Science.gov

Sample records for oxidation processes aop

  1. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    EPA Science Inventory

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  2. ADVANCED OXIDATION PROCESSES (AOPS) FOR DESTRUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE -AN UNREGULATED CONTAMINANT) IN DRINKING WATER

    EPA Science Inventory

    Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...

  3. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    PubMed

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. PMID:27093694

  4. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation.

    PubMed

    Mahamuni, Naresh N; Adewuyi, Yusuf G

    2010-08-01

    Two things are needed for any technology to be suitable for use in the industry, viz. 1. Technical feasibility and 2. Economical feasibility. The use of ultrasound for waste water treatment has been shown to be technically feasible by numerous reports in the literature over the years. But there are hardly any exhaustive reports which address the issue of economical feasibility of the use of ultrasound for waste water treatment on industrial scale. Hence an attempt was made to estimate the cost for the waste water treatment using ultrasound. The costs have been calculated for 1000 L/min capacity treatment plant. The costs were calculated based upon the rate constants for pollutant degradation. The pollutants considered were phenol, trichloroethylene (TCE) and reactive azo dyes. Time required for ninety percent degradation of pollutant was taken as the residence time. The amount of energy required to achieve the target degradation was calculated from the energy density (watt/ml) used in the treatability study. The cost of treatment was calculated by considering capital cost and operating cost involved for the waste water treatment. Quotations were invited from vendors to ascertain the capital cost of equipments involved and operating costs were calculated based on annual energy usage. The cost was expressed in dollars per 1000 gallons of waste water treated. These treatment costs were compared with other established Advanced Oxidation Process (AOP) technologies. The cost of waste water treatment for phenol was in the range of $89 per 1000 gallons for UV/US/O(3) to $15,536 per 1000 gallons for US alone. These costs for TCE were in the range of $25 per 1000 gallons to $91 for US+UV treatment and US alone, respectively. The cost of waste water treatment for reactive azo dyes was in the range of $65 per 1000 gallon for US+UV+H(2)O(2) to $14,203 per 1000 gallon for US alone. This study should help in quantifying the economics of waste water treatment using ultrasound on

  5. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs).

    PubMed

    Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A

    2014-02-18

    The effect of halides on organic contaminant destruction efficiency was compared for UV/H2O2 and UV/S2O8(2-) AOP treatments of saline waters; benzoic acid, 3-cyclohexene-1-carboxylic acid, and cyclohexanecarboxylic acid were used as models for aromatic, alkene, and alkane constituents of naphthenic acids in oil-field waters. In model freshwater, contaminant degradation was higher by UV/S2O8(2-) because of the higher quantum efficiency for S2O8(2-) than H2O2 photolysis. The conversion of (•)OH and SO4(•-) radicals to less reactive halogen radicals in the presence of seawater halides reduced the degradation efficiency of benzoic acid and cyclohexanecarboxylic acid. The UV/S2O8(2-) AOP was more affected by Cl(-) than the UV/H2O2 AOP because oxidation of Cl(-) is more favorable by SO4(•-) than (•)OH at pH 7. Degradation of 3-cyclohexene-1-carboxylic acid, was not affected by halides, likely because of the high reactivity of halogen radicals with alkenes. Despite its relatively low concentration in saline waters compared to Cl(-), Br(-) was particularly important. Br(-) promoted halogen radical formation for both AOPs resulting in ClBr(•-), Br2(•-), and CO3(•-) concentrations orders of magnitude higher than (•)OH and SO4(•-) concentrations and reducing differences in halide impacts between the two AOPs. Kinetic modeling of the UV/H2O2 AOP indicated a synergism between Br(-) and Cl(-), with Br(-) scavenging of (•)OH leading to BrOH(•-), and further reactions of Cl(-) with this and other brominated radicals promoting halogen radical concentrations. In contaminant mixtures, the conversion of (•)OH and SO4(•-) radicals to more selective CO3(•-) and halogen radicals favored attack on highly reactive reaction centers represented by the alkene group of 3-cyclohexene-1-carboxylic acid and the aromatic group of the model compound, 2,4-dihydroxybenzoic acid, at the expense of less reactive reaction centers such as aromatic rings and alkane groups

  6. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified. PMID:24824504

  7. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  8. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  9. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. PMID:25744186

  10. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  11. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  12. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  13. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. PMID:25038578

  14. Comparison of Integrated AOP Systems for BTEX Removal From Solution

    SciTech Connect

    Peters, Robert W.; Mohammad, Jan

    2004-03-31

    This paper investigates the removal of BTEX compounds (benzene, toluene, ethylbenzene and xylene) from water using different advanced oxidation processes (AOPs) used singly or in combination with one another. This research is an extension of our work performed under the Environmental Management Science Program (EMSP) which addressed treating chlorinated organic contaminated water using sonication, vapor stripping and combined sonication + vapor stripping. In our current study, various AOP processes were investigated for their ability to remove BTEX compounds from solution, including the following. ? Ultraviolet (UV) light alone ? UV light + hydrogen peroxide (H2O2) ? Sonication alone ? Air sparging alone ? Air sparging + sonication ? Air sparging + UV light ? Sonication + UV light ? Sonication + H2O2 ? Sonication + air sparging + UV light ? Sonication + air sparging + H2O2 ? Sonication + air sparging + H2O2 + UV light ? Sonication + air sparging with O3 ? Sonication + O3 + H2O2 ? Sonication + O3 + H2O2 + UV light

  15. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  16. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.

    PubMed

    Klavarioti, Maria; Mantzavinos, Dionissios; Kassinos, Despo

    2009-02-01

    Over the past few years, pharmaceuticals are considered as an emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Advanced oxidation processes (AOPs) are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end-products. The environmental applications of AOPs are numerous, including water and wastewater treatment (i.e. removal of organic and inorganic pollutants and pathogens), air pollution abatement and soil remediation. AOPs are applied for the abatement of pollution caused by the presence of residual pharmaceuticals in waters for the last decade. In this light, this paper reviews and assesses the effectiveness of various AOPs for pharmaceutical removal from aqueous systems. PMID:18760478

  17. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.

    PubMed

    Rosenfeldt, Erik J; Linden, Karl G; Canonica, Silvio; von Gunten, Urs

    2006-12-01

    Comparison of advanced oxidation processes (AOPs) can be difficult due to physical and chemical differences in the fundamental processes used to produce OH radicals. This study compares the ability of several AOPs, including ozone, ozone+H2O2, low pressure UV (LP)+H2O2, and medium pressure UV (MP)+H2O2 in terms of energy required to produce OH radicals. Bench scale OH radical formation data was generated for each AOP using para-chlorobenzoic acid (pCBA) as an OH radical probe compound in three waters, Lake Greifensee water, Lake Zurich water, and a simulated groundwater. Ozone-based AOPs were found to be more energy efficient than the UV/H2O2 process at all H2O2 levels, and the addition of H2O2 in equimolar concentration resulted in 35% greater energy consumption over the ozone only process. Interestingly, the relatively high UV/AOP operational costs were due almost exclusively to the cost of hydrogen peroxide while the UV portion of the UV/AOP process typically accounted for less than 10 percent of the UV/AOP cost and was always less than the ozone energy cost. As the *OH radical exposure increased, the energy gap between UV/H2O2 AOP and ozone processes decreased, becoming negligible in some water quality scenarios. PMID:17078993

  18. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.

    PubMed

    Tokumura, Masahiro; Sugawara, Asato; Raknuzzaman, Mohammad; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2016-09-01

    Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study. PMID:27317938

  19. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment.

    PubMed

    Rizzo, Luigi

    2011-10-01

    Advanced oxidation processes (AOPs) have been widely used in water and wastewater treatment for the removal of organic and inorganic contaminants as well as to improve biodegradability of industrial wastewater. Unfortunately, the partial oxidation of organic contaminants may result in the formation of intermediates more toxic than parent compounds. In order to avoid this drawback, AOPs are expected to be carefully operated and monitored, and toxicity tests have been used to evaluate whether effluent detoxification takes place. In the present work, the effect of AOPs on the toxicity of aqueous solutions of different classes of contaminants as well as actual aqueous matrices are critically reviewed. The dualism toxicity-biodegradability when AOPs are used as pre-treatment step to improve industrial wastewater biodegradability is also discussed. The main conclusions/remarks include the followings: (i) bioassays are a really useful tool to evaluate the dangerousness of AOPs as well as to set up the proper operative conditions, (ii) target organisms for bioassays should be chosen according to the final use of the treated water matrix, (iii) acute toxicity tests may be not suitable to evaluate toxicity in the presence of low/realistic concentrations of target contaminants, so studies on chronic effects should be further developed, (iv) some toxicity tests may be not useful to evaluate biodegradability potential, in this case more suitable tests should be applied (e.g., activated sludge bioassays, respirometry). PMID:21722938

  20. The 2010 AOP Workshop Summary Report

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Morrow, John H.; Brown, James W.; Firestone, Elaine R.

    2011-01-01

    The rationale behind the current workshop, which was hosted by Biospherical Instruments Inc. (BSI), was to update the community and get community input with respect to the following: topics not addressed during the first workshop, specifically the processing of above-water apparent optical property (AOP data) within the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT) architecture; PROSIT data processing issues that have developed or tasks that have been completed, since the first workshop; and NASA instrumentation developments, both above- and in-water, that are relevant to both workshops and next generation mission planning. The workshop emphasized presentations on new AOP instrumentation, desired and required features for processing above-water measurements of the AOPs of seawater, working group discussions, and a community update for the in-water data processing already present in PROSIT. The six working groups were organized as follows: a) data ingest and data products; b) required and desired features for optically shallow and optically deep waters; c) contamination rejection (clouds), corrections, and data filtering; d) sun photometry and polarimetry; e) instrumentation networks; and f) hyperspectral versus fixed-wavelength sensors. The instrumentation networks working group was intended to provide more detailed information about desired and required features of autonomous sampling systems. Plenary discussions produced a number of recommendations for evolving and documenting PROSIT.

  1. A comparison of the environmental impact of different AOPs: risk indexes.

    PubMed

    Giménez, Jaime; Bayarri, Bernardí; González, Óscar; Malato, Sixto; Peral, José; Esplugas, Santiago

    2015-01-01

    Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared. PMID:25558859

  2. Applications of advanced oxidation processes: present and future.

    PubMed

    Suty, H; De Traversay, C; Cost, M

    2004-01-01

    The use of advanced oxidation processes (AOPs) to remove pollutants in various water treatment applications has been the subject of study for around 30 years. Most of the available processes (Fenton reagent, O3 under basic conditions, O3/H2O2, O3/UV, O3/solid catalyst, H2O2/M(n+), H2O2/UV, photo-assisted Fenton, H2O2/solid catalyst, H2O2/NaClO, TiO2/UV etc.) have been investigated in depth and a considerable body of knowledge has been built up about the reactivity of many pollutants. Various industrial applications have been developed, including ones for ground remediation (TCE, PCE), the removal of pesticides from drinking water, the removal of formaldehyde and phenol from industrial waste water and a reduction in COD from industrial waste water. The development of such AOP applications has been stimulated by increasingly stringent regulations, the pollution of water resources through agricultural and industrial activities and the requirement that industry meet effluent discharge standards. Nevertheless, it is difficult to obtain an accurate picture of the use of AOPs and its exact position in the range of water treatment processes has not been determined to date. The purpose of this overview is to discuss those processes and provide an indication of future trends. PMID:15077976

  3. A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium).

    PubMed

    Crowe, Kristi M; Bushway, Alfred A; Bushway, Rodney J; Davis-Dentici, Katherine; Hazen, Russell A

    2007-05-01

    Advanced oxidation processes and single chemical oxidants were evaluated for their antimicrobial efficacy against common spoilage bacteria isolated from lowbush blueberries. Predominant bacterial flora were identified using biochemical testing with the assessment of relative abundance using non-selective and differential media. Single chemical oxidants evaluated for postharvest processing of lowbush blueberries included 1% hydrogen peroxide, 100 ppm chlorine, and 1 ppm aqueous ozone while advanced oxidation processes (AOPs) included combinations of 1% hydrogen peroxide/UV, 100 ppm chlorine/UV, and 1 ppm ozone/1% hydrogen peroxide/UV. Enterobacter agglomerans and Pseudomonas fluorescens were found to comprise 90-95% of the bacterial flora on lowbush blueberries. Results of inoculation studies reveal significant log reductions (p< or 5) in populations of E. agglomerans and P. fluorescens on all samples receiving treatment with 1% hydrogen peroxide, 1% hydrogen peroxide/UV, 1 ppm ozone, or a combined ozone/hydrogen peroxide/UV treatment as compared to chlorine treatments and unwashed control berries. Although population reductions approached 2.5 log CFU/g, microbial reductions among these treatments were not found to be significantly different (p< or 5) from each other despite the synergistic potential that should result from AOPs; furthermore, as a single oxidant, UV inactivation of inoculated bacteria was minimal and did not prove effective as a non-aqueous bactericidal process for fresh pack blueberries. Overall, results indicate that hydrogen peroxide and ozone, as single chemical oxidants, are as effective as AOPs and could be considered as chlorine-alternatives in improving the microbiological quality of lowbush blueberries. PMID:17350128

  4. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.

    PubMed

    Schrank, S G; José, H J; Moreira, R F P M; Schröder, H Fr

    2004-01-01

    Many organic compounds contained in wastewater are resistant to conventional chemical and/or biological treatment. Because of this reason different degradation techniques are studied as an alternative to biological and classical physico-chemical processes. Advanced Oxidation Processes (AOPs) probably have developed to become the best options in the near future. AOP while making use of different reaction systems, are all characterised by the same chemical feature: production of OH radicals (*OH). The versatility of AOPs is also enhanced by the fact that they offer different possibilities for OH radical production, thus allowing them to conform to specific treatment requirements. The main problem with AOPs is their high cost. The application of solar technologies to these processes could help to diminish that problem by reducing the energy consumption required for generating UV radiation. In this work, different AOPs (O3, TiO2/UV, Fenton and H2O2/UV) were examined to treat tannery wastewater or as a pre-treatment step for improving the biodegradation of tannery wastewater, at different pH and dosage of the chemicals. Under certain circumstances retardation in biodegradation and/or an increase in toxicity may be observed within these treatment steps. Two different bioassays (Daphnia magna and Vibrio fischeri) have been used for testing the progress of toxicity during the treatment. In parallel other objectives were to analyse and identify organic compounds present in the untreated wastewater and arising degradation products in AOP treated wastewater samples. For this purpose substance specific techniques, e.g., gas chromatography-mass spectrometry (GC-MS) in positive electron impact (El(+)) mode and atmospheric pressure ionisation (API) in combination with flow injection analysis (FIA) or liquid chromatography-mass and tandem mass spectrometry (LC-MS or LC-MS-MS) were performed. PMID:15497865

  5. Enhancement of Electron Transfer in Various Photo-Assisted Oxidation Processes for Nitro-Phenolic Compound Conversion

    NASA Astrophysics Data System (ADS)

    Khue, Do Ngoc; Lam, Tran Dai; Minh, Do Binh; Loi, Vu Duc; Nam, Nguyen Hoai; Bach, Vu Quang; Van Anh, Nguyen; Van Hoang, Nguyen; Hu'ng, Dao Duy

    2016-08-01

    The present study focuses on photo-assisted advanced oxidation processes (AOPs) with strongly enhanced electron transfer for degradation of nitro-phenolic compounds in aqueous medium. The effectiveness of these processes was estimated based on the pseudo-first order rate constant k determined from high-performance liquid chromatography. The degradation of four different nitro-phenolic compounds was systematically studied using selected AOPs; these four compounds were nitrophenol, dinitrophenol, trinitrophenol and trinitroresorcin. It was observed that the combination of ultraviolet light with hydrogen peroxide H2O2 enhanced and maintained hydroxyl radicals, and therefore increased the conversion yield of organic pollutants. These AOPs provided efficient and green removal of stable organic toxins found in a wide range of industrial wastewater.

  6. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    PubMed Central

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301

  7. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products. PMID:21726140

  8. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa.

    PubMed

    Zhang, Jifang; Liu, Zhiyuan; Liang, Jianli; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2015-10-01

    The glucosinolate biosynthetic gene AOP2 encodes an enzyme that plays a crucial role in catalysing the conversion of beneficial glucosinolates into anti-nutritional ones. In Brassica rapa, three copies of BrAOP2 have been identified, but their function in establishing the glucosinolate content of B. rapa is poorly understood. Here, we used phylogenetic and gene structure analyses to show that BrAOP2 proteins have evolved via a duplication process retaining two highly conserved domains at the N-terminal and C-terminal regions, while the middle part has experienced structural divergence. Heterologous expression and in vitro enzyme assays and Arabidopsis mutant complementation studies showed that all three BrAOP2 genes encode functional BrAOP2 proteins that convert the precursor methylsulfinyl alkyl glucosinolate to the alkenyl form. Site-directed mutagenesis showed that His356, Asp310, and Arg376 residues are required for the catalytic activity of one of the BrAOP2 proteins (BrAOP2.1). Promoter-β-glucuronidase lines revealed that the BrAOP2.3 gene displayed an overlapping but distinct tissue- and cell-specific expression profile compared with that of the BrAOP2.1 and BrAOP2.2 genes. Quantitative real-time reverse transcription-PCR assays demonstrated that BrAOP2.1 showed a slightly different pattern of expression in below-ground tissue at the seedling stage and in the silique at the reproductive stage compared with BrAOP2.2 and BrAOP2.3 genes in B. rapa. Taken together, our results revealed that all three BrAOP2 paralogues are active in B. rapa but have functionally diverged. PMID:26188204

  9. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa

    PubMed Central

    Zhang, Jifang; Liu, Zhiyuan; Liang, Jianli; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The glucosinolate biosynthetic gene AOP2 encodes an enzyme that plays a crucial role in catalysing the conversion of beneficial glucosinolates into anti-nutritional ones. In Brassica rapa, three copies of BrAOP2 have been identified, but their function in establishing the glucosinolate content of B. rapa is poorly understood. Here, we used phylogenetic and gene structure analyses to show that BrAOP2 proteins have evolved via a duplication process retaining two highly conserved domains at the N-terminal and C-terminal regions, while the middle part has experienced structural divergence. Heterologous expression and in vitro enzyme assays and Arabidopsis mutant complementation studies showed that all three BrAOP2 genes encode functional BrAOP2 proteins that convert the precursor methylsulfinyl alkyl glucosinolate to the alkenyl form. Site-directed mutagenesis showed that His356, Asp310, and Arg376 residues are required for the catalytic activity of one of the BrAOP2 proteins (BrAOP2.1). Promoter–β-glucuronidase lines revealed that the BrAOP2.3 gene displayed an overlapping but distinct tissue- and cell-specific expression profile compared with that of the BrAOP2.1 and BrAOP2.2 genes. Quantitative real-time reverse transcription-PCR assays demonstrated that BrAOP2.1 showed a slightly different pattern of expression in below-ground tissue at the seedling stage and in the silique at the reproductive stage compared with BrAOP2.2 and BrAOP2.3 genes in B. rapa. Taken together, our results revealed that all three BrAOP2 paralogues are active in B. rapa but have functionally diverged. PMID:26188204

  10. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2). PMID:25747363

  11. RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION

    EPA Science Inventory

    Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contam...

  12. RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION ABSTRACT

    EPA Science Inventory

    Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contami...

  13. Understanding AOP through the Study of Interpreters

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I return to the question of what distinguishes AOP languages by considering how the interpreters of AOP languages differ from conventional interpreters. Key elements for static transformation are seen to be redefinition of the set and lookup operators in the interpretation of the language. This analysis also yields a definition of crosscutting in terms of interlacing of interpreter actions.

  14. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  15. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes.

    PubMed

    Jović, Milica; Manojlović, Dragan; Stanković, Dalibor; Dojčinović, Biljana; Obradović, Bratislav; Gašić, Uroš; Roglić, Goran

    2013-09-15

    Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC-DAD) and UHPLC-Orbitrap-MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes. PMID:23892174

  16. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    PubMed

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed. PMID:26748208

  17. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  18. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review.

    PubMed

    Oller, I; Malato, S; Sánchez-Pérez, J A

    2011-09-15

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment. PMID:20956012

  19. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  20. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  1. Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle.

    PubMed

    Tuerk, J; Sayder, B; Boergers, A; Vitz, H; Kiffmeyer, T K; Kabasci, S

    2010-01-01

    Different advanced oxidation processes (AOP) were developed for the treatment of highly loaded wastewater streams. Optimisation of removal and improvement of efficiency were carried out on a laboratory, semiworks and pilot plant scale. The persistent cytostatic drug cyclophosphamide was selected as a reference substance regarding elimination and evaluation of the various oxidation processes because of its low degradability rate. The investigated processes are cost-efficient and suitable regarding the treatment of wastewater streams since they lead to efficient elimination of antibiotics and antineoplastics. A total reduction of toxicity was proven by means of the umuC-test. However, in order to reduce pharmaceuticals from the water cycle, it must be considered that the input of more than 80 % of the pharmaceuticals entering wastewater treatment systems results from private households. Therefore, advanced technologies should also be installed at wastewater treatment plants. PMID:20182078

  2. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  3. Removing Fats, Oils and Greases from Grease Trap by Hybrid AOPs (Ozonation and Sonication)

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Michal Piotr; Satoh, Saburoh; Yamabe, Chobei; Ihara, Satoshi; Nieda, Masanori

    The purpose of this study was to investigate the electrical energy for the environmental applications using AOPs (advanced oxidation processes) combined with ozonation and sonication to remove the FOG (fats, oils and greases) from wastewater of the sewage system. This study focused on FOG removal from a grease trap using the hybrid AOPs. Fatty acids (linoleic, oleic, stearic and palmitic acids) were used as representative standards of FOG. The studies were conducted experimentally in a glass reactor under various operational conditions. The oxidation efficiency using the combination of the ozonation and sonication was determined by the KI dosimetry method and the calorimetry method. Fatty acids concentration were measured by GC/MS. The local reaction field of the high temperature and high pressure, so-called hot spot, was generated by the quasi-adiabatic collapse of bubbles produced in the water under sonication, which is called cavitation phenomenon. Mixing the ozone bubbles into the water under acoustic cavitation, the formation of OH radicals increased. The mechanical effect of acoustic cavitation such as microstreaming and shock waves have an influence on the probability of reactions of ozone and radicals with fatty acids.

  4. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  5. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes.

    PubMed

    Cañizares, Pablo; Paz, Rubén; Sáez, Cristina; Rodrigo, Manuel A

    2009-01-01

    In the work described here the technical and economic feasibilities of three Advanced Oxidation Processes (AOPs) have been studied: Conductive-Diamond Electrochemical Oxidation (CDEO), Ozonation and Fenton oxidation. The comparison was made by assessing the three technologies with synthetic wastewaters polluted with different types of organic compounds and also with actual wastes (from olive oil mills and from a fine-chemical manufacturing plant). All three technologies were able to treat the wastes, but very different results were obtained in terms of efficiency and mineralization. Only CDEO could achieve complete mineralization of the pollutants for all the wastes. However, the efficiencies were found to depend on the concentration of pollutant (mass transfer control of the oxidation rate). Results obtained in the oxidation with ozone (at pH 12) or by Fenton's reagent were found to depend on the nature of the pollutants, and significant concentrations of oxidation-refractory compounds were usually accumulated during the treatment. Within the discharge limits that all of the technologies can reach, the economic analysis shows that the operating cost of Fenton oxidation is lower than either CDEO or ozonation, although CD\\EO can compete satisfactorily with the Fenton process in the treatment of several kinds of wastes. Likewise, the investment cost for the ozonation process seems to be higher than either CDEO or Fenton oxidation, regardless of the pollutant treated. PMID:18082930

  6. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  7. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    PubMed

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute. PMID:24191487

  8. Adverse Outcome Pathway (AOP) Network Development for Fatty Liver

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk re...

  9. Accelerating Adverse Outcome Pathway (AOP) development via computationally predicted AOP networks

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  10. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    PubMed

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. PMID:27403873

  11. AOP Knowledge Base/Wiki Tool Set

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin Is...

  12. [Effects of organic pollutants in drinking water on the removal of dimethyl phthalate by advanced oxidation processes].

    PubMed

    Rui, Min; Gao, Nai-yun; Xu, Bin; Li, Fu-sheng; Zhao, Jian-fu; Le, Lin-sheng

    2006-12-01

    Humic acids were used to simulate natural organic compounds in water for the investigation of DMP oxidation by three different AOPs (advanced oxidation processes) of UV-H2O2, O3 and UV-O3. The results showed that pseudo-first-order reaction equation could describe the oxidation of DMP by UV-H2O2 perfectly, which was strongly affected humic acids in water. The relationship between pseudo-first-order reaction rate and TOC value could be expressed as K = 0. 162 0 [TOC]-0.8171. It was also found that humic acids in the water exhibited obvious influence on the oxidation of DMP by UV-O3. However, effect of humic acids on the oxidation of DMP by ozone was not obvious. It was also analyzed that oxidation of DMP was dominated by ozone oxidation both in ozonation process and UV-O3 process; the importance of "OH in the oxidation of DMP was enhanced as the concentration of DMP decreased in UV-O3 process. The degree of impact form humic acids towards different AOPs could be ranked in a decreasing order as UV-H2O3, UV-O3, 03. PMID:17304847

  13. Adverse Outcome Pathway (AOP) Development I: Strategies and Principles

    PubMed Central

    Villeneuve, Daniel L.; Crump, Doug; Garcia-Reyero, Natàlia; Hecker, Markus; Hutchinson, Thomas H.; LaLone, Carlie A.; Landesmann, Brigitte; Lettieri, Teresa; Munn, Sharon; Nepelska, Malgorzata; Ottinger, Mary Ann; Vergauwen, Lucia; Whelan, Maurice

    2014-01-01

    An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organization of regulatory relevance. Systematic organization of information into AOP frameworks has potential to improve regulatory decision-making through greater integration and more meaningful use of mechanistic data. However, for the scientific community to collectively develop a useful AOP knowledgebase that encompasses toxicological contexts of concern to human health and ecological risk assessment, it is critical that AOPs be developed in accordance with a consistent set of core principles. Based on the experiences and scientific discourse among a group of AOP practitioners, we propose a set of five fundamental principles that guide AOP development: (1) AOPs are not chemical specific; (2) AOPs are modular and composed of reusable components—notably key events (KEs) and key event relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks composed of multiple AOPs that share common KEs and KERs are likely to be the functional unit of prediction for most real-world scenarios; and (5) AOPs are living documents that will evolve over time as new knowledge is generated. The goal of the present article was to introduce some strategies for AOP development and detail the rationale behind these 5 key principles. Consideration of these principles addresses many of the current uncertainties regarding the AOP framework and its application and is intended to foster greater consistency in AOP development. PMID:25466378

  14. Adverse outcome pathway (AOP) development I: strategies and principles.

    PubMed

    Villeneuve, Daniel L; Crump, Doug; Garcia-Reyero, Natàlia; Hecker, Markus; Hutchinson, Thomas H; LaLone, Carlie A; Landesmann, Brigitte; Lettieri, Teresa; Munn, Sharon; Nepelska, Malgorzata; Ottinger, Mary Ann; Vergauwen, Lucia; Whelan, Maurice

    2014-12-01

    An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organization of regulatory relevance. Systematic organization of information into AOP frameworks has potential to improve regulatory decision-making through greater integration and more meaningful use of mechanistic data. However, for the scientific community to collectively develop a useful AOP knowledgebase that encompasses toxicological contexts of concern to human health and ecological risk assessment, it is critical that AOPs be developed in accordance with a consistent set of core principles. Based on the experiences and scientific discourse among a group of AOP practitioners, we propose a set of five fundamental principles that guide AOP development: (1) AOPs are not chemical specific; (2) AOPs are modular and composed of reusable components-notably key events (KEs) and key event relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks composed of multiple AOPs that share common KEs and KERs are likely to be the functional unit of prediction for most real-world scenarios; and (5) AOPs are living documents that will evolve over time as new knowledge is generated. The goal of the present article was to introduce some strategies for AOP development and detail the rationale behind these 5 key principles. Consideration of these principles addresses many of the current uncertainties regarding the AOP framework and its application and is intended to foster greater consistency in AOP development. PMID:25466378

  15. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  16. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  17. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Colin P. Horwitz; Terrence J. Collins

    2003-10-22

    The design of new, high efficiency and cleaner burning engines is strongly coupled with the removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from fuels. Oxidative desulfurization (ODS) wherein these dibenzothiophene derivatives are oxidized to their corresponding sulfoxides and sulfones is an approach that has gained significant attention. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) convert in a catalytic process dibenzothiophene and its derivatives to the corresponding sulfoxides and sulfones rapidly at moderate temperatures (60 C) and ambient pressure. The reaction can be performed in both an aqueous system containing an alcohol (methanol, ethanol, or t-butanol) to solubilize the DBT and in a two-phase hydrocarbon/aqueous system where the alcohol is present in both phases and facilitates the oxidation. Under a consistent set of conditions using the FeBF{sub 2} TAML activator, the degree of conversion was found to be t-butanol > methanol > ethanol. In the cases of methanol and ethanol, both the sulfoxide and sulfone were observed while for t-butanol only the sulfone was detected. In the two-phase system, the alcohol may function as an inverse phase transfer agent. The oxidation was carried out using two different TAML activators. In homogeneous solution, approximately 90% oxidation of the DBT could be achieved using the prototype TAML activator, FeB*, by sonicating the solution at near room temperature. In bi-phasic systems conversions as high as 50% were achieved using the FeB* TAML activator and hydrogen peroxide at 100 C. The sonication method yielded only {approx}6% conversion but this may have been due to mixing.

  18. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes.

    PubMed

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. PMID:26815295

  19. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    PubMed

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent. PMID:24937659

  20. Catalytic process for formaldehyde oxidation

    NASA Technical Reports Server (NTRS)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  1. Exposure and Dosimetry Considerations for Adverse Outcome Pathways (AOPs) (NIH-AOP)

    EPA Science Inventory

    Risk is a function of both of hazard and exposure. Toxicokinetic (TK) models can determine whether chemical exposures produce potentially hazardous tissue concentrations. Whether or not the initial molecular event (MIE) in an Adverse Outcome Pathway (AOP) occurs depends on both e...

  2. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes.

    PubMed

    Anumol, Tarun; Dagnino, Sonia; Vandervort, Darcy R; Snyder, Shane A

    2016-02-01

    The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water. PMID:26524147

  3. Demonstrating sucralose as a monitor of full-scale UV/AOP treatment of trace organic compounds.

    PubMed

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Linden, Karl G

    2014-09-15

    Due to the large number of trace organic compounds (TOrCs) in water and wastewater, their degradation during UV-based advanced oxidation (UV/AOP) is best monitored using a conservative indicator compound. The present study demonstrates the in situ use of sucralose, a widely consumed artificial sweetener, as a conservative probe for UV/AOP degradation of TOrCs. The main qualities of sucralose in this regard are its high concentration in wastewater effluent and surface water (enabling its direct detection), its resistance to direct UV photolysis, and its relatively slow reaction with hydroxyl radical. Degradation of sucralose was compared to the degradation of commonly detected TOrCs, across two AOPs (i.e. UV/H2O2 and UV/NO3), in both lab-scale and pilot-scale systems. In all cases, UV/AOP degradation of sucralose was slower than the degradation of the examined TOrCs, and is expected to be slower than the degradation of the majority of other environmentally relevant TOrCs. These results demonstrate the potential of sucralose as a conservative probe, to monitor the transformation of TOrCs during UV/AOP treatment. Furthermore, degradation of sucralose was slower than the degradation of many transformation products (generated during oxidation of TOrCs), implying that sucralose is also a valuable indicator for the decay of primary transformation products. PMID:25146095

  4. The Advanced On-board Processor (AOP)

    NASA Technical Reports Server (NTRS)

    Hartenstein, R. G.; Trevathan, C. E.; Stewart, W. N.

    1971-01-01

    The goal of the Advanced On-Board Processor (AOP) development program is to design, build, and flight qualify a highly reliable, moderately priced, digital computer for application on a variety of spacecraft. Included in this development program is the preparation of a complete support software package which consists of an assembler, simulator, loader, system diagnostic, operational executive, and many useful subroutines. The AOP hardware/software system is an extension of the On-Board Processor (OBP) which was developed for general purpose use on earth orbiting spacecraft with its initial application being on-board the fourth Orbiting Astronomical Observatory (OAO-C). Although the OBP possesses the significant features that are required for space application, however, when operating at 100% duty cycle the OBP is too power-consuming for use on many smaller spacecraft. Computer volume will be minimized by implementing the processor and input/output portions of the machine with large scale integrated circuits. Power consumption will be reduced through the use of plated wire and, in some cases, semiconductor memory elements.

  5. Laboratory assessment of advanced oxidation processes for treatment of explosives and chlorinated solvents in groundwater from the former Nebraska ordnance plant. Final report

    SciTech Connect

    Fleming, E.C.; Zappi, M.E.; Toro, E.; Hernandez, R.; Myers, K.

    1997-06-01

    Chemical oxidation processes that result in the generation of the hydroxyl radical (OH) have been referred to as advanced oxidation processes (AOPs) by the American Water Works Association. The U.S. Army Engineer Waterways Experiment Station under the direction of the U.S. Army Engineer District, Kansas City, and in conjunction with Woodward-Clyde Consultants, Overland Park, KS, evaluated the comparative performance of four AOPs for removing trichloroethylene, RDX, HMX, trinitrotoluene, and 1,3,5-trinitrobenzene from a representative sample of groundwater from the Nebraska Ordnance Plant using bench-scale reactors. During 1990, this site was placed on the National Priorities List. Candidate AOPs that were evaluated were irradiation of hydrogen peroxide with ultraviolet (UV) light emitted from low-pressure mercury vapor UV lamps (LPUV-HP), irradiation with UV light emitted from a low-pressure mercury vapor UV lamp with ozone sparging (LPUV-OZ), irradiation of hydrogen peroxide with Uv light emitted from a medium-pressure mercury vapor UV lamp (MPUV-HP), and peroxone (ozone sparging with hydrogen peroxide dosing). The groundwater influent sample used in this study was a three-way composite (equal parts) of groundwater collected from three site observation wells (Wells MW-11A, MW-40B, and MW-47B). The experiments were performed using a 1-l borosilicate reactor configured to sparge ozone into the test solution.

  6. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    PubMed

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually. PMID:15533022

  7. PROCESS OF OXIDIZING PLUTONIUM

    DOEpatents

    Coryell, C.D.

    1959-08-25

    The oxidation of plutonium to the plus six valence state is described. The oxidation is accomplished by treating the plutonium in aqueous solution with a solution above 0.01 molar in argentic ion, above 1.1 molar in nitric acid, and above 0.02 molar in argentous ion.

  8. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  9. Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process

    PubMed Central

    2013-01-01

    Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates. PMID:23414668

  10. Decontamination of soil washing wastewater using solar driven advanced oxidation processes.

    PubMed

    Bandala, Erick R; Velasco, Yuridia; Torres, Luis G

    2008-12-30

    Decontamination of soil washing wastewater was performed using two different solar driven advanced oxidation processes (AOPs): the photo-Fenton reaction and the cobalt/peroxymonosulfate/ultraviolet (Co/PMS/UV) process. Complete sodium dodecyl sulphate (SDS), the surfactant agent used to enhance soil washing process, degradation was achieved when the Co/PMS/UV process was used. In the case of photo-Fenton reaction, almost complete SDS degradation was achieved after the use of almost four times the actual energy amount required by the Co/PMS/UV process. Initial reaction rate in the first 15min (IR15) was determined for each process in order to compare them. Highest IR15 value was determined for the Co/PMS/UV process (0.011mmol/min) followed by the photo-Fenton reaction (0.0072mmol/min) and the dark Co/PMS and Fenton processes (IR15=0.002mmol/min in both cases). Organic matter depletion in the wastewater, as the sum of surfactant and total petroleum hydrocarbons present (measured as chemical oxygen demand, COD), was also determined for both solar driven processes. It was found that, for the case of COD, the highest removal (69%) was achieved when photo-Fenton reaction was used whereas Co/PMS/UV process yielded a slightly lower removal (51%). In both cases, organic matter removal achieved was over 50%, which can be consider proper for the coupling of the tested AOPs with conventional wastewater treatment processes such as biodegradation. PMID:18423856

  11. The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP.

    PubMed

    Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana

    2014-06-01

    The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%. PMID:24595749

  12. Adverse outcome pathway (AOP) development: Guiding principles and best practices

    EPA Science Inventory

    Adverse outcome pathways (AOPs) represent a conceptual framework that can support greater application of mechanistic data in regulatory decision-making. However, in order for the scientific community to collectively address the daunting challenge of describing relevant toxicologi...

  13. Adverse outcome pathway (AOP) development II: Best practices

    EPA Science Inventory

    Organization of existing and emerging toxicological knowledge into adverse outcome pathway (AOP) descriptions can facilitate greater application of mechanistic data, including high throughput in vitro, high content omics and imaging, and biomarkers, in risk-based decision-making....

  14. Adverse outcome pathway (AOP) development I: Strategies and principles

    EPA Science Inventory

    An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically-supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organizatio...

  15. Removal of persistent organic pollutant hexachlorocyclohexane isomers by advanced oxidation process.

    PubMed

    2012-04-01

    Organochlorine insecticide Lindane (gamma-Hexachlorocyclohexane) and its isomers (alpha, beta, delta-HCH) are recalcitrant and toxic compounds. They were progressively banished in most of the countries, because of their persistence and toxicity. Due to their nonselective production process and widespread use, they are still occurring in the environment. These insecticides and isomers were detected in all media like soil, ground water, sediments, vegetables and even in human tissues. In this study, UV, H2O2, UV+H2O2, Fenton's reagent, UV+Fenton's reagent, Advanced Oxidation Process (AOP) have been applied for degradation of HCH isomers (a, beta, gamma and delta-HCH). The results revealed that the UV+H2O2 treatment was most effective, which could do 99% degradation of all isomers of HCH within 75 minutes. The results in detail are presented and discussed in this paper. PMID:24749381

  16. Are combined AOPs effective for toxicity reduction in receiving marine environment? Suitability of battery of bioassays for wastewater treatment plant (WWTP) effluent as an ecotoxicological assessment.

    PubMed

    Díaz-Garduño, B; Rueda-Márquez, J J; Manzano, M A; Garrido-Pérez, C; Martín-Díaz, M L

    2016-03-01

    Ecotoxicological assessment of three different wastewater treatment plant (WWTP) effluents D1, D2 and D3 was performed before and after tertiary treatment using combination of advanced oxidation processes (AOPs). A multibarrier treatment (MBT) consisting of microfiltration (MF), hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) was applied for all effluents. Sparus aurata, Paracentrotus lividus, Isochrysis galbana and Vibrio fischeri, representing different trophic levels, constituted the battery of bioassays. Different acute toxicity effects were observed in each WWTP effluents tested. The percentage of sea urchin larval development and mortality fish larvae were the most sensitive endpoints. Significant reduction (p < 0.05) of effluent's toxicity was observed using a classification pT-method after MBT process. Base on obtained results, tested battery of bioassays in pT-method framework can be recommended for acute toxicity preliminary evaluation of WWTP effluents for the marine environment. PMID:26741736

  17. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    PubMed

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes. PMID:26900972

  18. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    PubMed

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. PMID:22000058

  19. Catalytic oxidative dehydrogenation process

    DOEpatents

    Schmidt, Lanny D.; Huff, Marylin

    2002-01-01

    A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consist essentially of platinum supported on alumina or zirconia monolith, preferably zirconia and more preferably in the absence of palladium, rhodium and gold.

  20. A solar-driven UV/Chlorine advanced oxidation process.

    PubMed

    Chan, Po Yee; Gamal El-Din, Mohamed; Bolton, James R

    2012-11-01

    An overlap of the absorption spectrum of the hypochlorite ion (OCl(-)) and the ultraviolet (UV) end of the solar emission spectrum implies that solar photons can probably initiate the UV/chlorine advanced oxidation process (AOP). The application of this solar process to water and wastewater treatment has been investigated in this study. At the bench-scale, the OCl(-) photolysis quantum yield at 303 nm (representative of the lower end of the solar UV region) and at concentrations from 0 to 4.23 mM was 0.87 ± 0.01. Also the hydroxyl radical yield factor (for an OCl(-) concentration of 1.13 mM) was 0.70 ± 0.02. Application of this process, at the bench-scale and under actual sunlight, led to methylene blue (MB) photobleaching and cyclohexanoic acid (CHA) photodegradation. For MB photobleaching, the OCl(-) concentration was the key factor causing an increase in the pseudo first-order rate constants. The MB photobleaching quantum yield was affected by the MB concentration, but not much by the OCl(-) concentration. For CHA photodegradation, an optimal OCl(-) concentration of 1.55 mM was obtained for a 0.23 mM CHA concentration, and a scavenger effect was observed when higher OCl(-) concentrations were applied. Quantum yields of 0.09 ± 0.01 and 0.89 ± 0.06 were found for CHA photodegradation and OCl(-) photolysis, respectively. In addition, based on the Air Mass 1.5 reference solar spectrum and experimental quantum yields, a theoretical calculation method was developed to estimate the initial rate for photoreactions under sunlight. The theoretical initial rates agreed well with the experimental rates for both MB photobleaching and CHA photodegradation. PMID:22939221

  1. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids.

    PubMed

    MacAdam, Jitka; Ozgencil, Haci; Autin, Olivier; Pidou, Marc; Temple, Clive; Parsons, Simon; Jefferson, Bruce

    2012-12-01

    The treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge. A three-stage treatment is generally applied, with the oil phase being removed first, followed by a reduction in COD loading and then polishing of the effluent's quality in the final stage. The performance of advanced oxidation processes (AOPs), which could be of benefit to both types of businesses was studied. After assessing the biodegradability of spent MFW, different AOPs were used (UV/H2O2, photo-Fenton and UV/TiO2) to establish the treatability of this wastewater by hydroxyl radicals (*OH). The interactions of both the chemical and biological treatments were also investigated. The wastewater was found to be readily biodegradable in the Zahn-Wellens test with 69% COD and 74% DOC removal. The UV/TiO2 reactor was found to be the cheapest option achieving a very good COD removal (82% at 20 min retention time and 10 L min(-1) aeration rate). The photo-Fenton process was found to be efficient in terms of degradation rate, achieving 84% COD removal (1 M Fe2+, 40 M H2O2, 20.7 J cm(-2), pH 3) and also improving the wastewater's biodegradability. The UV/H202 process was the most effective in removing recalcitrant COD in the post-biological treatment stage. PMID:23437675

  2. Advanced On-Board Processor (AOP). [for future spacecraft applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.

  3. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation.

    PubMed

    Gerrity, Daniel; Stanford, Benjamin D; Trenholm, Rebecca A; Snyder, Shane A

    2010-01-01

    This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in batch and single-pass modes to examine contaminant degradation rates and the remediation capabilities of the technology, respectively. Values for electrical energy per order (EEO) of magnitude degradation ranged from <0.3 kWh/m(3)-log for easily degraded compounds (e.g., carbamazepine) in surface water to 14 kWh/m(3)-log for more recalcitrant compounds (e.g., meprobamate) in wastewater. Changes in the bulk organic matter based on UV(254) absorbance and excitation-emission matrices (EEM) were also monitored and correlated to contaminant degradation. These results indicate that NTP may be a viable alternative to more common AOPs due to its comparable energy requirements for contaminant degradation and its ability to operate without any additional feed chemicals. PMID:19822343

  4. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; O'Shea, Kevin E; Dionysiou, Dionysios D

    2014-10-15

    Cylindrospermopsin (CYN) is a potent cyanobacterial toxin frequently found in water bodies worldwide raising concerns over the safety of drinking and recreational waters. A number of technologies have been investigated to remove and/or degrade cyanotoxins with advanced oxidation processes (AOPs) being among the most promising and effective for water detoxification. In this study, the degradation of CYN by sulfate radical-based UV-254 nm-AOPs was evaluated. The UV/S2O8(2-) (UV/peroxydisulfate) was more efficient than UV/HSO5(-) (UV/peroxysulfate) and UV/H2O2 (UV/hydrogen peroxide) processes when natural water samples were used as reaction matrices. The observed UV fluence based pseudo-first-order rate constants followed the expected order of radical quantum yields. The presence of 200 μM natural organic matter (NOM) as carbon slightly inhibited the destruction of CYN; 1.24 mg L(-1)NO3(-) (nitrate) had no significant influence on the removal efficiency and 50 μg L(-1) Fe(2+) [iron (2+)] or Cu(2+) [copper (2+)] improved the performance of UV/S2O8(2-). The addition of tert-butyl alcohol (t-BuOH; hydroxyl radical scavenger) in the reaction yielded byproducts that indicated specific sites in CYN preferentially attacked by sulfate radicals (SRs). The predominant CYN degradation byproduct was P448 consistent with fragmentation of the C5C6 bond of the uracil ring. The subsequent formation of P420 and P392 through a stepwise loss of carbonyl group(s) further supported the fragmentation pathway at C5C6. The byproduct P432 was identified exclusively as mono-hydroxylation of CYN at tricyclic guanidine ring, whereas P414 was detected as dehydrogenation at the tricyclic ring. The elimination of sulfate group and the opening of tricyclic ring were also observed. The possible degradation pathways of CYN by SR-AOP were presented. PMID:25000199

  5. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance.

    PubMed

    Rueda-Márquez, J J; Levchuk, I; Salcedo, I; Acevedo-Merino, A; Manzano, M A

    2016-03-15

    The main aim of this work was to study the feasibility of multi-barrier treatment (MBT) consisting of filtration, hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) for post-treatment of petroleum refinery effluent. Also the possibility of water reuse or safe discharge was considered. The performance of MBT using medium (MP) and low (LP) pressure lamps was compared as well as operation and maintenance (O&M) cost. Decomposition of organic compounds was followed by means of gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analysis. After filtration step (25 μm) turbidity and concentration of suspended solids decreased by 92% and 80%, respectively. During H2O2/UVC process with LP lamp at optimal conditions (H2O2:TOC ratio 8 and UVC dose received by water 5.28 WUVC s cm(-2)) removal of phenolic compounds, TOC and COD was 100%, 52.3% and 84.3%, respectively. Complete elimination of phenolic compounds, 47.6% of TOC and 91% of COD was achieved during H2O2/UVC process with MP lamp at optimal conditions (H2O2:TOC ratio 5, UVC dose received by water 6.57 WUVC s cm(-2)). In order to compare performance of H2O2/UVC treatment with different experimental set up, the UVC dose required for removal of mg L(-1) of COD was suggested as a parameter and successfully applied. The hydrophilicity of H2O2/UVC effluent significantly increased which in turn enhanced the oxidation of organic compounds during CWPO step. After H2O2/UVC treatment with LP and MP lamps residual H2O2 concentration was 160 mg L(-1) and 96.5 mg L(-1), respectively. Remaining H2O2 was fully consumed during subsequent CWPO step (6 and 3.5 min of contact time for LP and MP, respectively). Total TOC and COD removal after MBT was 94.7% and 92.2% (using LP lamp) and 89.6% and 95%, (using MP lamp), respectively. The O&M cost for MBT with LP lamp was estimated to be 0.44 € m(-3) while with MP lamp it was nearly five

  6. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes.

    PubMed

    Benitez, F J; Beltran-Heredia, J; Acero, J L; Rubio, F J

    2000-10-01

    The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling. PMID:10901258

  7. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.

    PubMed

    Nieto-Juarez, Jessica I; Kohn, Tamar

    2013-09-01

    Advanced oxidation processes (AOPs) have emerged as a promising alternative to conventional disinfection methods to control microbial water quality, yet little is known about the fate of viruses in AOPs. In this study, we investigated the fate of MS2 coliphage in AOPs that rely on heterogeneous Fenton-like processes catalyzed by iron (hydr)oxide particles. Both physical removal of viruses from solution via adsorption onto particles as well as true inactivation were considered. Virus fate was studied in batch reactors at circumneutral pH, containing 200 mg L(-1) of four different commercial iron (hydr)oxide particles of similar mesh sizes: hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and amorphous iron(iii) hydroxide (Fe(OH)3). The effect of adsorption and sunlight exposure on the survival of MS2 was considered. On a mass basis, all particles exhibited a similar virus adsorption capacity, whereas the rate of adsorption followed the order FeOOH > Fe2O3 > Fe3O4 ≈ Fe(OH)3. This adsorption behavior could not be explained by electrostatic considerations; instead, adsorption must be governed by other factors, such as hydrophobic interactions or van der Waals forces. Adsorption to three of the particles investigated (α-FeOOH, Fe3O4, Fe(OH)3) caused virus inactivation of 7%, 22%, and 14%, respectively. Exposure of particle-adsorbed viruses to sunlight and H2O2 resulted in efficient additional inactivation, whereas inactivation was negligible for suspended viruses. The observed first-order inactivation rate constants were 6.6 × 10(-2), 8.7 × 10(-2), 0.55 and 1.5 min(-1) for α-FeOOH, α-Fe2O3, Fe3O4 and Fe(OH)3 respectively. In the absence of sunlight or H2O2, no inactivation was observed beyond that caused by adsorption alone, except for Fe3O4, which caused virus inactivation via a dark Fenton-like process. Overall our results demonstrate that heterogeneous Fenton-like processes can both physically remove viruses from water as well as inactivate them via

  8. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    PubMed

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. PMID:27131094

  9. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591

  10. Developing putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content data

    EPA Science Inventory

    Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...

  11. SULFATE RADICAL-BASED FERROUS-PEROXYMONOSULFATE OXIDATIVE SYSTEM FOR PCBs DEGRADATION IN AQUEOUS AND SEDIMENT SYSTEMS

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) in the environment pose long-term risk to public health because of their persistent and toxic nature. This study investigates the degradation of PCBs using sulfate radical-based advanced oxidation processes (SR-AOPs). These processes are based o...

  12. The potential of AOP networks for reproductive and developmental toxicity assay development.

    PubMed

    Knapen, Dries; Vergauwen, Lucia; Villeneuve, Daniel L; Ankley, Gerald T

    2015-08-15

    Historically, the prediction of reproductive and developmental toxicity has largely relied on the use of animals. The adverse outcome pathway (AOP) framework forms a basis for the development of new non-animal test methods. It also provides biological context for mechanistic information from existing assays. However, a single AOP may not capture all events that contribute to any relevant toxic effect, even in single chemical exposure scenarios. AOP networks, defined as sets of AOPs sharing at least one common element, are capable of more realistically representing potential chemical effects. They provide information on interactions between AOPs and have the potential to reveal previously unknown links between biological pathways. Analysis of these AOP networks can aid the prioritization of assay development, whether the goal is to develop a single assay with predictive utility of multiple outcomes, or development of assays that are highly specific for a particular mode of action. This paper provides a brief overview of the AOPs related to reproductive and developmental toxicity currently available in the AOP Wiki (http://aopwiki.org), and gives an example of an AOP network based on five reproductive and developmental toxicity-related AOPs for fish to illustrate how AOP networks can be used for assay development and refinement. PMID:25889759

  13. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  14. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  15. Melatonin involvement in oxidative processes.

    PubMed

    Ianăş, O; Olinescu, R; Bădescu, I

    1991-01-01

    The fact that the pineal gland, by its melatonin (MT) production, responds to environmental light variations (the day-night cycle), being also a modulator of the body adaptation to these conditions, may lead to the assumption of its involvement in the body oxidative processes. The redox capacity of melatonin was followed-up in vitro by the chemiluminescence phenomenon. The system generating chemiluminescence as well as free radicals was made up of luminol and H2O2. Incubation of melatonin in doses of 0.08-0.5 microM/ml with the generating system showed that in doses under 0.25 microM/ml melatonin has a pro-oxidative effect while in doses above this value it has an antioxidative effect. The diagram of the results shows the answer specific to a modulator. The study of the correlation between the dose of melatonin with highest pro-oxidative properties and the various peroxide concentrations in the generating system showed that melatonin gets antioxidative properties with the increase in peroxide concentrations (less than 8 mM/ml). In the presence of a hypothalamic homogenate, which is a stimulant of the chemiluminescence-generating system (PXI = 16), melatonin has a dose-dependent antioxidative effect. Similar results were also obtained by adding tryptophan--a free radicals acceptor (PXI = 0.1) and the substrate in melatonin synthesis to the reaction medium. Melatonin in low concentrations (greater than 0.1 microM/ml) has an antioxidative effect while in higher doses it has a dose-dependent pro-oxidative effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821072

  16. A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater.

    PubMed

    Jamil, Tarek S; Ghaly, Montaser Y; El-Seesy, Ibrahim E; Souaya, Eglal R; Nasr, Rabab A

    2011-01-15

    Advanced oxidation processes including UV, UV/H(2)O(2), Fenton reaction (Fe(II)/H(2)O(2)) and photo-Fenton process (Fe(II)/H(2)O(2)/UV) for the treatment of paper mill wastewater will be investigated. A comparison among these techniques is undertaken with respect to the decrease of chemical oxygen demand (COD) and total suspended solids (TSS) and the evolution of chloride ions. Optimum operating conditions for each process under study revealed the effect of the initial amounts of Fe(II) and hydrogen peroxide. Of the tested processes, photo-Fenton process was found to be the fastest one with respect to COD and TSS reduction of the wastewater within 45 min reaction time under low amounts of Fe(II) and hydrogen peroxide of 0.5 and 1.5mg/L, respectively, and amounted to 79.6% and 96.6% COD and TSS removal. The initial biodegradability of the organic matter present in the effluent, estimated as the BOD(5)/COD, was low 0.21. When the effluent was submitted to the different types of AOPs used in this study, the biodegradability increases significantly. Within 45 min of reaction time, the photo-Fenton process appears as the most efficient process in the enhancement of the biodegradability of the organic matter in the effluent and the BOD(5)/COD ratio increased from 0.21 to 0.7. PMID:20926185

  17. Combined phase I/II study of imexon (AOP99.0001) for treatment of relapsed or refractory multiple myeloma.

    PubMed

    Moehler, Thomas M; Feneberg, Reinhard; Ho, Anthony Dick; Golenkov, Anatoly K; Ludwig, Heinz; Kropff, Martin; Khuageva, Nuriet K; Hajda, Jacek; von Broen, Ingo; Goldschmidt, Hartmut

    2010-08-01

    Imexon [AOP99.0001 (4-imino-1,3-diazobicyclo[3. 1. 0]-hexan-2-one)] belongs to a novel class of promising anticancer agents that induce tumor apoptosis through oxidative stress. Clinical experience since the late 1960s has provided initial evidence for a clinical antitumor activity. Our open-label, multicenter phase I clinical trial was designed to further investigate the adverse event (AEs) profile and pharmacokinetics of AOP99.0001 in pretreated myeloma patients and collect initial data on the potential clinical efficacy in this indication. Thirty-six patients with relapsed or refractory myeloma, who had been pretreated with at least two lines of therapy earlier, were included. Imexon was applied intravenously on 5 consecutive days for 2 weeks (d1-5 and d8-12) for a 3-week cycle. The plasma half-life of AOP99.0001 and its active metabolite AOP99.0002 was found to be approximately 1.2 and 2.6 h, respectively. The mean duration of treatment with Imexon was 6.8 weeks in a dose range between 50 and 1000 mg/m without reaching dose-limiting toxicity. Drug-related AEs occurring with a frequency of greater than 10% were fatigue, nausea, constipation, headache, asthenia, anemia, thrombocytopenia, leukopenia and creatinine increase. A total of nine severe adverse events occurred in three patients. No mortality was encountered when patients were on treatment with Imexon. Preliminary antimyeloma efficacy of AOP99.0001 was observed with 1 minimal response, 12 (36%) stable disease responses, and all other evaluable patients had progressive disease. Remarkably, the patient with minimal response also experienced a complete clinical resolution of myeloma-associated polyneuropathy. Overall, Imexon was safe and well tolerated in the dose range investigated. Imexon showed minor clinical activity as a single agent in heavily pretreated myeloma patients. On account of its unique mechanism of action, favorable toxicity profile, initial clinical evidence for antimyeloma activity, and

  18. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent.

    PubMed

    Azbar, N; Yonar, T; Kestioglu, K

    2004-04-01

    In this paper, a comparison of various advanced oxidation processes (O3, O3/UV, H2O2/UV, O3/H2O2/UV, Fe2+/H2O2) and chemical treatment methods using Al2(SO4)3.18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color and COD removal for the textile effluent used in this study was 50% and 60%, respectively. Although O3/H2O2/UV combination among other AOPs methods studied in this paper was found to give the best result (99% removal for COD and 96% removal for color), use of Fe2+/H2O2 seems to show a satisfactory COD and color removal performance and to be economically more viable choice for the acetate and polyester fiber dyeing effluent on the basis of 90% removal. PMID:14720544

  19. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU.

    PubMed

    Ribeiro, Ana R; Nunes, Olga C; Pereira, Manuel F R; Silva, Adrián M T

    2015-02-01

    Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species

  20. Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electron acceptor.

    PubMed

    Yeber, María C; Oñate, Katherine P; Vidal, Gladys

    2007-04-01

    Two advanced oxidation processes (AOPs), TiO2/UV/O2 and TiO2/UV/Cu (II), were used to remove color from a Kraft bleaching effluent. The optimal decoloration rate was determined by multivariate analysis, obtaining a mathematical model to evaluate the effect among variables. TiO2 and Cu (II) concentrations and the reaction times were optimized. The experimental design resulted in a quadratic matrix of 30 experiments. Additionally, the pH influence on the color removal was determined by multivariate analysis. Results indicate that color removal was 94% at acidic pH (3.0) in the presence of Cu (11) as an electron acceptor. Under this condition, the biodegradation of the effluent increased from 0.3 to 0.6. Moreover, 70% of COD (chemical oxygen demand) was removed, and the ecotoxicity, measured by Daphnia magna, was reduced. Photocatalytic oxidation to remove the color contained in the Kraft mill bleaching effluent was effective under the following conditions: short reaction time, acidic pH values, and without the addition of oxygen due to the presence of Cu (II) in the effluent. Moreover, residual Cu (II) was a minimum (0.05.mg L(-1)) and was not toxic to the next biological stage. The experimental design methodology indicated that a quadratic polynomial model may be used to representthe efficiencyfor degradation of the Kraft bleach pulp effluent by a photocatalytic process. PMID:17438808

  1. An evaluation of the use of an advanced oxidation process to remove chlorinated hydrocarbons from groundwater at the US Department of Energy Kansas City Plant

    SciTech Connect

    Garland, S.B. II; Peyton, G.R.

    1990-10-01

    The Allied-Signal Aerospace Company currently operates a production facility in Kansas City, Missouri, under contract with the US Department of Energy (DOE). Over the years the operation of the DOE Kansas City Plant has resulted in the contamination of groundwater with chlorinated hydrocarbons, including trichloroethene (TCE). One of the plumes of contaminated groundwater, the underground tank farm (UTF) plume, was selected for remediation with an advanced oxidation process (AOP) consisting of simultaneous treatment by ozone (O{sub 3}), ultraviolet (UV) radiation, and hydrogen peroxide (H{sub 2}O{sub 2}). Since the use of AOPs is relatively new for the removal of organics from groundwater, information on design criteria, costs, performance, and operating experience is not well documented in the literature. Therefore, the Oak Ridge National Laboratory (ORNL) was requested to evaluate the treatment process. This report documents the work performed through FY 1989. The results of the initial year of the evaluations, FY 1988, have been published previously, and the evaluation will continue at least through FY 1990. This report first briefly describes the treatment plant and the mechanisms of the treatment process. Next, the methodology and the results from the evaluation are discussed. Finally, conclusions and recommendations are presented. 8 refs., 14 figs., 16 tabs.

  2. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.

    PubMed

    Chen, Wei R; Sharpless, Charles M; Linden, Karl G; Suffet, I H

    2006-04-15

    Seven volatile organic chemicals (VOCs) on the EPA Contaminant Candidate List together with 1,1-dichloropropane were studied for their reaction kinetics and mechanisms with ozone and OH radicals during ozonation and the ozone/ hydrogen peroxide advanced oxidation process (O3/H2O2 AOP) using batch reactors. The three aromatic VOCs demonstrated high reactivity during ozonation and were eliminated within minutes after ozone addition. The high reactivity is attributed to their fast, indirect OH radical reactions with k(OH,M) of (5.3-6.6) x 10(9) M(-1) s(-1). Rates of aromatic VOC degradation are in the order 1,2,4-trimethylbenzene > p-cymene > bromobenzene. This order is caused by the selectivity of the direct ozone reactions (k(O3,M) ranges from 0.16 to 304 M(-1) s(-1)) and appears to be related to the electron-donating or -withdrawing ability of the substituent groups on the aromatic ring. The removal rates for the five aliphatic VOCs are much lower and are in the order 1,1-dichloropropane > 1,3-dichloropropane > 1,1-dichloroethane > 2,2-dichloropropane > 1,1,2,2-tetrachloroethane. The second-order indirect rate constants for the aliphatic VOCs range from 0.52 x 10(8) to 5.5 x 10(8) M(-1) s(-1). The relative stability of the carbon-centered intermediates seems to be related to the relative reactivity of the aliphatic VOCs with OH radicals. Except for 1,3-dichloropropane, ozonation and the O3/H2O2 AOP are not effective for the removal of other aliphatic VOCs. Bromide formation during the ozonation of bromobenzene indicates that bromate can be formed, and thus, ozonation and O3/H2O2 AOP may not be suitable for the treatment of bromobenzene. PMID:16683616

  3. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions.

    PubMed

    Lou, Xiaoyi; Xiao, Dongxue; Fang, Changling; Wang, Zhaohui; Liu, Jianshe; Guo, Yaoguang; Lu, Shuyu

    2016-03-01

    This study compared the behaviors of two classic advanced oxidation processes (AOPs), hydroxyl radical-based AOPs ((•)OH-based AOPs) and sulfate radical-based AOPs (SO4 (•-)-based AOPs), represented by UV/ hydrogen peroxide (H2O2) and UV/peroxydisulfate (PDS) systems, respectively, to degrade humic acid (HA) in the presence of halide ions (Cl(-) and Br(-)). The effects of different operational parameters, such as oxidant dosages, halide ions concentration, and pH on HA degradation were investigated in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes. It was found that the oxidation capacity of H2O2 and PDS to HA degradation in the presence of halides was nearly in the same order. High dosage of peroxides would lead to an increase in HA removal while excess dosage would slightly inhibit the efficiency. Both Cl(-) and Br(-) would have depressing impact on the two AOPs, but the inhibiting effect of Br(-) was more obvious than that of Cl(-), even the concentration of Cl(-) was far above that of Br(-). The increasing pH would have an adverse effect on HA decomposition in UV/H2O2 system, whereas there was no significant impact of pH in UV/PDS process. Furthermore, infrared spectrometer was used to provide the information of degraded HA in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes, and halogenated byproducts were identified in using GC-MS analysis in the four processes. The present research might have significant technical implications on water treatment using advanced oxidation technologies. PMID:26538259

  4. Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.

    PubMed

    Miranda, Andreza Costa; Lepretti, Marilena; Rizzo, Luigi; Caputo, Ivana; Vaiano, Vincenzo; Sacco, Olga; Lopes, Wilton Silva; Sannino, Diana

    2016-06-01

    The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0mgL(-1)) was the faster process (2.5min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45min treatment. Total inactivation was not observed (4.5 Log), also after 120min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability. PMID:26945469

  5. Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides.

    PubMed

    Kovács, Krisztina; Farkas, János; Veréb, Gábor; Arany, Eszter; Simon, Gergő; Schrantz, Krisztina; Dombi, András; Hernádi, Klára; Alapi, Tünde

    2016-01-01

    Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization. PMID:26764571

  6. Degradation of atrazine using solar driven fenton-like advanced oxidation processes.

    PubMed

    Bandala, Erick R; Domínguez, Zair; Rivas, Fernanda; Gelover, Silvia

    2007-01-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was degraded using cobalt-peroximonosulfate (Co/PMS) advanced oxidation process (AOP). Three Co concentrations (0.00, 0.25 and 0.50 mM) and five peroximonosulfate (PMS) concentrations (0, 5, 8, 16 and 32 mM) were tested. Maximum degradation reached was 88% using dark Co/PMS in 126 minutes when 0.25 mM of cobalt and 32 mM of PMS were used. Complete atrazine degradation was achieved when the samples were irradiated by the sun under the same experimental conditions described. Tests for identification of intermediate products allowed identification and quantification of deethylatrazine in both dark and radiated conditions. Kinetic data for both processes was calculated fitting a pseudo-first order reaction rate approach to the experimental data. Having kinetic parameters enabled comparison between both conditions. It was found that the kinetic approach describes data behavior appropriately (R2 > or = 0.95). Pseudo-kinetic constants determined for both Co/PMS processes, show k value of 10(-4) for Co/PMS and a k value of 10(-3) for Co/PMS/ultraviolet (UV). This means, that, with the same Co/PMS concentrations, UV light increases the reaction rate by around one order of magnitude than performing the reaction under dark conditions. PMID:17162564

  7. Computer-based first-principles kinetic modeling of degradation pathways and byproduct fates in aqueous-phase advanced oxidation processes.

    PubMed

    Guo, Xin; Minakata, Daisuke; Niu, Junfeng; Crittenden, John

    2014-05-20

    In this study, a computer-based first-principles kinetic model is developed to predict the degradation mechanisms and fates of intermediates and byproducts produced during aqueous-phase advanced oxidation processes (AOPs) for various organic compounds. The model contains a rule-based pathway generator to generate the reaction pathways, a reaction rate constant estimator to estimate the reaction rate constant for each reaction generated, a mechanistic reduction module to reduce the generated mechanisms, an ordinary differential equations generator and solver to solve the generated mechanisms and calculate the concentration profiles for all species, and a toxicity estimator to estimate the toxicity of major species and calculate time-dependent profiles of relative toxicity (i.e., concentration of species divided by toxicity value). We predict concentration profiles of acetone and trichloroethylene and their intermediates and byproducts in photolysis with hydrogen peroxide (i.e., UV/H2O2) and validate with experimental observations. The predicted concentration profiles for both parent compounds are consistent with experimental data. The calculated profiles of 96-h green algae chronic toxicity show that the overall toxicity decreases during the degradation process. These generated mechanisms also provide detailed and quantitative insights into the pathways for the formation and consumption of important intermediates and byproducts produced during AOPs. Our approach is sufficiently general to be applied to a wide range of contaminants. PMID:24749836

  8. Treatment of trichlorophenol by catalytic oxidation process.

    PubMed

    Chu, W; Law, C K

    2003-05-01

    The oxidation of 2,4,6-trichlorophenol (TCP) by ferrous-catalyzed hydrogen peroxide was quantified and modeled in the study. TCP was effectively degraded by hydroxyl radicals that were generated by Fe(II)/H(2)O(2) in the oxidation process. The oxidation capacity (OC) of the process depends on the concentrations of oxidant (hydrogen peroxide) and oxidative catalyst (ferrous ion). Up to 99.6% of TCP removal can be achieved in the process, provided the doses of Fe(II) and H(2)O(2) are selected correctly. The OC of the process was successfully predicted through a kinetic approach in a two-stage model with some simple and measurable parameters, which makes the model useful for predicting, controlling and optimizing the catalyzed oxidation process in the degradation of TCP. PMID:12727243

  9. Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities.

    PubMed

    Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A

    2016-02-01

    When reverse osmosis brines from potable wastewater reuse plants are discharged to poorly-flushed estuaries, the concentrated organic contaminants are a concern for receiving water ecosystems. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/S2O8(2-)) advanced oxidation processes (AOPs) may reduce contaminant burdens prior to discharge, but the effects of the high levels of halide, carbonate and effluent organic matter (EfOM) normally present in these brines are unclear. On the one hand, these substances may reduce process efficiency by scavenging reactive oxygen species (ROS), hydroxyl (OH) and sulfate (SO4(-) radicals. On the other, the daughter radicals generated by halide and carbonate scavenging may themselves degrade organics, offsetting the effect of ROS scavenging. UV/H2O2 and UV/S2O8(2-) AOPs were compared for degradation of five pharmaceuticals spiked into brines obtained from two reuse facilities and the RO influent from one of them. For UV/H2O2, EfOM scavenged ∼75% of the OH, reducing the degradation efficiency of the target contaminants to a similar extent; halide and carbonate scavenging and the reactivities of associated daughter radicals were less important. For UV/S2O8(2-), anions (mostly Cl(-)) scavenged ∼93% of the SO4(-). Because daughter radicals of Cl(-) contributed to contaminant degradation, the reduction in contaminant degradation efficiency was only ∼75-80%, with the reduction driven by daughter radical scavenging by EfOM. Conversion of SO4(-) to more selective halogen and carbonate radicals resulted in a wider range of degradation efficiencies among the contaminants. For both AOPs, 250 mJ/cm(2) average fluence achieved significant removal of four pharmaceuticals, with significantly better performance by UV/S2O8(2-) treatment for some constituents. Accounting for the lower brine flowrates, the energy output to achieve this fluence in brines is comparable to that often applied to RO permeates. However, much higher fluence was

  10. Review of fundamentals and specific aspects of oxidation technologies in marine waters.

    PubMed

    Kornmueller, A

    2007-01-01

    This review is based on the existing literature and on our experiences in the application of different oxidation processes in brackish water and seawater. The oxidation reactions of advanced oxidation processes (AOPs) and the formation of disinfection byproducts (DBPs) are considerably different in marine waters from well-known drinking, process and wastewater applications. In contrast, the major secondary oxidants are bromine species in marine waters, which might form the DBPs of concern bromate and bromoform. An efficient AOP application needs knowledge of the source water constitutions and the oxidant demand. Besides changes in the oxidants chemistry compared to fresh water, the great and seasonal variation of marine waters has to be considered in the process design. The complexity of oxidant reactions and formation of byproducts are only partially researched and known as yet. Hence, it is advisable to determine the characteristic and variation of the water source as well as its influence on each AOP in experiments prior to the process design. PMID:17674819

  11. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    EPA Science Inventory

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  12. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process

    EPA Science Inventory

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometr...

  13. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale. PMID:25185495

  14. Conventional and advanced oxidation processes used in disinfection of treated urban wastewater.

    PubMed

    Rodríguez-Chueca, J; Ormad, M P; Mosteo, R; Sarasa, J; Ovelleiro, J L

    2015-03-01

    The purpose of the current study is to compare the inactivation of Escherichia coli in wastewater effluents using conventional treatments (chlorination) and advanced oxidation processes (AOPs) such as UV irradiation, hydrogen peroxide (H2O2)/solar irradiation, and photo-Fenton processes. In addition, an analysis of the operational costs of each treatment is carried out taking into account the optimal dosages of chemicals used. Total inactivation of bacteria (7.5 log) was achieved by means of chlorination and UV irradiation. However, bacterial regrowth was observed 6 hours after the completion of UV treatment, obtaining a disinfection value around 3 to 4 log. On the other hand, the combination H2O2/solar irradiation achieved a maximum inactivation of E. coli of 3.30 ± 0.35 log. The photo-Fenton reaction achieved a level of inactivation of 4.87 ± 0.10 log. The order of disinfection, taking into account the reagent/cost ratio of each treatment, is as follows: chlorination > UV irradiation > photo-Fenton > H2O2/sunlight irradiation. PMID:25842540

  15. PROCESSES OF CHLORINATION OF URANIUM OXIDES

    DOEpatents

    Rosenfeld, S.

    1958-09-16

    An improvement is described in the process fur making UCl/sub 4/ from uranium oxide and carbon tetrachloride. In that process, oxides of uranium are contacted with carbon tetrachloride vapor at an elevated temperature. It has been fuund that the reaction product and yield are improved if the uranlum oxide charge is disposed in flat trays in the reaction zone, to a depth of not more than 1/2 centimeter.

  16. Accelerated oxidation processes is biodiesel

    SciTech Connect

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  17. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  18. Response surface method for the optimisation of micropollutant removal in municipal wastewater treatment plant effluent with the UV/H2O2 advanced oxidation process.

    PubMed

    Schulze-Hennings, U; Pinnekamp, J

    2013-01-01

    Experiments with the ultraviolet (UV)/H2O2 advanced oxidation process (AOP) were conducted to investigate the abatement of micropollutants in wastewater treatment plant effluent. The fluence and the starting concentration of H2O2 in a bench-scale batch reactor were varied according to response surface method (RSM) to examine their influence on the treatment efficiency. It was shown that the investigated AOP is very effective for the abatement of micropollutants with conversion rates typically higher than 90%. Empirical relationships between fluence, H2O2 dosage and the resulting concentration of micropollutants were established by RSM. By this means it was shown that X-ray-contrast media had been degraded only by UV light. Nevertheless, most substances were degraded by the combination of UV irradiation and H2O2. Based on RSM an optimisation of multiple responses was conducted to find the minimal fluence and H2O2 dosage that are needed to reach an efficient abatement of micropollutants. PMID:23656952

  19. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.

    PubMed

    Grebel, Janel E; Pignatello, Joseph J; Mitch, William A

    2010-09-01

    Advanced oxidation processes (AOPs) generating nonselective hydroxyl radicals (HO*) provide a broad-spectrum contaminant destruction option for the decontamination of waters. Halide ions are scavengers of HO* during AOP treatment, such that treatment of saline waters would be anticipated to be ineffective. However, HO* scavenging by halides converts HO* to radical reactive halogen species (RHS) that participate in contaminant destruction but react more selectively with electron-rich organic compounds. The effects of Cl-, Br-, and carbonates (H2CO3+HCO3-+CO3(2-)) on the UV/H2O2 treatment of model compounds in saline waters were evaluated. For single target organic contaminants, the impact of these constituents on contaminant destruction rate suppression at circumneutral pH followed the order Br->carbonates>Cl-. Traces of Br- in the NaCl stock had a greater effect than Cl- itself. Kinetic modeling of phenol destruction demonstrated that RHS contributed significantly to phenol destruction, mitigating the impact of HO* scavenging. The extent of treatment efficiency reduction in the presence of halides varied dramatically among different target organic compounds. Destruction of contaminants containing electron-poor reaction centers in seawater was nearly halted, while 17beta-estradiol removal declined by only 3%. Treatment of mixtures of contaminants with each other and with natural organic matter (NOM) was evaluated. Although NOM served as an oxidant scavenger, conversion of nonselective HO* to selective radicals due to the presence of anions enhanced the efficiency of electron-rich contaminant removal in saline waters by focusing the oxidizing power of the system away from the NOM toward the target contaminant. Despite the importance of contaminant oxidation by halogen radicals, the formation of halogenated byproducts was minimal. PMID:20681567

  20. Decolouration of H2SO4 leachate from phosphorus-saturated alum sludge using H2O2 and advanced oxidation processes in phosphorus recovery strategy.

    PubMed

    Zhao, X H; Zhao, Y Q

    2009-12-01

    As a part of attempt for phosphorus (P) recovery from P-saturated alum sludge, which was used as a low-cost P-adsorbent in treatment reed bed for wastewater treatment, decolouration of H(2)SO(4) leachate obtained from previous experiment, possessing a great deal of P, aluminum and red-brown coloured materials (RBCMs), by using H(2)O(2) and advanced oxidation processes (AOPs) was investigated. The use of H(2)O(2) and AOPs in the forms of Fenton (H(2)O(2)/Fe(2 +)) and photo-Fenton (UV/H(2)O(2)/Fe(2 +)) were tested. The changes in colour and total organic carbon (TOC) were taken place as a result of mineralization of RBCMs. The results revealed that all of these three processes examined were efficient. It was found that about 98% colour and 47% TOC can be removed under photo-Fenton treatment after 8 hours of UV irradiation.Correspondingly, the reaction rates of H(2)O(2) and Fenton systems were slow, but 100% colour and 59% TOC removal of H(2)O(2) process and 100% colour and 67% TOC reductions of Fenton process can be achieved after 72 hours of reaction. The changes of structure and molecular weight/size of RBCMs were also evaluated by HPLC and UV-vis spectroscopic analysis. From the results, some chromophores of RBCMs such as aromatic groups were appeared to be easily degraded to the smaller refractory components. Hence, based on the experimental results and considering the investment and expediency of operation, H(2)O(2) and Fenton oxidation could be suitable technologies for the treatment of the RBCMs derived from P-extraction stage by using H(2)SO(4) leaching. PMID:20183514

  1. Advanced oxidation degradation kinetics as a function of ultraviolet LED duty cycle.

    PubMed

    Duckworth, Kelsey; Spencer, Michael; Bates, Christopher; Miller, Michael E; Almquist, Catherine; Grimaila, Michael; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Racz, LeeAnn

    2015-01-01

    Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems. PMID:25945855

  2. Biodegradability of iopromide products after UV/H₂O₂ advanced oxidation.

    PubMed

    Keen, Olya S; Love, Nancy G; Aga, Diana S; Linden, Karl G

    2016-02-01

    Iopromide is an X-ray and MRI contrast agent that is virtually non-biodegradable and persistent through typical wastewater treatment processes. This study determined whether molecular transformation of iopromide in a UV/H2O2 advanced oxidation process (AOP) can result in biodegradable products. The experiments used iopromide labeled with carbon-14 on the aromatic ring to trace degradation of iopromide through UV/H2O2 advanced oxidation and subsequent biodegradation. The biotransformation assay tracked the formation of radiolabeled (14)CO2 which indicated full mineralization of the molecule. The results indicated that AOP formed biodegradable iopromide products. There was no (14)C released from the pre-AOP samples, but up to 20% of all radiolabeled carbon transformed into (14)CO2 over the course of 42 days of biodegradation after iopromide was exposed to advanced oxidation (compared to 10% transformation in inactivated post-AOP controls). In addition, the quantum yield of photolysis of iopromide was determined using low pressure (LP) and medium pressure (MP) mercury lamps as 0.069 ± 0.005 and 0.080 ± 0.007 respectively. The difference in the quantum yields for the two UV sources was not statistically significant at the 95% confidence interval (p = 0.08), which indicates the equivalency of using LP or MP UV sources for iopromide treatment. The reaction rate between iopromide and hydroxyl radicals was measured to be (2.5 ± 0.2) × 10(9) M(-1) s(-1). These results indicate that direct photolysis is a dominant degradation pathway in UV/H2O2 AOP treatment of iopromide. Other iodinated contrast media may also become biodegradable after exposure to UV or UV/H2O2. PMID:26433937

  3. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOEpatents

    Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  4. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  5. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: Application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline

    SciTech Connect

    Kosaka, Koji; Yamada, Harumi; Matsui, Saburo; Echigo, Shinya; Shishida, Kenichi

    1998-12-01

    Hydrogen peroxide (H{sub 2}O{sub 2}) in the range of several tens to several hundreds of micromoles per liter is usually added to the process water in advanced oxidation processes (AOPs). In this study, a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1, 10-phenanthroline (DMP) for measuring H{sub 2}O{sub 2} concentration was compared with other methods [i.e., spectrophotometric methods using titanium oxalate and N,N-diethyl-p-phenylenediamine (DPD) and a fluorometric method using p-hydroxyphenyl acetic acid (POHPAA)]. Particular attention was paid to sensitivities and effects of coexisting substances. The most sensitive method was the fluorometric method, followed in order by DPD, DMP, and the titanium oxalate colorimetric method; their detection limits in 1-cm cells were 0.16, 0.77, 0.80, and 29 {micro}M, respectively. Therefore, the DMP method was found to be reasonably sensitive when applied to AOPs. In the DMP method, copper(II)-DMP complexes react with humic acid, and colored chemicals are produced. However, the slopes of the calibration curves of H{sub 2}O{sub 2} containing up to 10 mg of C L{sup {minus}1} from humic acid did not change significantly as compared to that in ultrapure water. The effect of chlorine on the DMP method was not observed up to at least 23 {micro}M (0.8 mg of Cl L{sup {minus}1}) of free chlorine, although the DPD and fluorometric methods are known to be interfered by chlorine. From this study, it was concluded that the DMP method is suitable to be used in AOPs.

  6. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-01

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission. PMID:23713124

  7. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  8. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  9. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  10. The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)

    2003-01-01

    We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.

  11. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.

    PubMed

    Yu, Hye-Weon; Anumol, Tarun; Park, Minkyu; Pepper, Ian; Scheideler, Jens; Snyder, Shane A

    2015-09-15

    A combination of surrogate parameters and indicator compounds were measured to predict the removal efficiency of trace organic compounds (TOrCs) using low pressure (LP)-UV/H2O2 advanced oxidation process (AOP), engaged with online sensor-based monitoring system. Thirty-nine TOrCs were evaluated in two distinct secondary wastewater effluents in terms of estimated photochemical reactivity, as a function of the rate constants of UV direct photolysis (kUV) and hydroxyl radical (OH) oxidation (kOH). The selected eighteen TOrCs were classified into three groups that served as indicator compounds: Group 1 for photo-susceptible TOrCs but with minor degradation by OH oxidation (diclofenac, fluoxetine, iohexol, iopamidol, iopromide, simazine and sulfamethoxazole); Group 2 for TOrCs susceptible to both direct photolysis and OH oxidation (benzotriazole, diphenhydramine, ibuprofen, naproxen and sucralose); and Group 3 for photo-resistant TOrCs showing dominant degradation by OH oxidation (atenolol, carbamazepine, DEET, gemfibrozil, primidone and trimethoprim). The results indicate that TOC (optical-based measurement), UVA254 or UVT254 (UV absorbance or transmittance at 254 nm), and total fluorescence can all be used as suitable on-line organic surrogate parameters to predict the attenuation of TOrCs. Furthermore, the automated real-time monitoring via on-line surrogate sensors and equipped with the developed degradation profiles between sensor response and a group of TOrCs removal can provide a diagnostic tool for process control during advanced treatment of reclaimed waters. PMID:26074188

  12. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring.

    PubMed

    Marchetti, Francesco; Massarotti, Alberto; Yauk, Carole L; Pacchierotti, Francesca; Russo, Antonella

    2016-03-01

    The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health. PMID:26581746

  13. UV-based advanced oxidation processes for the treatment of odour compounds: efficiency and by-product formation.

    PubMed

    Zoschke, Kristin; Dietrich, Norman; Börnick, Hilmar; Worch, Eckhard

    2012-10-15

    The occurrence of the taste and odour compounds geosmin and 2-methyl isoborneol (2-MIB) affects the organoleptic quality of raw waters from drinking water reservoirs worldwide. UV-based oxidation processes for the removal of these substances are an alternative to adsorption and biological processes, since they additionally provide disinfection of the raw water. We could show that the concentration of geosmin and 2-MIB could be reduced by VUV irradiation and the combination of UV irradiation with ozone and hydrogen peroxide in pure water and water from a drinking water reservoir. The figure of merit EE/O is an appropriate tool to compare the AOPs and showed that VUV and UV/O(3) yielded the lowest treatment costs for the odour compounds in pure and raw water, respectively. Additionally, VUV irradiation with addition of ozone, generated by the VUV lamp, was evaluated. The generation of ozone and the irradiation were performed in a single reactor system using the same low-pressure mercury lamp, thereby reducing the energy consumption of the treatment process. The formation of the undesired by-products nitrite and bromate was investigated. The combination of VUV irradiation with ozone produced by a VUV lamp avoided the formation of relevant concentrations of the by-products. The internal generation of ozone is capable to produce ozone concentrations sufficient to reduce EE/O below 1 kWh m(-3) and without the risk of the formation of nitrite or bromate above the maximum contaminant level. PMID:22858230

  14. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  15. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  16. Processing of effluent salt from the direct oxide reduction process

    SciTech Connect

    Mishra, B.; Olson, D.L. . Kroll Inst. for Extractive Metallurgy); Averill, W.A. )

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon.

  17. Processing of effluent salt from the direct oxide reduction process

    SciTech Connect

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-05-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon.

  18. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  19. Can sample treatments based on advanced oxidation processes assisted by high-intensity focused ultrasound be used for toxic arsenic determination in human urine by flow-injection hydride-generation atomic absorption spectrometry?

    PubMed

    Correia, A; Galesio, M; Santos, H; Rial-Otero, R; Lodeiro, C; Oehmen, A; Conceição, Antonio C L; Capelo, J L

    2007-05-15

    Two advanced oxidation processes (AOPs), based on high-intensity focused ultrasound (HIFU), namely, KMnO(4)/HCl/HIFU and H(2)O(2)/HCl/HIFU are studied and compared for the determination of toxic arsenic in human urine [As(III)+As(V)+MMA+DMA] by flow-injection hydride-generation atomic absorption spectrometry (FI-HG-AAS). The KMnO(4)/HCl/HIFU procedure was found to be adequate for organic matter degradation in human urine. l-cysteine (letra minuscula) was used for As reduction to the trivalent state. The new procedure was assessed with seven urines certified in different As species. Results revealed that with KMnO(4)/HCl/HIFU plus l-cysteine the toxic arsenic can be accurately measured in human urine whilst the H(2)O(2)/HCl/HIFU procedure underestimates toxic As. DMA and MMA degradation in urine were observed, due to the effects of the ultrasonic field. Recoveries for As(III), As(V), MMA and DMA were within the certified ranges. Arsenobetaine was not degraded by the AOPs. The new procedure adheres well to the principles of analytical minimalism: (i) low reagent consumption, (ii) low reagent concentration, (iii) low waste production and (iv) low amount of time required for sample preparation and analysis. PMID:19071711

  20. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  1. Hybrid process for nitrogen oxides reduction

    SciTech Connect

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  2. Organic waste processing using molten salt oxidation

    SciTech Connect

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  3. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.

    PubMed

    Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao

    2016-02-01

    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. PMID:26513530

  4. Selective-oxidation catalyst improves Claus process

    SciTech Connect

    Lagas, J.A.; Borsboom, J. ); Berben, P.H. )

    1988-10-10

    Increased SO/sub 2/ emissions. On a worldwide scale, the exploitation and processing of crude oil and natural gas have increased significantly during the past 30 years. This expansion has caused severe pollution problems, especially from sulfur dioxide emissions to the atmosphere. A new development for the well-known Claus process improves production of elemental sulfur from H/sub 2/S. The ''SuperClaus'' process involves a modification of the process-control system and the use of a newly developed selective-oxidation catalyst in the third reactor with the objective of achieving a 99% or 99.5% overall sulfur recovery (two versions) without further tail-gas cleanup. The catalyst for the new process was developed and tested on laboratory bench scale for more than 3 years. Based on the results, it was decided to test the process directly in a commercial unit. A three-stage, 100-t/d Claus plant in a natural-gas plant in the Federal Republic of Germany has been retrofitted to SuperClause. Since Jan. 21, the process has been successfully operated.

  5. Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis

    PubMed Central

    Jensen, Lea M.; Kliebenstein, Daniel J.; Burow, Meike

    2015-01-01

    Quantitative trait loci (QTL) mapping studies enable identification of loci that are part of regulatory networks controlling various phenotypes. Detailed investigations of genes within these loci are required to ultimately understand the function of individual genes and how they interact with other players in the network. In this study, we use transgenic plants in combination with natural variation to investigate the regulatory role of the AOP3 gene found in GS-AOP locus previously suggested to contribute to the regulation of glucosinolate defense compounds. Phenotypic analysis and QTL mapping in F2 populations with different AOP3 transgenes support that the enzymatic function and the AOP3 RNA both play a significant role in controlling glucosinolate accumulation. Furthermore, we find different loci interacting with either the enzymatic activity or the RNA of AOP3 and thereby extend the regulatory network controlling glucosinolate accumulation. PMID:26442075

  6. VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS).

    PubMed

    Li, Mengkai; Qiang, Zhimin; Hou, Pin; Bolton, James R; Qu, Jiuhui; Li, Peng; Wang, Chen

    2016-06-01

    Vacuum ultraviolet (VUV) and ultraviolet (UV)/chlorine processes are regarded as two of many advanced oxidation processes (AOPs). Because of the similar cost of VUV/UV and UV lamps, a combination of VUV and UV/chlorine (i.e., VUV/UV/chlorine) may enhance the removal of organic pollutants in water but without any additional power input. In this paper, a mini-fluidic VUV/UV photoreaction system (MVPS) was developed for bench-scale experiments, which could emit both VUV (185 nm) and UV (254 nm) or solely UV beams with a nearly identical UV photon fluence. The photon fluence rates of UV and VUV output by the MVPS were determined to be 8.88 × 10(-4) and 4.93 × 10(-5) einstein m(-2) s(-1), respectively. The VUV/UV/chlorine process exhibited a strong enhancement concerning the degradation of methylene blue (MB, a model organic pollutant) as compared to the total performance of the VUV/UV and UV/chlorine processes, although the photon fluence of the VUV only accounted for 5.6% of that of the UV. An acidic pH favored MB degradation by the VUV/UV/chlorine process. The synergistic mechanism of the VUV/UV/chlorine process was mainly ascribed to the effective use of (•)OH for pollutant removal through formation of longer-lived secondary radicals (e.g., (•)OCl). This study demonstrates that the new VUV/UV/chlorine process, as an enhanced AOP, can be applied as a highly effective and energy-saving technology for small-scale water and wastewater treatment. PMID:27187747

  7. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  8. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics.

    PubMed

    Santoro, Domenico; Raisee, Mehrdad; Moghaddami, Mostafa; Ducoste, Joel; Sasges, Micheal; Liberti, Lorenzo; Notarnicola, Michele

    2010-08-15

    Advanced Oxidation Processes (AOPs) promoted by ultraviolet light are innovative and potentially cost-effective solutions for treating persistent pollutants recalcitrant to conventional water and wastewater treatment. While several studies have been performed during the past decade to improve the fundamental understanding of the UV-H(2)O(2) AOP and its kinetic modeling, Computational Fluid Dynamics (CFD) has only recently emerged as a powerful tool that allows a deeper understanding of complex photochemical processes in environmental and reactor engineering applications. In this paper, a comprehensive kinetic model of UV-H(2)O(2) AOP was coupled with the Reynolds averaged Navier-Stokes (RANS) equations using CFD to predict the oxidation of tributyl phosphate (TBP) and tri(2-chloroethtyl) phosphate (TCEP) in two different photoreactors: a parallel- and a cross-flow UV device employing a UV lamp emitting primarily 253.7 nm radiation. CFD simulations, obtained for both turbulent and laminar flow regimes and compared with experimental data over a wide range of UV doses, enabled the spatial visualization of hydrogen peroxide and hydroxyl radical distributions in the photoreactor. The annular photoreactor displayed consistently better oxidation performance than the cross-flow system due to the absence of recirculation zones, as confirmed by the hydroxyl radical dose distributions. Notably, such discrepancy was found to be strongly dependent on and directly correlated with the hydroxyl radical rate constant becoming relevant for conditions approaching diffusion-controlled reaction regimes (k(C,OH) > 10(9) M(-1) s(-1)). PMID:20704221

  9. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-08-01

    Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.

  10. Quantitative AOP linking aromatase inhibition to impaired reproduction: A case study in predictive ecotoxicology

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework is intended to help support greater use of mechanistic toxicology data as a basis for risk assessment and/or regulatory decision-making. While there have been clear advances in the ability to rapidly generate mechanistically-oriented da...

  11. Fish early life stage: Developing AOPs to support targeted reduction and replacement

    EPA Science Inventory

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse chronic toxicity outcomes (e.g., impacts on growth and survival). Development and characterization of adverse outcome pathways (AOPs) related...

  12. The potential of AOP networks for reproductive and developmental toxicity assay development

    EPA Science Inventory

    Historically, the prediction of reproductive and early developmental toxicity has largely relied on the use of animals. The Adverse Outcome Pathway (AOP) framework forms a basis for the development of new non-animal test methods. It also provides biological context for mechanisti...

  13. AOP Wiki: A new tool for developing and documenting adverse outcome pathways

    EPA Science Inventory

    An initial version of an IT system to support OECD AOP activities recently was completed through collaborative efforts and contributions of the European Commission's Joint Research Centre (EU JRC), the Office of Research and Development (ORD) of the United States Environmental Pr...

  14. Partial oxidation process with extractant purification

    SciTech Connect

    Stellaccio, R.J.

    1983-09-06

    A partial oxidation process is disclosed with an extractant purifier for removing the particulate carbon entrained in a vaporized stream of normally liquid organic extractant-carbon-water dispersion from a decanter and producing a clean vaporized mixture of liquid organic extractant and water and a separate liquid stream of liquid hydrocarbonaceous fuel-carbon dispersion. The extractant purifier comprises a closed, vertical, cylindrical, thermally insulated vessel with an unobstructed central passage. Supported in the upper section of the vessel is a gas-solids separator for separating the particulate carbon from the vaporized dispersion flowing up the vessel and discharging the particulate carbon into atomized liquid hydrocarbon fuel located within the lower section of the purifier.

  15. Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities.

    PubMed

    Westerhoff, Paul; Moon, Hye; Minakata, Daisuke; Crittenden, John

    2009-09-01

    The use of membrane processes for wastewater treatment and reuse is rapidly expanding. Organic, inorganic, and biological constituents are effectively removed by reverse osmosis (RO) membrane processes, but concentrate in membrane retentates Disposal of membrane concentrates is a growing concern. Applying advanced oxidation processes (AOPs) to RO retentate is logical because extensive treatment and energy inputs were expended to concentrate the organics, and it is cheaper to treat smaller flowstreams. AOPs (e.g., UV irradiation in the presence of titanium dioxide; UV/TiO(2)) can remove a high percentage of organic matter from RO retentates. The combination of AOPs and a simple biological system (e.g., sand filter) can remove higher levels of organic matter at lower UV dosages because AOPs produce biologically degradable material (e.g., organic acids) that have low hydroxyl radical rate constants, meaning that their oxidation, rather than that of the primary organic matter in the RO retentate, dictates the required UV energy inputs. At the highest applied UV dose (10 kWh m(-)3), the dissolved organic carbon (DOC) in the RO retentate decreased from approximately 40 to 8 mg L(-)1, of which approximately 6 mg L(-)1 were readily biologically degradable. Therefore, after combined UV treatment and biodegradation, the final DOC concentration was 2 mg L(-)1, representing a 91% removal. These results suggest that UV/TiO(2) plus biodegradation of RO retentates is feasible and would significantly reduce the organic pollutant loading into the environment from wastewater reuse facilities. PMID:19450863

  16. Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens.

    PubMed

    Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2015-07-01

    The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants. PMID:26009932

  17. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  18. Mechanistic modeling of vacuum UV advanced oxidation process in an annular photoreactor.

    PubMed

    Crapulli, F; Santoro, D; Sasges, M R; Ray, A K

    2014-11-01

    A novel mechanistic model that describes the vacuum UV advanced oxidation process in an annular photoreactor initiated by 172 nm and 185 nm (in combination with 253.7 nm, with and without exogenous H2O2) is presented in this paper. The model was developed from first principles by incorporating the vacuum UV-AOP kinetics into the theoretical framework of in-series continuous flow stirred tank reactors. After conducting a sensitivity analysis, model predictions were compared against experiments conducted under a variety of conditions: (a) photo-induced formation of hydrogen peroxide by water photolysis at 172 nm (for both air- and oxygen-saturated conditions); (b) photo-induced formation of hydrogen peroxide by water photolysis at 185 + 253.7 nm (in the presence of formic acid, with and without the initial addition of hydrogen peroxide); (c) direct photolysis of hydrogen peroxide by 253.7 nm; (d) degradation of formic acid by 185 + 253.7 nm (with and without initial addition of hydrogen peroxide); and (e) degradation of formic acid by 253.7 nm (with the addition of exogenous hydrogen peroxide). In all cases, the model was able to accurately predict the time-dependent profiles of hydrogen peroxide and formic acid concentrations. Two newly recognized aspects associated with water photolysis were identified through the use of the validated model. Firstly, unlike the 185 nm and 253.7 nm cases, water photolysis by the 172 nm wavelength revealed a depth of photoactive water layer an order of magnitude greater (∼230-390 μm, depending on the specific operating conditions) than the 1-log photon penetration layer (∼18 μm). To further investigate this potentially very important finding, a computational fluid dynamics model was set up to assess the role of transport mechanisms and species distributions within the photoreactor annulus. The model confirmed that short-lived hydroxyl radicals were present at a radial distance far beyond the ∼18 μm photon

  19. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOEpatents

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  20. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    PubMed

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2. PMID:24737016

  1. Thick film oxidation of copper in an electroplated MEMS process

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.; Bedair, S. S.; Song, X.; Boteler, L. M.; Kierzewski, I. M.

    2013-06-01

    Copper forms a porous oxide, allowing the formation of oxide layers up to tens of microns thick to be created at modest processing temperatures. In this work, the controlled oxidation of copper is employed within an all-metal electroplating process to create electrically insulating, structural posts and beams. This capability could eliminate the additional dielectric deposition and patterning steps that are often needed during the construction of sensors, waveguides, and other microfabricated devices. In this paper, copper oxidation rates for thermal and plasma-assisted growth methods are characterized. Time control of the oxide growth enables larger copper structures to remain conductive while smaller copper posts are fully oxidized. The concept is demonstrated using the controlled oxidation of a copper layer between two nickel layers to fabricate nickel inductors having both copper electrical vias and copper oxide support pillars. Nickel was utilized in this demonstration for its resistance against low temperature oxidation and interdiffusion with copper.

  2. Investigating the application of AOP methodology in development of Financial Accounting Software using Eclipse-AJDT Environment

    NASA Astrophysics Data System (ADS)

    Sharma, Amita; Sarangdevot, S. S.

    2010-11-01

    Aspect-Oriented Programming (AOP) methodology has been investigated in development of real world business application software—Financial Accounting Software. Eclipse-AJDT environment has been used as open source enhanced IDE support for programming in AOP language—Aspect J. Crosscutting concerns have been identified and modularized as aspects. This reduces the complexity of the design considerably due to elimination of code scattering and tangling. Improvement in modularity, quality and performance is achieved. The study concludes that AOP methodology in Eclipse-AJDT environment offers powerful support for modular design and implementation of real world quality business software.

  3. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    PubMed

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. PMID:24076569

  4. Removal of estrogens by electrochemical oxidation process.

    PubMed

    Cong, Vo Huu; Iwaya, Sota; Sakakibara, Yutaka

    2014-06-01

    Treatments of estrogens such as Estrone (E1), Estradiol (E2) and Ethinylestradiol (EE2) were conducted using an electrolytic reactor equipped with multi-packed granular glassy carbon electrodes. Experimental results showed that E1, E2 and EE2 were oxidized in the range of 0.45-0.85 V and were removed through electro-polymerization. Observed data from continuous experiments were in good agreement with calculated results by a mathematical model constructed based on mass transfer limitation. In continuous treatment of trace estrogens (1 μg/L), 98% of E1, E2 and EE2 were stably removed. At high loading rate (100 μg/L), removal efficiency of E1 was kept around 74%-88% for 21 days, but removal efficiency reduced due to passivation of electrodes. However, removal efficiency was recovered after electrochemical regeneration of electrodes in presence of ozone. Electric energy consumption was observed in the range of 1-2 Wh/m(3). From these results, we concluded that the present electrochemical process would be an alternative removal of estrogens. PMID:25079848

  5. Oxidation Ditches. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Nelsen, David

    The textual material for a two-lesson unit on oxidation ditches is presented in this student manual. Topics discussed in the first lesson (introduction, theory, and components) include: history of the oxidation ditch process; various designs of the oxidation ditch; multi-trench systems; carrousel system; advantages and disadvantages of the…

  6. Review of solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Yoon, Seokhyun; Kim, Hyun Jae

    2014-02-01

    In this review, we summarize solution-processed oxide thin-film transistors (TFTs) researches based on our fulfillments. We describe the fundamental studies of precursor composition effects at the beginning in order to figure out the role of each component in oxide semiconductors, and then present low temperature process for the adoption of flexible devices. Moreover, channel engineering for high performance and reliability of solution-processed oxide TFTs and various coating methods: spin-coating, inkjet printing, and gravure printing are also presented. The last topic of this review is an overview of multi-functional solution-processed oxide TFTs for various applications such as photodetector, biosensor, and memory.

  7. Synthesis and processing of monosized oxide powders

    DOEpatents

    Barringer, E.A.; Fegley, M.B. Jr.; Bowen, H.K.

    1985-09-24

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 microns can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed. 6 figs.

  8. Synthesis and processing of monosized oxide powders

    DOEpatents

    Barringer, Eric A.; Fegley, Jr., M. Bruce; Bowen, H. Kent

    1985-01-01

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

  9. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. PMID:24140682

  10. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA).

    PubMed

    Tollefsen, Knut Erik; Scholz, Stefan; Cronin, Mark T; Edwards, Stephen W; de Knecht, Joop; Crofton, Kevin; Garcia-Reyero, Natalia; Hartung, Thomas; Worth, Andrew; Patlewicz, Grace

    2014-12-01

    Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes. PMID:25261300

  11. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  12. Process for the separation of sulfur oxides from a gaseous mixture containing sulfur oxides and oxygen

    SciTech Connect

    Derosset, A.J.; Ginger, E.A.

    1980-12-23

    An improved process for the separation of sulfur oxides from a gaseous mixture containing sulfur oxides and oxygen is disclosed. The gaseous mixture is contacted with a solid sulfur oxide acceptor comprising copper, copper oxide, or a mixture thereof dispersed on a carrier material in combination with a platinum group metal component and a component selected from the group consisting of rhenium, germanium and tin.

  13. Catalyst and process for oxidizing hydrogen sulfide

    SciTech Connect

    Hass, R.H.; Fullerton; Ward, J.W.; Yorba, L.

    1984-04-24

    Catalysts comprising bismuth and vanadium components are highly active and stable, especially in the presence of water vapor, for oxidizing hydrogen sulfide to sulfur or SO/sub 2/. Such catalysts have been found to be especially active for the conversion of hydrogen sulfide to sulfur by reaction with oxygen or SO/sub 2/.

  14. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods.

    PubMed

    Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2015-11-01

    In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation < Activated Sludge < Moving Bed Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. PMID:26255127

  15. The fate of H2O2 during managed aquifer recharge: A residual from advanced oxidation processes for drinking water production.

    PubMed

    Wang, F; van Halem, D; van der Hoek, J P

    2016-04-01

    The fate of H2O2 residual from advanced oxidation process (AOP) preceding managed aquifer recharge (MAR) is of concern because H2O2 could lead to undesired effects on organisms in the MAR aquatic and soil ecosystem. The objective of this study was to distinguish between factors affecting H2O2 decomposition in MAR systems, simulated in batch reactors with synthetic MAR water and slow sand filter sand. The results showed that pure sand and soil organic matter had no considerable effect on H2O2 decomposition, whereas naturally occurring inorganic substances on the surface of sand grains and microbial biomass are the two main factors accelerating H2O2 decomposition in MAR systems. Additionally, the results showed that the H2O2 decompositions with different initial concentrations fitted first-order kinetics in 2-6 h in a mixture of slow sand filter sand (as a substitute for sand from a MAR system) and synthetic MAR water with high bacterial population. An estimation indicated that low concentrations of H2O2 (<3 mg/L) could decompose to the provisional standard of 0.25 mg/L in the first centimeters of MAR systems with the influent water containing high microbial biomass 38 ng ATP/mL. PMID:26812369

  16. Conversion of Sulfur by Wet Oxidation in the Bayer Process

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Li, Wangxing; Ma, Wenhui; Yin, Zhonglin; Wu, Guobao

    2015-08-01

    In this paper, the effects of temperature, oxidation time, and oxygen concentration on the conversion of sulfur by wet oxidation in the Bayer process were investigated at length. The results show that active sulfur S2- and S2O3 2- in sodium aluminate solution can be converted completely by wet oxidation during the digestion process, thus the effects of S2- and S2O3 2- on alumina product quality are eliminated; increased temperature, oxidation time, and oxygen concentration are conducive to conversion of S2- and S2O3 2-. At the same time, part of the organic carbon in the sodium aluminate solution is also oxidized by wet oxidation, and the color of the sodium aluminate solution noticeably fades.

  17. Process for Producing Metal Compounds From Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be fiber processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  18. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  19. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  20. Nitrous oxide emissions from wastewater treatment processes

    PubMed Central

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  1. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, C.Y.

    1993-09-21

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  2. Treatment of door-manufacturing factories wastewaters using CDEO and other AOPs: a comparison.

    PubMed

    Beteta, Alberto; Cañizares, Pablo; Rodrigo, Manuel A; Rodríguez, Lourdes; Sáez, Cristina

    2009-08-30

    In this work, three advanced oxidation technologies have been studied to improve the quality of the effluents of a physicochemical process and of a combined physicochemical-biological process during the treatment of actual industrial wastes of wooden door-manufacturing factories. From the treatment point of view (neglecting costs), advanced oxidation processes can be successfully used to treat both, coagulated and biologically treated wastes. Conductive-diamond electrochemical oxidation (CDEO) was found to be the more effective technology because it can reduce completely the chemical oxygen demand (COD) (no production of refractory compounds) with a very high current efficiency. However, from the economic viewpoint, the direct treatment of the coagulated wastes can not be recommended because it is very expensive. Only Fenton oxidation or conductive-diamond electrochemical oxidation can be cost-efficiently used to refine the quality of the effluent of the biological process. PMID:19285804

  3. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J.; Folser, George R.; Pal, Uday B.; Singhal, Subhash C.

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  4. Landfill leachate treatment by solar-driven AOPs

    SciTech Connect

    Rocha, Elisangela M.R.; Vilar, Vitor J.P.; Boaventura, Rui A.R.; Fonseca, Amelia; Saraiva, Isabel

    2011-01-15

    Sanitary landfill leachate resulting from the rainwater percolation through the landfill layers and waste material decomposition is a complex mixture of high-strength organic and inorganic compounds which constitutes serious environmental problems. In this study, different heterogeneous (TiO{sub 2}/UV, TiO{sub 2}/H{sub 2}O{sub 2}/UV) and homogenous (H{sub 2}O{sub 2}/UV, Fe{sup 2+}/H{sub 2}O{sub 2}/UV) photocatalytic processes were investigated as an alternative for the treatment of a mature landfill leachate. The addition of H{sub 2}O{sub 2} to TiO{sub 2}/UV system increased the reduction of the aromatic compounds from 15% to 61%, although mineralization was almost the same. The DOC and aromatic content abatement is similar for the H{sub 2}O{sub 2}/UV and TiO{sub 2}/H{sub 2}O{sub 2}/UV processes, although the H{sub 2}O{sub 2} consumption is three times higher in the H{sub 2}O{sub 2}/UV system. The low efficiency of TiO{sub 2}/H{sub 2}O{sub 2}/UV system is presumably due to the alkaline leachate solution, for which the H{sub 2}O{sub 2} becomes highly unstable and self-decomposition of H{sub 2}O{sub 2} occurs. The efficiency of the TiO{sub 2}/H{sub 2}O{sub 2}/UV system increased 10 times after a preliminary pH correction to 4. The photo-Fenton process is much more efficient than heterogeneous (TiO{sub 2}, TiO{sub 2}/H{sub 2}O{sub 2}/UV) or homogeneous (H{sub 2}O{sub 2}/UV) photocatalysis, showing an initial reaction rate more than 20 times higher, and leading to almost complete mineralization of the wastewater. However, when compared with TiO{sub 2}/H{sub 2}O{sub 2}/UV with acidification, the photo-Fenton reaction is only two times faster. The optimal initial iron dose for the photo-Fenton treatment of the leachate is 60 mg Fe{sup 2+} L{sup -1}, which is in agreement with path length of 5 cm in the photoreactor. The kinetic behaviour of the process (60 mg Fe{sup 2+} L{sup -1}) comprises a slow initial reaction, followed by a first-order kinetics (k = 0.020 LkJ{sub UV

  5. The development model of software product line based AOP

    NASA Astrophysics Data System (ADS)

    Yin, JingHai

    2011-10-01

    In this paper, we proposed a development model of MIS (management information system) software based aspect-oriented programming. MIS software will be the full separation of concerns, and establish corresponding platform-independent model, the dynamic weaving of aspects does not require all the static or fixed in weaver weaving in specific areas and at the same time Optimization, reducing system complexity and improve software development efficiency and speed. While the description and implementation of all aspects of the software industry chain assigned to the various levels of development team to complete, MIS can help resolve the current heavy workload of the software development process, low developing level, low software reuse rate, more duplication work of effort Problems.

  6. Process for the reduction of nitrogen oxides in an effluent

    SciTech Connect

    Epperly, W.R.; Sullivan, J.C.; Sprague, B.N.

    1989-09-05

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprises introducing a heterocyclic hydrocarbon selected from the group consisting of piperazine, piperidine, pyrazine, pyrazole, imidazole, oxazolidone, pyrrole and pyrrolidine into the effluent having an effluent temperature of greater than about 1200{sup 0}F. under conditions effective to reduce the concentration of nitrogen oxides in the effluent.

  7. Mobilization Protocols for Hybrid Sensors for Environmental AOP Sampling (HySEAS) Observations

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.

    2014-01-01

    The protocols presented here enable the proper mobilization of the latest-generation instruments for measuring the apparent optical properties (AOPs) of aquatic ecosystems. The protocols are designed for the Hybrid Sensors for Environmental AOP Sampling (HySEAS) class of instruments, but are applicable to the community of practice for AOP measurements. The protocols are organized into eleven sections beyond an introductory overview: a) cables and connectors, b) HySEAS instruments, c) platform preparation, d) instrument installation, e) cable installation, f) test deployment, g) test recovery, h) maintenance, i) shipping, j) storage, and k) smallboat operations. Each section concentrates on documenting how to prevent the most likely faults, remedy them should they occur, and accomplishing both with the proper application of a modest set of useful tools. Within the twelve sections, there are Socratic exercises to stimulate thought, and the answers to these exercises appear in Appendix A. Frequently asked questions (FAQs) are summarized in a separate section after the answers to the exercises in Appendix B. For practitioners unfamiliar with the nautical terms used throughout this document plus others likely encountered at sea, an abbreviated dictionary of nautical terms appears in Appendix C. An abbreviated dictionary of radiotelephone terms is presented in Appendix D. To ensure familiarity with many of the tools that are presented, Appendix E provides a description of the tools alongside a thumbnail picture. Abbreviated deployment checklists and cable diagrams are provided in Appendix F. The document concludes with an acknowledgments section, a glossary of acronyms, a definition of symbols, and a list of references.

  8. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis; Bayless, David J.; Trembly, Jason P.

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  9. The role of oxidative processes in emphysema

    SciTech Connect

    Janoff, A.; Carp, H.; Laurent, P.; Raju, L.

    1983-02-01

    Elastase/elastase inhibitor imbalance in the lung has been implicated in the pathogenesis of pulmonary emphysema. In light of this, it may be significant that the activity of two major elastase inhibitors, alpha 1-proteinase inhibitor (alpha 1-antitrypsin, alpha 1Pi) and bronchial mucous proteinase inhibitor, can be decreased by oxidizing agents. The effect can be observed with ozone, substances present in cigarette smoke, and oxygen metabolites generated by lung macrophages as well as peroxidative systems released by other phagocytic cells. Thus alpha 1Pi recovered from lung washings of cigarette smokers has only half the predicted normal activity per mg inhibitor and contains 4 moles of methionine sulfoxide (oxidized methionine) per mole of inactive inhibitor. By contrast, alpha 1Pi purified from nonsmokers' lung washings is fully active and contains only native methionine. At the same time, lung washes from some smokers show significantly greater hydrolytic activity against a specific synthetic elastase substrate than do lung washes of nonsmokers. These findings suggest that some smokers may develop an acquired imbalance between elastase and elastase inhibitor in their lungs, favoring activity of the enzyme. In addition to the potential effect of cigarette smoking on lung elastase/elastase inhibitor balance, smoking also may interfere with elastin repair mechanisms. Specifically, acidic water-soluble gas phase components of cigarette smoke prevent synthesis of desmosine cross-links during elastinogenesis in vitro. This report will attempt to correlate the foregoing information on biochemical changes in the lung induced by cigarette smoking with the development of emphysema in the smoker.

  10. CAVITATIONAL HYDROTHERMAL OXIDATION: A NEW REMEDIATION PROCESS

    EPA Science Inventory

    This research will explore the emerging science of sonochemistry and its technological applications for organic waste remediation, particularly for water and soil purification. Ultrasound can induce unusual high-energy chemistry through the process of acoustic cavitation: the for...

  11. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    SciTech Connect

    Nash, C. A.

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  12. Laser Processing of Metal Oxides for Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Breckenfeld, Eric; Charipar, Nicholas; Pique, Alberto

    Noble metals such as Au and Ag have been used traditionally for plasmonic devices. However, conventional metals are not suitable for near infrared (IR) plasmonic applications due to their relatively large optical losses at these wavelengths. Metal oxides, on the other hand, have been considered for low loss metallic components in the near IR because they can provide a tunable carrier density by doping. The zero-cross-over permittivity values of these metal oxides, for example, can easily be tuned from 1.0 µm to 3 µm by adjusting doping levels. Optical losses in devices made from these metal oxide materials are generally found to be much lower than those obtained with conventional metals. We have investigated various laser processing techniques for synthesizing several types of metal oxides. First, pulsed laser deposition was used to grow metal oxide thin films such as, Al-doped ZnO, Sn-doped In2O3 and VO2. Second, a laser sintering technique was used to improve the properties of solution-processed VO2 coatings. Third, a laser printing technique was used to produce metal oxide films. We will present details on the use of laser processing techniques for synthesizing these metal oxides along with their electrical, optical, and structural properties. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  13. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Ordóñez, Ruth; Blanco, Angeles

    2012-06-01

    According to current environmental legislation concerned with water scarcity, paper industry is being forced to adopt a zero liquid effluent policy. In consequence, reverse osmosis (RO) systems are being assessed as the final step of effluent treatment trains aiming to recover final wastewater and reuse it as process water. One of the most important drawbacks of these treatments is the production of a retentated stream, which is usually highly loaded with biorecalcitrant organic matter and inorganics; and this effluent must meet current legislation stringent constraints before being ultimately disposed. The treatment of biorefractory RO retentate from a paper mill by several promising advanced oxidation processes (AOPs) - conventional Fenton, photo-Fenton and photocatalysis - was optimized considering the effect and interaction of reaction parameters; particularly using response surface methodology (RSM) when appropriate (Fenton processes). The economical cost of these treatments was also comparatively assessed. Photo-Fenton process was able to totally remove the COD of the retentate, and resulted even operatively cheaper at high COD removal levels than conventional Fenton, which achieved an 80% reduction of the COD at best. In addition, although these optimal results were produced at pH=2.8, it was also tested that Fenton processes are able to achieve good COD reduction efficiencies (>60%) without adjusting the initial pH value, provided the natural pH of this wastewater was close to neutral. Finally, although TiO(2)-photocatalysis showed the least efficient and most expensive figures, it improved the biodegradability of the retentate, so its combination with a final biological step almost achieved the total removal of the COD. PMID:22244652

  14. Process for preparing zinc oxide-based sorbents

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2011-06-07

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  15. Development studies of a novel wet oxidation process

    SciTech Connect

    Rogers, T.W.; Dhooge, P.M.

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  16. Oxidation processes in magneto-optic and related materials

    NASA Technical Reports Server (NTRS)

    Lee, Paul A.; Armstrong, Neal R.; Danzinger, James L.; England, Craig D.

    1992-01-01

    The surface oxidation processes of thin films of magneto-optic materials, such as the rare-earth transition metal alloys have been studied, starting in ultrahigh vacuum environments, using surface analysis techniques, as a way of modeling the oxidation processes which occur at the base of a defect in an overcoated material, at the instant of exposure to ambient environments. Materials examined have included FeTbCo alloys, as well as those same materials with low percentages of added elements, such a Ta, and their reactivities to both O2 and H2O compared with materials such as thin Fe films coated with ultrathin adlayers of Ti. The surface oxidation pathways for these materials is reviewed, and XPS data presented which indicates the type of oxides formed, and a critical region of Ta concentration which provides optimum protection.

  17. Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    NASA Technical Reports Server (NTRS)

    Morrow, John H.; Hooker, Stanford B.; Booth, Charles R.; Bernhard, Germar; Lind, Randall N.; Brown, James W.

    2010-01-01

    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats.

  18. Scientists set to destroy VOCs with thermal oxidation process

    SciTech Connect

    Ray, K.A

    1989-12-01

    This paper reports on a thermal oxidation process that boasts a 99.99 percent destruction removal efficiency (DRE) and minimal formation of products of incomplete combustion (PICs). Together with a high reliability, corrosion resistant,non-catalytic design, these attributes make the technology ideal for processing chlorinated compounds, say company officials.

  19. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  20. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities. PMID:24804662

  1. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  2. Adapting biomarker technologies to adverse outcome pathways (AOPs) research: current thoughts on using in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Adverse outcome pathways (AOP) research is a relatively new concept in human systems biology for assessing the molecular level linkage from an initiating (chemical) event that could lead to a disease state. Although most implementations of AOPs are based on liquids analyses, the...

  3. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  4. [Oxidative stress, antioxydants and the ageing process].

    PubMed

    Pincemail, J; Ricour, C; Defraigne, J O; Petermans, J

    2014-01-01

    Antioxidant supplementation in the form of pills is thought to slow down the aging process through the "free radical" scavenger activity of these compounds. The idea arose from the "Free Radical Theory of Ageing" (FRTA), initially developed by Harman in 1956. In the present paper, we present some arguments against this theory. One of the most pertinent is that "free radicals", more properly renamed as reactive oxygen species (ROS), play important biological roles in defense mechanisms of the organism as illustrated, in particular, by the hormesis phenomenon. Surprisingly, a moderate production of ROS has been shown to extend the life span in animals. PMID:25065231

  5. Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process

    NASA Astrophysics Data System (ADS)

    Aniołek, K.; Kupka, M.; Barylski, A.; Dercz, G.

    2015-12-01

    The paper presents the results of tests concerning a modification to the surface of titanium Grade 2 in the thermal oxidation process. It describes the oxidation kinetics of the tested material in the temperature range of 600-800 °C, with a duration from 20 min to 72 h. The greatest increase in mass was found in specimens oxidised at a temperature of 800 °C. The morphology of the obtained oxide layers was determined. The particles of oxides formed were noticeably larger after oxidation at a temperature of 600 °C. Raising temperature resulted in the formation of fine compact particles in the oxide layer. A phase analysis of oxidation products showed that TiO2 in the crystallographic form of rutile and Ti3O are the prevalent types of oxide at a temperature of 600 and 700 °C. On the other hand, only rutile formed at a temperature of 800 °C. Tribological tests showed that the presence of an oxide layer on the surface of titanium significantly improved resistance to abrasive wear. It was found that volumetric wear had decreased by 48% for a specimen oxidised at a temperature of 600 °C and by more than 60% for a specimen subjected to isothermal soaking at a temperature of 700 °C.

  6. Simulation of Triple Oxidation Ditch Wastewater Treatment Process

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Zhang, Jinsong; Liu, Lixiang; Hu, Yongfeng; Xu, Ziming

    2010-11-01

    This paper presented the modeling mechanism and method of a sewage treatment system. A triple oxidation ditch process of a WWTP was simulated based on activated sludge model ASM2D with GPS-X software. In order to identify the adequate model structure to be implemented into the GPS-X environment, the oxidation ditch was divided into several completely stirred tank reactors depended on the distribution of aeration devices and dissolved oxygen concentration. The removal efficiency of COD, ammonia nitrogen, total nitrogen, total phosphorus and SS were simulated by GPS-X software with influent quality data of this WWTP from June to August 2009, to investigate the differences between the simulated results and the actual results. The results showed that, the simulated values could well reflect the actual condition of the triple oxidation ditch process. Mathematical modeling method was appropriate in effluent quality predicting and process optimizing.

  7. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment.

    PubMed

    Sudhakaran, Sairam; Maeng, Sung Kyu; Amy, Gary

    2013-07-01

    Organic micropollutants (OMPs) represent a major constraint in drinking water supply. In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. PMID:23664475

  8. Microwave processing of ceramic oxide filaments. Annual report, FY1997

    SciTech Connect

    Vogt, G.J.

    1998-12-31

    The objective of the microwave filament processing project is to develop microwave techniques to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company. Continuous ceramic filaments are a principal component in many advanced high temperature materials like continuous fiber ceramic composites (CFCC) and woven ceramic textiles. The use of continuous ceramic filaments in CFCC radiant burners, gas turbines, waste incineration, and hot gas filters in U.S. industry and power generation is estimated to save at least 2.16 quad/yr by year 2010 with energy cost savings of at least $8.1 billion. By year 2010, continuous ceramic filaments and CFCC`s have the potential to abate pollution emissions by 917,000 tons annually of nitrous oxide and 118 million tons annually of carbon dioxide (DOE Report OR-2002, February, 1994).

  9. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    SciTech Connect

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  10. Process for combined control of mercury and nitric oxide.

    SciTech Connect

    Livengood, C. D.; Mendelsohn, M. H.

    1999-11-03

    Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it

  11. Process Design for Preventing the Gate Oxide Thinning in the Integration of Dual Gate Oxide Transistor

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Ho; Kim, Sung-Hoan; Kim, Sung-Eun; Kim, Myung-Soo; Park, Joo-Han; Kim, Eun-Soo; Kim, Jin-Tae

    2002-04-01

    In this study, a method is proposed to alleviate a gate oxide (GOX) thinning problem at the edge of shallow trench isolation (STI), when STI is adopted in the dual gate oxide process (DGOX). It is well known that the DGOX process is usually used for realizing both low and high voltage operating parts in one chip. However, it is found that severe GOX thinning occurs from 320 Å (in active area) to 79 Å (at STI top edge) and a dent profile exists at the top edge of STI, when conventional DGOX and STI processes are adopted. In order to solve these problems, a new DGOX process is used in this study. The GOX thinning is prevented mainly by a combination of a thick sidewall oxide with SiN pullback. Therefore, good subthreshold characteristics without a so-called double hump are obtained by the prevention of GOX thinning and a deep dent profile.

  12. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification.

    PubMed

    Sudhakaran, Sairam; Amy, Gary L

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (k(OH) and k(O3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O(3) and AOP processes were developed, and rate constants, k(OH) and [Formula: see text] , were predicted based on target compound properties. The k(O3) and k(OH) values ranged from 5 * 10(-4) to 10(5) M(-1)s(-1) and 0.04 to 18 * (10(9)) M(-1) s(-1), respectively. Several molecular descriptors which potentially influence O(3) and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r(2) (>0.75). The models were validated by internal and external validation along with residual plots. PMID:23260175

  13. Oxidation of Black Carbon by Biotic and Abiotic Processes

    SciTech Connect

    Cheng, Chih-hsin; Lehmann, Johannes C.; Thies, Janice E.; Burton, Sarah D.; Engelhard, Mark H.

    2006-11-01

    The objectives of this study were to quantify the relative importance of either biotic or abiotic oxidation of biomass-derived black carbon (BC) and to characterize the surface properties and charge characteristics of oxidized particulate BC. We incubated BC and BC-soil mixtures at two different temperatures (30 C and 70 C) with and without microbial inoculation, nutrient additions, or manure amendments for four months. Abiotic processes were more important for oxidation of BC than biotic processes during this short-term incubation, as inoculation with microorganisms did not change any of the measured parameters. Black C incubated at both 30 C and 70 C without microbial activity showed dramatic decreases in pH (in water) from 5.4 to 5.2 and 3.4, as well as increases in cation exchange capacity (CEC at pH 7) by 53% and 538% and in oxygen (O) contents by 4% and 38%, respectively. Boehm titration and Fourier transform infrared (FTIR) spectroscopy suggested that the formation of carboxylic functional groups was the reason for the enhanced CEC during oxidation. The analyses of BC surface properties by X-ray photoelectron spectroscopy (XPS) indicated that the oxidation of BC particles initiated on the surface. Incubation at 30 C only enhanced oxidation on particle surfaces, while oxidation during incubation at 70 C penetrated into the interior of particles. Such short-term oxidation of BC has great significance for the stability of BC in soils as well as for its effects on soil fertility and biogeochemistry.

  14. Adverse Outcome Pathway (AOP) for a Mutagenic Mode of Action for Cancer: AFB1 and Hepatocellular Carcinoma (HCC)

    EPA Science Inventory

    AOPs provide a framework to describe a sequence of measureable key events (KEs), beginning with a molecular initiating event (MIE), followed by a series of identified KEs linked to one another by KE Relationships (KERs), all anchored by a specific adverse outcome (AO). Each KE/KE...

  15. Effect of processing on structural features of anodic aluminum oxides

    NASA Astrophysics Data System (ADS)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  16. GREENING OF OXIDATION CATALYSIS THROUGH IMPROVED CATALYST AND PROCESS DESIGN

    EPA Science Inventory


    Greening of Oxidation Catalysis Through Improved Catalysts and Process Design
    Michael A. Gonzalez*, Thomas Becker, and Raymond Smith

    United State Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W...

  17. Better End-Cap Processing for Oxidation-Resistant Polyimides

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Frimer, Aryeh A.

    2004-01-01

    A class of end-cap compounds that increase the thermo-oxidative stab ility of polyimides of the polymerization of monomeric reactants (PM R) type has been extended. In addition, an improved processing proto col for this class of end-cap compounds has been invented.

  18. FINAL REPORT. FUNDAMENTAL CHEMISTRY AND THERMODYNAMICS OF HYDROTHERMAL OXIDATION PROCESSES

    EPA Science Inventory

    The goal of this project was to address issues of fundamental chemistry and thermodynamic properties that currently limit the applicability of hydrothermal oxidation processes to the treatment of hazardous and radioactive DOE wastes. The primary issues are related to corrosion, i...

  19. Process and Equipment for Nitrogen Oxide Waste Conversion to Fertilizer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)

    2000-01-01

    The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: (1) directing a vapor stream containing at least nitrogen-containing oxidizing agent to a first contact zone; (2) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen- containing oxidizing agent; (3) directing said acid(s) as a second stream to a second contact zone; (4) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrite form present within said second stream to nitrate ion; (5) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; (6) adding hydrogen peroxide to said second contact zone when a level on hydrogen peroxide less than 0.1% by weight in said second stream is determined by said sampling; (7) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and (8) removing sais solution of potassium nitrate from said second contact zone.

  20. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  1. Direct reduction processes for titanium oxide in molten salt

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.

    2007-02-01

    Molten salt electrolysis using CaCl2 is employed to produce pure titanium and its alloys directly from TiO2 and a mixture of elemental oxides, respectively, as an alternate to the Kroll process. This is because CaO, which is a reduction by-product, is highly soluble in CaCl2. Good-quality titanium containing only a small amount of residual oxygen has been successfully produced and scaled to industrial levels. Thermochemical and electrochemical bases are reviewed to optimize the process conditions. Several processes using molten salt are being examined for future progress in titanium processing.

  2. Development studies of a novel wet oxidation process

    SciTech Connect

    Rogers, T.W.; Dhooge, P.M.

    1995-12-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX process of organic waste oxidation.

  3. Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching.

    PubMed

    Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G

    2014-10-01

    Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination. PMID:24945978

  4. Taxonomic applicability of inflammatory cytokines in adverse outcome pathway (AOP) development.

    PubMed

    Angrish, Michelle M; Pleil, Joachim D; Stiegel, Matthew A; Madden, Michael C; Moser, Virginia C; Herr, David W

    2016-01-01

    Cytokines, low-molecular-weight messenger proteins that act as intercellular immunomodulatory signals, have become a mainstream preclinical marker for assessing the systemic inflammatory response to external stressors. The challenge is to quantitate from healthy subjects cytokine levels that are below or at baseline and relate those dynamic and complex cytokine signatures of exposures with the inflammatory and repair pathways. Thus, highly sensitive, specific, and precise analytical and statistical methods are critically important. Investigators at the U.S. Environmental Protection Agency (EPA) have implemented advanced technologies and developed statistics for evaluating panels of inflammatory cytokines in human blood, exhaled breath condensate, urine samples, and murine biological media. Advanced multiplex, bead-based, and automated analytical platforms provided sufficient sensitivity, precision, and accuracy over the traditional enzyme-linked immunosorbent assay (ELISA). Thus, baseline cytokine levels can be quantified from healthy human subjects and animals and compared to an in vivo exposure response from an environmental chemical. Specifically, patterns of cytokine responses in humans exposed to environmental levels of ozone and diesel exhaust, and in rodents exposed to selected pesticides (such as fipronil and carbaryl), were used as case studies to generally assess the taxonomic applicability of cytokine responses. The findings in this study may aid in the application of measureable cytokine markers in future adverse outcome pathway (AOP)-based toxicity testing. Data from human and animal studies were coalesced and the possibility of using cytokines as key events (KE) to bridge species responses to external stressors in an AOP-based framework was explored. PMID:26914248

  5. Treatment of oxide spent fuel using the lithium reduction process

    SciTech Connect

    Karell, E.J.; Pierce, R.D.; Mulcahey, T.P.

    1996-05-01

    The wide variety in the composition of DOE spent nuclear fuel complicates its long-term disposition because of the potential requirement to individually qualify each type of fuel for repository disposal. Argonne National Laboratory (ANL) has developed the electrometallurgical treatment technique to convert all of these spent fuel types into a single set of disposal forms, simplifying the qualification process. While metallic fuels can be directly processed using the electrometallurgical treatment technique, oxide fuels must first be reduced to the metallic form. The lithium reduction process accomplishes this pretreatment. In the lithium process the oxide components of the fuel are reduced using lithium at 650 C in the presence of molten LiCl, yielding the corresponding metals and Li{sub 2}O. The reduced metal components are then separated from the LiCl salt phase and become the feed material for electrometallurgical treatment. A demonstration test of the lithium reduction process was successfully conducted using a 10-kg batch of simulated oxide spent fuel and engineering-scale equipment specifically constructed for that purpose. This paper describes the lithium process, the equipment used in the demonstration test, and the results of the demonstration test.

  6. Thermal Behavior Study of the MoVTeNb Oxide Catalyst for Selective Oxidation Process

    NASA Astrophysics Data System (ADS)

    Idris, R.; Hamid, S. B. Abd.

    2009-06-01

    Several parameters involved in preparing the multi metal oxide (MMO) catalysts (Mo1V0.3Te0.23Nb0.12Ox) for selective oxidation of propane to acrylic acid (AA) were investigated. These included the proper pre-calcined and calcinations atmosphere effect on the performance of the catalysts. It was found that each metal element plays a critical role to the performance of an effective catalyst and also the calcinations under a non-flow inert atmosphere. The characterization results from XRD, SEM, TG and DSC show the important differences depending on the activation procedures of the MoVTeNb oxide catalyst. The XRD analysis is used to identify the phase inventory of the MoVTeNb oxide catalysts. The structure of orthorhombic M1, M2, TeMo5O16, V0.95Mo0.97O5 and Mo5O14 phase was investigated. The orthorhombic M1 phase is the most active and selective phase and is responsible for the major of the efficiently of the best catalyst for selective oxidation process. TGA and DTG allow the identification of the number and types, of reactions involving evaporation of small molecules from removal of ligands and water to condensation or drying processes. From all these analyses it was proven that the activation procedures would affect the performance of the MoVTeNb oxide catalyst.

  7. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  8. Enzymatic oxidation of phenolic compounds in coffee processing wastewater.

    PubMed

    Torres, Juliana Arriel; Batista Chagas, Pricila Maria; Silva, Maria Cristina; dos Santos, Custódio Donizete; Duarte Corrêa, Angelita

    2016-01-01

    Peroxidases can be used in the treatment of wastewater containing phenolic compounds. The effluent from the wet processing of coffee fruits contains high content of these pollutants and although some studies propose treatments for this wastewater, none targets specifically the removal of these recalcitrant compounds. This study evaluates the potential use of different peroxidase sources in the oxidation of caffeic acid and of total phenolic compounds in coffee processing wastewater (CPW). The identification and quantification of phenolic compounds in CPW was performed and caffeic acid was found to be the major phenolic compound. Some factors, such as reaction time, pH, amount of H2O2 and enzyme were evaluated, in order to determine the optimum conditions for the enzyme performance for maximum oxidation of caffeic acid. The turnip peroxidase (TPE) proved efficient in the removal of caffeic acid, reaching an oxidation of 51.05% in just 15 minutes of reaction. However, in the bioremediation of the CPW, the horseradish peroxidase (HRP) was more efficient with 32.70%±0.16 of oxidation, followed by TPE with 18.25%±0.11. The treatment proposed in this work has potential as a complementary technology, since the efficiency of the existing process is intimately conditioned to the presence of these pollutants. PMID:26744933

  9. Vapor-gel processing and applications in oxide film depositions

    SciTech Connect

    Chour, K.W.; Xu, R.; Takada, T.

    1995-12-31

    The Vapor-gel processing of oxide films is discussed for the prototypic system of LiTa(OBut{sup n}){sub 6}-LiTaO{sub 3}. It is found that the hydrolysis-polycondensation reaction scheme, commonly used in Sol-gel processing, can be used in a vapor deposition environment. High quality films can be deposited at low temperatures. We present some initial results regarding this deposition method and discuss its advantages and disadvantages as compared with Sol-gel processing and typical MOCVD.

  10. Development studies for a novel wet oxidation process

    SciTech Connect

    Dhooge, P.M.; Hakim, L.B.

    1994-01-01

    A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.

  11. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines. PMID:25263417

  12. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  13. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  14. ER Protein Processing Under Oxidative Stress: Implications and Prevention.

    PubMed

    Khalil, Mahmoud F; Valenzuela, Carlos; Sisniega, Daniella; Skouta, Rachid; Narayan, Mahesh

    2016-06-01

    Elevated levels of mitochondrial nitrosative stress have been associated with the pathogenesis of both Parkinson's and Alzheimer's diseases. The mechanism involves catalytic poisoning of the endoplasmic reticulum (ER)-resident oxidoreductase chaperone, protein disulfide isomerase (PDI), and the subsequent accumulation of ER-processed substrate proteins. Using a model system to mimic mitochondrial oxidative and nitrosative stress, we demonstrate a PDI-independent mechanism whereby reactive oxygen species (ROS) compromise regeneration rates of disulfide bond-containing ER-processed proteins. Under ROS-duress, the secretion-destined traffic adopts disulfide-exposed structures making the protein flux retrotranslocation biased. We also demonstrate that ROS-compromised protein maturation rates can be rescued by the polyphenol ellagic acid (EA). Our results are significant in that they reveal an additional mechanism which could promote neurodegenerative disorders. Furthermore, our data reveal that EA possesses therapeutic potential as a lead prophylactic agent against oxidative/nitrosative stress-related neurodegenerative diseases. PMID:26983927

  15. Process for the reduction of nitrogen oxides in an effluent

    SciTech Connect

    Epperly, W.R.; Sullivan, J.C.

    1988-09-13

    A process is described for reducing the concentration of nitrogen oxides in an effluent from the combustion of a carbonaceous fuel, which process comprises injecting into the effluent ammonia and an enhancer selected from the group consisting of hexamethylenetetramine, a lower carbon alcohol, a hydroxyl amino hydrocarbon, sugar, furfural, furfural derivatives, an amino acid, a protein-containing composition, mixtures of ortho-, meta-, and para-methyl phenols, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, calcium cyanamide, biuret, 1,1'-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, and mixtures thereof, at an effluent temperature above about 1300/sup 0/F and a molar ratio of nitrogen in the ammonia and enhancer to the baseline nitrogen oxides level of about 1:5 to about 6:1 wherein the excess of oxygen in the effluent is no greater than about 6%.

  16. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with hy...

  17. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed, utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with h...

  18. Process for Nitrogen Oxide Waste Conversion to Fertilizer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)

    2003-01-01

    The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: a) directing a vapor stream containing at least one nitrogen-containing oxidizing agent to a first contact zone; b) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen-containing oxidizing agent; c) directing said acid(s) as a second stream to a second contact zone; d) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrate form present within said second stream to nitrate ion; e) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; f) adding hydrogen peroxide to said second contact zone when a level of hydrogen peroxide less than 0.1 % by weight in said second stream is determined by said sampling; g) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and h) removing said solution of potassium nitrate from said second contact zone.

  19. Lipid oxidation volatiles absent in milk after selected ultrasound processing.

    PubMed

    Juliano, Pablo; Torkamani, Amir Ehsan; Leong, Thomas; Kolb, Veronika; Watkins, Peter; Ajlouni, Said; Singh, Tanoj Kumar

    2014-11-01

    Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000kHz), using different temperatures (4, 20, 45 and 63°C), sonication times and ultrasound energy inputs up to 409kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4°C and were drawn periodically up to 14days for SPME-GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400kHz and 1000kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400kHz and 1000kHz at specific energies greater than 271kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3L flow cell enclosing a 20kHz horn and operating above 90kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors. PMID:24704065

  20. Laccase oxidation and removal of toxicants released during combustion processes.

    PubMed

    Prasetyo, Endry Nugroho; Semlitsch, Stefan; Nyanhongo, Gibson S; Lemmouchi, Yahia; Guebitz, Georg M

    2016-02-01

    This study reports for the first time the ability of laccases adsorbed on cellulose acetate to eliminate toxicants released during combustion processes. Laccases directly oxidized and eliminated more than 40% w/v of 14 mM of 1,4-dihydroxybenzene (hydroquinone); 2-methyl-1,4-benzenediol (methylhydroquinone); 1,4-dihydroxy-2,3,5-trimethylbenzene (trimethylhydroquinone); 3-methylphenol (m-cresol); 4-methylphenol (p-cresol); 2-methylphenol (o-cresol); 1,3-benzenediol (resorcinol); 1,2-dihydroxybenzene (catechol); 3,4-dihydroxytoluene (4-methylcatechol) and 2-naphthylamine. Further, laccase oxidized 2-naphthylamine, hydroquinone, catechol, methylhydroquinone and methylcatechol were also able to in turn mediate the elimination of >90% w/v of toxicants which are per-se non-laccase substrates such as 3-aminobiphenyl; 4-aminobiphenyl; benz[a]anthracene; 3-(1-nitrosopyrrolidin-2-yl) pyridine (NNN); formaldehyde; 4-(methyl-nitrosamino-1-(3-pyridyl)-1-butanone (NNK); 2-butenal (crotonaldehyde); nitric oxide and vinyl cyanide (acrylonitrile). These studies demonstrate the potential of laccase immobilized on solid supports to remove many structurally different toxicants released during combustion processes. This system has great potential application for in situ removal of toxicants in the manufacturing, food processing and food service industries. PMID:26408262

  1. A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins.

    PubMed

    Cañizares, P; Hernández-Ortega, M; Rodrigo, M A; Barrera-Díaz, C E; Roa-Morales, G; Sáez, C

    2009-05-15

    In this study, three technologies classified as Advanced Oxidation Processes (Conductive-Diamond Electrochemical Oxidation (CDEO), ozonation and Fenton oxidation) have been compared to treat wastes produced in fermentation processes, and characterized by a significant color and a high organic load. Results of CDEO seem to strongly depend on the addition of an electrolyte salt, not only to decrease the energy cost but also to improve efficiency. The addition of sodium chloride as supporting electrolyte improves the removal percentages of organic load, indicating the important role of mediated oxidation processes carried out by the electrogenerated oxidants (hypochlorite). Fenton oxidation and ozonation seem to be less efficient, and mainly Fenton oxidation favors the accumulation of refractory compounds. The differences observed can be explained in terms of the contribution of hydroxyl radicals and other specific oxidation mechanisms involved in each technology. PMID:18789836

  2. Process for the reduction of nitrogen oxides in an effluent

    SciTech Connect

    Epperly, W.R.; Sullivan, J.C.; Sprague, B.N.

    1989-07-04

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprises introducing a treatment agent which comprises a composition selected from the group consisting of NH/sub 4/-lignosulfonate, calcium lignosulfonate, 2-furoic acid, 1,3 dioxolane, tetrahydrofuran, furfurylamine, furfurylalcohol, gluconic acid, citric acid, n-butyl acetate, 1,3 butylene glycol, methylal, tetrahydrofuryl alcohol, furan, fish oil, coumalic acid, furfuryl acetate, tetrahydrofuran 2,3,4,5-tetracarboxylic acid, tetrahydrofurylamine, furylacrylic acid, tetrahydropyran, 2,5-furandimethanol, mannitol, hexamethylenediamine, barbituric acid, acetic anhydride, oxalic acid, mucic acid and d-galactose.

  3. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  4. Oxidation-reduction catalyst and its process of use

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor)

    2008-01-01

    This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.

  5. Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Yihong

    The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during

  6. Developing a Scalable Remote Sampling Design for the NEON Airborne Observation Platform (AOP)

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Wasser, L. A.; Kampe, T. U.; Leisso, N.; Krause, K.; Petroy, S. B.; Cawse-Nicholson, K.; van Aardt, J. A.; Serbin, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) airborne observation platform (AOP) will collect co-registered high-resolution hyperspectral imagery, discrete and waveform LiDAR, and high-resolution digital photography for more than 60 terrestrial and 23 aquatic sites spread across the continental United States, Puerto Rico, Alaska and Hawaii on an annual basis over the next 30 years. These data, to be made freely available to the public, will facilitate the scaling of field-based biological, physical and chemical measurements to regional and continental scales, enabling a better understanding of the relationships between climate variability and change, land use change and invasive species, and their ecological consequences in areas not directly sampled by the NEON facilities. However, successful up-scaling of in situ measurements requires a flight sampling design that captures environmental heterogeneity and diversity (i.e., ecological and topographic gradients), is sensitive to temporal system variation (e.g., phenology), and can respond to major disturbance events. Alignment of airborne campaigns - composed of two payloads for nominal science acquisitions and one payload for PI-driven rapid-response campaigns -- with other ground, airborne (e.g., AVIRIS) and satellite (e.g., Landsat, MODIS) collections will further facilitate scaling between sensors and data sources of varying spatial and spectral resolution and extent. This presentation will discuss the approach, challenges and future goals associated with the development of NEON AOP's sampling design, using examples from the 2013 nominal flight campaigns in the Central Plains (NEON Domain 10) and the Pacific Southwest (Domain 17), and the rapid response flight campaign of the High Park Fire site outside of Fort Collins, CO. Determination of the specific flight coverage areas for each campaign involved analysis of the landscape scale ecological, geophysical and bioclimatic attributes and trends most closely

  7. Solution-Processed Indium Oxide Based Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Xu, Wangying

    Oxide thin-film transistors (TFTs) have attracted considerable attention over the past decade due to their high carrier mobility and excellent uniformity. However, most of these oxide TFTs are usually fabricated using costly vacuum-based techniques. Recently, the solution processes have been developed due to the possibility of low-cost and large-area fabrication. In this thesis, we have carried out a detailed and systematic study of solution-processed oxide thin films and TFTs. At first, we demonstrated a passivation method to overcome the water susceptibility of solution-processed InZnO TFTs by utilizing octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs). The unpassivated InZnO TFTs exhibited large hysteresis in their electrical characteristics due to the adsorbed water at the semiconductor surface. Formation of a SAM of ODPA on the top of InZnO removed water molecules weakly absorbed at the back channel and prevented water diffusion from the surroundings. Therefore the passivated devices exhibited significantly reduced hysteretic characteristics. Secondly, we developed a simple spin-coating approach for high- k dielectrics (Al2O3, ZrO2, Y 2O3 and TiO2). These materials were used as gate dielectrics for solution-processed In2O3 or InZnO TFTs. Among the high-k dielectrics, the Al2O3-based devices showed the best performance, which is attributed to the smooth dielectric/semiconductor interface and the low interface trap density besides its good insulating property. Thirdly, the formation and properties of Al2O3 thin films under various annealing temperatures were intensively studied, revealing that the sol-gel-derived Al2O3 thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide. Besides, the Al2O 3 film was used as gate dielectric for solution-processed oxide TFTs, resulting in high mobility and low operating voltage. Finally, we proposed a green route for

  8. Processing, Microstructure, and Oxidation Behavior of Iron Foams

    NASA Astrophysics Data System (ADS)

    Park, Hyeji; Noh, Yoonsook; Choi, Hyelim; Hong, Kicheol; Kwon, Kyungjung; Choe, Heeman

    2016-06-01

    With its historically long popularity in major structural applications, the use of iron (Fe) has also recently begun to be explored as an advanced functional material. For this purpose, it is more advantageous to use Fe as a porous structure, simply because it can provide a greater surface area and a higher reaction rate. This study uses a freeze-casting method, which consists of simple and low-cost processing steps, to produce Fe foam with a mean pore size of 10 μm. We examine the influences of various parameters (i.e., mold bottom temperature, powder content, and sintering time) on the processing of Fe foam, along with its oxidation kinetics at 823 K (550 °C) with various heat-treatment times. We confirm that Fe2O3 and Fe3O4 oxide layers are successfully formed on the surface of Fe foam. With the Fe oxide layers as an active anode material, the Fe foam can potentially be used as a three-dimensional anode current collector for an advanced lithium-ion battery.

  9. Processing, Microstructure, and Oxidation Behavior of Iron Foams

    NASA Astrophysics Data System (ADS)

    Park, Hyeji; Noh, Yoonsook; Choi, Hyelim; Hong, Kicheol; Kwon, Kyungjung; Choe, Heeman

    2016-09-01

    With its historically long popularity in major structural applications, the use of iron (Fe) has also recently begun to be explored as an advanced functional material. For this purpose, it is more advantageous to use Fe as a porous structure, simply because it can provide a greater surface area and a higher reaction rate. This study uses a freeze-casting method, which consists of simple and low-cost processing steps, to produce Fe foam with a mean pore size of 10 μm. We examine the influences of various parameters ( i.e., mold bottom temperature, powder content, and sintering time) on the processing of Fe foam, along with its oxidation kinetics at 823 K (550 °C) with various heat-treatment times. We confirm that Fe2O3 and Fe3O4 oxide layers are successfully formed on the surface of Fe foam. With the Fe oxide layers as an active anode material, the Fe foam can potentially be used as a three-dimensional anode current collector for an advanced lithium-ion battery.

  10. PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES

    DOEpatents

    Weissman, S.I.; Perlman, M.L.; Lipkin, D.

    1959-10-13

    A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

  11. Nitrogen and carbon oxides chemistry in the HRS retorting process

    SciTech Connect

    Reynolds, J.G.

    1993-11-12

    The HRS Oil Shale Retort process consists of a pyrolysis section which converts kerogen of the shale to liquid and gaseous products, and a combustion section which burns residual carbon on the shale to heat the process. Average gas concentrations of selected gas phase species were determined from data measured at several placed on the combustion system of the Lawrence Livermore National Laboratory Hot-Recycled-Solids Retort Pilot Plant for representative rich and lean shale runs. The data was measured on-line and in real time by on-line meters (CO{sub 2}, CO, O{sub 2}), mass spectrometry (CO{sub 2}, O{sub 2}, H{sub 2}O, NO, CH{sub 4}, SO{sub 2}, N{sub 2} and Ar), and Fourier transform infrared spectroscopy (CO{sub 2}, CO, H{sub 2}O, NO, N{sub 2}O, NO{sub 2}, CH{sub 4}, SO{sub 2}, NH{sub 3}, and HCN). For both the rich and leans shale runs, the Lift-Pipe Combustor (LFT) exhibited gas concentrations (sampled at the exit of the LFT) indicative of incomplete combustion and oxidation; the Delayed-Fall Combustor (DFC) exhibited gas concentrations (sampled at the annulus and the exit of the DFC) indicative of much more complete combustion and oxidation. The Fluidized-Bed Combustor exhibited gas concentrations which were controlled to a large extent by the injection atmosphere of the FBC. High levels of nitrogen oxides and low levels of CO were detected when full air injection was used, while high levels of CO and low levels of nitrogen-oxides were detected with partial N{sub 2} injection. Sequential sampling limitations and nitrogen balances are also discussed.

  12. Development studies of a novel wet oxidation process

    SciTech Connect

    Rogers, T.W.; Dooge, P.M.

    1996-12-31

    The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications of the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).

  13. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE PAGESBeta

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  14. Microstructure Sensitive Design and Processing in Solid Oxide Electrolyzer Cell

    SciTech Connect

    Dr. Hamid Garmestani; Dr. Stephen Herring

    2009-06-12

    The aim of this study was to develop and inexpensive manufacturing process for deposition of functionally graded thin films of LSM oxides with porosity graded microstructures for use as IT-SOFCs cathode. The spray pyrolysis method was chosen as a low-temperature processing technique for deposition of porous LSM films onto dense YXZ substrates. The effort was directed toward the optimization of the processing conditions for deposition of high quality LSM films with variety of morphologies in the range of dense to porous microstructures. Results of optimization studies of spray parameters revealed that the substrate surface temperature is the most critical parameter influencing the roughness and morphology, porosity, cracking and crystallinity of the film.

  15. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  16. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    PubMed Central

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter. PMID:23369258

  17. Processing and Oxidation Behavior of Nb-Si-B Intermetallics

    SciTech Connect

    Y.LIU; A.J. Thom; M.J. Kramer; M. Akinc

    2004-09-30

    Single phase materials of {alpha}-Nb{sub 5}Si{sub 3}, Nb{sub 5}(Si,B){sub 3} (T2) and Nb{sub 5}Si{sub 3}B{sub x} (D8{sub 8}) in the Nb-Si-B system were prepared by powder metallurgy processing. T2 was almost fully dense, while {alpha}-Nb{sub 5}Si{sub 3} and D8{sub 8} were porous after sintering at 1900 C for 2 hours. The lattice parameters of T2 decreased linearly with the substitution of B for Si. Isothermal oxidation testing at 1000 C in flowing air indicated that the oxidation resistances of T2 and D8{sub 8} are much better than {alpha}-Nb{sub 5}Si{sub 3}, but still extremely poor compared to the boron-modified Mo{sub 5}Si{sub 3}. Extensive cracking in the oxide scale and matrix were observed and arose from the volume expansion associated with the formation of Nb{sub 2}O{sub 5} and boron-containing silica glass.

  18. Nitric Oxide Regulation of Mitochondrial Processes: Commonality in Medical Disorders.

    PubMed

    Stefano, George B; Kream, Richard M

    2015-01-01

    The vital status of diverse classes of eukaryotic mitochondria is reflected by the high degree of evolutionary modification functionally linked to ongoing multifaceted organelle development. From this teleological perspective, a logistical enhancement of eukaryotic cellular energy requirements indicates a convergence of metabolic processes within the mitochondrial matrix for optimal synthesis of ATP from ADP and inorganic phosphate and necessitates an evolutionarily driven retrofit of the primordial endosymbiont bacterial plasma membrane into the inner mitochondrial membrane. The biochemical complexity of eukaryotic inner membrane electron transport complexes linked to temporally-defined, state-dependent, fluctuations in mitochondrial oxygen utilization is capable of generating deleterious reactive oxygen species. Within this functional context, an extensive neurochemical literature supports the role of the free radical gas nitric oxide (NO) as a key signaling molecule involved in the regulation of multiple aspects of mitochondrial respiration/oxidative phosphorylation. Importantly, the unique chemical properties of NO underlie its rapid metabolism in vivo within a mechanistic spectrum of small oxidative molecules, free and protein-bound thiol adducts, and reversible binding to ferrous heme iron centers. Recent compelling work has identified a medically relevant dual regulation pathway for mitochondrial NO expression mediated by traditionally characterized NO synthases (NOS) and by enzymatic reduction of available cellular nitrite pools by a diverse class of cytosolic and mitochondrial nitrite reductases. Accordingly, our short review presents selected medically-based discussion topics relating to multi-faceted NO regulation of mitochondrial functions in human health and disease states. PMID:26177568

  19. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  20. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. PMID:26517790

  1. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  2. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells. PMID:23206541

  3. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  4. Reducing phosphine after the smoking process using an oxidative treatment.

    PubMed

    Nota, G; Naviglio, D; Romano, R; Ugliano, M; Sabia, V

    2000-02-01

    This article gives a description of the setup in a laboratory of a pilot system to reduce phosphine following the smoking process of foodstuffs. At present, this fumigant is released into the atmosphere and causes serious damage to the environment due to its transformation into aggressive compounds. However, phosphine may prove a good alternative to methyl bromide, which will legally be used as a fumigant until the year 2002, provided it is made inert after the smoking process and transformed into nontoxic and easily disposable substances. Oxidant solutions containing potassium permanganate or potassium bichromate in suitable concentrations proved moderately effective in reducing phosphine. The addition of traces of silver nitrate as a catalyst to the oxidant solutions increased the efficiency in reducing the fumigant, although not completely. Thus it was necessary to use a recycling system to decontaminate air from phosphine, as such an apparatus ensures the complete reduction of phosphine. The mathematical function describing how the concentration of phosphine varies in the smoking chamber also makes it possible to estimate the time necessary to reduce a phosphine concentration from any initial value to a fixed final value. PMID:10691669

  5. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  6. Comparison of AOPs for the removal of natural organic matter: performance and economic assessment.

    PubMed

    Murray, C A; Parsons, S A

    2004-01-01

    Control of disinfection by-products during water treatment is primarily achieved by reducing the levels of organic precursor species prior to chlorination. Many waters contain natural organic matter at levels up to 15 mg L(-1); therefore it is necessary to have a range of control methods to support conventional coagulation. Advanced oxidation processes are such processes and in this paper the Fenton and photo-Fenton processes along with photocatalysis are assessed for their NOM removal potential. The performance of each process is shown to be dependent on pH and chemical dose as well as the initial NOM concentration. Under optimum conditions the processes achieved greater than 90% removal of DOC and UV254 absorbance. This removal led to the THMFP of the source water being reduced from 140 to below 10 microg L(-1), well below UK and US standards. An economic assessment of the processes revealed that currently such processes are not economic. With advances in technology and tightening of water quality standards these processes should become economically feasible options. PMID:15077982

  7. Development studies for a novel wet oxidation process. Phase 2

    SciTech Connect

    1994-07-01

    DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set of site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.

  8. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  9. Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis.

    PubMed

    Zhang, Tianqi; Cheng, Long; Ma, Lin; Meng, Fanchao; Arnold, Robert G; Sáez, A Eduardo

    2016-10-01

    Hydrogen peroxide UV photolysis is among the most widely used advanced oxidation processes (AOPs) for the destruction of trace organics in waters destined for reuse. Previous kinetic models of hydrogen peroxide photolysis focus on the dynamics of hydroxyl radical production and consumption, as well as the reaction of the target organic with hydroxyl radicals. However, the rate of target destruction may also be affected by radical scavenging by reaction products. In this work, we build a predictive kinetic model for the destruction of p-cresol by hydrogen peroxide photolysis based on a complete reaction mechanism that includes reactions of intermediates with hydroxyl radicals. The results show that development of a predictive kinetic model to evaluate process performance requires consideration of the complete reaction mechanism, including reactions of intermediates with hydroxyl radicals. PMID:27448315

  10. Process for making surfactant capped metal oxide nanocrystals, and products produced by the process

    DOEpatents

    Alivisatos, A. Paul; Rockenberger, Joerg

    2006-01-10

    Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400.degree. C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.

  11. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  12. Microwave cavity spectrometer for process monitoring of ethylene oxide sterilization

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Gibson, C.; Samuel, A. H.; Matthews, I. P.

    1993-01-01

    This article reports a novel and simple cavity spectrometer for process monitoring of ethylene oxide sterilization, in which the source frequency, cavity resonant frequency, and gas absorption center frequency are asynchronous with respect to each other, thus, enabling sophisticated signal enhancement techniques to be employed without the need to engage the Stark effect. The operation of the device is such that the source frequency sweeps across a given range (F1 to F2) which contains one of the absorption peaks of the analyte gas (gases) of interest while the cavity resonant frequency Fr is oscillated within the profile of the absorption peak. Signal enhancement is achieved by adding a relatively small magnitude/high-frequency ``dither'' signal to the source frequency sweep pattern. The salient information of the gas absorption due to the oscillation of the resonant frequency of the cavity is carried by the ``dither'' signal and amplified and extracted by a series of tuned amplifiers and demodulators. Although the device is still at the initial design stage, a working prototype has been constructed in order to test the feasibility of the novel asynchronous modulation technique. This was achieved by successfully demonstrating that the device operates in an expected manner to within a standard error of 8.3%. It is believed that this error largely results from mechanical components. The significance of this error is greatly reduced when the spectrometer is operated in a large signal scanning mode as is the case when we apply the ``power saturation'' technique to measure the concentration of ethylene oxide in the resonant cavity. This measurement showed that there is a good linear correlation between the output signal and the concentration of ethylene oxide gas (to within a standard error of 4%).

  13. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    SciTech Connect

    Xiaofei Guan; Peter A. Zink; Uday B. Pal; Adam C. Powell

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.

  14. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    SciTech Connect

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  15. Single-Step Process toward Achieving Superhydrophobic Reduced Graphene Oxide.

    PubMed

    Li, Zhong; Tang, Xiu-Zhi; Zhu, Wenyu; Thompson, Brianna C; Huang, Mingyue; Yang, Jinglei; Hu, Xiao; Khor, Khiam Aik

    2016-05-01

    We report the first use of spark plasma sintering (SPS) as a single-step process to achieve superhydrophobic reduced graphene oxide (rGO). It was found that SPS was capable of converting smooth and electrically insulating graphene oxide (GO) sheets into highly electrically conductive rGO with minimum residual oxygen and hierarchical roughness which could be well retained after prolonged ultrasonication. At a temperature of 500 °C, which is lower than the conventional critical temperature for GO exfoliation, GO was successfully exfoliated, reduced, and hierarchically roughened. rGO fabricated by only 1 min of treatment at 1050 °C was superhydrophobic with a surface roughness (Ra) 10 times as large as that of GO as well as an extraordinarily high C:O ratio of 83.03 (atom %) and water contact angle of 153°. This demonstrates that SPS is a superior GO reduction technique, which enabled superhydrophobic rGO to be quickly and effectively achieved in one single step. Moreover, the superhydrophobic rGO fabricated by SPS showed an impressive bacterial antifouling and inactivation effect against Escherichia coli in both aqueous solution and the solid state. It is envisioned that the superhydrophobic rGO obtained in this study can be potentially used for a wide range of industrial and biomedical applications, such as the fabrication of self-cleaning and antibacterial surfaces. PMID:27064825

  16. Anaerobic oxidation of methane: an "active" microbial process.

    PubMed

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang

    2015-02-01

    The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. AOM was first found to be coupled with sulfate reduction and mediated by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). ANME, often forming consortia with SRB, are phylogenetically related to methanogenic archaea. ANME-1 is even able to produce methane. Subsequently, it has been found that AOM can also be coupled with denitrification. The known microbes responsible for this process are Candidatus Methylomirabilis oxyfera (M. oxyfera) and Candidatus Methanoperedens nitroreducens (M. nitroreducens). Candidatus Methylomirabilis oxyfera belongs to the NC10 bacteria, can catalyze nitrite reduction through an "intra-aerobic" pathway, and may catalyze AOM through an aerobic methane oxidation pathway. However, M. nitroreducens, which is affiliated with ANME-2d archaea, may be able to catalyze AOM through the reverse methanogenesis pathway. Moreover, manganese (Mn(4+) ) and iron (Fe(3+) ) can also be used as electron acceptors of AOM. This review summarizes the mechanisms and associated microbes of AOM. It also discusses recent progress in some unclear key issues about AOM, including ANME-1 in hypersaline environments, the effect of oxygen on M. oxyfera, and the relationship of M. nitroreducens with ANME. PMID:25530008

  17. Anaerobic oxidation of methane: an “active” microbial process

    PubMed Central

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang

    2015-01-01

    The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. AOM was first found to be coupled with sulfate reduction and mediated by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). ANME, often forming consortia with SRB, are phylogenetically related to methanogenic archaea. ANME-1 is even able to produce methane. Subsequently, it has been found that AOM can also be coupled with denitrification. The known microbes responsible for this process are Candidatus Methylomirabilis oxyfera (M. oxyfera) and Candidatus Methanoperedens nitroreducens (M. nitroreducens). Candidatus Methylomirabilis oxyfera belongs to the NC10 bacteria, can catalyze nitrite reduction through an “intra-aerobic” pathway, and may catalyze AOM through an aerobic methane oxidation pathway. However, M. nitroreducens, which is affiliated with ANME-2d archaea, may be able to catalyze AOM through the reverse methanogenesis pathway. Moreover, manganese (Mn4+) and iron (Fe3+) can also be used as electron acceptors of AOM. This review summarizes the mechanisms and associated microbes of AOM. It also discusses recent progress in some unclear key issues about AOM, including ANME-1 in hypersaline environments, the effect of oxygen on M. oxyfera, and the relationship of M. nitroreducens with ANME. PMID:25530008

  18. Oxidation enhancement of submicron organic aerosols by fog processing

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ge, X.; Collier, S.; Setyan, A.; Xu, J.; Sun, Y.

    2011-12-01

    During 2010 wintertime, a measurement study was carried out at Fresno, California, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) combined with a Scanning Mobility Particle Sizer (SMPS). Four fog events occurred during the first week of the campaign. While ambient aerosol was sampled into the HR-ToF-AMS, fog water samples were collected, and were later aerosolized and analyzed via HR-TOF-AMS in the laboratory. We performed Positive Matrix Factorization (PMF) on the AMS ambient organic mass spectra, and identified four OA factors: hydrocarbon-like OA (HOA) likely from vehicle emissions, cooking influenced OA (COA), biomass burning OA (BBOA) representing residential wood combustion, and an oxygenated OA (OOA) that has an average O/C ratio of 0.42. The time series of the OOA factor correlates best with that of sulfate (R2 =0.54 ) during fog events, suggesting that aqueous phase processing may have strongly affected OOA production during wintertime in Fresno. We further investigate the OOA compositions and elemental ratios before, during, and after the fog events, as well as those of dissolved organic matter (DOM) in fog waters to study the influence of aqueous phase processing on OA compositions. Results of fog sample analysis shows an enhancement of oxidation of DOM in 11 separate fog samples. Further factor analysis of the fog DOM data will elucidate the possible mechanisms by which fog processing enhances oxidation of aerosol. In addition, in order to investigate the influence of aqueous processing on OA, we used the Extended Aerosol Inorganic Model (E-AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php) to estimate aerosol phase water contents based on the AMS measured aerosol composition. The predicted water content has a good correlation with sulfate and OOA . We will further explore the correlations between particle phase water with organic aerosol characteristics to discuss the influence of aqueous phase processing on

  19. Poisoning and reactivation processes in oxide-type cathodes: Part I. Polycrystalline mixed oxides

    NASA Astrophysics Data System (ADS)

    Shih, A.; Haas, G. A.

    A study has been made of the poisoning and reactivation characteristics of alkaline earth oxide-type cathodes after extended periods of shelf storage. Both emitted and incident electrons were used to measure changes in the electronics properties, i.e. work function. The variations in work function over the surface were obtained in both distribution form as well as topographic presentation using a scanning low energy electron probe (SLEEP). These measurements were correlated with simultaneously occurring compositional changes using Auger, gas desorption and ion scattering techniques. Measurements were made on realistic cathodes in actual vacuum tube ambients. The results showed that oxide-type cathodes poison within a few hours after shut-down by the adsorption of residual gases contained in the vacuum ambient. (The effects of CO 2 were specifically demonstrated.) These adsorbates are, however, desorbed upon heating and in combination with other reactivation processes (such as formation of surface Ba layers when using reducing substrates), the cathode can reach full activation again by the time the temperature reaches the normal operating temperature. The poisoning and reactivation phenomena are a combination of a number of simultaneous processes, and studies to separate and identify these is the objective of part II of this paper.

  20. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  1. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  2. DEVELOPMENT OF SULFATE RADICAL-BASED CHEMICAL OXIDATION PROCESSES FOR GROUNDWATER REMEDIATION

    EPA Science Inventory

    This study investigates the development of novel sulfate radical-based chemical oxidation processes for treatment of groundwater contaminants. Environmentally friendly transition metal (Fe (II), Fe (III)) has been evaluated for the activation of common oxidants (peroxymonosulfat...

  3. Test of TDA's Direct Oxidation Process for Sulfur Recovery

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; Eugene Peeples; Sandra Huzyk; Randy Welch

    2005-01-01

    This project was a Phase III pilot plant test of TDA's gas sweetening process done under realistic conditions. TDA Research Inc successfully completed the test at Whiting Petroleum's Sable San Andreas Gas Plant. The feed was approximately 228,000 standard cubic feet per day (SCFD) of gas that contained approximately 60 vol% CO{sub 2}, 20 vol% CH{sub 4} and 10 vol% C{sub 3}+ and higher hydrocarbons. The feed was associated gas from CO{sub 2} flooding operations carried out on Whiting's oil wells. The gas is collected and piped to the Sable gas plant where it is normally flared. We sited our pilot plant in line with the flare so that we could remove the hydrogen sulfide (H{sub 2}S) prior to flaring. The average H{sub 2}S concentration in the gas during the field test was 7341 ppm. The selectivity of our process for converting H{sub 2}S into elemental sulfur was essentially 100% and the catalyst converted 90% of the H{sub 2}S into sulfur and water (the remaining 10% of the H{sub 2}S passed through unconverted). Importantly, no catalyst deactivation was observed for over the course of the 1000+ hour test. Minimal (ca. 10-15 ppm) of SO{sub 2} was formed during the test. Approximately 3.6 tons of elemental sulfur was recovered from a total inlet of 3.9 tons of sulfur (as H{sub 2}S). The total amount of SO{sub 2} released from the plant (taking into account flaring of the unconverted 10% H2S) was 0.86 tons. This amount of SO{sub 2} is much lower than the normal 8 tons that would have been emitted if all of the H{sub 2}S were flared over the time of the pilot plant test. The pilot plant was simple to operate and required much less operator intervention than is typical for a new unit being commissioned. Our operator (Mr. Eugene Peeples) has more than 30 years of experience operating commercial scale liquid redox sulfur recovery processes and in his opinion, TDA's Direct Oxidation pilot plant is easier to operate than liquid systems. The ease of use and low capital and

  4. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  5. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water.

    PubMed

    Wang, Ding; Bolton, James R; Hofmann, Ron

    2012-10-01

    The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. PMID:22763292

  6. Nitrogen oxide removal dynamic process through 15 Ns DBD technique

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Zhang, Lianshui; Lai, Weidong; Liu, Fengliang

    2015-05-01

    Nitrogen oxides exhaust gas assumes the important responsibility on air pollution by forming acid rain. This paper discusses the NO removal mechanism in 15 ns pulse dielectric barrier discharge (DBD) plasma through experimental and simulating method. Emission spectra collected from plasma are evaluated as sourced from N+ and O(3P). The corresponding zero-dimensional model is established and verified through comparing the simulated concentration evolution and the experimental time-resolved spectra of N+. The electron impact ionization plays major role on NO removal and the produced NO+ are further decomposed into N+ and O(3P) through electron impact dissociative excitation rather than the usual reported dissociative recombination process. Simulation also indicates that the removal process can be accelerated by NO inputted at lower initial concentration or electrons streamed at higher concentration, due to the heightened electron impact probability on NO molecules. The repetitive pulse discharge is a benefit for improving the NO removal efficiency by effectively utilizing the radicals generated from the previous pulse under the condition that the pulse period should be shorter enough to ignore the spatial diffusion of radicals. Finally, slight attenuation on NO removal has been experimentally and simulatively observed after N2 mixed, due to the competitive consumption of electrons.

  7. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  8. Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process.

    PubMed

    Ni, Bing-Jie; Chen, You-Peng; Liu, Shao-Yang; Fang, Fang; Xie, Wen-Ming; Yu, Han-Qing

    2009-06-15

    A mathematical model was developed to describe the anaerobic ammonium oxidation (ANAMMOX) process in a granular upflow anaerobic sludge blanket (UASB) reactor. ANAMMOX granules were cultivated in the UASB reactor by seeding aerobic granules. The granule-based reactor had a great N-loading resistant capacity. The model simulation results on the 1-year reactor performance matched the experimental data well. The yield coefficient for the growth and the decay rate coefficient of the ANAMMOX granules were estimated to be 0.164 g COD g(-1) N and 0.00016 h(-1), respectively. With this model, the effects of process parameters on the reactor performance were evaluated. Results showed that the optimum granule diameter for the maximum N-removal should be between 1.0 and 1.3 mm and that the optimum N loading rate should be 0.8 kg N m(-3) d(-1). In addition, the substrate micro-profiles in the ANAMMOX granules were measured with a microelectrode to explore the diffusion dynamics within the granules, and the measured profiles matched the predicted results well. PMID:19280667

  9. Low-temperature oxidation of magnetite - a humidity sensitive process?

    NASA Astrophysics Data System (ADS)

    Appel, Erwin; Fang, Xiaomin; Herb, Christian; Hu, Shouyun

    2015-04-01

    Extensive multi-parameter palaeoclimate records were obtained from two long-term lacustrine archives at the Tibetan Plateau: the Qaidam basin (2.69-0.08 Ma) and Heqing basin (0.90-0.03 Ma). At present the region of the Qaidam site has an arid climate (<100 mm mean annual precipitation) while the Heqing site is located in the sub-tropical region with monsoonal rainfall. Magnetic properties play a prominent role for palaeoclimate interpretation in both records. Several parameters show a 100 kyr eccentricity cyclicity; in the Qaidam record also the Mid-Pleistocene Transition is seen. Both magnetic records are controlled by different absolute and relative contributions of magnetite and its altered (maghemitized) phases as well as hematite. Weathering conditions likely cause a systematic variation of magnetic mineralogy due to low-temperature oxidation (LTO). Maghemitization is well recognized as an alteration process in submarine basalts but about its relevance for climate-induced weathering in continental environments little is known. Various factors i.e., humidity, temperature, seasonality, duration of specific weathering conditions, and bacterial activity could be responsible for maghemitization (LTO) and transformation to hematite (or goethite) when a critical degree of LTO is reached. These factors may lead to a complex interplay, but one has to note that water acts as an electrolyte for Fe(II) to Fe(III) oxidation at the crystal surface and due to maghemitization-induced lattice shrinking a larger internal particle surface area becomes exposed to oxidation. We suggest that humidity is the most crucial driver for the two studied archives - for the following reasons: (1) The overall parameter variations and catchment conditions are well in agreement with an LTO scenario. (2) In the Qaidam record we observe a direct relationship of a humidity sensitive pollen Ratio with magnetic susceptibility (reflecting the degree of alteration by LTO). (3) In the Heqing record

  10. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process

    NASA Astrophysics Data System (ADS)

    Zhu, Guibing; Wang, Shanyun; Zhou, Leiliu; Wang, Yu; Zhao, Siyan; Xia, Chao; Wang, Weidong; Zhou, Rong; Wang, Chaoxu; Jetten, Mike S. M.; Hefting, Mariet M.; Yin, Chengqing; Qu, Jiuhui

    2015-11-01

    Denitrification has long been regarded as the only pathway for terrestrial nitrogen (N) loss to the atmosphere. Here we demonstrate that large-scale anaerobic ammonium oxidation (anammox), an overlooked N loss process alternative to denitrification which bypasses nitrous oxide (N2O), is ubiquitous in inland waters of China and contributes significantly to N loss. Anammox rates in aquatic systems show different levels (1.0-975.9 μmol N m-2 h-1, n = 256) with hotspots occurring at oxic-anoxic interfaces and harboring distinct biogeochemical and biogeographical features. Extrapolation of these results to the China-national level shows that anammox could contribute about 2.0 Tg N yr-1, which equals averagely 11.4% of the total N loss from China’s inland waters. Our results indicate that a significant amount of the nitrogen lost from inland waters bypasses denitrification, which is important for constructing more accurate climate models and may significantly reduce potential N2O emission risk at a large scale.

  11. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process

    PubMed Central

    Zhu, Guibing; Wang, Shanyun; Zhou, Leiliu; Wang, Yu; Zhao, Siyan; Xia, Chao; Wang, Weidong; Zhou, Rong; Wang, Chaoxu; Jetten, Mike S. M.; Hefting, Mariet M.; Yin, Chengqing; Qu, Jiuhui

    2015-01-01

    Denitrification has long been regarded as the only pathway for terrestrial nitrogen (N) loss to the atmosphere. Here we demonstrate that large-scale anaerobic ammonium oxidation (anammox), an overlooked N loss process alternative to denitrification which bypasses nitrous oxide (N2O), is ubiquitous in inland waters of China and contributes significantly to N loss. Anammox rates in aquatic systems show different levels (1.0–975.9 μmol N m−2 h−1, n = 256) with hotspots occurring at oxic-anoxic interfaces and harboring distinct biogeochemical and biogeographical features. Extrapolation of these results to the China-national level shows that anammox could contribute about 2.0 Tg N yr−1, which equals averagely 11.4% of the total N loss from China’s inland waters. Our results indicate that a significant amount of the nitrogen lost from inland waters bypasses denitrification, which is important for constructing more accurate climate models and may significantly reduce potential N2O emission risk at a large scale. PMID:26610807

  12. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process.

    PubMed

    Zhu, Guibing; Wang, Shanyun; Zhou, Leiliu; Wang, Yu; Zhao, Siyan; Xia, Chao; Wang, Weidong; Zhou, Rong; Wang, Chaoxu; Jetten, Mike S M; Hefting, Mariet M; Yin, Chengqing; Qu, Jiuhui

    2015-01-01

    Denitrification has long been regarded as the only pathway for terrestrial nitrogen (N) loss to the atmosphere. Here we demonstrate that large-scale anaerobic ammonium oxidation (anammox), an overlooked N loss process alternative to denitrification which bypasses nitrous oxide (N2O), is ubiquitous in inland waters of China and contributes significantly to N loss. Anammox rates in aquatic systems show different levels (1.0-975.9 μmol N m(-2) h(-1), n = 256) with hotspots occurring at oxic-anoxic interfaces and harboring distinct biogeochemical and biogeographical features. Extrapolation of these results to the China-national level shows that anammox could contribute about 2.0 Tg N yr(-1), which equals averagely 11.4% of the total N loss from China's inland waters. Our results indicate that a significant amount of the nitrogen lost from inland waters bypasses denitrification, which is important for constructing more accurate climate models and may significantly reduce potential N2O emission risk at a large scale. PMID:26610807

  13. Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process

    NASA Astrophysics Data System (ADS)

    Okada, Yoshitaka; Iuchi, Yoshimasa; Kawabe, Mitsuo; Harris, James S.

    2000-07-01

    The basic properties of GaAs oxide generated by atomic force microscope (AFM) tip-induced nano-oxidation process have been investigated. The chemical analysis of the AFM tip-generated GaAs oxide was performed by using scanning microprobe x-ray photoelectron spectroscopy, and the main constituents of GaAs anodic oxide were determined to be Ga2O3 and As2O3. The electrical characterization showed that the electron transport across a GaAs oxide nanodot of ˜5.7 nm thickness, from a doped n+-Si tip into the n+-GaAs substrate follows the Fowler-Nordheim tunneling mechanism over a range of applied bias. Further, the tip-generated GaAs oxide nanodots were found to withstand moderate thermal treatments, but some volume reduction was observed.

  14. Processing, characterization and properties of oxide based nanocomposites

    NASA Astrophysics Data System (ADS)

    Bhaduri, Sutapa

    The synthesis, characterization and mechanical properties of oxide based nanocomposites are reported in this dissertation. Two binary systems are studied: Alsb2Osb3-MgO and Alsb2Osb3-ZrOsb2. Alsb2Osb3-MgO was chosen because of its relatively large field of solid solubilities at a moderate temperature. On the other hand, Alsb2Osb3-ZrOsb2 was chosen because it shows minimal solid solubility of the constituents. A novel "Auto Ignition" process using suitable fuels and oxidizers was utilized in the synthesis of nanocomposites and solid solutions. Thermodynamic calculations were carried out in predicting end point adiabatic temperatures (Tsbad) for each composition in both systems. Combustion temperatures were experimentally measured by means of a data acquisition system. Characterizations of the powders were carried out by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis (EDAX) and differential thermal analysis (DTA). Heat treatment experiments were carried out to study the grain growth behavior. A hot isostatic pressing (HIP) model was developed for the present nanoceramics. Input parameters were carefully chosen for such nanomaterials. The as-synthesized nanocrystalline powders were consolidated to near theoretical density by hot isostatic pressing (HIPing) while retaining fine grain size. The experimental results were compared with the predictions of the model. Mechanical properties, such as room temperature toughness, low temperatures well as high temperature hardness, were determined for both systems. Room temperature hardness values were (2.89-7.79) GPa and fracture toughness was between 2.7 and 5.82 MPa.msp{1/2} for various compositions in the Alsb2Osb3-MgO system. Room temperature hardness values were between 5.33 and 8.71 GPa and fracture toughness values ranged from (5.3-9.62) MPa.msp{1/2} for various compositions in the Alsb2Osb3-ZrOsb2 system. Nanoindentation experiments were carried out to further explore the room

  15. A review of greywater characteristics and treatment processes.

    PubMed

    Boyjoo, Yash; Pareek, Vishnu K; Ang, Ming

    2013-01-01

    This paper presents a comprehensive literature review of different characteristics of greywater (GW) and current treatment methods. GW is domestic wastewater excluding toilet waste and can be classified as either low-load GW (excluding kitchen and laundry GW) or high-load GW (including kitchen and/or laundry). This review provides information on the quantity of GW produced, its constituents (macro and micro), existing guidelines for wastewater reuse, current treatment methods (from storage to disinfection) as well as related costs and environmental impacts. Moreover some successful examples from various countries around the world are examined. The current preferred treatments for GW use physical and biological/natural systems. Recently, chemical systems like coagulation, adsorption and advanced oxidation processes (AOPs) have been considered and have been successful for low to moderate strength GW. The presence of xenobiotic organic compounds (XOC), which are hazardous micropollutants in GW, is emphasised. Since conventional treatments are not efficient at removing XOC, it is recommended that future studies look at chemical treatment, especially AOPs that have been found to be successful at mineralising recalcitrant organic compounds in wastewater. PMID:23552228

  16. Removal of the anti-cancer drug methotrexate from water by advanced oxidation processes: Aerobic biodegradation and toxicity studies after treatment.

    PubMed

    Lutterbeck, Carlos Alexandre; Baginska, Ewelina; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-12-01

    Anti-cancer drugs are discussed as high risk substances in regard to human health and considered as problematic for the environment. They are of potential environmental relevance due to their poor biodegradability and toxicological properties. Methotrexate (MTX) is an antimetabolite that was introduced in the pharmaceutical market in the 40's and still today is one of the most consumed cytotoxic compounds around the world. In the present study MTX was only partially biodegraded in the closed bottle test (CBT). Therefore, it was submitted to three different advanced oxidation processes (AOPs): UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The irradiation was carried out with a Hg medium-pressure lamp during 256min whereas the analytical monitoring was done through LC-UV-MS/MS and DOC analysis. MTX was easily removed in all the irradiation experiments, while the highest mineralization values and rates were achieved by the UV/Fe(2+)/H2O2 treatment. The lowest resulted from the UV/H2O2 reactions. The UV/H2O2 treatment resulted in little biodegradable transformation products (TPs). However, the same treatment resulted in a reduction of the toxicity of MTX by forming less toxic TPs. Analysis by LC-UV-MS/MS revealed the existence of nine TPs formed during the photo-catalytic treatments. The pH of the solutions decreased from 6.4 (t 0min) to 5.15 in the UV/H2O2 and from 6.4 (t 0min) to 5.9 in the UV/TiO2 at the end of the experiments. The initial pH of the UV/Fe(2+)/H2O2 experiments was adjusted to 5 and after the addition of H2O2 the pH decreased to around 3 and remained in this range until the end of the treatments. PMID:26298026

  17. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  18. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  19. Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process.

    PubMed

    Zhou, Yang; Jiang, Jin; Gao, Yuan; Ma, Jun; Pang, Su-Yan; Li, Juan; Lu, Xue-Ting; Yuan, Li-Peng

    2015-11-01

    The reactions between peroxymonosulfate (PMS) and quinones were investigated for the first time in this work, where benzoquinone (BQ) was selected as a model quinone. It was demonstrated that BQ could efficiently activate PMS for the degradation of sulfamethoxazole (SMX; a frequently detected antibiotic in the environments), and the degradation rate increased with solution pH from 7 to 10. Interestingly, quenching studies suggested that neither hydroxyl radical (•OH) nor sulfate radical (SO4•-) was produced therein. Instead, the generation of singlet oxygen (1O2) was proved by using two chemical probes (i.e., 2,2,6,6-tetramethyl-4-piperidinol and 9,10-diphenylanthracene) with the appearance of 1O2 indicative products detected by electron paramagnetic resonance spectrometry and liquid chromatography mass spectrometry, respectively. A catalytic mechanism was proposed involving the formation of a dioxirane intermediate between PMS and BQ and the subsequent decomposition of this intermediate into 1O2. Accordingly, a kinetic model was developed, and it well described the experimental observation that the pH-dependent decomposition rate of PMS was first-order with respect to BQ. These findings have important implications for the development of novel nonradical oxidation processes based on PMS, because 1O2 as a moderately reactive electrophile may suffer less interference from background organic matters compared with nonselective •OH and SO4•-. PMID:26452059

  20. Fabrication of Glassy and Crystalline Ferroelectric Oxide by Containerless Processing

    NASA Astrophysics Data System (ADS)

    Yoda, Shinichi

    1. Instruction Much effort has been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic effects. However, they require a higher cooling rate than glass formed by conventional techniques. Therefore, only amorphous thin-films have been formed, using rapid quenching with a cooling rate >105 K/s. The containerless processing is an attractive synthesis technique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable phase and glassy material. Recently a new ferroelectric materiel, monoclinic BaTi2 O5 , with Currie temperature as 747 K was reported. In this study, we fabricated a bulk BaTi2 O5 glass from melt using containerless processing to study the phase relations and ferroelectric properties of BaTi2 O5 . To our knowledge, this was the first time that a bulk glass of ferroelectric material was fabricated from melt without adding any network-forming oxide. 2. Experiments BaTi2 O5 sphere glass with 2mm diameter was fabricated using containerless processing in an Aerodynamic Levitation Furnace (ALF). The containerless processing allowed the melt to achieve deep undercooling for glass forming. High purity commercial BaTiO3 and TiO2 powders were mixed with a mole ratio of 1:1 and compressed into rods and then sintered at 1427 K for 10 h. Bulk samples with a mass of about 20 mg were cut from the rod, levitated with the ALF, and then melted by a CO2 laser beam. After quenching with a cooling rate of about 1000 K/s, 2 mm diameter sphere glass could be obtained. To analyze the glass structure, a high-energy x-ray diffraction experiment was performed using an incident photon energy of 113.5 keV at the high-energy x-ray diffraction beamline BL04B2 of SPring-8

  1. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Orton, Robert D.; Rapko, Brian M.; Smart, John E.

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  2. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  3. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  4. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances.

    PubMed

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2015-09-15

    A thorough review of advancement in slaughterhouse wastewater (SWW) characteristics, treatment, and management in the meat processing industry is presented. This study also provides a general review of the environmental impacts, health effects, and regulatory frameworks relevant to the SWW management. A significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes (AOPs), and the combination of biological treatment and AOPs for SWW treatment is highlighted. The treatment processes are described and few examples of their applications are given. Conversely, few advances are accounted in terms of waste minimization and water use reduction, reuse, and recycle in slaughterhouses, which may offer new alternatives for cost-effective waste management. An overview of the most frequently applied technologies and combined processes for organic and nutrient removal during the last decade is also summarized. Several types of individual and combined processes have been used for the SWW treatment. Nevertheless, the selection of a particular technology depends on the characteristics of the wastewater, the available technology, and the compliance with regulations. This review facilitates a better understanding of current difficulties that can be found during production and management of the SWW, including treatment and characteristics of the final effluent. PMID:26197423

  5. In-flight oxidation of aluminum in the twin-wire electric arc process

    NASA Astrophysics Data System (ADS)

    Guillen, Donna Post; Williams, Brian G.

    2006-03-01

    This paper examines the in-flight oxidation of aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Aerodynamic shear at the droplet surface increases the amount of in-flight oxidation by promoting entrainment of the surface oxides within the molten droplet and continually exposing fresh fluid available for oxidation. Mathematical predictions herein confirm experimental measurements that reveal an elevated, nearly constant surface temperature (˜2273 K) of the droplets during flight. The calculated oxide volume fraction of a “typical” droplet with internal circulation compares favorably to the experimentally determined oxide content (3.3 12.7%) for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate. It is concluded that internal circulation within the molten aluminum droplet is a significant source of oxidation. This effect produces an oxide content nearly two orders of magnitude larger than that of a droplet without continual oxidation.

  6. Powder processing of oxides. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the properties and applications of metal oxide ceramics and refractories. Citations consider cold isostatic pressing, compacting, densification, firing, grinding, hot isostatic pressing, laser beam processing, and sintering. Aluminum oxide, berylium oxide, hafnium oxide, silicon dioxide, and titanium dioxide are covered. Uses in insulation, propulsion systems, electric devices, and cylinder heads are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Powder processing of oxides. (Latest citations from Engineered Materials Abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the properties and applications of metal oxide ceramics and refractories. Citations consider cold isostatic pressing, compacting, densification, firing, grinding, hot isostatic pressing, laser beam processing, and sintering. Aluminum oxide, berylium oxide, hafnium oxide, silicon dioxide, and titanium dioxide are covered. Uses in insulation, propulsion systems, electric devices, and cylinder heads are included. (Contains a minimum of 225 citations and includes a subject term index and title list.)

  8. Development Studies for a Novel Wet Oxidation Process

    SciTech Connect

    Delphi Research

    1999-09-30

    DETOX is a catalyzed wet oxidation process that destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase III effort for this project is fabrication, assembly, and installation of the DETOX demonstration unit, preparation of documentation and training to meet site requirements for operation, followed by system run-in and shakedown testing of the unit prior to demonstration testing. The Title III design was completed and the unit was fabricated according to standards set forth by OSHA, EPA, the American Petroleum Institute (i.e., chemical and petroleum industry standards), and the ASME B-313 Piping Code requirements as agreed to in preliminary design meetings with primary stakeholders. The unit was assembled in three modules and two trailers and then shipped to the TNX facility at the Savannah River Site in September and october of 1996. On-going site integration tasks were address while delays in installation arose due to funding sources and costs. In March of 1997, Delphi was authorized to proceed with the installation of the unit, making electrical and mechanical connections necessary to operate the unit. All installation tasks were completed in August of 1997. Results of an Operational Readiness Review conducted in August 1997 verified that Delphi's procedures and documentation met the necessary requirements to operate the unit at SRS. Completion of the final checklist of WSRC requirements was then addressed including the Owner's Independent Inspection Report, verifying all components of the unit met B-31.3 standards. Final hydraulic and pneumatic tests were completed in November to satisfy the B-31

  9. Fabrication of MnO 2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaqi; Liu, Zong-Huai; Qiao, Shanfeng; Ma, Xiangrong; Xu, Naicai

    MnO 2-pillared layered manganese oxide has been first fabricated by a delamination/reassembling process followed by oxidation reaction and then by heat treatment. The structural evolution of MnO 2-pillared layered manganese oxide has been characterized by XRD, SEM, DSC-GTA, IR and N 2 adsorption-desorption. MnO 2-pillared layered manganese oxide shows a relative high thermal stability and mesoporous characteristic. The layered structure with a basal spacing of 0.66 nm could be maintained up to 400 °C. The electrochemical properties of the synthesized MnO 2-pillared layered manganese oxide have been studied using cyclic voltammetry in a mild aqueous electrolyte. Sample MnO 2-BirMO (300 °C) shows good capacitive behavior and cycling stability, and the specific capacitance value is 206 F g -1.

  10. Wet oxidation of domestic sludge and process integration: the Mineralis process.

    PubMed

    Lendormi, T; Prévot, C; Doppenberg, F; Spérandio, M; Debellefontaine, H

    2001-01-01

    Wet oxidation (WO) in subcritical conditions is a new alternative to usual routes for sewage sludge treatment that complies with environmental standards. This paper presents tests carried out using a batch reactor and continuous pilot and industrial units, treating municipal sewage sludge. The main products after oxidation are CO2, water, VFA and ammonia. The results highlight the considerable influence of the treatment temperature and of the type of sewage sludge which is treated. At temperatures around 240 degrees C, VFA fraction present in WO supernatant is limited to 50% because of the presence of non-degraded fatty compounds and surfactants. Moreover, the COD reduction is limited to 70%. On the contrary, at 300 degrees C, COD removal efficiencies greater than 80% are achieved without any catalyst addition and, in addition, only highly biodegradable compounds remain in the oxidised liquor. In order to treat the residual ammonia nitrogen by biological processes, it is therefore necessary to obtain a VFA fraction as high as possible for achieving denitrification and then to operate the WO process at high temperature and without catalyst addition. PMID:11794648

  11. Mussel-inspired approach to constructing robust cobalt-embedded N-doped carbon nanosheet toward enhanced sulphate radical-based oxidation.

    PubMed

    Zeng, Tao; Zhang, Haiyan; He, Zhiqiao; Chen, Jianmeng; Song, Shuang

    2016-01-01

    Heterogeneous sulphate radical based advanced oxidation processes (SR-AOPs) have lately been raised as a promising candidate for water treatment. Despite the progress made, either the stability or the performance of the current catalysts is still far from satisfactory for practical applications. Herein, using polydopamine-cobalt ion complex that inspired by mussel proteins as medium, we facilely fabricate a robust SR-AOPs catalyst with cobalt nanoparticles (NPs) embedded in nitrogen-doped reduced graphene oxide matrix (NRGO@Co). The NRGO scaffold with high porosity and surface area not only stabilizes the NPs but also greatly facilitates the accessibility and adsorption of substrates to the active sites. With the synergistic effect arising from the NRGO and Co NPs, the NRGO@Co hybrid catalyst exhibits enhanced catalytic activity for activation of peroxymonosulfate (PMS) to degrade organic pollutants in water. Furthermore, taking advantage of the favorable magnetic properties, the catalyst can be easily recycled and reused for at least 4 runs with negligible loss of activity. Coupled with systematic investigation in terms of influential factors, mineralization, and radicals identification, make the catalyst hold significant potential for application in remediation of organic pollutants in water. PMID:27616643

  12. Thermally grown oxide and diffusions for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1979-01-01

    A totally automated facility for semiconductor oxidation and diffusion was developed using a state-of-the-art diffusion furnace and high temperature grown oxides. Major innovations include: (1) a process controller specifically for semiconductor processing; (2) an automatic loading system to accept wafers from an air track, insert them into a quartz carrier and then place the carrier on a paddle for insertion into the furnace; (3) automatic unloading of the wafers back onto the air track, and (4) boron diffusion using diborane with plus or minus 5 percent uniformity. Processes demonstrated include Wet and dry oxidation for general use and for gate oxide, boron diffusion, phosphorous diffusion, and sintering.

  13. Applicability of nano zero valent iron (nZVI) in sono - Fenton process

    NASA Astrophysics Data System (ADS)

    Taha, M. R.; Ibrahim, A. H.; Amat, R. C.; Azhari, A. W.

    2014-04-01

    Fenton process is one of the advanced oxidation processes (AOPs) used to remove complex organic pollutants in wastewater. In this study, instead of iron sulfate (FeSO4), nano zero valent iron (nZVI) was used as a major source of ferrous iron (Fe2+). In order to enhance the process, ultrasound was utilized in this study. Results show that, with the aid of ultrasound, nZVI produced more Fe2+ compared to FeSO4 at pH 2. Furthermore, combination of higher intensity and longer sonication time in Fenton process acceleratde the chemical oxygen demand (COD) removal from palm oil mill effluent (POME). Through the process, 80% of COD content was removed within 2 hours instead of 24 hours of silent degradation.

  14. The role of oxidation in the fretting wear process

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1980-01-01

    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined.

  15. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOEpatents

    Shelnutt, John A.

    1990-01-01

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  16. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  17. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  18. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  19. ALCOHOL OXIDATION - A COMPARATIVE STUDY OF DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alco...

  20. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  1. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  2. Process for the reduction of nitrogen oxides in an effluent using a heterocyclic hydrocarbon

    SciTech Connect

    Epperly, W.R.; Sullivan, J.C.

    1989-12-19

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprises injecting a treatment agent which comprises furfural into the effluent under conditions effective to reduce the concentration of nitrogen oxides in the effluent.

  3. Process for the reduction of nitrogen oxides in an effluent using a hydroxy amino hydrocarbon

    SciTech Connect

    Sullivan, J.C.; Epperly, W.R.

    1989-02-07

    A process is described for the reduction of the concentration of nitrogen oxide in an effluent from the combustion of a carbonaceous fuel, the process comprising injecting a treatment agent comprising a hydroxy amino hydrocarbon into an effluent at an effluent temperature of greater than about 1300/sup 0/F under conditions effective to reduce the concentration of nitrogen oxides in the effluent.

  4. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  5. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    PubMed

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  6. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  7. Purification and neutron emission reduction of 238Plutonium oxide by nitrate anion exchange processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Brock, J.; Nixon, J. Z.; Moniz, P.; Silver, G.; Ramsey, K. B.

    2001-02-01

    The use of ion exchange during the aqueous purification of 238Pu oxide results in low levels of uranium, thorium, and americium in the product oxide. Neutron emission rates are also reduced in the product oxide. Fluorine introduced during the dissolution of impure fuel increases the neutron emission rate of the product oxide due to the 238Pu-19F alpha/n reaction. Treating the 238Pu solution with aluminum nitrate prior to ion exchange reduces the neutron emission rate in the product oxide. Data are presented to show that neutron emission rates and concentrations of uranium, thorium, and americium are reduced by ion exchange processing. .

  8. CHEMISTRY OF SO2 AND DESOX PROCESSES ON OXIDE NANOPARTICLES.

    SciTech Connect

    RODRIGUEZ, J.A.

    2006-06-30

    On bulk stoichiometric oxides, SO{sub 2} mainly reacts with the O centers to form SO{sub 3} or SO{sub 4} species that decompose at elevated temperatures. Adsorption on the metal cations occurs below 300 K and does not lead to cleavage of the S-O bonds. In bulk oxides, the occupied cation bands are too stable for effective bonding interactions with the LUMO of SO{sub 2}. The effects of quantum confinement on the electronic properties of oxide nanoparticles and the structural defects that usually accompany these systems in general favor the bonding and dissociation of SO{sub 2}. Thus, nanoparticles of MgO, CaO, SrO, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CeO{sub 2} are all more efficient for sequestering SO{sub 2} than the corresponding bulk oxides. Structural imperfections in pure or metal-doped ceria nanoparticles accelerate the reduction of SO{sub 2} by CO by facilitating the formation and migration of O vacancies in the oxide surface.

  9. Electrospinning of nickel oxide nanofibers: Process parameters and morphology control

    SciTech Connect

    Khalil, Abdullah Hashaikeh, Raed

    2014-09-15

    In the present work, nickel oxide nanofibers with varying morphology (diameter and roughness) were fabricated via electrospinning technique using a precursor composed of nickel acetate and polyvinyl alcohol. It was found that the diameter and surface roughness of individual nickel oxide nanofibers are strongly dependent upon nickel acetate concentration in the precursor. With increasing nickel acetate concentration, the diameter of nanofibers increased and the roughness decreased. An optimum concentration of nickel acetate in the precursor resulted in the formation of smooth and continuous nickel oxide nanofibers whose diameter can be further controlled via electrospinning voltage. Beyond an optimum concentration of nickel acetate, the resulting nanofibers were found to be ‘flattened’ and ‘wavy’ with occasional cracking across their length. Transmission electron microscopy analysis revealed that the obtained nanofibers are polycrystalline in nature. These nickel oxide nanofibers with varying morphology have potential applications in various engineering domains. - Highlights: • Nickel oxide nanofibers were synthesized via electrospinning. • Fiber diameter and roughness depend on nickel acetate concentration used. • With increasing nickel acetate concentration the roughness of nanofibers decreased. • XRD and TEM revealed a polycrystalline structure of the nanofibers.

  10. Solution processed nickel oxide anodes for organic photovoltaic devices

    SciTech Connect

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R.

    2014-02-10

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.

  11. Advanced oxidation of alkylphenol ethoxylates in aqueous systems.

    PubMed

    Nagarnaik, Pranav M; Boulanger, Bryan

    2011-10-01

    Alkylphenols and alkylphenol ethoxylates are ubiquitous wastewater contaminants. In this study the oxidation of nonylphenol ethoxylates (NPEO) and octylphenol ethoxylates (OPEO) by oxidant systems generating hydroxide radicals was evaluated. The reaction of each oxidant with a technical mixture of NPEO (Tergitol™) and OPEO (Triton X-100™) in ultrapure laboratory water and four aqueous environmental matrices was carried out in order to develop an understanding of reaction kinetics. The oxidation of APEOs was evaluated by hydroxyl radical generated by (1) hydrogen peroxide in the presence of ultraviolet light, (2) Fenton's reagent, and (3) a photo-Fenton's process. The second order kinetic rate constant for both NPEO and OPEO with hydroxyl radical was calculated to be 1.1×10¹⁰ M⁻¹ s⁻¹. The efficacy of the AOPs within an aqueous environmental matrix was dependent on the rate of formation of hydroxyl radical and the scavenging capacity of the matrix. A model based on the hydroxyl radical formation, scavenging capacity and the kinetic rate constant of target APEO was developed from the existing literature and applied to predict the concentration of APEOs in solution during advanced oxidation in different aqueous environmental matrices. PMID:21784502

  12. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1991-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  13. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1991-11-05

    Disclosed are a new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  14. Process for treating effluent from a supercritical water oxidation reactor

    SciTech Connect

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  15. Oxidation Ditches. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Nelsen, David

    This instructor's guide contains materials needed for teaching a two-lesson unit on oxidation ditches. These materials include: (1) an overview of the two lessons; (2) lesson plans; (3) lecture outlines; (4) student worksheet (with answers); and (5) two copies of a final quiz (with and without answers). The first lesson: reviews the theory,…

  16. LABORATORY MICROCOSM EXPERIMENTS OF OXIDATION PROCESSES AFTER STEAM INJECTION

    EPA Science Inventory

    Aggressive thermal methods such as steam injection or resistive heating are known to be effective for the recovery of many types of volatile and semivolatile compounds. It has been suggested that oxidation or other chemical reactions that occur at remediation temperatures can ai...

  17. Oxidation properties of processed low-rank coals

    SciTech Connect

    Schroeder, K.T.; Fauth, D.J.

    1995-12-31

    Thermally treated subbituminous coals tend to self-heat, leading to spontaneous ignition. Evidence is presented indicating that thermally treated Rosebud subbituminous coal may be oxidized at 80 C under moist conditions to provide sample stability as measured by oxygen adsorption tests.

  18. Evaluation of pretreatment processes for supercritical water oxidation

    SciTech Connect

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  19. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction.

    PubMed

    Fontmorin, J M; Burgos Castillo, R C; Tang, W Z; Sillanpää, M

    2016-08-01

    Fenton reaction was used to produce hydroxyl radicals under conditions similar to AOPs with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap agent in electron paramagnetic resonance (EPR) analysis. A theoretical kinetics model was developed to determine conditions under which the spin-adduct DMPO-OH is not further oxidized by Fe(3+) and excessive radicals, so that hydroxyl radicals concentration could be accurately inferred. Experiments were designed based upon the model and H2O2 and Fe(2+) concentrations were varied from 1 to 100 mM and from 0.1 to 10 mM, respectively, with a constant H2O2: Fe(2+) ratio of 10:1. Results confirmed that DMPO concentration should be at least 20 times higher than the concentration of H2O2 and 200 times higher than iron concentration to produce stable DMPO-OH EPR signal. When DMPO: H2O2 ratio varied from 1 to 10, DMPO-OH could generate intermediates and be further oxidized leading to the apparition of an additional triplet. This signal was attributed to a paramagnetic dimer: its structure and a formation mechanism were proposed. Finally, the utilization of sodium sulfite and catalase to terminate Fenton reaction was discussed. Catalase appeared to be compatible with DMPO. However, sodium sulfite should be avoided since it reacted with DMPO-OH to form DMPO-SO3. PMID:27132196

  20. The plausible role of carbonate in photo-catalytic water oxidation processes.

    PubMed

    Kornweitz, Haya; Meyerstein, Dan

    2016-04-20

    DFT calculations point out that the photo-oxidation of water on GaN is energetically considerably facilitated by adsorbed carbonate. As the redox potential of the couple CO3˙(-)/CO3(2-) is considerably lower than that of the couple OH˙/OH(-) but still enables the oxidation of water it is suggested that carbonate should be considered as a catalyst/co-catalyst in a variety of catalytic/photo-catalytic/electro-catalytic oxidation processes. PMID:27045227

  1. Chemical process for the catalytic oxidation of formaldehyde and other organic compounds

    SciTech Connect

    Murphy, A.P.

    1991-01-01

    The invention discusses a chemical process for the catalytic oxidation of formaldehyde and other organic compounds contained in a dilute aqueous solution, particularly waste water. The inventive feature resides in the use of a cobalt catalyst to increase the rate of oxidation of the organic compounds when hypochlorous acid is the oxidant. The latter may be provided by a chlorine compound, such as sodium hypochlorite, calcium hypochlorite or chlorine gas dissolved in water.

  2. TiO2-sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications.

    PubMed

    Athalathil, Sunil; Erjavec, Boštjan; Kaplan, Renata; Stüber, Frank; Bengoa, Christophe; Font, Josep; Fortuny, Agusti; Pintar, Albin; Fabregat, Azael

    2015-12-30

    The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants. PMID:26223014

  3. Process conditions for the total oxidation of hydrocarbons. Final report

    SciTech Connect

    Watts, R.J.; Stanton, P.C.

    1994-07-01

    The research utilized factorial experimental designs to determine conditions for completely oxidizing (i.e., mineralizing) hexadecane and benzo(a)pyrene in silica sand and a Palouse loess soil. Experimental design techniques allowed for a thorough evaluation of Fenton's reagent for the complete oxidation of the hexadecane and benzo(a)pyrene to CO2 and H2O using C14 labeled compounds. Whereas conventional experimental procedures entail altering a single variable while holding all others constant, experimental design allowed the investigation of three variables simultaneously. The methodology allows for not only the determination of effects caused by the variables themselves but also interactions occurring between variables. In addition, using factorial experimental designs allows for the evaluation of each experiment based upon statistical validity which is often not possible with conventional experimental procedures.

  4. Effect of Process Variables During the Head-End Treatment of Spent Oxide Fuel

    SciTech Connect

    K.J. Bateman; C.D. Morgan; J.F. Berg; D.J. Brough; P.J. Crane; D.G. Cummings; J.J. Giglio; M.W. Huntley; M.J. Rodriquez; J.D. Sommers; R.P. Lind; D.A. Sell

    2006-08-01

    The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. The effects of temperature, pressure, oxidative gas, and cladding have been studied with irradiated spent oxide fuel to determine the optimum conditions for process control. Experiments with temperatures ranging from 500oC to 1250oC have been performed on spent fuel using either air or oxygen gas for the oxidative reaction. Various flowrates and applications have been tested with the oxidative gases to discern the effects on the process. Tests have also been performed under vacuum conditions, following the oxidation cycle, at high temperatures to improve the removal of fission products. The effects of cladding on fission product removal have also been investigated with released fuel under vacuum and high temperature conditions. Results from these experiments will be presented as well as operating conditions based on particle size and decladding characteristics.

  5. Microbial Methane Oxidation Processes and Technologies for Mitigation of Landfill Gas Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this paper is to review the present knowledge regarding the microbial methane oxidation in natural or engineered landfill environments with focus on process understanding, engineering experiences and modeling. This review includes seven sections. First, the methane oxidation is put in con...

  6. Surface photovoltage analysis of iron contamination in silicon processing and the relation to gate oxide integrity

    NASA Astrophysics Data System (ADS)

    Henley, Worth B.

    1995-09-01

    Surface photovoltage (SPV), a contactless optical technique for measuring minority carrier lifetime, is used to quantify the relationship between silicon iron contamination level and thin gate oxide integrity. Iron concentration levels in the range of 1 X 1010 cm-3 to 5 X 1013 cm-3 are evaluated for oxide thicknesses of 8 to 20 nm. Ramp voltage electrical breakdown and time dependant dielectric breakdown measurement on the iron contaminated gate oxide capacitors are reported. Distinct iron contamination threshold limits based on defect density and gate oxide integrity evaluate cleaning efficiencies and metallic cross contamination effects during thermal processing contamination. Iron-silicide precipitation kinetics are investigated by the lifetime analysis procedure.

  7. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications. PMID:26039187

  8. Photochemical oxidation of oxalate in Pu-238 process streams

    SciTech Connect

    Long, K. M.; Ford, D. K.; Trujillo, L. A.

    2003-01-01

    For over forty years, NASA has relied on plutonium-238 in Radioisotope Thermoelectric Generator (RTG) units and Radioisotope Heater Units ( W s ) to provide power and heat for many space missions including Transit, Pioneer, Viking, Voyager, Galileo, Ulysses and Cassini. RHUs provide heat to keep key components warm in extremely cold environments found on planets, moons, or in deep space. RTGs convert heat generated from the radioactive decay of plutonium-238 into electricity using a themocouple, Plutonium-238 has proven to be an excellent heat source far deep space missions because of its high thermal power density, useful lifetime, minimal shielding requirements, and oxide stability.

  9. TREATMENT OF PAHS AND PCBS USING SULFATE RADICAL-BASED OXIDATION PROCESSES

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aquatic systems pose serious threat to public health due to their toxicity and potential carcinogenicity [1]. Sulfate radical-based oxidation processes can be effectively used for degradation of these...

  10. DEMONSTRATION BULLETIN: CAV-OX ULTRAVIOLET OXIDATION PROCESS MAGNUM WATER TECHNOLOGY

    EPA Science Inventory

    The CAV-OX® technology (see Fig- ure 1) destroys organic contaminants, including chlorinated hy- drocarbons, in water. The process uses hydrogen peroxide, hy- drodynamic cavitation, and ultraviolet (UV) radiation to photolyze and oxidize organic compounds present in water at ...

  11. Surface reconstruction evolution and anatase formation in the process of oxidation of titanium nitride film

    SciTech Connect

    Wu, S. X.; Liu, Y. J.; Xing, X. J.; Yu, X. L.; Xu, L. M.; Yu, Y. P.; Li, S. W.

    2008-03-15

    Titanium nitride film was grown on MgO(001) substrate by plasma-assisted molecular beam epitaxy and then oxidized by oxygen plasma. Reflection high-energy electron diffraction (RHEED) was employed to in situ monitor the process of growth and oxidation. After the TiN film was oxidized for a moment, spots among main streaks were observed in RHEED pattern, which should be attributed to the isolated surface reconstruction domains disorderedly distributing on flat surface. Subsequently, the spots gradually evolved to streaks so that more clear RHEED patterns of (2x1) surface reconstruction were observed. It was argued that the disordered and isolated reconstruction domains congregated to large domains or even perfect reconstruction surface with oxidation time evolving. After oxidation, a series of characterization methods were applied to study the TiO{sub 2} phase, which consistently confirmed that the phase of oxidized titanium nitride is anatase but not rutile.

  12. Thermally stable yttrium-scandium oxide high-k dielectrics deposited by a solution process

    NASA Astrophysics Data System (ADS)

    Hu, Wenbing; Frost, Bradley; Peterson, Rebecca L.

    2016-03-01

    We investigated the thermal stability of electrical properties in ternary alloy (Y x Sc1-x )2O3 high-k oxides as a function of yttrium fraction, x. The yttrium-scandium oxide dielectric films are deposited using a facile ink-based process. The oxides have a stoichiometry-dependent relative dielectric constant of 26.0 to 7.7 at 100 kHz, low leakage current density of 10-8 A·cm-2, high breakdown field of 4 MVṡcm-1, and interface trap density of 1012 cm-2·eV-1 with silicon. Compared with binary oxides, ternary alloys exhibit less frequency dispersion of the dielectric constant and a higher crystallization temperature. After crystallization is induced through a 900 °C anneal, ternary (Y0.6Sc0.4)2O3 films maintain their low leakage current and high breakdown field. In contrast, the electrical performance of the binary oxides significantly degrades following the same treatment. The solution-processed ternary oxide dielectrics demonstrated here may be used as high-k gate insulators in complementary metal-oxide semiconductor (CMOS) technologies, in novel electronic material systems and devices, and in printed, flexible thin film electronics, and as passivation layers for high power devices. These oxides may also be used as insulators in fabrication process flows that require a high thermal budget.

  13. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    SciTech Connect

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  14. Process for the reduction of nitrogen oxides in an effluent using sugar

    SciTech Connect

    Epperly, W R.; Sullivan, J.C.

    1989-10-31

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the oxygen-rich effluent from the combustion of a carbonaceous fuel. The process comprising injecting a treatment agent which comprises urea and sugar into an effluent having a temperature of greater than about 1300 {degrees} F. under conditions effective to reduce the concentration of nitrogen oxides in the effluent.

  15. Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels

    SciTech Connect

    Rieken, Joel; Anderson, Iver; Kramer, Matthew

    2011-04-01

    An innovative gas atomization reaction synthesis technique was employed as a viable method to dramatically lower the processing cost for precursor oxide dispersion forming ferritic stainless steel powders (i.e., Fe-Cr-(Hf,Ti)-Y). During this rapid solidification process the atomized powders were enveloped by a nano-metric Cr-enriched metastable oxide film. Elevated temperature heat treatment was used to dissociate this metastable oxide phase through oxygen exchange reactions with Y-(Hf,Ti) enriched intermetallic compound precipitates. These solid state reactions resulted in the formation of highly stable nano-metric mixed oxide dispersoids (i.e., Y-Ti-O or Y-Hf-O) throughout the alloy microstructure. Subsequent high temperature (1200 C) heat treatments were used to elucidate the thermal stability of each nano-metric oxide dispersoid phase. Transmission electron microscopy coupled with X-ray diffraction was used to evaluate phase evolution within the alloy microstructure.

  16. Regulatory Control or Oxidative Damage? Proteomic Approaches to Interrogate the Role of Cysteine Oxidation Status in Biological Processes*

    PubMed Central

    Held, Jason M.; Gibson, Bradford W.

    2012-01-01

    Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease. PMID:22159599

  17. The sulfide ore looping oxidation process: An alternative to current roasting and smelting practice

    NASA Astrophysics Data System (ADS)

    McHugh, Larry F.; Balliett, Robert; Mozolic, Jean A.

    2008-07-01

    This novel method utilizes the reactions of metal sulfides and metal oxides. It is applicable to single-metal systems such as Mo, Cu, Co, Ni, Fe, and Zn individual sulfides and to mixed sulfides such as chalcopyrite and Mo/Fe. In addition to primary ores, waste stream products such as spent catalysts can be effectively processed. The benchmark work done on MoS2/MoO3 resulted in an MoO2 product with less than 0.095 wt.% sulfur. Other sulfide concentrate materials showed similar results. In the first stage of the looping process, a highly concentrated SO2 off-gas stream is produced that could be directed to an acid plant or converted to liquid. The products from the first process step can be directed down line for further processing or can be used as is. In the second step of looping oxidation, the product is oxidized back to its fully oxidized state and is mainly looped back to drive the oxidation process in the first reaction. There are also several opportunities for energy recovery and conversion, making looping oxidation an energy-efficient process.

  18. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. PMID:22965739

  19. A general route toward complete room temperature processing of printed and high performance oxide electronics.

    PubMed

    Baby, Tessy T; Garlapati, Suresh K; Dehm, Simone; Häming, Marc; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-03-24

    Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V. PMID:25693653

  20. Dissolution of Neptunium and Plutonium Oxides Using a Catalyzed Electrolytic Process

    SciTech Connect

    Hylton, TD

    2004-10-25

    This report discusses the scoping study performed to evaluate the use of a catalyzed electrolytic process for dissolving {sup 237}Np oxide targets that had been irradiated to produce {sup 238}Pu oxide. Historically, these compounds have been difficult to dissolve, and complete dissolution was obtained only by adding hydrofluoric acid to the nitric acid solvent. The presence of fluoride in the mixture is undesired because the fluoride ions are corrosive to tank and piping systems and the fluoride ions cause interferences in the spectrophotometric analyses. The goal is to find a dissolution method that will eliminate these issues and that can be incorporated into a processing system to support the domestic production and purification of {sup 238}Pu. This study evaluated the potential of cerium(IV) ions, a strong oxidant, to attack and dissolve the oxide compounds. In the dissolution process, the cerium(IV) ions are reduced to cerium(III) ions, which are not oxidants. Therefore, an electrolytic process was incorporated to continuously convert cerium(III) ions back to cerium(IV) ions so that they can dissolve more of the oxide compounds. This study showed that the neptunium and plutonium oxides were successfully dissolved and that more development work should be performed to optimize the procedure.

  1. The use of catalyst to enhance the wet oxidation process.

    PubMed

    Maugans, C; Kumfer, B

    2007-01-01

    Wet oxidation tests were performed on two pure compound streams: acetic acid and ammonia; and on two wastewater streams: acrylic acid wastewater and sulphide laden spent caustic. Test results showed that Mn/Ce and Pt/TiO2 were effective catalysts that greatly enhanced acetic acid, ammonia and acrylic acid wastewater destruction. However, the Mn/Ce catalyst performance appears to be inhibited by concentrated salts dissolved in solution. This could limit the applicability of this catalyst for the treatment of brackish wastewaters. Zr, Ce and Ce nanoparticles were also shown to exhibit some catalytic activity, however not to the extent of the Mn/Ce and the Pt/TiO2. PMID:17674847

  2. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  3. Chemical oxidation of sulfadiazine by the Fenton process: kinetics, pathways, toxicity evaluation.

    PubMed

    Yang, Ji-Feng; Zhou, Shi-Biao; Xiao, An-Guo; Li, Wen-Jun; Ying, Guang-Guo

    2014-01-01

    This paper investigated sulfadiazine oxidation by the Fenton process under various reaction conditions. The reaction conditions tested in the experiments included the initial pH value of reaction solutions, and the dosages of ferrous ions and hydrogen peroxide. Under the reaction conditions with pH 3, 0.25 mM of ferrous ion and 2 mM of hydrogen peroxide, a removal efficiency of nearly 100% was achieved for sulfadiazine. A series of intermediate products including 4-OH-sulfadiazine/or 5-OH-sulfadiazine, 2-aminopyrimidine, sulfanilamide, formic acid, and oxalic acid were identified. Based on these products, the possible oxidation pathway of sulfadiazine by Fenton's reagent was proposed. The toxicity evaluation of reaction solutions showed increased antimicrobial effects following the Fenton oxidation process. The results from this study suggest that the Fenton oxidation process could remove sulfadiazine, but also increase solution toxicity due to the presence of more toxic products. PMID:25310806

  4. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    PubMed

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. PMID:25981944

  5. Effect of persulfate on the oxidation of benzotriazole and humic acid by e-beam irradiation.

    PubMed

    Roshani, Babak; Leitner, Nathalie Karpel Vel

    2011-06-15

    These days, the use of persulfate in advanced oxidation processes (AOPs) has gained more attention as an emerging clean and efficient technology to degrade the organic pollutants. The objective of this study was to investigate the effect of the addition of persulfate on the oxidation of benzotriazole (BT) and humic acids (HAs) by irradiation. The degradation of BT (3.7 μM) was followed under the influence of persulfate addition (200-500 μM) in combination with a fixed radiation dose (15 Gy) in the absence and presence of HA (5 and 20mg/L) in deionized water. The main results obtained in this study on the degradation of BT in the presence of HA showed a different effect of S(2)O(8)(2-) addition during irradiation, depending on whether HA are oxidized or not-oxidized. (1) An inhibitory effect of S(2)O(8)(2-) was observed in the presence of non-oxidized HA. (2) The removal of BT was generally more important during irradiation in the presence of S(2)O(8)(2-) when HA is pre-oxidized. This could be explained by the different structures of humic acids. These differences of structures of HA were identified by physico-chemical parameters such as the absorbance in the UV (254 nm), the fluorescence and the SUVA measurement. PMID:21514992

  6. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO₃-δ metal oxide.

    PubMed

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-09-15

    Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. PMID:23742952

  7. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    PubMed

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+). PMID:24671401

  8. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  9. Electrochemical oxide film formation at noble metals as a surface-chemical process

    NASA Astrophysics Data System (ADS)

    Conway, B. E.

    1995-08-01

    The mechanisms of electrochemical oxide film formation at noble metals are described and exemplified by the cases of Pt and Au, especially in the light of recent experimentation by means of cyclic voltammetry, ellipsometry and vacuum surface-science studies using LEED and AES. Unlike the mechanisms of base-metal oxidation, e.g., in corrosion processes, anodic oxide film formation at noble metals proceeds by surface chemical processes involving, initially, sub-monolayer, through monolayer, formation of 2-dimensional {OH}/{O} arrays. During such 2-d processes, place-exchange between electrosorbed OH or O species on the surface, and Pt or Au atoms within the surface lattice, takes place leading to a quasi-2-d compact film which then grows ultimately to a multilayer hydrous oxide film, probably by continuing injection of ions of the substrate metal and their migration through the growing film under the influence of the field. The initial, sub-monolayer stage of electrosorption of OH involves competitive chemisorption by anions, e.g. HSO 4-, ClO 4-, Cl -, which inhibits onset of the first stage of surface oxidation. These processes are demonstrable in experiments on single-crystal surfaces. The combination of such anion effects with place-exchange during the extension of the film, leads to a general mechanism of noble metal oxide film formation. The formation of the oxide films can be examined in detail by recording the distinguishable stages in the film's electrochemical reduction in linear-sweep voltammetry which is sensitive down to {OH}/{O} fractional coverages as low as 0.5% and over time-scales down to 50μs in experiments on time-evolution and transformation of the states of the oxide films. By means of LEED, AES and STM or AFM experiments, the reconstructions and perturbations (e.g. generation of stepped terraces) which oxide films cause on singlecrystal surfaces can be followed.

  10. Single-photon imaging in complementary metal oxide semiconductor processes

    PubMed Central

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  11. Single-photon imaging in complementary metal oxide semiconductor processes.

    PubMed

    Charbon, E

    2014-03-28

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  12. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. PMID:26479916

  13. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    PubMed

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. PMID:26384894

  14. FINAL REPORT. CAVITATIONAL HYDROTHERMAL OXIDATION: A NEW REMEDIATION PROCESS

    EPA Science Inventory

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of ...

  15. Zinc-oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  16. Zinc oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2005-10-04

    Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  17. The chemistry of O in reduction processes of the GaAs native oxides

    NASA Astrophysics Data System (ADS)

    Cuberes, M. T.; Sacedon, J. L.

    1992-05-01

    We present an X-ray photoelectron spectroscopy (XPS) study of the interfacial chemical reactions during the total reduction of a 5 Å thick GaAs native oxide layer accomplished in two separate stages. First, the As2O3 has been selectively reduced by annealing the oxidized surface at increasing temperatures. In the second stage, the reduction of the Ga oxides has been completed at room temperature by Si deposition. The total amount of O at the GaAs interface remains constant during both processes. During the As2O3 thermal reduction, the analysis of the Ga2p{3}/{2} and Ga LMM spectra shows that, depending on the annealing temperature, GaOx (x < {3}/{2}) or Ga2O3 growth occurs. The Si promoted of the Ga oxides results in the formation of Si oxides of different stoichiometry at the GaAs surface.

  18. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation. PMID:25263253

  19. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    PubMed

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. PMID:27434736

  20. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    SciTech Connect

    Professor Francisco Zaera

    2007-08-09

    The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the

  1. Processing and fabrication of high temperature oxide superconductors

    NASA Astrophysics Data System (ADS)

    Johnson, Sylvia M.; Gusman, Michael I.

    1992-11-01

    Synthesis of YBa2Cu3O7-a superconductor powders by freeze-drying was developed. The freeze-drying process consists of forming a solution of Y and Cu nitrates and Ba acetate, freezing, sublimating the water and calcination. The effect of processing variables on the powder characteristics, including surface area, size, stoichiometry, agglomeration, were investigated. Stoichiometry control requires control of the chemistry of the system, and careful analysis of starting solutions is required to prepare powders of the desired composition. Powders were sintered into pellets and the superconducting behavior was evaluated. Stanford University served as a subcontractor and was responsible for most of the critical transition temperature and critical current measurements.

  2. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report

    SciTech Connect

    Suslick, K. S.

    2001-07-05

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions.

  3. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  4. Identification of iron oxide impurities in earliest industrial-scale processed platinum

    SciTech Connect

    Weerd, Jaap van der; Rehren, Thilo . E-mail: th.rehren@ucl.ac.uk; Firth, Steven; Clark, Robin J.H. . E-mail: r.j.h.clark@ucl.ac.uk

    2004-09-15

    A detailed investigation of iron oxide inclusions in a 19th century Russian platinum coin is presented. Such coins represent the products of the first industrial-scale purification of platinum metal. The processed metal is far from pure, however, and two types of iron oxide inclusions are identified by electron microprobe and Raman microscopy. The results show that the inclusions mainly consist of magnetite and haematite. The Raman band of magnetite at 668 cm{sup -1} was found to shift to about 680 cm{sup -1} with an increase in the average oxidation state of the iron. It is concluded that the iron oxides are formed during the heating of the platinum metal powder in the manufacturing process.

  5. The impact of beef steak thermal processing on lipid oxidation and postprandial inflammation related responses.

    PubMed

    Nuora, Anu; Chiang, Vic Shao-Chih; Milan, Amber M; Tarvainen, Marko; Pundir, Shikha; Quek, Siew-Young; Smith, Greg C; Markworth, James F; Ahotupa, Markku; Cameron-Smith, David; Linderborg, Kaisa M

    2015-10-01

    Oxidised lipid species, their bioavailability and impact on inflammatory responses from cooked beef steak are poorly characterised. Oxidised lipid species from pan-fried (PF) and sous-vide (SV) thermally processed beef were determined with UHPLC-ESI/MS. Twenty-three lipid oxidation products increased with thermal processing and differences between the PF and SV steaks were measured. Fifteen oxidised lipids were measured in post-meal plasma after a cross-over randomised clinical study. Postprandial plasma inflammatory markers tended to remain lower following the SV meal than the PF meal. High levels of conjugated dienes were measured in the HDL fraction, suggesting that the protective effect of HDL may extend to the reverse-transport of oxidised lipid species. Oxidised lipids in a single meal may influence postprandial oxidative stress and inflammation. Further studies are required to examine the lipid oxidative responses to increased dietary oxidative lipid load, including the reverse transport activity of HDL. PMID:25872426

  6. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources. PMID:25262384

  7. Low temperature process for the reduction of nitrogen oxides in an effluent

    SciTech Connect

    Epperly, W.R.; Sullivan, J.C.; Sprague, B.N.

    1989-10-10

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprising introducing a treatment agent which comprises an ammonium salt selected from the group consisting of triammonium citrate and ammonium formate into the effluent at an effluent temperature below 1300{sup 0}F.

  8. Hydrogen Peroxide Induced Protein Oxidation During Storage and Lyophilization Process.

    PubMed

    Cheng, Weiqiang; Zheng, Xiaoyang; Yang, Mark

    2016-06-01

    Although the impact of hydrogen peroxide (HP) on proteins in liquid solutions has been studied extensively, the impact during lyophilization has been largely overlooked. The purpose of this work was to investigate the effect of HP on lyophilized proteins and HP removal by lyophilization. A protein formulation at 5 mg/mL and its placebo were spiked with HP up to 5.0 ppm and then lyophilized. HP concentration, protein oxidation, and aggregation were monitored before and after lyophilization, as well as during storage at 25°C. The lyophilization process removed on average 94.1% of HP from protein formulation, but only 72.5% from the placebo. There were also significant increases in protein oxidization and aggregation. The oxidation increment correlated with the decrease of HP concentration in both the protein formulation and placebo at all temperatures. Protein oxidation at different freezing temperatures was also studied in follow-up studies. Data from these studies suggest that (1) HP has a significant impact on oxidation and aggregation of protein during lyophilization; (2) significant oxidation can occur even when the protein formulation is frozen; (3) the oxidized protein is more prone to aggregation during lyophilization process. PMID:27238482

  9. Evaluation of long-term sulfide oxidation processes within pyrrhotite-rich tailings, Lynn Lake, Manitoba.

    PubMed

    Gunsinger, M R; Ptacek, C J; Blowes, D W; Jambor, J L

    2006-02-10

    Oxidation reactions have depleted sulfide minerals in the shallow tailings and have generated sulfate- and metal-rich pore water throughout the East Tailings Management Area (ETMA) at Lynn Lake, Manitoba, Canada. Information concerning the tailings geochemistry and mineralogy suggest the sulfide oxidation processes have reached an advanced stage in the area proximal to the point of tailings discharge. In contrast, the distal tailings, or slimes area, have a higher moisture content close to the impoundment surface, thereby impeding the ingress of oxygen and limiting sulfide oxidation. Numerical modelling of sulfide oxidation indicates the maximum rate of release for sulfate, Fe, and Ni occurred shortly after tailings deposition ceased. Although the sulfide minerals have been depleted in the very shallow tailings, the modelling suggests that sulfide oxidation will continue for hundreds and possibly thousands of years. The combination of sulfide minerals, principally pyrrhotite, that is susceptible to weathering processes and the relatively dry, coarse-grained nature of the tailings have resulted in the formation of a massive-hardpan layer in the proximal area of the ETMA. Because extensive accumulations of secondary oxyhydroxides of ferric iron are already present, remediation strategies for the ETMA should focus on mitigating the release of sulfide oxidation products rather than on preventing further oxidation. PMID:16406605

  10. [Oxidation Process of Dissolvable Sulfide by Manganite and Its Influencing Factors].

    PubMed

    Luo, Yao; Li, Shan; Tan, Wen-feng; Liu, Fan; Cai, Chong-fa; Qiu, Guo-hong

    2016-04-15

    As one of the manganese oxides, which are easily generated and widely distributed in supergene environment, manganite participates in the oxidation of dissolvable sulfide (S²⁻), and affects the migration, transformation, and the fate of sulfides. In the present work, the redox mechanism was studied by determining the intermediates, and the influence of initial pH and oxygen atmosphere on the processes were studied. The chemical composition, crystal structures and micromorphologies were characterized by XRD, FTIR and TEM. The concentration of S²⁻ and its oxidation products were analyzed using spectrophotometer, high performance liquid chromatograph and ion chromatograph. The results indicated that elemental sulfur was formed as the major oxidation product of S²⁻ oxidation, and decreased pH could accelerate the oxidation rate of S²⁻ in the initial stage, however, there was no significant influence on final products. Elemental S could be further oxidized to S₂O₃²⁻ when the reaction system was bubbled with oxygen, and manganite exhibited excellent catalytic performance and chemical stability during the oxidation of dissolvable sulfide by oxygen. After reaction of more than 10 h, the crystal structure of manganite remained stable. PMID:27548980

  11. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  12. Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation.

    PubMed

    Arslan-Alaton, Idil; Alaton, Izzet

    2007-09-01

    Effluents from textile preparation, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries. Under these circumstances, it most often becomes inevitable to apply energy-intense and hence "imperative" treatment technologies (so-called advanced oxidation processes, AOPs) to achieve an acceptable reduction in the organic content of the effluent, thereby improving the biocompatibility of the originally refractory wastewater. The present experimental study focused on three problematic dyehouse effluent streams in order to alleviate the problem of toxicity and recalcitrance arising from the use of certain textile chemicals at source. For that purpose, the textile preparation stage was simulated by a nonionic surfactant (NS), the polyamide dyeing stage by a synthetic tannin (syntan; ST), and an aqueous biocidal finishing (BF) solution was employed to mimic typical textile finishing effluent. Synthetic effluent streams bearing NS, ST, or BF were subjected to treatment with different, well-established AOPs (ozonation at varying pH; advanced oxidation with H(2)O(2)/UV-C at varying H(2)O(2) concentrations) in order to degrade the active ingredients of the auxiliary formulations, thereby eliminating their toxicity and recalcitrance. Baseline experiments were conducted in order to optimize AOP conditions that were consecutively applied to observe changes in the originally poor effluent biodegradability and high toxicity. Obtained experimental findings revealed that (i) the COD content of NS could be reduced by at least 50% after H(2)O(2)/UV-C treatment at pH 9.0 accompanied by a nearly twofold improvement in its already fair biodegradability; (ii) the inhibitory effect of the biochemically reluctant ST on heterotrophic biomass was completely eliminated upon ozonation (dose=900 mg h(-1)) at pH 3.5; and (iii) the microbial toxicity exerted by BF totally disappeared after ozonation (dose=600 mg h(-1)) at pH 7

  13. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  14. Advanced oxide powders processing based on cascade plasma

    NASA Astrophysics Data System (ADS)

    Solonenko, O. P.; Smirnov, A. V.

    2014-11-01

    Analysis of the potential advantages offered to thermal spraying and powder processing by the implementation of plasma torches with inter-electrode insert (IEI) or, in other words, cascade plasma torches (CPTs) is presented. The paper provides evidence that the modular designed single cathode CPT helps eliminate the following major disadvantages of conventional plasma torches: plasma parameters drifting, 1-5 kHz pulsing of plasma flow, as well as excessive erosion of electrodes. More stable plasma results in higher quality, homogeneity and reproducibility of plasma sprayed coatings and powders treated. In addition, CPT offers an extremely wide operating window, which allows better control of plasma parameters, particle dwell time and, consequently, particle temperature and velocity within a wide range by generating high enthalpy quasi-laminar plasmas, medium enthalpy transient plasmas, as well as relatively low enthalpy turbulent plasmas. Stable operation, flexibility with plasma gases as well as wide operating window of CPT should help significantly improve the existing plasma spraying processes and coatings, and also help develop new advanced technologies.

  15. Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers

    SciTech Connect

    György, E.; Pérez del Pino, A.; Logofatu, C.; Duta, A.; Isac, L.

    2014-07-14

    Zinc oxide-graphene oxide nanocomposite layers were submitted to laser irradiation in air or controlled nitrogen atmosphere using a frequency quadrupled Nd:YAG (λ = 266 nm, τ{sub FWHM} ≅ 3 ns, ν = 10 Hz) laser source. The experiments were performed in air at atmospheric pressure or in nitrogen at a pressure of 2 × 10{sup 4} Pa. The effect of the irradiation conditions, incident laser fluence value, and number of subsequent laser pulses on the surface morphology of the composite material was systematically investigated. The obtained results reveal that nitrogen incorporation improves significantly the wetting and photoactive properties of the laser processed layers. The kinetics of water contact angle variation when the samples are submitted to laser irradiation in nitrogen are faster than that of the samples irradiated in air, the surfaces becoming super-hydrophilic under UV light irradiation.

  16. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants. PMID:26378656

  17. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  18. Oxidative degradation of dimethyl phthalate (DMP) by UV/H(2)O(2) process.

    PubMed

    Xu, Bin; Gao, Nai-Yun; Cheng, Hefa; Xia, Sheng-Ji; Rui, Min; Zhao, Dan-Dan

    2009-03-15

    The photochemical degradation of dimethyl phthalate (DMP) in UV/H(2)O(2) advanced oxidation process was studied and a kinetic model based on the elementary reactions involved was developed in this paper. Relatively slow DMP degradation was observed during UV radiation, while DMP was not oxidized by H(2)O(2) alone. In contrast, the combined UV/H(2)O(2) process could effectively degraded DMP, which is attributed to the strong oxidation strength of hydroxyl radical produced. Results show that DMP degradation rate was affected by H(2)O(2) concentration, intensity of UV radiation, initial DMP concentration, and solution pH. A kinetic model without the pseudo-steady state assumption was established according to the generally accepted elementary reactions in UV/H(2)O(2) advanced oxidation process. The rate constant for the reaction between DMP and hydroxyl radical was found to be 4.0 x 10(9) M(-1)s(-1) through fitting the experimental data to this model. The kinetic model could adequately describe the influence of key factors on DMP degradation rate in UV/H(2)O(2) advanced oxidation process, and could serve as a guide in designing treatment systems for DMP removal. PMID:18639981

  19. Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine.

    PubMed

    Serra, Anna; Domènech, Xavier; Brillas, Enric; Peral, José

    2011-01-01

    A comparative Life Cycle Assessment (LCA) of solar photo-Fenton and solar photoelectro-Fenton, two solar-driven advanced oxidation processes (AOPs) devoted to the removal of non-biodegradable pollutants in water, is performed. The study is based on the removal, at laboratory scale, of the amino acid α-methylphenylglycine, a good example of soluble and non-biodegradable target pollutant. The system under study includes chemicals, electricity, transport of all raw materials to the plant site, and the generation of emissions, but it does not take into account the impact of the infrastructure needed to build a hypothetical solar plant. Nine environmental impact categories are included in the LCA: global warming potential, ozone depletion potential, aquatic eutrophication potential, acidification potential, human toxicity potential, photochemical ozone formation potential, fresh water aquatic ecotoxicity potential, marine aquatic ecotoxicity potential, and terrestrial ecotoxicity potential and abiotic resource depletion potential. Although previous experimental results show that both AOPs are able to efficiently degrade the pollutant, the LCA indicates that solar-driven photo-Fenton is the most environmentally friendly alternative, mainly because the use of electricity in solar photoelectro-Fenton experiments involves high environmental impacts. PMID:21079836

  20. Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability.

    PubMed

    Halldorsdottir, Sigrun M; Sveinsdottir, Holmfridur; Freysdottir, Jona; Kristinsson, Hordur G

    2014-01-01

    Fish protein hydrolysates (FPH) have many desirable properties, however heating and shifts in pH can cause oxidation during enzymatic hydrolysis. The objective was to investigate oxidative processes during enzymatic hydrolysis of fish protein and the impact of oxidation on the antioxidant and immunomodulating ability of FPH. Protease P "Amano" 6 was used to hydrolyze cod protein in the presence and absence of pro-oxidants at pH 8 and 36°C to achieve 20% degree of hydrolysis. Results from thiobarbituric acid reactive substances (TBARS) and sensory analysis indicate that oxidation can develop rapidly during hydrolysis. A cellular antioxidant assay using a HepG2 cell model indicated a negative impact of oxidation products on antioxidant properties of the FPH while results obtained in chemical assays showed a negligible impact. Results from a dendritic cell model indicating that oxidation products may affect anti-inflammatory activity in the body. This study provides important information regarding bioactive FPH. PMID:24001832

  1. Reverse osmosis concentrate treatment by chemical oxidation and moving bed biofilm processes.

    PubMed

    Vendramel, S M R; Justo, A; González, O; Sans, C; Esplugas, S

    2013-01-01

    In the present work, four oxidation techniques were investigated (O3, O3/UV, H2O2/O3, O3/H2O2/UV) to pre-treat reverse osmosis (RO) concentrate before treatment in a moving-bed biofilm reactor (MBBR) system. Without previous oxidation, the MBBR was able to remove a small fraction of the chemical oxygen demand (COD) (5-20%) and dissolved organic carbon (DOC) (2-15%). When the concentrate was previously submitted to oxidation, DOC removal efficiencies in the MBBR increased to 40-55%. All the tested oxidation techniques improved concentrate biodegradability. The concentrate treated by the combined process (oxidation and MBBR) presented residual DOC and COD in the ranges of 6-12 and 25-41 mg L(-1), respectively. Nitrification of the RO concentrate, pre-treated by oxidation, was observed in the MBBR. Ammonium removal was comprised between 54 and 79%. The results indicate that the MBBR was effective for the treatment of the RO concentrate, previously submitted to oxidation, generating water with an improved quality. PMID:24334891

  2. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals. PMID:24730689

  3. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOEpatents

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  4. Effect of low and high temperature anneal on process-induced damage of gate oxide

    SciTech Connect

    King, J.C.; Hu, C. . Dept. of Electrical Engineering and Computer Sciences)

    1994-11-01

    The authors have investigated the ability of high and low temperature anneals to repair the gate oxide damage due to simulated electrical stress caused by wafer charging resulting from plasma etching, etc. Even 800 C anneal cannot restore the stability in interface trap generation. Even 900 C anneal cannot repair the deteriorated charge-to-breakdown and oxide charge trapping. As a small consolation, the ineffectiveness of anneal in repairing the process-induced damage allows them to monitor the damages even at the end of the fabrication process.

  5. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-11-01

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings

  6. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    DOE PAGESBeta

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process,more » mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.« less

  7. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    SciTech Connect

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  8. Role of Y-Al Oxides During Extended Recovery Process of a Ferritic ODS Alloy

    NASA Astrophysics Data System (ADS)

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, M. K.

    2015-08-01

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Finally, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  9. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values. PMID:24756667

  10. Processing, Structure and High Temperature Oxidation Properties of Polymer-Derived and Hafnium Oxide Based Ceramic Systems

    NASA Astrophysics Data System (ADS)

    Terauds, Kalvis

    Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.

  11. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability. PMID:26059740

  12. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species. PMID:26575987

  13. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    SciTech Connect

    Pennline, Henry W.; Hoffman, James S.

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  14. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    SciTech Connect

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in one class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.

  15. THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS

    SciTech Connect

    Parks, II, James E; Ponnusamy, Senthil

    2006-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

  16. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  17. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    SciTech Connect

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  18. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    SciTech Connect

    Shen, L.; Liang, Z. C. Liu, C. F.; Long, T. J.; Wang, D. L.

    2014-02-15

    Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 10{sup 20} cm{sup −3} and 7.78 × 10{sup 20} cm{sup −3} and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%{sub abs} compared to conventional emitters with 50 Ω/□ sheet resistance.

  19. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process.

    PubMed

    Zhao, Xu; Zhang, Baofeng; Liu, Huijuan; Qu, Jiuhui

    2010-12-15

    An electrochemical reactor was built and used to remove arsenite from water. In this reactor, arsenite can be oxidized into arsenate, which was removed by electro-coagulation process simultaneously. The reactor mainly included dimension stable anode (DSA) and iron plate electrode. Oxidation of arsenite will occur at the DSA electrode in the electrochemical process. Meantime, the iron ions can be generated by the electro-induced process and iron oxides will form. Thus, the arsenic was removed by coagulation process. Influencing factors on the removal of arsenite were investigated. It is found that Ca(2+) and Mg(2+) ions promoted the removal of arsenite. However, Cl(-), CO(3)(2-), SiO(3)(2-), and PO(4)(3-) ions inhibited the arsenic removal. And, it is observed that the inhibition effect was the largest in the presence of PO(4)(3-). Furthermore, it is observed that the removal efficiency of arsenate is the largest in the pH value of 8. Increase or decrease of pH value did not benefit to the arsenite removal. Fourier transform infrared spectra were used to analyze the floc particles, it is suggested that the removal mechanism of As(III) in this system seems to be oxidative of As(III) to As(V) and to be removed by adsorption/complexation with metal hydroxides generated in the process. PMID:20863616

  20. Investigation of Oxide Inclusions and Primary Carbonitrides in Inconel 718 Superalloy Refined through Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Chen, Xi-Chun; Shi, Cheng-Bin; Guo, Han-Jie; Wang, Fei; Ren, Hao; Feng, Di

    2012-12-01

    The effect of remelting atmosphere and calcium treatment during electroslag remelting (ESR) of Inconel 718 superalloy on the oxide inclusions and primary carbonitrides was investigated. The results show that after ESR refining combined with calcium treatment, the original oxide inclusions in the electrode, mainly MgO·Al2O3 spinels and some MgO inclusions, were modified to CaO-Al2O3 system inclusions or the inclusions of MgO·Al2O3 spinel core surrounded by CaO-MgO-Al2O3 system inclusion layer. Without the calcium treatment in ESR process, all the oxide inclusions in superalloy ingots are MgO·Al2O3 spinels. All the oxide inclusions in ESR ingots act as the nucleation site for carbonitride (Nb,Ti)CN with two-layer structure precipitation, except for those with a single (Nb,Ti)CN layer containing a small amount of Ti and N in the ingot refined by a proper amount of calcium addition in ESR process. The carbonitrides (Nb,Ti)CN formed directly on the oxide inclusion have a small amount of Nb and C as well as a relatively fixed atomic ratio of Nb/Ti (about 0.6:1). There is a Nb-rich and C-rich (Nb,Ti)CN layer on the pre-existing (Nb,Ti)CN formed on the oxide inclusion. The size of the observed carbonitrides is in the range of 5 μm to 15 μm. The calcium treatment in the ESR process has a significant effect on the morphology of carbonitrides in superalloy ingot due to modification of oxide inclusions by Ca-treatment resulting in the change of precipitation and growth conditions for carbonitrides. The morphologies of carbonitrides were changed from clustered block or single octahedral to skeleton-like after calcium treatment.

  1. Process for improving phosphorus-vanadium oxide and phosphorus-vanadium-co-metal oxide catalysts

    SciTech Connect

    Edwards, R.C.

    1987-10-20

    A process is described for the improvement of a vanadium-phosphorus-oxygen catalyst having a phosphorus to vanadium atomic ratio of about 2:1 to about 0.8:1 which catalyst is present on a catalyst bed having a portion therof containing an initial exotherm of reaction. The catalyst is suitable for use in the manufacture of maleic anhydride from a feed gas stream comprising C/sub 4/ hydrocarbons, benzene, or butane which process comprises: applying to the catalyst bed, simultaneously with introduction of the feed gas stream thereon, water and a phosphorus compound in an amount sufficient to initiate (a) deactivation of the portion of the catalyst containing the initial exotherm, and (b) formation of a new exotherm downstream in the catalyst bed from the initial exotherm, and thereafter reducing or discontinuing application of the phosphorus compound at a point in time when the initial exotherm portion of the catalyst bed is still undergoing deactivation, thereby allowing the partially deactivated exotherm portion to reactivate by producing a more isothermal catalyst bed.

  2. Study of the processes of carbonization and oxidation of porous silicon by Raman and IR spectroscopy

    SciTech Connect

    Vasin, A. V.; Okholin, P. N.; Verovsky, I. N.; Nazarov, A. N.; Lysenko, V. S.; Kholostov, K. I. Bondarenko, V. P.; Ishikawa, Y.

    2011-03-15

    Porous silicon layers were produced by electrochemical etching of single-crystal silicon wafers with the resistivity 10 {Omega} cm in the aqueous-alcohol solution of hydrofluoric acid. Raman spectroscopy and infrared absorption spectroscopy are used to study the processes of interaction of porous silicon with undiluted acetylene at low temperatures and the processes of oxidation of carbonized porous silicon by water vapors. It is established that, even at the temperature 550 Degree-Sign C, the silicon-carbon bonds are formed at the pore surface and the graphite-like carbon condensate emerges. It is shown that the carbon condensate inhibits oxidation of porous silicon by water vapors and contributes to quenching of white photoluminescence in the oxidized carbonized porous silicon nanocomposite layer.

  3. Protein oxidation in processed cheese slices treated with pulsed light technology.

    PubMed

    Fernández, M; Ganan, M; Guerra, C; Hierro, E

    2014-09-15

    The effect of pulsed light technology on protein oxidation was studied in sliced processed cheese by measuring the protein-bound carbonyls with a spectrophotometric DNPH assay. Bovine serum albumin was also tested as a protein standard. Fluences of 0.7, 2.1, 4.2, 8.4 and 11.9 J/cm(2) were applied to vacuum-packaged cheese slices and to an aqueous solution of the protein. Treatments up to 4.2 J/cm(2) did not promote protein oxidation immediately after flashing either in cheese or in the standard. Samples treated with 8.4 and 11.9 J/cm(2) showed significantly higher carbonyl amounts than non-treated ones. Protein oxidation increased along cheese storage at 4°C, and differences among treatments remained. Further studies on the sensory properties will be needed to clarify the impact of pulsed light on processed cheese quality. PMID:24767071

  4. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water.

    PubMed

    Adewuyi, Yusuf G

    2005-11-15

    Recent advances in advanced oxidation technologies for applications in environmental remediation involve the use of acoustic cavitation. Cavitation is the formation, growth, and implosive collapse of gas- or vapor-filled microbubbles formed from acoustical wave-induced compression/ rarefaction in a body of liquid. Cavitation is effective in treating most liquid-phase pollutants but it is highly energy intensive and not economical or practically feasible when used alone. One of the most interesting topics in the recent advances in environmental sonochemistry is the intensification of the ultrasonic degradation process by coupling ultrasound with other types of energy, chemical oxidants, or photocataysts. In Part II of this series, a critical review of the applications of ultrasound in environmental remediation focusing on the simultaneous or hybrid use of ultrasonic irradiation and photocatalysis in aqueous solutions, namely, sonophotocatalytic oxidation processes, is presented. PMID:16323748

  5. Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process

    PubMed Central

    Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

    2012-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by “Candidatus Methylomirabilis oxyfera.” M. oxyfera is affiliated with the “NC10” phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process. PMID:22905032

  6. Reactive nitrogen oxides in the southeast United States national parks: source identification, origin, and process budget

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.

    2005-01-01

    We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.

  7. MOLECULAR-LEVEL PROCESS GOVERNING THE INTERACTION OF CONTAMINANTS WITH IRON AND MANGANESE OXIDES

    EPA Science Inventory

    Many of the inorganic and organic contaminants present in sediments at DOE sites can bealtered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on stru...

  8. Ammonia, Dimethylamine, Trimethylamine, and Trimethylamine Oxide from Raw and Processed Fish By-Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of ammonia, monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA) and trimethylamine oxide (TMAO) in raw and processed fish by-products were determined in cold water marine fish using a capillary electrophoresis (CE) method. The CE method provides a fast and sensitive proce...

  9. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  10. Environmental and process restraints for recycling residual oxides in the steel industry

    SciTech Connect

    Kemner, W.F.; Robertson, T.D.

    1997-12-31

    This paper will examine the process and environmental considerations applicable to each of the oxide wastes generated in both mini-mills and integrated plants. The tramp elements, physical properties, handling characteristics, and regulatory status of each stream will be reviewed with the objective of choosing optimum recycling schemes which are technically and economically viable.

  11. Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis--biological contact oxidation process.

    PubMed

    Cao, X Z; Li, Y M

    2011-01-01

    Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment. PMID:22053469

  12. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  13. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    PubMed

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. PMID:26915591

  14. Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Huang, Rongfu; Elnakar, Haitham; Gamal El-Din, Mohamed

    2016-04-19

    This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.0% and 78.4% removal of naphthenic acids (NAs) at the dose of 200 mg/L and 400 mg/L Fe(VI) respectively, and NAs with high carbon number and ring number were removed preferentially. (1)H nuclear magnetic resonance ((1)H NMR) spectra indicated that the oxidation of fluorescing aromatics resulted in the opening of some aromatic rings. Electron paramagnetic resonance (EPR) analysis detected signals of organic radical intermediates, indicating that one-electron transfer is one of the probable mechanisms in the oxidation of NAs. The inhibition effect of OSPW on Vibrio fischeri and the toxicity effect on goldfish primary kidney macrophages (PKMs) were both reduced after ferrate(VI) oxidation. The fluorescing aromatics in OSPW were proposed to be an important contributor to this acute toxicity. Degradation of model compounds with ferrate(VI) was also investigated and the results confirmed our findings in OSPW study. PMID:27008571

  15. Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells.

    PubMed

    Sun, Haocheng; Hou, Xiaomeng; Wei, Qiulong; Liu, Huawei; Yang, Kecheng; Wang, Wei; An, Qinyou; Rong, Yaoguang

    2016-06-21

    A low-temperature solution-processed inorganic p-type contact material of vanadium oxide (VOx) was developed to fabricate planar-heterojunction perovskite solar cells. Using a solvent-assisted process, high-quality uniform and compact perovskite (CH3NH3PbI3) films were deposited on VOx coated substrates. Due to the high transmittance and quenching efficiency of VOx layers, a power conversion efficiency of over 14% was achieved. PMID:27263631

  16. Reaction Mechanism for m-Xylene Oxidation in the Claus Process by Sulfur Dioxide.

    PubMed

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S; Chung, Suk Ho

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. PMID:26334187

  17. Fission Product Removal From Spent Oxide Fuel By Head-End Processing

    SciTech Connect

    B. R. Westphal; K. J. Bateman; R. P. Lind; K. L. Howden; G. D. Del Cul

    2005-10-01

    The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. Experiments have been performed with irradiated oxide fuel to evaluate the removal of fission products. During these experiments, operating parameters such as temperature and pressure have been varied to discern their effects on the behavior of specific fission products. In general, the extent of removal increases with increasing operating temperature and decreasing pressure. Removal efficiencies as high as 98% have been achieved during testing. Given the results of testing, an explanation of the likely fission product species being removed during the test program is also provided. In addition, experiments have been performed with other oxidative gases (steam and ozone) on surrogates to determine their potential benefit for removal of fission products.

  18. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes.

    PubMed

    Wert, Eric C; Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2013-07-01

    Depending on drinking water treatment conditions, oxidation processes may result in the degradation of cyanobacteria cells causing the release of toxic metabolites (microcystin), odorous metabolites (MIB, geosmin), or disinfection byproduct precursors. In this study, a digital flow cytometer (FlowCAM(®)) in combination with chlorophyll-a analysis was used to evaluate the ability of ozone, chlorine, chlorine dioxide, and chloramine to damage or lyse cyanobacteria cells added to Colorado River water. Microcystis aeruginosa (MA), Oscillatoria sp. (OSC) and Lyngbya sp. (LYN) were selected for the study due to their occurrence in surface water supplies, metabolite production, and morphology. Results showed that cell damage was observed without complete lysis or fragmentation of the cell membrane under many of the conditions tested. During ozone and chlorine experiments, the unicellular MA was more susceptible to oxidation than the filamentous OSC and LYN. Rate constants were developed based on the loss of chlorophyll-a and oxidant exposure, which showed the oxidants degraded MA, OSC, and LYN according to the order of ozone > chlorine ~ chlorine dioxide > chloramine. Digital and binary images taken by the digital flow cytometer provided qualitative insight regarding cell damage. When applying this information, drinking water utilities can better understand the risk of cell damage or lysis during oxidation processes. PMID:23726712

  19. In situ analysis of repair processes for oxidative DNA damage in mammalian cells

    NASA Astrophysics Data System (ADS)

    Lan, Li; Nakajima, Satoshi; Oohata, Yoshitsugu; Takao, Masashi; Okano, Satoshi; Masutani, Mitsuko; Wilson, Samuel H.; Yasui, Akira

    2004-09-01

    Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally produced single-strand breaks and oxidative base damage at restricted nuclear regions of mammalian cells. We showed, in real time after irradiation by using antibodies and GFP-tagged proteins, rapid and ordered DNA repair processes of oxidative DNA damage in human cells. Furthermore, we characterized repair pathways by using repair-defective mammalian cells and found that DNA polymerase accumulated at single-strand breaks and oxidative base damage by means of its 31- and 8-kDa domains, respectively, and that XRCC1 is essential for both polymerase -dependent and proliferating cell nuclear antigen-dependent repair pathways of single-strand breaks. Thus, the repair of oxidative DNA damage is based on temporal and functional interactions among various proteins operating at the site of DNA damage in living cells.

  20. Tritiated water processing using liquid phase catalytic exchange and solid oxide electrolyte cell

    SciTech Connect

    Yamai, H.; Konishi, S.; Hara, M.; Okuno, K.; Yamamoto, I.

    1995-10-01

    Liquid phase catalytic exchange (LPCE) is an effective method for enrichment and removal of tritium from tritiated water. Combined electrolysis catalytic exchange (CECE) process is an attractive application of a LPCE column. We proposed a new process that improves the CECE process. Using a solid oxide electrolyte (SOE) cell for electrolysis makes the CECE process more energy efficient and eliminates other disadvantages such as large tritium inventory and extremely slow system response. When the cell is used for recombination, the system becomes even more simple, efficiently, reliable and safe. 21 refs., 9 figs.

  1. Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems.

    PubMed

    Gao, Tianyu; Shi, Ying; Liu, Fan; Zhang, Yashan; Feng, Xionghan; Tan, Wenfeng; Qiu, Guohong

    2015-06-15

    Todorokite, formed from Mn(II) in supergene environments, can affect the transformation and migration of dissolvable sulfides in soils and water. In this work, todorokite was synthesized with different degrees of crystallinity, and the redox mechanism of dissolvable sulfide and todorokite was studied in both closed and open aqueous systems. The influences of pH, temperature, crystallinity, the amount of manganese oxides, and oxygen gas on S(2-) oxidation process were investigated. It is found that S(2-) was oxidized to S(0), SO3(2-), S2O3(2-) and SO4(2-), and about 90% of S(2-) was converted into S(0) in closed systems. The participation of oxygen facilitated the further oxidation of S(0) to S2O3(2-). S(0) and S2O3(2-) were formed with the conversion rates of S(2-) about 45.3% and 38.4% after 1h of reaction, respectively, and the conversion rate for S2O3(2-) increased as reaction prolonged for a longer period. In addition, todorokite was reduced to Mn(OH)2 in the presence of nitrogen gas, and its chemical stability increased when oxygen gas was admitted into the reaction system during the process. The oxidation rate of dissolvable sulfide followed a pseudo-first-order kinetic law in the initial stage (within 10 min), and the initial oxidation rate constant of S(2-) increased with elevating temperature, increasing the quantity and decreasing crystallinity of todorokite. The initial oxidation rate of dissolvable sulfide decreased with continuous feeding of O2 into the test solution, possibly due to a decrease in active Mn(III) content in todorokite. The present work demonstrates the redox behaviors and kinetics of dissolvable sulfide and todorokite in aquatic environments. PMID:25746570

  2. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis.

    PubMed

    Kucera, Jiri; Bouchal, Pavel; Lochman, Jan; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2013-04-01

    In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators. PMID:23291738

  3. [Degradation of aniline by a dual-electrode electrochemical oxidation process].

    PubMed

    Cen, Shi-Hong; Song, Xiao-Yan; Chu, Yan-Yang

    2011-08-01

    The efficiency and the mechanism of aniline degradation by an electrochemical oxidation process using a Ti/SnO2-Sb2O5 electrode as the anode and a graphite electrode as the cathode, were studied in two aqueous electrolytes with/without Fe2+. The results showed that the reasonable anodic potential was about 2.0 V +/- 0.1 V for Ti/SnO2-Sb2O5 electrode to oxidize organic compounds, while the optimum cathodic potential was -0.65 V for graphite electrode to reduce O2 generating H2O2. The oxidation degradation of aniline could not take place only by the single action of H2O2. Anodic oxidation was accounted for the degradation of aniline in the absence of Fe2+, while in the presence of Fe2+ both electro-Fenton oxidation and anodic oxidation (dual-electrode electrochemical oxidation) could degradate aniline effectively, and in this case the former was the main mechanism. Under the conditions of -0.65 V cathodic potential, pH 3.0 and 0.5 mmol x L(-1) Fe2+, the removal rate of COD was 77.5% after 10 h treatment and a current efficiency of 97.8% for COD removal could be obtained. This work indicates that the dual-electrode electrochemical oxidation is feasible for the degradation of organic compounds with a high current efficiency by using Ti/SnO2-Sb2O5 as anode as well as the reasonable anodic and cathodic potentials. PMID:22619954

  4. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  5. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  6. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    SciTech Connect

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  7. Processing and mechanical behavior of Nicalon{reg_sign}/SiC composites with sol-gel derived oxide interfacial coatings

    SciTech Connect

    Shanmugham, S.; Liaw, P.K.

    1996-10-01

    Recent analytical and finite element modeling studies have indicated that low modulus interface materials are desirable for obtaining Nicalon/SiC composites with good toughness. Two oxides, Al titanate and mullite, were chosen on this basis as interface materials. The oxide and C coatings were deposited by sol-gel and CVD, respectively. Nicalon/SiC composites with oxide/C and C/oxide/C interfaces were fabricated and evaluated for flexure strength in the as-processed and oxidized conditions. Composites with C/oxide/C interfaces retained considerable strength and damage-tolerant behavior even after 500 h oxidation at 1000 C in air. The C/oxide/C interface shows promise as a viable oxidation-resistant interface alternative to C or BN interfaces.

  8. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines

    SciTech Connect

    Bunting, Bruce G; Bunce, Michael

    2012-01-01

    Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels

  9. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  10. Generation and characterization of nano tungsten oxide particles by wire explosion process

    SciTech Connect

    Aravinth, S.; Sankar, Binu; Chakravarthi, S.R.; Sarathi, R.

    2011-02-15

    Nano tungsten oxide particles are produced by wire explosion process. It is realized that by exploding tungsten conductor in lower pressure of oxygen, unreacted phase of tungsten was present and it could be reduced by increasing the operating pressure and increasing the amount of energy deposited to the exploding conductor. It is realized that the nucleation rate of the particle could be high only at the point of maximum saturation ratio, irrespective of the pressure of the oxygen. The size of the critical nucleus formed is low when the saturation ratio and the nucleation rate are at maximum. The nano metal oxide particle formation by wire explosion process allows one to conclude that the second stage annealing process has a major impact on the final grain size formed. The high speed camera photographs of wire explosion process were used to understand the dynamics of particle formation by wire explosion process. The Transmission Electron Microscopy (TEM) analysis indicates that the nano tungsten oxide (WO{sub 3}) particles are of spherical shape and the analysis of particle size indicates that it follows log normal distribution. - Graphical Abstract: Nano tungsten oxide (WO{sub 3}) particles are produced by wire explosion process. Theoretical analysis indicates that the size of the critical nucleus formed is low when the saturation ratio and the nucleation rate are at maximum. High speed camera photographs of wire explosion process were used to understand the dynamics of particles formed. Research Highlights: {yields}Lower particle size is possible with lower pressure. {yields}Particle size is increased with reduced energy ratio. {yields}Unreacted tungsten content reduces when oxygen pressure increases.

  11. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  12. Process for the catalytic reduction of nitrogen oxides in gaseous mixtures

    SciTech Connect

    Ginger, E.A.

    1981-05-19

    A process for the reductive removal of a nitrogen oxide from a gaseous stream, particularly a stream containing oxygen, water, sulfur dioxide, nitrogen oxide and nitrogen, by contacting the stream with ammonia in the presence of a mixture of two catalysts. The first catalyst comprises copper or a copper compound, preferably copper sulfate supported on a porous carrier material. The second catalyst is a combination of metals or compounds thereof, preferably sulfates of vanadium and iron or tungsten and iron, also dispersed on a porous carrier material.

  13. Modeling for calculation of vanadium oxide film composition in reactive-sputtering process

    SciTech Connect

    Yu He; Jiang Yadong; Wang Tao; Wu Zhiming; Yu Junsheng; Wei Xiongbang

    2010-05-15

    A modified model describing the changing ratio of vanadium to oxide on the target and substrate as a function of oxygen flow is described. Actually, this ratio is extremely sensitive to the deposition conditions during the vanadium oxide (VO{sub x}) reactive magnetron-sputtering process. The method in this article is an extension of a previously presented Berg's model, where only a single stoichiometry compound layer was taken into consideration. This work deals with reactive magnetron sputtering of vanadium oxide films with different oxygen contents from vanadium metal target. The presence of vanadium mixed oxides at both target and substrate surface produced during reactive-sputtering process are included. It shows that the model can be used for the optimization of film composition with respect to oxygen flow in a stable hysteresis-free reactive-sputtering process. A systematic experimental study of deposition rate of VO{sub x} with respect to target ion current was also made. Compared to experimental results, it was verified that the theoretical calculation from modeling is in good agreement with the experimental counterpart.

  14. Comparative study of the degradation of carbamazepine in water by advanced oxidation processes.

    PubMed

    Dai, Chao-Meng; Zhou, Xue-Fei; Zhang, Ya-Lei; Duan, Yan-Ping; Qiang, Zhi-Min; Zhang, Tian C

    2012-06-01

    Degradation of carbamazepine (CBZ) using ultraviolet (UV), UV/H2O2, Fenton, UV/Fenton and photocatalytic oxidation with TiO2 (UV/TiO2) was studied in deionized water. The five different oxidation processes were compared for the removal kinetics of CBZ. The results showed that all the processes followed pseudo-first-order kinetics. The direct photolysis (UV alone) was found to be less effective than UV/H2O2 oxidation for the degradation of CBZ. An approximate 20% increase in the CBZ removal efficiency occurred with the UV/Fenton reaction as compared with the Fenton oxidation. In the UV/TiO2 system, the kinetics of CBZ degradation in the presence of different concentrations of TiO2 followed the pseudo-first order degradation, which was consistent with the Langmuir-Hinshelwood (L-H) model. On a time basis, the degradation efficiencies ofCBZ were in the following order: UV/Fenton (86.9% +/- 1.7%) > UV/TiO2 (70.4% +/- 4.2%) > Fenton (67.8% +/- 2.6%) > UV/H2O2 (40.65 +/- 5.1%) > UV (12.2% +/- 1.4%). However, the lowest cost was obtained with the Fenton process. PMID:22856279

  15. Studies in treatment of disperse dye waste: Membrane-wet oxidation process

    SciTech Connect

    Dhale, A.D.; Mahajani, V.V.

    2000-07-01

    An integrated process, membrane-wet oxidation (MEMWO) has been demonstrated to treat the disperse dye bath waste. The dye bath waste stream containing azo class disperse dye CL 79, was studied to demonstrate the process. A nanofiltration membrane (MPT 30) showed > 99% color and 97% chemical oxygen demand (COD) rejection of dye compound. The concentrate was then treated by wet oxidation (WO) process. WO of dye was studied in the range of 160--225 C and oxygen partial pressure 0.69--1.38 MPa. A homogeneous copper sulfate was found to be a suitable catalyst to effectively destroy the dye as well as the real waste. While non catalytic WO of dye achieved 75% reduction in COD during 120 min with 99% color destruction, the catalytic WO showed about 90% reduction in COD. The performance of WO of actual waste stream was comparable with that of pure dye molecule.

  16. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    PubMed

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-01-01

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K. PMID:23396193

  17. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. PMID:24561628

  18. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    PubMed Central

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  19. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors.

    PubMed

    Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning

    2014-01-28

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm(2) V(-1) s(-1). We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm(2) V(-1) s(-1)) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  20. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    SciTech Connect

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Ali, M.N.; Chen, Nan

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  1. Reactive nanophase oxide additions to melt-processed high-T(sub c) superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Brandel, B. P.; Lanagan, M. T.; Hu, J.; Miller, D. J.; Sengupta, S.; Parker, J. C.; Ali, M. N.; Chen, Nan

    1994-10-01

    Nanophase TiO2 and Al2O3 powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa2Cu3O(x) and TlBa2Ca2Cu3O(x) powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O2 above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density J(sub c)) increased dramatically with the oxide additions. At 35-50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J(sub c), probably because of inducing a depression of the transition temperature.

  2. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  3. Second-harmonic generation in metal oxide/ormosils nanocomposites derived from sol-gel processing

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsing; Xu, Yuhuan; Mackenzie, John D.; Chee, Joseph K.; Liu, Jia-ming

    1992-12-01

    Nanocomposites of Ormosis containing metal oxides, such as niobates, titanates and zirconates, were prepared by sol-gel processing. The materials were hydrolyzed partially and were dried in air atmosphere for appropriate periods. Afterwards, the materials were heat- treated between 200 degree(s) and 450 degree(s)C for 2 days in pure oxygen. The final bulk samples are transparent in infrared and visible ranges. X-ray diffraction patterns showed that these samples did not have any crystalline phases after heating up to 200 degree(s)C. Using a Nd:YAG laser of 1.064 micrometers wavelength, second harmonic generation, of green light (0.532 micrometers ), was observed in these metal oxides/Ormosils nanocomposites. The refractive index and other optical properties of the metal oxides/Ormosils were also measured. The microstructures of these samples were examined by transmission electron microscopy.

  4. Process for producing metal oxide superconductor-polymer composites and composites thereby formed

    SciTech Connect

    Chien, J.C.W.

    1990-06-05

    This patent describes a process for producing copper based metal oxide superconductors having continuous foam-like morphology. It comprises: co-dissolving solutions other than metal oxides containing metal ions with a polymer or copolymer in an organic solvent in which the solutions and polymer or copolymer are soluble and of a polar organic solvent type selected from the group consisting of dimethyl formamide, dimethacetamide N-methyl pyrolidone and sulfolan, the the polymer or copolymer being selected from the group consisting of (poly)acrylic acid, (poly)methacrylic acid (poly)styrene sulfonic acid, and copolymers of malonic acid, citraconic acid, acrylonitriles, E-caprolactam, cyclic ethers and cyclic acetals having metal complexing or chelating functional pendant substituents, and a copolymer of vinyl acetate and acrylic acid, and the metals being of the type susceptible of forming high transition temperature metal oxide superconductors with at least some selected from the group consisting of Y, Ba, La and Sr.

  5. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  6. Green processing of metal oxide core-shell nanoparticles as low-temperature dielectrics in organic thin-film transistors.

    PubMed

    Portilla, Luis; Etschel, Sebastian H; Tykwinski, Rik R; Halik, Marcus

    2015-10-21

    TiO2 , Fe3 O4, AlOx , ITO (indium tin oxide), and CeO2 nanoparticles are tailored to exhibit excellent dispersability in deionized water and alcohols. The latter provides an ecofriendly solution for processing metal oxide nanoparticles at a neutral pH. Water-processed dielectrics from the metal oxide nanoparticles are incorporated into organic thin-film transistors fabricated on rigid and flexible substrates. PMID:26308740

  7. Development of a novel wet oxidation process for hazardous and mixed wastes

    SciTech Connect

    Dhooge, P.M.

    1994-11-01

    This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.

  8. Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage.

    PubMed

    Franke, Adrian A; Morrison, Cynthia M; Bakke, Jesse L; Custer, Laurie J; Li, Xingnan; Cooney, Robert V

    2010-06-15

    Coenzyme Q10 (Q10) is present in the circulation mainly in its reduced form (ubiquinol-10; UL10), but oxidizes quickly ex vivo to ubiquinone-10 (UN10). Therefore, native UL10:UN10 ratios, used as markers of redox status and disease risk, are difficult to measure. We established an RP-(U)HPLC method with coulometric detection to measure natively circulating UL10 and UN10 concentrations by adding a ubiquinol/ubiquinone mixture as an internal standard immediately after plasma preparation. This allowed adjustment for unavoidable artificial UL10 oxidation as well as for total losses (or gains) of analytes during sample storage, processing, and analysis because the internal standards exactly paralleled the chemical behavior of Q10. This technique applied to blood (n = 13) revealed Q10 levels of 680-3300 nM with a mean UL10:UN10 ratio of 95:5, which was inversely associated with total Q10 (r=-0.69; p=0.004). The oxidation of UL10 to UN10 was equimolar, increased by O(2), and decreased by lower temperatures or various degassing methods. Although UL10 was stable in blood or when pure in organic solvents at 22 degrees C, its oxidation was catalyzed dose dependently by alpha-tocopherol and butylated hydroxytoluene, particularly when present in combination. Key structural features for the catalytic pro-oxidant properties of phenolic antioxidants included two substituents vicinal to the phenolic hydroxyl group. PMID:20226852

  9. [Effect of flue gas conditions on NO oxidation process by DC corona radical shower].

    PubMed

    Wu, Zu-liang; Gao, Xiang; Li, Ming-bo; Zhang, Yuan-shang; Wu, Zu-cheng; Luo, Zhong-yang; Ni, Ming-jiang; Cen, Ke-fa

    2005-05-01

    Using an air-H2O DC corona radical shower system, the influences of reside time of flue gas in the reactor, velocity of flue gas and NO concentration on NO oxidation process were studied. The results show that the increasing velocity of flue gas can restrain corona development and the increasing NO concentration can make discharge more easy. The reside time of flue gas in the reactor has less effect on the NO oxidation. The NO oxidation rate increased only from 54.5% to 57.6% at 2 W input power when the reside time of flue gas in the reactor increased from 8.5 s to 34.2 s. However, the velocity of flue gas has important effect on the NO oxidation. At 1.7 W x h/m3 energy density, when the velocity of flue gas increased from 1.4 cm/s to 6.3 cm/s, the NO oxidation rate dropped from 60.0% to 38.6% and the energy yield also falled from 20.8 g/(kW x h) to 13.3 g/(kW x h). Under the certain flux of humid air, NO initial concentration has a best value, which was about 100 x 10(-6) in this experiment. PMID:16124460

  10. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. PMID:24873715

  11. Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity.

    PubMed

    Olmez-Hanci, Tugba; Arslan-Alaton, Idil; Genc, Bora

    2013-12-15

    In this study, a thermally activated persulfate oxidation process was investigated to treat aqueous Bisphenol A (BPA) solution. The effect of temperature (40-50-60-70°C), initial pH (pH=3.0, 6.5, 9.0 and 11.0) and persulfate concentration (0-20mM) on bisphenol A (BPA) and TOC removals was examined. The activation energy for hot persulfate oxidation of BPA was calculated as 184 ± 12 kJ/mol. Acidic and neutral pH values were more favorable for BPA oxidation than basic pH values. TOC removals did not exhibit a specific pattern with varying initial pHs. Gas chromatography/mass spectrometry was employed to identify oxidation products. Several aromatic and a few aliphatic compounds could be detected including benzaldehyde, p-isopropenyl phenol, 2,3-dimethyl benzoic acid, 3-hydroxy-4-methyl-benzoic acid, ethylene glycol monoformate and succinic acid. Acute toxicity tests conducted with Vibrio fischeri indicated that the inhibitory effect of 88 μM BPA solution originally being 58%, increased to 84% after 30 min and decreased to 22% after 90 min hot persulfate treatment that could be attributed to the formation and subsequent disappearance of oxidation products. PMID:23433897

  12. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A; Rodríguez, Rosa M; Brillas, Enric

    2015-06-15

    The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization. PMID:25734532

  13. Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process

    SciTech Connect

    Koebel, M.; Elsener, M.

    1998-10-01

    The main part of the VOCs (volatile organic compounds) contained in diesel exhaust ({approx}80%) is oxidized to CO and CO{sub 2} over an SCR (selective catalytic reduction) catalyst. CO is the major product of this oxidation, representing about 50--70% of the formed products (CO + CO{sub 2}). This preferential formation of CO leads to a pronounced increase of CO emissions when an SCR process is added to a diesel engine. A small fraction of the VOCs is selectively oxidized to carboxylic acids over the SCR catalyst. This selectivity is due to the acidic properties of the catalyst causing the preferential desorption at the oxidation state of the acid. The main products of these oxidation reactions are the lower monocarboxylic acids and some dicarboxylic acids forming stable anhydrides, especially maleic and phthalic acid. The highest emissions of these acids are found at low temperatures; they decrease at higher temperatures. Formic acid is preferentially decomposed into carbon monoxide and water. It must therefore be assumed that the strong increase of CO mentioned above is due to a mechanism involving the thermal decomposition of formic acid formed from various primary VOCs.

  14. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    PubMed

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. PMID:23993514

  15. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater.

    PubMed

    Liu, Pengxiao; Zhang, Hanmin; Feng, Yujie; Shen, Chao; Yang, Fenglin

    2015-10-15

    During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater. PMID:25966924

  16. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing.

    PubMed

    Kang, Da-Cheng; Zou, Yun-He; Cheng, Yu-Ping; Xing, Lu-Juan; Zhou, Guang-Hong; Zhang, Wan-Gang

    2016-11-01

    The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96Wcm(-2)) and treatment time (30, 60, 90 and 120min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20kHz and fresh beef at 48h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P<0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P<0.05). SDS-PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals. PMID:27245955

  17. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2processes were more powerful due to the photolysis of intermediates by UV radiation. In the stirred tank reactor, the PEF treatment with BDD was the most potent method, yielding 93% mineralization after 360 min at 100 mA cm(-2). In the flow plant, the SPEF process attained a maximum mineralization of 70% at 100 mA cm(-2). Lower current densities slightly reduced the mineralization degree in SPEF, enhancing the current efficiency and dropping the energy consumption. The diuron decay always obeyed a pseudo-first-order kinetics, with a much greater apparent rate constant in EF and SPEF compared to EO-H2O2. Oxalic and oxamic acids were detected as final carboxylic acids. Ammonium and chloride ions were also released, the latter ion being partially converted into chlorate and perchlorate ions at the BDD surface. PMID:24873706

  18. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    DOE PAGESBeta

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less

  19. Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro.

    PubMed

    Brummund, Jan; Müller, Monika; Schmitges, Thomas; Kaluzna, Iwona; Mink, Daniel; Hilterhaus, Lutz; Liese, Andreas

    2016-09-10

    Cytochrome P450 monooxygenases are a unique family of enzymes that are able to catalyze regio- and stereospecific oxidations for a broad substrate range. However, due to limited enzyme activities and stabilities, hydrophobicity of substrates, as well as the necessity of a continuous electron and oxygen supply the implementation of P450s for industrial processes remains challenging. Aim of this study was to point out key aspects for the development of an efficient synthesis concept for cytochrome P450 catalyzed oxidations. In order to regenerate the natural cofactor NADPH, a glucose dehydrogenase was applied. The low water soluble terpene α-ionone was used as substrate for the model reaction system. The studies reveal that an addition of surfactants in combination with low volumetric amounts of co-solvent can significantly increase substrate availability and reaction rates. Furthermore, these additives facilitated a reliable sampling procedure during the process. Another key factor for the process design was the oxygen supply. Based on various investigations, a bubble-aerated stirred tank reactor in batch mode represents a promising reactor concept for P450 oxidations. Main restriction of the investigated reaction system was the low process stability of the P450 monooxygenase, characterized by maximum total turnover numbers of ∼4100molα-ionone/molP450. PMID:27396939

  20. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  1. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  2. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone.

    PubMed

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B; Banerji, Asoke; Nair, Bipin G

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2' ,7' -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. PMID:27448766

  3. Destruction of nuclear organic waste by supercritical water oxidation. Scale-up of the process

    SciTech Connect

    Moussiere, S.; Roubaud, A.; Fournel, B.

    2007-07-01

    In order to design and then define appropriate dimensions for a supercritical oxidation reactor, a 2D and 3D simulation of the fluid dynamics and heat transfer during the oxidation process has been performed. The solver used is a commercial code, Fluent 6.2. The turbulent flow field in the reactor, created by the stirrer is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modeled thanks to the sliding mesh model. The reactivity of the system is taken into account with a classical combustion model EDC. Comparisons with experimental temperature measurements validate the ability of the CFD modeling to simulate the supercritical water oxidation process. Simulation results provide us a view inside the reactor on the flow, temperature fields and the oxidation localization and development. Results indicate that the flow can be considered as piston-like, heat transfers are strongly enhanced by the stirring. Hence the scaling up of the reactor volume, to reach a treatment capacity of 1 Kg/h of pure organics, can be done regarding the necessary residence times and temperature distribution needed for a complete destruction of the organic matter. (authors)

  4. Microstructure characterization of oxidation of aluminized coating prepared by a combined process

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Tao, J.; Xu, J.; Chen, Z. F.; Sun, X. J.; Xu, Z.

    2008-08-01

    Alumina layer is a good candidate for the tritium penetration barrier that is important in the control of tritium losses due to permeation through structural materials used in high-temperature gas-cooled reactors and in fusion reactors. This paper describes the microstructure of the oxide film of the tritium penetration barrier formed on 316L stainless steel, which was prepared by a combined process, namely, aluminizing and oxidizing treatments using a double glow plasma technology. Microstructure and phase structure of the coatings investigated were examined by scanning electronic microscope (SEM), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM), respectively. The chemical composition and the chemical states of Al, O elements in the oxidation film were identified by X-ray photoelectron spectroscopy (XPS). After aluminization, the typical microstructure of the coating mainly consisted of an outer high aluminum-containing intermetallic compound layer (Fe 2Al 5 and FeAl) and intermediate ferritic stainless steel (α Fe(Al))layer followed by the austenitic substrate. After the combined process, an oxide layer that consisted of Al 2O 3 and spinel FeAl 2O 4 had been successfully formed on the aluminizing coating surface, with an amorphous outmost surface and an underlying subsurface nanocrystalline structure.

  5. Surfactant-Free Vanadium Oxides from Reverse Micelles and Organic Oxidants: Solution Processable Nanoribbons with Potential Applicability as Battery Insertion Electrodes Assembled in Different Configurations.

    PubMed

    Tartaj, Pedro; Amarilla, Jose M; Vazquez-Santos, Maria B

    2015-11-17

    Vanadium oxides similar to other metal transition oxides are prototypes of multifunctionality. Implementing new synthesis routes that lead to dry vanadium oxide nanomaterials with good functional and structural properties as well as good processing capabilities is thus of general interest. Here we report a facile method based on reverse micelles for the growth at room temperature and atmospheric pressure of surfactant-free vanadium oxide nanoribbons that retain after drying excellent solution-processable capabilities. Essential for the success of the method is the use of a soluble organic oxidant that acts as oxidant and cosurfactant during the synthesis, and facilitates surfactant removal with a simple washing protocol. Interestingly, this simple surfactant removal protocol could be of general applicability. As a proof-of-concept of the functional, structural, and processing capabilities of the dry vanadium oxide nanoribbons here prepared, we have checked their lithium insertion capabilities as battery cathodes built upon different configurations. Specifically, we show efficient insertion both in dry nanoribbons processed as films using doctor blade and organic solvents and in dry nanoribbons infiltrated in three-dimensional metal collectors from aqueous suspensions. PMID:26513340

  6. Chemical-vapor deposition of complex oxides: materials and process development

    SciTech Connect

    Muenchausen, R.

    1996-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) part of the Advanced Materials Laboratory (AML). The demand for higher performance and lower cost in electronics is driving the need for advanced materials and consequent process integration. Ceramic thin-film technology is becoming more important in the manufacture of microelectronic devices, photovoltaics, optoelectronics, magneto-optics, sensors, microwave, and radio frequency communication devices, and high-Tc superconducting tapes. A flexible processing approach for potential large-scale manufacturing of novel electronic ceramic thin films is desirable. Current thin- film deposition technologies based on physical vapor-deposition techniques are limited in scale potential and have limited control of processing parameters. The lack of control over multiple process parameters inhibits the versatility and reproducibility of the physical vapor deposition processes applied to complex oxides. Chemical vapor deposition is emerging as a viable approach for large- scale manufacturing of electronic materials. Specifically, the ability to control more processing parameters with chemical vapor deposition than with other processing techniques provides the reliability and material property reproducibility required by manufacturing. This project sought to investigate the chemical vapor deposition of complex oxides.

  7. Kinetics of pulp mill effluent treatment by ozone-based processes.

    PubMed

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes. PMID:19304380

  8. Laws of the oxidation of carbon isotopes in plasma processes under magnetic field

    NASA Astrophysics Data System (ADS)

    Myshkin, V. F.; Bespala, E. V.; Khan, V. A.; Makarevich, S. V.

    2016-06-01

    From law of quantum mechanics it follows that spin precession phase of unpaired electron in external magnetic field cannot be determined. It uncertainty necessary take into account in different physical and chemical processes. The expression of the rate constant of a chemical reaction based on the number of discrete spin states was obtained. The equations of chemical kinetics of plasma oxidation of carbon isotopes in the magnetic field were given.

  9. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  10. Mechanism of the cathodic process coupled to the oxidation of iron monosulfide by dissolved oxygen.

    PubMed

    Duinea, Mădălina I; Costas, Andreea; Baibarac, Mihaela; Chiriță, Paul

    2016-04-01

    This study investigated the mechanism of iron monosulfide (FeS) oxidation by dissolved oxygen (O2(aq)). Synthetic FeS was reacted with O2(aq) for 6days and at 25°C. We have characterized the initial and reacted FeS surface using Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) analysis, Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). It was found that during the aqueous oxidation of FeS new solid phases (disulfide, polysulfide, elemental sulfur, ferric oxyhydroxides and Fe3O4) develop on the mineral surface. The results of potentiodynamic polarization experiments show that after 2days of FeS electrode immersion in oxygen bearing solution (OBS) at initial pH 5.1 and 25°C the modulus of cathodic Tafel slopes dramatically decreases, from 393mV/dec to 86mV/dec. This decrease is ascribed to the change of the mechanism of electron transfer from cathodic sites to O2 (mechanism of cathodic process). The oxidation current densities (jox) indicate that mineral oxidative dissolution is not inhibited by pH increase up to 6.7. Another conclusion, which emerges from the analysis of jox, is that the dissolved Fe(3+) does not intermediate the aqueous oxidation of FeS. The results of electrochemical impedance spectroscopy (EIS) show that after 2days of contact between electrode and OBS the properties of FeS/water interface change. From the analysis of the EIS, FTIR spectroscopy, Raman spectroscopy and SEM/EDX data we can conclude that the change of FeS/water interface properties accompanies the formation of new solid phases on the mineral surface. The new characteristics of the surface layer and FeS/water interface do not cause the inhibition of mineral oxidation. PMID:26773612

  11. Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.

    PubMed

    Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C

    2008-12-24

    The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation. PMID:19053361

  12. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  13. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Mitch, William A

    2014-10-21

    Haloacetamides (HAcAms), an emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in drinking water, have been found in drinking waters at μg/L levels. However, there is a limited understanding about the formation, speciation, and control of halogenated HAcAms. Higher ultraviolet (UV) doses and UV advanced oxidation (UV/H2O2) processes (AOPs) are under consideration for the treatment of trace organic pollutants. The objective of this study was to examine the potential of pretreatment with UV irradiation, H2O2 oxidation, and a UV/H2O2 AOP for minimizing the formation of HAcAms, as well as other emerging N-DBPs, during postchlorination. We investigated changes in HAcAm formation and speciation attributed to UV, H2O2 or UV/H2O2 followed by the application of free chlorine to quench any excess hydrogen peroxide and to provide residual disinfection. The results showed that low-pressure UV irradiation alone (19.5-585 mJ/cm(2)) and H2O2 preoxidation alone (2-20 mg/L) did not significantly change total HAcAm formation during subsequent chlorination. However, H2O2 preoxidation alone resulted in diiodoacetamide formation in two iodide-containing waters and increased bromine utilization. Alternatively, UV/H2O2 preoxidation using UV (585 mJ/cm(2)) and H2O2 (10 mg/L) doses typically employed for trace contaminant removal controlled the formation of HAcAms and several other N-DBPs in drinking water. PMID:25251305

  14. New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels

    NASA Astrophysics Data System (ADS)

    Sarma, K. H.; Fourcade, J.; Lee, S.-G.; Solomon, A. A.

    2006-06-01

    For inert matrix fuels, SiC and BeO represent two possible matrix phase compounds that exhibit very high thermal conductivity, high melting points, low neutron absorption, and reasonably high radiation stability. BeO is chemically compatible with UO2, PuO2 and Zircaloy to very high temperatures, but SiC reacts with all three at somewhat lower temperatures. We have developed the Polymer Impregnation and Pyrolysis or PIP method, making use of a commercial SiC polymeric precursor, to consolidate both particulate fuels like 'TRISO' microsphere fuels, and to impregnate UO2 fuels with pure stoichiometric SiC to improve their thermal conductivity. This method was employed to fabricate Enhanced Conductivity Oxide fuels, or ECO fuels with 5-10 vol.% of the high conductivity phase, and with 50 vol.% for TRISO dispersion fuels. For ECO fuels, a new 'slug/bisque' method of fabricating the UO2 fuel granules was necessary to produce sintered fuel with open pore structures, allowing almost complete impregnation of the continuous SiC phase. The advantages of the PIP process are that it is a non-damaging consolidation process for particulates (TRU, UC or TRISO microspheres), forms a continuous, pure β-SiC phase at temperatures as low as 1573 K, and allows the maximum in fissile atom density. However, several PIP impregnation cycles and high crystallization temperatures are necessary to obtain high thermal conductivity SiC. For producing IMF fuels using the PIP process, the fissile PuC and/or TRU actinides can be added in small concentrations along with SiC 'filler particles' and consolidated with the SiC precursor for either open or closed fuel cycles. For BeO, a second approach was developed for ECO fuels that involves a 'co-sintering' route to produce high density fuels with a continuous BeO phase of 5-10 vol.%. Special granulation and mixing techniques were developed, but only one normal sintering cycle is required. For BeO matrix IMF fuels, PuO2 granules and TRU actinides or

  15. Advanced oxidation processes for degradation of 2,4-dichlo- and 2,4-dimethylphenol

    SciTech Connect

    Trapido, M.; Veressinina, Y.; Munter, R.

    1998-08-01

    The efficiency of different advanced oxidation processes for degradation of two phenols, 2,4-dimethylphenol (2,4-DMP) and 2,4-dichlorophenol (2,4-DCP), has been under study. Advanced oxidation processes, especially the Fe{sup 2+}/H{sub 2}O{sub 2}/ultraviolet (UV) system, were found to be effective in decomposing phenols and chlorophenols. The degradation rate for 2,4-DCP followed the order, H{sub 2}O{sub 2}/Fe{sup 2+}/UV > H{sub 2}O{sub 2}/Fe{sup 2+} > O{sub 3}/ultrasound (US) > O{sub 3} {ge} O{sub 3}/UV > UV/H{sub 2}O{sub 2} {ge} US > UV. The corresponding order for 2,4-DMP was H{sub 2}O{sub 2}/Fe{sup 2+}/UV > O{sub 3}/US > O{sub 3} {ge} O{sub 3}/UV > H{sub 2}O{sub 2}/Fe{sup 2+} > US {ge} UV/H{sub 2}O{sub 2} > UV. Therefore, the chemical treatment, especially advanced oxidation processes, may be an alternative method for destruction of phenols and purification of wastewaters containing phenolic compounds.

  16. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  17. Explicit Microbial Processes to Simulate Methane Production and Oxidation in Wetlands in the GFDL Land Model

    NASA Astrophysics Data System (ADS)

    Smolander, S.; Sulman, B. N.; Shevliakova, E.

    2015-12-01

    Recent observational studies highlighted the need to include explicit treatment of the soil microbial processes into the next generation of Earth System Models (ESMs). These processes shape most soil biogeochemical cycles and control releases of the most potent greenhouses gases carbon dioxide and methane. Currently global ecosystem models usually parameterize methane production as a fraction of soil heterotrophic respiration. This lumps the pathways of several different functional groups of microbes into one production rate, possibly modified by a number of environmental factor multipliers. Methane oxidation is usually more explicitly modeled by Michaelis-Menten kinetics, but if the maximum rate, before environmental multipliers, is a constant parameter, this essentially implies a constant methanotrophic microbe population size. We present an explicit model for wetland soil microbial processes in an ESM context. We introduce a growth and decomposition model for four functional groups of microbes involved in methane production and oxidation, so microbial populations can grow when conditions are favorable and substrate is available. When soil conditions are anoxic, fermenting microbes transform available soil carbon into intermediate substrates, and two different kinds of methanogenic microbes live on their preferred substrates producing methane. Methane is transported through aerobic layers of the soil column, where methanotrophic microbes oxidize part of the methane, and the rest escapes to the atmosphere. We present initial simulations using the new model in the context of existing measurements of methane emissions and microbial populations at the site level, and discuss the implications of including these processes in an ESM. This explicit process model establishes a foundation for improving dynamic ecosystem-climate feedbacks in ESM simulations, and facilitates more detailed experimental verification of wetland biogeochemical processes.

  18. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    PubMed

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (<100 mg l(-1)) of Chinese Notational Integrated Wastewater Discharge Standard (GB8978-1996) even if without using any dilution water. Compared with the original dilution and biological process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year. PMID:19273902

  19. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    PubMed

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism. PMID:25894677

  20. Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing.

    PubMed

    Park, Won-Tae; Son, Inyoung; Park, Hyun-Woo; Chung, Kwun-Bum; Xu, Yong; Lee, Taegweon; Noh, Yong-Young

    2015-06-24

    Here, we report on a simple and high-rate oxidization method for producing solution-based compound mixtures of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) metal-oxide semiconductors (MOS) for thin-film transistor (TFT) applications. One of the issues for solution-based MOS fabrication is how to sufficiently oxidize the precursor in order to achieve high performance. As the oxidation rate of solution processing is lower than vacuum-based deposition such as sputtering, devices using solution-processed MOS exhibit relatively poorer performance. Therefore, we propose a method to prepare the metal-oxide precursor upon exposure to saturated water vapor in a closed volume for increasing the oxidization efficiency without requiring additional oxidizing agent. We found that the hydroxide rate of the MOS film exposed to water vapor is lower than when unexposed (≤18%). Hence, we successfully fabricated oxide TFTs with high electron mobility (27.9 cm(2)/V·s) and established a rapid process (annealing at 400 °C for 5 min) that is much shorter than the conventional as-deposited long-duration annealing (at 400 °C for 1 h) whose corresponding mobility is even lower (19.2 cm(2)/V·s). PMID:26043206