcs. The average plutonic and volcanic rocks in these arcs straddle the compositional boundary between an andesite and a dacite, very similar to that of continental crust; about half of that comes from newly added mafic material from the mantle. Arc products of the upper crust differentiated from deep crustal (>40 km) residual materials, which are unstable in the lithosphere. Continental arcs evolve into stable continental masses over time; trace elemental budgets, however, present challenges to the concept that Phanerozoic arcs are the main factories of continental crust.

  18. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  19. Plate Tectonics

    NSDL National Science Digital Library

    This data tip from Bridge, the Ocean Sciences Education Teacher Resource Center archive, includes a variety of educational sites to visit on plate tectonic theory. Learners can use underwater earthquake data to identify plate boundaries with links to the National Oceanic and Atmospheric Administration's Acoustic Monitoring Program Ocean Seismicity data. Data from the Northeast Pacific, eastern Equatorial Pacific, and North Atlantic are examined in more detail.

  20. Continental rifting parallel to ancient collisional belts: an eect of the mechanical anisotropy of the lithospheric mantle

    E-print Network

    Tommasi, Andrea

    of an anisotropic continental lithosphere in response to an axi-symmetric tensional stress field produced where extensional stress is oblique (30^ 55) to the preexisting mantle fabric. This directional of the orogenic fabric of the plates, systematically reactivating ancient lithospheric structures. Continental

  1. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corn; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.250.11 Ma-1 (95% confidence limits) right-handed about 57.1S, 68.6E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (?=19.2 ) differs insignificantly from that for continental lithosphere (?=21.6 ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (?=7.4 ) than for continental lithosphere (?=14.7 ). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, ?=29 ) and Eurasia (vRMS=3 mm a-1, ?=33 ), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. We will investigate if these relationships still hold with the new expanded data set and with the alternative set of relative plate angular velocities. We have found systematic differences between the SKS orientations and our predicted plate motion azimuths underneath the Arabia plate, which suggests to us either plate-scale mantle flow process not directly associated with that plate's absolute motion or intrinsic lithospheric anisotropy. We will discuss more of such discrepancies underneath other plates using the enlarged data set.

  2. Is There Really A North American Plate?

    NASA Astrophysics Data System (ADS)

    Krill, A.

    2011-12-01

    Lithospheric plates are typically identified from earthquake epicenters and evidence such as GPS movements. But no evidence indicates a plate boundary between the North American and South American Plates. Some plate maps show them separated by a transform boundary, but it is only a fracture zone. Other maps show an "undefined plate boundary" or put no boundary between these two plates (check Google images). Early plate maps showed a single large American Plate, quite narrow east of the Caribbean Plate (Le Pichon 1968, Morgan 1968). The North and South American Plates became established by the leading textbook Earth (Press & Siever 1974). On their map, from a Scientific American article by John Dewey (1972), these new plates were separated by an "uncertain plate boundary." The reasons for postulating a North American Plate were probably more psychological than geological. Each of the other continents of the world had its own plate, and North American geologists naturally wanted theirs. Similarly, European geographers used to view Europe as its own continent. A single large plate should again be hypothesized. But the term American Plate would now be ambiguous ("Which plate, North or South?") Perhaps future textbook authors could call it the "Two-American Plate." Textbook authors ultimately decide such global-tectonic matters. I became aware of textbook authors' opinions and influence from my research into the history of Alfred Wegener's continental drift (see Fixists vs. Mobilists by Krill 2011). Leading textbook author Charles Schuchert realized that continental drift would abolish his cherished paleogeographic models of large east-west continents (Eria, Gondwana) and small oceans (Poseiden, Nereis). He and his junior coauthors conspired to keep drift evidence out of their textbooks, from the 1934-editions until the 1969-editions (Physical Geology by Longwell et al. 1969, Historical Geology by Dunbar & Waage 1969). Their textbooks ruled in America. Textbooks elsewhere, such as S.J. Shand (1933), E.B. Bailey (1939), and Arthur Holmes (1944), presented continental drift as a working hypothesis that could elegantly solve important geological problems. Americans were preconditioned to dislike continental drift theory, ever since James Dwight Dana taught in his Manual of Geology (1863...1895) that North America was the type continent of the world, and that it had stood alone since earliest time. Such beliefs sometimes trump geologic evidence. As noted by Stephen Jay Gould (1999) Sigmund Freud had much insight into the psychology of scientific revolutions: they involve a scientific development that shows humans to have lesser status than previously perceived. In the Copernican revolution (geocentrism vs. heliocentrism) humans no longer inhabited the center of the universe. In the Darwinian revolution (creationism vs. evolutionism) humans were no longer uniquely created. In the Wegenerian revolution (fixism vs. mobilism) North America was no longer uniquely created; it was just other fragment from Pangaea. North American geologists were pleased when Press & Siever gave them their own lithospheric plate. Being a global-tectonic killjoy, I would like to take away that small consolation as well. Or at least pose the question: Is there really a North American Plate?

  3. Generation of continental crust in intra-oceanic arcs

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Hayes, J. L.; Kelemen, P. B.; Everson, E. D.; Holbrook, W. S.; Vance, E.

    2014-12-01

    The origin of continental crust is still an unsolved mystery in the evolution of our planet. Although the best candidates to produce juvenile continental crust are intra-oceanic arcs these systems are dominated by basaltic lavas, and when silicic magmas are produced, the incompatible-element compositions are generally too depleted to be a good match for continental crust estimates. Others, such as the W. Aleutians, are dominated by andesitic melts with trace element compositions similar to average continental crust. In order to evaluate which intra-oceanic arcs produced modern continental crust, we developed a geochemical continental index (CI) through a statistical analysis that compared all available data from modern intra-oceanic arcs with global estimates of continental crust. Our results suggest that magmas from Costa Rica (<10 Ma) have a CI <50, closer to the CI (~20) computed from available average continental crust estimates. Transitional CI values of 50-100 were found in the Aleutians, the Iwo-Jima segment of Izu-Bonin, the L. Antilles, Panama, Nicaragua, and Vanuatu. The geochemical signature of the Costa Rican lavas is controlled by melts from the subducting Galapagos tracks. Iwo-Jima and Vanuatu are in a similar tectonic scenario with subducting intraplate seamounts. Melts from the subducting oceanic crust are thought to significantly control the geochemical signature in the W. Aleutians and Panama. In the L. Antilles and E. Aleutians the continental signature may reflect recycling of a component derived from subducting continental sediments. Most of Izu-Bonin, Marianas, S. Scotia and Tonga arcs with a CI >100 have the least continent-like geochemical signatures. In these arcs the subducting plate is old (>100 Ma), not overprinted by enriched intraplate volcanism and the geochemistry may be dominated by slab-derived, aqueous fluids. We also found a strong correlation between the CI and average crustal P-wave velocity, validating the geochemical index with the available seismic data for intra-oceanic arcs. In conclusion, the production of young continental crust with compositions similar to Archean continental crust is an unusual process, limited to locations where there are especially voluminous partial melts of oceanic crust.

  4. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release.

    PubMed

    Steyn, F J

    2015-07-01

    Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, invivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand. PMID:25808924

  5. More than Motility: Salmonella Flagella Contribute to Overriding Friction and Facilitating Colony Hydration during Swarming

    PubMed Central

    Partridge, Jonathan D.

    2013-01-01

    We show in this study that Salmonella cells, which do not upregulate flagellar gene expression during swarming, also do not increase flagellar numbers per ?m of cell length as determined by systematic counting of both flagellar filaments and hooks. Instead, doubling of the average length of a swarmer cell by suppression of cell division effectively doubles the number of flagella per cell. The highest agar concentration at which Salmonella cells swarmed increased from the normal 0.5% to 1%, either when flagella were overproduced or when expression of the FliL protein was enhanced in conjunction with stator proteins MotAB. We surmise that bacteria use the resulting increase in motor power to overcome the higher friction associated with harder agar. Higher flagellar numbers also suppress the swarming defect of mutants with changes in the chemotaxis pathway that were previously shown to be defective in hydrating their colonies. Here we show that the swarming defect of these mutants can also be suppressed by application of osmolytes to the surface of swarm agar. The dry colony morphology displayed by che mutants was also observed with other mutants that do not actively rotate their flagella. The flagellum/motor thus participates in two functions critical for swarming, enabling hydration and overriding surface friction. We consider some ideas for how the flagellum might help attract water to the agar surface, where there is no free water. PMID:23264575

  6. Brazilian continental cretaceous

    NASA Astrophysics Data System (ADS)

    Petri, Setembrino; Campanha, Vilma A.

    1981-04-01

    Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.

  7. Continental Lower Crust

    NASA Astrophysics Data System (ADS)

    Hacker, Bradley R.; Kelemen, Peter B.; Behn, Mark D.

    2015-05-01

    The composition of much of Earth's lower continental crust is enigmatic. Wavespeeds require that 10-20% of the lower third is mafic, but the available heat-flow and wavespeed constraints can be satisfied if lower continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2. Thus, contrary to common belief, the lower crust in many regions could be relatively felsic, with SiO2 contents similar to andesites and dacites. Most lower crust is less dense than the underlying mantle, but mafic lowermost crust could be unstable and likely delaminates beneath rifts and arcs. During sediment subduction, subduction erosion, arc subduction, and continent subduction, mafic rocks become eclogites and may continue to descend into the mantle, whereas more silica-rich rocks are transformed into felsic gneisses that are less dense than peridotite but more dense than continental upper crust. These more felsic rocks may rise buoyantly, undergo decompression melting and melt extraction, and be relaminated to the base of the crust. As a result of this refining and differentiation process, such relatively felsic rocks could form much of Earth's lower crust.

  8. Metamorphism and Continental Collision

    NSDL National Science Digital Library

    Kenneth Howard

    Physical Geology students are required to understand the processes involved in plate tectonics. They are expected to know the geologic differences between continents and ocean basins and should be able to recall and use simple geologic terms to describe geologic processes and events. This activity is designed to improve student comprehension of the varied Earth materials and complex processes involved in plate collisions. The activity synthesizes material covered during the first eight weeks of Physical Geology on plate tectonics, rock types, volcanoes, and Earth's composition. The instructor introduces the exercise to the students as a component of the college's Critical Thinking Initiative. The "hook" for the students is that the exercise represents a chance for self-appraisal of course content and understanding prior to the next semester test. The grading rubric for the lab is discussed with the students in terms of the Bloom Pyramid so that they can assess their level of progress in the course.

  9. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis.

    PubMed Central

    Hiebert, S W; Packham, G; Strom, D K; Haffner, R; Oren, M; Zambetti, G; Cleveland, J L

    1995-01-01

    The E2F DNA binding activity consists of a heterodimer between E2F and DP family proteins, and these interactions are required for association of E2F proteins with pRb and the pRb-related proteins p107 and p130, which modulate E2F transcriptional activities. E2F-1 expression is sufficient to release fibroblasts from G0 and induce entry into S phase, yet it also initiates apoptosis. To investigate the mechanisms of E2F-induced apoptosis, we utilized interleukin-3 (IL-3)-dependent 32D.3 myeloid cells, a model of hematopoietic progenitor programmed cell death. In the absence of IL-3, E2F-1 alone was sufficient to induce apoptosis, and p53 levels were diminished. DP-1 alone was not sufficient to induce cell cycle progression or alter rates of death following IL-3 withdrawal. However, overexpression of both E2F-1 and DP-1 led to the rapid death of cells even in the presence of survival factors. In the presence of IL-3, levels of endogenous wild-type p53 increased in response to E2F-1, and coexpression of DP-1 further augmented p53 levels. These results provide evidence that E2F is a functional link between the tumor suppressors p53 and pRb. However, induction of p53 alone was not sufficient to trigger apoptosis, suggesting that the ability of E2F to override survival factors involves additional effectors. PMID:8524253

  10. Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints

    PubMed Central

    Beeharry, Neil; Banina, Eugenia; Hittle, James; Skobeleva, Natalia; Khazak, Vladimir; Deacon, Sean; Andrake, Mark; Egleston, Brian L; Peterson, Jeffrey R; Astsaturov, Igor; Yen, Timothy J

    2014-01-01

    Inhibitors of the DNA damage checkpoint kinase, Chk1, are highly effective as chemo- and radio-sensitizers in preclinical studies but are not well-tolerated by patients. We exploited the promiscuous nature of kinase inhibitors to screen 9 clinically relevant kinase inhibitors for their ability to sensitize pancreatic cancer cells to a sub-lethal concentration of gemcitabine. Bosutinib, dovitinib, and BEZ-235 were identified as sensitizers that abrogated the DNA damage checkpoint. We further characterized bosutinib, an FDA-approved Src/Abl inhibitor approved for chronic myelogenous leukemia. Unbeknownst to us, we used an isomer (Bos-I) that was unknowingly synthesized and sold to the research community as authentic bosutinib. In vitro and cell-based assays showed that both the authentic bosutinib and Bos-I inhibited DNA damage checkpoint kinases Chk1 and Wee1, with Bos-I showing greater potency. Imaging data showed that Bos-I forced cells to override gemcitabine-induced DNA damage checkpoint arrest and destabilized stalled replication forks. These inhibitors enhanced sensitivity to the DNA damaging agents gemcitabine, cisplatin, and doxorubicin in pancreatic cancer cell lines. The in vivo efficacy of Bos-I was validated using cells derived directly from a pancreatic cancer patients tumor. Notably, the xenograft studies showed that the combination of gemcitabine and Bos-I was significantly more effective in suppressing tumor growth than either agent alone. Finally, we show that the gatekeeper residue in Wee1 dictates its sensitivity to the 2 compounds. Our strategy to screen clinically relevant kinase inhibitors for off-target effects on cell cycle checkpoints is a promising approach to re-purpose drugs as chemosensitizers. PMID:24955955

  11. Expression of ?B-crystallin overrides the anti-apoptotic activity of XIAP

    PubMed Central

    Lee, Jee Suk; Kim, Hye Young; Jeong, Na Young; Lee, Sang Yeob; Yoon, Young Geol; Choi, Yung Hyun; Yan, Chunlan; Chu, In-Sun; Koh, Hyungjong; Park, Hwan Tae; Yoo, Young Hyun

    2012-01-01

    Although crystallins are major structural proteins in the lens, ?-crystallins perform non-lens functions, and ?B-crystallin has been shown to act as an anti-apoptotic mediator in various cells. The present study was undertaken to examine whether ?B-crystallin expressed in human malignant glioma cells exerts anti-apoptotic acitivity. In addition, we sought to elucidate the mechanism underlying any observed anti-apoptotic function of ?B-crystallin in these cells. Three glioma cell lines, U373MG, U118MG, and T98G, were used. We observed that only the U373MG cell line expresses ?B-crystallin, whereas the other 2 glioma cell lines, U118MG and T98G, demonstrated no endogenous expression of ?B-crystallin. We next observed that the silencing of ?B-crystallin sensitized U373MG cells to suberoylanilide hydroxamic acid (SAHA)induced apoptosis and that ?B-crystallin associates with caspase-3 and XIAP. Because XIAP is the most potent suppressor of mammalian apoptosis through the direct binding with caspases, we assessed whether XIAP also plays an anti-apoptotic role in SAHA-induced apoptosis in ?B-crystallin-expressing U373MG cells. Of note, the silencing of XIAP did not alter the amount of cell death induced by SAHA, indicating that XIAP does not exert an anti-apoptotic activity in U373MG cells. We then determined whether the ectopic expression of ?B-crystallin in glioma cells caused a loss of the anti-apoptotic activity of XIAP. Accordingly, we established 2 ?B-crystallin over-expressing glioma cell lines, U118MG and T98G, and found that the silencing of XIAP did not sensitize these cells to SAHA-induced apoptosis. These findings suggest that ?B-crystallin expressed in glioma cells overrides the anti-apoptotic activity exerted by XIAP. PMID:23074197

  12. GEO-Logic: Continental Drift and Plate Tectonics

    NSDL National Science Digital Library

    Laura Guertin

    Students are asked to match up lecturers with what day and time they teach, and how many students they have based on clues given from several different perspectives. In the second part of the activity, students are asked to learn more about the historic figures mentioned in the activity by doing reading and web research.

  13. Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.

  14. Geologic evolution of petroliferous basins on continental shelf of China

    SciTech Connect

    Desheng, L.

    1984-08-01

    The coastline of southeastern China is about 18,000 km (11,200 mi) in length, and its aggregate continental shelf area within 200-m (660-ft) water depth is well over 1 million km/sup 2/ (390,000 mi/sup 2/). Recent geophysical exploration and petroleum drilling records aid in understanding the geologic evolution of these petroliferous basins. Two types of tectonic basins are present on the continental shelf areas: (1) Bohai Gulf, South Yellow Sea, and Beibu Gulf are intraplate polyphase rift-depression basins, and (2) East China Sea, mouth of the Pearl River, and the Yingge Sea are epicontinental rift-depressions basins. Both types are believed to be of extensional origin. The severe convergence of the Indian plate with the Eurasia plate produced east-northeast-spreading of the South China Sea basin, which resulted in two triple junctions on its northern margins. The Pacific plate was subducted by downthrust beneath the Eurasia continental crust. The extension mechanism could be the rising of an upper mantle plume to produce two weak north-northeast-trending fracture zones. A series of intraplate and epicontinental riftdepression basins was formed. The depositional models and sea level variations of these basins have been interpreted from drilling records and seismic profiles. They can be explained by the tectonoeustatic changes in sea level and Cenozoic climatic changes in China.

  15. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    Microsoft Academic Search

    Daniel Jean Stanley

    1982-01-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the entire African continental landmass as

  16. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates

    Microsoft Academic Search

    Philippe Patriat; Jos Achache

    1984-01-01

    The motion of the Indian plate is determined in an absolute frame of reference and compared with the position of the southern margin of Eurasia deduced from palaeomagnetic data in Tibet. The 2,600 + or - 900 km of continental crust shortening observed is shown to have occurred in three different episodes: subduction of continental crust, intracontinental thrusting and internal

  17. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    USGS Publications Warehouse

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  18. Circum-arctic plate accretion - Isolating part of a pacific plate to form the nucleus of the Arctic Basin

    USGS Publications Warehouse

    Churkin, M., Jr.; Trexler, J.H., Jr.

    1980-01-01

    A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea. ?? 1980.

  19. Estimation of continental precipitation recycling

    Microsoft Academic Search

    Kaye L. Brubaker; Dara Entekhabi; P. S. Eagleson

    1993-01-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from the surrounding areas external to the region and (2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the Continental area. The degree to which regional precipitation is

  20. DOSECC Continental Scientific Drilling Program

    Microsoft Academic Search

    1987-01-01

    Deep Observation and Sampling o f the Earth's Continental Crust (DOSECC, for short) is a nonprofit corporation, currently composed of 39 member universities, that was founded to manage Continental Scientific Drilling Programs somewhat as Joint Oceanographic Institutions (JOI), Inc., manages the Ocean Drilling Program. Funding is provided by the National Science Foundation, with additional support from the U.S. Geological Survey

  1. Extensional evolution of the central East Greenland Caledonides

    E-print Network

    White, Arthur Percy, 1972-

    2001-01-01

    This thesis addresses the complexity of both syn- and post-orogenic extension in the overriding plate during Caledonian continental collision through field and laboratory investigations in the central East Greenland ...

  2. Tectonic Plates and Plate Boundaries

    NSDL National Science Digital Library

    Continents were once thought to be static, locked tight in their positions in Earth's crust. Similarities between distant coastlines, such as those on opposite sides of the Atlantic, were thought to be the work of a scientist's overactive imagination, or, if real, the result of erosion on a massive scale. This interactive feature shows 11 tectonic plates and their names, the continents that occupy them, and the types of boundaries between them.

  3. Foam as an agent to reduce gravity override effect during gas injection in oil reservoirs. Final report

    SciTech Connect

    Chiang, J.C.; Sanyal, S.K.; Castanier, L.M.; Brigham, W.E.; Shah, D.O.

    1980-08-01

    A two-dimensional, vertical, rectangular plexiglas model holding a 45-1/2 in. high by 11-3/8 in. wide by 1/4 in. thick sandpack (1.147 x 0.237 x 0.008 m) was used to investigate gravity override of injected gases in gas drive processes. Saturation of the sandpack by a surfactant solution instead of pure water sharply increased liquid recovery and breakthrough time in a nitrogen flooding process. The improvement in production was shown to be due to a reduction of gravity override caused by in-situ generation of foam at the gas-liquid interface. Solutions of two different surfactants (Suntech IX and IV) of various concentrations with different amounts of alcohol were studied to determine their effectiveness as foamers. Surface tension and rate of drainage of the foamers as functions of surfactant concentration were measured. In-situ foaming in the model increased generally with surfactant concentration until an optimum concentration was reached; above this concentration, additional amounts of surfactant had very little effect on the phenomenon. Alcohols seem to improve the performance of low molecular weight surfactants and exhibitied a negative effect on the others. A similar increase of recovery and delay in the breakthrough time was observed in the oil flooding process. A slug of surfactant solution was injected into the pack which was saturated with a white mineral oil and water at irreducible water saturation, and then nitrogen was injected. Gravity override was much less than in the cases when no surfactant was present.

  4. Composite transform-convergent plate boundaries: description and discussion

    USGS Publications Warehouse

    Ryan, H.F.; Coleman, P.J.

    1992-01-01

    The leading edge of the overriding plate at an obliquely convergent boundary is commonly sliced by a system of strike-slip faults. This fault system is often structurally complex, and may show correspondingly uneven strain effects, with great vertical and translational shifts of the component blocks of the fault system. The stress pattern and strain effects vary along the length of the system and change through time. These margins are considered to be composite transform-convergent (CTC) plate boundaries. Examples are given of structures formed along three CTC boundaries: the Aleutian Ridge, the Solomon Islands, and the Philippines. The dynamism of the fault system along a CTC boundary can enhance vertical tectonism and basin formation. This concept provides a framework for the evaluation of petroleum resources related to basin formation, and mineral exploration related to igneous activity associated with transtensional processes. ?? 1992.

  5. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model

    SciTech Connect

    Gripp, A.E.; Gordon, R.G. (Northwestern Univ., Evanston, IL (USA))

    1990-07-01

    NUVEL-1 is a new global model of current relative plate velocities which differ significantly from those of prior models. Here the authors incorporate NUVEL-1 into HS2-NUVEL1, a new global model of plate velocities relative to the hotspots. HS2-NUVEL1 was determined from the hotspot data and errors used by Minster and Jordan (1978) to determine AM1-2, which is their model of plate velocities relative to the hotspots. AM1-2 is consistent with Minster and Jordan's relative plate velocity model RM2. Here the authors compare HS2-NUVEL1 with AM1-2 and examine how their differences relate to differences between NUVEL-1 and RM2. HS2-NUVEL1 plate velocities relative to the hotspots are mainly similar to those of AM1-2. Minor differences between the two models include the following: (1) in HS2-NUVEL1 the speed of the partly continental, apparently non-subducting Indian plate is greater than that of the purely oceanic, subducting Nazca plate; (2) in places the direction of motion of the African, Antarctic, Arabian, Australian, Caribbean, Cocos, Eurasian, North American, and South American plates differs between models by more than 10{degree}; (3) in places the speed of the Australian, Caribbean, Cocos, Indian, and Nazca plates differs between models by more than 8 mm/yr. Although 27 of the 30 RM2 Euler vectors differ with 95% confidence from those of NUVEL-1, only the AM1-2 Arabia-hotspot and India-hotspot Euler vectors differ with 95% confidence from those of HS2-NUVEL1. Thus, substituting NUVEL-1 for RM2 in the inversion for plate velocities relative to the hotspots changes few Euler vectors significantly, presumably because the uncertainty in the velocity of a plate relative to the hotspots is much greater than the uncertainty in its velocity relative to other plates.

  6. Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules

    PubMed Central

    1996-01-01

    Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5'-adenylyl imidodiphosphate (AMP-PNP)- induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol. PMID:8896596

  7. Subduction of the Nazca plate under Peru as evidenced by focal mechanisms and by seismicity

    Microsoft Academic Search

    William Stauder

    1975-01-01

    The focal mechanisms of 40 earthquakes in Peru and Ecuador, together with the seismicity of the region, indicate particular features of the subduction of the oceanic plate beneath this portion of South America. At shallow depths near the coast and at foci along the contact between the subduction zone and the continental plate the focal mechanisms indicate an underthrust of

  8. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America

    Microsoft Academic Search

    Muawia Barazangi; Bryan L. Isacks

    1976-01-01

    A detailed study of the spatial distribution of precisely located hypocenters of South American earthquakes that occurred between lat 0 and 45S shows that the data can be explained by the simple model of a descending oceanic plate beneath a continental plate and that the following conditions obtain: (1) The hypocenters clearly define five segments of inclined seismic zones, in

  9. Tectonics of China: Continental scale cataclastic flow

    NASA Astrophysics Data System (ADS)

    Gallagher, John J., Jr.

    Stratigraphic, structural, and earthquake evidence indicates that cataclastic flow, that is, flow by brittle mechanisms (e.g., fracture and slip), was dominant in China from late Paleozoic. This process has operated over a range of scales including the continental scale. China is made up of large brittle basement elements immersed in ductile zones which are analogous to porphyroclasts (large, often brittle fragments) surrounded by fluxion (foliation or flow) structures in cataclastic rocks, respectively. This basement fabric for China is seen on Landsat imagery and on tectonic maps and is comparable to cataclastic rock fabrics seen in fault zones, on outcrops, and in thin sections. Brittle basement elements are broken into two or more large rigid blocks, and the dimensions of elements and blocks are within 1 order of magnitude of each other. Ductile zones are made up of fragments which are many orders of magnitude smaller than the ductile zones. Rigid blocks and fragments are identified, and their dimensions are measured through earthquake, fault, and fracture patterns. Rigid basement blocks are surrounded by earthquakes. The sedimentary rocks over the basement faults at the block boundaries seem to be affected by fault movements because they are characterized by facies changes, thickness changes, high-angle faults, and forced folds. Ductile basement zones are earthquake prone, and deformation of the ductile basement affects the overlying sedimentary rocks, as is demonstrated by unconformities and by a wide variety of structures. Thrust faults, buckle folds, and strike slip faults are common in and adjacent to western ductile zones. Structures are most intensely developed where ductile zones abut brittle elements. Both brittle elements and ductile zones are rifted and cut by strike slip faults in eastern China. The mechanical fabric of China and the boundary conditions acting on China are now and always have been determined by its plate tectonic history. This inference is made from recently published plate tectonic interpretations. Geologic maps show that there are six elements and that each element has a Precambrian, crystalline core which is surrounded by upper Paleozoic continental margin suites of rocks, including subduction complexes, among others. Geologic data on ophiolites demonstrate that the brittle elements and their margins were juxtaposed and then welded together along suture zones during Permian and Triassic time to make China. Cenofcoic plate motions affecting China resulted in the collision with India where it converges with southwest China and the extension in eastern China where island arcs move away from the mainland and where grabens are actively forming. The juxtaposition to Siberia, which acts as a buttress against northern China, explains the compression of western China, and the absence of a buttress in the Pacific Ocean explains why eastern China can extend. Furthermore, laboratory data on the mechanical behavior of rock under conditions analogous to the shallow crustal conditions of interest in China show that all rocks are weaker in extension than they are in compression. Basement rock in western China is strong because it is compressed, but this same basement rock is weak in eastern China because it is in extension. The tectonics of China or, in mechanistic terms, the way in which the mechanical framework of China responds to Cenozoic boundary forces was a result of China's previous plate tectonic history. Crystalline cores are the rigid blocks that form brittle elements. Both the continental margin suites and the sutures are the ductile zones. The sutures and sediment patterns seen in the basins and ranges of China can be explained in terms of this tectonic scenario.

  10. Some examples and mechanical aspects of continental lithospheric folding

    NASA Astrophysics Data System (ADS)

    Stephenson, R. A.; Cloetingh, S. A. P. L.

    1991-03-01

    Recent theoretical and observational advances in understanding the dynamics of lithosphere processes have yielded strong evidence in favour of the existence of large-scale lithosphere folds. Intraplate compressional stresses generated by plate tectonic forces can reach magnitudes that approach the plastic buckling strength of mechanical models of lithosphere with brittle-ductile rheological stratification. The models predict lower plastic buckling stresses for continental lithosphere than for oceanic lithosphere. Intraplate folding of relatively strong oceanic lithosphere, documented extensively in the northeastern Indian Ocean, occurs where stresses are concentrated by restricted geometric and dynamic conditions resulting in unusually high stress levels (several hundreds MPa). On continents, where geophysical data suggest that lithosphere folding may have occurred during the development of sedimentary basins in northern Canada and central Australia, buckling stresses can have magnitudes that are of a similar order to those thought typically to occur in the lithosphere (several tens MPa). Folding of continental lithosphere, although more difficult to document, is likely to be an important mechanism of large-scale continental deformation. In particular, thinned continental lithosphere, with a history of superposition of thick sedimentary successions, might be the preferential locus of such folding. Lithosphere folding could also be a controlling factor in the near-surface deformation of rifted basins as reflected by tectonic basin inversion.

  11. Tectonic Plates and Plate Boundaries (WMS)

    NSDL National Science Digital Library

    Eric Sokolowsky

    2004-06-14

    The earths crust is constantly in motion. Sections of the crust, called plates, push against each other due to forces from the molten interior of the earth. The areas where these plates collide often have increased volcanic and earthquake activity. These images show the locations of the plates and their boundaries in the earths crust. Convergent boundaries are areas where two plates are pushing against each other and one plate may be subducting under another. Divergent boundaries have two plates pulling away from each other and indicate regions where new land could be created. Transform boundaries are places where two plates are sliding against each other in opposite directions, and diffuse boundaries are places where two plates have the same relative motion. Numerous small microplates have been omitted from the plate image. These images have been derived from images made available by the United States Geological Surveys Earthquake Hazards Program.

  12. Inter-seismic deformation and plate coupling along the Andaman micro-plate margin: geodetic constraints using 1996-2004 GPS data.

    NASA Astrophysics Data System (ADS)

    Earnest, A.; Puchakayala, J.; Rajendran, C. C. P.; Rajendran, K.

    2014-12-01

    Oblique convergence of the Andaman microplate with the Sunda margin results in permanent deformation within the overriding plate and had generated giant plate-boundary ruptures like the 2004 Mw 9.3 Sumatra- Andaman earthquake. Inter-seismic upper plate deformation of this part of the subduction zone remains poorly constrained due to lack of availability of spatially well distributed data. Through this study we are reanalyzing the available GPS geodetic data sets collected by various agencies over different times between 1996-2004 to constrain the pre-earthquake convergence values using a consistent reference frame to determine the crustal deformation in the Andaman Nicobar region, to infer strain rates in the overriding plate, how Andaman microplate was moving relative to Indian plate and what was the extent of plate locking. We will also discuss the details on spatial and temporal variations of convergence rates and variations in plate coupling. To quantify the change in coupling, we calculated the interseismic surface deformation using Okada's formulation, in which locked faults are modelled as dislocations in a halfspace. We defined the subduction zone geometry as three elastically deforming blocks (India, Andaman fore-arc, and Sunda) separated by two faults: the West Andaman Fault and the Sumatra-Andaman megathrust. The bennioff-zone dip and orientation is re-defined using the recently relocated epicentral solutions with higher accuracy and from the slip-distribution models constrained from the various co-seismic geodetic offsets reported from the near-field and far-field GPS sites . The rigid-body motion of each block is specified by a pole of rotation. We modelled the variation in coupling by specifying for each node and integrating the slip deficit over the fault surfaces. The West Andaman Fault is modeled as a vertical strike- lip fault, locked to a depth of ~20 km, with a dextral slip.

  13. The heat flow through oceanic and continental crust and the heat loss of the earth

    Microsoft Academic Search

    J. G. Sclater; C. Jaupart; D. Galson

    1980-01-01

    Oceans and continents are now considered to be mobile and interconnected. The paper discusses heat flow through the ocean floor, continental heat flow, heat loss of the earth, thermal structure and thickness of the lithosphere, as well as convection in the mantle and the thermal structure of the lithosphere, within the framework of the theory of plate tectonics. It is

  14. Capturing magma intrusion and faulting processes during continental rupture: seismicity of the Dabbahu (Afar) rift

    Microsoft Academic Search

    C. J. Ebinger; D. Keir; A. Ayele; E. Calais; T. J. Wright; M. Belachew; J. O. S. Hammond; E. Campbell; W. R. Buck

    2008-01-01

    Continental rupture models emphasize the role of faults in extensional strain accommodation; extension by dyke intrusion is commonly overlooked. A major rifting episode that began in 2005 September in the Afar depression of Ethiopia provides an opportunity to examine strain accommodation in a zone of incipient plate rupture. Earthquakes recorded on a temporary seismic array (2005 October to 2006 April),

  15. The Biggest Plates on Earth: Plate Tectonics

    NSDL National Science Digital Library

    In this lesson, students investigate the movement of Earth's tectonic plates, the results of these movements, and how magnetic anomalies present at spreading centers document the motion of the crust. As a result of this activity, students will be able to describe the motion of tectonic plates, differentiate between three types of plate boundaries, infer what type of boundary exists between two tectonic plates, and understand how magnetic anomalies provide a record of geologic history and crustal motion around spreading centers. As an example, they will also describe plate boundaries and tectonic activity in the vicinity of the Juan de Fuca plate adjacent to the Pacific Northwest coast of North America.

  16. Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Miyake, Hiroe; Koketsu, Kazuki

    2015-07-01

    The central Japanese subduction zone is characterized by a complex tectonic setting affected by the dual subduction of oceanic plates and collisions between the island arcs. To better understand of the subduction system, we performed an anisotropic tomography analysis using P-wave arrival times from local earthquakes to determine the three-dimensional structure of P-wave azimuthal anisotropy in the overriding plate and the Pacific and Philippine Sea (PHS) slabs. The principal characteristics of anisotropy in the subducted and subducting plates are (1) in the overriding plate, the distribution pattern of fast direction of crustal anisotropy coincides with that of the strike of geological structure, (2) in the two oceanic plates, fast propagation directions of P-wave were sub-parallel to the directions of seafloor spreading. Additionally, our tomographic images demonstrate that (1) the bottom of the Median Tectonic Line, the longest fault zone in Japan, reaches to the lower crust, and seems to link to the source region of an inter-plate earthquake along the PHS slab, (2) the segmentation of the PHS slab - the Izu Islands arc, the Nishi-Shichito ridge, and the Shikoku basin - due to the formation history, is reflected in the regional variation of anisotropy. The tomographic study further implies that there might be a fragment of the Pacific slab suggested by a previous study beneath the Tokyo metropolitan area. The overall findings strongly indicate that seismic anisotropy analysis provide potentially useful information to understand a subduction zone.

  17. Plate Tectonics: Consequences of Plate Interactions

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-11-01

    This Science Object is the fourth of five Science Objects in the Plate Tectonic SciPack. It identifies the events that may occur and landscapes that form as a result of different plate interactions. The areas along plate margins are active. Plates pushing against one another can cause earthquakes, volcanoes, mountain formation, and very deep ocean trenches. Plates pulling apart from one another can cause smaller earthquakes, magma rising to the surface, volcanoes, and oceanic valleys and mountains from sea-floor spreading. Plates sliding past one another can cause earthquakes and rock deformation. Learning Outcomes:? Explain why volcanoes and earthquakes occur along plate boundaries. ? Explain how new sea floor is created and destroyed.? Describe features that may be seen on the surface as a result of plate interactions.

  18. The evolution of oceanic 87Sr/86Sr does not rule out early continental growth

    NASA Astrophysics Data System (ADS)

    Flament, N.; Coltice, N.; Rey, P. F.

    2010-12-01

    Many contrasted continental growth models have been proposed to date, in which the amount of continental material extracted from the mantle at 3.8 Ga ranges between 0% (e.g. Taylor and McLennan, 1985) and 100% (e.g. Armstrong, 1981). One of the arguments in favor of delayed continental growth models is the shift in the 87Sr/86Sr of marine carbonates from mantle composition at ~ 2.8 Ga (Shields and Veizer, 2002). When using oceanic 87Sr/86Sr as a proxy of continental growth, the flux of strontium from the continents to the oceans is assumed to depend only on continental area and both continental hypsometry and continental freeboard are assumed to be constant through time. However, Rey and Coltice (2008) suggested that Archean reliefs were lower than present-day ones and Flament et al. (2008) suggested that the emerged land area is not proportional to continental growth. Therefore, the suitability of 87Sr/86Sr as a proxy of continental growth must be re-assessed. In this contribution, we develop an integrated model, from the mantle to the surface, to investigate the effect of contrasted continental growth models on the evolution of sea level, of the area of emerged land, and of oceanic 87Sr/86Sr. We estimate the evolution of mantle temperature using the model of Labrosse and Jaupart (2007) that takes the effect of continental growth into account. The maximum continental elevation is calculated using the results of Rey and Coltice (2008), sea level and the area of emerged land are calculated as in Flament et al. (2008), and the oceanic 87Sr/86Sr is calculated in a geochemical box model. We calculate Archean sea levels ~ 800 m higher than present for delayed continental growth and ~ 1500 m higher for early continental growth. In contrast, we calculate similar Archean areas of emerged land, of less than 5% of the Earths surface, for both early and delayed continental growth models. Because the area of emerged land does not depend on continental growth models, the evolution of oceanic 87Sr/86Sr is not a suitable proxy for continental growth. We suggest that the delayed appearance of the differentiated reservoir in surface geochemical tracers reflects the emergence of the continents rather than a peak in extraction of juvenile continental crust from the mantle. Therefore, there could be no need for delayed continental growth models. Armstrong, R. L., 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth. Earth. Philos. Trans. R. Soc. London 301, 443-471. Flament, N., Coltice, N., and Rey, P. F., 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sc. Lett. 275, 326-336. Labrosse, S., Jaupart, C., 2007. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sc. Lett. 260, 465-481. Rey, P. F. and Coltice N., 2008. Neoarchean strengthening of the lithosphere and the coupling of the Earth's geochemical reservoirs. Geology 36, 635-638. Taylor, S. R. and McLennan, S. M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, 328 p.

  19. Caribbean plate tectonics

    NSDL National Science Digital Library

    Sting

    This illustration available at Wikimedia Commons shows the plate tectonic setting in the Caribbean. Plate boundaries are color-coded by margin type and plate motions are noted with direction and magnitude in mm/yr.

  20. The northern Egyptian continental margin

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Mohamed, Gad; Omar, Khaled; Farid, Walid

    2015-01-01

    Africa displays a variety of continental margin structures, tectonics and sedimentary records. The northern Egyptian continental margin represents the NE portion of the North African passive continental margin. Economically, this region is of great importance as a very rich and productive hydrocarbon zone in Egypt. Moreover, it is characterized by remarkable tectonic setting accompanied by active tectonic processes from the old Tethys to recent Mediterranean. In this article, seismicity of the northern Egyptian continental margin has been re-evaluated for more than 100-years and the source parameters of three recent earthquakes (October 2012, January 2013 and July 2013) have been estimated. Moment tensor inversions of 19th October 2012 and 17th January 2013 earthquakes reveal normal faulting mechanism with strike-slip component having seismic moment of 3.5E16 N m and 4.3E15 N m respectively. The operation of the Egyptian National Seismic Network (ENSN) since the end of 1997 has significantly enhanced the old picture of earthquake activity across northern Egyptian continental margin whereas; the record-ability (annual rate) has changed from 2-events/year to 54-event/year before and after ENSN respectively. The spatial distribution of earthquakes foci indicated that the activity tends to cluster at three zones: Mediterranean Ridge (MR), Nile Cone (NC) and Eratosthenes Seamount (ERS). However, two seismic gaps are reported along Levant Basin (LEV) and Herodotus Basin (HER).

  1. Earth's plate motion evolution and its link to global mantle dynamics

    NASA Astrophysics Data System (ADS)

    Rolf, Tobias; Capitanio, Fabio; Tackley, Paul

    2015-04-01

    Present-day plate motions provide a global dataset that allows us to infer the present convective structure of the Earth's mantle. Moreover, present geological observations combined with the kinematic principles of plate tectonics enables us to reconstruct Earth's tectonic history back until Pangaean times, which improves our understanding of how Earth has evolved to its present state. However, several aspects are not yet sufficiently well understood, for instance, how surface motions are linked to deep mantle processes or how plate motion changes over time, including those timescales of several 100 Myr that are associated with supercontinent formation and dispersal. Here, we use global spherical models of mantle convection to investigate plate motion evolution in a general and dynamically fully consistent manner. These models include tectonic plates self-consistently evolving from mantle flow as well as Earth-like continental drift. We analyze the evolution of plate velocities over long timescales and observe fluctuations of globally averaged plate motions of a factor of 2-3, in agreement with kinematic reconstructions. The fluctuations are mainly driven by the onset of new subduction, highlighting the strong role of slab-related driving forces in the rates of plate motion. Average plate motions are increased with a stronger viscosity contrast between upper and lower mantle, partly due to an increased subduction flux into the lower mantle, which increases the driving forces of plate motion. The motion of individual plates shows much stronger fluctuation. Continental plate motions are modulated by continental assembly and dispersal. Continents usually move slower when strongly clustered and faster during dispersal and before collision. In a further step, we analyze changes in the direction of motion of these individual plates by calculating their Euler pole and its change with time. This allows us to characterize the variety of modeled plate reorganizations and to relate our models to Earth's recent tectonic evolution.

  2. Atlantic Rifts and Continental Margins

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster; Taiwani, Manik

    In compiling this volume, we have aimed to develop and enhance our current understanding of the structural evolution and sedimentation processes along divergent continental margins. To counteract the unfortunate situation of a lack of modern seismic and potential fields data on circum-Atlantic passive margins in the literature, we have linked new data from oil companies with that of research institutions. To update the data offered in most volumes used as reference works for the study of continental margins, now upwards of 20 years old, and to remedy the dispersal of important, more recent contributions in specialized journals, we present a current synthesis of materials in one volume focused on the deeper geology of the sedimentary basins along continental margins.

  3. Observe animations of processes that occur along plate boundaries

    NSDL National Science Digital Library

    TERC. Center for Earth and Space Science Education

    2003-01-01

    Here are three animations that reveal how tectonic plates move relative to each other at three types of plate boundaries--transform, convergent, and divergent boundaries. Key features such as the asthenosphere are labeled in the animations. In addition, each animation is equipped with movie control buttons that allow students to play, pause, and move forward and backward through each clip. The animation of a transform boundary shows the North American and Pacific plates sliding past one another, while an oceanic plate subducts under a continental plate producing volcanic activity in the convergent boundary animation. Two coordinated movie clips are used to demonstrate what occurs at a divergent boundary from different viewpoints. Copyright 2005 Eisenhower National Clearinghouse

  4. The Great Continental Drift Mystery

    NSDL National Science Digital Library

    This unit introduces students to the development of the theory of continental drift. They will examine the early work of Alfred Wegener and Alexander DuToit, investigate lines of evidence that resulted in the development of the theory, and learn about the final lines of evidence that resulted in the theory's acceptance. There is a set of activities in which the students construct a map of Pangea using Wegener's clues, familiarize themselves with some important geographic locations, and investigate how fossil distribution can be used to enhance the study of continental drift. Study questions and a bibliography are included.

  5. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations.

    PubMed

    Nielsen, Sren B; Stephenson, Randell; Thomsen, Erik

    2007-12-13

    The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic reconstructions, can be obtained from the response of the interior of adjacent continental plates to stress changes generated by plate boundary processes. Here we demonstrate a causal relationship between North Atlantic continental rifting at approximately 62 Myr ago and an abrupt change of the intra-plate deformation style in the adjacent European continent. The rifting involved a left-lateral displacement between the North American-Greenland plate and Eurasia, which initiated the observed pause in the relative convergence of Europe and Africa. The associated stress change in the European continent was significant and explains the sudden termination of a approximately 20-Myr-long contractional intra-plate deformation within Europe, during the late Cretaceous period to the earliest Palaeocene epoch, which was replaced by low-amplitude intra-plate stress-relaxation features. The pre-rupture tectonic stress was large enough to have been responsible for precipitating continental break-up, so there is no need to invoke a thermal mantle plume as a driving mechanism. The model explains the simultaneous timing of several diverse geological events, and shows how the intra-continental stratigraphic record can reveal the timing and dynamics of stress changes, which cannot be resolved by reconstructions based only on plate kinematics. PMID:18075591

  6. Copper Map Plate Detail

    USGS Multimedia Gallery

    A portion of the engraving on the plate used to print points, lines, and text in black ink. Engravings on the plate are left-to-right reversed. This plate was cleaned and treated to improve the visibility of the engraving. The plate was used to print the Washington [D.C.] and vicinity, 1:31,680-sca...

  7. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  8. Plate Tectonics Animation

    NSDL National Science Digital Library

    2002-01-01

    Plate tectonics describes the behavior of Earth's outer shell, with pieces (plates) bumping and grinding and jostling each other about. Explore these maps and animations to get a jump start on understanding plate tectonic processes, history, and how motion of the plates affects our planet today.

  9. Feedback cycles in planetary evolution including continental growth and mantle hydration, and the impact of life

    NASA Astrophysics Data System (ADS)

    Hning, Dennis; Spohn, Tilman

    2015-04-01

    The Earth's evolution is significantly affected by several intertwined feedback cycles. One of these feedback loops describes the production and erosion of continental crust. Continents are produced in subduction zones, whose total length in turn is determined by the fraction of continental crust. Furthermore, the fraction of continental crust determines the amount of eroded sediments. These sediments eventually enter subduction zones and affect the water transport into the mantle. As the biosphere enhances weathering and erosion of continental crust, we show how life on Earth can enter this feedback cycle and stabilize the present day state of the Earth. A second feedback loop - coupled to the first one - includes the mantle water cycle. Water in the Earth's mantle reduces its viscosity, and therefore increases the speed of mantle convection and plate subduction. Here, we present a thermal evolution model of the Earth which reproduces the present day observations. We investigate the influence of the biosphere during the Earth's evolution on continental growth and mantle hydration. Finally, we discuss implications on the evolution of plate-tectonics planets beyond our solar system.

  10. Mapping Plate Tectonic Boundaries

    NSDL National Science Digital Library

    Michael Kerwin

    To prepare for this activity, students do background reading on Plate Tectonics from the course textbook. Students also participate in a lecture on the discovery and formulation of the unifying theory of plate tectonics, and the relationship between plate boundaries and geologic features such as volcanoes. Lastly, in lecture, students are introduced to a series of geologic hazards caused by certain plate tectonic interactions. The activity gives students practices at identifying plate boundaries and allows them to explore lesser known tectonically active regions.

  11. Estimation of continental precipitation recycling

    SciTech Connect

    Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. (Massachusetts Institute of Technology, Cambridge (United States))

    1993-06-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from the surrounding areas external to the region and (2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the Continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases. 48 refs., 7 figs., 4 tabs.

  12. Estimation of continental precipitation recycling

    NASA Technical Reports Server (NTRS)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, P. S.

    1993-01-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: 1) advection from the surrounding areas external to the region and 2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases.

  13. Recycling of the continental crust

    Microsoft Academic Search

    Scott M. McLennan

    1988-01-01

    In order to understand the evolution of the crust-mantle system, it is important to recognize the role played by the recycling of continental crust. Crustal recycling can be considered as two fundamentally distinct processes: 1) intracrustal recycling and 2) crust-mantle recycling. Intracrustal recycling is the turnover of crustal material by processes taking place wholly within the crust and includes most

  14. Some remarks on continental drift

    Microsoft Academic Search

    L. Egyed

    1960-01-01

    Summary The continental drift may be explained by an expanding Earth only. In fact, there is a differences in the rate of heat flow between continents and oceans. Principially, there is a possibility of deriving the value of ancient radii by palaeomagnetic and age measurements.

  15. Examples of diapiric control on shelf topography and sedimentation patterns on the Colombian Caribbean continental shelf

    NASA Astrophysics Data System (ADS)

    Vernette, G.

    The Colombian continental margin, located near the junction of the Caribbean, Nazca, and South American plates, is marked by tectonism and abundant sedimentation. Both tectonic events and sedimentation induce the development of intense clay diapirism that has proved to be a determining factor in the morphology of the margin and in the distribution of sedimentation over it. On the continental shelf, the top of mud domes is, within a photic zone, colonized by reef that are sources of carbonate sediments. The domes' abruptly sloping flanks often account for the gravity displacement of sediments to the bottom of "interdiapiric basins". The subsequent result is high diversity in the morphology and sediments of this platform.

  16. An alternative plate tectonic model for the PalaeozoicEarly Mesozoic Palaeotethyan evolution of Southeast Asia (Northern ThailandBurma)

    Microsoft Academic Search

    O. M. Ferrari; C. Hochard; G. M. Stampfli

    2008-01-01

    An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the

  17. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    Microsoft Academic Search

    Daniel Jean Stanley

    1982-01-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before\\u000a the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed\\u000a emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the\\u000a entire African continental landmass as

  18. Seismic investigation of the continental margin off- and onshore Valparaiso, Chile

    NASA Astrophysics Data System (ADS)

    Flueh, E. R.; Vidal, N.; Ranero, C. R.; Hojka, A.; von Huene, R.; Bialas, J.; Hinz, K.; Cordoba, D.; Daobeitia, J. J.; Zelt, C.

    1998-03-01

    At the latitude of Valparaiso, Chile, a fundamental change in the configuration of the Benioff zone, volcanic activity, and the structure of the continental margin occurs opposite the subducting Juan Fernandez Ridge. Three legs of the German {R}/{V}Sonne (cruises SO101, SO103 and SO104) surveyed the continental margin and oceanic plate offshore Valparaiso, aiming at studying the crustal structure and investigating possible causes for the change in slab configuration. Sonne cruise SO101 investigated the tectonic setting with swath-mapping bathymetry, magnetics and high-resolution seismics. Following these investigations cruise SO103 collected land-sea wide-angle seismic data, and coincident deep seismic reflection data were acquired during cruise SO104. Coincident near-vertical and wide-angle seismic measurements were made along two profiles. Profile 1, located at the south of the study area, away from the influence of the subducting ridge, crosses the margin where thick trench sediment and an accretionary wedge near the trench is observed. Profile 2, located in the north, runs from the Juan Fernandez Ridge to the Chilean coast. The crustal velocity models obtained for the two profiles show that the continental crust extends to the middle-lower slope boundary, which is also reflected in morphology. In addition, they show that the crustal structure of the oceanic plate is rather similar, but the plate seems to be slightly more inclined along the northern profile (13 versus 10 in the south). The two profiles are only about 70 km apart but their structures differ significantly. No straightforward correlation exists between the two profiles that can be attributed to ridge collision. The data support that the 1985 central Chile earthquake ruptured the plate boundary in the area that includes the segment boundary and mainly where continental crust forms the upper plate.

  19. The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?

    NASA Astrophysics Data System (ADS)

    Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.

    2012-12-01

    The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.

  20. A Marine Anthraquinone SZ-685C Overrides Adriamycin-Resistance in Breast Cancer Cells through Suppressing Akt Signaling

    PubMed Central

    Zhu, Xun; He, Zhenjian; Wu, Jueheng; Yuan, Jie; Wen, Weitao; Hu, Yiwen; Jiang, Yi; Lin, Cuiji; Zhang, Qianhui; Lin, Min; Zhang, Henan; Yang, Wan; Chen, Hong; Zhong, Lili; She, Zhigang; Chen, Shengping; Lin, Yongcheng; Li, Mengfeng

    2012-01-01

    Breast cancer remains a major health problem worldwide. While chemotherapy represents an important therapeutic modality against breast cancer, limitations in the clinical use of chemotherapy remain formidable because of chemoresistance. The HER2/PI-3K/Akt pathway has been demonstrated to play a causal role in conferring a broad chemoresistance in breast cancer cells and thus justified to be a target for enhancing the effects of anti-breast cancer chemotherapies, such as adriamycin (ADR). Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. In this context, SZ-685C, an agent that has been previously shown, as such, to suppress Akt signaling, is expected to increase the efficacy of chemotherapy. Our current study investigated whether SZ-685C can override chemoresistance through inhibiting Akt signaling in human breast cancer cells. ADR-resistant cells derived from human breast cancer cell lines MCF-7, MCF-7/ADR and MCF-7/Akt, were used as models to test the effects of SZ-685C. We found that SZ-685C suppressed the Akt pathway and induced apoptosis in MCF-7/ADR and MCF-7/Akt cells that are resistant to ADR treatment, leading to antitumor effects both in vitro and in vivo. Our data suggest that use of SZ-685C might represent a potentially promising approach to the treatment of ADR-resistant breast cancer. PMID:22690138

  1. Isotopic composition of helium, and CO 2 and CH 4 contents in gases produced along the New Zealand part of a convergent plate boundary

    Microsoft Academic Search

    W. F. Giggenbach; Y. Sano; H. Wakita

    1993-01-01

    New Zealand straddles an active tectonic boundary between the Indo-Australian and Pacific plates. To the NE and SW oblique convergence of oceanic and continental crusts leads to the establishment of subduction zones; in the center continental crusts collide along a transform boundary. With regard to mantle degassing, and on the basis of chemical and He isotopic analyses of 140 samples

  2. The PLATES Project

    NSDL National Science Digital Library

    This is the web page for PLATES, a program of research into plate tectonic and geologic reconstructions at the University of Texas at Austin Institute for Geophysics. The page contains links to a brief overview of plate tectonics and plate reconstructions using the PLATES Project's global plate reconstruction model, in addition to movies in the format of powerpoint animations which can be downloaded for later use. Models are shown on the evolution of the earth's oceans and the movement of the earth's tectonic plates from the Late Precambrian through the present day, reconstructing (i.e. "predicting") geological environments through geologic history. Maps of the following can be accessed: late Neo-Proterozoic, Silurian, early Jurassic, early Cretaceous, Cretaceous-Tertiary Boundary, and Oligocene. Movies are available on the following subjects: global plate motion, Jurassic to present day, opening of the Indian Ocean, and tectonic evolution of the Arctic region.

  3. Understanding Plate Motions

    NSDL National Science Digital Library

    The representation shows divergent boundaries, convergent boundaries, transform boundaries, and plate boundary zones through a series of diagrams. Some of the diagrams are accompanied by a photographs. Accompanying text explains plate movement at each type of boundary.

  4. Portable Plating System

    NASA Technical Reports Server (NTRS)

    Flores, R.

    1984-01-01

    Plating system mounted on portable cart includes 30-gallon (23.5 liter) electrolyte tank, filler pump, heaters, replenishing anodes, plating rectifiers and tank rectifier to continously remove contaminants.

  5. External Resource: Plate Tectonics

    NSDL National Science Digital Library

    1900-01-01

    This Windows to the Universe interactive webpage connects students to the study and understanding of plate tectonics, the main force that shapes our planets surface. Topics: plate tectonics, lithosphere, subduction zones, faults, ridges.

  6. Plate Tectonics: Further Evidence

    NSDL National Science Digital Library

    The representation depicts the spreading of the sea floor along the mid-ocean ridges. The resource generally describes the theory of plate tectonics, including the movement of plates with regard to one another.

  7. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  8. Plate Tectonic Theory

    NSDL National Science Digital Library

    John Louie

    This is the web site for a Plate Tectonics Theory class at The University of Nevada, Reno. The home page/syllabus contains links to several of the topics covered in the course. The topics with web based lecture materials are earthquake seismology, structure of the Earth, composition of the Earth, lithospheric deformation, the plate tectonics paradigm, and the driving mechanisms of plate tectonics.

  9. Paper terahertz wave plates.

    PubMed

    Scherger, Benedikt; Scheller, Maik; Vieweg, Nico; Cundiff, Steven T; Koch, Martin

    2011-12-01

    We present a low-cost terahertz wave plate based on form birefringence fabricated using ordinary paper. Measurements of the transfer function of the wave plate between polarizers closely agree with predictions based on the measured complex indices of refraction of the effective medium. For the design frequency, the dependence on wave plate angle also agrees with theory. PMID:22273881

  10. Laser induced copper plating

    Microsoft Academic Search

    A. K. Al-Sufi; H. J. Eichler; J. Salk; H. J. Riedel

    1983-01-01

    Argon laser induced plating of copper spots and lines from copper sulfate solutions on glass and phenolic resin paper has been investigated. The substrates had to be precoated with an evaporated copper film. The highest plating rates have been obtained with a small film thickness of 25 nm. Spots with a thickness up to 30 ?m were plated.

  11. Plate Tectonic Primer

    NSDL National Science Digital Library

    Lynn Fichter

    This site gives an in-depth look at the theory of plate tectonics and how it works. The structure of the Earth is discussed, with brief rock type descriptions. The structure of the lithosphere, plate boundaries, interplate relationships, and types of plates are all covered in detail.

  12. Earthquakes and Plate Tectonics

    NSDL National Science Digital Library

    This article describes the theory of plate tectonics and its relation to earthquakes and seismic zones. Materials include an overview of plate tectonics, a description of Earth's crustal plates and their motions, and descriptions of the four types of seismic zones.

  13. The Mw 8.1 1998 Antarctic Plate Earthquake

    NASA Astrophysics Data System (ADS)

    Das, S.

    The Antarctic Plate, a very usual plate being entirely surrounded by ridges, has been considered essentially aseismic. The occurrence of an intraplate magnitude 8.1 earth- quake on it in 1998 was therefore a surprise. This very shallow earthquake, located at (62.9 deg S, 149.5 deg E), had its epicenter~300 km from the nearest plate boundary, but was clearly not a plate boundary earthquake as seen from the fact that the stresses for the earthquake and its aftershocks are rotated by 90 deg from those of the clos- est plate boundary earthquakes. The earthquake is not only the largest known on the Antarctic Plate but is the largest known crustal submarine earthquake, and occurred in a region with no known seismicity, ~330 km north of the Antarctic continental shelf. Moreover, the rupture plane identified from very detailed analysis of body and mantle waves (Henry et al., 2000) does not coincide with any feature visible in the gravity or topography of the region. In fact, it is perpendicular to all such features, cutting right across them. The total rupture of this complex earthquakes was 270 km, with several metres of slip across and and with a stress drop > 20 MPa, providing a lower bound on the crustal stress in the plate in that region. C. Henry, S. Das and J. H. Woodhouse (2000). The March 25, 1998 Mw = 8.1 Antarctic Plate earthquake: Moment tensor and rupture history, J. Geophys. Res., 105, 16,097-16,119.

  14. Spreading continents kick-started plate tectonics.

    PubMed

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining. PMID:25230662

  15. An Analysis of Wilson Cycle Plate Margins

    NASA Astrophysics Data System (ADS)

    Buiter, S.; Torsvik, T. H.

    2012-12-01

    The Wilson Cycle theory that oceans close and open along the same suture is a powerful concept in analyses of ancient plate tectonics. It implies that collision zones are structures that are able to localize extensional deformation for long times after the collision has waned. However, some sutures are seemingly never reactivated and already Tuzo Wilson recognized that Atlantic break-up did not follow the precise line of previous junction. We have reviewed margin pairs around the Atlantic and Indian Oceans with the aim to evaluate the extent to which oceanic opening used former sutures, summarize delay times between collision and break-up, and analyze the role of mantle plumes in continental break-up. We aid our analyses with plate tectonic reconstructions using GPlates (www.gplates.org). Although at first sight opening of the North Atlantic Ocean largely seems to follow the Iapetus and Rheic sutures, a closer look reveals deviations. For example, Atlantic opening did not utilize the Iapetus suture in Great Britain and rather than opening along the younger Rheic suture north of Florida, break-up occurred along the older Pan-African structures south of Florida. We find that today's oceanic Charlie Gibbs Fracture Zone, between Ireland and Newfoundland, is aligned with the Iapetus suture. We speculate therefore that in this region the Iapetus suture was reactivated as a transform fault. As others before us, we find no correlation of suture and break-up age. Often continental break-up occurs some hundreds of Myrs after collision, but it may also take over 1000 Myr, as for example for Australia - Antarctica and Congo - So Francisco. This places serious constraints on potential collision zone weakening mechanisms. Several studies have pointed to a link between continental break-up and large-scale mantle upwellings. It is, however, much debated whether plumes use existing rifts as a pathway, or whether plumes play an active role in causing rifting. We find a positive correlation between break-up age and plume age, which we interpret to indicate that plumes can aid the factual continental break-up. However, plumes may have been guided towards the rift for margins that experienced a long rift history (e.g., Norway-Greenland), to then trigger the break-up. This could offer a partial reconciliation in the debate of a passive or active role for mantle plumes in continental break-up.

  16. Composition of the Continental Crust

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Gao, S.

    2003-12-01

    The Earth is an unusual planet in our solar system in having a bimodal topography that reflects the two distinct types of crust found on our planet. The low-lying oceanic crust is thin (7 km on average), composed of relatively dense rock types such as basalt and is young (?200 Ma old) (see Chapter 3.13). In contrast, the high-standing continental crust is thick (40 km on average), is composed of highly diverse lithologies (virtually every rock type known on Earth) that yield an average intermediate or "andesitic" bulk composition (Taylor and McLennan (1985) and references therein), and contains the oldest rocks and minerals yet observed on Earth (currently the 4.0 Ga Acasta gneisses (Bowring and Williams, 1999) and 4.4 Ga detrital zircons from the Yilgarn Block, Western Australia (Wilde et al., 2001)), respectively. Thus, the continents preserve a rich geological history of our planet's evolution and understanding their origin is critical for understanding the origin and differentiation of the Earth.The origin of the continents has received wide attention within the geological community, with hundreds of papers and several books devoted to the topic (the reader is referred to the following general references for further reading: Taylor and McLennan (1985), Windley (1995), and Condie (1997). Knowledge of the age and composition of the continental crust is essential for understanding its origin. Patchett and Samson (Chapter 3.10) review the present-day age distribution of the continental crust and Kemp and Hawkesworth (Chapter 3.11) review secular evolution of crust composition. Moreover, to understand fully the origin and evolution of continents requires an understanding of not only the crust, but also the mantle lithosphere that formed more-or-less contemporaneously with the crust and translates with it as the continents move across the Earth's surface. The latter topic is reviewed in Chapter 2.05.This chapter reviews the present-day composition of the continental crust, the methods employed to derive these estimates, and the implications of the continental crust composition for the formation of the continents, Earth differentiation, and its geochemical inventories.

  17. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along 1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated.

  18. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  19. Angular shear plate

    DOEpatents

    Ruda, Mitchell C. (Tucson, AZ); Greynolds, Alan W. (Tucson, AZ); Stuhlinger, Tilman W. (Tucson, AZ)

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  20. Malachite green photosensitive plates.

    PubMed

    Solano, C

    1989-08-15

    An experimental study of the behavior of malachite green sensitized plates was carried out. The transmittance variation of the irradiated plates was taken as a parameter. It has been observed that photoreduction in the malachite green plates is present only when ammonium dichromate is added to the plates. The introduction of external electron donors does not improve the photochemical reaction. It has been determined that malachite green molecules form a weak complex with the dichromate molecules and this complex can only be destroyed photochemically. This effect can explain the limited response of the malachite green dichromated plates. PMID:20555732

  1. Discovering Plate Boundaries

    NSDL National Science Digital Library

    Alison Henning

    Students are initially assigned to one of four maps of the world: Seismology, Volcanology, Geochronology or Topography. They are also given a map of the world's plate boundaries and are asked to classify the boundaries based upon the data from their assigned map. Students are then assigned to a tectonic plate, such that each plate group contains at least one "expert" on each map. As a group, they must classify their plate's boundaries using data from all four maps. Recent volcanic and seismic events are discussed in the plate tectonic context. Has minimal/no quantitative component Uses geophysics to solve problems in other fields

  2. Recent tectonics of Eratosthenes Seamount: an example of seamount deformation during incipient continental collision

    Microsoft Academic Search

    J. Galindo-Zaldvar; L. Nieto; A. Robertson; J. Woodside

    2001-01-01

    The Eratosthenes Seamount is a continental fragment undergoing collision with Cyprus along the African-Eurasian plate boundary. High-resolution seismic and deep-tow sonar data revealed that extensional deformation is occurring over most of the seamount, whereas compressional deformation was observed within the trench basin to the north and also in the asymmetric basin south of the seamount. This recent tectonic activity has

  3. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  4. Arc-continent collision and the formation of continental crust: a new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    Microsoft Academic Search

    AMY E. D RAUT; P ETER; D. C LIFT; J EFFREY; M. A MA; J ERZY

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland.

  5. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...Supplemental Official Outer Continental Shelf Block Diagrams AGENCY: Bureau of Ocean Energy...Supplemental Official Outer Continental Shelf Block Diagrams...Diagram (OPD) and Supplemental Official OCS Block Diagrams (SOBDs) located in the...

  6. Slab Driven Plate Motions and Three-dimensional Mantle Flow Pathways in the Central American Subduction Zone

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; Fischer, K. M.

    2014-12-01

    We present a series of three-dimensional (3D), high-resolution, end-member tectonic configurations of the Central American plate system and use these to solve for the 3D viscous mantle flow and surface plate motions. The 3D geodynamic models test the relative control of the viscosity structure (Newtonian versus Composite), subducting plate geometry (continuous slab versus Cocos-Nazca slab gap), and overriding plate thickness (uniform versus laterally variable) on the predicted motion of the Cocos and Nazca plates and the slab-induced 3D flow field in the upper mantle. Models using the composite viscosity formulation result in increased surface plate motions, which better fit the observed motion of the Cocos and Nazca plates. This is particularly significant because these 3D regional models contain the entire Cocos plate, suggesting the importance of the non-linear rheology in models that aim to predict surface plate motions. Faster flow velocities occur in models using the composite viscosity due to the decreased resistance to subduction and reduced viscous support of the slab as the mantle surrounding the slab undergoes non-linear weakening. A zone of partial decoupling between the uppermost mantle and lithosphere, thus, naturally develops due to the composite viscosity formulation. Models that include a gap between the Cocos and Nazca slabs better fit the mantle flow pathways interpreted from the geochemical signatures, as material is brought from beneath the Cocos plate around the slab edge and northward into the mantle wedge beneath Central America. The mantle-lithosphere decoupling is enhanced in models with the slab gap, wherein the mantle flow field contains both counter-clockwise toroidal flow around the Cocos slab edge and clockwise toroidal flow around the northern Nazca slab edge, both of which are non-parallel to surface motions. The models also demonstrate that overriding plate thickness places a control on both the predicted surface motion and underlying mantle flow field, consistent with global models. In addition to the broader application of providing a mechanism for localized plate-mantle decoupling, the results imply that high-resolution, geographically referenced geodynamic models can be used to constrain modern plate geometries where unconstrained from seismicity.

  7. Considering bioactivity in modelling continental growth and the Earth's evolution

    NASA Astrophysics Data System (ADS)

    Hning, D.; Spohn, T.

    2013-09-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller continental surface area and dryer mantle. The origin and evolution of life on Earth might be responsible for the rise of continents 3.5 billion years ago.

  8. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    PubMed

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  9. Cretaceous high-pressure metamorphic belts of the Central Pontides (northern Turkey): pre-collisional Pacific-type accretionary continental growth of Laurasian Margin

    NASA Astrophysics Data System (ADS)

    Aygul, Mesut; Okay, Aral I.; Oberhaensli, Roland; Sudo, Masafumi

    2014-05-01

    Cretaceous blueschist-facies metamorphic rocks crop out widely in the central part of the Pontides, an east-west trending mountain belt in northern Turkey. They comprise an accretionary wedge along to the southern Laurasian active continental margin and predate the opening of Black Sea basin. From North to South, the wedge consists of a low grade metaflysch unit with marble, Na-amphibole-bearing metabasite and serpentinite blocks. An extensional shear zone separates the accreted distal terrigenous sediments from HP/LT micaschists and metabasites of oceanic origin, known as Domuzda? Complex. The shear zone reaches up to one km in thickness and consists of tectonic slices of serpentinite, metabasite, marble, phyllite and micaschist with top to the NW sense of shear. The Domuzda? Complex predominantly consists of carbonaceous micaschist and metabasite with serpentinite, and minor metachert, marble and metagabbro. Metabasites consist mainly of epidote-blueschists sometimes with garnet. Fresh lawsonite-blueschists are found as blocks within the shear zone. Peak metamorphic assemblages in the micaschists are chloritoid-glaucophane and garnet-chloritoid-glaucophane-lawsonite in addition to phengite, paragonite, quartz, chlorite and rutile (P: 17 1 Kbar, T: 390-450 C). To the south, lithologies change slightly, with metabasite and thick, pale marble with few metachert and metapelitic horizons. The degree of metamorphism also changes. The metabasites range from high-pressure upper-greenschist facies with growth of sodic-amphibole to lower greenschist without any HP index mineral, suggesting a general decrease in pressure toward south within the prism. While Domuzda? Complex represents deep-seated underplated oceanic sediments and basalts, the carbonate-rich southern parts can be interpreted as seamounts integrated into the accretionary prism. Ar/Ar dating on phengite separates both from terrigenous and oceanic metasediments give consistent plateau ages of 100 2 Ma. One of the Cld-micaschist, exposed to the South, gives a 92 2 Ma age. This documents a southward younging of metamorphism within the accretionary prism. A mid-Jurassic (160 Ma) age, previously reported from a micaschist in the southern part of Domuzda? Complex, is also supported in this study. These rocks however differ from the Cretaceous HP unit both in lithology and degree of metamorphism (P: 10 2 Kbar, T: 620 30C; Okay et al. 2013). It is not clear whether these rocks indicate episodic subduction process or represent tectonically emplaced slivers of the overriding plate which has widespread Mid-Jurassic high-grade metamorphic rocks and intrusions. The Cretaceous accretionary complex structurally overlies an arc-related low-grade metavolcanic unit, which is thrusted over the ophiolitic rocks of the main Tethyan ?zmir-Ankara-Erzincan Suture zone that separates the Pontides from the Gondwana-derived terranes. In the tectonic framework discussed above, the study area represents subduction and accretion related units, which are sandwiched between the southern Laurasian active margin and the Gondwana-derived K?r?ehir Block without any continental fragments. This indicates that Pacific-type pre-collisional accretion has a major role in the Tethyan geology of the Central Pontides during Cretaceous. Okay et al. (2013) Tectonics 32: 1247-1271.

  10. The Continental Drift Convection Cell

    NASA Astrophysics Data System (ADS)

    Whitehead, J. A.; Behn, M. D.

    2014-12-01

    Continents on Earth periodically assemble to form supercontinents, and then break up again into smaller continental blocks (the Wilson Cycle). Highly developed but realistic numerical models cannot resolve if continents respond passively to mantle convection or whether they modulate flow. Our simplified numerical model addresses this problem: A thermally insulating continent floats on a stress-free surface for infinite Prandtl number cellular convection with constant material properties in a chamber 8 times longer than its depth. The continent moves back and forth across the chamber driven by a "continental drift convection cell" of a form not previously described. Subduction exists at the upstream end with cold slabs dipping at an angle beneath the moving continent. Fluid moves with the continent in the upper region of this cell with return flow near the bottom. Many continent/subduction regions on Earth have these features. The drifting cell enhances vertical heat transport by approximately 30% compared to a fixed continent, especially at the core-mantle boundary, and significantly decreases lateral mantle temperature differences. However, continent drift or fixity has smaller effects on profiles of horizontally averaged temperature. Although calculations are done at Rayleigh numbers lower than expected for Earth's mantle (2x105 and 106), the drift speed extrapolates to reasonable Wilson Cycle speeds for larger Ra.

  11. WFPDB: European Plate Archives

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Milcho

    2007-08-01

    The Wide-Field Plate Database (WFPDB) gives an inventory of all wide-field (>~ 1 sq. deg) photographic observations archived in astronomical institutions over the world. So it facilitates and stimulates their use and preservation as a valuable source of information for future investigations in astronomy. At present WFPDB manages plate-index information for 25% of all existing plates providing on-line access from Sofia (http://www.skyarchive.org/search) and in CDS, Strasbourg. Here we present the new development of WFPDB as an instrument for searching of long term brightness variations of different sky objects stressing on the European photographic plate collections (from existing 2 million wide-field plates more than 55% are in Europe: Germany, Russia, Ukraine, Italy, Czech Republic, etc.). We comment examples of digitization (with flatbed scanners) of the European plate archives in Sonneberg, Pulkovo, Asiago, Byurakan, Bamberg, etc. and virtual links of WFPDB with European AVO, ADS, IBVS.

  12. Hypervelocity plate acceleration

    SciTech Connect

    Marsh, S.P.; Tan, T.H.

    1991-01-01

    Shock tubes have been used to accelerate 1.5-mm-thick stainless steel plates to high velocity while retaining their integrity. The fast shock tubes are 5.1-cm-diameter, 15.2-cm-long cylinders of PBX-9501 explosive containing a 1.1-cm-diameter cylindrical core of low-density polystyrene foam. The plates have been placed directly in contact with one face of the explosive system. Plane-wave detonation was initiated on the opposite face. A Mach disk was formed in the imploding styrofoam core, which provided the impulse required to accelerate the metal plate to high velocity. Parametric studies were made on this system to find the effect of varying plate metal, plate thickness, foam properties, and addition of a barrel. A maximum plate velocity of 9.0 km/s has been observed. 6 refs., 17 figs.

  13. Geology - Plate Tectonics

    NSDL National Science Digital Library

    Visitors to this site can learn about the theory of plate tectonics, the history of its development, and the mechanisms that drive the formation, movement, and destruction of continents and tectonic plates. A selection of animations depicts the movements of crustal plates and continents through time. Each animation is accompanied by an interactive time scale that provides links to descriptions of the geology and paleontology of the selected era or period.

  14. An inverted continental Moho and serpentinization of the

    E-print Network

    Rondenay, Stephane

    .............................................................. An inverted continental Moho indicated by the exceptional occurrence of an `inverted' continental Moho, which reverts to normal polarity prominent structures dominate the image in Fig. 2a. The continental Moho is evident as a boundary near 36 km

  15. Plate Motion Calculator

    NSDL National Science Digital Library

    Lou Estey

    This program calculates tectonic plate motion at any location on Earth using one or more plate motion models. The possible plate motion models are GSRM v1.2 (2004), CGPS (2004), HS3-NUVEL1A, REVEL 2000, APKIM2000.0, HS2-NUVEL1A, NUVEL 1A, NUVEL 1, and two models for ITRF2000. Plates or frames are selected from dropdown lists or can be entered by the user. Position coordinates can be entered in geographic coordinates (decimal degrees, or degrees/minutes/seconds) or in WGS84 cartesian XYZ, as either a single point or multiple points.

  16. Continental volume and freeboard through geological time

    Microsoft Academic Search

    G. Schubert; A. P. S. Reymer

    1985-01-01

    The consequences of approximately constant freeboard for continental growth are explored using a model that relates the volumes of isostatically compensated continents and oceans to the secular decline in terrestrial heat flow. It is found that a post-Archean increase in freeboard by 200 m requires continental growth of only 10 percent, while a decrease in freeboard by 200 m during

  17. A Facies Model for Temperate Continental Glaciers.

    ERIC Educational Resources Information Center

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  18. Arctic and Antarctic Crustal Thickness and Continental Lithosphere Thinning from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick J.; Alvey, Andy; Vaughan, Alan P. M.; Ferraccioli, Fausto; Jordan, Tom A. R. M.; Roberts, Alan M.

    2013-04-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. Antarctica, both peripherally and internally, experienced poly-phase rifting and continental breakup. We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location for the Polar Regions using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction. The method is carried out in the 3D spectral domain and predicts Moho depth and incorporates a lithosphere thermal gravity anomaly correction. Ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. A correction to the predicted continental lithospheric thinning derived from gravity inversion is made for volcanic material addition produced by decompression melting during continental rifting and seafloor spreading. For the Arctic, gravity data used is from the NGA (U) Arctic Gravity Project, bathymetry is from IBCAO and sediment thickness is from a new regional compilation. For Antarctica and the Southern Oceans, data used are elevation and bathymetry, free-air gravity anomaly, ice and sediment thickness from Smith and Sandwell (2008), Sandwell and Smith (2008) and Laske and Masters (1997) respectively, supplemented by Bedmap2 data south of 60 degrees south. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic, Antarctica and the Southern Ocean. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Moho depths predicted compare well with seismic estimates. Predicted very thin continental or oceanic crust under the North Chuchki Basin and Laptev Sea has major implications for understanding the plate tectonic history of the Amerasia Basin. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica. Thin crust is predicted under the West Antarctica Rift System and the Ross Sea. Continent scale rifts are also seen within East Antarctica. Intermediate crustal thickness with a pronounced rift fabric is predicted under Coates Land. An extensive region of either thick oceanic crust or highly thinned continental crust is predicted offshore Oates Land and north Victoria Land. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory (e.g. for the Southern Ocean). Gravity inversion predictions of crustal thickness, OCT location and oceanic lithosphere distribution may be used to test plate tectonic reconstructions. Using gravity anomaly inversion mapping of continental lithosphere thinning we have developed and applied a new technique to predict basement heat-flow, important for the prediction of ice-sheet stability, for the Polar Regions.

  19. Role of the plate margin curvature in the plateau buildup: Consequences for the central Andes

    NASA Astrophysics Data System (ADS)

    Boutelier, D. A.; Oncken, O.

    2010-04-01

    The influence of convergent plate boundary curvature on the stress distribution in an overriding plate is explored using analytical and numerical modeling techniques. Trench-parallel compression can be produced near the symmetry axis of a seaward-concave plate boundary if the interplate friction is high and/or if the subducting lithosphere has a low flexural rigidity, which produces little nonhydrostatic normal stress on the plate boundary. This situation favors the formation of trench-parallel thrusts with minor trench-parallel component of slip. Trench-parallel compression is reduced along the most oblique parts of the plate boundary, which favors the formation of strike slip faults with major trench-parallel slip. Both the stress conditions on the interplate zone and the 3-D geometry of this zone control whether the trench-parallel stress in the center of a seaward-concave curvature is a tension or compression. Low dip angle and high convergence obliquity angle favor trench-parallel compression. In the central Andes, N-S minor shortening in the center of the Arica bend and strike slip systems north and south of the symmetry axis suggest that the effect of shear traction dominated during Cenozoic time when the curvature of the plate boundary was forming. This result suggests that the processes responsible for the formation of the plate boundary curvature were assisted by enhanced interplate friction and/or reduced compressive nonhydrostatic normal stress. For a geometry resembling the present-day South American plate margin, estimations of normal and shear stresses on the plate boundary suggest that the trench-parallel stress in the center of the curvature is compressive.

  20. Tectonic reconstructions with deforming plates and geodynamic modeling of passive margin systems

    NASA Astrophysics Data System (ADS)

    Hosseinpour Vazifehshenas, M.; Williams, S.; Flament, N.; Heine, C.; Seton, M.; Gurnis, M.; Mller, R. D.

    2011-12-01

    The effect of mantle flow on surface topography has been the subject of considerable interest over the last few years. A common approach to the problem is to link plate tectonic reconstructions and global geodynamic models. An important limitation of this approach is that traditional plate tectonic reconstructions do not take the deformation of the lithosphere into account. We introduce quantitative models of surface plate kinematics that include areas of deforming continental crust. We present a series of global reconstructions including deforming plates in key areas, derived using tools developed within the open source plate modeling software GPlates. In traditional plate models, the continents are represented as rigid blocks that overlap in full-fit reconstructions. Models that use topological polygons avoid continental overlaps, but plate velocities are still derived on the basis of the Euler poles for the rigid blocks. To resolve these issues, we use a methodology that requires at minimum two inputs; (1) the relative motions of the major rigid blocks within the continents; (2) a definition of the regions in which continental crust between these blocks deformed. We use geological and geophysical data to interpret the landward limit of significant extension and crustal thinning along both conjugate margins. These boundaries are used to construct polygons along both margins that define the extent of the stretched continental crust on either side of the rift. We derive individual motion histories for each point on the conjugate COBs. Joined together, these COB points form the topological boundaries of deforming domains in which each vertex moves independently. The deforming domains represented by topological meshes extend as the major rigid plates either side diverge. In our tectonic reconstruction with deforming plates, the timing and the intensity of continental extension is imposed by the progressive, diachronous breakup and initiation of seafloor spreading for each major margin system. Our methodology allows us to investigate different models for the full-fit reconstruction of major ocean basins such as the North and South Atlantic and the South East Indian Ocean, and revise them if necessary to yield a better fit to available crustal thickness estimates. Once the kinematic models are constructed, the surface velocities within the deforming regions of our reconstruction are calculated within GPlates by linearly interpolating velocities from adjacent non-deforming areas. Velocities derived from the global reconstruction are used as a time-dependent surface boundary condition in mantle convection models that include compositionally distinct crust and continental lithosphere embedded within the thermal lithosphere. These models are the first step towards investigating the effect of both lithospheric stretching and of mantle flow on the total tectonic subsidence of these margins.

  1. Author's personal copy Plate tectonic reconstructions with continuously closing plates$

    E-print Network

    Bower, Dan J.

    Author's personal copy Plate tectonic reconstructions with continuously closing plates$ Michael May 2011 Keywords: Geodynamics Plate tectonics a b s t r a c t We present a new algorithm for modeling margins and plates, traditional global plate tectonic reconstructions have become inadequate

  2. Continuum calculations of continental deformation in transcurrent environments

    NASA Technical Reports Server (NTRS)

    Sonder, L. J.; England, P. C.; Houseman, G. A.

    1986-01-01

    A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.

  3. Development of topography in 3-D continental-collision models

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, Boris J. P.

    2015-05-01

    Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV).

  4. Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography

    E-print Network

    Niu, Fenglin

    Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave velocity structure of the crust and upper mantle of the Caribbean-South American boundary region American continental lithosphere, the Venezuelan archipelago, and the Caribbean oceanic lithosphere

  5. Geometry and seismic properties of the subducting Cocos plate in central Mexico

    Microsoft Academic Search

    Y. Kim; R. W. Clayton; J. M. Jackson

    2010-01-01

    The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15 for 80 km from Acapulco and then horizontally underplates the continental crust for

  6. Stratigraphy, lithofacies distribution, and petroleum potential of the Triassic strata of the northern Arabian plate

    Microsoft Academic Search

    F. N. Sadooni; A. S. Alsharhan

    2004-01-01

    Triassic strata of the northern part of the Arabian plate mark the establishment of the Neo-Tethys passive margin. This ocean first opened in the western part of the Mediterranean region directly after the Hercynian orogeny. The strata were deposited on a shallow carbonate platform surrounded by clastic-evaporitic lagoons and continental fluvial and eolian settings. The rocks are divided be- tween

  7. Systematic receiver function analysis of the Moho geometry in the southern California plate-boundary region

    E-print Network

    Ben-Zion, Yehuda

    1 Systematic receiver function analysis of the Moho geometry in the southern California plate, Moho geometry, Southern California region, 3D velocity model, Continental-oceanic crusts, Lithosperic deformation #12;2 ABSTRACT We investigate the geometry of the Moho interface in the southern California region

  8. The Theory of Continental Drift

    NSDL National Science Digital Library

    This is a brief review of the Theory of Continental Drift and the evidence that led Alfred Wegener to state the theory. It describes evidence of matching but misplaced rocks, uncovered fossils in places they should not have been, and discovered evidence of astounding climatological changes. In addition, fossil remains of a prehistoric reptile known as the Mesosaurus had been uncovered on both sides of the South Atlantic and plant fossils indicated that tropical forests once existed only a few hundred miles from the North Pole. It also cites glacial and stratigraphic evidence. The site discusses objections to the theory and states that at the time of his death in 1930, Wegener's theory seemed well on its way to obscurity.

  9. How Do Plates Move?

    NSDL National Science Digital Library

    The representation shows the circulation of convection cells in the mantle related to plate movement. A static cross-sectional diagram and accompanying text illustrates the how material heated by the core rises and then sinks when it eventually cools down and attributes this cycle of heating and cooling to tectonic plate movement.

  10. Early breakup of Gondwana: constraints from global plate motion models

    NASA Astrophysics Data System (ADS)

    Seton, Maria; Zahirovic, Sabin; Williams, Simon; Whittaker, Joanne; Gibbons, Ana; Muller, Dietmar; Brune, Sascha; Heine, Christian

    2015-04-01

    Supercontinent break-up and amalgamation is a fundamental Earth cycle, contributing to long-term sea-level fluctuations, species diversity and extinction events, long-term greenhouse-icehouse cycles and changes in the long-wavelength density structure of the mantle. The most recent and best-constrained example involves the fragmentation of Gondwana, starting with rifting between Africa/Madagascar and Antarctica in the Early Jurassic and ending with the separation of the Lord Howe microcontinental blocks east of Australia in the Late Cretaceous. Although the first order configuration of Gondwana within modern reconstructions appears similar to that first proposed by Wegener a century ago, recent studies utilising a wealth of new geophysical and geological data provide a much more detailed picture of relative plate motions both during rifting and subsequent seafloor spreading. We present our latest global plate motion model that includes extensive, new regional analyses. These include: South Atlantic rifting, which started at 150 Ma and propagated into cratonic Africa by 145 Ma (Heine et al., 2013); rifting and early seafloor spreading between Australia, India and Antarctica, which reconciles the fit between Broken Ridge-Kergulean Plateau and the eastern Tasman region (Whittaker et al., 2013); rifting of continental material from northeastern Gondwana and its accretion onto Eurasia and SE Asia including a new model of microcontinent formation and early seafloor spreading in the eastern Indian Ocean (Gibbons et al., 2012; 2013; in review; Williams et al., 2013; Zahirovic et al., 2014); and a new model for the isolation of Zealandia east of Australia, with rifting initiating at 100 Ma until the start of seafloor spreading in the Tasman Sea at ~85 Ma (Williams et al., in prep). Using these reconstructions within the open-source GPlates software, accompanied by a set of evolving plates and plate boundaries, we can explore the factors that govern the behavior of plate motions during supercontinent break-up and subsequent dispersal. For example, a global analysis of absolute plate velocities over the past 200 million years shows that plates dominated by continental material and bounded by transforms and mid-ocean ridge segments, as is characteristic of plates involved in Gondwana break-up, have average speeds of ~2.6-2.8 cm/yr RMS. In contrast, oceanic plates surrounded by subduction have average speeds of ~8.5 cm/yr RMS. An exception, however, is the rapid motion of India (~18 cm/yr RMS) in the Paleocene preceding its collision with Eurasia, which suggests that plates with continental and cratonic keels can exhibit short-lived (~10 Myr) accelerations resulting from a combination of plume head arrival effects and other complementary plate boundary forces (i.e., slab pull and ridge push). In another example, our reconstructions illustrate that a spectrum of rifting styles from orthogonal to oblique is present during rifting, rather than dominantly orthogonal as often assumed. Although our approach has so far been limited to one supercontinent cycle, these types of models can be extended to cover the entire Phanerozoic, capturing continental rifting and plate behavior over several supercontinent cycles.

  11. Plating To Reinforce Welded Joints

    NASA Technical Reports Server (NTRS)

    Otousa, J. E.

    1982-01-01

    Electrodeposition used to strengthen welded joints gouged, nicked, or suffered other mechanical damage. Plating cell, typically of acrylic plastic such as poly (Methylmetacrylate), is assembled around part to be plated. Areas not to be plated are masked with plater's tape. Weld area is plated in standard nickel-plating process.

  12. Plate Tectonics Prof. Thomas Herring

    E-print Network

    Herring, Thomas

    1 Plate Tectonics Prof. Thomas Herring MIT 05/14/02 Lexington HS Plate tectonics 2 Contact/14/02 Lexington HS Plate tectonics 3 Overview Development of the Plate tectonic theory Geological Data Sea-floor spreading Fault types from earthquakes Transform faults Today's measurements of plate tectonics 05

  13. PLATE TECTONICS USING GIS Understanding plate tectonics using real

    E-print Network

    PLATE TECTONICS USING GIS Understanding plate tectonics using real global data sets pertaining OF THE UPSTATE, SC An afternoon field trip to observe the evidences for plate tectonic history, and to witness

  14. Seismic evidence of continental subduction and upper mantle deformation beneath the western Alps

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Paul, A.; Solarino, S.; Guillot, S.; Malusa', M. G.; Zheng, T.; Aubert, C.; Salimbeni, S.; Dumont, T.; Schwartz, S.; Pondrelli, S.; Zhu, R.; Wang, Q.

    2014-12-01

    The finding of ultra-high pressure minerals in continental orogens like the Western Alps implies that continental crust can subduct to depths as great as 100 km and then be exhumed to the Earth's surface. The onset mechanism of continental subduction, including how the continental plate overwhelms the buoyancy resistance and how it is exhumed, however remains elusive. Using data of a new temporary seismic array deployed in the French-Italian Alps, we present here new evidence that in the Western Alps the European plate subducted deeply beneath the Adria plate. This study uses teleseismic P receiver functions and shear-wave splitting measurements from SKS phases. In the depth-migrated receiver function cross-section, the positive P to S (Ps) conversions (corresponding to velocity increase with depth) on the Moho interface can be continuously traced beneath the European plate. This Moho conversion fluctuates in depth, amplitude and dipping angle. Beneath the external zone, the Moho shows up strongly at depths of 25-40 km, exhibiting an eastward dip angle < 5. Starting from beneath the outcrop of the Frontal Penninic Thrust (FPT) eastward, the dip of the European Moho strongly increases and Moho conversions can be traced to 70-80 km depth beneath the Adria plate. Shear wave splitting measurements demonstrate that fast polarization directions of seismic anisotropy are parallel to the strike of the orogen, which is consistent with previous studies. The most prominent new result is that the delay time increases rapidly from the external zone to the internal zone and then decreases rapidly from the FPT to the westernmost Po Plain. This rapid change of delay time suggests that the mantle lithosphere, partly serpentinized, has a major contribution to the observed SKS splitting. The largest delay times in the vicinity to the west of the Frontal Penninic Thrust may suggest localized strong shear in the lithospheric mantle beneath the boundary zone between the European and Adria plates. In summary, our receiver function cross-section is the first direct evidence of subduction of the European lower crust in the Adria mantle beneath the Western Alps; SKS splitting data demonstrate that the left-lateral shear due to the post-Miocene counterclockwise rotation of the internal zone may also be detected in the lithospheric mantle.

  15. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  16. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression.

    PubMed

    Keir, Derek; Belachew, M; Ebinger, C J; Kendall, J-M; Hammond, J O S; Stuart, G W; Ayele, A; Rowland, J V

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  17. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Thurner, Sally; Paterson, Scott; Cao, Wenrong

    2015-09-01

    Continental arcs, such as the modern Andes or the Cretaceous Sierra Nevada batholith, are some of the highest topographic features on Earth. Continental arc volcanoes may produce more CO2 than most other types of volcanoes due to the interaction of magmas with sedimentary carbonates stored in the continental upper plate. As such, global flare-ups in continental arc magmatism may amplify atmospheric CO2 concentrations, leading to climatic warming. However, the high elevations of continental arcs may also enhance orographic precipitation and change global atmospheric circulation patterns, possibly increasing the efficiency of chemical weathering and drawdown of atmospheric CO2, which may subdue the climatic warming response to volcanic activity. To better evaluate the climatic response, we develop models that integrate magmatic crustal thickening, topographic uplift, isostasy and erosion. The topographic response is used to predict how soil formation rates, soil residence times, and chemical weathering rates vary during and after a magmatic episode. Although magmatism leads to crustal thickening, which requires topographic uplift, highest elevations peak ?10 My after magmatism ends. Relatively high elevations, which enhance erosion and chemical weathering of the continental arc, persist for tens of million years after magmatism ends, depending on erosion kinetics. It has recently been suggested that the Cretaceous-Paleogene greenhouse (high atmospheric CO2 and warm climate) coincided with a global chain of continental arcs, whereas mid- to late Cenozoic icehouse conditions (low atmospheric CO2 and cold climate) coincided with a lull in continental arc activity after 50 Ma. Application of our models to the Sierra Nevada (California, USA) continental arc, which represents a segment of this global Cretaceous-Paleogene continental arc, reproduces the observed topographic and erosional response. Our models require that the newly formed continental arc crust remained high and continued to erode and weather well after (>50 My) the end of magmatism. Thus, in the aftermath of a global continental arc flare-up, both the total volcanic inputs of CO2 decline and the average weatherability of continents increases, the latter due to the increased proportion of widespread remnant topography available for weathering and erosion. This combination leads to a decrease in the long-term baseline of carbon in the ocean/atmosphere system, leading to cooling. Mid-Cenozoic cooling is often attributed solely to increased weathering rates associated with India-Eurasian collision and the Himalayan orogeny. However, the total area of now-extinct Cretaceous-Paleogene continental arcs is 1.3-2 times larger than that of the Himalayan range front and the Tibetan plateau combined, suggesting that weathering of these remnant volcanic arcs may also play a role in drawing down CO2 through silicate weathering and subsequent carbonate burial. In summary, if global continental arc flare-ups lead to greenhouse conditions, long-lived icehouse conditions should follow in the aftermath due to decreased CO2 inputs and an increase in regional weathering efficiency of remnant arc topography.

  18. New Seismic Observables Constrain Structure within the Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Cunningham, E. E.; Lekic, V.

    2014-12-01

    The origin and stability of the continental lithosphere play a fundamental role in plate tectonics and enable the survival of Archean crust over billions of years. Recent advances in seismic data and imaging have revealed a velocity drop with depth within continental cratons too shallow to be interpreted as the lithosphere asthenosphere boundary (Rychert and Shearer 2009). The significance of this "mid lithospheric discontinuity" (MLD) - or multiple MLDs as suggested recently (Lekic & Fischer, 2013) - is not fully understood, and its implications for continental formation and stability are only beginning to be explored. Discrepancies call for both improving the constraints on the nature of the MLD, and relating these observations to tectonic setting and deformation history. The extensive coverage of the EarthScope USArray presents an unprecedented opportunity to systematically map the structure of the continental lithosphere. We use receiver functions (RFs) to isolate converted phases (Ps or Sp) produced across velocity discontinuities beneath a seismometer, and thereby constrain vertical density and seismic velocity variations. We show that at some stations, the apparent velocity contrast across the MLD demonstrates a dependence on seismic wave frequency, being greater at low frequencies than at high frequencies. This suggests that the MLD - at least in certain locations - is distributed across tens of kilometers in depth. The gradient of the MLD fingerprints physical process at play; a weak gradient indicates thermal origin, while an abrupt discontinuity implicates change in composition or partial melting. Furthermore, we map the strength, depth, and ratio of amplitudes of waves converted across the MLD and the Moho throughout the US. Because these receiver function based measurements only reveal relative velocity variations with depth, we combine them with frequency-dependent measurements of apparent incidence angles of P and S waves. Doing so allows us to present new constraints on absolute velocity variations in the crust, and relate them to variations in lithospheric structure. ReferencesC.A. Rychert, P.M. Sheerer, Science 324, 5926 (2009) H. Thybo, E. Perchu?, S. Zhou, Geophys. Res. Lett. 27, 23 (2000) V.Lekic,K.Fischer Earth Planet. Sci. Lett. (2013)

  19. Continental volume and freeboard through geological time

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Reymer, A. P. S.

    1985-01-01

    The consequences of approximately constant freeboard for continental growth are explored using a model that relates the volumes of isostatically compensated continents and oceans to the secular decline in terrestrial heat flow. It is found that a post-Archean increase in freeboard by 200 m requires continental growth of only 10 percent, while a decrease in freeboard by 200 m during this same period necessitates a crustal growth of 40 percent. Shrinkage of the continental crust since the end of the Archean can be ruled out. Changes of more than 10 percent in post-Archean crustal thickness are highly unlikely.

  20. Continentality: its estimation and physical significance

    E-print Network

    Yee Fong, Juan Manuel

    1985-01-01

    be shifted eastward to an area situated north of the Great Lakes and south of Hudson Bay . An isopleth analysis of continentality index values derived by dividing annual temperature range by annual variation of insolation for 128 stations in North America... values noted above (A/aS) are at 65-70'N, which is also where Conrad's maximum continentality of North America occurs. An index of continentality that compensates for the annual variation of insolation by dividing annual temperature range by &5...

  1. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  2. Pixelated neutron image plates

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  3. Plate Tectonics Jigsaw

    NSDL National Science Digital Library

    Anne Egger

    This activity is a slight variation on an original activity, Discovering Plate Boundaries, developed by Dale Sawyer at Rice University. I made different maps, including more detail in all of the datasets, and used a different map projection, but otherwise the general progression of the activity is the same. More information about jigsaw activities in general can be found in the Jigsaws module. The activity occurs in several sections, which can be completed in one or multiple classes. In the first section, students are divided into "specialist" groups, and each group is given a global map with a single dataset: global seismicity, volcanoes, topography, age of the seafloor, and free-air gravity. Each student is also given a map of plate boundaries. Their task in the specialist group is to become familiar with their dataset and develop categories of plate boundaries based only on their dataset. Each group then presents their results to the class. In the second section, students reorganize into groups with 1-2 of each type of specialist per group. Each new group is given a plate, and they combine their different datasets on that one plate and look for patterns. Again, each plate group presents to the class. The common patterns and connections between the different datasets quickly become apparent, and the final section of the activity involves a short lecture from the instructor about types of plate boundaries and why the common features are generated at those plate boundaries. A follow-up section or class involves using a problem-solving approach to explain the areas that don't "fit" into the typical boundary types - intra-plate volcanism, earthquakes in the Eastern California Shear Zone, etc.

  4. Continental margin tectonics - Forearc processes

    SciTech Connect

    Lundberg, N.; Reed, D.L. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

    1991-01-01

    Recent studies of convergent plate margins and the structural development of forearc terranes are summarized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the geometry of accretionary prisms (Coulomb wedge taper and vertical motion in response to tectonic processes), offscraping vs underplating or subduction, the response to oblique convergence, fluids in forearc settings, the thermal framework and the effects of fluid advection, and serpentinite seamounts. Also included is a comprehensive bibliography for the period.

  5. Oceanic core complexes in the Philippine Sea: results from Japan's extended continental shelf mapping

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Yoshida, T.; Nishizawa, A.

    2013-12-01

    The United Nations Commission on the Limits of the Continental Shelf (CLCS) issued its recommendations on Japan's extended continental shelf in April 2012, confirming Japan's rights over the vast areas within the Philippine Sea and Pacific Plates. Japan submitted information on the limits of its continental shelf beyond the EEZ to the CLCS on November 2008, which was the result of 25 years of nation's continental shelf survey project since 1983, involving all of Japan's agency relevant to geosciences. The huge geological and geophysical data obtained through the project give the scientists unprecedented opportunity to study the geology and tectonics of the Philippine Sea and Pacific Plates. In this contribution, we show such an example from the Philippine Sea Plate, relevant to the global mid-ocean ridge problem. Oceanic core complexes (OCC) are dome-shaped bathymetric highs identified in mid-ocean ridges, interpreted as portions of the lower crust and/or upper mantle denuded via low-angle detachment faulting. OCCs are characterized morphologically by axis-normal striations (corrugations, or mullion structure) on the dome, and exposures of mantle peridotite and/or lower crustal gabbro. A strikingly giant OCC (named 'Godzilla Megamullion') was discovered in the Parece Vela Basin by the continental shelf survey project in 2001. Godzilla Megamullion is morphologically the largest OCC in the world, consisting mainly of fertile mantle peridotite along its entire length of over 125 km. Following its discovery in 2001, several academic cruises investigated the structure in detail, providing numerous important findings relevant to mid-ocean ridge tectono-magmatic processes and Philippine Sea evolution, including the slow- to ultraslow-spreading environment for denudation of the detachment fault (< 2.5 cm/y) and associated decreasing degree of partial melting of the peridotites towards the termination of Godzilla Megamullion. In addition to Godzilla Megamullion, several potential OCCs have been discovered in the Philippine Sea Plate by the continental shelf survey project. These are: (1) the ones in the Shikoku Basin spreading axis at around 24 degrees north, (2) the Chaotic Terrain in the Parece Vela Basin, (3) Chaotic Terrain in the West Philippine Basin, near the CBF Rift (formerly known as the Central Basin Fault), (4) Chaotic Terrain in the Kita-Daito Basin, (5) the one in the Shikoku Basin floor to the east of Kyushu-Palau Ridge at 25 degrees north, (6) the Higashi-Ryusei Spur of the Kyushu-Palau Ridge at 26 degrees north, and (7) the one in the Daito Ridge adjoining to the Kida-Daito Basin. OCCs are commonly developed in slow-spreading ridges, providing excellent opportunities as tectonic windows to study the composition and structure of deep oceanic lithosphere. The OCCs in the Philippine Sea Plate in turn provide the opportunities to study the backarc basin lithosphere as well as the continental lithosphere (at the above examples 6 and 7). Although Godzilla Megamullion has been studied very well, the other OCCs are not well documented yet. The next step is to focus on these interesting targets to understand the lithospheric process in the Philippine Sea Plate.

  6. Tectonic implications of post-30 Ma Pacific and North American relative plate motions

    USGS Publications Warehouse

    Bohannon, R.G.; Parsons, T.

    1995-01-01

    The Pacific plate moved northwest relative to North America since 42 Ma. The rapid half rate of Pacific-Farallon spreading allowed the ridge to approach the continent at about 29 Ma. Extinct spreading ridges that occur offshore along 65% of the margin document that fragments of the subducted Farallon slab became captured by the Pacific plate and assumed its motion proper to the actual subduction of the spreading ridge. This plate-capture process can be used to explain much of the post-29 Ma Cordilleran North America extension, strike slip, and the inland jump of oceanic spreading in the Gulf of California. Much of the post-29 Ma continental tectonism is the result of the strong traction imposed on the deep part of the continental crust by the gently inclined slab of subducted oceanic lithosphere as it moved to the northwest relative to the overlying continent. -from Authors

  7. Plate Tectonics at Work

    NSDL National Science Digital Library

    This is a brief description of the results of plate movement according to the Theory of Plate Tectonics. It explains how divergence at the mid-ocean ridges accounts for the discoveries of Harry Hess. The site also refers to the invention of the magnetometer and the discovery of the young age of the ocean floor basalt. It concludes that these are the kinds of discoveries and thinking that ultimately led to the development of the theory of plate tectonics and that in just a few decades, have greatly changed our view of and notions about our planet and the sciences that attempt to explain its existence and development.

  8. Crustal and upper mantle structure of stable continental regions in North America and northern Europe

    USGS Publications Warehouse

    Masse, R.P.

    1987-01-01

    From an analysis of many seismic profiles across the stable continental regions of North America and northern Europe, the crustal and upper mantle velocity structure is determined. Analysis procedures include ray theory calculations and synthetic seismograms computed using reflectivity techniques. The P wave velocity structure beneath the Canadian Shield is virtually identical to that beneath the Baltic Shield to a depth of at least 800 km. Two major layers with a total thickness of about 42 km characterize the crust of these shield regions. Features of the upper mantle of these region include velocity discontinuities at depths of about 74 km, 330 km, 430 km and 700 km. A 13 km thick P wave low velocity channel beginning at a depth of about 94 km is also present. A number of problems associated with record section interpretation are identified and a generalized approach to seismic profile analysis using many record sections is described. The S wave velocity structure beneath the Canadian Shield is derived from constrained surface wave data. The thickness of the lithosphere beneath the Canadian and Baltic Shields is determined to be 95-100 km. The continental plate thickness may be the same as the lithospheric thickness, although available data do not exclude the possibility of the continental plate being thicker than the lithosphere. ?? 1987 Birkha??user Verlag.

  9. The nature of the plate interface and driving force of interseismic deformation in the New Zealand plate-boundary zone, revealed by the continuous GPS velocity field

    NASA Astrophysics Data System (ADS)

    Lamb, Simon; Smith, Euan

    2013-06-01

    New Zealand straddles the boundary between the Australian and Pacific plates. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation, with displacements on individual faults up to hundreds of kilometers. However, over periods of several years, GPS measurements show a remarkably smooth pattern of velocities. We show here using a new method of back slip analysis, that almost the entire plate-boundary continuous GPS velocity field can be predicted within measurement error from a simple model of elastic distortion due to deep slip on a single plate interface (megathrust in the Hikurangi and Putsegur subduction zones or fault through continental lithosphere beneath the Southern Alps) at the relative plate motion rates. This suggests that the main driving force of plate-boundary deformation is slip on the deeper moving part of the plate interface, without buried creep in localized shear zones beneath individual surface faults. The depth at which this deep slip terminates (locking point line) determines the width of deformation. Along the Hikurangi margin, there is also clockwise rotation of ~150 km long segment of the fore arc (Wairoa domain) at 4.5 1 Ma, relative to the Australian Plate, about a pole in western North Island; model residuals in the velocity field are mainly a result of incomplete averaging of the cycle of slow slip events on the plate interface, downdip of the locking point.

  10. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  11. Active NE-SW Compressional Strain Within the Arabian Plate

    NASA Astrophysics Data System (ADS)

    Floyd, M. A.; ArRajehi, A.; King, R. W.; McClusky, S.; Reilinger, R. E.; Douad, M.; Sholan, J.; Bou-Rabee, F.

    2012-12-01

    Motion of the Arabian plate with respect to Eurasia has been remarkably steady over more than 25 Myr as revealed by comparison of geodetic and plate tectonic reconstructions (e.g., McQuarrie et al., 2003, GRL; ArRajehi et al., 2010, Tectonics). While internal plate deformation is small in comparison to the rate of Arabia-Eurasia convergence, the improved resolution of GPS observations indicate ~ NE-SW compressional strain that appears to affect much of the plate south of latitude ~ 30N. Seven ~ NE-SW oriented inter-station baselines all indicated shortening at rates in the range of 0.5-2 mm/yr, for the most part with 1-sigma velocity uncertainties < 0.4 mm/yr. Plate-scale strain rates exceed 210-9/yr. The spatial distribution of strain can not be resolved from the sparse available data, but strain appears to extend at least to Riyadh, KSA, ~ 600 km west of the Zagros Fold and Thrust Belt that forms the eastern, collisional boundary of the Arabian plate with Eurasia (Iran). Geodetic velocities in the plate tectonic reference frame for Arabia, derived from magnetic anomalies in the Red Sea (Chu and Gordon, 1998, GJI), show no significant E-W motion for GPS stations located along the Red Sea coast (i.e., geodetic and plate tectonic spreading rates across the Red Sea agree within their resolution), in contrast to sites in the plate interior and along the east side of the plate that indicate east-directed motions. In addition, NE-SW contraction is roughly normal to ~ N-S striking major structural folds in the sedimentary rocks within the Arabian Platform. These relationships suggest that geodetically observed contraction has characterized the plate for at least the past ~ 3 Myr. Broad-scale contraction of the Arabian plate seems intuitively reasonable given that the east and north sides of the plate are dominated by active continental collision (Zagros, E Turkey/Caucasus) while the west and south sides are bordered by mid-ocean ridge spreading (Red Sea and Gulf of Aden). While the dynamic processes responsible for the observed strain remain speculative, we are investigating models involving long-range effects of the Arabia-Eurasia collision, ridge-push along the Red Sea and Gulf of Aden, and gravitational spreading of the higher elevation Arabian Shield towards the lower elevation platform.

  12. Tectonic and sedimentary response to oblique and incipient continental - continental collision the easternmost Mediterranean (Cyprus)

    E-print Network

    Kinnaird, Timothy C.

    The main objective of this work was to understand fundamental processes related to incipient continental collision through studying the tectonostratigraphic evolution of Cyprus, in its Easternmost Mediterranean context. ...

  13. Continental transform margins : state of art and future milestones

    NASA Astrophysics Data System (ADS)

    Basile, Christophe

    2010-05-01

    Transform faults were defined 45 years ago as a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Cte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.

  14. Farallon Plate Remnants

    NSDL National Science Digital Library

    NASA/Goddard Space Flight Center Scientific Visualization Studio

    This image and short video from the NASA's Scientific Visualization Studio shows the remnants of the Farallon Plate based on seismic tomography studies. The studies were conducted by Hans-Peter Bunge at Princeton University in 2000.

  15. elementsair ceramic plate

    E-print Network

    earth elementsair L ceramic plate Thermoelectric Module Construction for Low Temperature Gradient Power Generation Y. Meydbray, R. Singh, Ali Shakouri University of California at Santa Cruz, Electrical related carbon dioxide emissions are the largest contributors to greenhouse gasses [1]. Thermoelectric

  16. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  17. Freshwater peat on the continental shelf

    USGS Publications Warehouse

    Emery, K.O.; Wigley, R.L.; Bartlett, A.S.; Rubin, M.; Barghoorn, E.S.

    1967-01-01

    Freshwater peats from the continental shelf off northeastern United States contain the same general pollen sequence as peats from ponds that are above sea level and that are of comparable radiocarbon ages. These peats indicate that during glacial times of low sea level terrestrial vegetation covered the region that is now the continental shelf in an unbroken extension from the adjacent land areas to the north and west.

  18. Mg\\/Ca of Continental Ostracode Shells

    Microsoft Academic Search

    E. Ito; R. M. Forester; J. Marco-Barba; F. Mezquita

    2007-01-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg\\/Ca in a systematic manner as functions of temperature (and Mg\\/Ca) of water forms the basis of the Mg\\/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative

  19. Continental Rifting in the Western Ross Sea

    NASA Astrophysics Data System (ADS)

    Davey, F. J.; Cande, S. C.; Stock, J. M.

    2014-12-01

    The Ross Sea forms the north western end of the West Antarctic Rift system, a major continental rift that lies across the western part of Antarctica, and results from rifting during the break-up of Gondwana starting some 180 m.y. ago. In the Ross Sea region, extension comprised a regional thinning associated with the break-up of New Zealand and Australia from Antarctica, and a more focussed extension during the Cenozoic. The last episode of extension, largely from 46 Ma - 25 Ma, formed the Victoria Land Basin (VLB) in the southwest, the Northern Basin (offset from the VLB) in north western Ross Sea and the Adare Basin in the deep ocean to the north. Marine magnetic anomalies associated with the seafloor spreading that formed the Adare Basin, extend continuously onto the continental shelf of the Northern Basin, suggesting that the basin is underlain by oceanic crust, consistent with high gravity anomalies across the continental shelf edge. No seismic data exist for the deeper crust of Northern Basin. The amplitude and gradient of gravity anomalies across the basin limit the depth, density contrast and thickness of the dense body underlying it and are consistent with oceanic crust with steep margins at a depth of about 8 - 10 km. The VLB in contrast shows an extensional thinning of the continental crust. The three basins thus show seafloor spreading in the north, continental rifting at the continental margin, and continental thinning in the south. The pole of rotation for the extension lies to the south of the VLB so the rate of extension increases to the north. In addition, the azimuth of the axis of spreading changes relative to the extension direction, presumably as it followed pre-existing zones of weakness in the Antarctic lithosphere. This leads to a much larger degree of strike slip motion in the Northern Basin rifting that may be a significant factor in the development there of narrow rifting of the continental lithosphere.

  20. How Plates Move

    NSDL National Science Digital Library

    This information on the two major types of plate interaction and the resulting features discusses the Mid Atlantic Ridge and the mid-ocean ridges in connection with divergence and ocean trenches and connects the Pacific Ring of Fire to the concept of subduction. Volcanic activity as a result of subduction is also covered. The site also features links to goals, objectives, and materials for a hands-on lesson on how plates move.

  1. Fractal generalized zone plates

    Microsoft Academic Search

    Omel Mendoza-Yero; Mercedes Fernndez-Alonso; Gladys Mnguez-Vega; Jess Lancis; Vicent Climent; Juan A. Monsoriu

    2009-01-01

    The construction of fractal generalized zone plates (FraGZPs) from a set of periodic diffractive optical elements with circular symmetry is proposed. This allows us to increase the number of foci of a conventional fractal zone plate (FraZP), keeping the self-similarity property within the axial irradiance. The focusing properties of these fractal diffractive optical elements for points not only along but

  2. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  3. The Continental Crust: A Geophysical Approach

    NASA Astrophysics Data System (ADS)

    Christensen, Nikolas I.

    Nearly 80 years ago, Yugoslavian seismologist Andrija Mohorovicic recognized, while studying a Balkan earthquake, that velocities of seismic waves increase abruptly at a few tens of kilometers depth , giving rise to the seismological definition of the crust. Since that discovery, many studies concerned with the nature of both the continental and oceanic crusts have appeared in the geophysical literature.Recently, interest in the continental crust has cascaded. This is largely because of an infusion of new data obtained from major reflection programs such as the Consortium for Continental Reflection Profiling (COCORP) and British Institutions Reflection Profiling Syndicate (BIRPS) and increased resolution of refraction studies. In addition, deep continental drilling programs are n ow in fashion. The Continental Crust: A Geophysical Approach is a summary of present knowledge of the continental crust. Meissner has succeeded in writing a book suited to many different readers, from the interested undergraduate to the professional. The book is well documented , with pertinent figures and a complete and up-to-date reference list.

  4. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  5. Active upper plate thrust faulting in regions of low plate interface coupling, repeated slow slip events, and coastal uplift: Example from the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu J.; Barnes, Philip M.

    2011-01-01

    Contractional fore-arc faulting and deformation is a characteristic feature of many subduction systems. Definition of the three-dimensional geometry and displacement rates of active, upper plate, out-of-sequence thrust faults along 250 km of the upper Hikurangi Margin enables us to examine the relationship between fore-arc deformation and the subduction interface in light of interseismic coupling estimates and distribution of slow slip events, both modeled from GPS measurements. These mid-fore-arc structures include the seaward vergent, outer shelf Lachlan and Ariel faults, with vertical separation rates up to 5 mm/yr, and several other major inner shelf faults with rates that are up to 3.8 mm/yr and comparable with Holocene coastal uplift rates. Seismic reflection imaging and geometric projection of these faults at depth indicate that they splay from the region of the plate interface where geodetic inversions for interseismic coupling and slow slip events suggest that the plate boundary undergoes aseismic slip. This observation may indicate either (1) that frictional properties and interseismic coupling on the plate interface are independent and unrelated to the active splay fault deformation in the inner-middle fore arc or (2) that the active splay faulting reflects long-term mechanical coupling related to higher shear stress, or the relative yield strength of the plate interface to the overriding plate, and that the current pattern of interseismic coupling may not be persistent over geological time scales of 20 ka. We compare structure and processes on the northern Hikurangi and Costa Rican margins and find similarities and significant differences astride these subduction systems.

  6. Negligible effect of hydrogen content on plate strength in East Africa

    NASA Astrophysics Data System (ADS)

    Selway, Kate

    2015-07-01

    Continental rifting requires weak zones to exist within the strong continental plates. This weakening is thought to be induced primarily by high hydrogen contents and temperatures, as well as small grain size. An ideal location to test models of plate strength in situ is the East African Rift--the best exposed continental rift on Earth--which is forming adjacent to the unrifted Tanzanian Craton. Here I use magnetotelluric data to investigate electrical conductivity, and hence hydrogen content, across the East African Rift and Tanzanian Craton. The images show that the Tanzanian Craton is extremely rich in hydrogen, whereas the parts of the continent that are being rifted are anhydrous, suggesting that high hydrogen content does not systematically reduce plate strength. Earlier deformation events may have reduced the grain size of the continental lithosphere in the East African Rift compared to the Tanzanian Craton. I therefore suggest that the localization of rifting and repeated reactivation of deformed regions may not be due to hydrogen content and is instead controlled by small grain size.

  7. Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa.

    PubMed

    Calais, Eric; d'Oreye, Nicolas; Albaric, Julie; Deschamps, Anne; Delvaux, Damien; Dverchre, Jacques; Ebinger, Cynthia; Ferdinand, Richard W; Kervyn, Franois; Macheyeki, Athanas S; Oyen, Anneleen; Perrot, Julie; Saria, Elifuraha; Smets, Benot; Stamps, D Sarah; Wauthier, Christelle

    2008-12-11

    Continental rifts begin and develop through repeated episodes of faulting and magmatism, but strain partitioning between faulting and magmatism during discrete rifting episodes remains poorly documented. In highly evolved rifts, tensile stresses from far-field plate motions accumulate over decades before being released during relatively short time intervals by faulting and magmatic intrusions. These rifting crises are rarely observed in thick lithosphere during the initial stages of rifting. Here we show that most of the strain during the July-August 2007 seismic crisis in the weakly extended Natron rift, Tanzania, was released aseismically. Deformation was achieved by slow slip on a normal fault that promoted subsequent dyke intrusion by stress unclamping. This event provides compelling evidence for strain accommodation by magma intrusion, in addition to slip along normal faults, during the initial stages of continental rifting and before significant crustal thinning. PMID:19079058

  8. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago

    NASA Astrophysics Data System (ADS)

    Dhuime, Bruno; Hawkesworth, Chris J.; Cawood, Peter A.; Storey, Craig D.

    2012-03-01

    Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earths history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.

  9. A change in the geodynamics of continental growth 3 billion years ago.

    PubMed

    Dhuime, Bruno; Hawkesworth, Chris J; Cawood, Peter A; Storey, Craig D

    2012-03-16

    Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics. PMID:22422979

  10. An Introduction to Plate Tectonics

    NSDL National Science Digital Library

    This page is a brief introduction to plate tectonics. It starts with a discussion of the evolution of the theory of plate tectonics and the arguments supporting it. It then discusses the processes associated with tectonics and the types of plate boundaries: divergent, convergent and transform boundaries. It concludes with a discussion of the current hypotheses of what causes plates to move.

  11. Retrodeforming the Arabia-Eurasia collision zone : Age of collision and magnitude of continental subduction

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; van Hinsbergen, D. J. J.

    2012-04-01

    When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental crust since 35 Ma; for a 25 Ma collision this would be between 190-450 km. The ophiolitic fragments preserved along the suture zone allow us to test the magnitude of possible continental subduction. The Oman Ophiolite preserves the geometry and distance over which ophiolites obduced over the northern margin of Arabia in the late Cretaceous. The distance from the southwestern edge of the ophiolite to the northeastern edge of the continent is 180 km, suggesting that the Arabian continental margin plus overlying ophiolites may have extended ~200 km beyond the Main Zagros fault. Assuming that 200 km of Arabian continental margin and overlying ophiolites subducted entirely, except the few remnant ophiolite slivers remaining in the suture zone, would reconstruct ~ 400-500 km of post-collisional Arabia-Eurasia convergence, consistent with a ~25 Ma collision age. As much as 500-800 km of continental subduction required by an earlier (~35 Ma) collision age seems unlikely.

  12. Stratigraphic Modelling of Continental Rifting

    NASA Astrophysics Data System (ADS)

    Mondy, Luke; Duclaux, Guillaume; Salles, Tristan; Thomas, Charmaine; Rey, Patrice

    2013-04-01

    Interlinks between deformation and sedimentation have long been recognised as an important factor in the evolution of continental rifts and basins development. However, determining the relative impact of tectonic and climatic forcing on the dynamics of these systems remains a major challenge. This problem in part derives from a lack of modelling tools capable of simulated high detailed surface processes within a large scale (spatially and temporally) tectonic setting. To overcome this issue an innovative framework has been designed using two existing numerical forward modelling codes: Underworld, capable of simulating 3D self-consistent tectonic and thermal lithospheric processes, and Tellus, a forward stratigraphic and geomorphic modelling framework dedicated to simulating highly detailed surface dynamics. The coupling framework enables Tellus to use Underworld outputs as internal and boundary conditions, thereby simulating the stratigraphic and geomorphic evolution of a realistic, active tectonic setting. The resulting models can provide high-resolution data on the stratigraphic record, grain-size variations, sediment provenance, fluvial hydrometric, and landscape evolution. Here we illustrate a one-way coupling method between active tectonics and surface processes in an example of 3D oblique rifting. Our coupled model enables us to visualise the distribution of sediment sources and sinks, and their evolution through time. From this we can extract and analyse at each simulation timestep the stratigraphic record anywhere within the model domain. We find that even from a generic oblique rift model, complex fluvial-deltaic and basin filling dynamics emerge. By isolating the tectonic activity from landscape dynamics with this one-way coupling, we are able to investigate the influence of changes in climate or geomorphic parameters on the sedimentary and landscape record. These impacts can be quantified in part via model post-processing to derive both instantaneous and cumulative erosion/sedimentation.

  13. Caribbean plate interactions

    SciTech Connect

    Ball, M. (Geological Survey, Denver, CO (United States))

    1993-02-01

    Vector analysis of plate motions, derived from studies of Atlantic magnetic lineations and fracture zone trends, indicates the following relative movements between the Caribbean, North American, and South American Plates. (1) During Early Jurassic to Early Cretaceous, the North American Plate moved 1900 km westward and 900 km northward relative to the South American Plate. A broad zone including the Caribbean region, i.e., the zone between the North and South America Plates, was a site of left-lateral shear and north-south extension. (2) During Early Cretaceous to Late Cretaceous, the North American Mate moved an additional 1200 km westward relative to South America across this zone. (3) During Late Cretaceous to the end of the Eocene, the North American Plate moved 200 km westward and 400 km northward relative to the South American Plate. (4) From the end of the Eocene to near the end of the Miocene, North America converged on South America some 200 km and moved 100 km eastward relative to it. Through the Mesozoic and earliest Tertiary history of the Caribbean, the region was a shear zone within which left-lateral displacement exceeded 3000 km and north-south extension exceeded 1300 km. In regard to time, 80% of the history of the Caribbean region is one of north-south extension and left-lateral shear. In terms of space, 97% of the shear is left-lateral and the ratio of divergence versus convergence is 7 to 1. Thus, characterizing the Caribbean region, and the Atlantic to its east, as a zone of north-south extension and left-lateral shear, is a fair generalization.

  14. Musical Plates: A Study of Plate Tectonics

    NSDL National Science Digital Library

    2007-01-01

    In this project, students use Real-Time earthquake and volcano data from the Internet to explore the relationship between earthquakes, plate tectonics, and volcanoes. There is a teachers guide that explains how to use real time data, and in the same section, there is a section for curriculum standards, Supplement and enrichment activities, and assessment suggestions. Included on this webpage are four core activities, and three enrichment activities, including an activity where the student writes a letter to the president. There is also a link to reference materials that might also interest you and your students.

  15. Linking mantle dynamics, plate tectonics and surface processes in the active plate boundary zones of eastern New Guinea (Invited)

    NASA Astrophysics Data System (ADS)

    Baldwin, S.; Moucha, R.; Fitzgerald, P. G.; Hoke, G. D.; Bermudez, M. A.; Webb, L. E.; Braun, J.; Rowley, D. B.; Insel, N.; Abers, G. A.; Wallace, L. M.; Vervoort, J. D.

    2013-12-01

    Eastern New Guinea lies within the rapidly obliquely converging Australian (AUS)- Pacific (PAC) plate boundary zone and is characterized by transient plate boundaries, rapidly rotating microplates and a globally significant geoid high. As the AUS plate moved northward in the Cenozoic, its leading edge has been a zone of subduction and arc accretion. The variety of tectonic settings in this region permits assessment of the complex interplay among mantle dynamics, plate tectonics, and surface processes. Importantly, the timescale of tectonic events (e.g., subduction, (U)HP exhumation, seafloor spreading) are within the valid bounds of mantle convection models. A record of changes in bathymetry and topography are preserved in high standing mountain belts, exhumed extensional gneiss domes and core complexes, uplifted coral terraces, and marine sedimentary basins. Global seismic tomography models indicate accumulation of subducted slabs beneath eastern New Guinea at the bottom of the upper mantle (i.e., <660km depth). Some of the deeply subducted material may indeed be buoyant subducted AUS continental margin (to depths of ~250-300 km), as well as subducted continental material that has reached the point of no return (i.e., > 250-300 km). Preliminary global-scale backward advected mantle convection models, driven by density inferred from joint seismic-geodynamic tomography models, exhibit large-scale flow associated with these subducted slab remnants and predict the timing and magnitude (up to 1500 m) of dynamic topography change (both subsidence and uplift) since the Oligocene. In this talk we will explore the effects of large-scale background mantle flow and plate tectonics on the evolution of topography and bathymetry in eastern New Guinea, and discuss possible mechanisms to explain basin subsidence and surface uplift in the region.

  16. Extension across the Laptev Sea continental rifts constrained by gravity modeling

    NASA Astrophysics Data System (ADS)

    Mazur, S.; Campbell, S.; Green, C.; Bouatmani, R.

    2015-03-01

    The Laptev Shelf is the area where the Gakkel Ridge, an active oceanic spreading axis, approaches a continental edge, causing a specific structural style dominated by extensive rift structures. From the latest Cretaceous to the Pliocene, extension exerted on the Laptev Shelf created there several deep subsided rifts and high-standing basement blocks. To understand syn-rift basin geometries and sediment supply relationships across the Laptev Shelf, accurate extension estimates are essential. Therefore, we used 2-D gravity modeling and 3-D gravity inversion to constrain the amount of crustal stretching across the North America-Eurasia plate boundary in the Laptev Shelf. The latest Cretaceous-Cenozoic extension in that area is partitioned among two rift zones, the Laptev Rift System and the New Siberian Rift. These rifts were both overprinted on the Eurasian margin that had been stretched by 190-250 km before the Late Cretaceous. While the Laptev Rift System, connected to the Gakkel Ridge, reveals increasing extension toward the shelf edge (190-380 km), the New Siberian Rift is characterized by approximately uniform stretching along strike (110-125 km). The architecture of the Laptev Rift System shows that the finite extension of about 500 km is sufficient to entirely eliminate crystalline continental crust. In the most stretched rift segment, continental mantle is exhumed at the base of the Late Mesozoic basement. The example of the Laptev Rift System shows that extension driven by divergent plate movement is a sufficient cause to produce almost complete continental breakup without an increased heat input from the asthenospheric mantle.

  17. Edeline et al. Eel continental dispersal Proximate and ultimate control of eel continental

    E-print Network

    Paris-Sud XI, Université de

    Edeline et al. Eel continental dispersal Chapter 18 Proximate and ultimate control of eel,version1-29Nov2011 Author manuscript, published in "Spawning Migration of the European Eel Reproduction;Edeline et al. Eel continental dispersal INTRODUCTION Eels Anguilla spp. are fishes belonging

  18. From a Continental Point of View: The Role of Logic in the Analytic-Continental Divide

    Microsoft Academic Search

    Franca DAgostini

    2001-01-01

    My discussion addresses the differences between analytic and continental philosophy concerning the use of logic and exact reasoning in philosophical practice. These differences are mainly examined in the light of the controversial dominance of Hegel's concept of logic (and theory of concept) in twentieth-century continental philosophy. The inquiry is developed in two parts. In the first (Sections 1-2), I indicate

  19. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    NASA Astrophysics Data System (ADS)

    Stanley, Daniel Jean

    1982-03-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the entire African continental landmass as a reference unit and views geography, geomorphology and bathymetry as relevant as geology. The Court pronounced that It is the outcome, not the evolution in the long-distant past, which is of importance. Moreover, it is the present-day configuration of coasts and seabed that are the main factors, not geology.

  20. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  1. Lithospheric structure across the California Continental Borderland from receiver functions

    NASA Astrophysics Data System (ADS)

    Reeves, Zachary; Leki?, Vedran; Schmerr, Nicholas; Kohler, Monica; Weeraratne, Dayanthie

    2015-01-01

    to its complex history of deformation, the California Continental Borderland provides an interesting geological setting for studying how the oceanic and continental lithosphere responds to deformation. We map variations in present-day lithospheric structure across the region using Ps and Sp receiver functions at permanent stations of the Southern California Seismic Network as well as ocean bottom seismometer (OBS) data gathered by the Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE), which enhances coverage of the borderland and provides first direct constraints on the structure of the Pacific plate west of the Patton Escarpment. Noisiness of OBS data makes strict handpicking and bandpass filtering necessary in order to obtain interpretable receiver functions. Using H-? and common-conversion point stacking, we find pronounced lithospheric differences across structural blocks, which we interpret as indicating that the Outer Borderland has been translated with little to no internal deformation, while the Inner Borderland underwent significant lithospheric thinning, most likely related to accommodating the 90 clockwise rotation of the Western Transverse Range block. West of the Patton Escarpment, we find that the transition to typical oceanic crustal thickness takes place over a lateral distance of 50 km. We detect an oceanic seismic lithosphere-asthenosphere transition at 58 km depth west of the Patton Escarpment, consistent with only weak age-dependence of the depth to the seismic lithosphere-asthenosphere transition. Sp common-conversion point stacks confirm wholesale lithospheric thinning of the Inner Borderland and suggest the presence of a slab fragment beneath the Outer Borderland.

  2. Plate Tectonics and Taiwan Orogeny based on TAIGER Experiments

    NASA Astrophysics Data System (ADS)

    Wu, F. T.; Kuochen, H.; McIntosh, K. D.

    2014-12-01

    Plate tectonics framework is usually complex in a collision zone, where continental lithosphere is involved. In the young Taiwan orogeny, with geologic understanding and large new geodetic and subsurface datasets now available an environment has been created for testing tectonic hypotheses regarding collision and orogeny. Against the background of the commonly accepted view of Taiwan as a southward propagating, self-similar 2-D orogen, a fully 3-D structure is envisaged. Along the whole length of the island the convergence of the Eurasian plate (EUP) the Philippine Sea plate (PSP) takes shape with different plate configurations. In northern Taiwan the convergence occurs with simultaneous collision of the oceanic PSP with continental EUP and the northward subduction of the PSP; in the south, EUP, in the guise of the South China Sea rifted Eurasian continent, subducts toward the east; in central Taiwan collision of oceanic PSP with continental EUP dominates. When relocated seismicity and focal mechanisms are superposed on subsurface P and Vp/Vs velocity images the configurations and the kinematics of the PSP and EUP collision and subduction become clear. While in northern Taiwan the subduction/collision explains well the high peaks and their dwindling (accompanied by crustal thinning) toward the north. In the south, mountains rise above the east-dipping EUP subduction zone as the Eurasian continental shelf veers toward the southwest, divergent from the trend of the Luzon Arc - calling into question the frequently cited arc-continent collision model of Taiwan orogeny. High velocity anomaly and Benioff seismicity coexist in the south. Going north toward Central Taiwan the high velocity anomaly persists for another 150 km or so, but it becomes seismically quiescent. Above the quiescent section the PSP and EUP collide to build the main part of the Central Range and its parallel neighbor the eastern Coastal Range. Key implications regarding orogeny include: 1) Significant petrological changes may accompany the crustal thickening, e.g., eclogitization, and delamination, 2) Rather than the detachment the exhumation of the metamorphic core of the Central Range is the main engine of the orogeny, and 3) The lithosphere has a complex rheological structure, indicated, in part, by the spatial distribution of seismicity.

  3. Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Le Pichon, X.; Mazzotti, S.; Pubellier, M.; Chamot-Rooke, N.; Aurelio, M.; Walpersdorf, Andrea; Quebral, R.

    1999-11-01

    The western boundary of the Philippine Sea (PH) Plate in the Philippines and eastern Indonesia corresponds to a wide deformation zone that includes the stretched continental margin of Sundaland, the Philippine Mobile Belt (PMB), extending from Luzon to the Molucca Sea, and a mosaic of continental blocks around the PH/Australia/Sunda triple junction. The GPS GEODYSSEA data are used to decipher the present kinematics of this complex area. In the Philippines, the overall scheme is quite simple: two opposing rotations on either side of the left-lateral Philippine Fault, clockwise to the southwest and counterclockwise to the northeast, transfer 55 per cent of the PH/Sundaland convergence from the Manila Trench to the northwest to the Philippine Trench to the southeast. Further south, 80 per cent of the PH/Sunda convergence is absorbed in the double subduction system of the Molucca Sea and less than 20 per cent along both continental margins of northern Borneo. Finally, within the triple junction area between the Sundaland, PH and Australia plates, from Sulawesi to Irian Jaya, preferential subduction of the Celebes Sea induces clockwise rotation of the Sulu block, which is escaping toward the diminishing Celebes Sea oceanic space from the eastward-advancing PH Plate. To the south, we identify an undeformed Banda block that rotates counterclockwise with respect to Australia and clockwise with respect to Sundaland. The kinematics of this block can be defined and enable us to compute the rates of southward subduction of the Banda block within the Flores Trench and of eastward convergence of the Makassar Straits with the Banda block. The analysis made in this paper confirms that this deformation is compatible with the eastward motion of Sundaland with respect to Eurasia determined by the GEODYSSEA programme but is not compatible with the assumption that Sundaland belongs to Eurasia, as was often assumed prior to this study.

  4. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  5. The basins on the Argentine continental margin

    SciTech Connect

    Urien, C.M. [Buenos Aires Technological Institute Petroleum School, Buenos Aires (Argentina)

    1996-08-01

    After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

  6. Lack of proportionality. Seven specifications of public interest that override post-approval commercial interests on limited access to clinical data.

    PubMed

    Strech, Daniel; Littmann, Jasper

    2012-01-01

    For the protection of commercial interests, licensing bodies such as the EMA and health technology assessment institutions such as NICE restrict full access to unpublished evidence. Their respective policies on data transparency, however, lack a systematic account of (1) what kinds of commercial interests remain relevant after market approval has been granted, (2) what the specific types of public interest are that may override these commercial interests post approval, and, most importantly, (3) what criteria guide the trade-off between public interest and legitimate measures for the protection of commercial interest. Comparing potential commercial interests with seven specifications of relevant public interest reveals the lack of proportionality inherent in the current practices of EMA and NICE. PMID:22747684

  7. Integrated crustal thickness mapping and plate reconstructions for the high Arctic

    NASA Astrophysics Data System (ADS)

    Alvey, A.; Gaina, C.; Kusznir, N. J.; Torsvik, T. H.

    2008-10-01

    The plate tectonic history of the Amerasia Basin (High Arctic) and its distribution of oceanic and continental lithosphere are poorly known. A new method of gravity inversion with an embedded lithosphere thermal gravity anomaly correction has been applied to the NGA (U) Arctic Gravity Project (ArcGP) data to predict crustal thickness and continental lithosphere thinning factors which are used to test different plate reconstructions within the Arctic region. The inversion of gravity data to map crustal thickness variation within oceanic and rifted continental margin lithosphere requires the incorporation of a lithosphere thermal gravity anomaly correction for both oceanic and continental lithosphere. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to - 380 mGal), for which a correction must be made in order to determine realistic Moho depth by gravity anomaly inversion. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using plate reconstruction models to provide the age and location of oceanic lithosphere. Three plate reconstruction models have been examined for the opening of the Amerasia Basin, two end member models and a hybrid model: in one end member model the Mendeleev Ridge is rifted from the Canadian margin while in the other it is rifted from the Lomonosov Ridge (Eurasia Basin), the hybrid model contains elements of both end member models. The two end member plate reconstruction models are consistent with the gravity inversion for their prediction of the location of oceanic lithosphere within the Canada Basin but fail in the Makarov and Western Podvodnikov Basins. The hybrid model is consistent with predictions of the location of the ocean-continent transition from continental lithosphere thinning factors obtained from gravity inversion. A crustal thickness of approximately 20 km is predicted for Late Cretaceous Makarov/Podvodnikov Basins which is similar to the value obtained from seismic refraction. We suggest that this method could be used for discriminating between various plate tectonic scenarios, especially in remote or poorly surveyed regions.

  8. Basalt geochemistry and tectonic discrimination within continental flood basalt provinces

    NASA Astrophysics Data System (ADS)

    Marsh, Julian S.

    1987-06-01

    Continental flood basalts are usually regarded as a single tectonomagmatic entity but frequently quoted examples exhibit a variety of tectonic settings. In one well-studied, classic, flood basalt province, the Mesozoic Karoo province of southern Africa, magmatism occurred in the following tectonic settings: (a) continental rifting leading to ocean-floor spreading in the South Atlantic Ocean (Etendeka suite of Namibia); (b) stretched continental lithosphere and rifting not leading directly to ocean-floor formation (Lebombo suite of southeastern Africa); and (c) an a-tectonic, within-plate, continental setting characterized by an absence of faulting or warping (Lesotho highlands and Karoo dolerites of South Africa). By means of spidergrams of the elements Rb, Ba, Th, Nb, K, La, Ce, Sr, Nd, P, Hf, Zr, Sm, Ti, Tb, Y, V, Ni and Cr, uncontaminated tholeiites from (c) above [i.e. the Lesotho-type continental flood basalts (LTCFB)] are compared with mid-ocean ridge basalts (MORB), ocean-island tholeiites (OIT), and tholeiites and calc-alkali basalts from subduction environments. The comparison reveals the LTCFBs are geochemically distinct. The differences are reflected in relative enrichments or depletions of the more incompatible elements (Rb-Ce) to less incompatible elements (Ce-Y), i.e. the overall slope of the spidergrams, and in anomalous enrichments or depletions of one or more of the elements Th, K, Nb, Sr, Ti, Hf, and Zr. The distinctive geochemical character of the Lesotho LTCFBs is interpreted in terms of a lithospheric mantle source for the basalts. This is supported by isotopic data. There are no major geochemical differences between Lesotho CFBs and basalts of the rift-related Etendeka and Lebombo suites, although the latter are somewhat enriched in Rb, Ba and K. However, unlike the Lesotho basalts, the Lebombo and Etendeka basalts are associated with voluminous silicic volcanics or intrusive centres and late-stage dolerites having MORB/OIT (i.e. asthenospheric) geochemical characteristics. The flood basalt/silicic magmatism/late-stage dyke swarm association is characteristic of several rift or thinned lithosphere environments (e.g., Ethiopia, Skye, eastern Greenland) but in many of these the flood basalts have ocean-island basalt (OIT) geochemical characteristics. The Lesotho-type CFB geochemistry is exhibited by the Grande Ronde Basalt of the Columbia River Group (a possible subduction-related flood basalt province) and the basic rocks associated with Mesozoic rifting in the North and South Atlantic. Basalt geochemistry alone is unhelpful in determining the tectonic setting of CFBs although the rift-related environments may be identified by the petrology and geochemistry of the whole igneous suite. A two-source model is proposed for the mantle-derived basic rocks in rift-related CFB provinces. Early enriched basalts are derived from the lithosphere and, following pronounced lithospheric attenuation or rifting, later MORB-like melts are emplaced from the rising asthenosphere. The presence of both Lesotho- and OIT-type geochemical patterns in rift-related CFBs suggests that the lithosphere exhibits different styles of enrichment.

  9. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle

    NASA Astrophysics Data System (ADS)

    Chopin, Christian

    2003-07-01

    More and more evidence is being discovered in Phanerozoic collision belts of the burial of crustal rocks to previously unsuspected (and ever increasing) depths, presently on the order of 150-200 km, and of exhumation from such depths. This extends by almost one order of magnitude the depth classically ascribed to the metamorphic cycling of continental crust, and demonstrates its possible subduction. The pieces of evidence for this new, ultrahigh-pressure (UHP) metamorphism exclusively occur in the form of relics of high-pressure minerals that escaped back-transformation during decompression. The main UHP mineral indicators are the high-pressure polymorphs of silica and carbon, coesite and microdiamond, respectively; the latter often demonstrably precipitated from a metamorphic fluid and is completely unrelated to kimberlitic diamond or any shock event. Recent discoveries of pyroxene exsolutions in garnet and of coesite exsolutions in titanite suggest a precursor garnet or titanite containing six-fold coordinated silicon, therefore still higher pressures than implied by diamond stability, on the order of 6 GPa. The UHP rocks raise a formidable geological problem: that of the mechanisms responsible for their burial and, more pressingly, for their exhumation from the relevant depths. The petrological record indicates that large tracts of UHP rocks were buried to conditions of low T/ P ratio, consistent with a subduction-zone context. Decompression occurred in most instances under continuous cooling, implying continuous heat loss to the footwall and hangingwall of the rising body. This rise along the subduction channel - an obvious mechanical discontinuity and weak zone - may be driven by buoyancy up to mid-crustal levels as a result of the lesser density of the acidic crustal rocks (even if completely re-equilibrated at depth) after delamination from the lower crust, in a convergent setting. Chronological studies suggest that the rates involved are typical plate velocities (1-2 cm/yr), especially during early stages of exhumation, and bear no relation to normal erosion rates. Important observations are that: (i) as a result of strain partitioning and fluid channelling, significant volumes of subducted crust may remain unreacted (i.e. metastable) even at conditions as high as 700C and 3 GPa - with implications as to geophysical modeling; (ii) subducted continental crust shows no isotopic or geochemical evidence of interaction with mantle material. An unknown proportion of subducted continental crust must have escaped exhumation and effectively recycled into the mantle, with geochemical implications still to be explored, bearing in mind the above inefficiency of mixing. The repeated occurrence of UHP metamorphism, hence of continental subduction, through time and space since at least the late Proterozoic shows that it must be considered a common process, inherent to continental collision. Evidence of older, Precambrian UHP metamorphism is to be sought in high-pressure granulite-facies terranes.

  10. Evolving Deformation Style and Rheology During Transpressive Segmentation and Uplift of Continental Lower Crust

    NASA Astrophysics Data System (ADS)

    Dumond, G.; Mahan, K. H.; Williams, M. L.; Goncalves, P.; Jercinovic, M. J.

    2012-12-01

    Understanding mechanisms for strain localization and partitioning in the lower crust beneath major fault systems is critical for constraining exactly how these faults accommodate plate convergence. Lateral and vertical variations in strength and material properties can strongly influence the distribution of strain in continental lithosphere, as observed in the vicinity of continental transform faults and intracontinental strike-slip faults. Numerical models that incorporate rheological heterogeneity highlight the importance of strength contrasts for facilitating strain localization. Questions regarding the importance of diffuse vs. localized strain, reactivation, and the role of lateral variation in rheology can be answered directly by studying exhumed deep crustal shear zones and their wall rocks in rare exposures of continental lower crust. We report on the evolving deformation style and rheology of a large panel of continental lower crust (>20,000 km2) during the interaction of two lithosphere-scale shear zones in the western Canadian Shield. Weak, partially molten rocks were juxtaposed against previously-dehydrated stronger rocks during dextral high-T transcurrent shearing along the >400 km-long Grease River strike-slip shear zone at 1.92-1.90 Ga. The pattern and timing of strain and metamorphism across the shear zone is compatible with development of a deep crustal flower structure coincident with this rheological "dichotomy" at ~30-40 km paleodepths. The Grease River shear zone was cut and uplifted in the hanging wall of the Legs Lake shear zone, a >500 km-long intracontinental thrust-sense structure. Reactivation of the Grease River shear zone occurred during uplift as both structures accommodated dextral transpressive strain during segmentation and uplift of continental lower crust (>1.0 GPa) to middle crustal levels (<0.5 GPa) at 1.85 Ga. The strength and style of deformation evolved from distributed strain across partially molten weak crust to localized strain along discrete shear zones that facilitated translation of strong dehydrated crust during transpressive uplift.

  11. Polyphase Formation and Exhumation of HP-UHP Rocks in Continental Subduction Zone: Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Li, Z.; Gerya, T.

    2008-12-01

    High- to ultrahigh-pressure (HP-UHP) metamorphic rocks commonly form and exhume during the early continental collision, with the protoliths mainly derived from subducted upper and middle continental crust. While the geodynamic significance of HP-UHP complexes is widely recognized and their appearance in the Neoproterozoic is considered as a "hallmark" for establishing modern plate tectonic styles, many questions related to their origin still remain unresolved. Of particular importance is the poly-metamorphic origin of many HP-UHP terranes composed of tectonic units having strongly variable ages, peak metamorphic conditions and P-T paths. In order to address this issue we conducted 2D high-resolution thermomechanical numerical modeling of the continental subduction associated with formation and exhumation of the HP-UHP rocks, with testing different geometrical configurations, rheological properties and varied width of subducting continental margins, convergence velocity, sedimentation and erosion rates. Most of our experiments confirm poly-phase origin of HP-UHP terranes and predict existence of several consequent episodes of (U)HP rocks exhumation related to the inherently cyclic origin of continental crust subduction-detachment-exhumation process. Periodicity of formation of rheologically weak zones (thrusting faults) controlling HP-UHP rocks exhumation processes depends on the competing effects of downward directed subduction drag and upward directed crustal buoyancy forces. The buoyancy forces and related deviatoric stresses accumulate in the subduction channel due to subduction of low-density crustal rocks and are then reset back during rapid exhumation episodes. Numerical modeling suggest that UHP rocks may remain in the sub-lithospheric channel for several million years being heated to 800-900C by the surrounding hot mantle. At the later stage upward extrusion of such hot partially molten rocks may exhume high-temperature (HT) UHP complexes toward the surface. Therefore, sub-lithospheric channel formation and extrusion processes may provide plausible explanation for occurrence of UHP-HT rocks in nature.

  12. Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: A review

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Su, Li; Niu, Yaoling; Zhang, Guibin; Zhang, Lifei

    2009-07-01

    Two types of peridotites are recognized in the North Qaidam continental-type UHP metamorphic belt. (1) Garnet peridotite, which includes garnet lherzolite, garnet-bearing dunite, garnet-free dunite and garnet pyroxenite, is one of the most informative lithologies in a continental-type subduction zone. Observations such as diamond inclusion in a zircon crystal and decompression exsolutions in garnet and olivine, plus thermobarometric calculations, argue that this garnet peridotite must have derived from mantle depths in excess of 200 km. Geochemical data reveal that the protolith of the garnet peridotite is largely of cumulate origin from high-Mg melts in a sub-arc mantle wedge environment rather than a abyssal peridotite. (2) Oceanic lithospheric mantle harzburgite, which occurs together with a meta-cumulate complex (including garnet pyroxenite and kyanite-eclogite) and with eclogite of MORB protolith. They are interpreted as exhumed blocks of the subducted oceanic lithosphere formed in the Cambrian (500-550 Ma). The presence of these two types of peridotites in the same continental-type subduction belt is unique and they allow a better understanding of the tectonic history of the North Qaidam continental-type UHP belt in particular and processes of plate tectonic convergence from oceanic lithosphere subduction to continental collision/subduction in general.

  13. Morphology and geology of the continental shelf and upper slope of southern Central Chile (33S-43S)

    NASA Astrophysics Data System (ADS)

    Vlker, David; Geersen, Jacob; Contreras-Reyes, Eduardo; Sellanes, Javier; Pantoja, Silvio; Rabbel, Wolfgang; Thorwart, Martin; Reichert, Christian; Block, Martin; Weinrebe, Wilhelm Reimer

    2014-10-01

    The continental shelf and slope of southern Central Chile have been subject to a number of international as well as Chilean research campaigns over the last 30 years. This work summarizes the geologic setting of the southern Central Chilean Continental shelf (33S-43S) using recently published geophysical, seismological, sedimentological and bio-geochemical data. Additionally, unpublished data such as reflection seismic profiles, swath bathymetry and observations on biota that allow further insights into the evolution of this continental platform are integrated. The outcome is an overview of the current knowledge about the geology of the southern Central Chilean shelf and upper slope. We observe both patches of reduced as well as high recent sedimentation on the shelf and upper slope, due to local redistribution of fluvial input, mainly governed by bottom currents and submarine canyons and highly productive upwelling zones. Shelf basins show highly variable thickness of Oligocene-Quaternary sedimentary units that are dissected by the marine continuations of upper plate faults known from land. Seismic velocity studies indicate that a paleo-accretionary complex that is sandwiched between the present, relatively small active accretionary prism and the continental crust forms the bulk of the continental margin of southern Central Chile.

  14. The Interpretation of Crustal Dynamics Data in Terms of Plate Interactions and Active Tectonics of the Anatolian Plate and Surrounding Regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert E.

    1990-01-01

    During the past 6 months, efforts were concentrated on the following areas: (1) Continued development of realistic, finite element modeling of plate interactions and associated deformation in the Eastern Mediterranean; (2) Neotectonic field investigations of seismic faulting along the active fault systems in Turkey with emphasis on identifying seismic gaps along the North Anatolian fault; and (3) Establishment of a GPS regional monitoring network in the zone of ongoing continental collision in eastern Turkey (supported in part by NSF).

  15. Discovering Plate Boundaries

    NSDL National Science Digital Library

    Rice University's Earth Science Department offers the Discovering Plate Boundaries educational activity. The exercise is described as a "data rich exercise to help students discover the processes that occur at plate tectonic boundaries" and has been used successfully with 5th graders to undergraduates. The site provides the necessary downloads of maps; earthquake, volcanic, seafloor, topographic, and bathymetric data; and teacher guides and complete instructions. Because the activity can be geared towards such a large range of students, is well designed, and is easily accessible, educators will definitely appreciate the site.

  16. Plating under reduced pressure

    SciTech Connect

    Dini, J.W.; Beat, T.G.; Cowden, W.C. [Lawrence Livermore National Lab., CA (United States); Ryan, L.E.; Hewitt, W.B. [TRW, Inc., Redondo Beach, CA (United States)

    1992-06-01

    Plating under reduced pressure was evaluated for both electroless nickel and electrodeposited copper systems. The objective was to reduce pitting of these coatings thereby further enhancing their usage for diamond turning applications. Cursory experiments with electroless nickel showed reduced porosity when deposition was done at around 500 torr. Detailed experiments with electrodeposited copper at around 100 torr provided similar results. Scanning tunneling microscopy was effectively used to show the improvement in the copper deposits plated under reduced pressure. Benefits included reduced surface roughness and finer and denser grain structure.

  17. Reduced Plating Ignitron

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)

    2014-01-01

    An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.

  18. Volcanoes, Plates, and Chains

    NSDL National Science Digital Library

    In this lesson students will discover how seamounts in the Axial-Cobb-Eikelberg-Patton chain were formed. They will learn about the processes that form seamounts, describe the movement of tectonic plates in the Gulf of Alaska region and explain the types of volcanic activity that might be associated with these movements, and describe how a combination of hotspot activity and tectonic plate movement could produce the arrangement of seamounts observed in this chain. This hands-on activity uses online data resources and includes: focus questions, learning objectives, teaching time, audio/visual materials needed, background information, learning procedures, evaluations, extensions, as well as resources and student handouts.

  19. Tectonic Plate Motion

    NSDL National Science Digital Library

    The representation shows the direction of motion of the Earth's major plates as measured through NASA's satellite laser ranging (SLR) technology. A series of world maps, accompanying text, and the subsequent links explain this technology in great detail. One can click on the Index Map for Satellite Laser Ranging site Velocity and see the vectors (arrows) that indicate the direction and rate of movement of Earth's plates in much more detail. Accompanying text gives a more detailed explanation of what each sub map is showing.

  20. Plate Tectonics and Volcanism

    NSDL National Science Digital Library

    This is a lesson where learners explore plate movement and the relationship between plate tectonics and volcanoes. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson five in the Astro-Venture Geology Training Unit that was developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with the Astro-Venture multimedia modules.

  1. Geophysical study of the structure and processes of the continental convergence zones: Alpine-Himalayan Belt

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.

    1981-01-01

    The seismic wave velocity structure in the crust and upper mantle region beneath the Tibetan plateau was studied in detail. Also, a preliminary study of the uppermost mantle P wave velocity beneath Iran and Turkey was carried out, and the results are compared with those for the Tibetan plateau. These two studies compose the bulk of the efforts on the observational aspects of continental collision zones in addition to satellite derived data. On the theoretical aspects the thermal evolution of converging plate boundaries was explored using a finite difference scheme.

  2. Localized versus distributed shear in transform plate boundary zones: The case of the Dead Sea Transform in the Jericho Valley

    Microsoft Academic Search

    G. Shamir; Y. Eyal; I. Bruner

    2005-01-01

    Continental transform plate boundaries are typically either localized along a single, usually segmented, major fault or distributed over a broad deformation zone. In the latter, shear is partitioned between major strike slip faults and intervening, often rotating, fault systems. Analog and numerical simulations suggest that such internal fault systems evolve and may be localized or delocalized depending on strain and

  3. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics

    Microsoft Academic Search

    Ren Guiraud; William Bosworth

    1997-01-01

    The late Paleozoic to Tertiary stratigraphic record of much of the African plate reflects the effects of continental rifting and passive margin development. Several short-lived, but widespread and tectonically important, compressional or wrench-dominated events occurred, however, during the Permian to Recent evolution of Africa. We focus here on the best documented of these events, which occurred during the late Santonian.

  4. A Voyage through Scales - Archives of the Continental Crust

    NASA Astrophysics Data System (ADS)

    Hawkesworth, Chris

    2015-04-01

    Geology and the Earth Sciences have distinctive positions in the sciences. They draw widely on the hard sciences, but for the most part the evidence is already present in the geological records of the history of the Earth. That record is far from complete, and critically it is also biased in what has been preserved and what has been lost. Scale is fundamental as even on outcrop discussions may range from the identification of minerals and fabrics to their implications, to inferred regional conditions of pressure and temperature, and the movement of plates many million years ago. Recent technological developments now make it possible to analyse very small amounts of material. This has highlighted that many rock samples are mixtures of materials of different provenance, and allowed us to be increasingly sure about what is being analysed. U/Pb dating of zircon is the basis for establishing geological time scales, and the combination of imaging techniques and high precision dating of small spots has highlighted the complexity of many grains and the importance of imaging each portion that is dated. Magmatic zircons crystallise from relatively high silica magmas, and so notwithstanding how widely they are used, magmatic zircons only yield ages for certain rock types in the geological record. There are links between the length- and time-scales of natural phenomena. This lecture seeks to explore how material analysed on a wide range of scales influences the models developed and how they may be tested. High-resolution 3-D mapping has illuminated the debate over the oldest preserved fossils. The position-specific isotopic anatomies of organic molecules are now being investigated. The compositions of detrital sediments are widely used as a way to sample the bulk composition of portions of crust. Yet the sedimentary record is biased by preferential sampling of relatively young material in their source terrains. There are now large numbers of radiometric ages, often obtained in regional studies, and globally the continental crust is characterised by distinctive peaks and troughs in the distribution of ages of magmatic activity, metamorphism, continental margins and mineralisation. This is unexpected in the context of steady state plate tectonics, and it is thought to reflect the different preservation potential of rocks generated in different tectonic settings. In contrast there are other signals, such as the Sr isotope ratios of seawater, mantle temperatures, and redox conditions on the Earth, which appear to retain primary records because they are less sensitive to the numbers of samples of different ages that have been analysed. Bias does appear to be significant for signals that rely on distributions of ages.

  5. Continental drift, organic evolution, and moral courage

    NASA Astrophysics Data System (ADS)

    Irving, Edward

    For the past 40 years or so there has been much discussion of the reasons why, even though there was substantial evidence for it, the continental drift hypothesis of Alfred Wegener and Wladimir Koppen was rejected in the first half of the 20th century. It was often derisively dismissed out of hand.On April 7, 1998, there was a note in Eos by David Stern that included a perceptive and amusing quotation from Teddy Bullard on the question, which has recently reached something of a culmination in an important new book, The Rejection of Continental Drift, by Naomi Oreskes and published by Oxford in 1999.

  6. MAGSAT anomaly map and continental drift

    NASA Technical Reports Server (NTRS)

    Lemouel, J. L. (principal investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  7. University Center Plated Entrees

    E-print Network

    Lee, Herbie

    , artichokes and herbs served with Crushed Yukon Golds and lemon-caper buerre blanc Pacific Salmon Florentine en Croute $23.95 Salmon filet and lemon creamed spinach wrapped in flaky puff pastry served with lemon-pecan Basmati pilaf and sauce Barnaise #12;University Center Plated Entrees Poultry Moroccan

  8. Aluminium oxide microchannel plates

    NASA Astrophysics Data System (ADS)

    Delendik, K.; Emeliantchik, I.; Litomin, A.; Rumyantsev, V.; Voitik, O.

    2003-09-01

    Microchannel electron multipliers of a new type are proposed - anodic alumina microchannel plates (MCP). They implement the conventional concept of lead glass microchannel plate with a new material - anodic aluminium oxide. Anodic alumina is a very suitable material for microchannel plates due to presense of natural microchannels. Diameters of these channels lie in the range of 0.02 - 0.5 ?m, channels of greater diameter can be easily produced by means of additional processing based on the presence of intrinsic microchannel structure. We have produced MCPs with channel diameters 0.2 - 8 ?m and thickness 40 - 150 ?m. We have also developed two methods of deposition of conductive and emissive films inside MCP channels: plasma sputtering and liquid-phase deposition from metallo-organic precursors. MCP samples with NiO?MgO and Cu?CuO?BeO?MgO coatings have demonstrated promising results. Alumina MCP potentially have serious advantages over traditional lead glass MCP: they are much cheaper, large area plates (hundreds of cm2) can be easily produced, spatial resolution can be much better (due to smaller channel diameter).

  9. Plate Tectonic Movement Visualizations

    NSDL National Science Digital Library

    This collection provides a wide array of visual resources and supporting material about plate tectonic movements. Visualizations include simple animations, GIS-based animated maps, paleogeographic maps and globes, and numerous illustrations and photos. This collection is not exhaustive but does represent some of the best sources for teaching. Resources can be incorporated into lectures, labs, or other activities.

  10. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.

    2012-04-01

    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The presence of magnetic anomalies indicating variable rates of seafloor spreading and 'jumps' in the axis of seafloor spreading have not as yet been satisfactorily resolved by existing plate models. Integration of detailed geophysical and geological datasets, combined with published data will be used to produce an enhanced plate tectonic model. This will be coupled with deformable modelling of the extensional margins, incorporating stretching (?) factors and deformation trajectories to calculate the extent of crustal deformation for the main episodes of continental break-up. This will result in more accurate plate tectonic reconstructions for the determination of pre-rift geometries, palaeo-positions of the plates and exploration datasets intersected with them, to aid hydrocarbon exploration in the region.

  11. Blocks or Continuous Deformation in Large-Scale Continental Geodynamics: Ptolemy Versus Copernicus, Kepler, and Newton (Invited)

    NASA Astrophysics Data System (ADS)

    Molnar, P. H.

    2010-12-01

    The enhanced precision and resolution of GPS velocity fields within active continental regions have highlighted two views of how best to describe these fields: (1) as relative movements of effectively rigid (or elastic) blocks, essentially plate tectonics with many plates, or (2) as continuous deformation of a (non-Newtonian) viscous fluid in a gravity field. The operative question is not: Are there blocks? Of course, there are. It is: Do blocks help us understand the deformation? Dan McKenzie used to say, 40 years ago, that the reason plate tectonics was accepted so easily was that the kinematics of plate motion could be analyzed separately from the dynamics that underlies that motion. No such separation seems to work for continental tectonics, where crust thickens or thins, and where the dynamics, both stresses and the gravitational body force, and kinematics are intimately connected via a constitutive relation that links strain rate to stress. Treating continental deformation in terms of blocks is like treating planetary orbits in terms of Ptolemaic epicycles; such a treatment provides an accurate description of the kinematics, but obscures dynamics. (Sea captains in the 15th Century would have been wise to use Ptolemys epicycles, not yet a Copernican system, to navigate their ships). A description in terms of blocks, however, seems unlikely to reveal insights into the dynamic processes and the viscosity structure of the deforming lithosphere. In Tibet, most hypothesized blocks are cut by obvious faults and must deform, if GPS measurements are not yet accurate enough to resolve such deformation. Presumably as the number of GPS control points and the precision of their velocities increase, so will numbers of blocks needed to describe the velocity field, with numbers of GPS points and numbers of blocks obeying a fractal relationship. The important unanswered question concerns how best to describe the constitutive equation for continental lithosphere? The Tibetan Plateau illustrates this failing of plate tectonics (or crustal blocks) especially well. In particular, because of the large lateral variations in gravitational potential energy, it offers the best region in which to study dynamics of continental deformation.

  12. Plate mode velocities in graphite\\/epoxy plates

    Microsoft Academic Search

    W. H. Prosser; M. R. Gorman

    1994-01-01

    Measurements of the velocities of the extensional and flexural plate modes were made along three directions of propagation in four graphite\\/ epoxy composite plates. The acoustic signals were generated by simulated acoustic emission events (pencil lead breaks or Hsu-Neilsen sources) and detected by broad band ultrasonic transducers. The first arrival of the extensional plate mode, which is nondispersive at low

  13. Plate Puzzle Page 1 of 20 Plate Puzzle 1

    E-print Network

    Benitez-Nelson, Claudia

    plotting activities. Good follow-up activities are: plate tectonics flip book, epicenter plotting using tectonics. The map is an attractive display of plate tectonic features such earthquake epicenters boundaries so that one can examine the relationship of the tectonic features to the plate boundaries. The map

  14. Thermal Evolution of Continental Rifting in Corsica (France)

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2014-12-01

    Present thermal evolution models for continental rifting are based on pure-shear extension (McKenzie 1978), in which crustal and mantle strain is co-located and all rocks cool throughout rifting. However, the multi-phase rift model of Lavier and Manatschal (2006) accommodates lithospheric extension via spatially offset crustal and mantle strains, producing depth-dependent thinning and exhumation of lithospheric mantle. Significant reheating of the upper plate is a natural consequence of this model. We seek to constrain the temperature-time history of the upper-plate Tethyan margin preserved in Corsica to discriminate between the two thermal models. A record of the conditions and timing of reheating is preserved in the age and trace element compositions of metamorphic zircon overgrowths. Zircon from the hanging wall and footwall of the Jurassic-age Belli Piani shear zone (Beltrando et al 2013) were depth-profiled for both U-Pb and trace element concentrations via LA-ICP-MS split streaming. Across both sides of the shear zone, U-Pb ages show a strong population of 275-300 Ma grains. However, a subset of footwall grains show 165-210 Ma overgrowths. These ages indicate that the margin reached temperature conditions sufficient for zircon saturation and subsequent zircon growth. These lower crustal findings are consistent with prior observations made within the sedimentary succession, which records rapid thermal uplift, karstification, and subsequent drowning of Triassic dolostones contemporaneous with the opening of the Alpine Tethys (Decarlis and Lualdis 2008). Ti-in-zircon thermometry yields temperatures of ~720C in the hanging wall and ~830C in the footwall. This is consistent with the appearance of overgrowths, and provides further support that the Belli Piani shear zone was active during Jurassic rifting. Collectively, these data point directly to a rift-coeval reheating event that affected the entire crustal pile and lend support to the multi-stage Lavier and Manatschal model.

  15. Seismicity and tectonics of the subducted Cocos Plate

    NASA Astrophysics Data System (ADS)

    Burbach, George Vanness; Frohlich, Cliff; Pennington, Wayne D.; Matumoto, Tosimatu

    1984-09-01

    We have examined teleseismic earthquake locations reported by the International Seismological Centre (ISC) for the Middle America region and selected 220 as the most reliable. These hypocenters and other data are used to delineate the deep structure of the subducted Cocos Plate. The results indicate that the subducted plate consists of three major segments: Segment I extends from the Panama Fracture Zone to the Nicoya Peninsula. The structure of this segment is poorly defined. Segment II is the largest and best-defined segment. This segment consists of two parts, IIA and IIB. Part IIA extends from the Nicoya Peninsula to western Guatemala and is very well defined and continuous in structure. Its strike follows the curvature of the trench and dips at about 60. Part IIB extends from western Guatemala to Orizaba, Mexico. The dip of this part of the segment decreases slightly toward the northwest, and its strike is more northward than that of the trench. Segment III extends from Orizaba to the Rivera Fracture Zone, and is not well defined due to a lack of earthquake activity beneath about 100 km. Its orientation differs markedly from segment II and strikes somewhat more westward than the trench. Between parts IIA and IIB of segment II the subducted plate seems to be continuous, bending smoothly to accommodate the change in geometry. Local network data from Costa Rica suggest there may be a tear between segments I and II. Between segments II and III there is a gap in the hypocenters which makes it difficult to define the boundary. The change in geometry between these two segments indicates that there may be a tear, and two strike-slip focal mechanisms in the region support this conclusion. We find no convincing evidence supporting the existence of segments smaller than the three described above. If there is smaller-scale segmentation in the shallow part of the subducting plate the plate must still maintain enough continuity to appear continuous at greater depths. There is no evidence for any major tear in the subducted plate associated directly with either the Tehuantepec Ridge or the Orozco Fracture zone. The shallow subduction at the northwestern end of segment II may be related to the bouyancy of the Tehuantepec Ridge. The Cocos Ridge is probably directly responsible for the change in geometry between segments I and II and may even be slowing or stopping subduction in segment I. The structure of the subducted plate in segment II and the changes in the character of volcanism along the arc can be related to the relative motion of the North American and Caribbean Plates. The present geometry of part IIB of segment II is more consistent with the probable configuration of the trench about 7 Ma ago than with the present configuration, indicating that the North American plate is overriding the subduction zone. Appendices 2, 3, and 4 are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009. Document B84-009; $2.50.

  16. Renewable liquid reflecting zone plate

    SciTech Connect

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  17. ChooseMyPlate.gov

    MedlinePLUS

    ... foods and 900 physical activities. NEW : High school lesson plans. MyPlate Kids' Place A brand new resource ... MyPlate Videos Healthy Eating on a Budget SuperTracker Lesson Plans 10 Tips Nutrition Education Series Recipes, Cookbooks, ...

  18. Tectonic Plates, Earthquakes, and Volcanoes

    NSDL National Science Digital Library

    The representation shows earthquake and volcanic activity corresponds to plate boundaries. This interactive topographical map with the ocean water removed shows the boundaries of major plates and the locations of major volcanic eruptions and earthquakes worldwide.

  19. Arctic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion: Constraining Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Alvey, A.; Roberts, A. M.

    2013-12-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust, possible micro-continents and rifted continental margins. Mapping of continental lithosphere thinning factor and crustal thickness from gravity inversion provide predictions of ocean-continent transition structure and magmatic type and continent ocean boundary location independent of magnetic isochrons. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being underlain by oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Moho depths predicted compare well with seismic estimates. Predicted very thin continental or oceanic crust under the North Chuchki Basin has major implications for understanding the plate tectonic history of the Amerasia Basin. Thinned continental crust rather than oceanic crust is predicted under the Laptev Sea. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay. We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction. The gravity anomaly contribution from sediments is included in the gravity inversion and assumes a compaction controlled sediment density increase with depth. A correction to the predicted continental lithospheric thinning derived from gravity inversion is made for volcanic material addition produced by decompression melting during continental rifting and seafloor spreading. Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation.

  20. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  1. Iberia/Eurasia plate kinematic models as recorded from shortening evolution of the Pyrenees

    NASA Astrophysics Data System (ADS)

    Mouthereau, Frdric; Filleaudeau, Pierre-Yves; Vacherat, Arnaud

    2014-05-01

    Contrasting reconstructions of Iberia plate motion have been proposed in the Pyrenees, reflecting our difficulties to reconcile interpretations from magnetic anomalies with geological arguments. Here, we confront implications from currently proposed plate kinematic models with the most recent constraints on the thermal history and shortening evolution of the Northern Pyrenees. We particularly focus on the incipient subduction/collision and question the role played by the rifted margin architectures. A good fit with geological constraints is found provided that a significant amount of arc-normal convergence is accommodated at a distal hyper-extended margin, during the earliest stages of collision. After 20 Myrs of plate convergence, the first contact between proximal margins initiated a progressive decrease of plate convergence that was mainly consumed in building the Pyrenean mountain belt. This shortening scenario is shown to be consistent with recent geophysical data on deep crustal processes and finite strain predicted on young continental margins.

  2. Submarine landslide geomorphology, US continental slope

    Microsoft Academic Search

    B. g. Mcadoo; L. f. Pratson; D. l. Orange

    2000-01-01

    The morphometric analysis of submarine landslides in four distinctly different tectonic environments on the continental slopes of Oregon, central California, Texas, and New Jersey provides useful insight into submarine process, including sediment transport mechanisms and slope stability. Using Geographic Information System (GIS) software, we identify landslides from multibeam bathymetric and GLORIA sidescan surveys based solely on surficial morphology and reflectivity.

  3. US Continental Interior Precambrian-Paleozoic

    E-print Network

    US Continental Interior Precambrian-Paleozoic #12; EarthStructure (2nd ed) 2712/5/2010 North & Karlstrom, 2007 #12;Appalachians Paleozoic #12; EarthStructure (2nd ed) 3912/5/2010 North America - TimeStructure (2nd ed) 5112/5/2010 Alleghanian (l. Paleozoic) thrusts #12; EarthStructure (2nd ed) 5212

  4. Elephant teeth from the atlantic continental shelf

    USGS Publications Warehouse

    Whitmore, F.C., Jr.; Emery, K.O.; Cooke, H.B.S.; Swift, D.J.P.

    1967-01-01

    Teeth of mastodons and mastodons have been recovered by fishermen from at least 40 sites on the continental shelf as deep as 120 meters. Also present are submerged shorelines, peat deposits, lagoonal shells, and relict sands. Evidently elephants and other large mammals ranged this region during the glacial stage of low sea level of the last 25.000 years.

  5. The nature of the lower continental crust

    Microsoft Academic Search

    J. B. Dawson; D. A. Carswell; J. Hall; K. H. Wedepohl

    1986-01-01

    This book reviews the physical and geochemical properties of the lower continental crust. Reviews cover heat flow, rheology, seismic properties, electrical resistivity, metasomatism, geochemistry and isotope characteristics. The terrains include the western USA, Canada, Labrador, West Greenland, northern Britain, Finland, West Germany, Massif Central, the Alps, the Himalayas, southern India, South Africa and Australia.

  6. Estimating continental hydrology parameters from space missions

    Microsoft Academic Search

    N. M. Mognard; A. Cazenave; J.-F. Cretaux; S. Calmant; G. Ramillien; F. Frappart; K. Dominh; M. Cauhope

    2006-01-01

    Different instruments on board Earth Observing satellite missions that were designed either for ocean missions or land surface classification have been used to retrieve continental surface hydrology parameters While altimeter measurements provide an estimate of height over water bodies of typically a few km in size it is necessary to complement these measurements with imagers either optical or microwave to

  7. Moroccan Crustal Response to Continental Drift

    Microsoft Academic Search

    W. H. Kanes; M. Saadi; E. Ehrlich; A. Alem

    1973-01-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic

  8. Circulation on the newfoundland continental shelf

    Microsoft Academic Search

    Brian Petrie; Carl Anderson

    1983-01-01

    The circulation on the Newfoundland Continental Shelf derived from a review of different data sources generally agrees with the classical description of the flow in this area given by Smith et al. (1937). Hydrological, surface and bottom drifter, satellite?tracked buoy, ships drift, current meter and sea?level observations are used to estimate mean flows, transports, and fluctuating currents and to define

  9. Continental basaltic volcanoes Processes and problems

    Microsoft Academic Search

    G. A. Valentine; T. K. P. Gregg

    2008-01-01

    Monogenetic basaltic volcanoes are the most common volcanic landforms on the continents. They encompass a range of morphologies from small pyroclastic constructs to larger shields and reflect a wide range of eruptive processes. This paper reviews physical volcanological aspects of continental basaltic eruptions that are driven primarily by magmatic volatiles. Explosive eruption styles include Hawaiian and Strombolian (sensu stricto) and

  10. Parameterization of continental boundary layer clouds

    Microsoft Academic Search

    Ping Zhu; Wei Zhao

    2008-01-01

    Large eddy simulations (LESs) of continental boundary layer clouds (BLCs) observed at the southern Great Plains (SGP) are used to study issues associated with the parameterization of sub-grid BLCs in large scale models. It is found that liquid water potential temperature $\\\\theta$l and total specific humidity qt, which are often used as parameterization predictors in statistical cloud schemes, do not

  11. The Outer Continental Shelf Environmental Assessment Program

    Microsoft Academic Search

    David A. Hale

    1986-01-01

    The Outer Continental Shelf Environmental Assessment Program (OCSEAP) is a multidisciplinary program established to provide timely environmental information for decisions on offshore oil and gas development. One of OCSEAP's primary tasks is to provide information on the transport of pollutants in the marine environment. OCSEAP's science program is reviewed in relation to this task. Utilization of OCSEAP's extensive physical oceanographic

  12. ORIGINAL ARTICLE Marine flooding event in continental Triassic facies identified

    E-print Network

    Benton, Michael

    ORIGINAL ARTICLE Marine flooding event in continental Triassic facies identified by a nothosaur is characterized by continental Triassic redbed facies com- posed of sandstones and siltstones, with gypsum Western expressions of the suc- cession. The continental facies (redbeds) occur along the southeastern

  13. Plate heat exchanger design theory

    Microsoft Academic Search

    R. K. Shah; A. S. Wanniarachchi

    1991-01-01

    Plate heat exchangers are commonly used in hygienic applications as well as in chemical processing and other industrial applications. Pertinent information on plate exchangers from a designer's point of view is summarized to provide a basic insight into performance behavior of chevron plates. Basic design methods are presented and a method of coupling between heat transfer and pressure drop is

  14. Explosive welding of metal plates

    Microsoft Academic Search

    S. A. A. Akbari-Mousavi; L. M. Barrett; S. T. S. Al-Hassani

    2008-01-01

    This paper describes a study of explosive welding of metal plates. The properties of a locally prepared mix of 77\\/23 ammonium nitrate and fuel oil (ANFO) explosive and the dynamics of the plates are investigated and the results from welding tests presented. The strength of the clad plates is measured and ultrasonic inspection performed to identify and locate defects. The

  15. Lesson 3. Plate Tectonics Overview

    E-print Network

    Chen, Po

    Lesson 3. Plate Tectonics #12;Overview Prior to the 1970s that with the development of the theory of plate tectonics. Knowledge of the ocean floors of the Earth #12;Overview Plate tectonics explains the formaBon of the Earth's two

  16. Tectonic stress in the plates

    Microsoft Academic Search

    Randall M. Richardson; Sean C. Solomon; Norman H. Sleep

    1979-01-01

    The state of stress in the lithosphere provides strong constraints on the forces acting on the plates. The directions of principal stresses in the plates as indicated by midplate earthquake mechanisms, in situ stress measurements, and stress-sensitive geological features are used to test plate tectonic driving force models, under the premises that enough data exist in selected areas to define

  17. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NASA Astrophysics Data System (ADS)

    Gaina, Carmen; Torsvik, Trond H.; van Hinsbergen, Douwe J. J.; Medvedev, Sergei; Werner, Stephanie C.; Labails, Cinthia

    2013-09-01

    We present a model for the Jurassic to Present evolution of plate boundaries and oceanic crust of the African plate based on updated interpretation of magnetic, gravity and other geological and geophysical data sets. Location of continent ocean boundaries and age and geometry of old oceanic crust (Jurassic and Cretaceous) are updated in the light of new data and models of passive margin formation. A new set of oceanic palaeo-age grid models constitutes the basis for estimating the dynamics of oceanic crust through time and can be used as input for quantifying the plate boundary forces that contributed to the African plate palaeo-stresses and may have influenced the evolution of intracontinental sedimentary basins. As a case study, we compute a simple model of palaeo-stress for the Late Cretaceous time in order to assess how ridge push, slab pull and horizontal mantle drag might have influenced the continental African plate. We note that the changes in length of various plate boundaries (especially trenches) do not correlate well with absolute plate motion, but variations in the mean oceanic crust age seem to be reflected in acceleration or deceleration of the mean absolute plate velocity.

  18. Lower plate deformation structures along the Costa Rica erosive plate boundary - results from IODP Expedition 344 (CRISP 2)

    NASA Astrophysics Data System (ADS)

    Brandsttter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt

    2015-04-01

    The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25 oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Cao Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U1414 is located ~1 km seaward of the deformation front offshore the Osa Peninsula and Cao Island. Primary science goals at Site U1414 included characterization of the alteration state of the magmatic basement. Brittle structures within the incoming plate (sites U1380, U1414) are mineralized extensional fractures and shear fractures. The shear fractures mainly show a normal component of shear. Within the sedimentary sequence both types of fractures dip steeply (vertical to subvertical) and strike NNE-SSW. Deformation bands trend roughly ENE-WSW, sub-parallel to the trend of the Cocos ridge. Structures in the Cocos Ridge basalt mainly comprise mineralized veins at various orientations. A preferred orientation of strike directions was not observed. Some veins show straight boundaries, others are characterized by an irregular geometry characterized by brecciated wall rock clasts embedded within vein precipitates. The vein mineralization was analysed in detail by RAMAN spectroscopy. Precipitation conditions and fluid chemistry were analysed by fluid inclusions entrapped within vein minerals. Vein mineralizations mainly consist of carbonate (fibrous aragonite, calcite), chalcedony, and quartz. Vein mineralization is mainly characterized by zoned antitaxial growth of carbonate fibres including a suture along the central vein domains. Quartz is often characterized by fibre growth of crystals perpendicular to the vein boundaries, too. These zoned veins additinally have wall rock alteration seams consisting of clay minerals. The precipitation sequence basically indicates that fluid chemistry evolved from an CO2-rich towards a SiO2- rich fluid.

  19. Neoproterozoic continental arc magmatism in west-central Madagascar

    NASA Astrophysics Data System (ADS)

    Handke, Michael J.; Tucker, Robert D.; Ashwal, Lewis D.

    1999-04-01

    Published geologic maps, regional geological relations, and new U-Pb ages for intrusive igneous rocks in west-central Madagascar define a 450-km-long belt of rocks emplaced in middle Neoproterozoic time. We report precise U-Pb zircon and baddeleyite ages for 11 coeval gabbro and granitoid plutons from the Itremo region, located in the southern part of this belt. The ages for all gabbroic and granitic plutons and deformed equivalents define an 25 m.y. period of magmatic activity between 804 and 779 Ma (at maximum uncertainty). Granitoids intrusive into the Quartzo-Schisto-Calcaire series provide a minimum depositional age of 791 Ma for this Mesoproterozoic platformal sedimentary sequence. Our results, combined with other recent U-Pb age determinations, define a belt of plutonic rocks in west-central Madagascar emplaced between 804 and 776 Ma. We propose that these middle Neoproterozoic rocks constitute the root of a continental magmatic arc emplaced at the time of, or slightly preceding, the breakup of the Rodinian supercontinent. Neoproterozoic plate reconstructions place Madagascar on the putative margin of Rodinia, and therefore the plutonic belt in west-central Madagascar provides important constraints on the timing and extent of middle Neoproterozoic tectonic events in Rodinia and the critical period of Rodinia's transformation into Gondwana.

  20. An inverted continental Moho and serpentinization of the forearc mantle.

    PubMed

    Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M

    2002-05-30

    Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge. PMID:12037564

  1. Atmospheric residence times of continental aerosols

    SciTech Connect

    Balkanski, Y.J.

    1991-01-01

    The global atmospheric distributions of Rn-222 are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA Goddard Institute for Space Studies (GISS) general circulation model. The short-lived radioactive gas Rn-222 (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead-210 is produced by decay of Rn-222 and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the Rn-222 distribution. Results from the three-dimensional model are compared to measurements of Rn-222 and Pb-210 atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for Rn-222 are used to examine the long-range transport of continental air over two selected oceanic regions, the subantarctic Indian Ocean and the North Pacific. It is shown that the fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of Pb-210 focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale.

  2. Fractal Generalized Zone Plates

    E-print Network

    Mendoza-Yero, Omel; Minguez-Vega, Gladys; Lancis, Jesus; Climent, Vicent; Monsoriu, Juan A

    2008-01-01

    The construction of fractal generalized zone plates (FraGZPs) from a set of periodic diffractive optical elements with circular symmetry is proposed. This allows us to increase the number of foci of a conventional fractal zone plate (FraZP), keeping the self-similarity property within the axial irradiance. The focusing properties of these fractal diffractive optical elements for points not only along but also in the close vicinity of the optical axis are investigated. In both cases analytical expressions for the irradiance are derived. Numerical simulations of the energetic efficiency of FraGZPs under plane wave illumination are carried out. In addition, some effects on the axial irradiance caused by the variation in area of their transparent rings are shown.

  3. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  4. Bipolar battery plate

    SciTech Connect

    Rowlette, J. J.

    1985-09-17

    A liquid-impermeable plate having throughplate conductivity with essentially zero resistance comprises an insulator sheet having a series of spaced perforations each of which contains a metal element sealingly received into the perforation. A low-cost plate can readily be manufactured by punching a thermoplastic sheet such as polypropylene with a punching tool, filling the apertures with lead spheres having a diameter smaller than the holes but larger than the thickness of the sheet, sweeping excess spheres off the sheet with a doctor blade and then pressing a heated platen onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar sealing the metal into the sheet.

  5. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  6. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  7. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L. (Livermore, CA)

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  8. Plate Tectonics: The Mechanism

    NSDL National Science Digital Library

    This text explains how detailed mapping of the ocean floor led scientists like Howard Hess and R. Deitz to revive the Holmes convection theory. Hess and Deitz modified the theory considerably and called their new theory Sea-floor Spreading. Among the seafloor features that supported the sea-floor spreading hypothesis were: mid-oceanic ridges, deep sea trenches, island arcs, geomagnetic patterns, and fault patterns. These features are treated in detail and related to the current Theory of Plate Tectonics.

  9. Martian plate tectonics

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    1994-03-01

    The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses about Mars plate tectonics.

  10. Channel plating. Final report

    Microsoft Academic Search

    1985-01-01

    A process was developed for fabricating printed wiring boards with dense (closely spaced, narrow conductors) circuitry. The characteristics of epoxy-glass printed wiring board laminate clad with copper thicknesses of 0.005, 0.009, 0.013, 0.018, and 0.036 mm were compared. The circuitry was defined by a comparatively thick dry-film photoresist which effectively confines the subsequent copper plating for metallization of through-holes) within

  11. A true polar wander model for Neoproterozoic plate motions

    SciTech Connect

    Ripperdan, R.L. (Weizmann Inst. of Science, Rehovot (Israel))

    1992-01-01

    Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motions between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.

  12. Buckling of trapezoidal plates

    SciTech Connect

    Radloff, H.D. [Sandia National Lab., Albuquerque, NM (United States); Hyer, M.W. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States); Nemeth, M.P. [NASA - Langley Research Center, Hampton, VA (United States)

    1995-12-31

    This study focuses on the buckling response of flat composite plates with an isosceles planform, as shown below. The study consisted of both analytical and experimental phases. In the study the parallel edges x = 0 and L were clamped or simply supported. Clamped parallel edges were used in the experimental phase of the study. The nonparallel edges were simply supported. The parallel edges were assumed to remain straight and buckling was assumed to occur because these edges moved toward each other. A Rayleigh-Ritz approach was used, with the finite-element code ABAQUS being used to check specific cases. The buckling displacements were assumed to be in the form of harmonic functions. The prebuckling force resultant N{sub x} was assumed to be given by N{sub x}(x,y) = P/W(x), where P is the applied load and W(x) is the varying width of the plate. N{sub y}(x,y) and N{sub x,y}(x,y) were taken to be zero. Experiments were conducted on a number of laminates and a number of plate geometries, and the results were compared to predictions of the Rayleigh-Ritz scheme. In general correlation was good, though the analysis underpredicted the number of buckling half-waves.

  13. Discovering Plate Boundaries

    NSDL National Science Digital Library

    Dale Sawyer

    1997-09-15

    Discovering Plate Boundaries is based on 5 world maps containing earthquake, volcano, topography, satellite gravity, and seafloor age data. The novel aspect of the exercise is the "jigsaw" manner in which student groups access the maps and use them to discover, classify, and describe plate boundary types. The exercise is based only on observation and description, which makes it useful at a wide variety of levels; it has been used successfully in 5th grade classes, as well as in non-major earth science classes. The exercise is based on a set of wall maps that are not consumed during the exercise. Other inexpensive materials required include two 11x17 black and white copies per student and colored pencils. Because the exercise is not based on student access to the web, it is not dependent on classroom technology equipment. The exercise takes three 50-minute class periods to complete, and involves the students in making presentations to one another in small groups as well as to the whole class. The students come away from the exercise with knowledge of the key features of each type of plate boundary and a sense of why each looks and acts the way it does.

  14. Imaging continental collision and subduction in the Pamir mountain range, Central Asia, by seismic attenuation tomography

    NASA Astrophysics Data System (ADS)

    Schurr, Bernd; Haberland, Christian; Sippl, Christian; Yuan, Xiaohui; Mechie, James; Schneider, Felix; Tipage Team

    2014-05-01

    Subduction of continental crust is the mode of shortening in continental collision that is the least well understood. It is known to occur, as testified e.g., by now exhumed ultra-high-pressure rocks, despite the fact that continental crust is generally too buoyant to submerge into the mantle. Continental crust may, however, subduct in tow of a leading dense oceanic plate at the last stage of the plate tectonic Wilson cycle. Alternatively, if upper and lower crust detach, the latter, together with the underlying cold mantle lithosphere, may become negatively buoyant, enabling their descent. The Pamir mountains in Central Asia have been one of the few places on Earth, where on-going continental subduction has been postulated based on an active Wadati-Benioff zone. The Pamir is situated on an orographic node northwest of Tibet, between the Tarim and Tajik basins, where the Hindu Kush, Karakorum, western Kunlun Shan and Tien Shan ranges coalesce. It formed in the late Paleogene to Neogene, i.e. approximately during the second half of the India-Asia collision, north of the Western Himalayan Syntaxis, on the Asian (retro)continent. We use tomography of seismic attenuation to image the lithospheric-scale structure of the Pamir orogen. Attenuation tomography has been shown to be a powerful tool to study deep process-related structures particularly in oceanic subduction zones. Attenuation at this scale may be seen as a proxy for rheology and hence is very sensitive to e.g., homologous temperature and deformation. We use data from a two-year seismic deployment of the Tien Shan-Pamir Geodynamic Program (TIPAGE). The whole path attenuation parameter t* is determined by inversion of P-wave velocity spectra from 1790 earthquakes and then inverted for a 3D attenuation model (Qp) employing a recently published 3D velocity model. We find a prominent continuous crescent-shaped high-attenuation anomaly (HAA) that penetrates from upper crustal levels to depths of more than 100 km. At mantle depths the HAA follows the seismicity and coincides with low seismic velocities and most probably represents subducted crustal rocks. The HAA appears to be sandwiched between regions of low attenuation. To the north and west this probably represents cold Asian lithospheric mantle. To the south the low attenuation may be an indication of the (Indian?) indenter. The structures we image here are distinctively different from oceanic subduction zones, where HAAs usually occur in the mantle wedge above low attenuation oceanic slabs.

  15. Structuration of the lithosphere in plate tectonics as a self-organized critical phenomenon

    Microsoft Academic Search

    Didier Sornette; Anne Sornette; Philippe Davy

    1990-01-01

    In order to clarify the basic physical and geological mechanisms responsible for the self-organization of the crust within a continental plate, a field theory, deduced from symmetry and conservation laws, is proposed. The relevant parameter is the coarse-grained fluctuating strain tensor. On the basis of a diffusion-like conservation equation and the symmetries imposed by the tensorial character of the order

  16. A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Piper, John D. A.

    2013-03-01

    Plate Tectonics requires a specific range of thermal, fluid and compositional conditions before it will operate to mobilise planetary lithospheres. The response to interior heat dispersion ranges from mobile lids in constant motion able to generate zones of subduction and spreading (Plate Tectonics), through styles of Lid Tectonics expressed by stagnant lids punctured by volcanism, to lids alternating between static and mobile. The palaeomagnetic record through Earth history provides a test for tectonic style because a mobile Earth of multiple continents is recorded by diverse apparent polar wander paths, whilst Lid Tectonics is recorded by conformity to a single position. The former is difficult to isolate without extreme selection whereas the latter is a demanding requirement and easily recognised. In the event, the Precambrian palaeomagnetic database closely conforms to this latter property over very long periods of time (~ 2.7-2.2 Ga, 1.5-1.3 Ga and 0.75-0.6 Ga); intervening intervals are characterised by focussed loops compatible with episodes of true polar wander stimulated by disturbances to the planetary figure. Because of this singular property, the Precambrian palaeomagnetic record is highly effective in showing that a dominant Lid Tectonics operated throughout most of Earth history. A continental lid comprising at least 60% of the present continental area and volume had achieved quasi-integrity by 2.7 Ga. Reconfiguration of mantle and continental lid at ~ 2.2 Ga correlates with isotopic signatures and the Great Oxygenation Event and is the closest analogy in Earth history to the resurfacing of Venus. Change from Lid Tectonics to Plate Tectonics is transitional and the geological record identifies incipient development of Plate Tectonics on an orogenic scale especially after 1.1 Ga, but only following break-up of the continental lid (Palaeopangaea) in Ediacaran times beginning at ~ 0.6 Ga has it become comprehensive in the style evident during the Phanerozoic Eon (< 0.54 Ga).

  17. Geological evolution history of petroliferous basins on continental shelf of China

    SciTech Connect

    Lidesheng

    1983-03-01

    Coastlines of China are about 18,000 km (11,118 mi) in length, and their aggregate continental shelf area within 200 m (656 ft) seawater depth is more than one million km/sup 2/ (386,102 mi/sup 2/). Recent geophysical exploration work and numerous petroleum drilling records are available and give a general understanding of the geological evolution history of these petroliferous basins. There are two tectonic types of basins distributed on the continental shelf areas: the tectonic types of Bohai Gulf, South Yellow Sea, and Beibu Gulf basins are the intraplate polyphase rifting-depression basins; the East China Sea, Pearl River mouth, and Yingge Sea basin are the epicontinental rifting-depression basins. They are believed to be extensional in origin. Because of the severe convergence of Indian plate with Eurasia plate, there has been produced NNE-spreading movement of the South China Sea basin, which permits two triple junctions on its northern margins. The extension mechanism could be derived from the rising of an upper mantle plume to produce two NNE weak fracturing zones, resulting in a series of intraplate and epicontinental rifting-depression basins. The depositional models and sea-level variations of these basins are interpreted from the drilling records and seismic profiles. They can be explained by the tectono-eustatic changes in sea level and Cenozoic climate changes of China.

  18. Heat transfer from interrupted plates

    NASA Astrophysics Data System (ADS)

    Zelenka, R. L.; Loehrke, R. I.

    1983-02-01

    Heat transfer coefficients were measured in single and multiple flat plates equipped with interior heating elements and immersed in low Re flows in a wind tunnel. The plates were located successively in the tunnel and spanned the width of the channel. Attention was initially given to blunt leading edges, which were gradually reshaped in order to study various flow separation conditions over the course of the trials. Each plate was heated to 6 C over room temperature. The average value of a heat transfer coefficient for a single plate was determined to depend on the plate length and thickness, and may be inhibited by the leading edge separation bubble in the case of a blunt leading edge. Higher Re enhances the value of the coefficient. Turbulence induced by the presence of the first plate was observed to enhance heat transfer from the second plate.

  19. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  20. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J. (East Hartford, CT); Katz, Murray (Newington, CT); Schroll, Craig R. (Glastonbury, CT)

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  1. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China

    NASA Astrophysics Data System (ADS)

    Li, Zhonghai; Gerya, Taras V.

    2009-09-01

    High- to ultrahigh-pressure (HP-UHP) metamorphic rocks commonly form and exhume during the early continental collision, and many questions related to their origin still remain unresolved. We focus our study on explaining the poly metamorphic origins of many HP-UHP terranes composed of tectonic units having strongly variable ages, peak metamorphic conditions, and P-T paths. These features are especially well characterized for the Sulu UHP terrane in eastern China which we have chosen therefore as the reference case. We conducted 2-D thermomechanical numerical modeling of continental subduction associated with formation and exhumation of HP-UHP rocks. Our experiments suggest existence of several consequent episodes of (U)HP rocks exhumation related to the inherently cyclic origin of continental crust subduction-detachment-exhumation processes. Three major phases of these processes are identified in our reference model for the Sulu UHP terrane: (1) first and (2) second exhumation episodes of HP rocks originated in the subduction channel at lithospheric depths and (3) exhumation of UHP rocks originated at asthenospheric depths. Numerical models also suggest that subducted UHP rocks which are positively buoyant compared to the mantle may detach from the slab forming a flattened plume underplating the overriding lithosphere. This sublithospheric plume may exist for several million years being heated to 800-900C by the surrounding hot mantle. At the later stage, upward extrusion of hot partially molten rocks from the plume may exhume high-temperature (HT) UHP complexes toward the surface.

  2. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. B?hounkov and Czkov, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and feedback to other added processes remain important, which could encourage mineralogical research into multiphase systems. Feedback from the compositionally complex slab to the dynamic trench may improve understanding on the mechanics of slab behavior in the upper and lower mantle and surface behavior of the subducting and overriding plates. B?hounkov, M., and H. Czkov, Long-wavelength character of subducted slabs in the lower mantle, Earth and Planetary Science Letters, 275, 43-53, 2008. Fukao, Y., M. Obayashi, T. Nakakuki, and the Deep Slab Project Group, Stagnant slab: A review, Annual Reviews of Earth and Planetary Science, 37, 19-46, 2009. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.

  3. Locking plate technology: current concepts.

    PubMed

    Greiwe, R Michael; Archdeacon, Michael T

    2007-01-01

    The management of fractures with traditional plating techniques has undergone a paradigm shift over the past 20 years. For many fractures, anatomic reduction using a dynamic compression plate has been the gold standard. However, minimally invasive approaches combined with biologically friendly internal fixation have become accepted methods of complex fracture treatment. The orthopedic literature has demonstrated advantages when comparing locking plate techniques with traditional compression plating techniques, particularly in fractures about the knee. The advantages of locking plates apply most directly to cases of highly comminuted fractures, unstable metadiaphyseal segments, and osteoporotic fractures. The biomechanical properties of locking plates have distinguished and defined their clinical use compared to traditional plates. A thorough understanding of these properties will assist the orthopedic surgeon in choosing the appropriate construct when faced with a difficult fracture. Compression plating requires absolute stability for bone healing. In contrast, locking plates function as "internal fixators" with multiple anchor points. This type of fixed-angle device converts axial loads across the bone to compressive forces across fracture sites, minimizing gap length and strain. The strain theory demonstrates that anatomic reduction is not required for bone healing, and that tolerable strain (2%-10%) can promote secondary bone healing. Callus formation is further promoted when biologically friendly surgical approaches are combined with locking plate "internal fixators". In contrast, conventional plates function by creating an environment where primary bone healing occurs. This plate provides "absolute rigidity" and requires anatomic reduction fixed in compression. Primary bone healing occurs in this manner. In highly comminuted, segmentally deficient, or porotic bone, bone quality is poor and "absolute rigidity" does not exist. Furthermore, soft-tissue stripping adds a biologic insult to the poor bone quality. These disadvantages may lead to poor outcomes such as nonunion, implant failure, malunion, or even infection. These disadvantages remain theoretical, as no prospective studies clearly demonstrate a difference between plating methods in difficult metadiaphyseal or osteoporotic fractures. However, the overwhelming biomechanical evidence has led to a more biologically friendly approach to these fractures. The indications for use of locking plates are evolving. The literature demonstrates low rates of nonunion and overall complication rates with locking plates in difficult metaphyseal and diaphyseal fractures. Anatomic reduction of the articular surface remains paramount. Hybrid techniques that combine the benefits of compression plate fixation with the biological and biomechanical advantages of locking plates are the most likely end result of current locking plate applications. PMID:17288090

  4. Cell Cycle Reprogramming for PI3K Inhibition Overrides Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma

    PubMed Central

    Chiron, David; Di Liberto, Maurizio; Martin, Peter; Huang, Xiangao; Sharman, Jeff; Blecua, Pedro; Mathew, Susan; Vijay, Priyanka; Eng, Ken; Ali, Siraj; Johnson, Amy; Chang, Betty; Ely, Scott; Elemento, Olivier; Mason, Christopher E.; Leonard, John P.; Chen-Kiang, Selina

    2014-01-01

    Despite the unprecedented clinical activity of the Brutons tyrosine kinase inhibitor ibrutinib in MCL, acquired-resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib-binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation. It was absent, however, in patients with primary-resistance or progression following transient response to ibrutinib, suggesting alternative mechanisms of resistance. Through synergistic induction of PIK3IP1 and inhibition of PI3K-AKT activation, prolonged early G1 arrest induced by PD 0332991 (palbociclib) inhibition of CDK4 sensitized resistant lymphoma cells to ibrutinib killing when BTK was unmutated, and to PI3K inhibitors independent of C481S mutation. These data identify a genomic basis for acquired-ibrutinib resistance in MCL and suggest a strategy to override both primary- and acquired-ibrutinib resistance. PMID:25082755

  5. A budget for continental growth and denudation

    USGS Publications Warehouse

    Howell, D.G.; Murray, R.W.

    1986-01-01

    Oceanic crustal material on a global scale is re-created every 110 million years. From the data presented it is inferred that potential sialic material is formed at a rate of about 1.35 cubic kilometers per year, including hemipelagic volcanic sediments that accumulate at a rate of about 0.05 cubic kilometer per year. It is estimated that the influx of 1.65 cubic kilometers per year of terrigenous and biogenic sediment is deposited on the deep ocean, and this represents continental denudation. Because all this material is brought into a subduction zone, continental accretion rates, which could include all this material, may be as high as 3.0 cubic kilometers per year with a potential net growth for continents of 1.35 cubic kilometers per year.

  6. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  7. Tethered Triangular Plate

    NSDL National Science Digital Library

    Zhang, Zhenli

    2005-01-31

    Simulation Software: Glotzer Group Code Simulation Method: Brownian Dynamics BD simulation of polymer tethered triangular plates. A system of building blocks of composition P10bT18b at a concentration of 0.20, was run starting at an effectively infinite temperature then instantaneously quenched to a temperature of 0.83. The system was then run for 12,000,000 time steps forming a hexagonally packing twisted columnar phase.The solve was favorable for the tethers. Simulation Model: United Atom Bead Spring with Lennard-Jones and FENE

  8. Plates on the Move

    NSDL National Science Digital Library

    In this activity, students create a model of sea floor spreading using two sheets of white paper and a metric ruler. The paper strips are pulled through a slit representing a mid-ocean ridge and divergent plate boundary. The model mimics how molten material rises to the surface and then spreads out in both directions. The resource is part of the teacher's guide accompanying the video, NASA SCI Files: The Case of the Shaky Quake. Lesson objectives supported by the video, additional resources, teaching tips and an answer sheet are included in the teacher's guide.

  9. Dynamics of Tectonic Plates

    E-print Network

    Pechersky, E; Sadowski, G; Yambartsev, A

    2014-01-01

    We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend on features of resistant forces.

  10. Meeting the Challenges of Continental Pollutant Pathways

    NSDL National Science Digital Library

    The Ecological Monitoring and Assessment Network (discussed in the February 4, 1998 Scout Report for Science & Engineering) has released this interesting case study on mercury entitled "Meeting the Challenges of Continental Pollutant Pathways." The eight sections of the report cover human health, ecosystem science, product pathways for mercury, policy and science issues, and recommendations, in addition to introductory and reference materials. The report includes text, numerous figures, tables, and several recommended links.

  11. Ocean processes at the Antarctic continental slope

    PubMed Central

    Heywood, Karen J.; Schmidtko, Sunke; Heuz, Cline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker

    2014-01-01

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and oceanatmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  12. Ocean processes at the Antarctic continental slope.

    PubMed

    Heywood, Karen J; Schmidtko, Sunke; Heuz, Cline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  13. Workshop on the Growth of Continental Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D. (editor)

    1988-01-01

    Constraints and observations were discussed on a fundamental unsolved problem of global scale relating to the growth of planetary crusts. All of the terrestrial planets were considered, but emphasis was placed on the Earth's continental crust. The title of each session is: (1) Extraterrestrial crustal growth and destruction; (2) Constraints for observations and measurements of terrestrial rocks; (3) Models of crustal growth and destruction; and (4) Process of crustal growth and destruction.

  14. Measurement of moss growth in continental Antarctica

    Microsoft Academic Search

    P. M. Selkirk; M. L. Skotnicki

    2007-01-01

    Using steel pins inserted into growing moss colonies near Casey Station, Wilkes Land, continental Antarctica, we have measured\\u000a the growth rate of three moss species: Bryum pseudotriquetrum and Schistidium antarctici over 20years and Ceratodon purpureus over 10years. This has provided the first long-term growth measurements for plants in Antarctica, confirming that moss shoots\\u000a grow extremely slowly in Antarctica, elongating between

  15. Electrical conductivity of the continental crust

    SciTech Connect

    Glover, P.W.J.; Vine, F.J. [Univ. College London, London (United Kingdom)] [Univ. College London, London (United Kingdom); [Univ. of East Anglia, Norwich (United Kingdom)

    1994-11-01

    Geophysical measurements indicate that the Earth`s continental lower crust has a high electrical conductivity for which no simple cause has been found. Explanation usually relies on either saline fluids saturating the pores, or interconnected highly conducting minerals such as graphite, Fe/Ti oxides and sulfides, providing conducting pathways. Attempts in the laboratory to clarify the problem have, hitherto, been unable to recreate conditions likely to be present at depth by controlling the confining pressure and pore fluid pressure applied to a rock saturated with saline fluids at temperatures between 270 C and 1000 C. Here we report conductivity data obtained using a cell designed to make such measurements on rocks saturated with saline fluids. Our results show that the conductivity of saturated samples of acidic rocks is explicable entirely in terms of conduction through the pore fluid whereas the conductivity of saturated basic rocks requires the presence of an additional conduction mechanism(s). We have used the experimental data to construct electrical conductivity/depth profiles for the continental crust, which, when compared with profiles obtained from magnetotelluric observations, demonstrate that a mid to lower crust composed of amphibolite saturated with 0.5 M NaCl shows electrical conductivities sufficient to explain conductivity/depth profiles for the continental crust inferred from geophysical measurements.

  16. Anisotropy beneath a highly extended continental rift

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Abers, Geoffrey A.; Jin, Ge; Gaherty, James B.

    2014-03-01

    have employed shear wave splitting techniques to image anisotropy beneath the D'Entrecasteaux Islands, in southeastern Papua New Guinea. Our results provide a detailed picture of the extending continent that lies immediately ahead of a propagating mid-ocean ridge tip; we image the transition from continental to oceanic extension. A dense shear wave splitting data set from a 2010 to 2011 passive-source seismic deployment is analyzed using single and multichannel methods. Splitting delay times of 1-1.5 s are observed and fast axes of anisotropy trending N-S, parallel to rifting direction, predominate the results. This trend is linked to lattice-preferred orientation of olivine, primarily in the shallow convecting mantle, driven by up to 200 km of N-S continental extension ahead of the westward-propagating Woodlark Rift. This pattern differs from several other continental rifts that evince rift-strike-parallel fast axes and is evident despite the complex recent tectonic history. We contend that across most of this rift, the unusually high rate and magnitude of extension has been sufficient to produce a regime change to a mid-ocean-ridge-like mantle fabric. Stations in the south of our array show more complex splitting that might be related to melt or to complex inherited structure at the edge of the extended region.

  17. Plating on difficult-to-plate metals: what's new

    SciTech Connect

    Wiesner, H.J.

    1980-07-30

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required.

  18. How a Curvilinear Continental Margin Influences Its Subsidence History

    NASA Astrophysics Data System (ADS)

    Sacek, V.; Ussami, N.

    2012-12-01

    Current one-dimensional (1D) and two-dimensional (2D) thermo-mechanical models successfully explain the first-order vertical motions of sedimentary basins created by lithospheric extension. However, the modeling of second-order effects such as extra-subsidence, non-monotonic-subsidence or protracted-subsidence still remains controversial. One aspect that has not been fully considered in the current models is that the rifting direction leading to the continental break-up does not always follow a straight line, which demands a three-dimensional (3D) approach. The aim of this work is to demonstrate the importance of using a 3D model that takes into account the curvature of rifting along the margin and theoretically predicts some of the second-order subsidence observations. Our results indicate that concave oceanward margins tend to subside faster than convex ones. This differential subsidence of the margin is a result of the combined effect of lateral thermal conduction, small-scale mantle (or edge driven) convection and the curvature of the rifting. We have used the finite element code CITCOM (Moresi & Gurnis, 1996; Zhong et al., 2000) to construct 3D numerical models of the mantle convection and its effect on the surface evolution. We observed that the differential subsidence along a curved margin is dependent on the viscosity structure of the mantle: for an asthenospheric viscosity of 51020 Pa.s the differential subsidence can reach more than 700 m assuming a sediment filled basin; however, for low asthenospheric viscosity (<21019 Pa.s), the pattern of faster subsidence of the concave segment of the margin is not observed and the basin subsidence presents no clear correlation with its geometry. As an application of this 3D conceptual model for curved margin, we analysed the stratigraphic evolution of the Santos Basin, offshore Southeastern Brazil, and we propose that the variations in the subsidence history along the margin can be explained by its 3D geometry and the dynamical evolution of the mantle. We conclude that the incorporation of the third dimension in the study of the subsidence history of divergent margins may also provide information on the physical properties of the mantle. Keywords: 3D numerical model; Basin subsidence; Continental margin. References: L. Moresi, M. Gurnis, Constraints on the lateral strength of slabs from three-dimensional dynamic flow models, Earth Planet. Sci. Lett. 138 (1996) 15-28. S. Zhong, M.T. Zuber, L. Moresi, M. Gurnis, The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res. 105 (2000) 11063-11082.

  19. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert

    1992-01-01

    A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.

  20. Active Dehydration, Delamination and Deformation of Transitional Continental Crust in an Arc-Continent Collision, Taiwan

    NASA Astrophysics Data System (ADS)

    Byrne, T. B.; Rau, R. J.; Chen, K. H.; Huang, H. H.; Wang, Y. J.; Ouimet, W. B.

    2014-12-01

    A new study of the 3-D velocity structure of Taiwan, using a new tomographic model (Vp and Vs; Huang et al., 2014), suggests that subducted continental crust is delaminated from the subducting mantle of the Eurasia plate and progressively deformed by the subducting Philippine Sea plate. In southern Taiwan, vertical sections show an east-dipping, asymmetric lobe of low velocity that projects down dip to a band of seismicity interpreted as the Wadati-Benioff zone of the subducting Eurasian plate. Seismic tremors in the mid-crust also suggest dehydration (Chuang et al., 2014), consistent with prograde metamorphism of crustal materials. In central Taiwan, however, the seismicity of the W-B zone progressively disappears and the low velocity lobe shallows and broadens. The velocity structure of the lower and middle crust (represented by the 7.5 and 6.5 km/sec isovelocity surfaces, respectively) also appear distinctly out-of-phase, with the lower crust forming a broad, smooth synformal structure that contrasts with the higher amplitude undulations of the middle crust. These mid-crust structures appear as smaller irregular lobes separated by patches of higher velocity. In northern Taiwan, the velocity structure of the lower and middle crust again appear "in phase" and form a symmetrical crustal root centered beneath the Central Range. Seismicity patterns and 3-D analysis of the velocity structure also show the western edge of the PSP subducting beneath the eastern Central Range. We interpret these south-to-north changes to reflect the partial subduction (southern Taiwan), delamination (central Taiwan) and deformation (northern Taiwan) of continental-like crust. Support for these interpretation comes from: 1) unusually high rates of surface uplift (up to 15 mm/yr; Ching et al., 2011); 2) Vp and Vs attenuation studies that suggest anomalously high temperatures; 3) evidence for NE-SW extension; and 4) anomalous areas of low topographic relief.

  1. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  2. The science behind Plate Tectonics

    NSDL National Science Digital Library

    John Weber

    Plate tectonics is a quantitative, robust and testable, geologic model describing the surface motions of Earth's outer skin. It is based on real data and assumptions, and built using the scientific method. New space geodesy data provide important quantitative (and independent) tests of this model. In general, these new data show a close match to model predictions, and suggest that plate motion is steady and uniform over millions of years. Active research continues to refine the model and to better our understanding of plate motion and tectonics. The exercise presented here aims to help students experience the process of doing science and to understand the science underlying the plate tectonic theory. Key words: plate tectonics, global plate motion models, assumptions, geologic data (spreading rates, transform fault azimuths, earthquake slip vectors), space geodesy tests.

  3. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) The fit of the continents around the Atlantic

    PubMed Central

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160?Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900?m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  4. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  5. Tectonic Plate Movements and Hotspots

    NSDL National Science Digital Library

    Ken Rhinehart

    This lesson introduces the idea that rates and directions of plate movements can be measured. The discussion centers on the use of mantle 'hotspots' to determine plate motions. Examples include the Hawaiian Islands, the Galapagos Islands, and the Yellowstone hotspot. The lesson includes an activity in which students use online resources to answer questions about the Galapagos Islands and measure plate movement rates using online data for the Hawaiian Islands hotspot.

  6. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J. (Richland, WA); Crowell, Shannon L. (Eltopia, WA)

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  7. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media and mode of transport. Distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. On the industrial level, the performance and potential uses of ion plated films are discussed.

  8. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media, and mode of transport. A distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. And on the industrial level, the performance and potential uses of ion plated films are discussed.

  9. Global Topography and Tectonic Plates

    NSDL National Science Digital Library

    David Greene

    The goal of this activity is to investigate global topographic and tectonic features, especially the tectonic plates and their boundaries. Using a double-page size digital topographic map of the Earth that includes both land and sea floor topography, students are asked to draw plate boundaries, deduce plate motions and interactions, and explore the connections between topography and tectonic processes at the global scale.

  10. Recent Earthquakes in Yellow Sea Region and Amur Plate

    NASA Astrophysics Data System (ADS)

    Kim, W. Y.; Satake, K.

    2014-12-01

    Bird (2003) and others suggested the existence of Amur plate in northeastern Asia with its incipient plate boundary along western Honshu - Sakhalin - Stanovoy Mountains - Lake Baikal - Mongolia - Hebei Province, China - Yellow Sea - East China Sea - Nankai Trough. The seismicity along East China Sea and Yellow Sea sections of the suggested boundary is diffuse and does not delineate such boundary. However, recent earthquakes that have occurred along the Yellow Sea region during 2011-2014 show predominantly strike-slip faulting along near vertical nodal planes. These earthquakes may provide an opportunity to study details of the proposed boundaries of Amur plate. Waveform data from broadband seismographic stations in the region around Yellow Sea are analyzed in an attempt to shed light on the nature of the incipient plate boundary for the proposed Amur plate in Yellow Sea region. Regional waveform modeling and deviatoric moment tensor inversion suggest that a broad scale stress field in Yellow Sea region is ENE-WSW trending subhorizontal compressive stress, ?1, with N-S trending horizontal extensional stress, ?3. In such regional stress regime, earthquake mechanisms are predominantly vertical strike-slip faulting, but it allows some E-W normal faulting due to N-S extension. The most likely mode of deformation in Yellow Sea region appears to be right-lateral strike-slip faulting along N-S trending transform faults, and E-W trending normal faulting that accommodates a broad regional stress regime. This is a typical kinematics of rifting at rifted continental margins such as Gulf of California. We observed a broad regional seismic velocity variation along various wave propagation paths as well as indications of crustal thickness variation. Thinner crust beneath Yellow Sea region is indicated from waveform modeling which can support evolution of rifting process.

  11. Alps, Carpathians and Dinarides-Hellenides: about plates, micro-plates and delaminated crustal blocks

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan

    2014-05-01

    Before the onset of Europe-Africa continental collision in the Dinarides-Hellenides (around 60Ma) and in the Alps and Western Carpathians (around 35 Ma), and at a large scale, the dynamics of orogenic processes in the Mediterranean Alpine chains were governed by Europe-Africa plate convergence leading to the disappearance of large parts of intervening oceanic lithosphere, i.e. the northern branch of Neotethys along the Sava-Izmir-Ankara suture and Alpine Tethys along the Valais-Magura suture (Schmid et al. 2008). In spite of this, two major problems concerning the pre-collisional stage are still poorly understood: (1) by now we only start to understand geometry, kinematics and dynamics of the along-strike changes in the polarity of subduction between Alps-Carpathians and Dinarides-Hellenides, and (2) it is not clear yet during exactly which episodes and to what extent intervening rifted continental fragments such as, for example, Iberia-Brianonnais, Tisza, Dacia, Adria-Taurides moved independently as micro-plates, and during which episodes they remained firmly attached to Europa or Africa from which they broke away. As Europe-Africa plate convergence slowed down well below 1 cm/yr at around 30 Ma ago these pre-collisional processes driven by plate convergence on a global scale gave way to more local processes of combined roll-back and crustal delamination in the Pannonian basin of the Carpathian embayment and in the Aegean (as well as in the Western Mediterranean, not discussed in this contribution). In the case of the Carpathian embayment E-directed roll back totally unrelated to Europe-Africa N-S-directed convergence, started at around 20 Ma ago, due to the presence relict oceanic lithosphere in the future Pannonian basin that remained un-subducted during collision. Due to total delamination of the crust from the eastward rolling back European mantle lithosphere the anticlockwise rotating ALCAPA crustal block, consisting of Eastern Alps and Western Carpathian thickened crust ripped of the African plate, invaded the northern part of this oceanic embayment, virtually floating on asthenospheric mantle. The presently still surviving semi-detached Vrancea slab in Romania manifests of the combined effect of roll back and delamination of mantle lithosphere. On the other hand Tisza-Dacia, another crustal block formerly ripped off the European plate and forming a single entity since mid-Cretaceous times, also at least partly floating on asthenospheric mantle, invaded the Carpathian embayment from the south. Thereby the Tisza-Dacia crustal block underwent clockwise rotation by as much as 90 due to the corner effect of the Moesian platform firmly attached to Europe since mid-Cretaceous times (Ustaszewski et al. 2008). In the Dinaric-Aegean realm collision occurred much earlier than in the Alps and the Carpathians, i.e. at around the Cretaceous-Cenozoic boundary, provided that one accepts that there is yet no convincing evidence for the existence of a second "Pindos oceanic domain" closing later, i.e. in Eocene times. However, in spite of early collision, the old subduction zone that consumed the northern branch of Neotethys (Meliata-Vardar) since at least mid-Cretaceous times persisted in the eastern Hellenides (but not in the Dinarides) until now, penetrating the transition zone all the way to a depth of some 1500km (Bijwaard et al. 1998). Continued subduction of mantle lithosphere in the Aegean since 60 Ma was concomitant with complete delamination of lithospheric mantle and lower crust from non-subducted or re-exhumed high pressure crustal flakes of largely continental derivation that were piled up to form the subsequently extended Hellenic orogen (Jolivet & Brun 2010). At around 25 Ma when the southern branch of Neotethys (the present-day Eastern Mediterranean ocean) entered this subduction zone, massive extension and core complex formation in the upper plate combined with an acceleration of south-directed hinge retreat of the lower plate did set in (van Hinsbergen & Schmid 2012). Dinarides and northern

  12. License Plates of the World

    NSDL National Science Digital Library

    Whether you're interested in collecting license plates, or are just moving to Andorra and wonder what your car will be wearing when it gets there, this site provided by collector Michael Kustermann can be a handy reference. A winner in the "labor of love" website category, this frames-based directory contains pictures of and descriptive information about a dizzying range of automobile license plates, arranged geographically. Special issue and commemorative plates are also covered, as well as links to collector's clubs and a bibliography about the art and science of license plate hunting and gathering. You'll never look at bumpers quite the same way.

  13. Carbon-assisted flyer plates

    DOEpatents

    Stahl, David B. (Los Alamos, NM); Paisley, Dennis L. (Santa Fe, NM)

    1994-01-01

    A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

  14. The Nature of Tectonic Plates

    NSDL National Science Digital Library

    2008-12-30

    This lesson provides an overview of the various types of interactions between tectonic plates. The discussion uses the analogy of a cracked egg to describe the tectonic plates composing Earth's crust. Other topics include the concentrated earthquake and volcanic activity associated with plate boundaries, types of interactions at the boundaries, and how plate motions are affecting the Atlantic and Pacific Oceans. The lesson includes an activity in which students will use online references to locate a hypothetical nuclear power plant in a geologically safe area, investigate the history of large earthquakes in South Carolina, provide a likely location for a hypothetical geothermal power plant, and others.

  15. Laser-driven flyer plate

    DOEpatents

    Paisley, Dennis L. (Santa Fe, NM)

    1991-01-01

    Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.

  16. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  17. Subduction on Europa: Evidence for plate tectonics on an icy world (Invited)

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Prockter, L. M.

    2013-12-01

    Europa is the primary target in NASA's future outer solar system exploration strategy. A tidally heated global ocean beneath its ice shell is important for astrobiological considerations; however, habitability requires a source of chemical nutrients. Europa's radiolytically processed surface is a potential source, but a means of delivery of compounds to the ocean is required. Past studies of Europa's surface have been unable to explain an abundance of extensional features (e.g., dilational bands) yet scant evidence of contraction. Moreover, the crater-based surface age (40-90 Myr) indicates one of the solar system's youngest surfaces, implying Europa's surface (3.09 x 107 km2) may have been recycled in this time frame (i.e., 0.3-0.8 km2 per year). We address this enigma by presenting evidence for subduction, and hence plate tectonics, on Europa. We reconstruct geologic features in a 106,000 km2 candidate region to show that the current surface configuration involved numerous translations and rotations of rigid plates. The reconstruction reveals ~100 km of missing surface that seemingly vanished along a 20-km-wide, band-like zone with unusual color characteristics. Mismatching geological features across this zone suggest an ~80-km-wide region may have subducted along a ?300-km-long plate boundary. The subduction zone is arcuate, has no topographic expression at image resolutions, and is partially bounded by transform faults. The overriding plate has numerous strike-slip faults consistent with strain partitioning related to oblique convergence. The surface of the overriding plate is also pervasively dotted with isolated patches of disrupted terrain, which we interpret as erupted cryolava, implying a significant subsurface thermal perturbation related to the potential subduction. If a subduction model for Europa is accurate, buoyancy constraints and a lack of contractional topography imply that the subducting slab does not enter the ocean directly. We thus interpret a thin (~several km), brittle lid overlying a thicker, convecting ice layer, with plate motions and subduction restricted to the brittle lid. The subducting plate is presumably consumed at a rate conducive to complete subsumption into the convecting layer. On Earth, oceanic lithosphere recycling occurred along 55,000 km of subduction zones in <200 Myr at 20-80 mm/yr. On Europa, similar subduction rates (11-26 mm/yr), if valid, are possible for 30,000 km of subduction boundaries. Europa's surface area (~6% of Earth's) would accordingly recycle over a shorter time frame, consistent with the surface age. Our work potentially provides a new paradigm for interpreting Europa's surface features and age, and provides a mechanism to deliver nutrients from the surface to the ocean: crucial for astrobiology and habitability. If subduction exists, Europa would become the only other solar system body beyond Earth to exhibit plate tectonics, involving subduction (surface area removal), mid-ocean-ridge-like spreading (surface area creation at dilational bands), and transform motions. Such motions are presumably driven by convection in the deeper, warmer ice, evidenced by thermal upwellings at sites of chaos and lenticulae.

  18. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4?billion years ago) and global tectonics (approximately 3?billion years ago) suggests that plates and plate boundaries became widespread over a period of 1?billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates. PMID:24717430

  19. Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; LaFemina, Peter; Geirsson, Halldr; Chichaco, Eric; Abrego, Antonio A.; Mora, Hector; Camacho, Eduardo

    2014-05-01

    of the Cocos plate and collision of the Cocos Ridge have profound effects on the kinematics of the western Caribbean, including crustal shortening, segmentation of the overriding plate, and tectonic escape of the Central American fore arc (CAFA). Tectonic models of the Panama Region (PR) have ranged from a rigid block to a deforming plate boundary zone. Recent expansion of GPS networks in Panama, Costa Rica, and Colombia makes it possible to constrain the kinematics of the PR. We present an improved kinematic block model for the western Caribbean, using this improved GPS network to test a suite of tectonic models describing the kinematics of this region. The best fit model predicts an Euler vector for the counterclockwise rotation of the CAFA relative to the Caribbean plate at 89.10W, 7.74N, 1.193 Ma-1, which is expressed as northwest-directed relative block rates of 11.3 1.0-16.5 1.1 mm a-1 from northern Costa Rica to Guatemala. This model also predicts high coupling along the Nicoya and Osa segments of the Middle American subduction zone. Our models demonstrate that the PR acts as a single tectonic block, the Panama block, with a predicted Euler vector of 107.65W, 26.50N, 0.133 Ma-1. This rotation manifests as northeast migration of the Panama block at rates of 6.9 4.0-7.8 4.8 mm a-1 from southern Costa Rica to eastern Panama. We interpret this motion as tectonic escape from Cocos Ridge collision, redirected by collision with the North Andes block, which migrates to the northwest at 12.2 1.2 mm a-1.

  20. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls.

    PubMed

    Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

    2014-06-01

    Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. PMID:24634279

  1. Parameterized Thermal Evolution of the Earth with Continental Growth

    NASA Astrophysics Data System (ADS)

    Menard, J.; Cooper, C. M.

    2014-12-01

    Continental growth on a terrestrial planet acts as an insulator of the mantle heat flow, but it also favors heat loss, as the heat producing elements (40K, 238U, 232Th) are depleted from the mantle, and concentrated in continental crust. As a result, the thermal evolution of the planet strongly depends on the balance between insulation and heat production of the continental lithosphere. What effects will this balance have for the long term thermal history of the planet? We built a parameterized thermal history model of the Earth, which takes into account the continental insulation on the thermal evolution of the Earth. Though the continental crust is generally thought of as a perfect insulator, this might not be entirely correct. Previous models have shown that mantle heat flux has a non-linear dependence to the continental surface area even though the insulating effect of continents can increase the average mantle temperature. Our parameterization includes the continental growth as maintaining the feedback between continental insulation and mantle heat flux. We do this with the scaling of heat flux parameters (Lenardic et al., 2005) and adding the continental crust heat flux component into an equation of heat flux from Sotin and Labrosse (1999). This model brings a more thorough understanding of the thermal evolution of the Earth by taking into account both the continental insulation and the mantle heat flux feedbacks from continental growth. This study will help us understand the thermal history of a terrestrial planet with continents. It will also help us understand the characteristics of heat loss of a terrestrial planet with the onset of continental crust formation.

  2. Role of inherited structures on the strength and strain rate of continental lithosphere

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stephane; Gueydan, Frdric

    2014-05-01

    Under the Wilson Cycle and Plate Tectonics paradigms, continents are divided between stable continental regions (SCR), which tend to remain un-deformed, and plate boundary zones (PBZ) that repeatedly accommodate deformation associated with opening and closing of tectonic plates. This long-term (> 1 Ma) perspective is reflected in short-term (< 100 a) deformation markers such as seismicity and GPS measurements, which highlight the first-order contrast in strain rates between SCR and PBZ. Despite this clear first-order view, significant debate remains regarding short- and long-term strength and deformation rates in intraplate weak zones (e.g., Rhine Graben, New Madrid seismic zone). We propose to constrain first-order strength and strain rates using lithosphere rheological models, including new strain-weakening rheologies, driven by tectonic forces. We estimate average strain rates that satisfy near-failure equilibrium between net driving forces and lithosphere strength for cases that typify PBZ, cratons, and intraplate weak zones. Our model yields a range of strain rates that vary by up to six orders of magnitude between PBZ and cratons. In intraplate weak zones, structural and tectonic heritage results in significant weakening and yields strain rates compatible with GPS, seismicity, and geological markers. These results provide first-order constraints on long-term lithosphere strength and deformation rates. In particular, we explore upper and lower bounds of possible strain rates in intraplate weak zones, using a range of geotherm, rheology, and local stress conditions.

  3. Sub-Plate Overlap Code Documentation

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Bucciarelli, B.; Zarate, N.

    1997-01-01

    An expansion of the plate overlap method of astrometric data reduction to a single plate has been proposed and successfully tested. Each plate is (artificially) divided into sub-plates which can then be overlapped. This reduces the area of a 'plate' over which a plate model needs to accurately represent the relationship between measured coordinates and standard coordinates. Application is made to non-astrographic plates such as Schmidt plates and to wide-field astrographic plates. Indeed, the method is completely general and can be applied to any type of recording media.

  4. Continental arc volcanism and tectonic setting in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Pasquar, G.; Poli, S.; Vezzoli, L.; Zanchi, A.

    1988-01-01

    The Neogene and Quaternary volcanism of Central Anatolia represents the central sector of the Anatolian Volcanic Arc. related to continental collision between the Afro-Arabian and Eurasian plates. It is closely associated with a complex system of tectonic depressions related to brittle deformations of transtentional type and which commenced in the Late Miocene. The volcanism here considered can be divided into three main periods of activity, separated by important deformative and erosive events. The first period is represented by a mostly andesitic effusive activity. The second period is characterized by the emplacement of a thick ignimbritic sequence and shows an areal distribution up to 11,000 km 2. Seven ignimbrite units have been recognized. The three main units were found at a distance of more than 100 km from the presumed source area. Geological and sedimentological data lead us to recognize the Melendiz Dag volcanic complex and the Ciftlik caldera as the probable ignimbrites source vent. During the third period great andesitic-basaltic stratovolcanoes and a number of prevalently acid monogenic centres developed. The relationship between the volcanic activity is clearly conditioned by the main transcurrent fault systems present in Central Anatolia. The Neogene-Quaternary volcanic activity prevalently developed along the ENE-WSW Karaman-Sivas lineament. Most of the great central volcanoes developed at the intersection between the ENE-WSW trends and the Ecemis and Tuz Gl transcurrent faults. The structural interpretation of the Quaternary monogenic centres is more difficult. Probably they are related to the very recent N-S fault swarms which cross the Anatolides and the Taurus Range.

  5. Plasma enhanced ion plating system

    Microsoft Academic Search

    A. Axelevitch; E. Rabinovitch; G. Golan

    1996-01-01

    An anode plasma enhanced ion plating deposition system for high quality rapid deposition was constructed and investigated. This system is based on the modified multipurpose vacuum station VUP-5, however may be adopted for any other construction. Vacuum chamber base pressure was kept below 210-5 Torr. System configuration of the novel ion plating is similar to the conventional vacuum thermal evaporation

  6. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  7. Flat-plate heat pipe

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Fleischman, G. L. (inventors)

    1977-01-01

    Flat plate (vapor chamber) heat pipes were made by enclosing metal wicking between two capillary grooved flat panels. These heat pipes provide a unique configuration and have good capacity and conductance capabilities in zero gravity. When these flat plate vapor chamber heat pipes are heated or cooled, the surfaces are essentially isothermal, varying only 3 to 5 C over the panel surface.

  8. Earthquakes, Volcanoes, and Plate Tectonics

    NSDL National Science Digital Library

    This page consists of two maps of the world, showing how earthquakes define the boundaries of tectonic plates. Volcanoes are also distributed at plate boundaries (the "Ring of Fire" in the Pacific) and at oceanic ridges. It is part of the U.S. Geological Survey's Cascades Volcano Observatory website, which features written material, images, maps, and links to related topics.

  9. Plate Tectonics: Recycling the Seafloor

    NSDL National Science Digital Library

    Lisa Ayers Lawrence

    2012-12-27

    In this activity, learners work in teams to predict and outline the location of plate boundaries using the National Oceanic and Atmospheric Administration's Acoustic Monitoring Program's underwater earthquake data. Then, learners compare their estimates to the USGS's map of the plates and discuss.

  10. Subduction Drive of Plate Tectonics

    Microsoft Academic Search

    W. B. Hamilton

    2003-01-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection

  11. CSDP: Seismology of continental thermal regime

    SciTech Connect

    Aki, K.

    1989-04-01

    This is a progress report for the past one year of research (year 2 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. During the past year, two Ph.D. thesis works were completed under the present project. One is a USC thesis on seismic wave propagation in anisotropic media with application to defining fractures in the earth. The other is a MIT thesis on seismic Q and velocity structure for the magma-hydrothermal system of the Valles Caldera, New Mexico. The P.I. co-organized the first International Workshop on Volcanic Seismology at Capri, Italy in October 1988, and presented the keynote paper on the state-of-art of volcanic seismology''. We presented another paper at the workshop on Assorted Seismic Signals from Kilauea Volcano, Hawaii. Another international meeting, namely, the Chapman Conference on seismic anisotropy in the earth's crust at Berkeley, California in May 1988, was co-organized by the co-P.I. (P.C.L), and we presented our work on seismic waves in heterogeneous and anisotropic media. Adding the publications and presentations made in the past year to the list for the preceding year, the following table lists 21 papers published, submitted or presented in the past two years of the present project. 65 refs., 334 figs., 1 tab.

  12. Transport of particles across continental shelves

    SciTech Connect

    Nittrouer, C.A. (State Univ. of New York, Stony Brook (United States)); Wright, L.D. (Virginia Institute of Marine Science, Gloucester Point, VA (United States) College of William and Mary, Gloucester Point, VA (United States))

    1994-02-01

    Transport of particulate material across continental shelves is well demonstrated by the distributions on the seabed and in the water column of geological, chemical, or biological components, whose sources are found farther landward or farther seaward. This paper addresses passive (incapable of swimming) particles and their transport across (not necessarily off) continental shelves during high stands of sea level. Among the general factors that influence across-shelf transport are shelf geometry, latitudinal constraints, and the timescale of interest. Research studies have investigated the physical mechanisms of transport and have made quantitative estimates of mass flux across continental shelves. Important mechanisms include wind-driven flows, internal wave, wave-orbital flows, infragravity phenomena, buoyant plumes, and surf zone processes. Most particulate transport occurs in the portion of the water column closest to the seabed. Therefore physical processes are effective where and when they influence the bottom boundary layer, causing shear stresses sufficient to erode and transport particulate material. Biological and geological processes at the seabed play important roles within the boundary layer. The coupling of hydrodynamic forces from currents and surface gravity waves has a particularly strong influence on across-shelf transport; during storm events, the combined effect can transport particles tens of kilometers seaward. Several important mechanisms can cause bidirectional (seaward and landward) transport, and estimates of the net flux are difficult to obtain. Also, measurements of across-shelf transport are made difficult by the dominance of along-shelf transport. Geological parameters are often the best indicators of net across-shelf transport integrated over time scales longer than a month. For example, fluvially discharged particles with distinct composition commonly accumulate in the midshelf region. 47 refs., 16 figs.

  13. Global Mantle Flow and the Development of Asthenospheric Anisotropy: Differences Between the Oceanic and Continental Upper Mantle

    NASA Astrophysics Data System (ADS)

    Conrad, C. P.; Behn, M. D.; Silver, P. G.

    2006-12-01

    Viscous shear in the asthenosphere accommodates relative motion between the Earth's surface plates and the underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Anisotropic fabric may also form within the lithospheric layer in response to the lithosphere's geologic history of deformation. Both lithospheric and asthenospheric components may contribute to shear- wave splitting observations of anisotropy. To evaluate geographical variations in the relative importance of the lithospheric and asthenospheric contributions to net anisotropy, we used a global viscous flow model to predict the asthenospheric component. For asthenosphere more than 500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus, we expect ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO~ISA and assuming A-type fabric (olivine a-axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit = 12). Continental anisotropy is less well fit (average misfit = 39), but lateral variations in lithospheric thickness improve the fit in some continental areas. This suggests that asthenospheric anisotropy contributes to shear-wave splitting for both continents and oceans, but is overlain by a stronger layer of lithospheric anisotropy for continents. The contribution of the oceanic lithosphere is likely smaller because it is thinner, younger and less deformed than its continental counterpart.

  14. How Mantle Slabs Drive Plate Tectonics

    Microsoft Academic Search

    Clinton P. Conrad; Carolina Lithgow-Bertelloni

    2002-01-01

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle

  15. Precise hypocenter distribution of deep low-frequency earthquakes and its relationship to the local geometry of the subducting plate in the Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuaki; Ide, Satoshi

    2011-01-01

    We determine the precise hypocenter distribution of deep low-frequency earthquakes (LFEs) in the Nankai subduction zone and compare it with the local geometry of the subducting Philippine Sea plate. We apply a new hypocenter determination method utilizing the summed cross correlation coefficient over many stations, termed a network correlation coefficient (NCC), to 112 LFEs in the western Shikoku and 1566 LFEs in the whole Nankai subduction zone. While the catalog depths are widely distributed in some regions, the relocated hypocenters in every region construct a plane surface several km above the oceanic Moho interface and quite consistent with the geometry of the oceanic Moho. This result strongly supports the hypothesis that LFEs in the Nankai subduction zone occur on the subducting plate boundary and are directly generated by shear slips. If LFEs are indeed direct indicators of the locations of the plate interface, they might be useful to investigate the minute structure of the plate interface. The thin distributions of LFEs indicate that the interface between the subducting and the overriding plates is a distinct very thin boundary, and not a distributed shear zone.

  16. Daly Lecture: Geochemical insights into continental dynamics

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.

    2006-05-01

    Its been known for over a century that the continental crust has an average composition that is intermediate ("andesitic"). Because primary melts of mantle peridotite are basaltic or even more magnesian (e.g., picritic), the average andesitic composition of the continental crust requires the return of mafic to ultramafic material from the crust into the convective mantle. This may be accomplished in several ways, the most popular of which are 1) slab melting and return of mafic/ultramafic residue via subduction and 2) transformation of mafic/ultramafic rock to eclogite at the base of a thickened crust and its subsequent sinking (foundering) or delamination (peeling away). Petrological and geochemical studies of deep-seated xenoliths and continental magmatism offer insights that allow these hypotheses to be tested. As an example, I highlight on-going studies from the North China craton (NCC), where a stable, Archean craton was transformed into tectonically and magmatically active continental lithosphere during the Mesozoic. The NCC consists of two ancient blocks (the western, or Ordos, block and the eastern block) that collided to form the central zone during the late Archean (2.5) or Paleoproterozoic (1.9). Based on Os isotopic studies of peridotitic xenoliths, Archean lithosphere was removed below the central zone in the Paleoproterozoic, consistent with replacement of deep lithosphere during collisional orogeny. This newly formed Paleoproterozoic lithosphere persists beneath the central zone today. In contrast, Archean lithosphere persisted beneath the eastern block throughout much of the Phanerozoic, as refractory Archean peridotites are found in Ordovician diamondiferous kimberlites from the eastern block. However, Cenozoic basalts from the eastern block carry peridotites that have Os isotopic compositions indistinguishable from modern convecting mantle, requiring removal of the cratonic mantle lithosphere sometime between the Ordovician and Cenozoic. Mesozoic high Mg andesites, adakites and dacites have geochemical characteristics consistent with their derivation from mafic lower crust that foundered from the base of the NCC. Moreover, eclogite xenoliths in early Mesozoic magmas document the presence of an eclogitic root formed by Mesozoic high P metamorphism of Archean lower crust during the Mesozoic. Collectively, these observations point to a fundamental transformation of the NCC lithosphere, including density foundering of mafic/ultramafic lower crust, which accompanied Mesozoic collisional orogenies. The NCC may be a unique example of lower crustal foundering within an Archean craton. However, other regions of Archean- aged crust that are no longer cratonic (e.g., Mozambique fold belt of Tanzania) may also have experienced lithospheric thinning. The degree to which lower crustal foundering is responsible for the non-basaltic crust of Archean cratons is yet to be established.

  17. Mexican Forest Inventory Expands Continental Carbon Monitoring

    NASA Astrophysics Data System (ADS)

    Uribe, Alberto Sandoval; Healey, Sean P.; Moisen, Gretchen G.; Rivas, Rigoberto Palafox; Aguilar, Enrique Gonzalez; Tovar, Carmen Lourdes Meneses; Davalos, Ernesto S. Diaz Ponce; Mascorro, Vanessa Silva

    2008-11-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel combustion. However, there are currently large uncertainties in continental carbon models, and the scientific community's understanding of relevant carbon sources and sinks has been much less complete in Mexico than in Canada and the United States [Birdsey et al., 2007].

  18. Crew coordination concepts: Continental Airlines CRM training

    NASA Technical Reports Server (NTRS)

    Christian, Darryl; Morgan, Alice

    1987-01-01

    The outline of the crew coordination concepts at Continental airlines is: (1) Present relevant theory: Contained in a pre-work package and in lecture/discussion form during the work course, (2) Discuss case examples: Contained in the pre-work for study and use during the course; and (3) Simulate practice problems: Introduced during the course as the beginning of an ongoing process. These concepts which are designed to address the problem pilots have in understanding the interaction between situations and their own theories of practice are briefly discussed.

  19. Impact damage of composite plates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.; Goglia, G. L.

    1983-01-01

    A simple model to study low velocity transverse impact of thin plates made of fiber-reinforced composite material, in particular T300/5208 graphite-epoxy was discussed. This model predicts the coefficient of restitution, which is a measure of the energy absorbed by the target during an impact event. The model is constructed on the assumption that the plate is inextensible in the fiber direction and that the material is incompressible in the z-direction. Such a plate essentially deforms by shear, hence this model neglects bending deformations of the plate. The coefficient of restitution is predicted to increase with large interlaminar shear strength and low transverse shear modulus of the laminate. Predictions are compared with the test results of impacted circular and rectangular clamped plates. Experimentally measured values of the coefficient of restitution are found to agree with the predicted values within a reasonable error.

  20. Fundamental processes in ion plating

    SciTech Connect

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process.

  1. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  2. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 1361-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  3. SAMI Automated Plug Plate Configuration

    E-print Network

    Lorente, Nuria P F; Goodwin, Michael

    2012-01-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13 x 61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  4. Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America

    ERIC Educational Resources Information Center

    Poli, Maria-Serena; Capodivacca, Marco

    2011-01-01

    Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North

  5. Details: Elevation of Plate Typical Bay, SectionThrough Plate Typical Bay, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Details: Elevation of Plate Typical Bay, Section-Through Plate Typical Bay, Section-Through Plate Center Bay, Elevation of Plate Center Bay - Contoocook Covered Bridge, Spanning Contoocook River, Hopkinton, Merrimack County, NH

  6. Modelling the Impact of Life on Continental Growth - Mechanisms and Results

    NASA Astrophysics Data System (ADS)

    Hning, D.; Spohn, T.

    2013-12-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater availability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller continental surface area and dryer mantle. The origin and evolution of life on Earth might be responsible for the rise of continents 3.5 billion years ago. References: [1] N. H. Sleep et al., Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 [2] M. T. Rosing et al., Paleo3 232, 90-113, 2006

  7. Three dimensional lithospheric structure of the western continental margin of India constrained from gravity modelling: implication for tectonic evolution

    NASA Astrophysics Data System (ADS)

    Arora, K.; Tiwari, V. M.; Singh, B.; Mishra, D. C.; Grevemeyer, I.

    2012-07-01

    This paper describes a 3-D lithospheric density model of the Western Continental Margin of India (WCMI) based on forward modelling of gravity data derived from satellite altimetry over the ocean and surface measurements on the Indian peninsula. The model covers the north-eastern Arabian Sea and the western part of the Indian Peninsula and incorporates constraints from a wide variety of geophysical and geological information. Salient features of the density model include: (1) the Moho depth varying from 13 km below the oceanic crust to 46 km below the continental interior; (2) the lithosphere-asthenosphere boundary (LAB) located at depths between 70 km in the southwestern corner (under oceanic crust) and about 165 km below the continental region; (3) thickening of the crust under the Chagos-Laccadive and Laxmi Ridges and (4) a revised definition of the continent-ocean boundary. The 3-D density structure of the region enables us to propose an evolutionary model of the WCMI that revisits earlier views of passive rifting. The first stage of continental-scale rifting of Madagascar from India at about 90 Ma is marked by relatively small amounts of magmatism. A second episode of rifting and large-scale magmatism was possibly initiated around 70 Ma with the opening of the Gop Rift. Subsequently at around 68 Ma, the drifting away of the Seychelles and formation of the Laxmi Ridge was a consequence of the down-faulting of the northern margin. During this second episode of rifting, the northern part of the WCMI witnessed massive volcanism attributed to interaction with the Reunion hotspot at around 65 Ma. Subsequent stretching of the transitional crust between about 65 and 62 Ma formed the Laxmi Basin, the southward extension of the failed Gop Rift. As the interaction between plume and lithosphere continued, the Chagos-Laccadive Ridge was emplaced on the edge of the nascent oceanic crust/rifted continental margin in the south as the Indian Plate was moving northwards.

  8. overriding-update By julien

    E-print Network

    Vaandrager, Frits

    (infixl B 101 ) fixes min :: 0a ) 0a ) 0a (infixl 102 ) fixes e :: 0a assumes idemp: f B f = f assumes empty: f f = e assumes swap: f g B g = g B f Then we define three different locales. locale ax1234 = ax123 + assumes dbmin: f (g h) = f g B f (f h) locale ax12345 = ax1234

  9. Tectonics of the Scotia-Antarctica plate boundary constrained from seismic and seismological data

    NASA Astrophysics Data System (ADS)

    Civile, D.; Lodolo, E.; Vuan, A.; Loreto, M. F.

    2012-07-01

    The plate boundary between the Scotia and Antarctic plates runs along the broadly E-W trending South Scotia Ridge. It is a mainly transcurrent margin that juxtaposes thinned continental and transitional crust elements with restricted oceanic basins and deep troughs. Seismic profiles and regional-scale seismological constraints are used to define the peculiarities of the crustal structures in and around the southern Scotia Sea, and focal solutions from recent earthquakes help to understand the present-day geodynamic setting. The northern edge of the western South Scotia Ridge is marked by a sub-vertical, left-lateral master fault. Locally, a narrow wedge of accreted sediments is present at the base of the slope. This segment represents the boundary between the Scotia plate and the independent South Shetland continental block. Along the northern margin of the South Orkney microcontinent, the largest fragment of the South Scotia Ridge, an accretionary prism is present at the base of the slope, which was possibly created by the eastward drift of the South Orkney microcontinent and the consequent subduction of the transitional crust present to the north. East of the South Orkney microcontinent, the physiography and structure of the plate boundary are less constrained. Here the tectonic regime exhibits mainly strike-slip behavior with some grade of extensional component, and the plate boundary is segmented by a series of NNW-SSE trending release zones which favored the fragmentation and dispersion of the crustal blocks. Seismic data have also identified, along the north-western edge of the South Scotia Ridge, an elevated region - the Ona Platform - which can be considered, along with the Terror Rise, as the conjugate margin of the Tierra del Fuego, before the Drake Passage opening. We propose here an evolutionary sketch for the plate boundary (from the Late Oligocene to the present) encompassing the segment from the Elephant Island platform to the Herdman Bank.

  10. Fluid flow paths and upper plate tectonics at erosional margins

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Weinrebe, W.; von Huene, R.; Huguen, C.; Sahling, H.; Bohrmann, G.

    2003-04-01

    An understanding of fluid flow regime and tectonics of convergent margins dominated by subduction erosion processes lags behind that for accretionary margins. Recent seafloor mapping and seismic images along Middle America and North Chile indicate that tectonic processes that pervasively fracture the upper plate across the entire continental slope create a complex hydrological system characterizing erosional margins. The most spectacular fracturing occurs where seamounts underthrust the margin locally uplifting and breaking the upper plate. Fractures concentrate at the summit of the uplift and leave a trail of mass wasting. At the summit, high backscatter energy is coincident with outcrops of authigenic carbonates. Away from the areas of seamount subduction, a pervasive extensional tectonic fabric develops due to collapse of the margin from basal erosion (upper plate material removal along the plate boundary). High resolution bathymetry displays arrays of margin semiparallel normal faults across the middle-upper slope. Associated with the faults groups of mud diapirs pierce through the slope sediment cover and crop out at the seafloor. Photographs and dredging indicate that the mounds are partially covered by chemoherm carbonates and locally chemosynthetic fauna were observed. Seismic data image some of the normal faults cutting from the seafloor to great depths into the upper plate, in some cases perhaps reaching the plate boundary. Thus, mud diapirs and faults might be tapping fluids from that depth. In addition to those areas of focussed fluids flow, positive temperature anomalies over large areas, deduced from depth to Bottom Simulating Reflectors, indicate a diffuse fluid flow. The lower slope is fronted by a small sediment prism (typically 5-15 km wide) constructed from debris wasted from the margin that increases pore pressure along the decollement and facilitates subduction of the incoming sediment. In some cases mass wasting may fill the trench with up to 1 km of fluid-rich sediment that is then subducted. Tectonic erosion implies that the subduction channel is also fed by material from the upper plate, but the volume, composition and fluid content are poorly constrained.

  11. Cretaceous plate interaction during the formation of the Colombian plateau, Northandean margin

    NASA Astrophysics Data System (ADS)

    Kammer, Andreas; Piraquive, Alejandro; Daz, Sebastin

    2015-04-01

    The Cretaceous subduction cycle at the Northandean margin ends with an accretionary event that welds the plateau rocks of the present Western Cordillera to the continental margin. A suture between plateau and rock associations of the continental margin is well exposed at the western border of the Central Cordillera, but overprinted by intense block tectonics. Analyzed in detail, its evolution tracks an increased coupling between lower and upper plate, as may be accounted for by the following stages: 1) The Cretaceous plateau suite records at its onset passive margin conditions, as it encroaches on the continental margin and accounts for an extensional event that triggered the emplacement of ultramafic and mafic igneous rock suites along major faults. 2) An early subduction stage of a still moderate plate coupling is documented by the formation of a magmatic arc in an extensional setting that may have been prompted by slab retreat. Convergence direction was oblique, as attested the transfer of strike-slip displacements to the forearc region. 3) A phase of strong plate interaction entailed the delamination of narrow crustal flakes and their entrainment to depths below the petrologic Moho, as evidenced by their present association to serpentinites in a setting that bears characteristics of a subduction channel. 4) During the final collisional stage deformation is transferred to the lower plate, where the stacking of imbricate sheets, combined with their erosional unloading, led to the formation of an antiformal bulge that fed a foreland basin. - The life time of this Cretaceous subduction cycle was strictly synchronous to the construction of the Colombian plateau. With the final collisional stage magmatic activity vanished. This coincidence incites to explore a relationship between plume activity and subduction.

  12. Cretaceous to present kinematics of the Indian, African and Seychelles plates

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Hoang, Ha H.

    2014-01-01

    An iterative inverse model of seafloor spreading data from the Mascarene and Madagascar basins and the flanks of the Carlsberg Ridge describes a continuous history of Indian-African Plate divergence since 84 Ma. Visual-fit modelling of conjugate magnetic anomaly data from near the Seychelles platform and Laxmi Ridge documents rapid rotation of a Seychelles Plate about a nearby Euler pole in Palaeocene times. As the Euler pole migrated during this rotation, the Amirante Trench on the western side of the plate accommodated first convergence and later divergence with the African Plate. The unusual present-day morphology of the Amirante Trench and neighbouring Amirante Banks can be related to crustal thickening by thrusting and folding during the convergent phase and the subsequent development of a spreading centre with a median valley during the divergent phase. The model fits FZ trends in the north Arabian and east Somali basins, suggesting that they formed in India-Africa Plate divergence. Seafloor fabric in and between the basins shows that they initially hosted a segmented spreading ridge that accommodated slow plate divergence until 71-69 Ma, and that upon arrival of the Deccan-Runion plume and an increase to faster plate divergence rates in the period 69-65 Ma, segments of the ridge lengthened and propagated. Ridge propagation into the Indian continental margin led first to the formation of the Laxmi Basin, which accompanied extensive volcanism onshore at the Deccan Traps and offshore at the Saurashtra High and Somnath Ridge. A second propagation episode initiated the ancestral Carlsberg Ridge at which Seychelles-India and India-Africa Plate motions were accommodated. With the completion of this propagation, the plate boundaries in the Mascarene Basin were abandoned. Seafloor spreading between this time and the present has been accommodated solely at the Carlsberg Ridge.

  13. When and How Did Continental Crust Form?

    NSDL National Science Digital Library

    Dave Mogk

    Given the extensive literature on the composition and evolution of continental crust there are a number of teaching strategies that can be employed to encourage active learning by students. A critical reading of this collection of articles will provide students with a good opportunity to evaluate the chemical isotopic and physical evidence that has led to the development of these models of continental crustal growth. These instructional approaches build on recommendations from Project 2061, Science for all Americans: 1) Start with questions about nature. 2) Engage students actively. 3) Concentrate onthe collection and use of evidence. 4) Provide historical perspectives. 5) Use a team approach. 6) Do not separate knowing from finding out. A compilation from the primary literature has been provided (see the reference list at the end of this web page: http://serc.carleton.edu/NAGTWorkshops/earlyearth/questions/crust.html), along with guiding questions for deeper exploration and discovery. Recommended instructional methods include: jigsaw method, role playing or debates (have each student play the role of Richard Armstrong, Ross Taylor, William Fyfe...), reading the primary literature, or problem-based learning (which is purposefully ambiguous and addresses questions that require independent discovery).

  14. Continental water storage variations in Africa

    NASA Astrophysics Data System (ADS)

    Boy, Jean-Paul; Carabajal, Claudia; Luthcke, Scott; Rowlands, David; Lemoine, Frank; Sabaka, Terence

    2010-05-01

    We investigate temporal and spatial variations of continental water storage in Africa as recovered by the GRACE (Gravity Recovery and Climate Experiment) mission. Mass variations are directly inverted from only KBRR (K-band range rate) data using a mascon approach. We compare our solutions to classical spherical harmonic solutions and also to different global hydrology models, and regional models in the African monsoon area (thanks to the ALMIP project). We compare mass estimates of major Africa lakes and reservoirs to volume estimates from laser (ICESat) and radar altimetry. We investigate the improvement of our mass retrievals when hydrology (GLDAS/Noah model) is forward modeled, compared to the more classical approach when continental water storages variations are not taken into when processing GRACE data. We solve the water mass balance equations using different precipitation datasets from remote sensing techniques, as well as ground rain gauge stations, using fresh water fluxes (precipitation minus evaporation) from various atmospheric models (reanalysis and operational). As a result, our runoff are compared to river flux measurements. In addition to the comparison with the ALMIP models, we also pay a special attention to the Lake Chad and Niger river basins, where ground gravity variations are repetitively measured as part of the GHYRAF project in order to investigate seasonal water storage variations at small and larger spatial scales.

  15. Continental water storage variations in Africa

    NASA Astrophysics Data System (ADS)

    Boy, J.; Carabajal, C. C.; Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Sabaka, T. J.

    2009-12-01

    We investigate the temporal and spatial variations of continental water storage in Africa as recovered by the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission. Mass variations are directly inverted from the K-band range rate using the mascon approach. We compare our solution to global different hydrological models. We solve the water mass balance equation, using different precipitation datasets from remote sensing techniques, as well as meteorological stations, using water fluxes (precipitation minus evaporation) from different atmospheric models. As a result, our runoff estimates are compared to river fluxes measurements. We compare mass estimates of major African lakes to volume estimated from space Laser (ICESat) and radar altimetry. As our forward modeling includes the continental water storage variations (using GLDAS/Noah model), leaking effects are significantly reduced. We also pay a special attention to the Lake Chad and Niger river basins, where ground gravity variations are repetitively measured as part of the GHYRAF project in order to investigate seasonal water storage variations at small and larger spatial scales.

  16. Hydration of the lithospheric mantle by the descending plate in a continent-continent collisional setting

    NASA Astrophysics Data System (ADS)

    Massonne, Hans-Joachim

    2014-05-01

    When continents collide, can the orogenic crust be thickened by the process of wholesale underthrusting of the descending plate (Zhou & Murphy, 2005)? Actually, thick lithospheric plates collide after complete subduction of the oceanic plate in between. Thus, the role of the lithospheric mantle below the upper plate must be considered to answer this question. As the descending plate, especially its former near-surface region, significantly dehydrates, the hydration of this mantle portion was studied. For this reason, pressure (P) - temperature (T) and T- H2O pseudosections were calculated for an average mantle composition using the computer software PERPLEX (Connolly, 2005). These pseudosections were contoured by isopleths for volumes of amphibole, chlorite, and serpentine. It can be easily recognized from the produced graphs that considerable amounts of amphibole and chlorite can result from addition of some water to the dry ultrabasite. In the P-range 8 to 15 kbar, a maximum of nearly 20 vol.% amphibole and 10 vol.% chlorite forms when only 1.5 wt.% H2O is added at temperatures up to 700C. This amount of chlorite continuously disappears with rising temperatures up to 800C and somewhat more. In the given P-range, serpentine forms only below 600C and H2O contents >2 wt.% added. For example, at 550C and 5 wt.% H2O hydrous phases amount to about 35 vol.% serpentine, 10 vol.% of each chlorite and amphibole and very little biotite in the studied ultrabasite. As the hydration of the lithospheric mantle below the upper plate would change its rheological properties, the following geodynamic scenario is conceivable: The tip of the descending continental plate hydrates this mantle portion and weakens it. This allows the buoyant tip of this plate to penetrate the lithospheric mantle close to the interface of mantle and overlying crust. As the dehydration of the penetrating continental crust continues by heating, the hydration and weakening of the mantle is also ongoing to cause a significant penetration and, thus, a wholesale thrusting of the descending plate under the other continental plate, eventually with a thin hydrated mantle region in between. For example, pelitic rocks, common in the upper portion of continental crust, can release about 2.5 wt.% H2O between 450 to 650C at 10-15 kbar (e.g. Massonne et al., 2013). A pile of 3 km of such rocks extending over 300 km perpendicular to the initial orogenic front could supply so much water to produce a 500 m thick weak zone in the mantle with about 20 vol.% amphibole and 10 vol.% chlorite over 3000 km. The termination of the underthrust process can be caused by heating of the frontal portion of the underthrust plate to 650C and more, which is then not anymore capable to hydrate the lithospheric mantle. Connolly, J.A.D., 2005. Earth Planet. Sci. Letters 236, 524-541. Massonne, H.-J. et al., 2013. Lithos 156-159, 171-185. Zhou, H.-W. & Murphy, M.A., 2005. J. Asian Earth Sci. 25, 445-457

  17. Plate Tectonic Consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere

    E-print Network

    Heine, Christian; McKay, Hamish; Mller, R Dietmar

    2012-01-01

    The Banda Arc, situated west of Irian Jaya and in the easternmost extension of the Sunda subduction zone system, reveals a characteristic bowl-shaped geometry in seismic tomographic images. This indicates that the oceanic lithosphere still remains attached to the surrounding continental margins of northern Australia and the Bird's Head microcontinent. Major controversies exist between authors proposing an allochthonous or autochthonous origin of the Bird's Head block. Either scenario has important implications for plate kinematic models aiming to reconstruct the tectonic evolution of the region and the late Jurassic seaoor spreading geometry of this now subducted Argo-Tanimbar-Seram (ATS) ocean basin. Wider implications affect the tectonic conguration of the Tethyan-Pacic realm, the distribution of plate boundaries as well as the shape and size of continental blocks which have been rifted off the northeastern Gondwana margin during the Late Jurassic and are now accreted to the SE Asia margin. We apply structu...

  18. 77 FR 73049 - Notice of Availability of the Draft Environmental Impact Statement for the Continental Divide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...the Continental Divide-Creston Natural Gas Development Project, Wyoming AGENCY...proposed Continental Divide-Creston Natural Gas Development Project, and by this...the Continental Divide-Creston Natural Gas Development Project Draft EIS...

  19. The rapid drift of the Indian tectonic plate.

    PubMed

    Kumar, Prakash; Yuan, Xiaohui; Kumar, M Ravi; Kind, Rainer; Li, Xueqing; Chadha, R K

    2007-10-18

    The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago, and consequently the opening of the Indian Ocean, is thought to have been caused by heating of the lithosphere from below by a large plume whose relicts are now the Marion, Kerguelen and Runion plumes. Plate reconstructions based on palaeomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm yr(-1) during the late Cretaceous period) subsequent to its breakup from Gondwanaland, and then slowed to approximately 5 cm yr(-1) after the continental collision with Asia approximately 50 Myr ago. The Australian and African plates moved comparatively less distance and at much lower speeds of 2-4 cm yr(-1) (refs 3-5). Antarctica remained almost stationary. This mobility makes India unique among the fragments of Gondwanaland. Here we propose that when the fragments of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere were important in determining their speed. We estimated the thickness of the lithospheric plates of the different fragments of Gondwanaland around the Indian Ocean by using the shear-wave receiver function technique. We found that the fragment of Gondwanaland with clearly the thinnest lithosphere is India. The lithospheric roots in South Africa, Australia and Antarctica are between 180 and 300 km deep, whereas the Indian lithosphere extends only about 100 km deep. We infer that the plume that partitioned Gondwanaland may have also melted the lower half of the Indian lithosphere, thus permitting faster motion due to ridge push or slab pull. PMID:17943128

  20. Formation of plate boundaries: The role of mantle volatilization

    NASA Astrophysics Data System (ADS)

    Seno, Tetsuzo; Kirby, Stephen H.

    2014-02-01

    In the early Earth, convection occurred with the accumulation of thick crust over a weak boundary layer downwelling into the mantle (Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963-966.). This would have transitioned to stagnant-lid convection as the mantle cooled (Solomatov, V.S., Moresi, L.-N., 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907-1910.) or back to a magma ocean as the mantle heated (Sleep, N., 2000. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105(E7): 17563-17578). Because plate tectonics began operating on the Earth, subduction must have been initiated, thus avoiding these shifts. Based on an analogy with the continental crust subducted beneath Hindu Kush and Burma, we propose that the lithosphere was hydrated and/or carbonated by H2O-CO2 vapors released from magmas generated in upwelling plumes and subsequently volatilized during underthrusting, resulting in lubrication of the thrust above, and subduction of the lithosphere along with the overlying thick crust. Once subduction had been initiated, serpentinized forearc mantle may have formed in a wedge-shaped body above a dehydrating slab. In relict arcs, suture zones, or rifted margins, any agent that warms and dehydrates the wedge would weaken the region surrounding it, and form various types of plate boundaries depending on the operating tectonic stress. Thus, once subduction is initiated, formation of plate boundaries might be facilitated by a major fundamental process: weakening due to the release of pressurized water from the warming serpentinized forearc mantle.

  1. Late Neogene geohistory analysis of the Humboldt basin and its relationship to convergence of the Juan de Fuca plate

    USGS Publications Warehouse

    McCrory, P.A.

    1989-01-01

    Geohistory analysis of Neogene Humboldt basin strata provides important constraints for hypotheses of the tectonic evolution of the southern Cascadia subduction margin, leading up to the arrival of the Mendocino triple junction. This analysis suggests that the tectonic evolution of the Humboldt basin area was dominated by coupling between the downgoing Juan de Fuca plate and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin uplift and subsidence which occur during periods of tectonic plate adjustment. -from Author

  2. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  3. Edge fracture in cone-plate and parallel plate flows

    Microsoft Academic Search

    Matti Keentok; Shi-Cheng Xue

    1999-01-01

    Edge fracture is an instability of cone-plate and parallel plate flows of viscoelastic liquids and suspensions, characterised\\u000a by the formation of a `crack' or indentation at a critical shear rate on the free surface of the liquid. A study is undertaken\\u000a of the theoretical, experimental and computational aspects of edge fracture. The Tanner-Keentok theory of edge fracture in\\u000a second-order liquids

  4. Maritime-Continental Drizzle Contrasts in Small Cumuli

    Microsoft Academic Search

    James G. Hudson; Seong Soo Yum

    2001-01-01

    Continuous aircraft measurements of cloud condensation nuclei (CCN) were made during 16 summertime flights in eastern Florida. The air masses were divisible into maritime and continental regimes that respectively corresponded to wind direction-easterly (onshore) and westerly (offshore). Throughout these small cumulus clouds there were consistently higher concentrations of smaller droplets in the continental air. There was much more drizzle (diameter

  5. Perspective on the sequence stratigraphy of continental strata

    Microsoft Academic Search

    K. W. Shanley; P. J. McCabe

    1994-01-01

    This report is the result of a working group on continental sequence stratigraphy that was set up at the 1991 NUNA conference in Banff, Canada. To data, sequence stratigraphic concepts have been applied mainly to the marine realm, but unconformity-bounded units have long been recognized in nonmarine strata. Successful application of sequence stratigraphic concepts to continental strata requires careful consideration

  6. Rapid Continental Subsidence Following the Initiation and Evolution of Subduction

    Microsoft Academic Search

    Michael Gurnis

    1992-01-01

    Dynamic topography resulting from initiation of slab subduction at an oceancontinent margin causes the continental lithosphere to subside rapidly. As subduction continues and the slab shallows, a basin depocenter and forebulge migrate in toward the continental interior. Finally, closure of the ocean basin leads to regional uplift. These active margin processes have commonly been ascribed to supracrustal loading, but numerical

  7. Summer surface circulation along the Gascoyne continental shelf, Western Australia

    Microsoft Academic Search

    Mun Woo; Charitha Pattiaratchi; William Schroeder

    2006-01-01

    The Gascoyne continental shelf is located along the north-central coastline of Western Australia between latitudes 21 and 28S. This paper presents CTD and ADCP data collected in November 2000 together with concurrent wind and satellite imagery, to provide a description of the summer surface circulation pattern along the Gascoyne continental shelf and slope. It is shown that the region comprises

  8. RESEARCH Open Access Inference of human continental origin and

    E-print Network

    Kidd, Kenneth

    RESEARCH Open Access Inference of human continental origin and admixture proportions using a highly the seven continental regions Africa, the Middle East, Europe, Central/ South Asia, East Asia, the Americas be geographically restricted because of evolutionary forces such as mutation, genetic drift, mi- gration and natural

  9. Permeability of continental crust influenced by internal and external forcing

    Microsoft Academic Search

    S. A. R OJSTACZER; S. E. IN; GEB RIT

    The permeability of continental crust is so highly variable that it is often considered to defy systematic character- ization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth rela- tions) on a very large scale? Here we argue that large-scale crustal

  10. Abundance of chemical elements in continental shelf sediment of China

    Microsoft Academic Search

    Y.-Y. Zhao; R.-H. Jiang; M.-C. Yan

    1995-01-01

    For the first time, an element abundance table of China Shelf Sea sediments is published based on 286 samples from the continental shelf of China analyzed for 62 chemical elements. The shelf sediments result from the redistribution of sediments from China over the continental shelf. On the basis of comparison of element abundances among the China shelf samples, hemipelagic Okinawa

  11. INTRODUCTION Understanding the origin of continental crust is

    E-print Network

    Holbrook, W. Steven

    Lennan andTaylor, 1982;Taylor, 1977;Taylor and McLennan, 1981) proposed the "andesite model" of continental crustal growth, which holds that arcs produce crust of bulk andesitic composi- tion, in accord with the andesitic bulk composition of continental crust (Christensen and Mooney, 1995; Rudnick and Fountain, 1995

  12. Rheological and geodynamic controls on the mechanisms of subduction, HP/UHP exhumation and PT conditions within crustal rocks during continental collision: insights from numerical models

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni

    2014-05-01

    Mechanisms of continental convergence are so versatile that it is impossible to elucidate them from conventional set of observations. Additional discriminatory data are needed such as those derived from petrology data, since burial/exhumation dynamics inferred from metamorphic P-T-t paths potentially provides independent constraints on the collision mechanism. While subduction of crustal rocks is increasingly accepted as common phenomenon inherent to convergent processes involving continental plates and micro-continents, the conditions of their formation and mechanisms of their exhumation in the form of high- and ultra-high-pressure (HP/UHP) units remain a subject of controversy. In particular, deep burial and exhumation of continental crust occur in various settings, including subduction of micro-continental terrains carried down with the subducting oceanic lithosphere and transition between the oceanic and continental subduction. Geodynamic inferences from P-T data can be made only after providing a consistent approach to decryption of both pressure and temperature in terms of depth or at least in terms of characteristic geodynamic conditions. Thermo-mechanical thermodynamically coupled numerical models of continental collision provide some elements of solution to this problem through testing various geodynamic scenarios within relatively unconstrained framework which allows for account of non-lithostatic pressure variations and for deviations of temperature from commonly inferred thermal models. We here explore several possible scenarios of subduction and exhumation of continental crust, and their relation to PT conditions and mechanisms of HP/UHP exhumation inferred from conceptual and thermo-mechanical numerical models accounting for thermo-rheological complexity and diversity of the continental lithosphere. Numerical experiments suggest that in most cases both exhumation and continental subduction are transient processes, so that long-lasting (> 10-15 Myr) continental subduction occurs in very specific cases of cold strong lithospheres while in general this process takes less than 5 Myr. During the active subduction phase (simple shear accommodation of convergence) we do not detect significant deviations (+-20%) of total pressure in the subduction channel from lithostatic values , that can be rather lower than the lithostatic pressure, while intra-channel temperatures vary in quite large limits. Hence, large volumes of HP/UHP metamorphic rocks generated and brought to the surface during subduction phase would not record significant deviations from the lithostatic pressure conditions. At the same time, strong non-lithostatic pressures (extensional and compressional) are predicted for some internal parts of the colliding plates that, however, are not prone to yield "extractable" metamorphic material. The experiments also show that high non-lithostatic pressures develop in the former subduction channel at its lock-up , during and after the transition from subduction to pure shear collision or folding, while the metamorphic material generated at this stage appears to be blocked at depth and does not return to the surface (at least if the channel is not unlocked due some external conditions). We suggest that most continental orogenic belts could have started their formation from continental subduction. This process has been generally limited in time while pressures recorded in the HP and UHP material generated at this stage can be largely treated in terms of the lithostatic approximation. In case of subduction of continental terrains embedded in the oceanic lithosphere, it can be shown that their exhumation, resulting in formation of metaphoric belts and domes, may initiate series of slab roll-back and exhumation events associated with remarkably complex and spatially variable P-T-t paths.

  13. Interpretation of Continental Scale Gravity Signatures from GOCE at Smaller Scale Mineral Hosting outcrops

    NASA Astrophysics Data System (ADS)

    Braitenberg, C. F.

    2014-12-01

    The GOCE gravity field is globally homogeneous at the resolution of about 50km or better allowing for the first time to analyze tectonic structures on the continental scale. Geologic correlation studies propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events that induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Applying geodynamic plate reconstructions to the GOCE gravity field places today's observed field at the pre-breakup position (Braitenberg, 2014). The same reconstruction can be applied to the seismic velocity models, to allow a joint gravity-velocity analysis. The geophysical fields bear information to control the likeliness of the hypothesized continuation of lineations. Total absence of a signal, makes the cross-continental continuation of the lineament unprobable, as continental-wide lineaments are controlled by rheologic and compositional differences of crust and upper mantle. Special attention is given to Greenstone belts, which are associated to a class of important mineralizations. The outcrops are limited in extent, but are associated with a much broader gravity signature, which cannot be explained by the outcropping masses alone. The gravity requires a mass source residing at lower crustal level, giving evidence of the mantle-crust melting processes influencing the tectonic characteristic at surface. The study is carried out over the African and South American continents. Reference Braitenberg C. (2014). Exploration of tectonic structures with GOCE in Africa and across-continents. International Journal of Applied Earth Observation and Geoinformation, doi:10.1016/j.jag.2014.013

  14. Mountain Building in interior East Antarctica caused by Continental Rifting around a Stalled Precambrian Orogen

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Finn, C.; Jordan, T. A.; Bell, R. E.; Anderson, L.; Damaske, D.

    2011-12-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, as they are completely hidden beneath the East Antarctic Ice Sheet. The paradox of their high elevation and youthful Alpine topography, but location on the East Antarctic craton, has puzzled researchers since their first discovery in 1958. Recent studies suggest that the preservation of Alpine topography in the Gamburtevs reflects extremely low long-term erosion rates beneath the East Antarctic Ice Sheet. However, the origin of the Gamburtsevs remains problematic within the plate tectonic paradigm. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs derived from new radar, gravity and magnetic data collected as part of AGAP, a flagship project of the International Polar Year. The geophysical data define a 2500 km-long rift system in East Antarctica surrounding the Gamburtsevs and a thick crustal root beneath the range. We propose that the root formed during the Meso or Paleoproterozoic assembly of East Antarctica, was preserved as in some other Paleozoic and Proterozoic orogens and rejunvenated during much later Permian (ca 280 Ma) and Cretaceous (ca 100 Ma) rifting. Much like East Africa, the interior of East Antarctica appears to be a mosaic of Precambrian provinces affected by continental rifting processes. Our flexural models show that the combination of rift-flank uplift, root buoyancy, and the isostatic response to fluvial and glacial erosion explains both the high-elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that continental rifting and preserved orogenic roots can produce broad regions of high topography within continental interiors without significantly modifying the underlying Precambrian lithosphere.

  15. The 3-D dynamics of slab break-off and implications for continental collision zones

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; Allen, Mark

    2010-05-01

    Some of the world best studied mountain ranges are a result of continental collision, such as the Himalayas, Zagros mountains, and the Alps. Continental collision forms the last stage of the closure of an oceanic basin, and leads to the slow-down or complete cessation of the subduction process. Previously subducted slab material will experience a period of thermal warming (Gerya et al., 2004) and/or a larger tensile stress, and will eventually weaken, yield and sink into the mantle. This process has potentially important implications for the thermal and stress regime of the overlying convergence zone, and has been held responsible for various phenomena such as late-stage magmatism (Davies and von Blanckenburg, 1995) and surface uplift or depression (van der Meulen et al., 1998, Buiter et al., 2002). Even though the collision process itself is relatively short-lived compared to the preceding oceanic subduction, its remnants are often preserved, and probably provide a valuable window into the plate tectonic process during the Proterozoic and perhaps the Archaean (e.g. Calvert et al., 1995). The three-dimensional nature of this break-off process has previously been discussed with conceptual models. E.g. slab break-off has been suggested to propagate laterally through an advancing tear (Wortel and Spakman, 2000). In this study we present 3D numerical results of the evolution of slab break-off. We focus on the development and evolution of a laterally migrating slab tear, and present results on the sensitivity of this process to the geometry of the closing oceanic basin, the tensile stresses in and the rheological properties of the slab, and the thermal state of the surrounding mantle. By comparing our numerical results to previously published analogue results (Regard et al., 2004) and various tomographic, structural, and magmatic observations of well-studied subduction collision systems, we are able to extract valuable insights in to the dynamics and strength of subducting oceanic and continental lithosphere.

  16. From collision to extension: The roots of the southeastern continental margin of Brazil

    NASA Astrophysics Data System (ADS)

    Heilbron, Monica; Mohriak, Webster U.; Valeriano, Cludio M.; Milani, Edison J.; Almeida, Julio; Tupinamb, Miguel

    The South Atlantic Meso-Cenozoic continental margins are located in regions characterized by a long-lived history of Proterozoic extension, structural inversion and compressional remobilization of basement and supracrustal rocks. The roots of the present-day southeastern Brazilian continental margin (e.g. Santos and Campos basins) are associated with terranes directly affected by the Brasiliano orogenic collage. This event was responsible for the Ribeira fold belt, which is characterized by compressional, metamorphic and magmatic episodes from Late Precambrian to the earliest Paleozoic. The initial phases of subsidence of the intracratonic Paran basin, located west of the Ribeira fold belt, correspond to early Paleozoic siliciclastic rocks deposited in depocenters that were probably controlled by Brasiliano fabrics. The basin-forming stress fields may be related to the lithospheric convergence between Panthalassa oceanic crust and cratonic blocks of western Gondwana. The last phase of subsidence in the Paran basin is marked by Late Jurassic/Early Cretaceous tholeiitic continental flood basalts. These basalts heralded the breakup of Gondwana. They were also deposited on the Precambrian basement offshore, and are believed to be part of the rift succession. The breakup of western Gondwana and the onset of a new phase of plate divergence in the South Atlantic were marked by thick wedges of seaward-dipping reflectors near the incipient oceanic-ridge spreading center. Subsequently, a few episodes of intraplate tectonic and magmatic activity are also possibly related to compressional stresses resulting from subduction in the Andean margin and ridge push in the mid-Atlantic spreading ridge.

  17. Using Seismic Discontinuities to Image Melt and Dynamics in the Sub-Continental Upper Mantle

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Courtier, A. M.; Hier-Majumder, S.; Lekic, V.

    2014-12-01

    Continents are assembled from multiple Proterozoic and Archean terranes to form stable cratonic platforms with associated deformation typically localized to margins and/or rift zones. Successive episodes of subsequent extension, compression, magmatism, accretion, and rifting have left the sub-continental upper mantle with a complex signature of thermal and chemical heterogeneity. One key interest is the history of melt production, migration, and storage in sub-continental upper mantle as it provides a window into past and present dynamical processes, including the differentiation and formation of continental structure. Here we examine seismic discontinuities within the mantle that arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. Using a dataset of broadband seismograms of underside reflected S-waves arriving as precursors to the seismic phase SS, we determine the depth and impedance contrast of discontinuities in the depth range of 80-410 km. Our observations are compared to predictions for the seismic moduli from a mineral physics database using the software MuMaP (Multiphase Material Properties). MuMaP modeling allows us to vary the average regional temperature, mantle composition and account for the effects of melt (if present). In our initial study of the western North American plate, we detect the presence of the 410 km discontinuity, a discontinuity at 300 km depth (X), and a G discontinuity at 60-80 km depth. The X is indicative of the coesite to stishovite phase transition in the upper mantle and suggests substantial mixing of subducted basalt with the mantle. The presence of the G may indicate partial melt in the asthenosphere, melt frozen into the lithosphere, and/or anisotropic fabrics preserved beneath the continent. These hypotheses are evaluated against MuMap predictions for melt content and anisotropic structure in the upper mantle.

  18. An example of neotectonism in a continental interior - Thebes Gap, Midcontinent, United States

    USGS Publications Warehouse

    Harrison, R.W.; Hoffman, D.; Vaughn, J.D.; Palmer, J.R.; Wiscombe, C.L.; McGeehin, J.P.; Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Forman, S.L.

    1999-01-01

    Some of the most intense neotectonic activity known in the continental interior of North America has been recently discovered on a fault zone in the Thebes Gap area, Missouri and Illinois. This faulting almost assuredly was accompanied by large earthquakes. The zone is located approximately 30 km north of the New Madrid seismic zone and consists of complex north-northeast- to northeast-striking, steeply dipping faults that have had a long-lived history of reactivation throughout most of the Phanerozoic. Geophysical studies by others suggest that the faults are rooted in the deeply buried Late Proterozoic and Early Cambrian Reelfoot rift system. Quaternary deposits are cut by at least four episodes of faulting, two of which occurred during the Holocene. The overall style of neotectonic deformation is interpreted as right-lateral strike-slip faulting. At many locations, however, near-surface displacements have stepped from one fault strand to another and produced normal and oblique-slip faults in areas of transtension and high-angle reverse faults, thrust faults, and folds in areas of transpression. There is evidence of reactivation of some near-surface fault segments during the great 1811-1812 New Madrid earthquakes. Quaternary faulting at Thebes Gap demonstrates that there are additional seismic-source zones in the Midcontinent, U.S., other than New Madrid, and that even in the absence of plate-margin orogenesis, intense neotectonic activity does occur over long time periods along crustal weakenesses in continental interiors.

  19. Rift migration explains continental margin asymmetry and crustal hyper-extension.

    PubMed

    Brune, Sascha; Heine, Christian; Prez-Gussiny, Marta; Sobolev, Stephan V

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  20. Deep structure of the central Lesser Antilles Island Arc: Relevance for the formation of continental crust

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Weinzierl, W.; Becel, A.; Charvis, P.; Evain, M.; Flueh, E. R.; Gailler, A.; Galve, A.; Hirn, A.; Kandilarov, A.; Klaeschen, D.; Laigle, M.; Papenberg, C.; Planert, L.; Roux, E.

    2011-04-01

    Oceanic island arcs are sites of high magma production and contribute to the formation of continental crust. Geophysical studies may provide information on the configuration and composition of island arc crust, however, to date only few seismic profiles exist across active island arcs, limiting our knowledge on the deep structure and processes related to the production of arc crust. We acquired active-source wide-angle seismic data crossing the central Lesser Antilles island arc north of Dominica where the oceanic Tiburon Ridge subducts obliquely beneath the forearc. A combined analysis of wide-angle seismics and pre-stack depth migrated reflection data images the complex structure of the backstop and its segmentation into two individual ridges, suggesting an intricate relation between subducted basement relief and forearc deformation. Tomographic imaging reveals three distinct layers composing the island arc crust. A three kilometer thick upper crust of volcanogenic sedimentary rocks and volcaniclastics is underlain by intermediate to felsic middle crust and plutonic lower crust. The island arc crust may comprise inherited elements of oceanic plateau material contributing to the observed crustal thickness. A high density ultramafic cumulates layer is not detected, which is an important observation for models of continental crust formation. The upper plate Moho is found at a depth of 24 km below the sea floor. Upper mantle velocities are close to the global average. Our study provides important information on the composition of the island arc crust and its deep structure, ranging from intermediate to felsic and mafic conditions.