Science.gov

Sample records for oxidation state

  1. Oxidation State 10 Exists.

    PubMed

    Yu, Haoyu S; Truhlar, Donald G

    2016-07-25

    In a recent paper, Wang et al. found an iridium-containing compound with a formal oxidation state of 9. This is the highest oxidation state ever found in a stable compound. To learn if this is the highest chemical oxidation state possible, Kohn-Sham density functional theory was used to study various compounds, including PdO4 (2+) , PtO4 (2+) , PtO3 F2 (2+) , PtO4 OH(+) , PtO5 , and PtO4 SH(+) , in which the metal has an oxidation state of 10. It was found that PtO4 (2+) has a metastable state that is kinetically stable with a barrier height for decomposition of 31 kcal mol(-1) and a calculated lifetime of 0.9 years. All other compounds studied would readily decompose to lower oxidation states. PMID:27273799

  2. Experiments with Unusual Oxidation States

    ERIC Educational Resources Information Center

    Kauffman, G. B.

    1975-01-01

    Describes four synthesis experiments, adapted for the general chemistry laboratory, in which compounds in unusual oxidation are prepared. The abnormal oxidation states involved in the synthesis products are: silver (II), chromium (II), lead (IV), and bromine (I). (MLH)

  3. Rhodium oxides in unusual oxidation states

    NASA Astrophysics Data System (ADS)

    Reisner, Barbara Alice

    Mixed valence RhIII/RhIV oxides have been proposed as a promising class of candidate compounds for superconductivity. Unfortunately, it is difficult to stabilize rhodates with a formal oxidation state approaching RhIV, as other techniques used for the synthesis of rhodium. oxides favor the most commonly observed formal oxidation state, RhIII. One technique which has been used to stabilize metal oxides in high formal oxidation states is crystallization from molten hydroxides. This thesis explores the use of molten hydroxides to enhance the reactivity of rhodium oxides in order to synthesize rhodates with high formal oxidation states. K0.5RhO2, Rb0.2RhO2, and CsxRhO2 were synthesized from pure alkali metal hydroxides. All crystallized with a previously unobserved polytype in the alkali metal rhodate system. Due to the low activity of dissolved oxygen species in LiOH and NaOH, LiRhO2 and NaRhO2 cannot be crystallized. The formal oxidation state of rhodium in AxRhO2 (A = K, Rb, Cs) is a function of the alkali metal hydroxide used to synthesize these oxides. These materials exhibit remarkable stability for layered metal oxides containing the heavier alkali metals, but all phases are susceptible to intercalation by water. The synthesis, structural characterization, magnetic susceptibility, and reactivity of these oxides are reported. Sr2RhO4 and a new rhodate were crystallized from a KOH-Sr(OH)2 flux. The synthesis and characterization of these materials is reported. Efforts to substitute platinum for rhodium in Sr 2RhO4 are also discussed. Mixed alkali metal-alkaline earth metal hydroxide fluxes were used to crystallize LiSr3RhO6, and NaSr3RhO 6. The synthesis of LiSr3RhO6 and NaSr3RhO 6 represents the first example of the stabilization of a rhodium oxide with a formal oxidation state approaching RhV. X-ray diffraction, electron beam microprobe analysis, thermogravimetric analysis, potentiometric titrations, X-ray photoelectron spectroscopy, and magnetic susceptibility

  4. Zinc in +III oxidation state

    NASA Astrophysics Data System (ADS)

    Samanta, Devleena; Jena, Puru

    2012-02-01

    The possibility of Group 12 elements, such as Zn, Cd, and Hg existing in an oxidation state of +III or higher has fascinated chemists for decades. Significant efforts have been made in the past to achieve higher oxidation states for the heavier congener mercury (since the 3^rd ionization potential of the elements decrease as we go down the periodic table). It took nearly 20 years before experiment could confirm the theoretical prediction that Hg indeed can exist in an oxidation state of +IV. While this unusual property of Hg is attributed to the relativistic effects, Zn being much lighter than Hg has not been expected to have an oxidation state higher than +II. Using density functional theory we show that an oxidation state of +III for Zn can be realized by choosing specific ligands with large electron affinities i.e. superhalogens. We demonstrate this by a systematic study of the interaction of Zn with F, BO2, and AuF6 ligands whose electron affinities are progressively higher, namely, 3.4 eV, 4.4 eV, and 8.4 eV, respectively. Discovery of higher oxidation states of elements can help in the formulation of new reactions and hence in the development of new chemistry.

  5. Oxidation-state speciation of

    PubMed

    Hu; Heineman

    2000-06-01

    The analytical utility of chemically modified microelectrodes for oxidation-state speciation of redox couples by cyclic voltammetry has been explored. [Re(I)(DMPE)3]+/[Re(II)(DMPE)3]2+, where DMPE = 1,2-bis(dimethylphosphino)ethane, was studied at carbon-fiber microelectrodes of approximately 5 microm in radius coated with Nafion-entrapped solgel-derived silica (Nafion-silica) composite. The results are compared with cyclic voltammetry of [Fe(CN)6]3-/[Fe(CN)6]4- at bare carbon-fiber microelectrodes. At both microelectrodes, the cathodic and anodic limiting currents are linearly proportional to the concentrations of the reducible and oxidizable species of a redox couple, respectively. The shape of the cyclic voltammogram and the magnitude of the steady-state limiting current are not affected by the potential at which the scan starts. Speciation of both forms of a redox couple could be achieved voltammetrically at the microelectrodes. However, a considerably slower scan rate was required to achieve steady state at the modified electrode because of the smaller diffusion coefficients of [Re(I)(DMPE)3]+ and [Re(II)(DMPE)3]2+ in the Nafion-silica composite. The detection limit at the modified electrode was considerably lower (5 x 10(-9) M for [Re(I)(DMPE)3]+) than at the bare electrode (6 x 10(-5) M for [Fe(CN)6]3- and [Fe(CN)6]4-) because of the substantial preconcentration of [Re(I)(DMPE)3]+ by the Nafion-silica composite. PMID:10857611

  6. Chemical state of complex uranium oxides.

    PubMed

    Kvashnina, K O; Butorin, S M; Martin, P; Glatzel, P

    2013-12-20

    We report here the first direct observation of U(V) in uranium binary oxides and analyze the gradual conversion of the U oxidation state in the mixed uranium systems. Our finding clarifies previous contradicting results and provides important input for the geological disposal of spent fuel, recycling applications, and chemistry of uranium species. PMID:24483742

  7. Iron oxidation state in hydrous rhyolites

    NASA Astrophysics Data System (ADS)

    Humphreys, M.; Brooker, R.; Fraser, D.; Smith, V. C.

    2012-12-01

    Recent studies have suggested that the Earth's mantle at subduction zones is oxidized relative to that at mid-ocean ridges. One possible origin of the oxidation is thought to be hydrous fluids, which are released into the mantle from the down-going slab during subduction. However, this is controversial; other studies have concluded that there is no intrinsic difference in oxidation state. One potential problem in determining primary oxidation states is that magmas produced by partial melting of the sub-arc mantle undergo significant degassing and crystallisation near the earth's surface, which may overprint the oxidation state of the primary melt. H2O contents of melt inclusions may be affected by partial re-equilibration. The effect of H2O on Fe oxidation state is unclear, although theoretical arguments typically predict increasing Fe3+/ΣFe during shallow degassing as a result of preferential diffusion of H2 out of the melt: FeO (m) + H2O (m) = Fe2O3 (m) + H2 (g) [1] We used XANES to measure Fe3+/Fe2+ in cylinders of rhyolitic obsidian that had been hydrated in gold capsules in cold-seal apparatus. Runs were performed at 850-900 °C under H2O-saturated conditions for short run times (20-80 minutes). Surprisingly, we find a positive correlation between Fe3+/ΣFe and H2O content of the glass. This is inconsistent with the effects of reaction [1], but can be explained by considering the acid-base properties of the hydrous melt. In particular, basic behaviour of FeO but amphoteric behaviour of Fe2O3, and changes in melt basicity relating to dissolution of H2O, can explain increasing Fe3+/Fe2+ with increasing H2O. We discuss the implications of these results for using melt compositions to infer the oxidation state of the earth's mantle.

  8. Oxidation state of the mantle

    SciTech Connect

    Saxena, S.K. Graduate Center, New York, NY )

    1989-01-01

    Phase equilibrium relations are established in a system Mg-Fe-Si-H-O, with and without C, at high pressures and temperatures. High pressure-temperature equations of state for the fluids including non-ideal mixing are used in the calculations. The computed equilibrium data show that an olivine of appropriate mantle composition is stable over a wide range of temperature and oxygen fugacities in the carbon-free system. If C is introduced, such that the equilibrium assemblage may contain graphite or diamond, the fluid phase in the peridotite + water system consists mostly of H{sub 2}O and little CO{sub 2} and CH{sub 4}. However, the fluid composition is strongly affected by the Fe content of the system. If Fe is increased from undersaturation to that of saturation the CH{sub 4} content of the fluid changes from a low of 1% to a high of 89%. The calculated results show a fluid with as much as 75% methane could be in equilibrium with olivine without metallic Fe as a coexisting phase. The fO{sub 2} of the primitive mantle with such a fluid composition would be several log units below that of the quartz-fayalite-magnetite buffer.

  9. Expanded Definition of the Oxidation State

    ERIC Educational Resources Information Center

    Loock, Hans-Peter

    2011-01-01

    A proposal to define the oxidation state of an atom in a compound as the hypothetical charge of the corresponding atomic ion that is obtained by heterolytically cleaving its bonds such that the atom with the higher electronegativity in a bond is allocated all electrons in the bond. Bonds between like atoms are cleaved homolytically. This…

  10. Higher Americium Oxidation State Research Roadmap

    SciTech Connect

    Mincher, Bruce J.; Law, Jack D.; Goff, George S.; Moyer, Bruce A.; Burns, Jon D.; Lumetta, Gregg J.; Sinkov, Sergey I.; Shehee, Thomas C.; Hobbs, David T.

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  11. Average oxidation state of carbon in proteins

    PubMed Central

    Dick, Jeffrey M.

    2014-01-01

    The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation–reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between ZC and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in ZC in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower ZC tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales. PMID:25165594

  12. Oxidation state of marine manganese nodules

    USGS Publications Warehouse

    Piper, D.Z.; Basler, J.R.; Bischoff, J.L.

    1984-01-01

    Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.

  13. The effective oxidation state of a peatland

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Clay, Gareth D.; Moody, Catherine S.; Burt, Tim P.; Rose, Rob

    2016-01-01

    The oxidative ratio (OR) of the organic matter of the terrestrial biosphere is a key parameter in the understanding of the magnitude of the carbon sink represented both by the terrestrial biosphere and by the global oceans. However, no study has considered the oxidation state of all the organic pools and fluxes within one environment. In this study all organic matter pathways (dissolved organic matter, particulate organic matter, CO2, and CH4) were measured within an upland peat ecosystem in northern England. The study showed the following: (1) The peat soil of ecosystem was accumulating oxygen at a rate of between -16 and -73 t O km-2 yr-1; (2) Although there was no significant variation in oxidation state in the peat profile, there was a significant increase in degree of unsaturation with depth; (3) The dissolved organic matter leaving the ecosystem was significantly more oxidized than the other carbon pools analyzed while the particulate organic matter was not significantly different from the peat soil profile; and (4) Assuming that all carbon flux from the site was as CO2, the OR of the ecosystem was 1.07; when the nature and speciation of the release pathways were considered, the ecosystem OR was 1.04. At the global scale, correcting for the speciation of carbon fluxes means that the annual global fluxes of carbon to land = 1.49 ± 0.003 Gt C/yr and to the oceans = 2.01 ± 0.004 Gt C/yr.

  14. Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1

    NASA Astrophysics Data System (ADS)

    Adams, Lee F.; Ghiorse, William C.

    1988-08-01

    Leptothrix discophora SS-1 excretes at least one Mn 2+-oxidizing protein that, in association with acidic exopolymers, catalyzes a rapid oxidation of Mn 2+. Iodometric titration of Mn oxide product showed that the oxidation state of Mn increased with age of the oxide from 3.32 in samples 11 hours old to 3.62 in samples formed over a period of 30 days. Electron diffraction of 90-day old samples showed evidence of poorly crystalline Mn(IV) oxides. Simultaneous measurement of oxygen consumption and Mn oxide formation during 15 min reaction periods indicated that the initial Mn product possessed an average oxidation state no greater than 3.6. Results suggest that the Mn 2+-oxidizing system of Leptothrix discophora SS-1 first generates Mn oxide with an average oxidation state close to Mn(III). Aging increases this oxidation state to give the mixed Mn(III, IV) oxide product observed in older samples.

  15. Photochemical oxidants: state of the science.

    PubMed

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed. PMID:15093111

  16. Engineering the Ground State of Complex Oxides

    NASA Astrophysics Data System (ADS)

    Meyers, Derek Joseph

    Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies. The first of the three methods involves a relatively new set of compounds which adhere to a unique paradigm in chemical doping, a-site ordered perovskites. These compounds are iso-structural, i.e. constant symmetry, despite changing the dopant ions. We find that these materials, featuring Cu at the doped A-site, display the Zhang-Rice state, to varying degrees, found in high temperature superconducting cuprates, with the choice of B-site allowing "self-doping" within the material. Further, we find that within CaCu3Ir 4O12 the Cu gains a localized magnetic moment and leads to the experimentally observed heavy fermion state in the materials, one of only two such non-f-electron heavy fermion materials. Next, epitaxial constraint is used to modify the ground state of the rare-earth nickelates in ultra thin film form. Application of compressive (tensile) strain is found to suppress (maintain) the temperature at which the material goes through a Mott metal-insulator transition. Further, while for EuNiO3 thin films the typical bulk-like magnetic and charge ordering is found to occur, epitaxial strain is found to suppress the charge ordering in NdNiO3 thin films due to pinning to the substrate and the relatively weak tendency to monoclinically distort. Finally, the creation of superlattices of EuNiO3 and LaNiO3 was shown to not only allow the selection of the temperature at which

  17. Synthesis of nanoscale silicon oxide oxidation state distributions: The transformation from hydrophilicity to hydrophobicity

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James L.; White, Mark G.; Ozdemir, Serdar; Ogden, Andrew G.; Martin, Holly J.; Fang, Zongtang; Wang, Tsang-Hsiu; Dixon, David A.

    2016-06-01

    Silicon oxide nanostructures which span the range from hydrophilic to hydrophobic have been synthesized. The surface chemistry of these silicon-based nanostructures was analyzed using a combination of X-ray photoelectron spectroscopy, reflectance infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The dominant oxidation state for the nanostructured oxides shifts from an average oxidation state of +III to a combination of +II and +III oxidation states. A correlation of the ability to adsorb water with variations in the surface Si:O ratios was observed showing a transition from hydrophilic to hydrophobic character.

  18. Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1

    SciTech Connect

    Adams, L.F.; Ghiorse, W.C. )

    1988-08-01

    Leptothrix discophora SS-1 excretes at least one Mn{sup 2+}-oxidizing protein that, in association with acidic exopolymers, catalyzes a rapid oxidation of Mn{sup 2+}. Iodometric titration of Mn oxide product showed that the oxidation state of Mn increased with age of the oxide from 3.32 in samples 11 hours old to 3.62 in samples formed over a period of 30 days. Electron diffraction of 90-day old samples showed evidence of poorly crystalline Mn(IV) oxides. Simultaneous measurement of oxygen consumption and Mn oxide formation during 15 min reaction periods indicated that the initial Mn product possessed an average oxidation state no greater than 3.6. Results suggest that the Mn{sup 2+}-oxidizing system of Leptothrix discophora SS-1 first generates Mn oxide with an average oxidation state close to Mn(III). Aging increases this oxidation state to give the mixed Mn(III, IV) oxide product observed in older samples.

  19. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, G G

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  20. Silicon radiation detectors with oxide charge state compensation

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Goulding, F. S.

    1987-01-01

    This paper discusses the use of boron implantation on high resistivity P type silicon before oxide growth to compensate for the presence of charge states in the oxide and oxide/silicon interface. The presence of these charge states on high resistivity P type silicon produces an inversion layer which causes high leakage currents on N(+)P junctions and high surface conductance. Compensating the surface region by boron implantation is shown to result in oxide passivated N(+)P junctions with very low leakage currents and with low surface conductance.

  1. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  2. XPS determination of Mn oxidation states in Mn (hydr)oxides

    NASA Astrophysics Data System (ADS)

    Ilton, Eugene S.; Post, Jeffrey E.; Heaney, Peter J.; Ling, Florence T.; Kerisit, Sebastien N.

    2016-03-01

    Hydrous manganese oxides are an important class of minerals that help regulate the geochemical redox cycle in near-surface environments and are also considered to be promising catalysts for energy applications such as the oxidation of water. A complete characterization of these minerals is required to better understand their catalytic and redox activity. In this contribution an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a layered structure that occurs commonly in soils but is also the oxidized endmember in biomimetic water-oxidation catalysts. The Mn2p3/2, Mn3p, and Mn3s lines of near monovalent Mn(II), Mn(III), and Mn(IV) oxides were fit with component peaks; after the best fit was obtained the relative widths, heights and binding energies of the components were fixed. Unknown multivalent samples were fit such that binding energies, intensities, and peak-widths of each oxidation state, composed of a packet of correlated component peaks, were allowed to vary. Peak-widths were constrained to maintain the difference between the standards. Both average and individual mole fraction oxidation states for all three energy levels were strongly correlated, with close agreement between Mn3s and Mn3p analyses, whereas calculations based on the Mn2p3/2 spectra gave systematically more reduced results. Limited stoichiometric analyses were consistent with Mn3p and Mn3s. Further, evidence indicates the shape of the Mn3p line was less sensitive to the bonding environment than that for Mn2p. Consequently, fitting the Mn3p and Mn3s lines yielded robust quantification of oxidation states over a range of Mn (hydr)oxide phases. In contrast, a common method for determining oxidation states that utilizes the multiplet splitting of the Mn3s line was found to be not appropriate for birnessites.

  3. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.

  4. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGESBeta

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  5. Growth control of the oxidation state in vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2 + 3 O 3 , V + 4 O 2 , and V2 + 5 O 5 . A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O2). The films grown either in lower (<10 mTorr) or higher P(O2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  6. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung; Park, Sungkyun; Egami, Takeshi

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  7. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    DOE PAGESBeta

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; Yildiz, Bilge

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields andmore » the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less

  8. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    SciTech Connect

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-03-09

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr{sup 1+}, Zr{sup 2+}, and Zr{sup 3+} as non-equilibrium oxidation states, in addition to Zr{sup 4+} in the stoichiometric ZrO{sub 2}. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr{sup 0} and Zr{sup 4+} at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.

  9. Direct Determination of the Intracellular Oxidation State of Plutonium

    PubMed Central

    Gorman-Lewis, Drew; Aryal, Baikuntha P.; Paunesku, Tatjana; Vogt, Stefan; Lai, Barry; Woloschak, Gayle E.; Jensen, Mark P.

    2013-01-01

    Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1 μm2 areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 hours in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits was always consistent with tetravalent Pu even though the intracellular milieu is generally reducing. PMID:21755934

  10. Direct determination of the intracellular oxidation state of plutonium.

    PubMed

    Gorman-Lewis, Drew; Aryal, Baikuntha P; Paunesku, Tatjana; Vogt, Stefan; Lai, Barry; Woloschak, Gayle E; Jensen, Mark P

    2011-08-15

    Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1-μm(2) areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 h in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits were always consistent with tetravalent Pu even though the intracellular milieu is generally reducing. PMID:21755934

  11. Oxygenic Photosynthesis and the Oxidation State of Mars

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman; McKay, Christopher P.

    1995-01-01

    The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxygen is biological oxygen production followed by sequestration of organic material in sediments - as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the martian subsurface and sediments.

  12. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  13. Changes in magmatic oxidation state induced by degassing

    NASA Astrophysics Data System (ADS)

    Brounce, M. N.; Stolper, E. M.; Eiler, J. M.

    2015-12-01

    Temporal variations in the oxygen fugacity (fO2) of the mantle may have been transmitted to Earth's atmosphere and oceans by volcanic degassing. However, it is unclear how redox states of volatiles relate to their source magmas because degassing and assimilation can impact fO2 before or during eruption. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S and laser fluorination measurements of 18O/16O ratios in submarine glasses from two settings where degassing is recorded: 1) submarine glasses from the Reykjanes Ridge as it shoals to Iceland, including subglacial glasses from the Reykjanes Peninsula; and 2) submarine glasses from Mauna Kea recovered by the Hawaii Shield Drilling Program (HSDP). Glasses from both settings are basalts with 5.5-9.9 wt% MgO and 350-1790 ppm S. Submarine Reykjanes glasses are sulfide saturated. Subglacial Reykjanes and HSDP glasses are not sulfide saturated, and S and H2O contents are consistent with S+H2O degassing. Submarine Reykjanes glasses have 18O/16O indistinguishable from MORB and become progressively 18O-depleted as MgO decreases. Subglacial glasses have lower 18O/16O than submarine glasses at a given MgO, but both sample types project to a common 18O/16O near 10 wt% MgO, suggesting that 18O-depletion in these lavas is generated by fractional crystallization and assimilation of an 18O-depleted crustal component. The oxidation state of Fe increases only slightly as 18O/16O decrease, suggesting that the assimilant is not oxidized enough to change magmatic fO2. Fe and S do not oxidize or reduce with decreasing S or H2O, suggesting that relatively reduced magmas at depth degassed S+H2O without changing magmatic fO2, and that the fO2 of these lavas reflect the fO2of their mantle source. The oxidation states of Fe and S in HSDP glasses are broadly correlated and samples with the highest S concentrations are the most oxidized. Both Fe and S reduce with decreasing S and H2O contents. This suggests

  14. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    SciTech Connect

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  15. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  16. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    SciTech Connect

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  17. Crystalline state and acoustic properties of zinc oxide films

    SciTech Connect

    Kal'naya, G.I.; Pryadko, I.F.; Yarovoi, Yu.A.

    1988-08-01

    We study the effect of the crystalline state of zinc oxide films, prepared by magnetron sputtering, on the efficiency of SAW transducers based on the layered system textured ZnO film-interdigital transducer (IDT)-fused quartz substrate. The crystalline perfection of the ZnO films was studied by the x-ray method using a DRON-2.0 diffractometer. The acoustic properties of the layered system fused quartz substrate-IDT-zinc oxide film were evaluated based on the squared electromechanical coupling constant K/sup 2/ for strip filters. It was found that K/sup 2/ depends on the magnitude of the mechanical stresses. When zinc oxide films are deposited by the method of magnetron deposition on fused quartz substrates, depending on the process conditions limitations can arise on the rate of deposition owing to mechanical stresses, which significantly degrade the efficiency of SAW transducers based on them, in the ZnO films.

  18. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    SciTech Connect

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; Yildiz, Bilge

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.

  19. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  20. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  1. Evolution of the Oxidation State of the Earth's Mantle

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  2. Rigorous Definition of Oxidation States of Ions in Solids

    NASA Astrophysics Data System (ADS)

    Jiang, Lai; Levchenko, Sergey V.; Rappe, Andrew M.

    2012-04-01

    We present justification and a rigorous procedure for electron partitioning among atoms in extended systems. The method is based on wave-function topology and the modern theory of polarization, rather than charge density partitioning or wave-function projection, and, as such, reformulates the concept of oxidation state without assuming real-space charge transfer between atoms. This formulation provides rigorous electrostatics of finite-extent solids, including films and nanowires.

  3. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    SciTech Connect

    Graves, Christopher R; Kiplinger, Jaqueline L

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  4. Oxidation states of uranium in depleted uranium particles from Kuwait.

    PubMed

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Gijsels, L; Danesi, P R

    2005-01-01

    The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based mu-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to mu-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources and sampling sites; small-sized particles (median 13 microm) were identified in swipes taken from the inside of DU penetrators holes in tanks and in sandy soil collected below DU penetrators, while larger particles (median 44 microm) were associated with fire in a DU ammunition storage facility. Furthermore, the (236)U/(235)U ratios obtained from accelerator mass spectrometry demonstrated that uranium in the DU particles originated from reprocessed fuel (about 10(-2) in DU from the ammunition facility, about 10(-3) for DU in swipes). Compared to well-defined standards, all investigated DU particles were oxidized. Uranium particles collected from swipes were characterized as UO(2), U(3)O(8) or a mixture of these oxidized forms, similar to that observed in DU affected areas in Kosovo. Uranium particles formed during fire in the DU ammunition facility were, however, present as oxidation state +5 and +6, with XANES spectra similar to solid uranyl standards. Environmental or health impact assessments for areas affected by DU munitions should therefore take into account the presence of respiratory UO(2), U(3)O(8) and even UO(3) particles, their corresponding weathering rates and the subsequent mobilisation of U from oxidized DU particles. PMID:15511555

  5. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    NASA Astrophysics Data System (ADS)

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-01

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (EG). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus EG are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above -4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy -4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/-) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state.

  6. Optoelectronic properties of valence-state-controlled amorphous niobium oxide.

    PubMed

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-29

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications. PMID:27168317

  7. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  8. Evaluating tantalum oxide stoichiometry and oxidation states for optimal memristor performance

    SciTech Connect

    Brumbach, Michael T. Mickel, Patrick R.; Lohn, Andrew J.; Mirabal, Alex J.; Kalan, Michael A.; Stevens, James E.; Marinella, Matthew J.

    2014-09-01

    Tantalum oxide has shown promising electrical switching characteristics for memristor devices. Consequently, a number of reports have investigated the electrical behavior of TaO{sub x} thin films. Some effort has been made to characterize the composition of the TaO{sub x} films and it is known that there must be an optimal stoichiometry of TaO{sub x} where forming and switching behavior are optimized. However, many previous reports lack details on the methodology used for identifying the chemistry of the films. X-ray photoelectron spectroscopy has been the most commonly used technique; however, peak fitting routines vary widely among reports and a native surface oxide of Ta{sub 2}O{sub 5} often confounds the analysis. In this report a series of large area TaO{sub x} films were deposited via sputtering with controlled O{sub 2} partial pressures in the sputtering gas, resulting in tunable oxide compositions. Spectra from numerous samples from each wafer spanning a range of oxide stoichiometries were used to develop a highly constrained peak fitting routine. This procedure allowed for the composition of the TaO{sub x} films to be identified with greater detail than elemental ratios alone. Additionally, the peak fitting routine was used to evaluate uniformity of deposition across individual wafers. The appearance of a greater contribution of Ta{sup 4+} oxidation states in the oxygen starved films are believed to relate to films with optimal forming characteristics.

  9. Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states

    PubMed Central

    Abid, Aamir D.; Kanematsu, Masakazu; Young, Thomas M.; Kennedy, Ian M.

    2013-01-01

    We utilized gas-phase diffusion flame synthesis, which has potential for large-scale production of metal oxide nanoparticles, to produce iron oxide nanoparticles (IONPs) with variable oxidation states. The efficacy of these materials in removal of arsenate (As(V) ) from water was assessed. Two different flame configurations, a diffusion flame (DF) and an inverse diffusion flame (IDF), were employed to synthesize six different IONPs by controlling flame conditions. The IONPs produced in the IDF configuration (IDF-IONPs) had smaller particle diameters (4.8 – 8.2 nm) and larger surface areas (141–213 m2/g) than the IONPs produced in the DF configuration (29 nm, 36 m2/g), which resulted in their higher adsorption capacities. As(V) adsorption capacities of the IDF-IONPs increased when the IONPs were synthesized in more oxidizing conditions. The fully oxidized IDF-IONPs, maghemite (γ-Fe2O3), showed the highest As(V) adsorption capacity, comparable to that of magnetite nanocrystals synthesized by thermal decomposition of iron pentacarbonyl and equivalent to three to four times higher capacity than that of a commonly used goethite-based adsorbent. All IONPs were magnetically responsive, which is of great importance for solid−liquid separation. This study demonstrates that the IONPs synthesized in gas-phase flame, particularly IDF-IONPs, are excellent adsorbents because of their high As(V) sorption capacity, potential for large-scale production, and useful magnetic property. PMID:23645964

  10. Americium separation from nuclear fuel dissolution using higher oxidation states.

    SciTech Connect

    Bruce J. Mincher

    2009-09-01

    Much of the complexity in current AFCI proposals is driven by the need to separate the minor actinides from the lanthanides. Partitioning and recycling Am, but not Cm, would allow for significant simplification because Am has redox chemistry that may be exploited while Cm does not. Here, we have explored methods based on higher oxidation states of Am (AmV and AmVI) to partition Am from the lanthanides. In a separate but related approach we have also initiated an investigation of the utility of TRUEX Am extraction from thiocyanate solution. The stripping of loaded TRUEX by Am oxidation or SCN- has not yet proved successful; however, the partitioning of inextractable AmV by TRUEX shows promise.

  11. Effect of microorganisms on the plutonium oxidation states.

    PubMed

    Lukšienė, Benedikta; Druteikienė, Rūta; Pečiulytė, Dalia; Baltrūnas, Dalis; Remeikis, Vidmantas; Paškevičius, Algimantas

    2012-03-01

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to (239)Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. PMID:22112595

  12. Interface controlled oxidation states in layered cobalt oxide nanoislands on gold.

    PubMed

    Walton, Alex S; Fester, Jakob; Bajdich, Michal; Arman, Mohammad A; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V

    2015-03-24

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic "water splitting" reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect of gold contact are only understood on a rudimentary level, which at present prevents further exploration. We have synthesized a model system of flat, layered cobalt oxide nanoislands supported on a single crystal gold (111) substrate. By using a combination of atom-resolved scanning tunneling microscopy, X-ray photoelectron and absorption spectroscopies and density functional theory calculations, we provide a detailed analysis of the relationship between the atomic-scale structure of the nanoislands, Co oxidation states and substrate induced charge transfer effects in response to the synthesis oxygen pressure. We reveal that conversion from Co(2+) to Co(3+) can occur by a facile incorporation of oxygen at the interface between the nanoisland and gold, changing the islands from a Co-O bilayer to an O-Co-O trilayer. The O-Co-O trilayer islands have the structure of a single layer of β-CoOOH, proposed to be the active phase for the OER, making this system a valuable model in understanding of the active sites for OER. The Co oxides adopt related island morphologies without significant structural reorganization, and our results directly demonstrate that nanosized Co oxide islands have a much higher structural flexibility than could be predicted from bulk properties. Furthermore, it is clear that the gold/nanoparticle interface has a profound effect on the structure of the nanoislands, suggesting a possible promotion mechanism. PMID:25693621

  13. Oxidation states of uranium in DU particles from Kosovo.

    PubMed

    Salbu, B; Janssens, K; Lind, O C; Proost, K; Danesi, P R

    2003-01-01

    The oxidation states of uranium contained in depleted uranium (DU) particles were determined by synchrotron radiation based micro-XANES, applied to individual particles in soil samples collected at Ceja Mountain, Kosovo. Based on scanning electron microscopy (SEM) with XRMA prior to micro-XANES, DU particles ranging from submicrons to about 30 microm (average size: 2 microm or less) were identified. Compared to well-defined standards, all investigated DU particles were oxidized. About 50% of the DU particles were characterized as UO2, the remaining DU particles present were U3O8 or a mixture of oxidized forms (ca. 2/3 UO2, 1/3 U3O8). Since the particle weathering rate is expected to be higher for U3O8 than for UO2, the presence of respiratory U3O8 and UO2 particles, their corresponding weathering rates and subsequent remobilisation of U from DU particles should be included in the environmental or health impact assessments. PMID:12500803

  14. The Oxidation State of Europium in Halide Glasses

    PubMed Central

    Weber, J.K.R.; Vu, M.; Paßlick, C.; Schweizer, S.; Brown, D.E.; Johnson, C.E.; Johnson, J.A.

    2012-01-01

    The luminescent properties of divalent europium ions can be exploited to produce storage phosphors for x-ray imaging applications. The relatively high cost and limited availability of divalent europium halides makes it desirable to synthesize them from the readily available trivalent salts. In this work, samples of pure EuCl3 and fluoride glass melts doped with EuCl3 were processed at 700-800 °C in an inert atmosphere furnace. The Eu oxidation state in the resulting materials was determined using fluorescence and Mössbauer spectroscopy. Heat treatment of pure EuCl3 for 10 minutes at 710 °C resulted in a material comprising approximately equal amounts of Eu2+ and Eu3+. Glasses made using mixtures of EuCl2 and EuCl3 in the starting material contained both oxidation states. This paper describes the sample preparation and analysis and discusses the results in the context of chemical equilibria in the melts. PMID:22101252

  15. Crystal structures of human peroxiredoxin 6 in different oxidation states.

    PubMed

    Kim, Kyung Hee; Lee, Weontae; Kim, Eunice EunKyeong

    2016-09-01

    Peroxiredoxins (Prxs) are a family of antioxidant enzymes found ubiquitously. Prxs function not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Since reactive oxygen species are involved in many cellular metabolic and signaling processes, Prxs play important roles in various diseases. Prxs can be hyperoxidized to the sulfinic acid (SO2H) or sulfonic acid (SO3H) forms in the presence of high concentrations of H2O2. It is known that oligomerization of Prx is changed accompanying oxidation states, and linked to the function. Among the six Prxs in mammals, Prx6 is the only 1-Cys Prx. It is found in all organs in humans, unlike some 2-Cys Prxs, and is present in all species from bacteria to humans. In addition, Prx6 has Ca(2+)-independent phospholipase A2 (PLA2) activity. Thus far only the crystal structure of Prx in the oxidized state has been reported. In this study, we present the crystal structures of human Prx6 in the reduced (SH) and the sulfinic acid (SO2H) forms. PMID:27353378

  16. Andreev bound state at a strongly correlated oxide interface

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre; Daley, Andrew; Lu, Shicheng; Veazey, Josh; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Pekker, David; Levy, Jeremy

    Strongly correlated electrons at oxide interfaces give rise to a set of novel physics phenomena including superconductivity and magnetism. At the LaAlO3/SrTiO3 (LAO/STO) interface, signatures of strong electron pairing persist even for conditions where superconductivity is suppressed. Meanwhile, an Andreev bound state (ABS) is a single quasiparticle excitation that mediates pair transport in confined superconductor-normal systems. Here we report a transition from pair resonant transport to ABS in sketched single electron transistors at the LAO/STO interface. This transition is consistent with a change of electron-electron interaction from attractive to repulsive, occurring at or near the Lifshitz transition. Such new electronically tunable electron-electron interaction may be useful for quantum simulation and engineering of novel quantum states in oxide materials. We gratefully acknowledge support from AFOSR FA9550-10-1-0524 (JL, CBE), AFOSR FA9550-12-1-0057 (JL, CBE, AD), NSF DMR-1104191 (JL), ONR N00014-15-1-2847 (JL).

  17. Preparation and properties of a compound containing nickel in highest oxidation states

    SciTech Connect

    Nikol'skii, V.A.; Bekreneva, L.A.; Garmash, L.A.; Makashev, Yu.A.; Mikhailova, K.A.; Raikhel'son, L.B.; Shchelkunova, L.I.

    1986-04-10

    The purpose of this paper is to obtain nickel hydroxide oxide of the optimal composition both by chemical and by electrochemical oxidation for use as the cathode material in alkaline batteries. The authors selected the oxidation conditions (oxidant, component ratio) for production of gamma-NiOOH; hydrogen peroxide, potassium permanganate, and potassium persulfate were used as oxidants. Gamma-NiOOH was also obtained by electrochemical oxidation of nickel (II) oxide hydrate in alkaline solutions. In samples obtained by electrochemical oxidation virtually 100% of the nickel is in the highly oxidized state. It is shown that gamma-NiOOH obtained by both chemical and electrochemical oxidation is a complex individual compound containing nickel and in the highest oxidation states, Ni/sup 3 +/ and Ni/sup 4 +/, together with salt-forming potassium ions and water molecules. The gamma-NiOOH obtained may be used with success in galvanic cells.

  18. Oxidation states of Fe and Ti in blue sapphire

    NASA Astrophysics Data System (ADS)

    Wongrawang, P.; Monarumit, N.; Thammajak, N.; Wathanakul, P.; Wongkokua, W.

    2016-02-01

    X-ray absorption near-edge spectroscopy (XANES) can be used to study the oxidation state of a dilute system such as transition metal defects in solid-state samples. In blue sapphire, Fe and Ti are defects that cause the blue color. Inter-valence charge transfer (IVCT) between Fe2+ and Ti4+ has been proposed to describe the optical color’s origin. However, the existence of divalent iron cations has not been thoroughly investigated. Fluorescent XANES is therefore employed to study K-edge absorptions of Fe and Ti cations in various blue sapphire samples including natural, synthetic, diffused and heat-treated sapphires. All the samples showed an Fe absorption edge at 7124 eV, corresponding to the Fe3+ state; and Ti at 4984 eV, corresponding to Ti4+. From these results, we propose Fe3+-Ti4+ mixed acceptor states located at 1.75 eV and 2.14 eV above the valence band of corundum, that correspond to 710 nm and 580 nm bands of UV-vis absorption spectra, to describe the cause of the color of blue sapphire.

  19. Oxidative state and oxidative metabolism of the heart from rats with adjuvant-induced arthritis.

    PubMed

    Schubert, Amanda Caroline; Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; Amado, Ciomar Aparecida Bersani; Peralta, Rosane Marina; Comar, Jurandir Fernando; Bracht, Adelar

    2016-06-01

    The aim of the present work was to investigate, in a more extensive way, the oxidative state and parameters related to energy metabolism of the heart tissue of rats using the model of adjuvant-induced arthritis. The latter is a model for the human arthritic disease. Measurements were done in the total tissue homogenate, isolated mitochondria and cytosolic fraction. The adjuvant-induced arthritis caused several modifications in the oxidative state of the heart which, in general, indicate an increased oxidative stress (+80% reactive oxygen species), protein damage (+53% protein carbonyls) and lipid damage (+63% peroxidation) in the whole tissue. The distribution of these changes over the various cell compartments was frequently unequal. For example, protein carbonyls were increased in the whole tissue and in the cytosol, but not in the mitochondria. No changes in GSH content of the whole tissue were found, but it was increased in the mitochondria (+33%) and decreased in the cytosol (-19%). The activity of succinate dehydrogenase was 77% stimulated by arthritis; the activities of glutamate dehydrogenase, isocitrate dehydrogenase and cytochrome c oxidase were diminished by 31, 25 and 35.3%, respectively. In spite of these alterations, no changes in the mitochondrial respiratory activity and in the efficiency of energy transduction were found. It can be concluded that the adjuvant-induced arthritis in rats causes oxidative damage to the heart with an unequal intracellular distribution. Compared to the liver and brain the modifications caused by arthritis in the heart are less pronounced on variables such as GSH levels and protein integrity. Possibly this occurs because the antioxidant system of the heart is less impaired by arthritis than that reported for the former tissues. Even so, the modifications caused by arthritis represent an imbalanced situation that probably contributes to the cardiac symptoms of the arthritis disease. PMID:27032477

  20. Determination of the oxidation states of metals and metalloids: An analytical review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  1. Oxidation state determination of uranium in various uranium oxides: Photoacoustic spectroscopy complimented by photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Dhobale, A. R.; Kumar, M.; Godbole, S. V.; Natarajan, V.

    2015-03-01

    Photoacoustic spectroscopy (PAS) has been utilized for the determination of U(IV). Initial experiments were carried out for determination of U(IV) in uranium tetra fluoride, and were further extended to the determination of U(IV) in uranium oxide samples having various O/M ratios like UO2.00, UO2.17, U3O8, and U3O7. All these oxides, since dark gray/black in color, were having featureless spectra in the visible region, hence solid state reaction of uranium oxide with ammonium bi-fluoride was utilized for the formation of U(IV) and U(VI) oxyfluorides, having narrow well resolved spectra, prior to estimation by Photoacoustic spectroscopy technique. The strong absorption for U(IV) complex at 630 nm was monitored using a He-Ne laser resulting in good sensitivity for determination of U(IV). It was observed that fluorinated uranium dioxide (UO2) is having spectra similar to U(IV); fluorinated uranium trioxide (UO3) is having spectra of uranyl only whereas Triuranium octoxide (U3O8) spectra consist of both U(IV) and uranyl component. This was further supported by photoluminescence studies.

  2. Heterogeneous magnetic state in nanocrystalline cupric oxide CuO

    NASA Astrophysics Data System (ADS)

    Yermakov, A. Ye.; Uimin, M. A.; Korolyov, A. V.; Mikhalev, K. N.; Pirogov, A. N.; Teplykh, A. E.; Shchegoleva, N. N.; Gaviko, V. S.; Byzov, I. V.; Maikov, V. V.

    2015-02-01

    This paper presents the results of investigations of the structural state and magnetic properties of nanocrystalline cupric oxide samples with average particle sizes of approximately 40 and 13 nm, which were synthesized by the electric explosion and gas phase methods, respectively. The samples have been studied using X-ray diffraction, neutron diffraction, magnetic measurements, high-resolution transmission electron microscopy, and copper nuclear magnetic resonance. It has been shown that, in the initial state, regardless of the synthesis method, CuO nanoparticles are characterized by a heterogeneous magnetic state, i.e., by the existence of long-range antiferromagnetic order, spontaneous magnetization, especially at low temperatures, and paramagnetic centers in the material. The ferromagnetic contribution is probably caused by the formation of magnetic polaron states due to the phase separation induced in the system by excess charge carriers as a result of the existence of point defects (vacancies in the anion sublattice) in the nanocrystalline state. In this state, there is an inhomogeneously broadened nuclear magnetic resonance spectrum, which is a superposition of the spectrum of the initial antiferromagnetic matrix and the spectrum of ferromagnetically ordered regions. At high concentrations of ferromagnetically ordered regions, the antiferromagnetic matrix exhibits a nuclear magnetic resonance spectrum of CuO nanoparticles, predominantly from regions with the ferromagnetic phase. The appearance of magnetization can also be partly due to the frustration of spins in CuO, and this state is presumably localized near the most imperfect surface of the nanoparticles. The magnetic susceptibility of nanoparticles in the initial state in strong magnetic fields is significantly higher than that for the annealed samples, which, most likely, is associated with the influence of the high concentration of magnetic polarons. No correlation between the ferromagnetic

  3. Molybdenum Catalyzed Ammonia Borane Dehydrogenation: Oxidation State Specific Mechanisms

    PubMed Central

    2015-01-01

    Though numerous catalysts for the dehydrogenation of ammonia borane (AB) are known, those that release >2 equiv of H2 are uncommon. Herein, we report the synthesis of Mo complexes supported by a para-terphenyl diphosphine ligand, 1, displaying metal–arene interactions. Both a Mo0 N2 complex, 5, and a MoII bis(acetonitrile) complex, 4, exhibit high levels of AB dehydrogenation, releasing over 2.0 equiv of H2. The reaction rate, extent of dehydrogenation, and reaction mechanism vary as a function of the precatalyst oxidation state. Several Mo hydrides (MoII(H)2, [MoII(H)]+, and [MoIV(H)3]+) relevant to AB chemistry were characterized. PMID:25034459

  4. Manganese oxidation state mediates toxicity in PC12 cells

    SciTech Connect

    Reaney, S.H. . E-mail: stevereaney@hotmail.com; Smith, D.R.

    2005-06-15

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 {mu}M Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 {mu}M produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 {mu}M), while Mn(III) exposures produced increases in LDH activity at lower exposures ({>=}50 {mu}M) than did Mn(II) (200 {mu}M only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 {mu}M Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity.

  5. Proteomic indicators of oxidation and hydration state in colorectal cancer

    PubMed Central

    2016-01-01

    New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O) is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic

  6. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  7. Redox state of plutonium in irradiated mixed oxide fuels

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Pin, S.; Poonoosamy, J.; Kulik, D. A.

    2014-03-01

    Nowadays, MOX fuels are used in about 20 nuclear power plants around the world. After irradiation, plutonium co-exists with uranium oxide. Due to the redox sensitive nature of UO2 other plutonium oxides than PuO2 potentially present in the fuel may interact with the matrix. The aim of this study is to determine which plutonium species are present in heterogeneous and homogeneous MOX. The results provided by X-ray Absorption Near Edge Spectroscopy (XANES) for non-irradiated as well as irradiated (center and periphery) homogeneous MOX fuel were published earlier and are completed by Extended X-ray Fine Structure (EXAFS) analysis in this work. The EXAFS signals have been extracted using the ATHENA code and the analyses were carried using EXCURE98 as performed earlier for an analogous element. EXAFS shows that plutonium redox state remains tetravalent in the solid solution and that the minor fraction of trivalent Pu must be below 10%. Independently, the study of homogeneous MOX was also approached by thermodynamics of solid solution of (U,Pu)O2. Such solid solutions were modeled using the Gibbs Energy Minimisation (GEM)-Selektor code (developed at LES, NES, PSI) supported by the literature data on such solid solutions. A comparative study was performed showing which plutonium oxides in their respective mole fractions are more likely to occur in (U,Pu)O2. In the modeling, these oxides were set as ideal and non-ideal solid solutions, as well as separate pure phases. Pu exists mainly as PuO2 in the case of separate phases, but can exist under its reduced forms, PuO1.61 and PuO1.5 in minor fraction i.e. ~15% in ideal solid solution (unlikely) and ~10% in non-ideal solid solution (likely) and at temperature around 1300 K. This combined thermodynamic and EXAFS studies confirm independently the results obtained so far by Pu XANES for the same MOX samples.

  8. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Masiello, C. A.; Randerson, J. T.; Smernik, R. J.; Baldock, J. A.; Chadwick, O. A.; Harden, J. W.

    2009-06-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known Cox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ±0.036 Cox units (±0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ± 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  9. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  10. Iron Partitioning and Oxidation State in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Piet, H.; Badro, J.; Nabiei, F.; Dennenwaldt, T.; Shim, S. H. D.; Cantoni, M.; Hébert, C.; Gillet, P.

    2015-12-01

    Valence state and concentrations of iron in lower mantle phases have strong effects on their chemical and physical properties. Experimental studies have reported stark differences in iron partitioning between bridgmanite (Brg) and ferropericlase (Fp) for San Carlos olivine [1] and pyrolite [2] systems. We recently performed experiments at lower mantle conditions for an Al-rich olivine system [3] and observed an iron enrichment of the silicate phase very similar to that in pyrolite. Mössbauer studies [4] have shown that in the presence of aluminum non negligible amounts of Fe3+ could be incorporated in bridgmanite explaining the observed iron enrichment. Non negligible amounts of Fe3+ in the lower mantle could influence transport properties of the phases [5]. The evaluation of ferrous and ferric iron concentrations in lower mantle mineral assemblages is then key to a thorough understanding of geophysical observations and associated mantle dynamics. We used electron energy loss spectroscopy technique to quantify the proportions of Fe2+ and Fe3+ iron in Brg and Fp phases previously synthesized from Al-rich olivine composition [3]. The oxidation state of iron in the lower mantle will be discussed as well as ensuing implications on transport properties for relevant lower mantle compositions. References [1] Sakai et al., 2009 [2] Prescher et al., 2014 [3] Piet et al., submitted [4] McCammon et al., 1996 [5] Xu et al., 1998

  11. The Concept of Oxidation States in Metal Complexes

    ERIC Educational Resources Information Center

    Steinborn, Dirk

    2004-01-01

    The concepts of oxidation numbers when applied means electrons that are shared between atoms in molecules are assigned to a specific atom. Oxidation numbers are assigned from the Lewis structure of a molecule, with knowledge of the electronegativities of elements.

  12. Highly Oxidizing Excited States of One-Electron Oxidized Guanine in DNA: Wavelength and pH Dependence

    PubMed Central

    Khanduri, Deepti; Adhikary, Amitava; Sevilla, Michael D.

    2011-01-01

    Excited states of one-electron oxidized guanine in DNA are known to induce hole transfer to the sugar moiety and on deprotonation result in neutral sugar radicals that are precursors of DNA-strand breaks. This work carried out in homogeneous aqueous glass (7.5 M LiCl) at low temperatures (77 to 175 K) shows the extent of photoconversion of one-electron oxidized guanine and the associated yields of individual sugar radicals and are crucially controlled by photon energy, protonation state, and strandedness of the oligomer. In addition to forming sugar radicals, highly oxidizing excited states of one-electron oxidized guanine are produced with 405 nm light at pH 5 and below that are able to oxidize chloride ion in the surrounding solution to form Cl2•− via an excited state hole transfer process. Among the various DNA model systems studied in this work, the maximum amount of Cl2•− is produced with ds (double stranded) DNA where the one-electron oxidized guanine exists in its cation radical (G•+:C) form. Thus, via excited state hole transfer, the dsDNA is apparently able to protect itself from cation radical excited states by transfer of damage to the surrounding environment. PMID:21381665

  13. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    NASA Astrophysics Data System (ADS)

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-01

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration—a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. This study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. The potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.

  14. Oxidation State of Nakhlites as inferred from Fe-Ti oxide Equilibria and Augite/Melt Europium Partitioning

    NASA Technical Reports Server (NTRS)

    Makishima, J.; McKay, G.; Le, L.; Miyamoto, M.; Mikouchi, T.

    2007-01-01

    Recent studies have shown that Martian magmas had wide range of oxygen fugacities (fO2) and that this variation is correlated with the variation of La/Yb ratio and isotopic characteristics of the Martian basalts, shergottite meteorites. The origin of this correlation must have important information about mantle sources and Martian evolution. In order to understand this correlation, it is necessary to know accurate value of oxidation state of other Martian meteorite groups. Nakhlites, cumulate clinopyroxenites, are another major group of Martian meteorites and have distinctly different trace element and isotopic characteristics from shergottites. Thus, estimates of oxidation state of nakhlites will give us important insight into the mantle source in general. Several workers have estimated oxidation state of nakhlites by using Fe-Ti oxide equilibrium. However, Fe-Ti oxides may not record the oxidation state of the parent melt of the nakhlite because it is a late-stage mineral. Furthermore, there is no comprehensive study which analyzed all nakhlite samples at the same time. Therefore, in this study (1) we reduced the uncertainty of the estimate using the same electron microprobe and the same standards under the same condition for Fe-Ti oxide in 6 nakhlites and (2) we also performed crystallization experiments to measure partition coefficients of Eu into pyroxene in the nakhlite system in order to estimate fO2 when the pyroxene core formed (i.e. Eu oxybarometer [e.g. 2,6]).

  15. Effects of iron oxidation state on viscosity, lunar composition 15555

    NASA Technical Reports Server (NTRS)

    Cukierman, M.; Uhlmann, D. R.

    1974-01-01

    The viscous flow behavior of a 9.6-kg lunar rock containing 22.5 wt.% FeO was studied in the temperature ranges from 620 to 700 C and from 1215 to 1400 C. The material was synthesized under mildy reducing conditions to simulate the Fe(2+)/total Fe ratio of the lunar environment. The effect of iron oxidation state on flow behavior in the high viscosity region is studied for specimens of the 15555 composition with Fe(2+) concentration ratios of 0.94, 0.76, and 0.20. A change in ratio from 0.94 to 0.76 had no observable effect on viscosity, whereas a change from 0.76 to 0.20 was accompanied by a drastic increase in viscosity (some three orders of magnitude) at a given temperature, but without changing the form of the variation of viscosity with temperature. The flow behavior is analyzed as a function of the structural features of the glasses.

  16. Indium tin oxide for solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Weijtens, Christianus Hermanus L.

    Solid State Image Sensors (SSIS) which convert light into an electrical signal are introduced and transparent conductive materials and their deposition methods are reviewed as a solution to imager problems. The development of basic tools to enable replacement of poly-Si by Indium Tin Oxide (ITO) in SSIS is addressed. The installation and optimization of deposition equipment, the development of deposition and process technology of ITO, and the implementation and application of ITO in an image sensor are studied. Deposition rate and homogeneity and morphology and parameters like gas composition, power, pressure and substrate temperature are considered. Scope is limited to a first generation frame transfer imager with only one ITO layer although some concepts of an all ITO imager are discussed. The sensor used is a redesign of the accordion imager. All requirements imposed on ITO were met and the usefulness of the developed technology was demonstrated by implementing ITO in an imager. The characteristics of a constructed frame-transfer image sensor in which half the gates in the light sensitive part were replaced by ITO gates are discussed.

  17. Stabilization of actinides and lanthanides in unusually high oxidation states

    SciTech Connect

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO/sub 3/ or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF/sub 5//HF solution or Pu(VII) in Li/sub 5/PuO/sub 6/). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs.

  18. Interconversion, reactivity and thermal stability of polyaniline in selected oxidation states

    SciTech Connect

    Masters, J.G.

    1992-01-01

    The objectives of this study were: (i) to determine if the base form of the conducting polymer, polyaniline, existed in a continuum of oxidation states ranging from the completely reduced leucoemeraldine oxidation state, (1 [minus] y) = 0, to the completely oxidized pernigraniline oxidation state, (1 [minus] y = 1). (ii) To investigate a novel type of reductive ring amination reaction of protonated polyaniline, of oxidation state 1 [minus] y = 0.50. (iii) Tascertain whether certain forms of polyaniline exhibited thermochromic behavior. (iv) To study factors responsible for enhancing the thermal/oxidative stability of [open quotes]doped[close quotes] polyaniline. (v) To study the reaction between polyaniline and C[sub 60]. The significant results and conclusions are: (a) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 1.0, polyaniline base exists in only three discrete oxidation states at the molecular level in the solid state and also in N-methylpyrrolidinone (NMP) solution. (b) Equimolar quantities of the two extreme oxidation states of polyaniline in the base form, leucoemeraldine, (1 [minus] y = 0.0), and pernigraniline, (1 [minus] y = 1.0), undergo a [open quotes]mutual[close quotes] oxidation and reduction when mixed in NMP solution. (c) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 0.50, only two species are observed in NMP solution of the polymer after the addition of excess aq. HCl, viz., fully protonated emeraldine salt and non-protonated leucoemeraldine base. (d) Protonation of emeraldine base, (1 [minus] y = 0.50), with nonvolatile acids has allowed the determination of the intrinsic thermal stability of the [open quotes]doped[close quotes] polymer. (e) A new reaction between emeraldine HCl and anhydrous amines results in reductive ring amination to produce leucoemeraldine base derivatives. (f) Reactions of the bases gave reversible thermochromic behavior and the formation of insoluble fullerenes.

  19. The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Becerra, Patricio; Keane, James T.; Byrne, Shane

    2016-06-01

    We report measurements of the oxidation state of Fe nanoparticles within lunar soils that experienced varied degrees of space weathering. We measured >100 particles from immature, submature, and mature lunar samples using electron energy-loss spectroscopy (EELS) coupled to an aberration-corrected transmission electron microscope. The EELS measurements show that the nanoparticles are composed of a mixture of Fe0, Fe2+, and Fe3+ oxidation states, and exhibit a trend of increasing oxidation state with higher maturity. We hypothesize that the oxidation is driven by the diffusion of O atoms to the surface of the Fe nanoparticles from the oxygen-rich matrix that surrounds them. The oxidation state of Fe in the nanoparticles has an effect on modeled reflectance properties of lunar soil. These results are relevant to remote sensing data for the Moon and to the remote determination of relative soil maturities for various regions of the lunar surface.

  20. The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Becerra, Patricio; Keane, James T.; Byrne, Shane

    2016-05-01

    We report measurements of the oxidation state of Fe nanoparticles within lunar soils that experienced varied degrees of space weathering. We measured >100 particles from immature, submature, and mature lunar samples using electron energy-loss spectroscopy (EELS) coupled to an aberration-corrected transmission electron microscope. The EELS measurements show that the nanoparticles are composed of a mixture of Fe0, Fe2+, and Fe3+ oxidation states, and exhibit a trend of increasing oxidation state with higher maturity. We hypothesize that the oxidation is driven by the diffusion of O atoms to the surface of the Fe nanoparticles from the oxygen-rich matrix that surrounds them. The oxidation state of Fe in the nanoparticles has an effect on modeled reflectance properties of lunar soil. These results are relevant to remote sensing data for the Moon and to the remote determination of relative soil maturities for various regions of the lunar surface.

  1. Solid State, Surface and Catalytic Studies of Oxides

    SciTech Connect

    Kung, H. H.

    2004-11-23

    This project investigates the catalytic properties of oxides for the selective oxidative dehydrogenation of light alkanes and for hydrocarbon reduction of NO{sub x}. Various vanadium oxide based catalysts were investigated to elucidate the relationship between the chemical and structural properties of the catalysts and their selectivity for the formation of alkenes. It was found that vanadium oxide units that are less reducible give higher selectivities. For hydrocarbon reduction of NO{sub x}, it was found that alumina-based catalysts can be effective at higher temperatures than the corresponding zeolite-based catalysts. On some catalysts, such as SnO{sub 2}/Al{sub 2}O{sub 3}. Ag/Al{sub 2}O{sub 3}, the alumina participates directly in the reaction, making the catalyst bifunctional. These results are useful in research to improve the performance of this stress of catalysts.

  2. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  3. The Effects of Decomposition on the Oxidative Ratio and Carbon Oxidation State of Organic Matter

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Clark, N.; Randerson, J. T.; Robertson, G. P.

    2006-12-01

    Ecosystem oxidative ratio (OR) and the related parameter carbon oxidation state (Cox) are critical in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the biosphere and the atmosphere (Fba and Fab). Accurate measurements of OR have been challenging (Seibt et al. 2004); instead we approach the problem by measuring Cox and calculating OR from biomass reservoirs. Cox can range from -4 to +4 (CH4 to CO2) and is driven by photosynthesis, respiration, and decomposition. The net OR of the biosphere varies with ecosystem type, and this can affect the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean reservoirs (Randerson et al. 2006). This makes it essential to constrain ecosystem Cox and OR values. Although small variations in global ecosystem OR have the potential to cause shifts in atmospheric O2 concentrations, no whole ecosystem measurements of Cox yet exist. To constrain ORba and ORab, and improve our understanding of how decomposition affects Cox, we performed a litter bag experiment at the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) in Michigan at the end of the 2005 agricultural season. We placed 15 corn biomass litter bags in an agricultural field and collected 3 bags at 2, 4, 7, 26, and 29 weeks. These samples were analyzed for %C, %H, %N, and %O via elemental analysis, and these data were used to calculate Cox. Aboveground Cox was measured similarly. We anticipated that the Cox of the corn litter would become more reduced with decomposition, as the percentage of carbohydrates would decrease with time, while that of protein, lignin, and lipids would increase (Baldock et al. 2004). We report differences between the Cox of biomass fixation and biomass degradation from our experiments. Using simple assumptions about ecosystem nitrogen cycling, we convert Cox to OR and report the existence or absence of a

  4. The oxidation state of the surface of Venus. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Klingelhofer, G.; Brackett, R. A.; Izenberg, N.

    1994-01-01

    We present experimental results showing that basalt is oxidized in CO-CO2 gas mixtures having CO number densities close to those (approximately 2 times higher) at the surface of Venus. The results suggest that the red color observed by Pieters et al at the Venera 9 and 10 landing sites is due to subaerial oxidation of Fe(2+)-bearing basalt on the surface of Venus, and that hematite, instead of magnetite, is present on the surface of Venus. Well-characterized basalt powder was iosthermally heated in 1000 ppm CO-CO2 gas mixtures at atmospheric pressure for several days. The starting material and reacted samples were analyzed by Mossbauer spectroscopy to determine the amount of Fe(2+) and Fe(3+) in the samples. X-ray diffraction and optical microscopy were also used to characterize samples. The basalt oxidation occurs because the CO and CO2 do not equilibrate in the gas mixture at the low temperatures used. Thus, the basalt reacts with the more abundant CO2 and is oxidized. We propose that the red color of the surface of Venus is due to failure of CO and CO2 to equilibrate with one another in the near-surface atmosphere of Venus, leading to subaerial oxidation of erupted Fe(2+)-bearing basalts. Our interpretation is supported by our studies of magnetite oxidation, which show that synthetic magnetite powders are oxidized to hematite in CO-CO2 gas mixtures inside the magnetite stability field, by our studies of pyrite decomposition, and by independent work on CO-CO2 equilibration in furnace gases.

  5. Oxidation state of multivalent elements in high-level nuclear waste glass

    SciTech Connect

    Reynolds, J.G.

    2007-07-01

    Nuclear waste contains many different elements that have more than one oxidation state. When the nuclear waste is treated by vitrification, the behavior of the element in the melter and resulting glass product depends on the stable oxidation state. The stable oxidation state in any medium can be calculated from the standard potential in that medium. Consequently, the standard potential of multi-valent elements has been measured in many silicate-melts, including ones relevant to nuclear waste treatment. In this study, the relationship between the standard potential in molten nuclear waste glass and the standard potential in water will be quantified so that the standard potential of elements that have not been measured in glass can be estimated. The regression equation was found to have an R{sup 2} statistic of 0.96 or 0.83 depending on the number of electrons transferred in the reaction. The Nernst equation was then used to calculate the oxidation state of other relevant multi-valent elements in nuclear waste glass from these standard potentials and the measured ferrous to ferric iron ratio. The calculated oxidation states were consistent with all oxidation state measurements available. The calculated oxidation states were used to rationalize the behavior of many of the multi-valent elements. For instance, chromium increases glass crystallization because it is in the trivalent-state, iodine volatilises from the melter because it is in the volatile zero-valent state, and the leaching behavior of arsenic is driven by its oxidation state. Thus, these thermodynamic calculations explain the behavior of many trace elements during the vitrification process. (authors)

  6. Identification of an iridium-containing compound with a formal oxidation state of IX.

    PubMed

    Wang, Guanjun; Zhou, Mingfei; Goettel, James T; Schrobilgen, Gary J; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian

    2014-10-23

    One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists. The highest experimentally known formal oxidation state of any chemical element is at present VIII, although higher oxidation states have been postulated. Compounds with oxidation state VIII include several xenon compounds (for example XeO4 and XeO3F2) and the well-characterized species RuO4 and OsO4 (refs 2-4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices. The valence electron configuration of iridium in IrO4 is 5d(1), with a formal oxidation state of VIII. Removal of the remaining d electron from IrO4 would lead to the iridium tetroxide cation ([IrO4](+)), which was recently predicted to be stable and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of [IrO4](+) species, but these experimental observations have not been structurally confirmed. Here we report the formation of [IrO4](+) and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a Td-symmetrical structure and a d(0) electron configuration, is the most stable of all possible [IrO4](+) isomers. PMID:25341786

  7. Identification of an iridium-containing compound with a formal oxidation state of IX

    NASA Astrophysics Data System (ADS)

    Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary J.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian

    2014-10-01

    One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists. The highest experimentally known formal oxidation state of any chemical element is at present VIII, although higher oxidation states have been postulated. Compounds with oxidation state VIII include several xenon compounds (for example XeO4 and XeO3F2) and the well-characterized species RuO4 and OsO4 (refs 2, 3, 4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices. The valence electron configuration of iridium in IrO4 is 5d1, with a formal oxidation state of VIII. Removal of the remaining d electron from IrO4 would lead to the iridium tetroxide cation ([IrO4]+), which was recently predicted to be stable and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of [IrO4]+ species, but these experimental observations have not been structurally confirmed. Here we report the formation of [IrO4]+ and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a Td-symmetrical structure and a d0 electron configuration, is the most stable of all possible [IrO4]+ isomers.

  8. Towards a Predictive Thermodynamic Model of Oxidation States of Uranium Incorporated in Fe (hydr) oxides

    SciTech Connect

    Bagus, Paul S.

    2013-01-01

    -Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2

  9. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  10. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  11. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  12. Carotenoid Excited State Kinetics in Bacterial RCs with the Primary Electron Donor Oxidized

    NASA Astrophysics Data System (ADS)

    Lin, Su; Katilius, Evaldas; Woodbury, Neal W.

    Carotenoid singlet excited state kinetics in wild type reaction centers from Rhodobacter sphaeroides was investigated using ultrafast laser spectroscopy under conditions where the primary electron donor is either neutral or oxidized.

  13. Structural evolution and valence electron-state change during ultra thin silicon-oxide growth

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Abe, S.; Nakayama, H.; Nishino, T.; Iida, S.

    2000-06-01

    We have studied valence electron-state changes of Si during initial oxidation of Si(111) clean surface, HF-treated Si(001) and Si(111) surfaces by Auger valence electron spectroscopy (AVES). The results showed that the valence electron-state changes during initial oxidation were sensitively reflected in Si[2s,2p,V] (V=3s,3p) AVES spectra and that they depended on both initial surface treatment and surface orientation. The local valence electron-states, local density of states in other words, showed the characteristic-structure evolution depending on the initial surface treatment and surface orientation.

  14. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  15. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  16. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  17. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  18. Monomethylioarsenicals are substratres for human arsenic (+3 oxidation state) methyltransferase

    EPA Science Inventory

    Monomethylthioarsenicals are substrates for human arsenic (+3 oxida1tion state) methyltransferase Methylated thioarsenicals are structural analogs of methylated oxyarsenic in which one or more oxygen atom bound t...

  19. Water and the Oxidation State of Subduction Zone Magmas

    SciTech Connect

    Kelley, K.; Cottrell, E

    2009-01-01

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe{sup 3+}/{Sigma}Fe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H{sub 2}O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe{sup 3+}/{Sigma}Fe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H{sub 2}O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  20. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  1. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in whi...

  2. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Shen, Shijun; Jiang, Bin; Jiang, Zhongtao; Yang, Hong; Pan, Fusheng

    2016-05-01

    This paper studies the effect of the existing state of Y element on the high temperature oxidation resistance of magnesium alloys. Different levels of Al element were added into Mg-2.5Y alloy to obtain different existing state of Y. The oxidation rate of Mg-2.5Y-2.5Al alloy is the highest among Mg-2.5Y, Mg-2.5Y-2.5Al and Mg-2.5Y-4.2Al alloys at 500 °C. An effective and protective Y2O3/MgO composite oxide film was formed on the surface of Mg-2.5Y alloy after oxidized at 500 °C for 360 min. The results show that the dissolved Y element in the matrix was beneficial to improve the oxidation resistance of magnesium alloys. Once Y element transformed to the high temperature stable Al2Y compound, its ability in preventing oxidation would disappear. The formation of Al2Y compound severely deteriorated the oxidation resistance of Mg-2.5Y alloy. In addition, the dissolved Al can also cause the rise of oxidation resistance at a certain extent.

  3. Investigation of oxygen states and reactivities on a nanostructured cupric oxide surface

    NASA Astrophysics Data System (ADS)

    Svintsitskiy, D. A.; Stadnichenko, A. I.; Demidov, D. V.; Koscheev, S. V.; Boronin, A. I.

    2011-08-01

    Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu 2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10 -5 and was steadily reduced down to 5 × 10 -9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O 2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.

  4. Effect of environment on iodine oxidation state and reactivity with aluminum.

    PubMed

    Smith, Dylan K; McCollum, Jena; Pantoya, Michelle L

    2016-04-28

    Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments. Specifically, aluminum fuel and iodine oxide powder are combined using a carrier fluid to aid intermixing. The carrier fluid is shown to significantly affect the oxidation state of iodine oxide, thereby affecting the reactivity of the mixture. Four carrier fluids were investigated ranging in polarity and water miscibility in increasing order from hexane < acetone < isopropanol < water as well as untreated, dry-mixed reactants. Oxidation state and reactivity were examined with experimental techniques including X-ray photoelectric spectroscopy (XPS) and differential scanning calorimetry (DSC). Results are compared with thermal equilibrium simulations. Flame speeds increased with polarity of the fluid used to intermix the powder and ranged from 180 to 1202 m s(-1). The I2O5 processed in the polar fluids formed hydrated states of iodine oxide: HIO3 and HI3O8; and, the nonpolar and dry-mixed samples formed: I2O4 and I4O9. During combustion, the hydrated iodine oxides rapidly dehydrated from HIO3 to HI3O8 and from HI3O8 to I2O5. Both steps release 25% of their mass as vapor during combustion. Increased gas generation enhances convective energy transport and accounts for the increase in reactivity seen in the mixtures processed in polar fluids. These results explain the chemical mechanisms underlying the variable reactivity of I2O5 that are a function of the oxide's highly reactive nature with its surrounding environment. These results will significantly impact the selection of carrier fluid in the synthesis approach for iodine containing reactive mixtures. PMID:27052472

  5. Autodetachment spectroscopy of the aluminum oxide anion dipole bound state

    SciTech Connect

    Mascaritolo, Kyle J.; Gardner, Adrian M.; Heaven, Michael C.

    2015-09-21

    The {sup 1}Σ{sup +}←X{sup 1}Σ{sup +} ground state to dipole bound state (DBS) electronic transition of AlO{sup −} has been studied by means of autodetachment spectroscopy. Vibrational and rotational molecular constants for AlO{sup −} have been determined for both the ground state (υ″ = 0, 1) and the excited DBS (υ′ = 0, 1). These data provide an improved determination of the electron affinity for AlO (2.6110(7) eV) that is consistent with an earlier measurement. The electron binding energy of the DBS was found to be 52 ± 6 cm{sup −1}. Experimental results are compared with the predictions from high level ab initio calculations.

  6. Approaches to Determining the Oxidation State of Nitrogen and Carbon Atoms in Organic Compounds for High School Students

    ERIC Educational Resources Information Center

    Jurowski, Kamil; Krzeczkowska, Malgorzata Krystyna; Jurowska, Anna

    2015-01-01

    The concept of oxidation state (or oxidation number) and related issues have always been difficult for students. In addition, there are misunderstandings and obscurities, which can cause improper balancing of the chemical equations (mostly in organic reactions). In particular, these problems are related to determination of the oxidation state of…

  7. Topological and unconventional magnetic states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    In this talk I describe some recent work on unusual correlated phases that may be found in bulk transition metal oxides with strong spin-orbit coupling. I will focus on model Hamiltonian studies that are motivated by the pyrocholore iridates, though the correlated topological phases described may appear in a much broader class of materials. I will describe a variety of fractionalized topological phases protected by time-reversal and crystalline symmetries: The weak topological Mott insulator (WTMI), the TI* phase, and the topological crystalline Mott insulator (TCMI). If time permits, I will also discuss closely related heterostructures of pyrochlore iridates in a bilayer and trilayer film geometry. These quasi-two dimensional systems may exhibit a number of interesting topological and magnetic phases. This work is generously funded by the ARO, DARPA, and the NSF.

  8. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  9. Oxidation-resistive copper nanoparticles: photoreduction synthesis and their oxidation state measurements by XAFS and HRTEM

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Aoki, T.; Yonemura, M.; Miyagawa, M.; Okumura, K.

    2016-05-01

    We examined the synthesis of copper nanoparticles by photoreduction, and characterized them using optical spectroscopy, XAFS measurement, and electron microscopy. Ethanol solution of copper acetate with TiO2 nanoparticles was photoirradated. Optical absorption observation indicated that copper nanoparticles were formed in the solution. XAFS measurement indicated that the nanoparticles were metallic, not oxidized. Electron microscopy observation exhibited that the nanoparticles kept metallic even under exposure to air.

  10. Characterizing Oxidation State using Bader Analysis, Maximally Localized Wannier Functions and Atomic Orbitals Projection

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle; Kanai, Yosuke

    2013-03-01

    The concept of oxidation state of atoms in molecules and materials is widely used to predict and understand chemical and physical properties. This concept is perhaps driven more empirically than by any rigorous criteria differentiating one oxidation state from another. Within the oxidation state framework, an integer number of electrons is assigned to the nuclei within a system. In practice, a distribution of electron density makes it difficult to quantify such discrete assignments without some ambiguities. We explore three different charge analysis approaches in density functional theory calculations for addressing the oxidation state of important organometallic molecules [Ru(bpy)3]2+ and [Ru(bpy)3]3+, which are widely used for solar energy conversion applications. Bader charge analysis, Wannier function analysis, and atomic orbital projection are employed in this work. Given the highly-localized nature of the d-electrons of the ruthenium atom, the charge analysis methods are also compared with Hubbard-U correction. We also discuss how the solvation by water molecules influences the oxidation state characterization for these organometallic complexes.

  11. Theoretical study of the structures of flavin in different oxidation and protonation states

    SciTech Connect

    Zheng, Y.J.; Ornstein, R.L.

    1996-10-02

    Ab initio molecular orbital theory was used to investigate the structure of flavin in different oxidation and protonation states using lumiflavin as a model compound. According to our study. oxidized flavin is planar no matter what its protonation state or whether it participates in hydrogen bonding. The structures of flavin semiquinone radicals are planar or very close to planar, but the reduced flavin H{sub 3}Fl{sub red} (9) is bent with a ring puckering angle of 27.3{degree} along the N5 and N10 axis. The calculations indicate that N1 is the site of protonation for oxidized flavin, which is in agreement with several crystallographic studies. The calculated spin density distribution for flavin semiquinone radicals is also consistent with experimental results. Electrostatic potential derived charges at the RHF/6-31G{sup *} level of theory are also provided for both oxidized and reduced flavins. 34 refs., 4 figs., 5 tabs.

  12. Determining the Oxidation States of Manganese in NT2 Cells and Cultured Astrocytes

    SciTech Connect

    Gunter,K.; Aschner, M.; Miller, L.; Eliseev, R.; Salter, J.; Andersen, K.; Gunter, T.

    2006-01-01

    Excessive brain manganese (Mn) can produce a syndrome called 'manganism', which correlates with loss of striatal dopamine and cell death in the striatum and globus pallidus. The prevalent hypothesis for the cause of this syndrome has been oxidation of cell components by the strong oxidizing agent, Mn{sup 3+}, either formed by oxidation of intracellular Mn{sup 2+} or transported into the cell as Mn{sup 3+}. We have recently used X-ray absorption near edge structure spectroscopy (XANES) to determine the oxidation states of manganese complexes in brain and liver mitochondria and in nerve growth factor (NGF)-induced and non-induced PC12 cells. No evidence was found for stabilization or accumulation of Mn{sup 3+} complexes because of oxidation of Mn{sup 2+} by reactive oxygen species in these tissues. Here we extend these studies of manganese oxidation state to cells of brain origin, human neuroteratocarcinoma (NT2) cells and primary cultures of rat astrocytes. Again we find no evidence for stabilization or accumulation of any Mn{sup 3+} complex derived from oxidation of Mn{sup 2+} under a range of conditions.

  13. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  14. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  15. Evidence for oxidation-state-dependent conformational changes in human ferredoxin from multinuclear, multidimensional NMR spectroscopy.

    PubMed

    Xia, B; Volkman, B F; Markley, J L

    1998-03-17

    Human ferredoxin belongs to the vertebrate ferredoxin family which includes bovine adrenodoxin. It is a small (13.8 kDa) acidic protein with a [2Fe-2S] cluster. It functions as an electron shuttle in the cholesterol side-chain cleavage reaction which is the first step of steroid hormone biosynthesis. The protein studied here was produced in Escherichia coli and doubly labeled with 13C and 15N. The diamagnetic 15N, 13C', 13C alpha, 13C beta, 1H alpha, and 1HN resonances from about 70% of the 124 amino acid residues for oxidized human ferredoxin and 80% of those for the reduced protein have been assigned primarily on the basis of results from three-dimensional, triple-resonance experiments. Secondary structure features for human ferredoxin in its oxidized and reduced states have been identified from a combination of chemical shift index and NOE data. Comparison of NMR results from the protein in its oxidized and reduced states indicates that structural changes accompany the change in the oxidation state of the [2Fe-2S] cluster. Major differences are localized at two regions: residues 29-31 and residues 109-124; the latter stretch forms the C-terminal region of the protein. The possible functional significance of these oxidation-state-dependent structural changes is discussed. PMID:9521718

  16. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory.

    PubMed

    McGregor, Donna; Burton-Pye, Benjamin P; Mbomekalle, Israel M; Aparicio, Pablo A; Romo, Susanna; López, Xavier; Poblet, Josep M; Francesconi, Lynn C

    2012-08-20

    The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to

  17. Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gallagher, M. E.; Randerson, J. T.; Deco, R. M.; Chadwick, O. A.

    2008-09-01

    Degree of oxidation of organic carbon (Cox) is a fundamental property of the carbon cycle, reflecting the synthesis and decomposition of natural organic matter. Cox is also related to ecosystem oxidative ratio (OR), the molar ratio of O2 to CO2 fluxes associated with net ecosystem exchange (NEE). Here we compare two methods for measuring Cox and OR: (1) %C, %H, %N, and %O elemental analysis, and (2) heat of combustion (ΔHc) measured by means of bomb calorimetry coupled with %C elemental analysis (hereafter referred to as calorimetry). Compared with %C, %N, %H, and %O elemental analysis, calorimetry generates Cox and OR data more rapidly and cheaply. However, calorimetric measurements yield less accurate Cox and OR data. We additionally report Cox and OR data for a pair of biomass standards and a suite of biomass samples. The OR values we measured in these samples were less variable than OR data reported in the literature (generated by simultaneous measurement of ecosystem O2 and CO2 gas mixing ratios). Our biomass OR values had a mean of 1.03 and range of 0.99-1.06. These estimates are lower than the OR value of 1.10 that is often used to partition uptake of fossil fuel CO2 between the ocean and the terrestrial biosphere.

  18. DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.

    PubMed

    Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I

    2013-01-01

    Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2). PMID:23254676

  19. Photoemission study of praseodymia in its highest oxidation state: The necessity of in situ plasma treatment

    SciTech Connect

    Schaefer, A.; Zielasek, V.; Baeumer, M.; Gevers, S.; Wollschlaeger, J.; Schroeder, T.; Falta, J.

    2011-02-07

    A cold radio frequency oxygen plasma treatment is demonstrated as a successful route to prepare clean, well-ordered, and stoichiometric PrO{sub 2} layers on silicon. High structural quality of these layers is shown by x-ray diffraction. So far unobserved spectral characteristics in Pr 3d x-ray photoelectron (XP) spectra of PrO{sub 2} are presented as a fingerprint for praseodymia in its highest oxidized state. They provide insight in the electronic ground state and the special role of praseodymia among the rare earth oxides. They also reveal that former XP studies suffered from a significant reduction at the surface.

  20. Density Functional Theory Studies of the Electronic Structure of Solid State Actinide Oxides

    SciTech Connect

    Wen, Xiaodong; Martin, Richard L.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2013-02-13

    The actinide oxides have been extensively studied in the context of the nuclear fuel cycle. They are also of fundamental interest as members of a class of strongly correlated materials, the Mott insulators. Their complex physical and chemical properties make them challenging systems to characterize, both experimentally and theoretically. Chiefly, this is because actinide oxides can exhibit both electronic localization and electronic delocalization and have partially occupied f orbitals, which can lead to multiple possibilities for ground states. Of particular concern for theoretical work is that the large number of competing states display strong correlations which are dffcult to capture with computationally tractable methods.

  1. How far can we go? Quantum-chemical investigations of oxidation state +IX.

    PubMed

    Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian

    2010-03-15

    The highest known oxidation state of any element is +VIII. After the recent discovery of Ir(VIII)O(4) under cryogenic conditions, we have investigated the stability of cationic species [MO(4)](+) (M=Rh,Ir,Mt). Such compounds would formally represent the new oxidation state +IX, which is experimentally unknown so far for the whole periodic table. [IrO(4)](+) is predicted to be the most promising candidate. The calculated spin-orbit (SO) coupling shows only minor effects on the stability of the iridium species, whereas SO-coupling increases enormously for the corresponding Eka-Iridium (Meitnerium) complexes and destabilizes these. PMID:20127784

  2. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.

    PubMed

    Iyer, Smita S; Ramirez, Allan M; Ritzenthaler, Jeffrey D; Torres-Gonzalez, Edilson; Roser-Page, Susanne; Mora, Ana L; Brigham, Kenneth L; Jones, Dean P; Roman, Jesse; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis. PMID:18931052

  3. Corannulene reduction. Spectroscopic detection of all anionic oxidation states

    SciTech Connect

    Baumgarten, M.; Gherghel, L.; Wagner, M.; Weitz, A.; Rabinovitz, M. |; Cheng, P.C.; Scott, L.T.

    1995-06-14

    The reduction of corannulene (1) has been followed by parallel detection of optical absorption, electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR) spectroscopies. The major findings are the existence of a diamagnetic dianion that can be observed in NMR and negligible counterion influences in the mono- and dianion. The diamagnetic state of the dianion is also supported by vanishing EPR intensity and semiempirical calculations and exhibits one indistinguishable proton NMR resonance at -5.6 ppm for potassium and lithium as counterions, respectively. The NMR signal is strongly temperature dependent and can only be obtained at low temperature (T < 230 K) where the line width decreases with temperature. Further reduction to the trianion and tetraanion succeeds with Li as the reducing metal, but not with K even at ambient temperatures. The EPR spectra of the trianion show a pronounced temperature dependence with at least two Li cations being strongly coupled. 18 refs., 3 figs., 3 tabs.

  4. Light-induced metastable states in ferroelectric oxides

    NASA Astrophysics Data System (ADS)

    Liu, G. K.; Vikhnin, V. S.; Kapphan, S. E.

    2007-07-01

    New Raman scattering lines (at 463 cm-1 and at 156 cm-1) induced by strong enough optical pumping in nominally pure KTaO3 crystals are manifested. The model of such effect is proposed. This model is based on the light-induced formation of metastable polar clusters constructed from bi-polaronic excitons - Charge Transfer Vibronic Excitons (CTVEs) with their high degree alignment. The CTVEs are caused by photo-carriers with high local concentration which are trapped to local potential wells related with long-range defect fields. CTVE formation are realized in these potential wells due to significant easing of charge transfer fluctuations induced by photo-carrier screening effects. This model is effective also for explanation of giant dielectric constant inducing by strong illumination which was detected recently in KTaO3 and SrTiO3 by Japanese investigators [M. Takesada, T. Yagi, M. Itoh, S. Koshihara, J. Phys. Soc. Jpn. 72 (2003) 37; T. Hasegawa, S. Mouri, Y. Yamada, K. Tanaka, J. Phys. Soc. Jpn. 72 (2003) 41; I. Katayama, Y. Ichikawa, K. Tanaka, Phys. Rev. B 67 (2003) 100102(R)]. Another aspect of the present study was specific recombination luminescence of CTVEs which was investigated here with respect to the influence of additional IR pumping. The present investigation has led to experimental evidence of new, mainly non-linear CTVE with good defined metastable behavior. Such an essentially anharmonic CTVE with respect to charge transfer and lattice displacements was predicted recently in our work [V.S. Vikhnin, Solid State Commun. 127 (2003) 283]. Here, we present experimental evidence of the existence of a new type of exciton state.

  5. Sulfur-Bridged Terthiophene Dimers: How Sulfur Oxidation State Controls Interchromophore Electronic Coupling.

    PubMed

    Cruz, Chad D; Christensen, Peter R; Chronister, Eric L; Casanova, David; Wolf, Michael O; Bardeen, Christopher J

    2015-10-01

    Symmetric dimers have the potential to optimize energy transfer and charge separation in optoelectronic devices. In this paper, a combination of optical spectroscopy (steady-state and time-resolved) and electronic structure theory is used to analyze the photophysics of sulfur-bridged terthiophene dimers. This class of dimers has the unique feature that the interchromophore (intradimer) electronic coupling can be modified by varying the oxidation state of the bridging sulfur from sulfide (S), to sulfoxide (SO), to sulfone (SO2). Photoexcitation leads to the formation of a delocalized charge resonance state (S1) that relaxes quickly (<10 ps) to a charge-transfer state (S1*). The amount of charge-transfer character in S1* can be enhanced by increasing the oxidation state of the bridging sulfur group as well as the solvent polarity. The S1* state has a decreased intersystem crossing rate when compared to monomeric terthiophene, leading to an enhanced photoluminescence quantum yield. Computational results indicate that electrostatic screening by the bridging sulfur electrons is the key parameter that controls the amount of charge-transfer character. Control of the sulfur bridge oxidation state provides the ability to tune interchromophore interactions in covalent assemblies without altering the molecular geometry or solvent polarity. This capability provides a new strategy for the design of functional supermolecules with applications in organic electronics. PMID:26331195

  6. Effect of oxidation state on Bi mineral speciation in oxidized and reduced granitoids from the Uetsu region, NE Japan

    NASA Astrophysics Data System (ADS)

    Izumino, Yuya; Maruoka, Teruyuki; Nakashima, Kazuo

    2016-06-01

    The relationship between bismuth (Bi) mineral speciation and redox state in three types of granitoids from the Uetsu region, northeast Japan is investigated. Electron microprobe analysis of Bi minerals, sphalerite, Mg-Fe-bearing carbonate minerals, and muscovite, as well as sulfur isotope analysis of sulfide minerals and microthermometric study of fluid inclusions reveal that Bi mineral speciation varies according to the redox state of the granitoids. For example, native bismuth and bismuthinite are abundant and Bi sulfosalts are rare in the lowest fS2 and fO2 mineralized zones of the reduced Iwafune granite (S-type, ilmenite-series) while Bi sulfosalts (Bi3+) are abundant and trace amounts of native bismuth (Bi0) and bismuthinite are found in the highest fS2 and fO2 mineralized zones of the oxidized Wasada granodiorite (I-type, magnetite-series). Bismuthinite is a major Bi mineral, and native bismuth and Bi sulfosalts occur in only minor amounts in the mineralized zones of the Nishitagawa granodiorite (I-type, ilmenite-series), which has intermediate fS2 and fO2 to that of the Iwafune and Wasada samples. Our study indicates that Bi mineral speciation related to granitic intrusive activity is controlled by the redox state of the magmatism, such that native bismuth is typical of reducing conditions, whereas Bi sulfosalts are typical of oxidizing conditions.

  7. Effect of oxidation state on Bi mineral speciation in oxidized and reduced granitoids from the Uetsu region, NE Japan

    NASA Astrophysics Data System (ADS)

    Izumino, Yuya; Maruoka, Teruyuki; Nakashima, Kazuo

    2015-12-01

    The relationship between bismuth (Bi) mineral speciation and redox state in three types of granitoids from the Uetsu region, northeast Japan is investigated. Electron microprobe analysis of Bi minerals, sphalerite, Mg-Fe-bearing carbonate minerals, and muscovite, as well as sulfur isotope analysis of sulfide minerals and microthermometric study of fluid inclusions reveal that Bi mineral speciation varies according to the redox state of the granitoids. For example, native bismuth and bismuthinite are abundant and Bi sulfosalts are rare in the lowest fS2 and fO2 mineralized zones of the reduced Iwafune granite (S-type, ilmenite-series) while Bi sulfosalts (Bi3+) are abundant and trace amounts of native bismuth (Bi0) and bismuthinite are found in the highest fS2 and fO2 mineralized zones of the oxidized Wasada granodiorite (I-type, magnetite-series). Bismuthinite is a major Bi mineral, and native bismuth and Bi sulfosalts occur in only minor amounts in the mineralized zones of the Nishitagawa granodiorite (I-type, ilmenite-series), which has intermediate fS2 and fO2 to that of the Iwafune and Wasada samples. Our study indicates that Bi mineral speciation related to granitic intrusive activity is controlled by the redox state of the magmatism, such that native bismuth is typical of reducing conditions, whereas Bi sulfosalts are typical of oxidizing conditions.

  8. About the strain state of different metal oxide layers epitaxially grown on Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Zaumseil, P.; Schroeder, T.

    2011-02-01

    The strain state of metal oxides Pr2O3, Y2O3 and Sc2O3 used as buffer material in different heteroepitaxially grown semiconductor-oxide-Si(1 1 1) layer stacks was studied by x-ray diffraction techniques at room temperature (RT) and near the growth temperature of 625 °C. A broad spectrum of different strain states was found depending on preparation conditions, layer combination and layer thickness. Pr2O3 behaves differently from the other two investigated oxides as it grows in a hexagonal phase on Si(1 1 1) and must be transformed into the stable cubic phase by annealing processes. This transformation is accompanied by the creation of an amorphous silicate interface layer that leads to a decoupling of substrate and oxide lattices and finally to a partial relaxation of the cub-Pr2O3 layer only. High-temperature measurements demonstrate that there exists a measurable difference between the strain state at RT, where x-ray measurements are typically performed, and at growth temperature. The coefficient of thermal expansion of different metal oxides was measured in thin film structures for the first time. These coefficients are significantly higher compared with that of Si, which leads to an additional tensile strain component when the samples are cooled down to RT.

  9. In-situ determination of the oxidation state of iron in Fe-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.

    2005-12-01

    Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched

  10. Theory of the electronic and structural properties of solid state oxides

    SciTech Connect

    Chelikowsky, J.R.

    1990-01-01

    Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)

  11. The Silver Complexes of Porphyrins, Corroles, and Carbaporphyrins: Silver in the Oxidation States II and III

    ERIC Educational Resources Information Center

    Bruckner, Christian

    2004-01-01

    Studies in relation to the silver complexes of porphyrins, corroles and carbaporphyrins are presented especially with relation to silver in the oxidation states II and III. It is seen that the Ag(sub III) complex was electrochemically readily and reversibly reduced to the corresponding Ag(sub II) complex, thus indicating that the complex could be…

  12. Compositional and Oxidation State Zoning in Martian Pyroxene: Paradox or Process Indicator

    NASA Technical Reports Server (NTRS)

    Delaney, Jeremy S.; Dyar, M. D.

    2002-01-01

    Coordinated zoning studies of major, minor, trace elements and oxidation states in Martian minerals elucidate the magmatic evolution of QUE94201 and suggest an important role for olivine and volatile fluxing in a complex magmatic history. Additional information is contained in the original extended abstract.

  13. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.

    PubMed

    Lehninger, A L; Vercesi, A; Bababunmi, E A

    1978-04-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca(2+) and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca(2+) is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as beta-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca(2+). Successive cycles of Ca(2+) release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca(2+)-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca(2+), mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. PMID:25436

  14. Teaching the Properties of Chromium's Oxidation States with a Case Study Method

    ERIC Educational Resources Information Center

    Ozdilek, Zehra

    2015-01-01

    The purpose of this study was to investigate how a mixed-method case study affects pre-service science teachers' awareness of hexavalent chromium pollution and content knowledge about the properties of chromium's different oxidation states. The study was conducted in Turkey with 55 sophomores during the fall semester of 2013-2014. The…

  15. Oxidation States of GRIM Glasses in EET79001 Based on Vanadium Valence

    NASA Astrophysics Data System (ADS)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.

    2010-03-01

    Mean vanadium valences determined by microXANES for gas-rich impact-melt (GRIM) glasses in EET79001 ranged from 3.0 to 3.6. Mean fO2 ranged from IW-1.2 to IW+1.4. Variable oxidation state is consistent with impact reduction of regolith precursors.

  16. ENVIRONMENTAL VARIABLES CONTROLLING NITRIC OXIDE EMISSIONS FROM AGRICULTURAL SOILS IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Fluxes of nitric oxide (NO) were measured during the summer of 1994 (12 July to 11 August) in the Upper Coastal Plain of North Carolina in a continuing effort to characterize NO emissions from intensively managed agricultural soils in the southeastern United States. Previous work...

  17. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution.

    PubMed

    Lee, M H; Kim, J Y; Kim, W H; Jung, E C; Jee, K Y

    2008-12-01

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO(3) and HClO(4). The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III) approximately Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9M HCl medium was applied to IAEA reference soils where the activity concentrations of (239,240)Pu and (238)Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA. PMID:18674920

  18. Theoretical comparison of advanced methods for calculating nitrous oxide fluxes using non-steady state chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...

  19. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    PubMed Central

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  20. Using carbon oxidation state and ecosystem oxidative ratio to understand terrestrial ecosystem response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Masiello, C. A.; Gallagher, M. E.

    2015-12-01

    Here we show that an easily-measured biogeochemical tracer, carbon oxidation state (Cox) can be used to understand ecosystem response to elevated atmospheric CO2 concentrations. We briefly review the use of Cox in understanding C sink estimates, and its role in understanding the coupled nature of carbon and oxygen cycles, which derives from its relationship with ecosystem oxidative ratio (OR). The Cox of a carbon pool provides an integrated measure of all processes that create and destroy organic matter (e.g. photosynthesis, respiration, fire) and therefore, can be used to estimate the oxidative ratio (O2/CO2) of biosphere-atmosphere exchange. Our preliminary data suggest that the OR of temperate hardwood forest and grassland ecosystems are influenced by atmospheric CO2 concentration. The variation in ecosystem Cox with atmospheric CO2 concentration suggest that OR is not a conservative property of terrestrial ecosystems on annual or decadal timescales. In the grassland ecosystem, the Cox of plant biomass increased by as much as 50% across a CO2 concentration gradient of 190 ppm, but the response was highly dependent upon soil properties. In the temperate forest, the Cox of the soil C pool increased by 40% after 9 seasons of CO2 enrichment (by 175 ppm). We will discuss our interpretation of Cox as a proxy and its potential use in studies of coupled O2 and CO2 cycling.

  1. Aqueous secondary organic aerosol (SOA) production from the oxidation of phenols by triplet excited state organics

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; Zhang, Q.; Anastasio, C.

    2011-12-01

    Recent literature has shown that atmospheric condensed-phase chemistry can play a significant role in the evolution of organic aerosols, including the formation of secondary organic aerosol (SOA). SOA formation from the oxidation of volatile organic compounds (VOCs) in the aqueous phase has largely focused on oxidations involving the hydroxyl radical and other oxidants, such as photochemically created triplet excited states, have not been fully investigated. Phenolic compounds are one of the primary carbon emission classes from biomass and wood combustion and have significant water solubility. Once in the aqueous phase, phenolic compounds can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted in large quantities from wood combustion. The oxidation of phenolic species in the condensed phase by triplet excited states can result in the production of SOA. A main goal of this study was to investigate bulk solution reaction kinetics under atmospherically relevant conditions in order to ascertain how these reactions can impact aqueous-phase SOA production. In our experiments, we studied the reactions of five phenols (phenol, guaiacol, syringol, catechol, and resorcinol) with the triplet state of 3,4-dimethoxybenzaldehyde (34-DMB) during simulated solar radiation. We have characterized the impacts of pH, ionic strength and reactant concentrations on the reaction behavior of this system. In addition, we analyzed the SOA formed using high-resolution aerosol mass spectrometry, ion chromatography, and liquid chromatography-mass spectrometry to infer the reaction mechanisms. Our evidence suggests that under atmospherically relevant conditions, triplet excited states can be the dominant oxidant of phenolics and contribute significantly to the total SOA budget.

  2. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    SciTech Connect

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois; Ams, David; Richmann, M. K.; Khaing, H.; Swanson, J. S.

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  3. Oxidation state of vanadium in glass and olivine from terrestrial and Martian basalts: Implications for oxygen fugacity estimates

    SciTech Connect

    Karner, J.M.; Sutton, S.R.; Papike, J.J.; Shearer, C.K.; Newville, M.

    2005-04-22

    Several studies have demonstrated the usefulness of synchrotron micro x-ray absorption near-edge structure ({mu}-XANES or SmX) spectroscopy in determining the oxidation state of elements in planetary materials. Delaney et al. used SmX to investigate the oxidation states of Fe, Cr, and V in extraterrestrial samples, and they later determined the oxidation state of V in experimental glasses as a function of oxygen fugacity. More recently, Sutton et al. studied the oxidation state of V in meteoritic fassaite and also in synthetic pyroxene. This report discusses our first results using SmX spectroscopy to determine the oxidation state of V in olivine and glass from a terrestrial ocean floor (OF) basalt and a martian basaltic shergottite meteorite, Dar Al Gani 476. The goal of this and future studies is to use V (and Cr, Fe) valence states to determine the oxygen fugacity of basalts from different planetary bodies.

  4. Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S(-2) state.

    PubMed

    Schansker, Gert; Goussias, Charilaos; Petrouleas, Vasili; Rutherford, A William

    2002-03-01

    The manganese cluster of the oxygen-evolving enzyme of photosystem II is chemically reduced upon interaction with nitric oxide at -30 degrees C. The state formed gives rise to an S = 1/2 multiline EPR signal [Goussias, Ch., Ioannidis, N., and Petrouleas, V. (1997) Biochemistry 36, 9261] that is attributed to a Mn(II)- Mn(III) dimer [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581]. In this work, we sought to establish whether the state could be assigned to a specific, reduced S state by using flash oxymetry, chlorophyll a fluorescence, and electron paramagnetic resonance spectroscopy. With the Joliot-type O(2) electrode, the first maximum of oxygen evolution was observed on the sixth or seventh flash. Three saturating pre-flashes were required to convert the flash pattern characteristic of NO-reduced samples to that of the untreated control (i.e., O(2) evolution maximum on the third flash). Measurements of the S state-dependent level of chlorophyll fluorescence in NO-treated PSII showed a three-flash downshift compared to untreated controls. In the EPR study, the maximum S(2) multi-line EPR signal was observed after the fourth flash. The results from all three methods are consistent with the Mn cluster being in a redox state corresponding to an S(-2) state in a majority of centers after treatment with NO. We were unable to generate the Mn(II)-Mn(III) multi-line signal using hydrazine as a reductant; it appears that the valence distribution and possibly the structure of the Mn cluster in the S(-2) state are dependent on the nature of the reductant that is used. PMID:11863444

  5. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    SciTech Connect

    Liang, W.

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S{sub 2} state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S{sub 2} state with the g{approx}4 electron paramagnetic resonance (EPR) signal (S{sub 2}-g4 state) was compared with that in the S{sub 2} state with multiline signal (S{sub 2}-MLS state) and the S{sub 1} state. The S{sub 2}-g4 state has a higher XAS inflection point energy than that of the S{sub 1} state, indicating the oxidation of Mn in the advance from the S{sub 1} to the S{sub 2}-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S{sub 2}-g4 state is different from that in the S{sub 2}-MLS or the S{sub 1} state. In the S{sub 2}-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 {angstrom} and 2.85 {angstrom}. Very little distance disorder exists in the second shell of the S{sub 1} or S{sub 2}-MLS states. The third shell of the S{sub 2}-g4 state at about 3.3 {angstrom} also contains increased heterogeneity relative to that of the S{sub 2}-MLS or the S{sub 1} state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct {open_quotes}pure{close_quotes} S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S{sub 1} {yields} S{sub 2} transition.

  6. Electronic Structure and Oxidation State Changes in the Mn4Ca Cluster of Photosystem II

    SciTech Connect

    Yano, Junko; Pushkar, Yulia; Messinger, Johannes; Bergmann, Uwe; Glatzel, Pieter; Yachandra, Vittal K

    2007-08-03

    Oxygen-evolving complex (Mn4Ca cluster) of Photosystem II cycles through five intermediate states (Si-states, i =0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn4(III2,IV2) and Mn4(III,IV3) for S1 and S2 states, while it is still controversial for the S0 and S3 states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn4Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mncomplexes. The spectral changes in the Mn 1s2p3/2 RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S0 to S1, and S1 to S2 transitions is twice as large as that during the S2 to S3 transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  7. Electronic Structure and Oxidation State Changes in the Mn (4) Ca Cluster of Photosystem II

    SciTech Connect

    Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.; /SLAC

    2012-08-17

    Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i = 0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  8. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  9. Theory of the electronic and structural properties of solid state oxides. Annual technical report 1993

    SciTech Connect

    Chelikowsky, J.R.

    1993-06-01

    Emphasis has been on the electronic materials: silica, titania, and ruthenia. Fundamental interest centered on nature of microstructure of these solids in the amorphous state, or mixed oxide state. New theoretical techniques have been implemented to examine such issues, based on ab initio pseudopotential methods and interatomic potentials. Some areas examined under this project are: (1) Nature of the amorphization transformation of quartz under pressure. Specific focus is on the microscopic nature of the amorphous material and the driving forces for amorphization. (2) Equation of states of crystalline silica polymorphs. (3) Elastic anomalies in silica. In particular, the existence of a ``negative`` Poisson ratio in high temperature, low density forms of crystalline silica. (4) Optical and structural properties of titania and mixed oxides such as Ru{sub x}Ti{sub 1-x}O{sub 2}.

  10. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their

  11. Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires

    NASA Astrophysics Data System (ADS)

    Kar, Ayan; Stroscio, Michael A.; Dutta, Mitra; Kumari, Jyoti; Meyyappan, M.

    2009-03-01

    Ultraviolet (UV) and orange emissions have been observed from vapor-liquid-solid grown SnO2 nanowires. From the luminescence, the donor and acceptor binding energies have been estimated. The dependence of the orange luminescence on the diameters of tin oxide nanowires has been observed and the wavelength of the UV luminescence is found to depend on the laser power. Both the shift in the UV and the intensity of the orange luminescence is found to be dependent on the surface states of the tin oxide nanowires.

  12. Electronic structures of cyclometalated palladium complexes in the higher oxidation states.

    PubMed

    Nguyen, Bao N; Adrio, Luis A; Albrecht, Tim; White, Andrew J P; Newton, Mark A; Nachtegaal, Maarten; Figueroa, Santiago J A; Hii, King Kuok Mimi

    2015-10-01

    The electronic and redox properties of a series of cyclometalated Pd complexes with oxidation states of +2, +3 and +4 were examined using a range of currently available spectroscopic and electrochemical techniques. Changes in metal-ligand bond lengths were established by X-ray crystallography and correctly predicted by DFT calculations, from which the frontier orbitals and partial atomic charges can be obtained. X-ray absorption spectroscopy (XAS) revealed interesting XANES features that suggest a synergistic relationship between metal-ligand interactions. The electrochemical study of the Pd(ii) dimer was found to contain two sequential oxidative potentials indicative of a weak metal-metal interaction. PMID:26332167

  13. Adsorption properties versus oxidation states of rutile TiO{sub 2}(110)

    SciTech Connect

    Martinez, Umberto; Hammer, Bjoerk

    2011-05-21

    Using density functional theory we have studied the adsorption properties of different atoms and molecules deposited on a stoichiometric, reduced, and oxidized rutile TiO{sub 2}(110) surface. Depending on the oxidation state of the surface, electrons can flow from or to the substrate and, therefore, negatively or positively charged species are expected. In particular, we have found that a charge transfer process from or to the surface always occurs for highly electronegative or highly electropositive species, respectively. For atoms or molecules with intermediate electron affinity, the direction of the charge flow depends on the oxidation state of the rutile surface and on the adsorption site. Generally, the charging effect leads to more stable complexes. However, the increase in the binding energy of the adsorbates is highly dependent on the electronic states of the surface prior to the adsorption event. In this work we have analyzed in details these mechanisms and we have also established a direct correlation between the enhanced binding energy of the adsorbates and the induced gap states.

  14. Morphology dependence of interfacial oxidation states of gallium arsenide under near ambient conditions

    SciTech Connect

    Zhang, Xueqiang; Lamere, Edward; Ptasinska, Sylwia; Liu, Xinyu; Furdyna, Jacek K.

    2014-05-05

    The manipulation of semiconductor surfaces by tuning their electronic properties and surface chemistry is an essential ingredient for key applications in areas such as electronics, sensors, and photovoltaic devices. Here, in-situ surface reactions on gallium arsenide (GaAs) are monitored for two morphologies: a simple planar crystalline surface with (100) orientation and an ensemble of GaAs nanowires, both exposed to oxygen environment. A variety of oxide surface species, with a significant enhancement in oxidation states in the case of nanowires, are detected via near ambient pressure X-ray photoelectron spectroscopy. This enhancement in oxidation of GaAs nanowires is due to their higher surface area and the existence of more active sites for O{sub 2} dissociation.

  15. Interplay between strain, defect charge state, and functionality in complex oxides

    NASA Astrophysics Data System (ADS)

    Aschauer, Ulrich; Spaldin, Nicola A.

    2016-07-01

    We use first-principles calculations to investigate the interplay between strain and the charge state of point defect impurities in complex oxides. Our work is motivated by recent interest in using defects as active elements to provide novel functionality in coherent epitaxial films. Using oxygen vacancies as model point defects, and CaMnO3 and MnO as model materials, we calculate the changes in internal strain caused by changing the charge state of the vacancies, and conversely the effect of strain on charge-state stability. Our results show that the charge state is a degree of freedom that can be used to control the interaction of defects with strain and hence the concentration and location of defects in epitaxial films. We propose the use of field-effect gating to reversibly change the charge state of defects and hence the internal strain and corresponding strain-induced functionalities.

  16. CO Oxidation Facilitated by Robust Surface States on Au-Covered Topological Insulators

    SciTech Connect

    Chen, Hua; Zhu, Wenguang; Xiao, Di; Zhang, Zhenyu

    2011-01-01

    Surface states the electronic states emerging as a solid material terminates at a surface are usually vulnerable to contaminations and defects. The robust topological surface state(s) (TSS) on the three-dimensional topological insulators provide a perfect platform for exploiting surface states in less stringent environments. Employing first-principles density functional theory calculations, we demonstrate that the TSS can play a vital role in facilitating surface reactions by serving as an effective electron bath. We use CO oxidation on gold-covered Bi2Se3 as a prototype example, and show that the robust TSS can significantly enhance the adsorption energy of both CO and O2 molecules, by promoting different directions of electron transfer. The concept of TSS as an electron bath may lead to new design principles beyond the conventional d-band theory of heterogeneous catalysis.

  17. Oxide-free InAs(111)A interface in metal-oxide-semiconductor structure with very low density of states prepared by anodic oxidation

    SciTech Connect

    Valisheva, N. A. Aksenov, M. S.; Golyashov, V. A.; Levtsova, T. A.; Kovchavtsev, A. P.; Gutakovskii, A. K.; Tereshchenko, O. E.; Khandarkhaeva, S. E.; Kalinkin, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I.

    2014-10-20

    In this letter, we present structural, compositional, and electrical characteristics of anodic oxide layer-based metal-oxide-semiconductor (MOS) capacitors on n-type InAs(111)A, along with the effect of a thin fluorinated interfacial passivation layer. Electrochemical oxidation in acid electrolyte with addition of fluorine (NH{sub 4}F) led to the formation of oxygen free well-ordered wide gap fluorinated interfacial layer at InAs(111)A with the fixed charge (Q{sub fix}) and density of interface states (D{sub it}) in the range of (4–6) × 10{sup 10 }cm{sup −2} and (2–12) × 10{sup 10 }eV{sup −1 }cm{sup −2}, respectively. We found that MOS capacitors showed excellent capacitance-voltage characteristics with very small frequency dispersion (<1% and <15 mV). Fluorinated interfacial layer consists of crystalline isostructural compound with the InAs substrate, which remains intact with the atomic smoothness and sharpness that explain unpinned behavior of the Fermi level.

  18. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  19. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  20. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  1. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    DOE PAGESBeta

    Bondi, Robert J.; Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory (DFT) calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n=0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5) and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregate at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 are characterized by structural contraction and electron density localization, while VO2+ promote structural expansion andmore » are depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extract electron density from metallic Ta indicating VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.« less

  2. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    SciTech Connect

    Bondi, Robert J.; Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory (DFT) calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n=0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5) and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregate at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 are characterized by structural contraction and electron density localization, while VO2+ promote structural expansion and are depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extract electron density from metallic Ta indicating VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.

  3. XANES studies of oxidation states of sulfur in aquatic and soil humic substances

    SciTech Connect

    Xia, K.; Weesner, F.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Skyllberg, U.L.

    1998-09-01

    Sulfur K-edge x-ray absorption near-edge structure spectroscopy (XANES) was used to identify multiple organic S oxidation states in aquatic and soil humic substances. The XANES results suggest that S in humic substances exists in four major oxidation groups similar to sulfate ester, sulfonate, sulfoxide, and thiol-sulfide. Thiol S cannot be separated from sulfide X and must be considered as a single thiol-sulfide peak. The second derivative spectra suggest the existence of thiophene and sulfone S. The relative quantities of each major S form in humic samples were estimated based on the integrated cross section of each s {r_arrow} p transition peak corresponding to different S oxidation states in the S K-edge XANES spectra. The XANES results of the four humic samples used in this study appear to reflect the environmental settings where the humic substances originally formed. The percentage of the most reduced organic S (thiol-sulfide and possibly thiophene) in humic substances follows the sequence:aquatic samples > organic soil sample > mineral soil sample. The percentage of most oxidized S (sulfate group) was the greatest in the humic substance from a mineral soil and the lowest in the aquatic humic substances.

  4. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    SciTech Connect

    Bondi, Robert J. Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (V{sub O}{sup n}; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta{sub 2}O{sub 5}), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. V{sub O}{sup n} of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta{sub 2}O{sub 5}, V{sub O}{sup 0} is characterized by structural contraction and electron density localization, while V{sub O}{sup 2+} promotes structural expansion and is depleted of electron density. In contrast, interfacial V{sub O}{sup 0} and V{sub O}{sup 2+} show nearly indistinguishable ionic and electronic signatures indicative of a reduced V{sub O} center. Interfacial V{sub O}{sup 2+} extracts electron density from metallic Ta, indicating that V{sub O}{sup 2+} is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.

  5. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  6. No effect of H2O degassing on the oxidation state of magmatic liquids

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Lange, Rebecca A.

    2016-08-01

    The underlying cause for why subduction-zone magmas are systematically more oxidized than those formed at mid-ocean spreading ridges is a topic of vigorous debate. It is either a primary feature inherited from the subduction of oxidized oceanic crust into the mantle or a secondary feature that develops because of H2O degassing and/or magma differentiation. Low total iron contents and high melt H2O contents render rhyolites sensitive to any effect of H2O degassing on ferric-ferrous ratios. Here, pre-eruptive magmatic Fe2+ concentrations, measured using Fe-Ti oxides that co-crystallized with silicate phenocrysts under hydrous conditions, are compared with Fe2+ post-eruptive concentrations in ten crystal-poor, fully-degassed obsidian samples; five are microlite free. No effect of H2O degassing on the ferric-ferrous ratio is found. In addition, Fe-Ti oxide data from this study and the literature show that arc magmas are systematically more oxidized than both basalts and hydrous silicic melts from Iceland and Yellowstone prior to extensive degassing. Nor is there any evidence that differentiation (i.e., crystal fractionation, crustal assimilation) is the cause of the higher redox state of arc magmas relative to those of Iceland/Yellowstone rhyolites. Instead, the evidence points to subduction of oxidized crust and the release of an H2O-rich fluid and/or melt with a high oxygen fugacity (fO2), which plays a role during H2O-flux melting of the mantle in creating basalts that are relatively oxidized.

  7. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Jie; Dong, Hao; Lyu, Guang-Ming; Zhang, Huai-Yuan; Ke, Jun; Kang, Li-Qun; Teng, Jia-Li; Sun, Ling-Dong; Si, Rui; Zhang, Jing; Liu, Yan-Jun; Zhang, Ya-Wen; Huang, Yun-Hui; Yan, Chun-Hua

    2015-08-01

    Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation mechanism of CeO2 nanoparticles. Adsorbed peroxide species are detected during the anti-oxidation process, which are responsible for the red-shifted UV-vis absorption spectra of CeO2 nanoparticles. Furthermore, the coordination number of Ce in the first coordination shell slightly increased after the addition of H2O2. On the basis of these experimental results, the reactivity of coordination sites for peroxide species is considered to play a key role in the anti-oxidation performance of CeO2 nanoparticles. Furthermore, we present a robust method to engineer the anti-oxidation performance of CeO2 nanoparticles through the modification of the defect state and reducibility by doping with Gd3+. Improved anti-oxidation performance is also observed in cell culture, where the biocompatible CeO2-based nanoparticles can protect INS-1 cells from oxidative stress induced by H2O2, suggesting the potential application of CeO2 nanoparticles in the treatment of diabetes.Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation

  8. Determination of the oxidation state and coordination of a vanadium doped chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Hughes, Mark A.; Curry, Richard J.; Hewak, Daniel W.

    2011-01-01

    Vanadium doped chalcogenide glass has potential as an active gain medium, particularly at telecommunications wavelengths. This dopant has three spin allowed absorption transitions at 1100, 737 and 578 nm, and a spin forbidden absorption transition at 1000 nm. X-ray photoelectron spectroscopy indicated the presence of vanadium in a range of oxidation states from V+ to V5+. Excitation of each absorption band resulted in the same characteristic emission spectrum and lifetime, indicating that only one oxidation state is optically active. Arguments based on Tanabe-Sugano analysis indicated that the configuration of the optically active vanadium ion was octahedral V2+. The calculated crystal field parameters (Dq/B, B and C/B) were 1.85, 485.1 and 4.55, respectively.

  9. Ge Interface Engineering with Ozone-oxidation for Low Interface State Density

    SciTech Connect

    Kuzum, Duygu; Krishnamohan, T.; Pethe, Abhijit J.; Okyay, Ali, K.; Oshima, Yasuhiro; Sun, Yun; McVittie, Jim P.; Pianetta, Piero A.; McIntyre, Paul C.; Saraswat, Krishna C.; /Stanford U., CIS

    2008-06-02

    Passivation of Ge has been a critical issue for Ge MOS applications in future technology nodes. In this letter, we introduce ozone-oxidation to engineer Ge/insulator interface. Interface states (D{sub it}) values across the bandgap and close to conduction bandedge were extracted using conductance technique at low temperatures. D{sub it} dependency on growth conditions was studied. Minimum D{sub it} of 3 x 10{sup 11} cm{sup -2} V{sup -1} was demonstrated. Physical quality of the interface was investigated through Ge 3d spectra measurements. We found that the interface and D{sub it} is strongly affected by the distribution of oxidation states and quality of the suboxide.

  10. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  11. Constraints on the Detection of the Solar Nebula's Oxidation State Through Asteroid Observations

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Gaffey, M. J.; Hardersen, P. S.

    2005-01-01

    Introduction: Asteroids represent the only in situ surviving population of planetesimals from the formation of the inner solar system and therefore include materials from the very earliest stages of solar system formation. Hence, these bodies can provide constraints on the processes and conditions that were present during this epoch and can be used to test current models and theories describing the late solar nebula, the early solar system and subsequent planetary accretion. From detailed knowledge of asteroid mineralogic compositions the probable starting materials, thermal histories, and oxidation states of asteroid parent bodies can be inferred. If such data can be obtained from specific mainbelt source regions, then this information can be used to map out the formation conditions of the late solar nebula within the inner solar system and possibly distinguish any trends in oxidation state that may be present.

  12. Oxygen Fugacity of Basalts From Earth and Mars: Implications for Oxidation States of Terrestrial Planet Interiors

    NASA Astrophysics Data System (ADS)

    Herd, C.

    2004-12-01

    The oxidation state of a planetary interior plays an important role in the partitioning of elements between the planet's core and mantle, the geophysical properties of the mantle, the phase equilibria of igneous rocks, and the speciation of gases in the planet's atmosphere. Determining the oxidation state of the interior of the Moon, Mars, and differentiated asteroids is difficult, because planetary samples are dominated by basaltic igneous rocks. Direct mantle samples, such as mantle xenoliths and diamond inclusions, as benefit studies on Earth, are lacking. The oxidation state of these planets' interiors is inferred from the oxygen fugacity recorded in the basaltic samples. Basalts from Mars (martian meteorites) record oxygen fugacity ranging from near the IW buffer to 3 log units above ( ˜QFM), by several methods. The range of igneous rocks on Earth overlaps, but ranges up to ˜7 log units above IW, with the most oxidized samples derived from island arcs. Studies of the relationship between the oxidation state of a basalt and that of its mantle source on the Earth provide potentially important contributions to the interpretation of martian basalt oxygen fugacity and the inferred oxidation state of the martian interior. Thermodynamic considerations of ferrous-ferric mineral equilibria in the spinel and garnet facies of the Earth's mantle dictate that the oxygen fugacity should decrease, relative to the QFM buffer, with increasing pressure. Ballhaus (1995) calculated a decrease of 0.6 log unit per GPa increase, assuming a constant bulk composition. In contrast, C-H-O equilibria have isopleths of opposing slope, such that fluid composition will be dominated by more reduced species (e.g., methane) at greater depths. Ballhaus and Frost (1994) argue that C-H-O buffering influences upwelling asthenosphere, particularly by the presence of graphite, and that the oxygen fugacity of a basalt at the surface depends on the depth at which first melting occurs. This depth is

  13. Visible light photoreactivity from hybridization states between carbon nitride bandgap states and valence states in Nb and Ti oxides

    NASA Astrophysics Data System (ADS)

    Lee, Hosik; Ohno, Takahisa

    2013-03-01

    For better efficiency as photocatalysts, N-doping for visible light reactivity has been intensively studied in Lamellar niobic and titanic solid acids (HNb3O8, H2Ti4O9), and its microscopic structures have been debated in this decade. We calculate the layered solid acids' structures and bandgaps. Bandgap reduction by carbon nitride adsorption in interlayer space is observed computationally. It originates from localized nitrogen states which form delocalized top-valence states by hybridizing with the host oxygen states and can contribute to photo-current.

  14. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.

    2015-09-01

    Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of ~ 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing ~ 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to ~ 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation

  15. Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Nelin, Connie J.; Al-Salik, Yahya; Ilton, Eugene S.; Idriss, Hicham

    2016-01-01

    Multiplet splittings in X-ray Photo-electron Spectroscopy, XPS, are a means of distinguishing different open shell occupations, or different oxidation states, in a material being studied. Indeed, especially for 3d transition metal complexes, they have provided fingerprints of the metal oxidation state. The present work provides theoretical and experimental evidence that it may also be possible to use multiplets to characterize the oxidation state of heavy metal, lanthanide and actinide, cations in complexes. However, it is important to make a proper choice of the XPS region to study in order to obtain large multiplet splittings. We identify a low binding energy, BE, peak that had been observed for Ce(III) in CeOx as a high spin coupled multiplet. Furthermore, we show that a low BE feature with reasonable intensity is characteristic of other XPS regions and of other metals. This feature arises from a high spin multiplet and serves as a fingerprint to distinguish closed shell from open shell cations. Evidence is presented that it may also be possible to distinguish different open shell occupations.

  16. Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature

    NASA Astrophysics Data System (ADS)

    Chen, Wan Ping; He, Ke Feng; Wang, Yu; Chan, Helen Lai Wah; Yan, Zijie

    2013-11-01

    Hydrogen in metal oxides usually strongly associates with a neighboring oxygen ion through an O-H bond and thus displays a high stability. Here we report a novel state of hydrogen with unusually high mobility and reactivity in metal oxides at room temperature. We show that freshly doped hydrogen in Nb2O5 and WO3 polycrystals via electrochemical hydrogenation can reduce Cu2+ ions into Cu0 if the polycrystals are immersed in a CuSO4 solution, while this would not happen if the hydrogenated polycrystals have been placed in air for several hours before the immersion. Time-dependent studies of electrochemically hydrogenated rutile single crystals reveal two distinct states of hydrogen: one as protons covalently bonded to oxygen ions, while the other one is highly unstable with a lifetime of just a few hours. Observation of this mobile and reactive state of hydrogen will provide new insight into numerous moderate and low temperature interactions between metal oxides and hydrogen.

  17. Do the higher oxidation states of the photosynthetic O2-evolving system contain bound H2O?

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Ollinger, O.

    1986-01-01

    A modified mass spectrometer was used to determine whether the higher oxidation states of the photosynthetic O2-evolving system contain substrate water that is not freely exchangeable with the external medium. Our data indicated that the higher oxidation states contain no appreciable bound, non-exchangeable H2O. This suggests that H2O oxidation takes place via a rapid, concerted, all-or-none mechanism rather than by a mechanism involving stable, partially oxidized, H2O-derived intermediates. These findings set definite constraints on possible mechanisms of O2 evolution.

  18. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    NASA Astrophysics Data System (ADS)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ∆NNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels

  19. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  20. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu Yijin; Pianetta, Piero

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  1. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    NASA Astrophysics Data System (ADS)

    Nelson, George J.; Harris, William M.; Izzo, John R.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero

    2011-04-01

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  2. Structural and functional insight into the different oxidation states of SAV1875 from Staphylococcus aureus.

    PubMed

    Kim, Hyo Jung; Kwon, Ae-Ran; Lee, Bong-Jin

    2016-01-01

    The DJ-1/ThiJ/PfpI superfamily is a group of proteins found in diverse organisms. This superfamily includes versatile proteins, such as proteases, chaperones, heat-shock proteins and human Parkinson's disease protein. Most members of the DJ-1/ThiJ/PfpI superfamily are oligomers and are classified into subfamilies depending on discriminating quaternary structures (DJ-1, YhbO and Hsp types). SAV1875, a conserved protein from Staphylococcus aureus, is a member of the YhbO-type subfamily. However, its structure and function remain unknown. Thus, to understand the function and activity mechanism of this protein, the crystal structure of SAV1875 from S. aureus was determined. The overall fold of SAV1875 is similar to that observed for the DJ-1/ThiJ/PfpI superfamily. The cysteine residue located in the dimeric interface (Cys(105)) forms a catalytic triad with His(106) and Asp(77), and it is spontaneously oxidized to Cys(105)-SO2H in the crystal structure. To study the oxidative propensity of Cys(105) and the corresponding functional differences with changes in cysteine oxidation state, the crystal structures of SAV1875 variants E17N, E17D and C105D, and over-oxidized SAV1875 were determined. We identified SAV1875 as a novel member of the YhbO-type subfamily exhibiting chaperone function. However, if SAV1875 is over-oxidized further with H2O2, its chaperone activity is eliminated. On the basis of our study, we suggest that SAV1875 functions as a chaperone and the redox state of Cys(105) may play an important role. PMID:26487697

  3. on the two-state inversion capacitance at varied frequencies of metal-oxide-semiconductor capacitor

    NASA Astrophysics Data System (ADS)

    Chen, Tzu-Yu; Hwu, Jenn-Gwo

    2014-09-01

    Two-state inversion capacitances of a metal-oxide-semiconductor capacitor (MOSCAP) at varied AC frequencies after negative/positive constant voltage stress (negative/positive CVS) treatments are investigated. When the device was biased into inversion, a low/high inversion-capacitance state (set state/reset state) was achieved after the negative/positive CVS treatments with/without a few trapped electrons in the ultrathin SiO2 layer. The inversion capacitances of set states were frequency independent, whereas those of reset states increased with the decreasing frequencies. It is different from the general characteristics of an MOSCAP whose inversion capacitances disperse at low frequencies. For this observed finding of the two-state inversion capacitances at varied frequencies, a mechanism of trapped-electrons-induced screening effect on the inversion electrons is proposed. The number of the trapped electrons in the SiO2 layer affects the number of the inversion electrons, and thus dominates the values of the inversion capacitances. Besides, simulation curves of the inversion capacitances of set states are demonstrated. They are fitted well with the experimental data utilizing the mechanism we proposed. This work investigates further into the influence of the trapped electrons in the ultrathin SiO2 layer on the inversion capacitance response.

  4. Reactive nitrogen oxides in the southeast United States national parks: source identification, origin, and process budget

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.

    2005-01-01

    We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.

  5. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    PubMed

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  6. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.

    2015-09-01

    Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of ~ 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing ~ 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to ~ 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation

  7. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  8. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  9. Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Nikel, Pablo I; Oppezzo, Oscar J; López, Nancy I

    2013-02-01

    The role of Anr in oxidative stress resistance was investigated in Pseudomonas extremaustralis, a polyhydroxybutyrate-producing Antarctic bacterium. The absence of Anr caused increased sensitivity to hydrogen peroxide under low oxygen tension. This phenomenon was associated with a decrease in the redox ratio, higher oxygen consumption and higher reactive oxygen species production. Physiological responses of the mutant to the oxidized state included an increase in NADP(H) content, catalase activity and exopolysaccharide production. The wild-type strain showed a sharp decrease in the reduced thiol pool when exposed to hydrogen peroxide, not observed in the mutant strain. In silico analysis of the genome sequence of P. extremaustralis revealed putative Anr binding sites upstream from genes related to oxidative stress. Genes encoding several chaperones and cold shock proteins, a glutathione synthase, a sulfate transporter and a thiol peroxidase were identified as potential targets for Anr regulation. Our results suggest a novel role for Anr in oxidative stress resistance and in redox balance maintenance under conditions of restricted oxygen supply. PMID:23223440

  10. Resistivity control by solid-state reaction of perovskite-type oxides

    SciTech Connect

    Nagamoto, H.; Tanaka, H.; Koya, T.

    1995-10-01

    Resistivity control has been conducted by solid-state reaction of two different perovskite-type oxides. One is La{sub 0.5}Ba{sub 0.5}CoO{sub 3{minus}{delta}} (LBC) which showed metallic conduction, and its resistivity, {rho} was 10{sup {minus}3} {Omega} {center_dot} cm at 20 C. The other is Ba{sub 0.998}Sb{sub 0.002}TiO{sub 3} (BT) which showed positive temperature coefficient of resistivity (PTCR) effect. The sintered body of the mixture of the two oxides did not show PTCR effect. The logarithm of the resistivity of the sintered body, log {rho}{sub mix} was expressed using the resistivity of LBC, {rho}{sub LBC}, the molar ratio of BT, x, and temperature dependent constant, {alpha}(T) as log {rho}{sub mix} = (1 {minus} x) log {rho}{sub LBC} + x{alpha}(T), which holds for 0 {le} x {le} 0.8 at the temperature ranging from 20 to 240 C. {rho}{sub mix} changed by about 8 orders of magnitude at room temperature. X-ray diffraction analysis suggested that metal ions at the A-site move from one perovskite-type oxide to another and that the sintered body consisted of two perovskite-type oxides different from starting ones.

  11. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  12. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles

    SciTech Connect

    Bystrzejewski, M.

    2011-06-15

    The encapsulation of iron nanoparticles in protective carbon cages leads to unique hybrid core-shell nanomaterials. Recent literature reports suggest that such nanocomposites can be obtained in a relatively simple process involving the solid state carbothermal reduction of iron oxide nanoparticles. This approach is very attractive because it does not require advanced equipment and consumes less energy in comparison to widely used plasma methods. The presented more-in-depth study shows that the carbothermal approach is sensitive to temperature and the process yield strongly depends on the morphology and crystallinity of the carbon material used as a reductant. - Graphical abstract: Reduction of iron oxide nanoparticles by carbon black at 1200 deg. C yields well crystallized carbon-encapsulated iron nanoparticles. Highlights: > Carbon-encapsulated iron nanoparticles were synthesized by carbothermal reduction of iron oxide nanoparticles. > The process has the highest selectivity at 1200 C. > Lower temperatures result in iron oxide nanoparticles wrapped in carbon matrix. > The encapsulation rate of Fe at 1200 deg. C was found to be 15%.

  13. The conformation of P450cam in complex with putidaredoxin is dependent on oxidation state.

    PubMed

    Myers, William K; Lee, Young-Tae; Britt, R David; Goodin, David B

    2013-08-14

    Double electron-electron resonance (DEER) spectroscopy was used to determine the conformational state in solution for the heme monooxygenase P450cam when bound to its natural redox partner, putidaredoxin (Pdx). When oxidized Pdx was titrated into substrate-bound ferric P450cam, the enzyme shifted from the closed to the open conformation. In sharp contrast, however, the enzyme remained in the closed conformation when ferrous-CO P450cam was titrated with reduced Pdx. This result fully supports the proposal that binding of oxidized Pdx to P450cam opposes the open-to-closed transition induced by substrate binding. However, the data strongly suggest that in solution, binding of reduced Pdx to P450cam does not favor the open conformation. This supports a model in which substrate recognition is associated with the open-to-closed transition and electron transfer from Pdx occurs in the closed conformation. The opening of the enzyme in the ferric-hydroperoxo state following electron transfer from Pdx would provide for efficient O2 bond activation, substrate oxidation, and product release. PMID:23901883

  14. WldS and PGC-1α Regulate Mitochondrial Transport and Oxidation State after Axonal Injury

    PubMed Central

    O'Donnell, Kelley C.; Vargas, Mauricio E.

    2013-01-01

    Mitochondria carry out many of the processes implicated in maintaining axon health or causing axon degeneration, including ATP and reactive oxygen species (ROS) generation, as well as calcium buffering and protease activation. Defects in mitochondrial function and transport are common in axon degeneration, but how changes in specific mitochondrial properties relate to degeneration is not well understood. Using cutaneous sensory neurons of living larval zebrafish as a model, we examined the role of mitochondria in axon degeneration by monitoring mitochondrial morphology, transport, and redox state before and after laser axotomy. Mitochondrial transport terminated locally after injury in wild-type axons, an effect that was moderately attenuated by expressing the axon-protective fusion protein Wallerian degeneration slow (WldS). However, mitochondrial transport arrest eventually occurred in WldS-protected axons, indicating that later in the lag phase, mitochondrial transport is not required for axon protection. By contrast, the redox-sensitive biosensor roGFP2 was rapidly oxidized in the mitochondrial matrix after injury, and WldS expression prevented this effect, suggesting that stabilization of ROS production may mediate axon protection. Overexpression of PGC-1α, a transcriptional coactivator with roles in both mitochondrial biogenesis and ROS detoxification, dramatically increased mitochondrial density, attenuated roGFP2 oxidation, and delayed Wallerian degeneration. Collectively, these results indicate that mitochondrial oxidation state is a more reliable indicator of axon vulnerability to degeneration than mitochondrial motility. PMID:24027278

  15. The impact of the initial state on the kinetics of oxidation ion- modified fuel cladding alloy E110

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.

    2016-04-01

    The paper examines the impact of the initial state (the presence of impurities, surface preparation), and surface alloying on the kinetics of the oxidation of fuel cladding alloy E110. The studies concluded that the use of ionic polishing instead of traditional chemical polishing helps to reduce the rate of oxidation of zirconium alloys. Also studied the effect of alloying elements introduced in the surface layers of claddings by ion mixing on the kinetics of the oxidation of the alloy E110.

  16. Vibrational autoionization and predissociation in high Rydberg states of nitric oxide

    NASA Astrophysics Data System (ADS)

    Pratt, S. T.

    1998-05-01

    New results on the competition between autoionization and predissociation in the high Rydberg states of nitric oxide are presented. These results provide insight into the earlier work of Park et al. [Phys. Rev. Lett. 76, 1591 (1996)] that shows evidence for substantial mixing between Rydberg series and ionization continua with even and odd orbital angular momenta (l). New data based on fluorescence-dip spectroscopy, detection of neutral predissociation products, and photoelectron spectroscopy suggest that the A' 2Σ+ and I 2Σ+ dissociative valence states play an important role in this l mixing. Zeeman splittings observed in a magnetic bottle electron spectrometer also result in an improvement in the assignment of these high Rydberg states.

  17. Vibrational autoionization and predissociation in high Rydberg states of nitric oxide

    SciTech Connect

    Pratt, S.T.

    1998-05-01

    New results on the competition between autoionization and predissociation in the high Rydberg states of nitric oxide are presented. These results provide insight into the earlier work of Park {ital et al.} [Phys. Rev. Lett. {bold 76}, 1591 (1996)] that shows evidence for substantial mixing between Rydberg series and ionization continua with even and odd orbital angular momenta (l). New data based on fluorescence-dip spectroscopy, detection of neutral predissociation products, and photoelectron spectroscopy suggest that the A{sup {prime}}{sup 2}{Sigma}{sup +} and I{sup 2}{Sigma}{sup +} dissociative valence states play an important role in this l mixing. Zeeman splittings observed in a magnetic bottle electron spectrometer also result in an improvement in the assignment of these high Rydberg states. {copyright} {ital 1998 American Institute of Physics.}

  18. Arsenic (+ 3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    SciTech Connect

    Hughes, Michael F.; Edwards, Brenda C.; Herbin-Davis, Karen M.; Saunders, Jesse; Styblo, Miroslav; Thomas, David J.

    2010-12-15

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in which mice received daily oral doses of 0.5 mg of arsenic as arsenate per kilogram of body weight. Regardless of genotype, arsenic body burdens attained steady state after 10 daily doses. At steady state, arsenic body burdens in As3mt knockout mice were 16 to 20 times greater than in wild-type mice. During the post dosing clearance period, arsenic body burdens declined in As3mt knockout mice to {approx} 35% and in wild-type mice to {approx} 10% of steady-state levels. Urinary concentration of arsenic was significantly lower in As3mt knockout mice than in wild-type mice. At steady state, As3mt knockout mice had significantly higher fractions of the body burden of arsenic in liver, kidney, and urinary bladder than did wild-type mice. These organs and lung had significantly higher arsenic concentrations than did corresponding organs from wild-type mice. Inorganic arsenic was the predominant species in tissues of As3mt knockout mice; tissues from wild-type mice contained mixtures of inorganic arsenic and its methylated metabolites. Diminished capacity for arsenic methylation in As3mt knockout mice prolongs retention of inorganic arsenic in tissues and affects whole body clearance of arsenic. Altered retention and tissue tropism of arsenic in As3mt knockout mice could affect the toxic or carcinogenic effects associated with exposure to this metalloid or its methylated metabolites.

  19. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles.

    PubMed

    Singh, Neenu; Jenkins, Gareth J S; Nelson, Bryant C; Marquis, Bryce J; Maffeis, Thierry G G; Brown, Andy P; Williams, Paul M; Wright, Chris J; Doak, Shareen H

    2012-01-01

    Ultrafine superparamagnetic iron oxide nanoparticles (USPION) hold great potential for revolutionising biomedical applications such as MRI, localised hyperthermia, and targeted drug delivery. Though evidence is increasing regarding the influence of nanoparticle physico-chemical features on toxicity, data however, is lacking that assesses a range of such characteristics in parallel. We show that iron redox state, a subtle though important physico-chemical feature of USPION, dramatically modifies the cellular uptake of these nanoparticles and influences their induction of DNA damage. Surface chemistry was also found to have an impact and evidence to support a potential mechanism of oxidative DNA damage behind the observed responses has been demonstrated. As human exposure to ferrofluids is predicted to increase through nanomedicine based therapeutics, these findings are important in guiding the fabrication of USPION to ensure they have characteristics that support biocompatibility. PMID:22027595

  20. Improving dielectric performance in anodic aluminum oxide via detection and passivation of defect states

    SciTech Connect

    Mibus, M.; Zangari, G.; Jensen, C.; Hu, X.; Reed, M. L.; Knospe, C.

    2014-06-16

    The electronic and ionic transports in 32–56 nm thick anodic aluminum oxide films are investigated before and after a 1-h anneal at 200–400 °C in argon. Results are correlated to their defect density as measured by the Mott-Schottky technique. Solid state measurements show that electronic conduction upon annealing is hindered by an increase in the Schottky emission barrier, induced by a reduction in dopant density. Using an electrochemical contact, the films fail rapidly under cathodic polarization, unless defect density is decreased down to 10{sup 17} cm{sup −3}, resulting in a three order of magnitude reduction in current and no visible gas evolution. Under anodic polarization, the decrease in defect density delays the onset of ionic conduction as well as further oxide growth and failure.

  1. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  2. Reexamining Oxidation States during the Synthesis of 2-Rhodaoxetanes from Olefins.

    PubMed

    Desnoyer, Addison N; Behyan, Shirin; Patrick, Brian O; Dauth, Alexander; Love, Jennifer A; Kennepohl, Pierre

    2016-01-01

    Herein, we report experimental, spectroscopic, and computational data that indicate that a rhodium ethylene complex, formally described as rhodium(I) and which forms a 2-rhoda(III) oxetane following reaction with H2O2, is more accurately described as a rhodium(III) metallacyclopropane. X-ray absorption spectroscopy clearly demonstrates a change in the oxidation state at rhodium following ligand coordination with tris(2-pyridylmethyl)amine. Both NMR and density functional theory studies suggest a high energy barrier to rotation of the coordinated ethylene, which is attributed to large geometric and electronic reorganization resulting from the loss of π-back-bonding. These results imply that the role of H2O2 in the formation of 2-rhoda(III) oxetanes is to oxidize the C2H4 fragment rather than the metal center, as has been previously suggested. PMID:26670683

  3. [The oxidative modification of blood plasma proteins in patients in critical states].

    PubMed

    Riabov, G A; Azizov, Iu M; Dorokhov, S I; Kulabukhov, V V; Titova, I A; Pasechnik, I N; Brazhnik, T B; Rybintsev, V Iu

    2000-01-01

    Current concepts on the formation and biological activity of activated oxygen forms (AOF) in humans are discussed. The main AOF types are produced as a result of consecutive single-electron recovery of molecular oxygen (O2) and are more reactive than O2. AOF are initially normal components of cellular metabolism with certain biological functions. Their reactive aggressiveness is regulated by a potent antioxidant system which is present in any live organism. In disease this balance is distorted towards uncontrolled AOF generation and formation of oxidative stress, when AOF impair all biological structures, including proteins. Unregulated modification of proteins by AOF results in loss of protein biological activities (enzymatic, receptor, transporting function, etc.). Moreover, oxidative modification of proteins generates new antigens and provokes immune response. The authors present experimental data which confirm significant modification of plasma proteins in critical patients. The role of the detrimental effect of AOF on proteins in the formation of critical states deserves special studies. PMID:10833843

  4. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  5. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  6. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  7. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere.

    PubMed

    Kasting, J F

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters. PMID:11537523

  8. Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state

    NASA Astrophysics Data System (ADS)

    Hosaynali Beygi, Z.; Fischer, H.; Harder, H. D.; Martinez, M.; Sander, R.; Williams, J.; Brookes, D. M.; Monks, P. S.; Lelieveld, J.

    2011-03-01

    Ozone (O3) is a photochemical oxidant, an air pollutant and a greenhouse gas. As the main precursor of the hydroxyl radical (OH) it strongly affects the oxidation power of the atmosphere. The remote marine boundary layer (MBL) is considered an important region in terms of chemical O3 loss; however surface-based atmospheric observations are sparse and the photochemical processes are not well understood. To investigate the photochemistry under the clean background conditions of the Southern Atlantic Ocean, ship measurements of NO, NO2, O3, JNO2, J(O1D), HO2, OH, ROx and a range of meteorological parameters were carried out. The concentrations of NO and NO2 measured on board the French research vessel Marion-Dufresne (28° S-57° S, 46° W-34° E) in March 2007, are among the lowest yet observed. The data is evaluated for consistency with photochemical steady state (PSS) conditions, and the calculations indicate substantial deviations from PSS (Φ>1). The deviations observed under low NOx conditions (5-25 pptv) demonstrate a remarkable upward tendency in the Leighton ratio (used to characterize PSS) with increasing NOx mixing ratio and JNO2 intensity. It is a paradigm in atmospheric chemistry that OH largely controls the oxidation efficiency of the atmosphere. However, evidence is growing that for unpolluted low-NOx (NO + NO2) conditions the atmospheric oxidant budget is poorly understood. Nevertheless, for the very cleanest conditions, typical for the remote marine boundary layer, good model agreement with measured OH and HO2 radicals has been interpreted as accurate understanding of baseline photochemistry. Here we show that such agreement can be deceptive and that a yet unidentified oxidant is needed to explain the photochemical conditions observed at 40°-60° S over the Atlantic Ocean.

  9. Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state

    NASA Astrophysics Data System (ADS)

    Hosaynali Beygi, Z.; Fischer, H.; Harder, H. D.; Martinez, M.; Sander, R.; Williams, J.; Brookes, D. M.; Monks, P. S.; Lelieveld, J.

    2011-08-01

    Ozone (O3) is a photochemical oxidant, an air pollutant and a greenhouse gas. As the main precursor of the hydroxyl radical (OH) it strongly affects the oxidation power of the atmosphere. The remote marine boundary layer (MBL) is considered an important region in terms of chemical O3 loss; however surface-based atmospheric observations are sparse and the photochemical processes are not well understood. To investigate the photochemistry under the clean background conditions of the Southern Atlantic Ocean, ship measurements of NO, NO2, O3, JNO2, J(O1D), HO2, OH, ROx and a range of meteorological parameters were carried out. The concentrations of NO and NO2 measured on board the French research vessel Marion-Dufresne (28° S-57° S, 46° W-34° E) in March 2007, are among the lowest yet observed. The data is evaluated for consistency with photochemical steady state (PSS) conditions, and the calculations indicate substantial deviations from PSS (Φ>1). The deviations observed under low NOx conditions (5-25 pptv) demonstrate a remarkable upward tendency in the Leighton ratio (used to characterize PSS) with increasing NOx mixing ratio and JNO2 intensity. It is a paradigm in atmospheric chemistry that OH largely controls the oxidation efficiency of the atmosphere. However, evidence is growing that for unpolluted low-NOx (NO + NO2) conditions the atmospheric oxidant budget is poorly understood. Nevertheless, for the very cleanest conditions, typical for the remote marine boundary layer, good model agreement with measured OH and HO2 radicals has been interpreted as accurate understanding of baseline photochemistry. Here we show that such agreement can be deceptive and that a yet unidentified oxidant is needed to explain the photochemical conditions observed at 40°-60° S over the Atlantic Ocean.

  10. Investigation of V oxidation states in reduced V/Al{sub 2}O{sub 3} catalysts by XPS

    SciTech Connect

    Eberhardt, M.A.; Proctor, A.; Houalla, M.; Hercules, D.M.

    1996-04-15

    Vanadium oxidation states in a 5.9 wt% V/Al{sub 2}O{sub 3} catalyst were determined by XPS from the V 2p level. The V 2p{sub 3/2} envelope is composed of two components (oxidation states), appearing at 517.2 and 515.5 eV (for H{sub 2} as the reducing agent) and at 517.3 and 515.8 eV (for CO as the reducing agent). The components were assigned to V{sup 5+} and V{sup 3+}. The average oxidation state of V decreased to 3.5 with increased reduction temperature in H{sub 2} up to 662{degree}C. Reduction in the presence of CO showed a decrease in the average oxidation state from 5 to 3.3 over the temperature range 155-510{degrees}C. 40 refs., 8 figs., 3 tabs.

  11. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated ars...

  12. Biological Alteration of Basaltic Glass With Altered Composition and Oxidation States

    NASA Astrophysics Data System (ADS)

    Bailey, B. E.; Staudigel, H.; Templeton, A.; Tebo, B. M.; Ryerson, F.; Plank, T.; Schroder, C.; Klingelhoefer, G.

    2004-12-01

    The ocean crust is an extreme and oligotrophic environment and yet recent studies have shown that reactions between oceanic crust and seawater are capable of supporting microbial life. We are specifically targeting volcanic glass as a source of energy and nutrients necessary to support endolithic microbial communities. A significant amount of chemical energy is available from the process of iron oxidation and our goal is to determine the ability of microorganisms to use Fe(II) as an energy source as well as liberate other essential nutrients from the host rock. In addition, microbes may oxidize Mn or use phosphate from glass. To explore the dependency of microbial life on these nutrients and energy sources, we produce basaltic glasses with varying Fe oxidation states and relative abundance of iron, manganese and phosphate and introduce them to microbial isolates and consortia both in the laboratory and in deep-ocean environments. The natural exposure experiments occur in a variety of settings including hydrothermal vents and cold deep seawater (Loihi Seamount), brines (Mediterranean), and basaltic flows at spreading ridges (EPR), when possible on submarine lava flows of recent and known age. Upon collection of the exposure experiments, we compare basalt colonizing microbial communities on our synthetic glasses with the in situ glass communities through a large culturing effort and molecular (t-RFLP) studies. So far we have produced a number of enrichment cultures and isolated several iron-oxidizing and manganese-oxidizing bacteria that were used to inoculate glasses in the laboratory. Laboratory experiments concentrate on biofilm formation and dissolution of the colonized glasses. Continued collection of exposure experiments on a yearly time-scale provides valuable information regarding spatial and temporal variations in microbial community diversity and structure. We have also analyzed the authigenic reaction products of seafloor, microbially mediated alteration

  13. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Edmonds, Marie; Scaillet, Bruno; Peters, Nial; Gennaro, Emanuela; Sides, Issy; Oppenheimer, Clive

    2016-09-01

    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer - hence preserving mantle conditions - or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai'i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2O and CO2 appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas-melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at Kīlauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath Kīlauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.

  14. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-12-01

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere. PMID:22129728

  15. Australasian microtektites from Antarctica: XAS determination of the Fe oxidation state

    NASA Astrophysics Data System (ADS)

    Giuli, Gabriele; Cicconi, Maria Rita; Eeckhout, Sigrid Griet; Pratesi, Giovanni; Paris, Eleonora; Folco, Luigi

    2014-04-01

    The Fe oxidation state and coordination number of 29 impact glass spherules recently recovered from the Transantarctic Mountains (Antarctica) have been determined by X-ray absorption near edge structure (XANES) spectroscopy. Based on geochemical, isotopic, and fission track data, these spherules are considered as microtektites from the Australasian tektite/microtektite strewn field. Their find location is the farthest so far discovered from the possible source crater region, and their alkali content is the lowest compared with other published data on Australasian microtektite glasses. The Fe3+/(Fe2++Fe3+) ratio, determined from the analysis of the pre-edge peak energy position and integrated intensity, is below 0.1 (±0.04) for all the samples, and is comparable to that of most tektites and microtektites from the Australasian strewn field. Also, the pre-edge peak integrated intensity, which is sensitive to the average Fe coordination geometry, is comparable to that of other Australasian microtektites reported in the literature. The agreement of the Fe oxidation state and coordination number, between the Transantarctic Mountain microtektites (TAM) and the Australasian tektites and microtektites, further confirms the impact origin of these glass spherules and provides an independent suggestion that they represent a major extension southeastward of the Australasian strewn field. The fact that similar redox conditions are observed in tektites and microtektites within the Australasian strewn field regardless of the distance from the source crater area (up to approximately 11000 km) could be an important constraint for better understanding the different processes affecting microtektite formation and transport. The fact that the Fe oxidation state of microtektites does not increase with distance, as in the case of North American microtektites, means that thermal and redox histories of Australasian and TAM microtektites could differ significantly from those of North

  16. The oxidation state of primary MOR-Basalts before degassing of C-H-S-O species indicates an oxidized source regions buffered by sulphur-sulphate equilibrium

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Iacono-Marziano, Giada; Morizet, Yann; Marrocchi, Yves

    2014-05-01

    The Earth's mantle redox state regulates the igneous inputs of volcanic gases in the atmosphere and probably controls the depth of mantle weakening by redox melting. Capturing the processes that control basalt oxidation state and how the latter is connected to their mantle sources is a central topic in planetary sciences. Mid-Ocean Ridge Basalts, constituting 80% of the extrusive rocks, are widely used for this purpose. But MOR-basalts are considerably degassed. In particular, they have lost most of their primary CO2 by open system degassing and it is unclear if this can importantly affect their redox state. In order to reconstruct their primary volatile contents and their primary oxidation states, we simulate here their degassing considering primary undegassed MORB being variably enriched in H2O and CO2. Our results indicate that clear relationships between MORB oxidation state and their volatile enrichments are triggered by degassing: Volatile-rich melts degas more CO2, H2O and SO2, which triggers a more pronounced decrease in Fe3+/Fetot. The reduction associated to degassing is relatively small, but it explains well recently reported geochemical observations relating geochemical enrichments and MORBs oxidation state. The oxidation state of MORBs as retrieved from their post-eruption Fe3+/Fetot therefore underestimates the oxidation state of their source regions by about 0.3-0.8 log-units; the degree of underestimation correlating with the amount of initial CO2 and H2O. The source regions of MORBs must buffer fO2s that are centred on FMQ+1 just after melt extraction from the mantle. This fO2 range corresponds to the region where the sulphide-sulphate equilibrium in basalts is the dominant redox buffer, and we therefore propose that the fact most basalts erupting on Earth since the Archean have a constant fO2 of FMQ reflects the redox buffering by sulphur during partial melting. Prior to melting, the deep subsolidus mantle must be equilibrated with higher fO2 as

  17. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  18. Arsenic in ground-water under oxidizing conditions, south-west United States.

    PubMed

    Robertson, F N

    1989-12-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 μg L(-1) and reach values as large as 1,300 μg L(-1). Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4(∼2), under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin

  19. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may

  20. Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species

    SciTech Connect

    Yeh, S.M.

    1984-11-01

    The fluorinating and oxide scavenging ability of XeF/sub 6/ have been studied by bringing XeF/sub 6/ into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A/sup +/MOF/sub 5//sup -/ and A/sup +/M/sub 2/O/sub 2/F/sub 9//sup -/ (A = K or Cs, M = W or U) were converted to A/sup +/MF/sub 7//sup -/ by XeF/sub 6/, but the rhenium and osmium compounds, K/sup +/ReO/sub 2/F/sub 4//sup -/ and XeF/sub 5//sup +/OsO/sub 3/F/sub 3//sup -/, resisted interaction with XeF/sub 6/. Strong interactions between XeF/sub 2/ or KrF/sub 2/ and the solvent have been observed for their solutions in anhydrous HF. Both XeF/sub 2/ and KrF/sub 2/ are seen to be effective in breaking up the polymeric (HF)/sub n/ chains. Only weak interactions occur between cations and anions of KrF/sup +/AuF/sub 6//sup -/ and Kr/sub 2/F/sub 3//sup +/AuF/sub 6//sup -/ in HF. The AuF/sub 6//sup -/ anions are slightly distorted from O/sub h/ symmetry. Kr/sub 2/F/sub 3//sup +/ cations in HF have the same dissymmetric V-shape which occurs in crystalline salts. A low-temperature orthorhombic form, ..beta..-ReF/sub 6//sup +/SbF/sub 6//sup -/, a high-temperature rhombohedral form, ..cap alpha..-ReF/sub 6//sup +/SbF/sub 6//sup -/, and a ReF/sub 6//sup +/AuF/sub 6//sup -/ have been prepared. These compounds possess only kinetic stability at ambient temperature and at approx. 20/sup 0/C are best represented as ReF/sub 6//sup +/ReF/sub 7/MF/sub 6//sup -/MF/sub 5/. Thermochemical energy evaluations indicate that the ionization potential of ReF/sub 6/ is 261 kcal mole/sup -1/ and that the fluoride-ion affinity of ReF/sub 6//sup +/ is -214 kcal mole/sup -1/. This is more exothermal than the corresponding process for IF/sub 6//sup +/ (-208 kcal mole/sup -1/). In contrast, ReOF/sub 5/ is shown to be a better fluoro-base than IOF/sub 5/ and also is a better base than ReF/sub 7/. ReOF/sub 4//sup +/MF/sub 6//sup -/ (M = Sb, Au and As

  1. Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase.

    PubMed

    Wang, Hailiang; Wang, Yihai; Zhu, Zhongwei; Sapi, Andras; An, Kwangjin; Kennedy, Griffin; Michalak, William D; Somorjai, Gabor A

    2013-06-12

    Pt nanoparticles with various sizes of 1, 2, 4, and 6 nm were synthesized and studied as catalysts for gas-phase methanol oxidation reaction toward formaldehyde and carbon dioxide under ambient pressure (10 Torr of methanol, 50 Torr of oxygen, and 710 Torr of helium) at a low temperature of 60 °C. While the 2, 4, and 6 nm nanoparticles exhibited similar catalytic activity and selectivity, the 1 nm nanoparticles showed a significantly higher selectivity toward partial oxidation of methanol to formaldehyde, but a lower total turnover frequency. The observed size effect in catalysis was correlated to the size-dependent structure and oxidation state of the Pt nanoparticles. X-ray photoelectron spectroscopy and infrared vibrational spectroscopy using adsorbed CO as molecular probes revealed that the 1 nm nanoparticles were predominantly oxidized while the 2, 4, and 6 nm nanoparticles were largely metallic. Transmission electron microscopy imaging witnessed the transition from crystalline to quasicrystalline structure as the size of the Pt nanoparticles was reduced to 1 nm. The results highlighted the important impact of size-induced oxidation state of Pt nanoparticles on catalytic selectivity as well as activity in gas-phase methanol oxidation reactions. PMID:23701488

  2. Electronic States of Half-Metallic Chromium Oxides Probed by 53Cr NMR

    NASA Astrophysics Data System (ADS)

    Takeda, Hikaru; Shimizu, Yasuhiro; Itoh, Masayuki; Isobe, Masahiko; Ueda, Yutaka

    2012-12-01

    We have performed 53Cr NMR measurements to investigate local electronic states of K2Cr8O16 and CrO2 which are ferromagnetic half-metals with high valent chromium ions. In the ferromagnetic metallic phases of both oxides, we observed at least two 53Cr NMR spectra which are inconsistent with crystallographically inequivalent one chromium site on a tetragonal lattice, the hollandite structure (symmetry I4/m) of K2Cr8O16 and the rutile structure (P42mnm) of CrO2. The origin of this anomalous electronic state may be associated with an electronic phase separation in double exchange systems with the mixed valence.

  3. X-ray absorption to determine the metal oxidation state of transition metal compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  4. Quantitative chemical state analysis of supported vanadium oxide catalysts by high resolution vanadium Kα spectroscopy.

    PubMed

    Yamamoto, Takashi; Nanbu, Fumitaka; Tanaka, Tsunehiro; Kawai, Jun

    2011-03-01

    Oxidation states of vanadium species on Al(2)O(3), SiO(2), and TiO(2) were quantitatively analyzed by least-squares fitting of V Kα spectra recorded with a two-crystal X-ray fluorescence spectrometer. Uncertainties of analytical results by the normalization procedure, and coefficient of validation and the reduction behavior of vanadium species by X-ray irradiation were discussed. The V(5+)/V(4+)/V(3+) ratios on Al(2)O(3), SiO(2), and TiO(2) calcined at 773 K in air were determined to be ca. 6/3/1, 3/6/1, and 5/4/1, respectively. The possible chemical states of vanadium species on supports were proposed. PMID:21302919

  5. Origin of major donor states in In–Ga–Zn oxide

    SciTech Connect

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi

    2014-12-07

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (V{sub O}), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of V{sub O} sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of V{sub O} and H in crystalline InGaO{sub 3}(ZnO){sub m} (m = 1). The results indicate that when H is trapped in V{sub O}, a stable complex is created that serves as a shallow-level donor.

  6. Origin of major donor states in In-Ga-Zn oxide

    NASA Astrophysics Data System (ADS)

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi

    2014-12-01

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (VO), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of VO sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of VO and H in crystalline InGaO3(ZnO)m (m = 1). The results indicate that when H is trapped in VO, a stable complex is created that serves as a shallow-level donor.

  7. Probing the transition state region in catalytic CO oxidation on Ru

    SciTech Connect

    Ostrom, H.; Oberg, H.; Xin, H.; LaRue, J.; Beye, M.; Dell'Angela, M.; Gladh, J.; Ng, M. L.; Sellberg, J. A.; Kaya, S.; Mercurio, G.; Nordlund, D.; Hantschmann, M.; Hieke, F.; Kuhn, D.; Schlotter, W. F.; Dakovski, G. L.; Turner, J. J.; Minitti, M. P.; Mitra, A.; Moeller, S. P.; Fohlisch, A.; Wolf, M.; Wurth, W.; Persson, M.; Norskov, J. K.; Abild-Pedersen, F.; Ogasawara, H.; Pettersson, L. G. M.; Nilsson, A.

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  8. Patterns in the stability of the lower oxidation states of the actinides and lanthanides

    SciTech Connect

    Mikheev, N.B.; Auerman, L.N.; Ionova, G.V.; Korshunov, B.G.; Spitsyn, V.I.

    1986-09-01

    The authors compare the first half of the lanthanides and the second half of the actinides by considering the specifics of the electronic structure of the valence atoms of the f-, d-, and s-orbitals, consisting of he following: The lanthanides from praseodymium to europium and from dysprosium to ytterbium, as well as the actinides from californium to nobelium, have the same electronic configuration f /SUP n/ s/sub 2/ in the state of free neutral atoms, which corresponds to their divalent state. On the basis of a consideration of the energy characteristics of the valence orbitals of the elements of the lanthanide and actinide famililies and as a result of an experimental determination of the standard oxidation potential of these elements, the authors consider the profound similarity between the elements of the first half of the lanthanide family and the second half of the actinide family to be established.

  9. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    NASA Astrophysics Data System (ADS)

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis

    2016-09-01

    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  10. The Oxidation State of Hawaiian Magmas: The Ongoing (1983 - 2006) Kilauea Eruption

    NASA Astrophysics Data System (ADS)

    Vollinger, M. J.; Rhodes, J. M.; Garcia, M. O.

    2006-12-01

    On the basis of ferric/ferrous ratios, we have recently argued that Hawaiian magmas are much less oxidized than is commonly supposed. (Rhodes and Vollinger, Contributions, 2005). Specifically, quenched and rapidly cooled lavas have oxygen fugacities at, or below, the wüstite - magnetite (WM) buffer, whereas slowly cooled lavas, or those from surface lava flows that have traveled some considerable distance from a vent, have so-called "normal" values at, or close to, the fayalite-magnetite-quartz (FMQ) buffer. Oxygen fugacities calculated from measurements of ferric/ferrous ratios on lavas from the ongoing (1983 - 2006) Kilauea eruption confirm these observations, and permit further understanding of the relationship between oxidation state and magmatic processes. All spatter and water-quenched samples from this long- lived eruption are more reduced than FMQ. This even includes lavas that have traveled long distances in lava tubes towards the coast (about 11 km). The very early stages of the eruption, between January 1983 and July 1984 (episodes 1 - 22), produced the most oxidized lavas, with oxygen fugacities typically between FMQ and WM. These lavas have had a complex crustal history, involving long-lived residence, cooling, fractionation, contamination and magma mixing in the rift zone (Garcia et al. Bull. Volc. 1989). Subsequently, and up to 2004 (episodes 30 - 55), the lavas have had a simpler magmatic history, and have traveled more rapidly and directly from the mantle to the eruption sites (Garcia et al., J. Pet. 2000). These lavas are considerably more reduced, with oxygen fugacities fluctuating at and below MW. The lavas of episode 54 (January 1997) are a notable exception. They are more oxidized, comparable with lavas from the earliest episodes. The episode 54 lavas are unusual in that they exhibit petrographic and geochemical evidence of a complex history of crustal residence and magma mixing similar to the earlier episode lavas. From these results we

  11. Steady-state coupling of four membrane systems in mitochondrial oxidative phosphorylation.

    PubMed

    Hill, T L

    1979-05-01

    According to Alexandre, Reynafarje, and Lehninger, four different membrane systems are involved, with definite stoichiometry, in the mitochondrial synthesis of ATP by electron transport, via proton transport. We adopt this model and pursue some of its thermodynamic consequences. At steady state, each of the four systems must have the same flux J through the membrane and the overall thermodynamic force X for oxidative phosphorylation is the sum of the four separate forces. From these properties, using an empirical linear flux-force relation for each system, it is easy to obtain J as a function of X. In turn, X depends on the inside [NAD+]/[NADH] and the outside [ATP]/[ADP][Pi] quotients (and on the pH inside). Thus, J is related to these quotients. The relationship we derive is similar to that described by Erecińska and Wilson, as deduced from a quite different model of oxidative phosphorylation. Proton transport is involved explicitly in three of the four systems of the present model. However, because of the steady-state stoichiometric coupling of the four systems, proton transport does not appear in the overall reaction. On the other hand, Erecińska and Wilson use, in their model, a direct connection between electron transport and ATP synthesis. The present paper demonstrates that J can be related to the quotients mentioned above without this direct connection. PMID:287064

  12. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors

    NASA Astrophysics Data System (ADS)

    Yi, Wei; Savel'Ev, Sergey E.; Medeiros-Ribeiro, Gilberto; Miao, Feng; Zhang, M.-X.; Yang, J. Joshua; Bratkovsky, Alexander M.; Williams, R. Stanley

    2016-04-01

    Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f2 (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e2/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics-Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications.

  13. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors.

    PubMed

    Yi, Wei; Savel'ev, Sergey E; Medeiros-Ribeiro, Gilberto; Miao, Feng; Zhang, M-X; Yang, J Joshua; Bratkovsky, Alexander M; Williams, R Stanley

    2016-01-01

    Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f(2) (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e(2)/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics-Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications. PMID:27041485

  14. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  15. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors

    PubMed Central

    Yi, Wei; Savel'ev, Sergey E.; Medeiros-Ribeiro, Gilberto; Miao, Feng; Zhang, M.-X.; Yang, J. Joshua; Bratkovsky, Alexander M.; Williams, R. Stanley

    2016-01-01

    Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f2 (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e2/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics–Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications. PMID:27041485

  16. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    PubMed Central

    Savini, Isabella; Catani, Maria Valeria; Evangelista, Daniela; Gasperi, Valeria; Avigliano, Luciana

    2013-01-01

    Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance. PMID:23698776

  17. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    SciTech Connect

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  18. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  19. Regulation of skeletal muscle carbohydrate oxidation during steady-state contraction.

    PubMed

    Timmons, J A; Poucher, S M; Constantin-Teodosiu, D; Macdonald, I A; Greenhaff, P L

    1998-05-01

    Pyruvate dehydrogenase complex (PDC) activation status has been described as being central in the regulation of tissue substrate oxidation as outlined by the glucose fatty-acid cycle. In the present study we examined the effects of reduced lipolysis, with use of nicotinate, and increased PDC activation, with use of dichloroacetate (DCA), on substrate utilization during 20 min of submaximal steady-state contraction (approximately 80% of maximal O2 uptake) in canine gracilis skeletal muscle. At rest, PDC activation was unchanged by nicotinate but was approximately 2.5-fold higher in the DCA group than in the control group (P < 0.05). During contraction, PDC activation status increased to 3.5 mmol acetyl-CoA.min-1.kg-1 at 37 degrees C in the control group, remained at 4.5 mmol acetyl-CoA.min-1.kg-1 at 37 degrees C in the DCA group, but only increased to 2.2 mmol acetyl-CoA.min-1.kg-1 at 37 degrees C in the nicotinate group (P < 0.05). However, the estimated amount of carbohydrate oxidized during the 20-min contraction was similar across groups and did not follow the degree of PDC activation (81.2 +/- 22.9, 95.9 +/- 11.7, and 89.3 +/- 18.9 mmol glucosyl units/kg dry muscle for control, nicotinate, and DCA, respectively). Thus it would appear that, during steady-state contraction, PDC activation status does not determine the rate of carbohydrate oxidation in skeletal muscle. PMID:9612406

  20. V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bordage, Amélie; Balan, Etienne; de Villiers, Johan P. R.; Cromarty, Robert; Juhin, Amélie; Carvallo, Claire; Calas, Georges; Sunder Raju, P. V.; Glatzel, Pieter

    2011-06-01

    The oxidation state of vanadium in natural and synthetic Fe-Ti oxides is determined using high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS). Eleven natural magnetite-bearing samples from a borehole of the Main Magnetite Layer of the Bushveld Complex (South Africa), five synthetic Fe oxide samples, and three natural hematite-bearing samples from Dharwar supergroup (India) are investigated. V K edge spectra were recorded on the ID26 beamline at the European Synchrotron Radiation Facility (Grenoble, France), and the pre-edge features were used to determine the local environment and oxidation state of vanadium. In the case of the magnetite samples (natural and synthetic), we show that vanadium is incorporated in the octahedral site of the spinel structure under two oxidation states: +III and +IV. The variations of the pre-edge area are interpreted as various proportions in V3+ and V4+ (between 9.5 and 16.3% of V4+), V3+ being the main oxidation state. In particular, the variations of the V4+/V3+ ratio along the profile of the Main Magnetite Layer seem to follow the crystallization sequence of the layer. In the case of the hematite samples from India, the pre-edge features indicate that vanadium is substituted to Fe and mainly incorporated as V4+ (between 40 and 72% of V4+). We also demonstrate the potentiality of HERFD-XAS for mineralogical studies, since it can filter out the unwanted fluorescence and give better resolved spectra than conventional XAS.

  1. Influence of Sources on Plutonium Mobility and Oxidation State Transformations in Vadose Zone Sediments

    SciTech Connect

    Kaplan,D.; Powell, B.; Duff, M.; Demirkanli, D.; Denham, M.; Fjeld, R.; Molz, F.

    2007-01-01

    Well-defined solid sources of Pu(III) (PuCl3), Pu(IV) (Pu (NO3)4 and Pu (C2O4)2), and Pu(VI) (PuO2(NO3)2) were placed in lysimeters containing vadose zone sediments and exposed to natural weather conditions for 2 or 11 years. The objective of this study was to measure the release rate of Pu and the changes in the Pu oxidation states from these Pu sources with the intent to develop a reactive transport model source-term. Pu(III) and Pu(IV) sources had identical Pu concentration depth profiles and similar Pu release rates. Source release data indicate that PuIV(C2O4)2 was the least mobile, whereas PuVIO2(NO3)2 was the most mobile. Synchrotron X-ray fluorescence (SXRF) revealed that Pu was very unevenly distributed on the sediment and Mn concentrations were too low (630 mg kg-1) and perhaps of the wrong mineralogy to influence Pu distribution. The high stability of sorbed Pu(IV) is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. Plutonium X-ray absorption near-edge spectroscopy (XANES) analysis conducted on sediment recovered at the end of the study from the PuIV(NO3)4- and PuIIICl3-amended lysimeters contained essentially identical Pu distributions: approximately 37% Pu(III), 67% Pu(IV), 0% Pu(V), and 0% Pu(VI). These results were similar to those using a wet chemistry Pu oxidation state assay, except the latter method did not detect any Pu(III) present on the sediment but instead indicated that 93-98% of the Pu existed as Pu(IV). This discrepancy was likely attributable to incomplete extraction of sediment Pu(III) by the wet chemistry method. Although Pu has been known to exist in the +3 oxidation state under microbially induced reducing conditions for decades, to our knowledge, this is the first observation of steady-state Pu(III) in association with natural sediments. On the basis of thermodynamic considerations, Pu(III) has a wide potential distribution, especially in acidic environments, and as such may warrant further

  2. Influence of sources on plutonium mobility and oxidation state transformations in vadose zone sediments.

    PubMed

    Kaplan, Daniel I; Powell, Brian A; Duff, Martine C; Demirkanli, Deniz I; Denham, Miles; Fjeld, Robert A; Molz, Fred J

    2007-11-01

    Well-defined solid sources of Pu(III) (PuCl3), Pu(IV) (Pu (NO3)4 and Pu (C2O4)2), and Pu(VI) (Pu02(NO3)2) were placed in lysimeters containing vadose zone sediments and exposed to natural weather conditions for 2 or 11 years. The objective of this study was to measure the release rate of Pu and the changes in the Pu oxidation states from these Pu sources with the intent to develop a reactive transport model source-term. Pu(III) and Pu(IV) sources had identical Pu concentration depth profiles and similar Pu release rates. Source release data indicate that PuIV(C2O4)2 was the least mobile, whereas Pu(VI)O2(NO3)2 was the most mobile. Synchrotron X-ray fluorescence (SXRF) revealed that Pu was very unevenly distributed on the sediment and Mn concentrations were too low (630 mg kg(-1)) and perhaps of the wrong mineralogy to influence Pu distribution. The high stability of sorbed Pu(IV) is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. Plutonium X-ray absorption near-edge spectroscopy (XANES) analysis conducted on sediment recovered at the end of the studyfrom the Pu(IV)(NO3)4- and Pu(III)(III)Cl3-amended lysimeters contained essentially identical Pu distributions: approximately 37% Pu(III), 67% Pu(IV), 0% Pu(V), and 0% Pu(VI). These results were similar to those using a wet chemistry Pu oxidation state assay, except the latter method did not detect any Pu(III) present on the sediment but instead indicated that 93-98% of the Pu existed as Pu(IV). This discrepancy was likely attributable to incomplete extraction of sediment Pu(III) by the wet chemistry method. Although Pu has been known to exist in the +3 oxidation state under microbially induced reducing conditions for decades, to our knowledge, this is the first observation of steady-state Pu(III) in association with natural sediments. On the basis of thermodynamic considerations, Pu(III) has a wide potential distribution, especially in acidic environments, and as such may warrant

  3. Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin.

    PubMed

    Jongberg, Sisse; Utrera, Mariana; Morcuende, David; Lund, Marianne N; Skibsted, Leif H; Estévez, Mario

    2015-09-30

    Chemical interactions between proteins and phenols affect the overall oxidative stability of a given biological system. To investigate the effect of protein-phenol adduct formation on the oxidative stability of β-lactoglobulin (β-LG), the protein was left to react with an equimolar concentration of 4-methylcatechol (4MC), catechin (Cat), or their respective quinone forms, 4-methylbenzoquinone (4MBQ) and catechin-quinone (CatQ), and subsequently subjected to metal-catalyzed oxidation by Fe(II)/H2O2 for 20 days at 37 °C. The reaction with 4MBQ resulted in 60% thiol loss and 22% loss of amino groups, whereas the addition of 4MC resulted in 12% thiol loss. The reaction with Cat or CatQ resulted in no apparent modification of β-LG. The oxidative stability of β-LG after reaction with each of 4MC, 4MBQ, Cat, or CatQ was impaired. Especially 4MC and 4MBQ were found to be pro-oxidative toward α-aminoadipic semialdehyde and γ-glutamic semialdehyde formation as well as the generation of fluorescent Schiff base products. The changes observed were ascribed to the redirection of oxidation as a result of the blocking of thiol groups but also to the oxidative deamination pathway, accelerating the production of semialdehydes and subsequently Schiff base structures. PMID:26348706

  4. Normal-state nodal electronic structure in underdoped high-Tc copper oxides.

    PubMed

    Sebastian, Suchitra E; Harrison, N; Balakirev, F F; Altarawneh, M M; Goddard, P A; Liang, Ruixing; Bonn, D A; Hardy, W N; Lonzarich, G G

    2014-07-01

    An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques. PMID:24930767

  5. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    PubMed Central

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-01-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2−xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of −2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected. PMID:27221198

  6. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    NASA Astrophysics Data System (ADS)

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-05-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2‑xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of ‑2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

  7. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating.

    PubMed

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S; Takeuchi, Ichiro; Greene, Richard L

    2016-01-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected. PMID:27221198

  8. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  9. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  10. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins.

    PubMed

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-01-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 10(3) times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651