Sample records for oxidation stimulates calcium

  1. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  2. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium oxide. 184.1210 Section 184.1210 Food and....1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or oyster shells by calcination...

  3. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    PubMed

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  4. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or...

  5. 21 CFR 184.1210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone, or...

  6. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.1210 - Calcium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is generally...

  11. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  12. [Features of noradrenaline stimulation of rat liver mitochondria respiration by ADP and calcium ions].

    PubMed

    Stefankiv, Iu S; Babskyĭ, A M; Shostakovska, Y V

    1995-01-01

    A single administration of a physiological dose of noradrenaline to animals. in contrast to adrenaline, stimulates the respiration of mitochondria not only under oxidation of FAD-dependent Krebbs cycle substrate of the succinase but also HAD-dependent substrate of alpha-ketoglutarate. In the both cases the phosphorylation rate increases, since the action of noradrenaline, separating the respiration and oxidative phosphorylation, was not found. Noradrenaline increases the capacity of mitochondria to more actively absorb calcium ions under oxidation of succinate than under that of alpha-ketoglutarate.

  13. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  14. Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation

    NASA Astrophysics Data System (ADS)

    Scharfman, Helen E.; Schwartzkroin, Philip A.

    1989-10-01

    Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.

  15. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in an...

  16. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in an...

  17. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in an...

  18. 46 CFR 148.230 - Calcium oxide (lime, unslaked).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcium oxide (lime, unslaked). 148.230 Section 148.230... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.230 Calcium oxide (lime, unslaked). (a) When transported by barge, unslaked lime (calcium oxide) must be carried in an...

  19. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium-dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells.

    PubMed

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C

    2012-07-27

    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.

  20. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    PubMed

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  1. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    PubMed Central

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  2. Preparation and properties of calcium oxide from eggshells via calcination

    NASA Astrophysics Data System (ADS)

    Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A.

    2012-12-01

    Duck eggs are one of the most versatile cooking ingredients in which residue eggshells are discarded. Raw duck eggshells were calcined at temperatures between 300 to 900 °C, for 1, 3, and 5 h. Both the raw and calcined duck eggshells were characterized by FTIR, STA, XRD, XRF, TEM, BET, a particle size analyzer, and an impedance analyzer. The proper calcination conditions are: 900 °C and 1 h, yielding calcium oxide with a purity of 99.06 % w/w. The calcium carbonate of the rhombohedral form (CaCO3) transforms completely into the calcium oxide or lime of the face centered cubic form (CaO) at 900 °C, as shown by XRD diffraction patterns. The transmission electron microscopy (TEM) images of the calcium oxide reveal a moderately good dispersion of nearly uniform particles. The calcium oxide has a white color, a spherical shape, high porosity, and narrow particles size distribution. The percentage of ceramic yield of the calcium oxide is 53.53, as measured by STA (TG-DTA-DTG). The calcium oxide has a N2 adsorption-desorption isotherm indicating the meso-porosity range. The dielectric constant and the electrical conductivity of the calcined calcium oxide are 35 and 1:0×10-6(Ω·m)-1, respectively, at the frequency of 500 Hz.

  3. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide. ...

  4. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide. ...

  5. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide. ...

  6. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide. ...

  7. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide. ...

  8. Phorbol ester stimulates calcium sequestration in saponized human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calciummore » sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.« less

  9. Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation Catalysis--Atomic Structure and Functionality.

    PubMed

    González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger

    2016-02-19

    Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. This journal is © The Royal Society of Chemistry 2012

  11. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of themore » ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.« less

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...

  13. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...

  14. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...

  15. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  16. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase.

    PubMed

    Talwar, Pooja Saigal; Gupta, Ravi; Maurya, Arun Kumar; Deswal, Renu

    2012-11-01

    Nitric oxide (NO) is an important signaling molecule having varied physiological and regulatory roles in biological systems. The fact that nitric oxide synthase (NOS) is responsible for NO generation in animals, prompted major search for a similar enzyme in plants. Arginine dependent NOS like activity (BjNOSla) was detected in Brassica juncea seedlings using oxyhemoglobin and citrulline assays. BjNOSla showed 25% activation by NADPH (0.4 mM) and 40% by calcium (0.4 mM) but the activity was flavin mononucleotide (FMN), flavin dinucleotide (FAD) and calmodulin (CaM) independent. Pharmacological approach using mammalian NOS inhibitors, NBT (300 μM) and l-NAME (5 mM), showed significant inhibition (100% and 67% respectively) supporting that the BjNOSla operates via the oxidative pathway. Most of the BjNOSla activity (80%) was confined to shoot while root showed only 20% activity. Localization studies by NADPH-diaphorase and DAF-2DA staining showed the presence of BjNOSla in guard cells. Kinetic analysis showed positive cooperativity with calcium as reflected by a decreased K(m) (∼13%) and almost two fold increase in V(max). PMA (438 nM), a kinase activator, activated BjNOSla ∼1.9 fold while its inactive analog 4αPDD was ineffective. Calcium and PMA activated the enzyme to ∼3 folds. Interestingly, 1,2-DG6 (2.5 μM) and PS (1 μM) with calcium activated the enzyme activity to ∼7 fold. A significant inhibition of BjNOSla by PKC inhibitors-staurosporine (∼90%) and calphostin-C (∼40%), further supports involvement of PKC-like kinase. The activity was also enhanced by abiotic stress conditions (7-46%). All these findings suggest that BjNOSla generates NO via oxidative pathway and is probably regulated by phosphorylation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  18. 40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...

  19. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    PubMed

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  20. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.

    PubMed

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-03-01

    Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.

  1. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  4. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  5. Calcium mobilization in HeLa cells induced by nitric oxide.

    PubMed

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  6. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids.

    PubMed

    Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2016-02-25

    Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.

  7. Comparison of side effects of pentagastrin test and calcium stimulation test in patients with increased basal calcitonin concentration: the gender-specific differences.

    PubMed

    Ubl, Philipp; Gincu, Tatiana; Keilani, Mohammad; Ponhold, Lothar; Crevenna, Richard; Niederle, Bruno; Hacker, Marcus; Li, Shuren

    2014-08-01

    The aim of this study was to compare the side effects of the pentagastrin test and the calcium stimulation test in patients with increased basal calcitonin concentration, especially the gender-specific differences of side effects. A total of 256 patients (123 females and 133 males, mean age of 56 ± 27 years, range 21-83 years) had both pentagastrin and calcium stimulation tests. All patients filled in a questionnaire regarding the side effects within 30 min after completion of the stimulation tests. The differences of side effects between female and male patients as well as between the pentagastrin stimulation test and the calcium stimulation test were evaluated. Warmth feeling was the most frequent occurring side effect in all patients who had both pentagastrin and calcium stimulation tests, followed by nausea, altered gustatory sensation, and dizziness. The incidences of urgency to micturate (p < 0.05) and dizziness (p < 0.05) were significantly increased in the female patients as compared to male patients by calcium stimulation test. Significant higher incidences of urgency to micturate (p < 0.05) and warmth feeling (p < 0.05) were found by calcium stimulation test as compared with those by pentagastrin test in female patients. The incidences of nausea (p < 0.05) and abdominal cramping (p < 0.05) in male patients were significantly higher by pentagastrin stimulation test than by calcium stimulation test. There is a significant gender-specific difference in side effects induced by calcium stimulation test. Female patients have fewer side effects by pentagastrin test than by calcium stimulation test. Male patients may tolerate the calcium stimulation test better than the pentagastrin test.

  8. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  9. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    PubMed

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    PubMed

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Water-oxidation catalysis by synthetic manganese oxides--systematic variations of the calcium birnessite theme.

    PubMed

    Frey, Carolin E; Wiechen, Mathias; Kurz, Philipp

    2014-03-21

    Layered manganese oxides from the birnessite mineral family have been identified as promising heterogeneous compounds for water-oxidation catalysis (WOC), a key reaction for the conversion of renewable energy into storable fuels. High catalytic rates were especially observed for birnessites which contain calcium as part of their structures. With the aim to systematically improve the catalytic performance of such oxide materials, we used a flexible synthetic route to prepare three series of calcium birnessites, where we varied the calcium concentrations, the ripening times of the original precipitates and the temperature of the heat treatment following the initial synthetic steps (tempering) during the preparation process. The products were carefully analysed by a number of analytical techniques and then probed for WOC activity using the Ce(4+)-system. We find that our set of twenty closely related manganese oxides shows large, but somewhat systematic alterations in catalytic rates, indicating the importance of synthesis parameters for maximum catalytic performance. The catalyst of the series for which the highest water-oxidation rate was found is a birnessite of medium calcium content (Ca : Mn ratio 0.2 : 1) that had been subjected to a tempering temperature of 400 °C. On the basis of the detailed analysis of the results, a WOC reaction scheme for birnessites is proposed to explain the observed trends in reactivity.

  12. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  13. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  14. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  15. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Roles of Cationic and Elemental Calcium in the Electro-Reduction of Solid Metal Oxides in Molten Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.

    2007-06-01

    Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.

  17. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

    PubMed Central

    Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2015-01-01

    Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587

  18. Phosphate and calcium are required for TGFbeta-mediated stimulation of ANK expression and function during chondrogenesis.

    PubMed

    Oca, Paulina; Zaka, Raihana; Dion, Arnold S; Freeman, Theresa A; Williams, Charlene J

    2010-08-01

    The expression of ANK, a key player in biomineralization, is stimulated by treatment with TGFbeta. The purpose of this study was to determine whether TGFbeta stimulation of ANK expression during chondrogenesis was dependent upon the influx of calcium and phosphate into cells. Treatment of ATDC5 cells with TGFbeta increased ANK expression during all phases of chondrogenic differentiation, particularly at day 14 (proliferation) and day 32 (mineralizing hypertrophy) of culture. Phosphate uptake studies in the presence and absence of phosphonoformic acid (PFA), a competitive inhibitor of the type III Na(+)/Pi channels Pit-1 and Pit-2, indicated that the stimulation of ANK expression by TGFbeta required the influx of phosphate, specifically by the Pit-1 transporter, at all phases of differentiation. At hypertrophy, when alkaline phosphatase is highly expressed, inhibition of its activity with levamisole also abrogated the stimulatory effect of TGFbeta on ANK expression, further illustrating that Pi availability and uptake by the cells is necessary for stimulation of ANK expression in response to TGFbeta. Since previous studies of endochondral ossification in the growth plate have shown that L-type calcium channels are essential for chondrogenesis, we investigated their role in the TGFbeta-stimulated ANK response in ATDC5 cells. Treatment with nifedipine to inhibit calcium influx via the L-type channel Cav1.2 (alpha(1C)) inhibited the TGFbeta stimulated increase in ANK expression at all phases of chondrogenesis. Our findings indicate that TGFbeta stimulation of ANK expression is dependent upon the influx of phosphate and calcium into ATDC5 cells at all stages of differentiation.

  19. 21 CFR 582.5210 - Calcium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  20. 21 CFR 582.5210 - Calcium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  1. 21 CFR 582.5210 - Calcium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  2. 21 CFR 582.5210 - Calcium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  3. 21 CFR 582.5210 - Calcium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  4. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Dolenšek, Jurij; Rupnik, Marjan Slak

    2013-01-01

    In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. PMID:23358454

  6. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  7. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    PubMed

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    DOE PAGES

    Squires, Leah N.; Lessing, Paul

    2016-01-13

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  9. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOEpatents

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  10. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  11. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schallreuter, K.U.; Gibbons, N.C.J.; Zothner, C.

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10{sup -3} M H{sub 2}O{sub 2}. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10{sup -3}M H{sub 2}O{sub 2} oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H{sub 2}O{sub 2} utilising {sup 45}calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activitiesmore » were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H{sub 2}O{sub 2}-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo.« less

  12. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  13. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  14. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-01-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices. PMID:26899567

  15. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    PubMed

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  16. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  17. Calcium antagonists modulate oxidative stress and acrosomal reaction in rat spermatozoa.

    PubMed

    Morakinyo, Ayodele; Iranloye, Bolanle; Adegoke, Olufeyisipe

    2011-08-01

    Calcium ions are vital in many biological processes and qualify as an almost ubiquitous intracellular second messenger. This indicates the multiplicity of the effects associated with drug actions aimed at interfering with calcium ions. To examine the cellular process involved in the induction of infertility in males by calcium antagonist (CA) even in the presence of normal semen parameters, we studied the effects of different CA namely; nifedipine, verapamil and diltiazem on oxidative balance and acrosome reaction in the sperm. For this purpose, lipid peroxidation, antioxidants such as superoxide dismutase, catalase and reduced glutathione, and acrosomal reaction were determined in sperm samples of rats. Calcium antagonist causes significant oxidative stress in the epididymal sperm with increased malondialdehyde level and a concomitant decrease in antioxidant activities of catalase and superoxide dismutase. The percentage value of acrosomal-reacted sperm in the nifedipine, verapamil and diltiazem-treated rats were 41 ±2.45, 39 ±2.92 and 42 ±1.22 respectively, compared with the control group value of 86 ±2.92. It appears CA oxidatively modify the sperm resulting in functional inhibition of acrosomal reaction. Suppression of the sperm acrosomal reaction is known to have serious adverse implications for fertilization.

  18. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons.

    PubMed

    Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A

    2017-11-01

    Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration.

    PubMed

    Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian

    2017-04-01

    Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.

    PubMed Central

    Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S

    1995-01-01

    In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK

  1. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity.

    PubMed Central

    Cook-Mills, Joan M; Johnson, Jacob D; Deem, Tracy L; Ochi, Atsuo; Wang, Lei; Zheng, Yi

    2004-01-01

    VCAM-1 (vascular cell adhesion molecule-1) plays an important role in the regulation of inflammation in atherosclerosis, asthma, inflammatory bowel disease and transplantation. VCAM-1 activates endothelial cell NADPH oxidase, and this oxidase activity is required for VCAM-1-dependent lymphocyte migration. We reported previously that a mouse microvascular endothelial cell line promotes lymphocyte migration that is dependent on VCAM-1, but not on other known adhesion molecules. Here we have investigated the signalling mechanisms underlying VCAM-1 function. Lymphocyte binding to VCAM-1 on the endothelial cell surface activated an endothelial cell calcium flux that could be inhibited with anti-alpha4-integrin and mimicked by anti-VCAM-1-coated beads. VCAM-1 stimulation of calcium responses could be blocked by an inhibitor of intracellular calcium mobilization, a calcium channel inhibitor or a calcium chelator, resulting in the inhibition of NADPH oxidase activity. Addition of ionomycin overcame the calcium channel blocker suppression of VCAM-1-stimulated NADPH oxidase activity, but could not reverse the inhibitory effect imposed by intracellular calcium blockage, indicating that both intracellular and extracellular calcium mobilization are required for VCAM-1-mediated activation of NADPH oxidase. Furthermore, VCAM-1 specifically activated the Rho-family GTPase Rac1, and VCAM-1 activation of NADPH oxidase was blocked by a dominant negative Rac1. Thus VCAM-1 stimulates the mobilization of intracellular and extracellular calcium and Rac1 activity that are required for the activation of NADPH oxidase. PMID:14594451

  2. Cerebrospinal fluid from subarachnoid haemorrhage patients causes excessive oxidative metabolism compared to vascular smooth muscle force generation.

    PubMed

    Pyne, G J; Cadoux-Hudson, T A; Clark, J F

    2001-01-01

    Cerebrospinal fluid (CSF) from subarachnoid haemorrhage (SAH) patients can stimulate vascular smooth muscle to generate force in vitro. CSF from SAH patients suffering from delayed ischaemic neurological deficits due to cerebral vasospasm can generate near maximal force in vitro and previous experiments have ascribed this generation of force to be a calcium mediated event. The intracellular calcium concentration has been demonstrated to rise during the vasospastic process. Calcium also stimulates oxidative metabolism as does adenosine diphosphate (ADP), the product of adenosine triphosphate (ATP) hydrolysis. Significant alteration in high energy metabolites such as ATP, ADP and phosphocreatine have also been demonstrated in various models of SAH mediated vasospasm. Vascular smooth muscle predominantly uses oxidative metabolism for force generation and reserves glycolytic metabolism for ion homeostasis. A decrease in oxidative metabolism during force generation would imply failing mitochondria and increased glycolytic high-energy phosphate supply. Increased oxidative metabolism would imply a decreased efficiency of the contractile apparatus or mitochondria. The aim of this study was to see if SAH CSF stimulation of porcine carotid artery oxidative metabolism was altered during force generation when compared with incremental calcium stimulation with potassium chloride depolarisation. CSF from patients (n = 10) who had subarachnoid haemorrhage stimulated force generation but with a significant 'right shift' in oxygen consumption. This 'right shift' is indicative of an increased energy cost for contractile work. These results suggest that vascular smooth muscle contractile apparatus, when stimulated by subarachnoid cerebrospinal fluid, is consuming excess adenosine triphosphate during force generation.

  3. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.

    PubMed

    Kirejev, Vladimir; Ali Doosti, Baharan; Shaali, Mehrnaz; Jeffries, Gavin D M; Lobovkina, Tatsiana

    2018-04-17

    Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate. This bulge can be translated in a contactless manner by moving a calcium ion source along the lipid nanotube. Furthermore, entrapment of polystyrene nanobeads within the bulge does not tamper the bulge movement and allows transporting of the nanoparticle cargo along the lipid nanotube. In addition to the synthetic lipid nanotubes, the response of cell plasma membrane tethers to local calcium ion stimulation is investigated. The directed membrane transport in these tethers is observed, but with slower kinetics in comparison to the synthetic lipid nanotubes. The findings of this work demonstrate a novel and contactless mode of transport in lipid nanotubes, guided by local exposure to calcium ions. The observed lipid nanotube behavior can advance the current understanding of the cell membrane tubular structures, which are constantly reshaped during dynamic cellular processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn₄ cluster in photosystem II.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.

  5. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment.

    PubMed

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Yang, Young Nam; Aro, Eva-Mari; Carpentier, Robert; Eaton-Rye, Julian J; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-01

    The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.

  6. High-dose calcium stimulation test in a case of insulinoma masquerading as hysteria.

    PubMed

    Nakamura, Yoshio; Doi, Ryuichiro; Kohno, Yasuhiro; Shimono, Dai; Kuwamura, Naomitsu; Inoue, Koichi; Koshiyama, Hiroyuki; Imamura, Masayuki

    2002-11-01

    It is reported that some cases with insulinoma present with neuropsychiatric symptoms and are often misdiagnosed as psychosis. Here we report a case of insulinoma masquerading as hysteria, whose final diagnosis could be made using high-dose calcium stimulation test. A 28-yr-old woman was referred presenting with substupor, mutism, mannerism, restlessness, and incoherence. Laboratory examinations revealed hypoglycemia (33 mg/dL) and detectable insulin levels (9.7 microU/mL), suggesting the diagnosis of insulinoma. However, neither imaging studies nor selective arterial calcium injection (SACI) test with a conventional dose of calcium (0.025 mEq/kg) indicated the tumor. High-dose calcium injection (0.05 mEq/kg) evoked insulin secretion when injected into superior mesenteric artery. A solitary tumor in the head of the pancreas was resected, and her plasma glucose returned to normal. Postoperatively, iv injection of secretin resulted in a normal response of insulin, which was not found preoperatively. This case suggests the usefulness of the SACI test with high-dose of calcium in the case of insulinoma when the standard dose fails to detect such a tumor.

  7. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  8. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  9. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  10. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  11. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  12. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time

  13. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  14. Glucocorticoids suppress calcium mobilization and phospholipid hydrolysis in anti-Ig antibody-stimulated B cells.

    PubMed

    Dennis, G; June, C H; Mizuguchi, J; Ohara, J; Witherspoon, K; Finkelman, F D; McMillan, V; Mond, J J

    1987-10-15

    Glucocorticoids have been shown to play a major role in influencing the activation of B lymphocytes. In view of our recent observation that dexamethasone exerts a marked suppressive effect on an early event in B cell activation that is stimulated by anti-Ig antibody, we investigated its activity on other stimuli that induce intracellular events similar to those produced by anti-Ig antibody. Because the intracellular events that occur after B cell stimulation with phorbol myristate acetate and the calcium ionophore A23187 appear to mimic those that occur after B cell stimulation with anti-Ig antibody, we studied whether the cellular responses elicited by these activation stimuli are affected in a similar fashion by dexamethasone. Whereas anti-Ig antibody-stimulated entry of G0 B cells to the G1 and S phase of the cell cycle was markedly suppressed by dexamethasone, phorbol myristate acetate/A23187 stimulation of these events was resistant to dexamethasone. Our finding that anti-Ig-induced cross-linking of B cell surface Ig, as measured by surface Ig capping, was not inhibited by dexamethasone suggested that corticosteroids inhibit anti-Ig-induced B cell proliferation at a step distal to membrane Ig cross-linking and proximal to phosphatidylinositol bisphosphate hydrolysis. This hypothesis is supported by experiments presented in this manuscript which demonstrate that dexamethasone inhibits anti-Ig-stimulated phosphatidylinositol bisphosphate hydrolysis. We also found that dexamethasone markedly inhibited anti-Ig antibody-stimulated increases in intracellular ionized calcium concentrations. This dexamethasone-mediated suppression is time-dependent as it is not seen when B cells are cultured with dexamethasone for less than 6 hr. Our data suggest that the immunomodulatory activity of glucocorticoids is exerted by binding to its nuclear receptor, thereby preventing the generation of second messengers required for cell activation after agonist-receptor interaction.

  15. Biocompatibility of ferric calcium phosphorous oxide ceramics.

    PubMed

    Stricker, N J; Larrabee, R A; Bajpai, P K

    1992-01-01

    The objective of this investigation was to ascertain the biocompatability of a ferric calcium phosphorous oxide ceramic (FECAP). The FECAP ceramic was fabricated from stock powders combined in a ratio of 46:40:14 by weight of Fe2O3:CaO:P2O5. The composite oxides were mixed for homogeneity, pressed into a 20g block, and calcined in a crucible at 1100 degrees C for 12 hours. The calcined ceramic was then ground in a ball mill before separation into particle sizes of 38-45 microns and 63-75 microns, by an automatic siever and shaker. Calcined powders of each particle size were mixed with polyvinyl alcohol binder (0.025g PVA/1.0g of FECAP), and pressed into 0.5g pellets in a 5/16" (internal diameter) die at a 1820 kilogram load using a Carver hydraulic press. FECAP pellets were then sintered at 1100 degrees C for 12 hours. For this investigation, sixty albino (Sprague-Dawley) rats weighing 125-425 g each, were distributed into four groups: non-operated controls, sham-operated controls, and two groups subcutaneously implanted with ceramics 38-45 microns and 63-75 microns FECAP ceramics, respectively. Three rats from each group were sacrificed at three, five, seven, and twenty-one days post-surgery. Morphologic examination of the implant and implant site as well as hematocrit data indicate that this ferric-calcium-phosphorous oxide ceramic is biocompatible. Data obtained todate suggest that sintered FECAP should have a wide variety of dental and medical applications, especially where iron deficiency is a concern.

  16. Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana.

    PubMed

    Hu, Xiang Yang; Neill, Steven J; Cai, Wei Ming; Tang, Zhang Cheng

    2004-06-01

    Responses to oligogalacturonic acid (OGA) were determined in transgenic Arabidopsis thaliana seedlings expressing the calcium reporter protein aequorin. OGA stimulated a rapid, substantial and transient increase in the concentration of cytosolic calcium ([Ca2+]cyt) that peaked after ca. 15 s. This increase was dose-dependent, saturating at ca. 50 ug Gal equiv/ml of OGA. OGA also stimulated a rapid generation of H2O2. A small, rapid increase in H2O2 content was followed by a much larger oxidative burst, with H2O2 content peaking after ca. 60 min and declining thereafter. Induction of the oxidative burst by OGA was also dose-dependent, with a maximum response again being achieved at ca. 50 ug Gal equiv/mL. Inhibitors of calcium fluxes inhibited both increases in [Ca2+]cyt and [H2O2], whereas inhibitors of NADPH oxidase blocked only the oxidative burst. OGA increased strongly the expression of the defence-related genes CHS, GST, PAL and PR-1. This induction was suppressed by inhibitors of calcium flux or NADPH oxidase, indicating that increases in both cytosolic calcium and H2O2 are required for OGA-induced gene expression.

  17. Nitric oxide augments voltage-activated calcium currents of crustacea (Idotea baltica) skeletal muscle.

    PubMed

    Erxleben, C; Hermann, A

    2001-03-16

    Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.

  18. Induction of calcium-dependent nitric oxide synthases by sex hormones.

    PubMed

    Weiner, C P; Lizasoain, I; Baylis, S A; Knowles, R G; Charles, I G; Moncada, S

    1994-05-24

    We have examined the effects of pregnancy and sex hormones on calcium-dependent and calcium-independent nitric oxide synthases (NOSs) in the guinea pig. Pregnancy (near term) caused a > 4-fold increase in the activity of calcium-dependent NOS in the uterine artery and at least a doubling in the heart, kidney, skeletal muscle, esophagus, and cerebellum. The increase in NOS activity in the cerebellum during pregnancy was inhibited by the estrogen-receptor antagonist tamoxifen. Treatment with estradiol (but not progesterone) also increased calcium-dependent NOS activity in the tissues examined from both females and males. Testosterone increased calcium-dependent NOS only in the cerebellum. No significant change in calcium-independent NOS activity was observed either during pregnancy or after the administration of any sex hormone. Both pregnancy and estradiol treatment increased the amount of mRNAs for NOS isozymes eNOS and nNOS in skeletal muscle, suggesting that the increases in NOS activity result from enzyme induction. Thus both eNOS and nNOS are subject to regulation by estrogen, an action that could explain some of the changes that occur during pregnancy and some gender differences in physiology and pathophysiology.

  19. Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria.

    PubMed

    Gutiérrez-Pérez, Areli; Cortés-Rojo, Christian; Noriega-Cisneros, Ruth; Calderón-Cortés, Elizabeth; Manzo-Avalos, Salvador; Clemente-Guerrero, Mónica; Godínez-Hernández, Daniel; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe(2+) + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.

  20. Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation: a prospective cohort study.

    PubMed

    Ott, J; Wattar, L; Kurz, C; Seemann, R; Huber, J C; Mayerhofer, K; Vytiska-Binstorfer, E

    2012-05-01

    To evaluate whether parameters for calcium metabolism were associated with characteristics of polycystic ovary syndrome (PCOS). A prospective cohort study. Ninety-one anovulatory, infertile women with PCOS patients underwent clomiphene citrate (CC) stimulation. Main outcome measures were parathyroid hormone (PTH); 25-hydroxyvitamin D3 (25OHD3); serum levels of calcium, phosphorus, magnesium, albumin, and total protein; the serum calcium-phosphorus product; LH; FSH; sexual hormone binding globulin; testosterone; and androstenedione. PTH correlated inversely with serum calcium (r=-0.235; P=0.004) and 25OHD3 (r=-0.664; P<0.001), whereas positive correlations were found between PTH and body mass index (BMI; r=0.270; P=0.010) and between PTH and testosterone (r=0.347; P=0.001). After stimulation with 50 mg CC, 57.1% (52/91) developed a follicle, whereas 26.4% (24/91) became pregnant. In a multivariate model to predict both follicle development and pregnancy, BMI and 25OHD3 deficiency were significant predictive parameters. 25OHD3 deficiency was an independent predictive parameter of CC stimulation outcome, in terms of follicle development and pregnancy. Our results suggest a substantial role of vitamin D in PCOS and infertility treatment in these patients.

  1. WETTING STIMULATES ATMOSPHERIC CH4 OXIDATION BY ALPINE SOIL (R823442)

    EPA Science Inventory

    Studies were done to assess the effects of soil moisture manipulations on CH4 oxidation in soils from a dry alpine tundra site. When water was added to these soils there was a stimulation of CH4 oxidation. This stimulation of CH4 oxidation took ti...

  2. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    PubMed

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  3. Oxidative phenomena are implicated in human T-cell stimulation.

    PubMed Central

    Sekkat, C; Dornand, J; Gerber, M

    1988-01-01

    Phytohaemagglutinin (PHA), phorbol myristate acetate (PMA) and PHA + PMA stimulation of T-enriched peripheral blood lymphocytes (PBL) and the Jurkat malignant T-cell line leads to oxidative-product formation, as evaluated by flow cytofluorometric studies, an increase in K+ flux across the membrane, cGMP production and a depolarization of the cell membrane. Irradiation (20 Gy), which enhances IL-2 synthesis by activated T-enriched PBL and Jurkat cells, also increases oxidative product formation, K+ flux, cGMP production, and induces cell membrane depolarization. Conversely, irradiation does not produce a rise in intracellular free Ca2+, as measured in PHA-stimulated Jurkat cells. PMA is also without effect on intracellular free Ca2+, added before or after PHA stimulation. Thus, except for the rise in intracellular free Ca2+, irradiation and stimulation exert similar effects on some of the events observed in IL-2-producing Jurkat cells, but these effects are not additive. Stimulation and irradiation effects are shown to be additive or synergistic only for cGMP production. It is proposed that irradiation may increase IL-2 synthesis by participating in an additional signal related to the oxidative metabolism of arachidonic acid (AA). PMID:3258279

  4. Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin.

    PubMed

    Kraidith, Kamonshanok; Jantarajit, Walailuk; Teerapornpuntakit, Jarinthorn; Nakkrasae, La-iad; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2009-09-01

    Prolactin (PRL) is reported to stimulate calcium absorption in the rat's small intestine. However, little is known regarding its effects on the cecum, a part of the large intestine with the highest rate of intestinal calcium transport. We demonstrated herein by quantitative real-time polymerase chain reaction and Western blot analysis that the cecum could be a target organ of PRL since cecal epithelial cells strongly expressed PRL receptors. In Ussing chamber experiments, PRL enhanced the transcellular cecal calcium absorption in a biphasic dose-response manner. PRL also increased the paracellular calcium permeability and passive calcium transport in the cecum, which could be explained by the PRL-induced decrease in transepithelial resistance and increase in cation selectivity of the cecal epithelium. PRL actions in the cecum were abolished by inhibitors of phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK), but not inhibitors of gene transcription and protein biosynthesis. In conclusion, PRL directly enhanced the transcellular and paracellular calcium transport in the rat cecum through the nongenomic signaling pathways involving PI3K, PKC, and ROCK.

  5. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms

    PubMed Central

    Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.

    2011-01-01

    Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768

  6. Basal Serum Calcitonin, After Calcium Stimulation, and in the Needle Washout of Patients with Thyroid Nodules and Mild or Moderate Basal Hypercalcitoninemia.

    PubMed

    Rosario, P W; Calsolari, M R

    2017-02-01

    This prospective study evaluated the concentrations of basal serum calcitonin (Ctn), Ctn after stimulation with calcium, and Ctn in the needle washout (FNA-Ctn) as predictors of sporadic medullary thyroid carcinoma (MTC) in patients with thyroid nodules and basal Ctn between 10 and 100 pg/ml. Forty-one patients were included in the study. MTC was diagnosed in only 6 patients (14.6%). None of the patients with basal Ctn≤24.6 pg/ml (n=26) or stimulated Ctn≤186.5 pg/ml (n=21) had MTC. All patients without MTC had basal Ctn<47 pg/ml and stimulated Ctn<655.2 pg/ml. Among patients with basal Ctn between 24.6 and 47 pg/ml (n=12), 3 (25%) had MTC. Among patients with stimulated Ctn between 186.5 and 655.2 pg/ml (n=18), 4 (22.2%) had MTC. FNA-Ctn distinguished nodules that were MTC (n=6) from those that were not (n=60), without overlapping results. In the calcium stimulation test, 19 patients (46.3%) reported some adverse effect, but none of them was severe or required specific treatment. Our results highlight that in patients without a history suspicious for MTC, mild or moderate basal hypercalcitoninemia should not establish the diagnosis of this tumor. Depending on the concentration found, basal Ctn should be sufficient to define patient management. In doubtful cases, FNA-Ctn seems to be the best diagnostic test. Calcium stimulation testing was safe, but more studies are needed to determine the Ctn cutoff after stimulation with calcium. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Efficacy of calcium oxide and calcium hydroxide nanoparticles on the elimination of Enterococcus faecalis in human root dentin.

    PubMed

    Louwakul, Phumisak; Saelo, Attapon; Khemaleelakul, Saengusa

    2017-04-01

    The objective of this study was to compare the antibacterial effect of calcium oxide nanoparticles (CONPs) and calcium hydroxide nanoparticles (CHNPs) against Enterococcus faecalis in a dentinal block model. E. faecalis strain JCM 7783 was introduced into dentinal tubules of semicylindrical dentin specimens by centrifugation and incubated for 1 week. Fifty microliters of CONPs or CHNPs was placed on the root canal side of the infected dentin specimens. The specimens were then incubated in aerobic condition at 37 °C and 100 % relative humidity for 1 week. The treated dentin specimens were subjected to fluorescent staining and confocal laser scanning microscopy (CLSM) to analyze the proportions of non-vital and vital bacterial cells inside the dentinal tubules. Scanning electron microscopy (SEM) was used to confirm the effect of the medicaments on the bacteria in the dentinal tubules. Calcium oxide (CO) and calcium hydroxide (CH) were used as controls. Based on the CLSM and SEM analyses, CHNPs were more efficient than CONPs in the elimination of the bacteria in the dentinal tubules. CONPs significantly killed more E. faecalis than CO and CH (P < .05). Neither CO nor CH was able to kill the bacteria. CHNPs were more effective than CONPs in the elimination of E. faecalis in dentinal tubules. CHNPs are effective nanoparticles in killing endodontic bacteria present in dentinal tubules. They have potential as an intracanal medicament, which may be beneficial in root canal therapy.

  8. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  9. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    PubMed Central

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  10. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria].

    PubMed

    Vatamaniuk, M Z; Artym, V V; Kuka, O B; Doliba, M M; Shostakovs'ka, I V

    1996-01-01

    It is shown that administration of acetylcholine to animals (50 micrograms per 100 g of body weight) leads to the activation of respiration and oxidative phosphorylation in the rat liver mitochondria under oxidation of alpha-ketoglutarate; this effect depends on the concentration of calcium ions in the incubation medium of mitochondria. The rate of ADP-stimulated respiration of mitochondria of experimental animals reaches its maximum level under lower concentrations of Ca2+ than in the control animals. The results of investigation of dependence of acetyl choline effect on respiration of mitochondria on the concentration of alpha-ketoglutarate in calcium and calcium-free incubation medium have shown that the half-maximum effect of acetylcholine is observed in calcium medium at lower concentration of the substrate than in calcium-free medium. The latter indicates to the increase of affinity of alpha-ketoglutarate dehydrogenase to alpha-ketoglutarate under these conditions. It is found out that acetylcholine (1.10(-8) M) increases the rate of ADP- and Ca(2+)-stimulated respiration of mitochondria of isolated perfused rat liver, while mutual effect of verapamyl and niphedipin removes this effect.

  11. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons

    PubMed Central

    Bellamy, Jamie; Bowen, Elizabeth J.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Calcitonin gene-related peptide (CGRP) and nitric oxide are involved in the underlying pathophysiology of migraine and other diseases involving neurogenic inflammation. We have tested the hypothesis that nitric oxide might trigger signaling mechanisms within the trigeminal ganglia neurons that would coordinately stimulate CGRP synthesis and release. Treatment of primary trigeminal ganglia cultures with nitric oxide donors caused a greater than four-fold increase in CGRP release compared with unstimulated cultures. Similarly, CGRP promoter activity was also stimulated by nitric oxide donors and overexpression of inducible nitric oxide synthase (iNOS). Cotreatment with the antimigraine drug sumatriptan greatly repressed nitric oxide stimulation of CGRP promoter activity and secretion. Somewhat surprisingly, the mechanisms of nitric oxide stimulation of CGRP secretion did not require cGMP or PI3-kinase signaling pathways, but rather, nitric oxide action required extracellular calcium and likely involves T-type calcium channels. Furthermore, nitric oxide was shown to increase expression of the active forms of the mitogen-activated protein kinases Jun amino-terminal kinase and p38 but not extracellular signal-related kinase in trigeminal neurons. In summary, our results provide new insight into the cellular mechanisms by which nitric oxide induces CGRP synthesis and secretion from trigeminal neurons. PMID:16630053

  12. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    PubMed Central

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion. PMID:25946314

  13. Effect of parathyroid hormone and calcium ions on substrate oxidation by isolated glomeruli of the rat.

    PubMed

    Wang, M S; Kurokawa, K

    1981-11-05

    Effect of Ca2+ and parathyroid hormone (PTH) on 14 CO2 production from certain metabolic substrates by isolated glomeruli of rat kidney were examined. Increasing calcium concentration in the incubation medium inhibited 14CO2 production from 14C-labeled alpha-ketoglutarate and succinate, stimulated 14CO2 production from [1-14C]glucose and [1-14C]glutamate, but was without effect on that from [6-14C]glucose. PTH in the presence but not in the absence of Ca2+ inhibited 14CO2 production from labeled alpha-ketoglutarate and glutamate but not from labeled glucose. Additions of cyclic AMP as well as hormonal agents known to act directly on the glomureli, such as histamine, epinephrine, prostaglandin E2, vasopressin, angiotensin II and insulin, did not alter 14 CO2 production from labeled alpha-ketoglutarate. These data show the presence of calcium-dependent inhibitory actions on PTH on oxidation of alpha-ketoglutarate and glutamate which may be independent of cyclic AMP. These metabolic effects of PTH may underlie the alteration in the glomerular ultrafiltration coefficient and glomerular filtration induced by the hormone.

  14. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases.

    PubMed

    Gibson, Gary E; Huang, Hsueh-Meei

    2004-08-01

    Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H(2)O(2), a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, alpha-keto-beta-methyl-n-valeric acid (KMV) diminishes the H(2)O(2) effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H(2)O(2)-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.

  15. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  16. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    PubMed

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  17. Hybrid calcium phosphate coatings for implants

    NASA Astrophysics Data System (ADS)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  18. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca2+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca2+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca2+. The T2 values decreased 25% when Ca2+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca2+-sensitive MRI.

  19. High calcium diet improves the liver oxidative stress and microsteatosis in adult obese rats that were overfed during lactation.

    PubMed

    Conceição, E P S; Moura, E G; Soares, P N; Ai, X X; Figueiredo, M S; Oliveira, E; Lisboa, P C

    2016-06-01

    Obesity is related to diabetes, higher oxidative stress and nonalcoholic fatty liver disease, and dietetic therapies, for instance calcium-rich diet, can improve these dysfunctions. Rats raised in small litters (SL) had increased fat depots and insulin resistance at adulthood associated with higher liver oxidative stress and microsteatosis. Thus, we evaluated if dietary calcium can improve these changes. In PN3, litter size was adjusted to 3 pups (SL group) to induce overfeeding, while controls had 10 pups until weaning. At PN120, SL group was randomly divided into: rats fed with standard chow or fed with calcium supplementation (SL-Ca group, 10 g/kg chow) for 60 days. At PN180, dietary calcium normalized food consumption, visceral fat, plasma aspartate aminotransferase (AST) and glycaemia. Concerning oxidative balance, calcium restored both higher hepatic lipid peroxidation and protein carbonylation as well as higher plasma lipid peroxidation. Higher fatty acid synthase (FAS) content, steatosis and lower protein kinase B (Akt) in SL group were normalized by dietary calcium and SL-Ca rats had lower hepatic cholesterol. Thus, calcium supplementation improved the insulin sensitivity, redox balance and steatosis in the liver. Therefore, dietary calcium can be a promising therapy for liver disease in the metabolic syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  1. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  2. Effects of deoxynivalenol on calcium homeostasis of concanavalin A--Stimulated splenic lymphocytes of chickens in vitro.

    PubMed

    Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong; Yu, Shumin; Cao, Suizhong

    2016-04-01

    In this study, the in vitro effects of the treatment of concanavalin A (Con A)--stimulated splenic lymphocytes with DON were examined. Splenic lymphocytes isolated from chickens were stimulated with 12.5 μg/mL Con A and exposed to deoxynivalenol (DON) (0-50 μg/mL) for 48 h. The intracellular calcium concentration ([Ca(2+)]i), pH, calmodulin (CaM) mRNA levels, and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were detected. With the DON exposure concentrations increased, the [Ca(2+)]i and CaM mRNA levels gradually increased in a dose-dependent manner, and all the evaluated conconcentrations affected ATPase activity to the same extent. There were significant differences (P<0.05 or P<0.01) between the treatment groups and the control group. These results indicate that an imbalance in calcium homeostasis and intracellular acidification are components of DON cytotoxicity in chicken lymphocytes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  4. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement.

    PubMed

    Marciano, Marina Angélica; Estrela, Carlos; Mondelli, Rafael Francisco Lia; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro

    2013-01-01

    The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC) was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO), determined by weight. Mineral trioxide aggregate (MTA) was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p<0.05). The cements in which bismuth oxide was added showed radiopacity corresponding to the ISO recommendations (>3 mm equivalent of Al). The MTA group was statistically similar to the CSC/30% BO group (p>0.05). In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC/50% BO group (p<0.05). The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC/15% BO and CSC/50% BO groups (p<0.05). After 30 days, CSC showed statistically higher ΔE values than CSC/30% BO and CSC/50% BO (p<0.05). In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  5. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  6. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    PubMed

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  7. Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestion kinetics

    USDA-ARS?s Scientific Manuscript database

    Experiments were carried out to evaluate, using in vitro and in situ techniques, the effects of three inclusion levels of calcium oxide (0, 5, and 10 g/kg of sugarcane fresh matter) and four exposure times (0, 24, 48, and 72 h) of sugarcane to calcium oxide on the chemical composition and digestive ...

  8. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  9. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin

    PubMed Central

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-01-01

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein–protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 μM Ca2+, suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (<1 μM in calmodulin) that are unlikely to buffer calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens. PMID:17003117

  10. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    PubMed

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (<1 microM in calmodulin) that are unlikely to buffer calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  11. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease.

    PubMed

    Pérez-Cañamás, A; Benvegnù, S; Rueda, C B; Rábano, A; Satrústegui, J; Ledesma, M D

    2017-05-01

    Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.

  12. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.

    PubMed

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2012-08-01

    In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.

  13. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide.

    PubMed

    Zamparini, Fausto; Siboni, Francesco; Prati, Carlo; Taddei, Paola; Gandolfi, Maria Giovanna

    2018-05-08

    The aim of the study was to evaluate chemical-physical properties and apatite-forming ability of three premixed calcium silicate materials containing monobasic calcium phosphate (CaH 4 P 2 O 8 ) bioceramic, tantalum pentoxide and zirconium oxide, recently marketed for endodontics (TotalFill BC-Sealer, BC-RRM-Paste, BC-RRM-Putty). Microchemical and micromorphological analyses, radiopacity, initial and final setting times, calcium release and alkalising activity were tested. The nucleation of calcium phosphates (CaPs) and/or apatite after 28 days ageing was evaluated by ESEM-EDX and micro-Raman spectroscopy. BC-Sealer and BC-RRM-Paste showed similar initial (23 h), prolonged final (52 h) setting times and good radiopacity (> 7 mm Al); BC-RRM-Putty showed fast initial (2 h) and final setting times (27 h) and excellent radiopacity (> 9 mm Al). All materials induced a marked alkalisation (pH 11-12) up to 28 days and showed the release of calcium ions throughout the entire test period (cumulative calcium release 641-806 ppm). After 28 days ageing, a well-distributed mineral layer was present on all samples surface; EDX demonstrated relevant calcium and phosphorous peaks. B-type carbonated apatite and calcite deposits were identified by micro-Raman spectroscopy on all the 28-day-aged samples; the deposit thickness was higher on BC-RRM-Paste and BC-RRM-Putty, in agreement with calcium release data. These materials met the required chemical and physical standards and released biologically relevant ions. The CaSi-CaH 4 P 2 O 8 system present in the materials provided Ca and OH ions release with marked abilities to nucleate a layer of B-type carbonated apatite favoured/accelerated by the bioceramic presence. The ability to nucleate apatite may lead many clinical advantages: In orthograde endodontics, it may improve the sealing ability by the deposition of CaPs at the material-root dentine interface, and in endodontic surgery, it could promote bone and

  14. [Effect of calcium cations on acid-base properties and free radical oxidation of dopamine and pyrocatechol].

    PubMed

    Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K

    2008-01-01

    Ca2+-induced increase in the rate of pyrocatechol and dopamine oxidation by dioxygen and Ca2+-dependent acid-base properties of the catechols were studied by potentiometric titration, UV/Vis-spectrophotometry, EPR-spectroscopy, and by measurement of oxygen consumption. The effect of Ca2+ on the chain reactions of oxidation can be explained by additional deprotonation (decrease in pKai) of the catechols that accelerates one electron transport to dioxygen and formation of calcium semiquinonate, undergoing further oxidation. The described Ca2+-dependent redox-conversion of ortho-phenols proposes that an additional function of calcium in the cell can be its involvement in free radical oxidoreductive reactions at pH > pKai.

  15. A Human Platelet Calcium Calculator Trained by Pairwise Agonist Scanning

    PubMed Central

    Lee, Mei Yan; Diamond, Scott L.

    2015-01-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  16. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  17. MagR Alone Is Insufficient to Confer Cellular Calcium Responses to Magnetic Stimulation

    PubMed Central

    Pang, Keliang; You, He; Chen, Yanbo; Chu, Pengcheng; Hu, Meiqin; Shen, Jianying; Guo, Wei; Xie, Can; Lu, Bai

    2017-01-01

    Magnetic manipulation of cell activity offers advantages over optical manipulation but an ideal tool remains elusive. The MagR protein was found through its interaction with cryptochrome (Cry) and the protein in solution appeared to respond to magnetic stimulation (MS). After we initiated an investigation on the specific role of MagR in cellular response to MS, a subsequent study claimed that MagR expression alone could achieve cellular activation by MS. Here we report that despite systematically testing different ways of measuring intracellular calcium and different MS protocols, it was not possible to detect any cellular or neuronal responses to MS in MagR-expressing HEK cells or primary neurons from the dorsal root ganglion and the hippocampus. By contrast, in neurons co-expressing MagR and channelrhodopin, optical but not MS increased calcium influx in hippocampal neurons. Our results indicate that MagR alone is not sufficient to confer cellular magnetic responses. PMID:28360843

  18. [Acetylcholine activation of alpha-ketoglutarate oxidation in liver mitochondria].

    PubMed

    Shostakovskaia, I V; Doliba, N M; Gordiĭ, S K; Babskiĭ, A M; Kondrashova, M N

    1986-01-01

    Activation of alpha-ketoglutarate oxidation in the rat liver mitochondria takes place 15 and 30 min after intraperitoneal injection of acetyl choline. This mediator in doses of 25, 50 and 100 micrograms per 100 g of body weight causes a pronounced stimulation of phosphorylation respiration rate and calcium capacity of mitochondria with alpha-ketoglutarate oxidation. Acetyl choline is found to have a moderate inhibitory action on oxidation of lower (physiological) concentrations of succinate. Its stimulating action on alpha-ketoglutarate oxidation is associated with activation of M-cholinoreceptors; atropine, a choline-blocker, removes completely this effect. It is supposed that alpha-ketoglutarate and succinate are included into the composition of two reciprocal hormonal-substrate nucleotide systems.

  19. The effect of essential fatty acid deficiency on the stimulation of intestinal calcium transport by 1,25-dihydroxyvitamin D3.

    PubMed

    Kreutter, D; Matsumoto, T; Peckham, R; Zawalich, K; Wen, W H; Zolock, D T; Rasmussen, H

    1983-04-25

    The effect of altering the lipid composition of the brush-border membrane on the ability of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) to stimulate calcium transport across the intestinal mucosa was examined by raising chicks on a vitamin D, essential fatty acid-deficient diet (-DEFAD) and measuring calcium absorption from duodenal sacs in situ and calcium uptake into brush-border membrane vesicles in vitro. Administration of 1,25-(OH)2D3 to -DEFAD and to -D control chicks led to the same increase in calcium transport in situ, whereas calcium transport in isolated brush-border membrane vesicles was not stimulated in the EFAD group, but responded normally in the control group. When the incubation temperature was increased to 34 degrees C, brush-border membrane vesicles from 1,25-(OH)2D3-treated essential fatty acid-deficient (+DE-FAD) chicks accumulated calcium at a faster rate than did vesicles from -DEFAD chicks. There was a marked decrease in the linoleic acid content and an increase in the oleic acid content of both the total lipid extract of the brush-border membrane as well as the phosphatidylcholine and phosphatidylethanolamine fractions, which could explain the temperature sensitivity of the in vitro system. When the diet of the EFAD chicks was supplemented with linoleic acid, the rate of calcium uptake into subsequently isolated vesicles from +DE-FAD chicks correlated with the amount of linoleic acid in the brush-border membranes. These results support the concept that the action of 1,25-(OH)2D3 on membrane lipid turnover and structure plays a critically important role in the 1,25-(OH)2D3-mediated cellular transport responses.

  20. [Applicability of laser-based geological techniques in bone research: analysis of calcium oxide distribution in thin-cut animal bones].

    PubMed

    Andrássy, László; Maros, Gyula; Kovács, István János; Horváth, Ágnes; Gulyás, Katalin; Bertalan, Éva; Besnyi, Anikó; Füri, Judit; Fancsik, Tamás; Szekanecz, Zoltán; Bhattoa, Harjit Pal

    2014-11-09

    The structural similarities between the inorganic component of bone tissue and geological formations make it possible that mathematic models may be used to determine weight percentage composition of different mineral element oxides constituting the inorganic component of bone tissue. The determined weight percentage composition can be verified with the determination of element oxide concentration values by laser induced plasma spectroscopy and inductively coupled plasma optical emission spectrometry. It can be concluded from calculated weight percentage composition of the inorganic component of bone tissue and laboratory analyses that the properties of bone tissue are determined primarily by hydroxylapatite. The inorganic bone structure can be studied well by determining the calcium oxide concentration distribution using the laser induced plasma spectroscopy technique. In the present study, thin polished bone slides prepared from male bovine tibia were examined with laser induced plasma spectroscopy in a regular network and combined sampling system to derive the calculated calcium oxide concentration distribution. The superficial calcium oxide concentration distribution, as supported by "frequency distribution" curves, can be categorized into a number of groups. This, as such, helps in clearly demarcating the cortical and trabecular bone structures. Following analyses of bovine tibial bone, the authors found a positive association between the attenuation value, as determined by quantitative computer tomography and the "ρ" density, as used in geology. Furthermore, the calculated "ρ" density and the measured average calcium oxide concentration values showed inverse correlation.

  1. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial.

    PubMed

    Fedirko, Veronika; Bostick, Roberd M; Long, Qi; Flanders, W Dana; McCullough, Marjorie L; Sidelnikov, Eduard; Daniel, Carrie R; Rutherford, Robin E; Shaukat, Aasma

    2010-01-01

    The exact antineoplastic effects of calcium and vitamin D(3) in the human colon are unclear. Animal and in vitro studies show that these two agents reduce oxidative stress; however, these findings have never been investigated in humans. To address this, we conducted a pilot, randomized, double-blind, placebo-controlled, 2 x 2 factorial clinical trial to test the effects of calcium and vitamin D(3) on a marker of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), in the normal colorectal mucosa. Patients (N = 92) with at least one pathology-confirmed colorectal adenoma were treated with 2 g/d calcium and/or 800 IU/d vitamin D(3) versus placebo over 6 months. Overall labeling and colorectal crypt distribution of 8-OH-dG in biopsies of normal-appearing rectal mucosa were detected by standardized automated immunohistochemistry and quantified by image analysis. After 6 months of treatment, 8-OH-dG labeling along the full lengths of colorectal crypts decreased by 22% (P = 0.15) and 25% (P = 0.10) in the calcium and vitamin D(3) groups, respectively, but not in the calcium plus vitamin D(3) group. The estimated treatment effects were strongest among participants with higher baseline colon crypt vitamin D receptor expression (P = 0.05). Overall, these preliminary results indicate that calcium and vitamin D(3) may decrease oxidative DNA damage in the normal human colorectal mucosa, support the hypothesis that 8-OH-dG labeling in colorectal crypts is a treatable oxidative DNA damage biomarker of risk for colorectal neoplasms, and provide support for further investigation of calcium and vitamin D(3) as chemopreventive agents against colorectal neoplasms.

  2. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  3. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.

    PubMed

    Hall, Steven J; Silver, Whendee L

    2013-09-01

    Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P < 0.0001, pseudo R(2)  = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests

  4. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  5. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    PubMed

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  6. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  7. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  8. Evidence for a Regulatory Role of Calcium in Gravitropism

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1983-01-01

    Experiments conducted to determine the cellular basis of gravitropism, the phenomenon of calcium migration following gravitropic stimulation, and the preferential accumulation of calcium in cells are described. Results of autoradiographic studies of cross sections of oat, and the pryoantimony precipitation of calcium in situ are discussed. It was found that the movement of calcium during gravimetric stimulation is a redistribution of calcium from the vacuolar regions into the cells walls. This movement requires precipitation of a calcium ATPase. The control of calcium ATPase by calmodulin and whether chlorpromazine is binding to calmodulin in plants are considered.

  9. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2015-01-01

    To extend the external control capability of drug release, iron oxide nanoparticles (NPs) encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating) magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release. PMID:26185446

  10. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle.

    PubMed

    Moylan, Jennifer S; Smith, Jeffrey D; Wolf Horrell, Erin M; McLean, Julie B; Deevska, Gergana M; Bonnell, Mark R; Nikolova-Karakashian, Mariana N; Reid, Michael B

    2014-01-01

    Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity.

  11. SIMULTANEOUS CONTROL OF HGO, SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). (NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents...

  12. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-09-01

    A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p < 0.05), (ii) elevation in ΔΨm (p < 0.05), (iii) increased OCR and ATP formation (p < 0.05), (iv) increased intracellular NO levels (p < 0.05), (v) increased mitochondrial ROS production (p < 0.05), and (vi) increased susceptibility to rotenone (p < 0.05). Treatment with isradipine was able to partially rescue these negative effects of CNTF-ACM (p < 0.05). CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.

  13. Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry

    PubMed Central

    Huang, Hsueh-Meei; Chen, Huan-Lian; Gibson, Gary E.

    2014-01-01

    Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60%) or import (−40%). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25%) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a

  14. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids.

    PubMed

    Subbaiah, P V; Liu, M

    1996-05-31

    Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.

  15. Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells.

    PubMed Central

    Gardner, J D; Conlon, T P; Kleveman, H L; Adams, T D; Ondetti, M A

    1975-01-01

    COOH-terminal octapeptide of cholecystokinin (CCK-octapeptide) and the cholinergic agent carbamylcholine each produced a fourfold stimulation of calcium outflux in guinea pig isolated pancreatic acinar cells. Neither agent altered calcium influx. Stimulation of calcium outflux was rapid and specific, was abolished by reducing the incubation temperature to 4 degrees C, and was a saturable function of the secretagogue concentration. The concentrations of CCK-octapeptide and carbamylcholine that produced half-maximal stimulation of calcium outflux were 3.1 x 10(-10) M and 4.9 x 10(-5) M, respectively. The cholinergic antagonist antropine competitively inhibited carbamylcholine stimulation of calcium outflux but did not alter stimulation produced by CCK-octapeptide. Stimulation of calcium outflux by maximal concentrations of carbamycholine plus CCK-octapeptide was the same as that produced by a maximal concentration of either agent alone.Calcium outflux became refractory to stimulation by secretagogues, and incubation with either CCK-ostapeptide or carbamylcholine produced a refractoriness to both agents. The relative potencies with CCK and its related fragments stimulated calcium outflux were CCK-octapeptide greater than heptapeptide greater than CCK greater than hexapeptide = gastrin. Secretin, glucagon, and vasoactive intestinal peptide, at concentrations as high as 10(-5) M, failed to alter calcium outflux and did not affect stimulation by CCK-octapeptide or by carbamycholine. Images PMID:1150877

  16. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  17. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements.

    PubMed

    Demirkaya, K; Demirdöğen, B Can; Torun, Z Öncel; Erdem, O; Çırak, E; Tunca, Y M

    2017-10-01

    Mineral trioxide aggregate (MTA) is a calcium silicate dental cement used for various applications in dentistry. This study was undertaken to test whether the presence of three commercial brands of calcium silicate dental cements in the dental extraction socket of rats would affect the brain aluminium (Al) levels and oxidative stress parameters. Right upper incisor was extracted and polyethylene tubes filled with MTA Angelus, MTA Fillapex or Theracal LC, or left empty for the control group, were inserted into the extraction socket. Rats were killed 7, 30 or 60 days after operation. Brain tissues were obtained before killing. Al levels were measured by atomic absorption spectrometry. Thiobarbituric acid reactive substances (TBARS) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were determined using spectrophotometry. A transient peak was observed in brain Al level of MTA Angelus group on day 7, while MTA Fillapex and Theracal LC groups reached highest brain Al level on day 60. Brain TBARS level, CAT, SOD and GPx activities transiently increased on day 7 and then returned to almost normal levels. This in vivo study for the first time indicated that initial washout may have occurred in MTA Angelus, while element leaching after the setting is complete may have taken place for MTA Fillapex and Theracal LC. Moreover, oxidative stress was induced and antioxidant enzymes were transiently upregulated. Further studies to search for oxidative neuronal damage should be done to completely understand the possible toxic effects of calcium silicate cements on the brain.

  18. Involvement of calcium and calmodulin in oxidative and temperature stress of Amaranthus lividus L. during early germination.

    PubMed

    Bhattacharjee, Soumen

    2009-07-01

    Both heat and chilling caused reduction in membrane protein thiol level and increased accumulation of thiobarbituric acid reactive substances in 72 hr old germinating tissues (indicators of oxidative stress) and reduced germination and early growth performances. Calcium chelator EGTA [Ethylene glycol-bis (2-aminoethylether)-N, N,N',N, tetra acetic acid] calcium channel blocker LaCI3 (Lanthanum chloride) and calmodulin inhibitor TFP (trifluroperazine) aggravated these effects of heat and chilling and added calcium reversed them. Imposition of heat and chilling stress during early germination also causes accumulation of reactive oxygen species (ROS) like 02(-) and H2O2. Calcium treatment significantly reduced the accumulation of both the toxic ROS, while EGTA, LaCl3 and TFP treatment enhanced the accumulation. Activities of antioxidative enzymes catalase (CAT), ascorbate peroxidase (APOX) and glutathione reductase (GR) and total thiol content decreased significantly under both heat and chilling stress in germinating Amaranthus seedlings. Seedlings raised with Ca2+ treatment under heat and chilling stress exhibit higher activities of CAT7 GR and APOX and total thiol level than the untreated plants. EGTA, LaCl3 and TFP treatment, on the other hand significantly reduce the activities of all anti-oxidative enzymes and total thiol level. The work clearly supports the view that Ca2+-signalling pathway plays significant role in limiting heat and chilling induced oxidative stress by upregulating antioxidative defense during recovery phase of post-germination event in Amaranthus lividus.

  19. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    PubMed

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  20. Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons

    PubMed Central

    Cao, Zhengyu; Shafer, Timothy J.

    2011-01-01

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019

  1. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuerun, E-mail: xuerunli@163.com; Zhang, Yu; Shen, Xiaodong, E-mail: xdshen@njut.edu.cn

    The formation kinetics of tricalcium aluminate (C{sub 3}A) and calcium sulfate yielding calcium sulfoaluminate (C{sub 4}A{sub 3}more » $$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C{sub 3}A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca{sub 3}Al{sub 2}O{sub 6} + CaSO{sub 4} → Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 10CaO → 6Ca{sub 3}Al{sub 2}O{sub 6} + 2SO{sub 2} ↑ + O{sub 2} ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C{sub 4}A{sub 3}$$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C{sub 4}A{sub 3}$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca{sup 2+} and SO{sub 4}{sup 2−} were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C{sub 3}A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion.« less

  2. Bimatoprost and prostaglandin F(2 alpha) selectively stimulate intracellular calcium signaling in different cat iris sphincter cells.

    PubMed

    Spada, Clayton S; Krauss, Achim H-P; Woodward, David F; Chen, June; Protzman, Charles E; Nieves, Amelia L; Wheeler, Larry A; Scott, David F; Sachs, George

    2005-01-01

    Bimatoprost is a synthetic analog of prostaglandin F(2 alpha) ethanolamide (prostamide F(2 alpha)), and shares a pharmacological profile consistent with that of the prostamides. Like prostaglandin F(2 alpha) carboxylic acid, bimatoprost potently lowers intraocular pressure in dogs, primates and humans. In order to distinguish its mechanism of action from prostaglandin F(2 alpha), fluorescence confocal microscopy was used to examine the effects of bimatoprost, prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) on calcium signaling in resident cells of digested cat iris sphincter, a tissue which exhibits contractile responses to both agonists. Constant superfusion conditions obviated effective conversion of bimatoprost. Serial challenge with 100 nM bimatoprost and prostaglandin F(2 alpha) consistently evoked responses in different cells within the same tissue preparation, whereas prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) elicited signaling responses in the same cells. Bimatoprost-sensitive cells were consistently re-stimulated with bimatoprost only, and prostaglandin F(2 alpha) sensitive cells could only be re-stimulated with prostaglandin F(2 alpha). The selective stimulation of different cells in the same cat iris sphincter preparation by bimatoprost and prostaglandin F(2 alpha), along with the complete absence of observed instances in which the same cells respond to both agonists, strongly suggests the involvement of distinct receptors for prostaglandin F(2 alpha) and bimatoprost. Further, prostaglandin F(2 alpha) but not bimatoprost potently stimulated calcium signaling in isolated human embryonic kidney cells stably transfected with the feline- and human-prostaglandin F(2 alpha) FP-receptor and in human dermal fibroblast cells, and only prostaglandin F(2 alpha) competed with radioligand binding in HEK-feFP cells. These studies provide further evidence for the existence of a bimatoprost-sensitive receptor that is distinct from

  3. Vasodilatory effect of asafoetida essential oil on rat aorta rings: The role of nitric oxide, prostacyclin, and calcium channels.

    PubMed

    Esmaeili, Hassan; Sharifi, Mozhdeh; Esmailidehaj, Mansour; Rezvani, Mohammad Ebrahim; Hafizibarjin, Zeynab

    2017-12-01

    Asafoetida is an oleo-gum resin mainly obtained from Ferula assa-foetida L. species in the apiaceae family. Previous studies have shown that it has antispasmodic effects on rat's and pig's ileums. The main goals of this study were to assess the vasodilatory effect of asafoetida essential oil (AEO) on the contractile response of rat's aorta rings and to find the role of nitric oxide, cyclooxygenase, and calcium channels. Thoracic aorta rings were stretched under a steady-state tension of 1 g in an organ bath apparatus for 1 h and then precontracted by KCl (80 mM) in the presence and absence of AEO. L-NAME (blocker of nitric oxide synthase) and indomethacin (blocker of cyclooxygenase) were used to assess the role of nitric oxide (NO) and prostacyclin in the vasodilatory effect of AEO. Also, the effect of AEO on the influx of calcium through the cell membrane calcium channels was determined. Data showed that AEO had vasodilatory effects on aorta rings with both intact (IC 50  = 1.6 µl/l) or denuded endothelium (IC 50  = 19.2 µl/l) with a significantly higher potency in intact endothelium rings. The vasodilatory effects of AEO were reduced, but not completely inhibited, in the presence of L-NAME or indomethacin. Adding AEO to the free-calcium medium also significantly reduced the CaCl 2 -induced contractions. The results indicated that AEO has a potent vasodilatory effect that is endothelium-dependent and endothelium-independent. Also, it reduced the influx of calcium into the cell through plasma membrane calcium channels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  5. [Involvement of interaction between TRPC1 and Orai1 in calcium sensing receptor-mediated calcium influx and nitric oxide generation in human umbilical vein endothelial cells].

    PubMed

    Wang, La-Mei; Tang, Na; Zhong, Hua; Pang, Li-Juan; Zhang, Chun-Jun; He, Fang

    2018-06-25

    The present study was to investigate the role of the interaction between canonical transient receptor potential channel 1 (TRPC1) and calcium release-activated calcium modulator 1 (Orai1) in extracellular Ca 2+ -sensing receptor (CaR)-induced extracellular Ca 2+ influx and nitric oxide (NO) production. Human umbilical vein endothelial cells (HUVECs) were incubated with CaR agonist Spermine [activating store-operated calcium channels (SOC) and receptor-operated calcium channels (ROC)] alone or in combination with the following reagents: CaR negative allosteric modulator Calhex231 plus ROC analogue TPA (activating ROC and blocking SOC), Ro31-8220 (PKC inhibitor that activates SOC and blocks ROC) or Go6967 (PKCs and PKCµ inhibitor that activates SOC and blocks ROC). The protein expressions and co-localization of TRPC1 and Orai1 were determined using immunofluorescent staining. The interaction between TRPC1 and Orai1 was examined by co-immunoprecipitation. We silenced the expressions of their genes in the HUVECs by transfection of constructed TRPC1 and Orai1 shRNA plasmids. Intracellular Ca 2+ concentration ([Ca 2+ ] i ) was detected using Ca 2+ indicator Fura-2/AM, and NO production was determined by DAF-FM staining. The results showed that TRPC1 and Orai1 protein expressions were co-located on the cell membrane of the HUVECs. Compared with Spermine+Ca 2+ group, Calhex231+ TPA+Spermine+Ca 2+ , Ro31-8220+Spermine+Ca 2+ and Go6976+Spermine+Ca 2+ groups exhibited down-regulated protein expressions of TRPC1 and Orai1 in cytoplasm and decreased co-localization on the cell membrane. Co-immunoprecipitation results showed that the interaction between TRPC1 and Orai1 was reduced by Calhex231 plus TPA, Ro31-8220 or Go6976 addition in the Spermine-stimulated HUVECs. Double knockdown of Trpc1 and Orai1 genes significantly decreased [Ca 2+ ] i level and NO production in all of the Spermine+Ca 2+ , Calhex231+TPA+Spermine+Ca 2+ , Ro31-8220+Spermine+Ca 2+ and Go6976+Spermine+Ca 2

  6. Membrane properties involved in calcium-stimulated microparticle release from the plasma membranes of S49 lymphoma cells.

    PubMed

    Campbell, Lauryl E; Nelson, Jennifer; Gibbons, Elizabeth; Judd, Allan M; Bell, John D

    2014-01-01

    This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32-42°C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  7. SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). {NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents ...

  8. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    PubMed Central

    Kim, Ji-Hee; Park, Ga-Young; Bang, Soo Young; Park, Sun Young; Bae, Soo-Kyung; Kim, YoungHee

    2014-01-01

    Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1) which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS) expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4). CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation. PMID:24839356

  9. [State of mitochondrial respiration and calcium capacity in livers of rats with different resistance to hypoxia after injections of L-arginine].

    PubMed

    Kurhaliuk, N M

    2001-01-01

    In experiments on rats with different resistance to hypoxia are investigated processes of mitochondrial respiration, oxidative phosphorylation and calcium capacity in liver under precursor nitric oxide L-arginine (600 mg/kg) and blockator nitric oxide synthase L-NNA (35 mg/kg) injections. We are used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate, 1 mM alpha-ketoglutarate and 2 mM malonic acid. Increasing of ADP-stimulation respiration states under exogenous L-arginine injection, decreasing efficacy of respiration processes (respiration control on Chance and ADP/O) under such substrates oxidation, testify to oxide energy support decreasing and reversing nitric oxide inhibit in such conditions. This will be used as mechanism cell regulation succinate dehydrogenase activity. It has shown that L-arginine injection increase calcium mitochondrial capacity low resistance to hypoxia rats using substrates of oxidation succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of nitric oxide precursor influence on this processes limit NO-synthase inhibitor L-NNA.

  10. Photon stimulated desorption from oxidized Al(110). [Surface hydroxyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E.D.; Garrett, R.F.; Knotek, M.L.

    1987-01-01

    We have studied oxide films on Al(110) by photon stimulated desorption (PSD) on the Bell Labs U4 PGM at the National Synchrotron Light Source. Utilizing a time of flight technique we have obtained ion energy distribution (IED) and relative ion yield (RIY) data at the Al 2p and O 1s edges for oxides prepared at various temperatures. These initial studies suggest that different sites for the surface hydroxyls exist, that they can be selectively prepared, and examined by PSD. 15 refs., 9 figs.

  11. Calcium Ligation in Photosystem II under Inhibiting Conditions

    PubMed Central

    Barry, Bridgette A.; Hicks, Charles; De Riso, Antonio; Jenson, David L.

    2005-01-01

    In oxygenic photosynthesis, PSII carries out the oxidation of water and reduction of plastoquinone. The product of water oxidation is molecular oxygen. The water splitting complex is located on the lumenal side of the PSII reaction center and contains manganese, calcium, and chloride. Four sequential photooxidation reactions are required to generate oxygen from water; the five sequentially oxidized forms of the water splitting complex are known as the Sn states, where n refers to the number of oxidizing equivalents stored. Calcium plays a role in water oxidation; removal of calcium is associated with an inhibition of the S state cycle. Although calcium can be replaced by other cations in vitro, only strontium maintains activity, and the steady-state rate of oxygen evolution is decreased in strontium-reconstituted PSII. In this article, we study the role of calcium in PSII that is limited in water content. We report that strontium substitution or 18OH2 exchange causes conformational changes in the calcium ligation shell. The conformational change is detected because of a perturbation to calcium ligation during the S1 to S2 and S2 to S3 transition under water-limited conditions. PMID:15985425

  12. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    PubMed

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  13. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Decomposition of polychlorinated biphenyls in soil with a dispersion mixture of metallic calcium and calcium oxide.

    PubMed

    Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy; Miyata, Hideaki; Kakeda, Mitsunori

    2013-02-01

    This study describes the decomposition of polychlorinated biphenyls (PCBs) in soil with dispersion mixtures of metallic calcium (Ca) and calcium oxide (CaO) at different temperatures. In these experiments, naturally moisturized and contaminated soil (1.0 g [31 ppm PCBs]), CaO (dried 2.0 wt%), and metallic Ca (0.01 g [0.25 mmol]) were introduced into a stainless steel pressure reactor under 0.1 MPa N(2) gas. The mixtures were stirred magnetically and heated at 260, 280, and 300 °C, respectively. Soil treatment with metallic Ca and CaO under various temperature conditions is extremely effective for degrading existing PCBs. Decomposition resulted from dechlorination (DC). Initial moisture in soil acted as a hydrogen source during stirring. Soil moisture can be beneficial for hydrodechlorination in the presence of metallic Ca and CaO. Furthermore, metallic Ca and CaO can greatly increase the number of collisions and mutual refinement. Treatment at 260, 280, and 300 °C combined with metallic Ca and CaO is effective for the decomposition (approximately 95 % DC) of PCBs in soil under natural moisture conditions.

  15. Conversion coatings prepared or treated with calcium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  16. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages.

    PubMed

    Schaue, D; Marples, B; Trott, K R

    2002-07-01

    Local irradiation with a dose of around 0.5 Gy is an effective treatment of acute necrotizing inflammations. The hypothesis that low doses of X-rays modulate the oxidative burst in activated macrophages, which plays a major role in the acute inflammatory process, was tested. Murine RAW 264.7 macrophages were stimulated with LPS/gammaIFN, PMA or zymosan and oxidative burst was measured using either DCFH-DA or by reduction of cytochrome-C. Radiation doses of 0.3-10 Gy were given shortly before or after stimulation. Low X-ray doses of <1 Gy significantly reduced the oxidative burst in activated macrophages, whereas higher doses had little effect on oxidative burst. The modulation of oxidative burst by low radiation doses may contribute to the therapeutic effectiveness of low-dose radiotherapy of acute necrotizing inflammations.

  17. Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells

    PubMed Central

    Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E.; Stone, Howard A.

    2015-01-01

    Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca2+ oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell–cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818

  18. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake.

    PubMed

    Tassinary, João Alberto Fioravante; Lunardelli, Adroaldo; Basso, Bruno de Souza; Dias, Henrique Bregolin; Catarina, Anderson Velasque; Stülp, Simone; Haute, Gabriela Viegas; Martha, Bianca Andrade; Melo, Denizar Alberto da Silva; Nunes, Fernanda Bordignon; Donadio, Márcio Vinícius Fagundes; Oliveira, Jarbas Rodrigues de

    2018-03-01

    The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1 MHz frequency, 0.2 W/cm 2 intensity and 20% duty cycle for 30 min. The analyses were carried out up to 336 h (14 days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-β1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192 h after LIPUS exposure. However, alkaline phosphatase and TGF-β1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2017-01-01

    Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549

  20. Mechanism regulating nuclear calcium signaling.

    PubMed

    Malviya, Anant N; Klein, Christian

    2006-01-01

    Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca(2+)-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-gamma1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP(3) generating system.

  1. Calcium regulates FGF-23 expression in bone.

    PubMed

    David, Valentin; Dai, Bing; Martin, Aline; Huang, Jinsong; Han, Xiaobin; Quarles, L Darryl

    2013-12-01

    Calcium has recently been shown to regulate fibroblast growth factor 23 (FGF-23), a bone-derived phosphate and vitamin D-regulating hormone. To better understand the regulation of FGF-23 by calcium, phosphorus, 1,25 dihydroxyvitamin D3 [1,25(OH)2D], and PTH, we examined FGF-23 expression under basal conditions and in response to PTH, doxercalciferol, or high-calcium diet treatment in Gcm2(-/-) and Cyp27b1(-/-) mutant mice. Gcm2(-/-) mice exhibited low serum PTH and 1,25(OH)2D concentrations, hypocalcemia, and hyperphosphatemia, whereas Cyp27b1(-/-) mice had high PTH, undetectable 1,25(OH)2D, hypocalcemia, and hypophosphatemia. Serum FGF-23 levels were decreased in both mutant models. Doxercalciferol administration increased serum FGF-23 levels in both mutant models. PTH administration to Gcm2(-/-) mice also increased serum FGF-23 levels, in association with an increase in both 1,25(OH)2D and calcium concentrations. Multiple regression analysis of pooled data indicated that changes in FGF-23 were positively correlated with serum calcium and 1,25(OH)2D but not related to changes in serum phosphate concentrations. A high-calcium diet also increased serum FGF-23 concentrations in Cyp27b1(-/-) mice in the absence of 1,25(OH)2D and in Gcm2(-/-) mice with low PTH. The addition of calcium to the culture media also stimulated FGF-23 message expression in MC3T3-E1 osteoblasts. In addition, FGF-23 promoter activity in cultured osteoblasts was inhibited by the L-calcium-channel inhibitor nifedipine and stimulated by calcium ionophores. The effects of chronic low calcium to prevent 1,25(OH)2D and PTH stimulation of FGF-23 in these mutant mouse models suggest that suppression of FGF-23 plays an important physiological adaptive response to hypocalcemia.

  2. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite

  3. Role of skeletal muscle mitochondrial density on exercise-stimulated lipid oxidation.

    PubMed

    Galgani, Jose E; Johannsen, Neil M; Bajpeyi, Sudip; Costford, Sheila R; Zhang, Zhengyu; Gupta, Alok K; Ravussin, Eric

    2012-07-01

    Reduced skeletal muscle mitochondrial density is proposed to lead to impaired muscle lipid oxidation and increased lipid accumulation in sedentary individuals. We assessed exercise-stimulated lipid oxidation by imposing a prolonged moderate-intensity exercise in men with variable skeletal muscle mitochondrial density as measured by citrate synthase (CS) activity. After a 2-day isoenergetic high-fat diet, lipid oxidation was measured before and during exercise (650 kcal at 50% VO(2)max) in 20 healthy men with either high (HI-CS = 24 ± 1; mean ± s.e.) or low (LO-CS = 17 ± 1 nmol/min/mg protein) muscle CS activity. Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Respiratory exchange data and blood samples were collected at rest and throughout the exercise. HI-CS subjects had higher VO(2)max (50 ± 1 vs. 44 ± 2 ml/kg fat free mass/min; P = 0.01), lower fasting respiratory quotient (RQ) (0.81 ± 0.01 vs. 0.85 ± 0.01; P = 0.04) and higher ex vivo muscle palmitate oxidation (866 ± 168 vs. 482 ± 78 nmol/h/mg muscle; P = 0.05) compared to LO-CS individuals. However, whole-body exercise-stimulated lipid oxidation (20 ± 2 g vs. 19 ± 1 g; P = 0.65) and plasma glucose, lactate, insulin, and catecholamine responses were similar between the two groups. In conclusion, in response to the same energy demand during a moderate prolonged exercise bout, reliance on lipid oxidation was similar in individuals with high and low skeletal muscle mitochondrial density. This data suggests that decreased muscle mitochondrial density may not necessarily impair reliance on lipid oxidation over the course of the day since it was normal under a high-lipid oxidative demand condition. Twenty-four-hour lipid oxidation and its relationship with mitochondrial density need to be assessed.

  4. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies.

    PubMed

    Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp

    2011-05-02

    Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The thermally stimulated discharge of ion-irradiated oxide films

    NASA Astrophysics Data System (ADS)

    Wang, Qiuru; Zeng, Huizhong; Zhang, Wanli

    2018-01-01

    The ion irradiation technique is utilized to modify the surface structure of amorphous insulating oxide films. While introducing defects, a number of surface charges are injected into the films and captured in the traps during ion irradiation. The variation of surface morphology and the enhancement of emission spectrum corresponding to vacancy defects are respectively verified by atomic force microscopy and photoluminescence measurements. The surface charges trapped in the shallow traps are easy to release caused by thermal excitation, and discharge is observed during heating. Based on the thermally stimulated discharge measurements, the trap parameters of oxide films, such as activation energy and relaxation time, are calculated from experimental data.

  7. Varying effects of calcium on the oxidation of palmitate and alpha-ketoglutarate in isolated rat liver mitochondria incubated in KCl-based and sucrose-based media.

    PubMed

    Borrebaek, B; Dolva, K; Singh, B

    1984-01-01

    Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA, carnitine, EGTA (ethylene glycol bis (beta-aminoethyl ether) N,N'-tetraacetic acid) and varying amounts of calcium. When a KC1-based incubation medium was used, the oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1-10 microM. When a sucrose-based incubation medium was used, the basal rate of palmitate oxidation was about half of that observed with the KC1-medium and calcium had a stimulatory effect. With the KC1-medium the rate of oxygen consumption was inhibited by calcium with alpha-ketoglutarate as well as palmitate as the respiratory substrate. No inhibitory effect of calcium was observed with succinate or beta-hydroxybutyrate. With the KC1-medium and with alpha-ketoglutarate as the respiratory substrate, state 3 respiration but not state 4 respiration was inhibited by calcium. When the sucrose-medium was used, state 3 respiration was first inhibited by calcium, but this inhibition was gradually relieved and the respiratory rate finally became higher than it was before calcium addition.

  8. Lack of voltage-dependent calcium channel opening during the calcium influx induced by progesterone in human sperm. Effect of calcium channel deactivation and inactivation.

    PubMed

    Guzmán-Grenfell, Alberto Martín; González-Martínez, Marco T

    2004-01-01

    Progesterone induces calcium influx and acrosomal exocytosis in human sperm. Pharmacologic evidence suggests that voltage-dependent calcium channels (VDCCs) are involved. In this study, membrane potential (Vm) and intracellular calcium concentration ([Ca(2+)](i)) were monitored simultaneously to assess the effect of VDCC gating on the calcium influx triggered by progesterone. Holding the Vm to values that maintained VDCCs in a deactivated (-71 mV) closed state inhibited the calcium influx induced by progesterone by approximately 40%. At this Vm, the acrosomal reaction induced by progesterone, but not by A23187, was inhibited. However, when the Vm was held at -15 mV (which maintains VDCCs in an inactivated closed state), the progesterone-induced calcium influx was stimulated. Furthermore, the progesterone and voltage-dependent calcium influxes were additive. These findings indicate that progesterone does not produce VDCC gating in human sperm.

  9. Cytogenotoxicity of sewage sludge leachate before and after calcium oxide-based solidification in human lymphocytes.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Garaj-Vrhovac, Vera

    2011-07-01

    Present study aimed to establish the chemical composition of sewage sludge leachate before/after calcium oxide-based solidification using energy dispersive X-ray fluorescence (EDXRF). The other aim was to determine leachate effects on human lymphocyte and DNA integrity in vitro using a battery of bioassays (DNA diffusion assay, micronucleus test and comet assay) to determine effects of those complex mixtures of elements on cell and DNA integrity. EDXRF showed that nickel concentration in the leachate of untreated sludge was 18.5 times higher than the upper permissible limit for inert waste landfills. Other elements were kept below the permissible values. After sludge solidification, leachate concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb dropped 1.6, 2.7, 37, 5.9, 3.2, 7.8, and 2.6 times, respectively. Untreated sludge leachate was cytogenotoxic to lymphocytes, and may lead to adverse effects on the exposed human populations, but calcium oxide-based solidification reduced these effects in significant manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Calcium Regulates FGF-23 Expression in Bone

    PubMed Central

    David, Valentin; Dai, Bing; Martin, Aline; Huang, Jinsong; Han, Xiaobin

    2013-01-01

    Calcium has recently been shown to regulate fibroblast growth factor 23 (FGF-23), a bone-derived phosphate and vitamin D-regulating hormone. To better understand the regulation of FGF-23 by calcium, phosphorus, 1,25 dihydroxyvitamin D3 [1,25(OH)2D], and PTH, we examined FGF-23 expression under basal conditions and in response to PTH, doxercalciferol, or high-calcium diet treatment in Gcm2−/− and Cyp27b1−/− mutant mice. Gcm2−/− mice exhibited low serum PTH and 1,25(OH)2D concentrations, hypocalcemia, and hyperphosphatemia, whereas Cyp27b1−/− mice had high PTH, undetectable 1,25(OH)2D, hypocalcemia, and hypophosphatemia. Serum FGF-23 levels were decreased in both mutant models. Doxercalciferol administration increased serum FGF-23 levels in both mutant models. PTH administration to Gcm2−/− mice also increased serum FGF-23 levels, in association with an increase in both 1,25(OH)2D and calcium concentrations. Multiple regression analysis of pooled data indicated that changes in FGF-23 were positively correlated with serum calcium and 1,25(OH)2D but not related to changes in serum phosphate concentrations. A high-calcium diet also increased serum FGF-23 concentrations in Cyp27b1−/− mice in the absence of 1,25(OH)2D and in Gcm2−/− mice with low PTH. The addition of calcium to the culture media also stimulated FGF-23 message expression in MC3T3-E1 osteoblasts. In addition, FGF-23 promoter activity in cultured osteoblasts was inhibited by the L-calcium-channel inhibitor nifedipine and stimulated by calcium ionophores. The effects of chronic low calcium to prevent 1,25(OH)2D and PTH stimulation of FGF-23 in these mutant mouse models suggest that suppression of FGF-23 plays an important physiological adaptive response to hypocalcemia. PMID:24140714

  11. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling.

    PubMed

    Freund, Jenna R; Mansfield, Corrine J; Doghramji, Laurel J; Adappa, Nithin D; Palmer, James N; Kennedy, David W; Reed, Danielle R; Jiang, Peihua; Lee, Robert J

    2018-05-10

    Bitter taste receptors (T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We showed previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2Rs 4, 14, 16, and 38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones (AHLs) activate T2Rs and stimulate these responses in primary airway cells.  Quinolones are another type of quorum sensing molecule used by Pseudomonas aeruginosa.  To elucidate if bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors.  T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone (DHQ), and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, 16, and 38 while HHQ activated T2R14.  DHQ had no effect.  PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells.  In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests airway T2R-mediated immune responses are activated by bacterial quinolones as well as AHLs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity.

    PubMed

    Cui, Yujiao; Yan, Huidan; Zhang, Xuewu

    2015-01-01

    Polysaccharide is a major bioactive component of mushrooms. In this study, for the first time, starting from a new Lentinula edodes polysaccharide L2, we prepared a novel L2-calcium complex and the process was optimized. Scanning electron microscopy and Fourier Transform infrared spectrometry were used for characterization. The immunostimulating activities of L2 and L2-calcium complex were measured by enhancing the production of two cytokines TNF-α and IL-6 in RAW264.7 cells. While L2-calcium complex significantly stimulates the secretions of TNF-α and IL-6 compared with the control, complex with calcium ion decreased the secretion of them. These facts indicate that calcium ion can modulate immune stimulating activity of Lentinula edodes polysaccharide L2.

  13. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong

    2016-10-15

    The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum.

    PubMed

    Arfaoui, Arbia; El Hadrami, Abdelbasset; Daayf, Fouad

    2018-01-01

    Considering the high incidence of white mold caused by Sclerotinia sclerotiorum in a variety of field crops and vegetables, different control strategies are needed to keep the disease under economical threshold. This study assessed the effect of foliar application of a calcium formulation on disease symptoms, oxalic acid production, and on the oxidative stress metabolism in soybean plants inoculated with each of two isolates of the pathogen that have contrasting aggressiveness (HA, highly-aggressive versus WA, weakly-aggressive). Changes in reactive oxygen species (ROS) levels in soybean plants inoculated with S. sclerotiorum isolates were assessed at 6, 24, 48 and 72 h post inoculation (hpi). Generation of ROS including hydrogen peroxide (H 2 O 2 ), anion superoxide (O 2 - ) and hydroxyl radical (OH) was evaluated. Inoculation with the WA isolate resulted in more ROS accumulation compared to the HA isolate. Pre-treatment with the calcium formulation restored ROS production in plants inoculated with the HA isolate. We also noted a marked decrease in oxalic acid content in the leaves inoculated with the HA isolate in presence of calcium, which coincided with an increase in plant ROS production. The expression patterns of genes involved in ROS detoxification in response to the calcium treatments and/or inoculation with S. Sclerotiorum isolates were monitored by RT-qPCR. All of the tested genes showed a higher expression in response to inoculation with the WA isolate. The expression of most genes tested peaked at 6 hpi, which preceded ROS accumulation in the soybean leaves. Overall, these data suggest that foliar application of calcium contributes to a decrease in oxalic acid production and disease, arguably via modulation of the ROS metabolism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells

    PubMed Central

    Friedl, Roswitha; Moeslinger, Thomas; Kopp, Brigitte; Spieckermann, Paul Gerhard

    2001-01-01

    In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 – 0.8 μg μl−1) showed a dose dependent stimulation of inducible nitric oxide synthesis. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-κB DNA binding activity. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase. PMID:11739242

  16. The Effects of Vitamin D-K-Calcium Co-Supplementation on Endocrine, Inflammation, and Oxidative Stress Biomarkers in Vitamin D-Deficient Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Razavi, M; Jamilian, M; Karamali, M; Bahmani, F; Aghadavod, E; Asemi, Z

    2016-07-01

    The current study was conducted to assess the effects of vitamin D-K-calcium co-supplementation on endocrine, inflammation, and oxidative stress biomarkers in vitamin D-deficient women with polycystic ovary syndrome (PCOS). This randomized double-blind, placebo-controlled trial was performed on 60 vitamin D-deficient women diagnosed with PCOS aged 18-40 years old. Participants were randomly allocated into 2 groups to intake either 200 IU vitamin D, 90 μg vitamin K plus, 500 mg calcium supplements (n=30), or placebo (n=30) twice a day for 8 weeks. Endocrine, inflammation, and oxidative stress biomarkers were quantified at the beginning and the end of the study. After 8 weeks of intervention, compared with the placebo, vitamin D-K-calcium co-supplementation resulted in a significant reduction in serum-free testosterone (- 2.1±1.6 vs.+0.1±1.0 pg/ml, p<0.001) and dehydroepiandrosterone sulfate (DHEAS) levels (- 0.8±1.0 vs.-0.1±0.5 μg/ml, p=0.006). In addition, a significant increase in plasma total antioxidant capacity (TAC) (+ 75.7±126.1 vs.-80.4±242.8 mmol/l, p=0.005) and a significant difference in plasma malondialdehyde (MDA) concentrations (+ 0.03±0.6 vs.+1.4±2.4 μmol/l, p=0.005) was observed following the supplementation with vitamin D-K-calcium compared with the placebo. A trend toward a greater decrease in luteinizing hormone was observed in vitamin D-K-calcium co-supplement group compared to placebo group (- 7.0 vs.-1.2 IU/l, p=0.09). We did not find any significant effect of vitamin D-K-calcium co-supplementation on prolactin, follicle-stimulating hormone, 17-OH progesterone, inflammatory markers, and glutathione levels. Overall, vitamin D-K-calcium co-supplementation for 8 weeks among vitamin D-deficient women with PCOS had beneficial effects on serum DHEAS, free testosterone, plasma TAC, and MDA levels. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine.

    PubMed

    Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef

    2016-08-01

    A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    PubMed

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  19. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  20. Oxidant Induced Changes in Mitochondria and Calcium Dynamicsin the Pathophysiology of Alzheimer's Disease

    PubMed Central

    Gibson, Gary E.; Karuppagounder, Saravanan S.; Shi, Qingli

    2009-01-01

    Considerable data supports the hypothesis that mitochondrial abnormalities link gene defects and/or environmental insults to the neurodegenerative process The interaction of oxidants with calcium and the mitochondrial enzymes of the tricarboxylic acid (TCA) cycle are central to that relationship. Abnormalities that were discovered in brains or fibroblasts from patients with Alzheimer's Disease (AD) have been modeled in vitro and in vivo to assess their pathophysiological importance and to determine how they might be reversed. The conclusions are consistent with the hypothesis that the AD-related abnormalities result from oxidative stress. The selection of compounds for reversal is complex because the actions of the relevant compounds vary under different conditions such as cell redox states and acute vs chronic changes. However, the models that have been developed are useful for testing the effectiveness of the potential medications. The results suggest that the reversal of the mitochondrial deficits and a reduction in oxidative stress will reduce the clinical and pathological changes and benefit patients. PMID:19076444

  1. Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors trigger neuronal nitric-oxide synthase activation to promote nerve cell death in an Src kinase-dependent fashion.

    PubMed

    Socodato, Renato; Santiago, Felipe N; Portugal, Camila C; Domingues, Ana F; Santiago, Ana R; Relvas, João B; Ambrósio, António F; Paes-de-Carvalho, Roberto

    2012-11-09

    In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.

  2. Mechanically induced intercellular calcium communication in confined endothelial structures.

    PubMed

    Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin

    2013-03-01

    Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an

  4. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    NASA Astrophysics Data System (ADS)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  5. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  6. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  7. Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Kozak, Jolanta; Włodarczyk-Makuła, Maria

    2018-02-01

    The efficiency of the removal of selected PAHs from the pretreated coking wastewater with usage of CaO2, Fenton reagent (FeSO4) and UV rays are presented in this article. The investigations were carried out using coking wastewater originating from biological, industrial wastewater treatment plant. At the beginning of the experiment, the calcium peroxide (CaO2) powder as a source of hydroxyl radicals (OH•) and Fenton reagent were added to the samples of wastewater. Then, the samples were exposed to UV rays for 360 s. The process was carried out at pH 3.5-3.8. After photo-oxidation process a decrease in the PAHs concentration was observed. The removal efficiency of selected hydrocarbons was in the ranged of 89-98%. The effectiveness of PAHs degradation was directly proportional to the calcium peroxide dose.

  8. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  9. Calcium movements and the cellular basis of gravitropism

    NASA Astrophysics Data System (ADS)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  10. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects

    PubMed Central

    Pall, Martin L

    2013-01-01

    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca2+/calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca2+-mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca2+/calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects. PMID:23802593

  11. Hirudin (desulfated, 54-65) contracts canine coronary arteries: extracellular calcium influx mediates hirudin-induced contractions.

    PubMed

    Sorajja, Paul; Cable, David G; Hamner, Chad E; Schaff, Hartzell V

    2004-09-01

    Although the anticoagulatory properties of hirudin are well known, its direct vasoactive effects have not been investigated extensively. Hirudin stimulates nitric oxide and prostacyclin production in noncoronary vascular beds, but its actions on coronary arteries are unknown. Five-millimeter segments of canine left circumflex coronary arteries were obtained for organ chamber experiments. Some segments were denuded of endothelium before study. Segments were exposed to hirudin (10(-10)-10(-6) mol/L) following precontraction with prostaglandin F(2alpha) with or without pretreatment with indomethacin or calcium channel blockers (verapamil and nifedipine). Hirudin stimulated endothelium-independent contraction in coronary arterial segments. Maximum tension (hirudin 10(-6) mol/L) above precontraction baseline was 33.6 +/- 9.0% (n = 10, P < 0.05) for endothelium-intact and 31.8 +/- 11.5% (n = 8, P < 0.05) for endothelium-denuded arterial segments. Differences between endothelium-intact and endothelium-denuded segments were not significant. Contractile responses to hirudin were unaffected by the presence of indomethacin. Pretreatment with either verapamil or nifedipine (10(-4) mol/L) for 1 h attenuated these contractions. The maximal increase in tension above baseline (hirudin 10(-6) mol/L) for verapamil and nifedipine was only 6.2 +/- 12.4 and 3.8 +/- 7.0% (n = 6, P < 0.05 versus endothelium-intact control), respectively. Hirudin stimulates endothelium-independent contractions of canine coronary arteries in vitro. Pretreatment with calcium channel blockers attenuates this response, suggesting that extracellular influx of calcium has an important mechanistic role in hirudin-mediated coronary artery constriction.

  12. The Mitochondrial Calcium Uniporter: Mice can live and die without it

    PubMed Central

    Harrington, Josephine L; Murphy, Elizabeth

    2014-01-01

    Calcium is of critical importance to mitochondrial and cell function, and calcium signaling is highly localized in the cell. When stimulated, mitochondria are capable of rapidly taking up calcium, affecting both matrix energetics within mitochondria and shaping the amplitude and frequency of cytosolic calcium “waves”. During pathological conditions a large increase in mitochondrial calcium levels is thought to activate the mitochondrial permeability transition pore, resulting in cell death. The protein responsible for mitochondrial calcium uptake, the mitochondrial calcium uniporter (MCU), was identified in 2011 and its molecular elucidation has stimulated and invigorated research in this area. MCU knockout mice have been created, a variety of other regulators have been identified, and a disease phenotype in humans has been attributed to the loss of a uniporter regulator. In the three years since its molecular elucidation, further research into the MCU has revealed a complex uniporter, and raised many questions about its physiologic and pathologic cell roles. PMID:25451167

  13. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  14. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico

    2014-08-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.

  15. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert

    2014-01-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  16. Synthesis of nitric oxide in human osteoblasts in response to physiologic stimulation of electrotherapy.

    PubMed

    Hamed, Ayman; Kim, Paul; Cho, Michael

    2006-12-01

    Electrotherapy for bone healing, remodeling and wound healing may be mediated by modulation of nitric oxide (NO). Using NO-specific fluorophore (DAF-2), we report here that application of non-invasive, physiologic electrical stimulation induces NO synthesis in human osteoblasts, and that such NO generation is comparable to that induced by estrogen treatment. For example, application of a sinusoidal 1 Hz, 2 V/cm (peak to peak) electrical stimulation (ES) increases NO-bound DAF-2 fluorescence intensity by a 2-fold within 60 min exposure by activating nitric oxide synthase (NOS). Increase in the NO level is found to depend critically on the frequency and strength of ES. While the frequency of 1 Hz ES seems optimal, the ES strength >0.5 V/cm is required to induce significant NO increase, however. Nitric oxide synthesis in response to ES is completely prevented by blocking estrogen receptors using a competitive inhibitor, suggesting that NO generation is likely initiated by activation of estrogen receptors at the cell surface. Based on these findings, physiologic stimulation of electrotherapy appears to represent a potential non-invasive, non-genomic, and novel physical technique that could be used to regulate NO-mediated bone density and facilitate bone remodeling without adverse effects associated with hormone therapy.

  17. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  18. Regulation of ATP production: dependence on calcium concentration and respiratory state.

    PubMed

    Fink, Brian D; Bai, Fan; Yu, Liping; Sivitz, William I

    2017-08-01

    Nanomolar free calcium enhances oxidative phosphorylation. However, the effects over a broad concentration range, at different respiratory states, or on specific energy substrates are less clear. We examined the action of varying [Ca 2+ ] over respiratory states ranging 4 to 3 on skeletal muscle mitochondrial respiration, potential, ATP production, and H 2 O 2 production using ADP recycling to clamp external [ADP]. Calcium at 450 nM enhanced respiration in mitochondria energized by the complex I substrates, glutamate/malate (but not succinate), at [ADP] of 4-256 µM, but more substantially at intermediate respiratory states and not at all at state 4. Using varied [Ca 2+ ], we found that the stimulatory effects on respiration and ATP production were most prominent at nanomolar concentrations, but inhibitory at 10 µM or higher. ATP production decreased more than respiration at 10 µM calcium. However, potential continued to increase up to 10 µM; suggesting a calcium-induced inability to utilize potential for phosphorylation independent of opening of the mitochondrial permeability transition pore (MTP). This effect of 10 µM calcium was confirmed by direct determination of ATP production over a range of potential created by differing substrate concentrations. Consistent with past reports, nanomolar [Ca 2+ ] had a stimulatory effect on utilization of potential for phosphorylation. Increasing [Ca 2+ ] was positively and continuously associated with H 2 O 2 production. In summary, the stimulatory effect of calcium on mitochondrial function is substrate dependent and most prominent over intermediate respiratory states. Calcium stimulates or inhibits utilization of potential for phosphorylation dependent on concentration with inhibition at higher concentration independent of MTP opening.

  19. Calcium-permeable α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors Trigger Neuronal Nitric-oxide Synthase Activation to Promote Nerve Cell Death in an Src Kinase-dependent Fashion*

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domingues, Ana F.; Santiago, Ana R.; Relvas, João B.; Ambrósio, António F.; Paes-de-Carvalho, Roberto

    2012-01-01

    In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-dl-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death. PMID:22992730

  20. The simultaneous removal of calcium, magnesium and chloride ions from industrial wastewater using magnesium-aluminum oxide.

    PubMed

    Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil

    2013-01-01

    In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.

  1. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  2. Structural evidence that botulinum toxin blocks neuromuscular transmission by impairing the calcium influx that normally accompanies nerve depolarization

    PubMed Central

    1981-01-01

    Taking advantage of the fact that nerve terminal mitochondria swell and sequester calcium during repetitive nerve stimulation, we here confirm that this change is caused by calcium influx into the nerve and use this fact to show that botulinum toxin abolishes such calcium influx. The optimal paradigm for producing the mitochondrial changes in normal nerves worked out to be 5 min of stimulation at 25 Hz in frog Ringer's solution containing five time more calcium than normal. Applying this same stimulation paradigm to botulinum-intoxicated nerves produced no mitochondrial changes at all. Only when intoxicated nerves were stimulated in 4-aminopyridine (which grossly exaggerates calcium currents in normal nerves) or when they were soaked in black widow spider venom (which is a nerve-specific calcium ionophore) could nerve mitochondria be induced to swell and accumulate calcium. These results indicate that nerve mitochondria are not damaged directly by the toxin and point instead to a primary inhibition of the normal depolarization- evoked calcium currents that accompany nerve activity. Because these currents normally provide the calcium that triggers transmitter secretion from the nerve, this demonstration of their inhibition helps to explain how botulinum toxin paralyzes. PMID:6259176

  3. Studies on the production of endogenous pyrogen by rabbit monocytes: the role of calcium and cyclic nucleotides.

    PubMed

    Sigal, S L; Duff, G W; Atkins, E

    1985-01-01

    Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel blocker, prevented the restoration of pyrogen production, indicating that entry of the added calcium into the monocyte was required. Incorporation of a calcium ionophore into the cell membrane did not stimulate pyrogen production, and no measurable influx or efflux of calcium occurred during stimulation with endotoxin. These observations suggest that a slowly exchangeable calcium pool is necessary for the production of endogenous pyrogen, but that a rise in intracellular calcium is not by itself a necessary or sufficient stimulus. This stands in contrast to other biological systems in which Ca2+ directly couples stimulus and hormone secretion. Incubation of cells with agents shown to increase cyclic 3',5' AMP or cyclic 3',5' GMP levels in monocytes similarly did not stimulate pyrogen production or modulate its production by endotoxin stimulation. Thus, cyclic nucleotides also did not play a detectable role as intracellular messengers in this system. Future work is required to define more clearly the mechanism for the production of endogenous pyrogen, given its marked effects on the immune system through lymphocyte activation and temperature regulation.

  4. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    PubMed

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  5. Administration of Inulin-Supplemented Gluten-Free Diet Modified Calcium Absorption and Caecal Microbiota in Rats in a Calcium-Dependent Manner.

    PubMed

    Krupa-Kozak, Urszula; Markiewicz, Lidia H; Lamparski, Grzegorz; Juśkiewicz, Jerzy

    2017-07-06

    In coeliac disease (CD), the risk of adverse calcium balance and reduced bone density is induced mainly by the disease, but also by a gluten-free diet (GFD), the only accepted CD therapy. Prebiotics through the beneficial impact on intestinal microbiota may stimulate calcium (Ca) absorption. In the present study, we hypothesised that the dietary inulin in GFD would influence positively the intestinal microbiota, and by that will stimulate the absorption of calcium (Ca), especially in the conditions of Ca malnutrition. In a six-weeks nutritional experiment on growing a significant ( p < 0.05) luminal acidification, decrease in ammonia concentration and stimulation of short chain fatty acids formation indicated inulin-mediated beneficial effects on the caecal microbiota. However, the effect of inulin on characteristics of intestinal microbiota and mineral utilization depended on the dietary Ca intake from GFDs. Inulin stimulated bifidobacteria, in particular B. animalis species, only if a recommended amount of Ca was provided. Most benefits to mineral utilization from inulin consumption were seen in rats fed Ca-restricted GFD where it increased the relative Ca absorption. Administration of inulin to a GFDs could be a promising dietary strategy for beneficial modulation of intestinal ecosystem and by that for the improvement the Ca absorption.

  6. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    PubMed Central

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  7. Carbon monoxide inhibits omega-oxidation of leukotriene B4 by human polymorphonuclear leukocytes: evidence that catabolism of leukotriene B4 is mediated by a cytochrome P-450 enzyme.

    PubMed

    Shak, S; Goldstein, I M

    1984-09-17

    Carbon monoxide significantly inhibits omega-oxidation of exogenous leukotriene B4 to 20-OH-leukotriene B4 and 20-COOH-leukotriene B4 by unstimulated polymorphonuclear leukocytes as well as omega-oxidation of leukotriene B4 that is generated when cells are stimulated with the calcium ionophore, A23187. Inhibition of omega-oxidation by carbon monoxide is concentration-dependent, completely reversible, and specific. Carbon monoxide does not affect synthesis of leukotriene B4 by stimulated polymorphonuclear leukocytes or other cell functions (i.e., degranulation, superoxide anion generation). These findings suggest that a cytochrome P-450 enzyme in human polymorphonuclear leukocytes is responsible for catabolizing leukotriene B4 by omega-oxidation.

  8. Role of calcium in the regulation of theca cell androstenedione production in the domestic hen.

    PubMed

    Levorse, J M; Tilly, J L; Johnson, A L

    1991-05-01

    Theca cells were collected from the second largest preovulatory follicle. Chelation of extracellular calcium with EGTA attenuated LH (10 ng)-induced androstenedione production by theca cells, and this effect was more pronounced in calcium-deficient than in calcium-replete incubation medium. Incubation of theca cells with steroidogenic agonists in the presence of the calcium channel blocker verapamil (100 microM) suppressed androstenedione production stimulated by LH (a 57% decrease), the adenylate cyclase activator forskolin (a 59% decrease) and the cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP (a 61% decrease). Furthermore, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a putative inhibitor of intracellular calcium mobilization, suppressed LH-induced androstenedione production in a dose-dependent fashion. The calmodulin inhibitors trifluoperazine (100 microM) and R24571 (50 microM) inhibited androstenedione production stimulated by hormonal (LH) and non-hormonal (forskolin, 8-bromo-cAMP) agonists (decreases ranging from 76 to 98%). While increasing the intracellular calcium ion concentrations with the calcium ionophore A23187 did not affect basal concentrations of androstenedione, treatment of LH-stimulated cells with the ionophore caused dose-dependent inhibition of androstenedione production; these effects were enhanced by coincubation with phorbol 12-myristate 13-acetate (a known activator of protein kinase C). We conclude that the mobilization of calcium is critical for agonist-stimulated steroidogenesis in hen theca cells, apparently requiring the interaction of calcium with its binding protein, calmodulin. Furthermore, increased cytosolic calcium concentrations may be involved in the suppression of androstenedione production, possibly as a result of an interaction with protein kinase C.

  9. The Role of Calcium in the Response of Osteoblasts to Mechanical Stimulation

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Farach-Carson, M. C.; Pavalko, F. M.

    1999-01-01

    A major biomedical concern in the exploration and development of space is the rapid loss of bone associated with extended periods of spaceflight. Mineral content, bone formation, matrix protein production and total body calcium are all reduced during long-term periods of weightlessness. These effects of weightlessness appears to be due to decreases in the anabolic function of osteoblasts and osteocytes rather than changes in the resorptive activity of osteoclasts. Conversely, subjecting the skeleton to exogenous mechanical loading increases matrix protein synthesis and bone formation rate, a process which also appears mediated through osteogenic cells. Osteoblasts have been shown to respond to a number of types of mechanical stimulation. However recently we have demonstrated that osteoblasts respond to fluid shear, but not physiologic levels of mechanical strain, with increases in expression of the matrix protein, osteopontin. We have also shown similar responses in other markers for the anabolic response in bone. The expression of the early response gene, c-fos, and the inducible-isoform of the prostaglandin synthetic enzyme, cyclooygenase-2 (COX-2), both increase rapidly in response to fluid shear, but not strain. How osteoblasts and osteocytes perceive mechanical stimuli and convert this stimulus into a biochemical event within the cell is still unknown. However, examination of the cellular events following mechanical stimulation indicate that two of the earliest responses are a rapid increase in intracellular calcium ([Ca(2+)](sub i)) and a reorganization of the actin cytoskeleton. The increase in [Ca(2+)](sub i) is dependent on the presence of extracellular Ca(2+), suggesting the activation of membrane Ca(2+) channel. We have previously characterized a mechanosensitive, cation-selective channel (MSCC) in osteoblast-like clonal cells, which we postulate is important in this early response to mechanical loading. Using an antisense oligodeoxynucleotide strategy

  10. Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria

    PubMed Central

    Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S

    2014-01-01

    Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908

  11. Pharmacological Stimulation of NADH Oxidation Ameliorates Obesity and Related Phenotypes in Mice

    PubMed Central

    Hwang, Jung Hwan; Kim, Dong Wook; Jo, Eun Jin; Kim, Yong Kyung; Jo, Young Suk; Park, Ji Hoon; Yoo, Sang Ku; Park, Myung Kyu; Kwak, Tae Hwan; Kho, Young Lim; Han, Jin; Choi, Hueng-Sik; Lee, Sang-Hee; Kim, Jin Man; Lee, InKyu; Kyung, Taeyoon; Jang, Cholsoon; Chung, Jongkyeong; Kweon, Gi Ryang; Shong, Minho

    2009-01-01

    OBJECTIVE Nicotinamide adenine dinucleotides (NAD+ and NADH) play a crucial role in cellular energy metabolism, and a dysregulated NAD+-to-NADH ratio is implicated in metabolic syndrome. However, it is still unknown whether a modulating intracellular NAD+-to-NADH ratio is beneficial in treating metabolic syndrome. We tried to determine whether pharmacological stimulation of NADH oxidation provides therapeutic effects in rodent models of metabolic syndrome. RESEARCH DESIGN AND METHODS We used β-lapachone (βL), a natural substrate of NADH:quinone oxidoreductase 1 (NQO1), to stimulate NADH oxidation. The βL-induced pharmacological effect on cellular energy metabolism was evaluated in cells derived from NQO1-deficient mice. In vivo therapeutic effects of βL on metabolic syndrome were examined in diet-induced obesity (DIO) and ob/ob mice. RESULTS NQO1-dependent NADH oxidation by βL strongly provoked mitochondrial fatty acid oxidation in vitro and in vivo. These effects were accompanied by activation of AMP-activated protein kinase and carnitine palmitoyltransferase and suppression of acetyl-coenzyme A (CoA) carboxylase activity. Consistently, systemic βL administration in rodent models of metabolic syndrome dramatically ameliorated their key symptoms such as increased adiposity, glucose intolerance, dyslipidemia, and fatty liver. The treated mice also showed higher expressions of the genes related to mitochondrial energy metabolism (PPARγ coactivator-1α, nuclear respiratory factor-1) and caloric restriction (Sirt1) consistent with the increased mitochondrial biogenesis and energy expenditure. CONCLUSIONS Pharmacological activation of NADH oxidation by NQO1 resolves obesity and related phenotypes in mice, opening the possibility that it may provide the basis for a new therapy for the treatment of metabolic syndrome. PMID:19136651

  12. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  13. Redox regulation of neuronal voltage-gated calcium channels.

    PubMed

    Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2014-08-20

    Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.

  14. Imaging extracellular calcium in endolymph

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2018-05-01

    Hair cell mechanoelectrical transduction and adaptation are believed to be regulated by extracellular calcium. However, the majority of experiments addressing calcium's role have been performed on reduced preparations in conditions that do not mimic those present in vivo. We used confocal microscopy and a low affinity (kd ˜11 µM) ratiometric fluorescent indicator to measure the extracellular calcium concentration in scala media in an in vitro preparation of the guinea pig cochlea. Microelectrodes were used to measure the cochlear microphonic potential during acoustic stimulation. The mean calcium concentration is significantly higher in the tectorial membrane (TM) than the surrounding endolymph, suggesting that the membrane acts as a calcium sink. We also observe calcium hot spots along the underside of the TM, near the outer hair cell bundles and near Hensens stripe close to the inner hair cell bundle. This suggests that the local calcium concentration near the hair bundles exceeds 100 µM, significantly higher than the bulk endolymph. These results were corroborated with fluorescence correlation spectroscopy using a second calcium sensitive dye, Oregon Green 488-BAPTA. Following a brief exposure to loud sound, TM calcium drops dramatically and shows recovery on a similar timescale as the microphonic potential. Our results suggest that the extracellular calcium concentration near the hair bundles is much higher than previously believed and may also serve as a partial control parameter for temporary threshold shifts.

  15. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate.

    PubMed

    Tretter, Laszlo; Takacs, Katalin; Kövér, Kinga; Adam-Vizi, Vera

    2007-11-15

    It has been reported recently (Tretter et al., 2007b) that in isolated guinea pig brain mitochondria supported by alpha-glycerophosphate (alpha-GP) reactive oxygen species (ROS) are produced through the reverse electron transport (RET) in the respiratory chain and by alpha-glycerophosphate dehydrogenase (alpha-GPDH). We studied the effect of calcium on the generation of H(2)O(2) as measured by the Amplex Red fluorescent assay in this model. H(2)O(2) production in alpha-GP-supported mitochondria was increased significantly in the presence of 100, 250, and 500 nM Ca(2+), respectively. In addition, Ca(2+) enhanced the membrane potential, the rate of oxygen consumption, and the NAD(P)H autofluorescence in these mitochondria. Direct measurement of alpha-GPDH activity showed that Ca(2+) stimulated the enzyme by decreasing the Km for alpha-GP. In those mitochondria where RET was eliminated by the Complex I inhibitor rotenone (2 microM) or due to depolarization by ADP (1 mM), the rate of H(2)O(2) formation was smaller and the stimulation of H(2)O(2) generation by Ca(2+) was prevented partly, but the stimulatory effect of Ca(2+) was still significant. These data indicate that in alpha-GP-supported mitochondria activation of alpha-GPDH by Ca(2+) leads to an accelerated RET-mediated ROS generation as well as to a stimulated ROS production by alpha-GPDH.

  16. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.

  17. Pinoresinol-4,4'-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts.

    PubMed

    Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik

    2009-06-01

    Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.

  18. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress.

    PubMed

    Lin, Xiaotong; Zhao, Yan; Li, Shanhe

    2017-07-05

    Astaxanthin (AST) is a carotenoid that has been shown to have neuroprotective effects. In this study, it was found that AST significantly inhibited glutamate-induced loss of cell viability and apoptosis. AST pretreatment attenuated glutamate-induced activation of caspase-3, reduction of anti-apoptotic protein Bcl-2, and increase of pro-apoptotic protein Bak. In addition, AST pretreatment suppressed the production of intracellular reactive oxygen species. AST treatment also prevented glutamate-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK), which has been shown to promote apoptotic events. Furthermore, AST treatment greatly reduced the elevation of intracellular calcium level induced by glutamate and inhibited the activity of calpain, a calcium-dependent protease that plays an important role in mediating apoptosis stimulated by calcium overload in cytoplasm. Both oxidative stress and calcium overload can lead to endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) is a bZIP transcription factor that can be activated by ER stress and promotes apoptosis. Here we found that AST attenuated glutamate-induced elevation of CHOP and ER chaperone glucose-regulated protein (GRP78). Overall, these results suggested that AST might protect cells against glutamate-induced apoptosis through maintaining redox balance and inhibiting glutamate-induced calcium influx and ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less

  20. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    PubMed

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  1. Intracellular Calcium Dynamics and the Acceleration of Sinus Rhythm by β-Adrenergic Stimulation

    PubMed Central

    Joung, Boyoung; Tang, Liang; Maruyama, Mitsunori; Han, Seongwook; Chen, Zhenhui; Stucky, Marcelle; Jones, Larry R.; Fishbein, Michael C.; Weiss, James N.; Chen, Peng-Sheng; Lin, Shien-Fong

    2009-01-01

    Background Recent evidence indicates that membrane voltage and Ca2+ clocks jointly regulate sinoatrial node (SAN) automaticity. Here we test the hypothesis that sinus rate acceleration by β-adrenergic stimulation involves synergistic interactions between these clock mechanisms. Methods and Results We simultaneously mapped intracellular calcium (Cai) and membrane potential (Vm) in 25 isolated canine right atrium (RA), using previously described criteria of the timing of late diastolic Cai elevation (LDCAE) relative to the action potential (AP) upstroke to detect the Ca2+ clock. Before isoproterenol, the earliest pacemaking site occurred in the inferior SAN, and LDCAE was observed in only 4/25 preparations. Isoproterenol (1 μmol/L) increased sinus rate and shifted pacemaking site to superior SAN, concomitant with the appearance of LDCAE preceding the AP upstroke by 98 ± 31 ms. Caffeine had similar effects, while SR Ca2+ depletion with ryanodine and thapsigargin prevented isoproterenol-induced LDCAE and blunted sinus rate acceleration. Cai transient relaxation time during ISO was shorter in superior SAN (124 ± 34 ms) than inferior SAN (138 ± 24 ms, p = 0.01) or RA (164 ± 33 ms, p = 0.001), and was associated with a lower SR Ca2+ ATPase pump to phospholamban protein ratio in SAN than in RA. If current blockade with ZD 7288 modestly blunted, but did not prevent LDCAE or sinus rate acceleration by isoproterenol. Conclusions Acceleration of the Ca2+ clock in the superior SAN plays an important role in sinus acceleration during β-adrenergic stimulation, interacting synergistically with the voltage clock to increase sinus rate. PMID:19188501

  2. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux

    PubMed Central

    Bergstrom, Hadley C.; Darvesh, Altaf S.; Berger, S. P.

    2015-01-01

    Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia. PMID:26696891

  3. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Removal of a putative inhibitory element reduces the calcium-dependent calmodulin activation of neuronal nitric-oxide synthase.

    PubMed

    Montgomery, H J; Romanov, V; Guillemette, J G

    2000-02-18

    Neuronal nitric-oxide synthase (NOS) and endothelial NOS are constitutive NOS isoforms that are activated by binding calmodulin in response to elevated intracellular calcium. In contrast, the inducible NOS isoform binds calmodulin at low basal levels of calcium in resting cells. Primary sequence comparisons show that each constitutive NOS isozyme contains a polypeptide segment within its reductase domain, which is absent in the inducible NOS enzyme. To study a possible link between the presence of these additional polypeptide segments in constitutive NOS enzymes and their calcium-dependent calmodulin activation, three deletion mutants were created. The putative inhibitory insert was removed from the FMN binding regions of the neuronal NOS holoenzyme and from two truncated neuronal NOS reductase enzymes in which the calmodulin binding region was either included or deleted. All three mutant enzymes showed reduced incorporation of FMN and required reconstitution with exogenous FMN for activity. The combined removal of both the calmodulin binding domain and the putative inhibitory insert did not result in a calmodulin-independent neuronal NOS reductase. Thus, although the putative inhibitory element has an effect on the calcium-dependent calmodulin activation of neuronal NOS, it does not have the properties of the typical autoinhibitory domain found in calmodulin-activated enzymes.

  5. Stimulated emission from aluminium anode oxide films doped with rhodamine 6G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrayev, N Kh; Zeinidenov, A K; Aimukhanov, A K

    The spectral and luminescent properties of the rhodamine 6G dye in a porous matrix of aluminium anode oxide are studied. The films with a highly-ordered porous structure are produced using the method of two-stage anodic oxidation. By means of raster electron microscopy it is found that the diameter of the pores amounts to nearly 50 nm and the separation between the adjacent channels is almost 105 nm. The thickness of the films is equal to 55 μm, and the specific surface area measured using the method of nitrogen capillary condensation is 15.3 m{sup 2} g{sup -1}. Fluorescence and absorption spectramore » of rhodamine 6G molecules injected into the pores of the aluminium anode oxide are measured. It is found that under the excitation of samples with the surface dye concentration 0.3 × 10{sup 14} molecules m{sup -2} by the second harmonic of the Nd : YAG laser in the longitudinal scheme with the pumping intensity 0.4 MW cm{sup -2}, a narrow band of stimulated emission with the intensity maximum at the wavelength 572 nm appears against the background of the laser-induced fluorescence spectrum. A further increase in the pumping radiation intensity leads to the narrowing of the stimulated emission band and an increase in its intensity. The obtained results demonstrate the potential possibility of using the porous films of aluminium anode oxide, doped with laser dyes, in developing active elements for quantum electronics. (laser applications and other topics in quantum electronics)« less

  6. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

    PubMed Central

    Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.

    2011-01-01

    TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025

  7. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.

    PubMed

    Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek

    2016-11-01

    A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1 H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.

  8. [Role of NO-synthase in stimulation of opiate receptors and kidney oxidative stress resistance].

    PubMed

    Orlova, E A; Komarevtseva, I A

    2004-01-01

    It was established that dalarginum injection before ARI (acute renal insufficiency) formation prevented an increases of proteolysis, decrease of SOD (superoxide dismutase), increase of NO2-/NO3- content in kidney tissue. Antioxidant effect of opiate receptor agonist was completely abolished by preliminary injection of OR antagonist--naloxone. Aminoguanidine nitrate (inducible NO-synthase inhibitor) injection removed positive effect of OR stimulation too. Thus OR stimulation increases kidney oxidative stress resistance due to NO-synthase and SOD activation.

  9. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    PubMed

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  10. Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization

    PubMed Central

    Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.

    2008-01-01

    We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987

  11. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  12. Mitigation of nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs) using calcium.

    PubMed

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2014-12-01

    Nitrous oxide (N2O) is a significant anthropogenic greenhouse gases (AnGHGs) emitted from biological nutrient removal (BNR) processes. In this study, N2O production from denitrifying fluidized bed bioreactors (DFBBR) was reduced using calcium (Ca2+) dosage. The DFBBRs were operated on a synthetic municipal wastewater at four different calcium concentrations ranging from the typical municipal wastewater Ca2+ concentration (60 mg Ca2+/L) to 240 mg Ca2+/L at two different COD/N ratios. N2O emission rates, extracellular polymeric substances (EPS), water quality parameters, and microscopic images were monitored regularly in both phases. Calcium concentrations played a significant role in biofilm morphology with the detachment rates for R120Ca, R180Ca, and R240Ca 75% lower than for R60Ca, respectively. The N2O conversion rate at the typical municipal wastewater Ca2+ concentration (R60Ca) was about 0.53% of the influent nitrogen loading as compared with 0.34%, 0.42%, and 0.41% for R120Ca, R180Ca, and R240Ca, respectively corresponding to 21-36% reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism.

    PubMed

    Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun

    2016-12-01

    The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  15. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells.

    PubMed Central

    Borle, A B

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total cell calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca2+ compartmentalization, but the methods suffer from the possibility of Ca2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45Ca uptake or desaturation curves have been used to study the distribution of Ca2+ among various kinetic pools in living cells and their rate of Ca2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45Ca uptake can detect instantaneous changes in calcium influx, while 45Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. Permeabilized cells have been successfully used to gauge the relative role of intracellular organelles in controlling [Ca2+]i. The measurement of the cytosolic ionized calcium ([Ca2+]i) is undoubtedly the most important and, physiologically, the most relevant method available. The choice of the appropriate calcium indicator, fluorescent, bioluminescent, metallochromic, or Ca2(+)-sensitive microelectrodes depends on the cell type and the magnitude and time constant of the event under study. Each probe has specific assets and drawbacks. The study of plasma membrane vesicles derived from baso-lateral or apical plasmalemma can also bring important information on the (Ca2(+)-Mg2+) ATPase-dependent calcium pump and on the kinetics and stoichiometry of the Na(+)-Ca2+ antiporter. The best strategy to study cell calcium metabolism is to

  16. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  17. [Effect of L-arginine and the nitric oxide synthase blocker L-NNA on calcium capacity in rat liver mitochondria with differing resistance to hypoxia].

    PubMed

    Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K

    2001-01-01

    The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.

  18. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.

    PubMed

    Mehrali, Mehdi; Moghaddam, Ehsan; Shirazi, Seyed Farid Seyed; Baradaran, Saeid; Mehrali, Mohammad; Latibari, Sara Tahan; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib; Zandi, Keivan; Osman, Noor Azuan Abu

    2014-03-26

    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.

  19. Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW).

    PubMed

    Su, Yu; Wang, Weidong; Wu, Di; Huang, Wei; Wang, Mengzi; Zhu, Guibing

    2018-05-15

    An integrated approach to document high ammonium oxidation rate in Guanjinggang constructed wetland (GJG-CW) was performed and the results showed that the substantial ammonium oxidation rate could be obtained by enhancing Ammonia Oxidizing Bacteria (AOB) activity rather than Ammonia Oxidizing Archaea (AOA) activity. In the plant-bed/ditch system, ditch center and plant-bed fringe were two active zones for NH 4 + -N removal with ammonium oxidation rate peaking at 2.98±0.04 and 2.15±0.02mgNkg -1 d -1 , respectively. The enhanced AOB activity were achieved by increasing water level fluctuations, extending hydraulic retention time (HRT) and stimulating substrate availability, which subsequently enhanced NH 4 + -N removal by 34.06% in GJG-CW. However, the high AOB activity was not correlated with high AOB abundance, but was instead mostly determined by specific AOB taxa, particularly Nitrosomonas, which dominated in the active AOB. The increased cell-specific AOA activity and high AOA diversity were also achieved using those engineering measures. Although the AOA activity decreased overall with extended HRT and increased NH 4 + -N contents in GJG-CW, AOA still played a major role on ammonium oxidation in plant-bed soil. The study illustrated that artificially enhancing AOB activity and certain species in anthropogenically polluted water ecosystems would be an effective strategy to improve NH 4 + -N removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Model of Inclusion Evolution During Calcium Treatment in the Ladle Furnace

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Yousef; Coley, Kenneth S.; Irons, Gordon A.; Sun, Stanley

    2018-04-01

    Calcium treatment of steel is typically employed to modify alumina inclusions to liquid calcium aluminates. However, injected calcium also reacts with the dissolved sulfur to form calcium sulfide. The current work aims to develop a kinetic model for the evolution of oxide and sulfide inclusions in Al-killed alloyed steel during Ca treatment in the ladle refining process. The model considers dissolution of the calcium from the calcium bubbles into the steel and reduction of calcium oxide in the slag to dissolved calcium. A steel-inclusion kinetic model is used for mass transfer to the inclusion interface and diffusion within the calcium aluminate phases formed on the inclusion. The inclusion-steel kinetic model is then coupled with a previously developed steel-slag kinetic model. The coupled inclusion-steel-slag kinetic model is applied to the chemical composition changes in molten steel, slag, and evolution of inclusions in the ladle. The result of calculations is found to agree well with an industrial heat for species in the steel as well as inclusions during Ca treatment.

  1. Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica

    PubMed Central

    Yao, Heng; Xu, Qiangyi

    2008-01-01

    The bending movement of the pulvinus of Mimosa pudica is caused by a rapid change in volume of the abaxial motor cells, in response to various environmental stimuli. We investigated the relationship between the actin cytoskeleton and changes in the level of calcium during rapid contractile movement of the motor cells that was induced by electrical stimulation. The bending of the pulvinus was retarded by treatments with actin-affecting reagents and calcium channel inhibitors. The actin filaments in the motor cells were fragmented in response to electrical stimulation. Further investigations were performed using protoplasts from the motor cells of M. pudica pulvini. Calcium-channel inhibitors and EGTA had an inhibitory effect on contractile movement of the protoplasts. The level of calcium increased and became concentrated in the tannin vacuole after electrical stimulation. Ruthenium Red inhibited the increase in the level of calcium in the tannin vacuole and the contractile movement of the protoplasts. However, treatment with latrunculin A abolished the inhibitory effect of Ruthenium Red. Phalloidin inhibited the contractile movement and the increase in the level of calcium in the protoplasts. Our study demonstrates that depolymerization of the actin cytoskeleton in pulvinus motor cells in response to electrical signals results in increased levels of calcium. PMID:19513198

  2. The β1 Subunit Enhances Oxidative Regulation of Large-Conductance Calcium-activated K+ Channels

    PubMed Central

    Santarelli, Lindsey Ciali; Chen, Jianguo; Heinemann, Stefan H.; Hoshi, Toshinori

    2004-01-01

    Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) α subunits alone. Because native BKCa channel complexes may include the auxiliary subunit β1, we investigated whether β1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with β1 present shifted the half-activation voltage much further in the hyperpolarizing direction (−75 mV) as compared with that with α alone (−30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of β1. Oxidation of cysteine and methionine residues within β1 was not involved in these potentiated effects because expression of mutant β1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type β1. Unlike the results with α alone, oxidation by Ch-T caused a significant acceleration of channel activation only when β1 was present. The β1 M177 mutation disrupted normal channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming α subunit are greatly amplified by the presence of β1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within β1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with β1 has a considerable chance of being open within the physiological voltage

  3. Discovery of calcium in Mercury's atmosphere.

    PubMed

    Bida, T A; Killen, R M; Morgan, T H

    2000-03-09

    The composition and evolutionary history of Mercury's crust are not well determined. The planet as a whole has been predicted to have a refractory, anhydrous composition: rich in Ca, Al, Mg and Fe, but poor in Na, K, OH, and S. Its atmosphere is believed to be derived in large part from the surface materials. A combination of effects that include impact vaporization (from infalling material), volatile evaporation, photon-stimulated desorption and sputtering releases material from the surface to form the atmosphere. Sodium and potassium have already been observed in Mercury's atmosphere, with abundances that require a volatile-rich crust. The sodium probably results from photon-stimulated desorption, and has a temperature of 1,500 K (ref. 10). Here we report the discovery of calcium in the atmosphere near Mercury's poles. The column density is very low and the temperature is apparently very high (12,000 K). The localized distribution and high temperature, if confirmed, suggest that the atmospheric calcium may arise from surface sputtering by ions, which enter Mercury's auroral zone. The low abundance of atmospheric Ca may indicate that the regolith is rarefied in calcium.

  4. The calcium channel blocker amlodipine promotes the unclamping of eNOS from caveolin in endothelial cells.

    PubMed

    Batova, Suzan; DeWever, Julie; Godfraind, Théophile; Balligand, Jean-Luc; Dessy, Chantal; Feron, Olivier

    2006-08-01

    Amlodipine is a calcium channel blocker (CCB) known to stimulate nitric oxide production from endothelial cells. Whether this ancillary property can be related to the capacity of amlodipine to concentrate and alter the structure of cholesterol-containing membrane bilayers is a matter of investigation. Here, we reasoned that since the endothelial nitric oxide synthase is, in part, expressed in cholesterol-rich plasmalemmal microdomains (e.g., caveolae and rafts), amlodipine could interfere with this specific locale of the enzyme and thereby modulate NO production in endothelial cells. Using a method combining lubrol-based extraction and subcellular fractionation on sucrose gradient, we found that amlodipine, but not verapamil or nifedipine, induced the segregation of endothelial NO synthase (eNOS) from caveolin-enriched low-density membranes (8+/-2% vs. 42+/-3% in untreated condition; P<0.01). We then performed co-immunoprecipitation experiments and found that amlodipine dose-dependently disrupted the caveolin/eNOS interaction contrary to other calcium channel blockers, and potentiated the stimulation of NO production by agonists such as bradykinin and vascular endothelial growth factor (VEGF) (+138+/-28% and +183+/-27% over values obtained with the agonist alone, respectively; P<0.01). Interestingly, we also documented that the dissociation of the caveolin/eNOS heterocomplex induced by amlodipine was not mediated by the traditional calcium-dependent calmodulin binding to eNOS and that recombinant caveolin expression could compete with the stimulatory effects of amlodipine on eNOS activity. Finally, we showed that the amlodipine-triggered, caveolin-dependent mechanism of eNOS activation was independent of other pleiotropic effects of the CCB such as superoxide anion scavenging and angiotensin-converting enzyme (ACE) inhibition. This study unravels the modulatory effects of amlodipine on caveolar integrity and the capacity of caveolin to maintain eNOS in its vicinity

  5. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.

    PubMed

    Dries, Eef; Santiago, Demetrio J; Johnson, Daniel M; Gilbert, Guillaume; Holemans, Patricia; Korte, Sanne M; Roderick, H Llewelyn; Sipido, Karin R

    2016-10-15

    The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca 2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca 2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca 2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca 2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. In cardiac myocytes, β-adrenergic stimulation enhances Ca 2+ cycling through an integrated signalling cascade modulating L-type Ca 2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca 2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca 2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca 2+ ] i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca 2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca 2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces

  6. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis.

    PubMed

    Krieger, Nancy S; Bushinsky, David A

    2017-10-01

    Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco 2 = 38 mmHg, [HCO 3 - ] = 27 mM) or acid (MET, pH = 7.18, Pco 2 = 37 mmHg, [HCO 3 - ] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.

  7. Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection

    PubMed Central

    2013-01-01

    Background Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers. Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI. Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points after gastrocnemius tenotomy (GA). Results ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-1ß mRNA levels. ES increased PGC-1α expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to ES, GA induced expression of genes related to oxidative phosphorylation. Conclusions Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle. Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally innervated muscle. PMID:23914941

  8. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.

    PubMed

    Mattson, M P; Chan, S L

    2001-10-01

    Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic

  9. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  10. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Schumacher, M; Lode, A; Helth, A; Gelinsky, M

    2013-12-01

    In the present study, the in vitro effects of novel strontium-modified calcium phosphate bone cements (SrCPCs), prepared using two different approaches on human-bone-marrow-derived mesenchymal stem cells (hMSCs), were evaluated. Strontium ions, known to stimulate bone formation and therefore already used in systemic osteoporosis therapy, were incorporated into a hydroxyapatite-forming calcium phosphate bone cement via two simple approaches: incorporation of strontium carbonate crystals and substitution of Ca(2+) by Sr(2+) ions during cement setting. All modified cements released 0.03-0.07 mM Sr(2+) under in vitro conditions, concentrations that were shown not to impair the proliferation or osteogenic differentiation of hMSCs. Furthermore, strontium modification led to a reduced medium acidification and Ca(2+) depletion in comparison to the standard calcium phosphate cement. In indirect and direct cell culture experiments with the novel SrCPCs significantly enhanced cell proliferation and differentiation were observed. In conclusion, the SrCPCs described here could be beneficial for the local treatment of defects, especially in the osteoporotic bone. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Neuropeptide Y stimulates retinal neural cell proliferation--involvement of nitric oxide.

    PubMed

    Alvaro, Ana Rita; Martins, João; Araújo, Inês M; Rosmaninho-Salgado, Joana; Ambrósio, António F; Cavadas, Cláudia

    2008-06-01

    Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y(1), Y(2), Y(4) and Y(5) receptors [Alvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10-1000 nM) stimulated cell proliferation through the activation of NPY Y(1), Y(2) and Y(5) receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU(+)/nestin(+) cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by L-nitroarginine-methyl-esther (L-NAME; 500 microM), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 microM), a soluble guanylyl cyclase inhibitor or U0126 (1 microM), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide-cyclic GMP and ERK 1/2 pathways.

  12. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  13. Serum magnesium and calcium levels in infertile women during a cycle of reproductive assistance.

    PubMed

    Grossi, Elena; Castiglioni, Sara; Moscheni, Claudia; Antonazzo, Patrizio; Cetin, Irene; Savasi, Valeria Maria

    2017-05-01

    Magnesium (Mg) and calcium (Ca) are essential cations for women's preconception health. It is well known that, in blood, the concentration of ionized form of these two cations is temporally altered during menstrual cycle, suggesting a correlation between sex steroid hormones and serum calcium and magnesium levels. Evidence from literature suggests that in assisted reproductive technology increasing estrogens during ovarian hyperstimulation may also modulate serum magnesium and calcium levels. Therefore, we first examined total serum magnesium and calcium levels during follicular phase in a large population of infertile patients who underwent intrauterine insemination (IUI). The results were compared to a group of fertile women. Successively, we studied the total serum magnesium and calcium concentrations in infertile patients before and after ovarian hyperstimulation for in vitro fertilization (IVF). Results highlight that total serum concentration of magnesium and calcium does not seem altered in infertile women. During stimulation with gonadotropins, the values of the two cations do not change significantly in ovarian-stimulated women. However, we found a downward trend in the total magnesium and calcium levels in relation to the rising estrogens.

  14. [Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].

    PubMed

    Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei

    2002-02-01

    To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.

  15. In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy.

    PubMed

    Reznichenko, Lidia; Cheng, Qun; Nizar, Krystal; Gratiy, Sergey L; Saisan, Payam A; Rockenstein, Edward M; González, Tanya; Patrick, Christina; Spencer, Brian; Desplats, Paula; Dale, Anders M; Devor, Anna; Masliah, Eliezer

    2012-07-18

    Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.

  16. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.

    PubMed

    Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K

    2002-03-01

    Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.

  17. Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes

    NASA Astrophysics Data System (ADS)

    Yu, Wei-Tai; Chiu, Yi-Ching; Lee, Chih-Hung; Yoshioka, Tohru; Yu, Hsin-Su

    2013-11-01

    Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen's disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.

  18. Relationship of calcium and membrane guanylate cyclase in adrenocorticotropin-induced steroidogenesis.

    PubMed

    Nambi, P; Aiyar, N V; Roberts, A N; Sharma, R K

    1982-07-01

    Chlorpromazine, when incubated with isolated adrenal cells, inhibited the ACTH-stimulated formation of cGMP and corticosterone production. It also inhibited the ACTH-stimulated membrane guanylate cyclase, but did not affect the binding of ACTH to the membrane receptors. cGMP-induced steroidogenesis was not affected by the drug. These data indicate that chlorpromazine interferes with adrenal steroid metabolism at a site between the hormone receptor and guanylate cyclase and also show that guanylate cyclase is composed of separate receptor and catalytic components. Furthermore, based on the premise that chlorpromazine exerts its inhibitory action by blocking the binding of a calcium receptor protein, such as calmodulin, to the receptor-coupled guanylate cyclase, it is proposed that the interaction of calcium, presumably through a calcium-binding protein, is essential for ACTH-dependent guanylate cyclase.

  19. Extracellular Calcium Has Multiple Targets to Control Cell Proliferation.

    PubMed

    Capiod, Thierry

    2016-01-01

    Calcium channels and the two G-protein coupled receptors sensing extracellular calcium, calcium-sensing receptor (CaSR) and GPRC6a, are the two main means by which extracellular calcium can signal to cells and regulate many cellular processes including cell proliferation, migration and invasion of tumoral cells. Many intracellular signaling pathways are sensitive to cytosolic calcium rises and conversely intracellular signaling pathways can modulate calcium channel expression and activity. Calcium channels are undoubtedly involved in the former while the CaSR and GPRC6a are most likely to interfere with the latter. As for neurotransmitters, calcium ions use plasma membrane channels and GPCR to trigger cytosolic free calcium concentration rises and intracellular signaling and regulatory pathways activation. Calcium sensing GPCR, CaSR and GPRC6a, allow a supplemental degree of control and as for metabotropic receptors, they not only modulate calcium channel expression but they may also control calcium-dependent K+ channels. The multiplicity of intracellular signaling pathways involved, their sensitivity to local and global intracellular calcium increase and to CaSR and GPRC6a stimulation, the presence of membrane signalplex, all this confers the cells the plasticity they need to convert the effects of extracellular calcium into complex physiological responses and therefore determine their fate.

  20. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of co-existing copper and calcium on the removal of As(V) by reused aluminum oxides.

    PubMed

    Yang, J K; Park, Y J; Kim, K H; Lee, H Y; Min, K C; Lee, S M

    2013-01-01

    Among the various heavy metals, arsenic is frequently found in abandoned mine drainage and the environmental fate of arsenic in real aqueous solutions can be highly dependent on the presence of co-existing ions. In this study, removal of arsenate through adsorption on the reused aluminum oxide or through precipitation was investigated in a single and in a binary system as a function of pH and concentration. Different removal behaviors of arsenate were observed in the presence of different cations as well as a variation of the molar ratios of arsenate to cations. Co-operative effects on arsenate removal by precipitation in solution occurred with an increase of copper concentration, while a decrease of arsenate removal resulted in increasing calcium concentration. It was observed that the arsenate removal in the presence of calcium would be highly dependent on the molar ratios of both elements.

  2. Lipoic acid stimulates cAMP production via G protein coupled receptor dependent and independent mechanisms

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Tsang, Catherine; Regan, John W.; Bourdette, Dennis N.; Carr, Daniel W.

    2010-01-01

    Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer’s disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R and S LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCc with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G- protein coupled receptors, including histamine and adenosine, but not the beta adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases. PMID:21036588

  3. Localization of insulinomas to regions of the pancreas by intraarterial calcium stimulation: the NIH experience.

    PubMed

    Guettier, Jean-Marc; Kam, Anthony; Chang, Richard; Skarulis, Monica C; Cochran, Craig; Alexander, H Richard; Libutti, Steven K; Pingpank, James F; Gorden, Phillip

    2009-04-01

    Selective intraarterial calcium injection of the major pancreatic arteries with hepatic venous sampling [calcium arterial stimulation (CaStim)] has been used as a localizing tool for insulinomas at the National Institutes of Health (NIH) since 1989. The accuracy of this technique for localizing insulinomas was reported for all cases until 1996. The aim of the study was to assess the accuracy and track record of the CaStim over time and in the context of evolving technology and to review issues related to result interpretation and procedure complications. CaStim was the only invasive preoperative localization modality used at our center. Endoscopic ultrasound (US) was not studied. We conducted a retrospective case review at a referral center. Twenty-nine women and 16 men (mean age, 47 yr; range, 13-78) were diagnosed with an insulinoma from 1996-2008. A supervised fast was conducted to confirm the diagnosis of insulinoma. US, computed tomography (CT), magnetic resonance imaging (MRI), and CaStim were used as preoperative localization studies. Localization predicted by each preoperative test was compared to surgical localization for accuracy. We measured the accuracy of US, CT, MRI, and CaStim for localization of insulinomas preoperatively. All 45 patients had surgically proven insulinomas. Thirty-eight of 45 (84%) localized to the correct anatomical region by CaStim. In five of 45 (11%) patients, the CaStim was falsely negative. Two of 45 (4%) had false-positive localizations. The CaStim has remained vastly superior to abdominal US, CT, or MRI over time as a preoperative localizing tool for insulinomas. The utility of the CaStim for this purpose and in this setting is thus validated.

  4. Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme.

    PubMed

    Gibson, Gary E; Zhang, Hui; Xu, Hui; Park, Larry C H; Jeitner, Thomas M

    2002-03-16

    Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.

  5. The effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate bone cement

    NASA Astrophysics Data System (ADS)

    Razali, N. N.; Sukardi, M. A.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.

    2018-01-01

    The objective of this study is to determine the effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate cement (CPC) for bone filling applications. Hydroxyapatite powder was synthesized via hydrothermal method using calcium oxide, CaO and ammonium dihydrogen phosphate, NH4H2PO4 as the calcium and phosphorus precursors respectively. The effects of calcium excess were evaluated by varying the CaO content at 0, 5 and 15 mole %. The precursors were then refluxed in distilled water at 90-100°C and dried overnight until the calcium phosphate powder was formed. CPC was then produced by mixing the synthesized powder with distilled water at the powder-to-liquid (P/L) ratio of 1.5. The result from the morphological properties of CPC shows the increase in agglomeration and particles size with 5 mole % of calcium excess but decreased with 15 mole % of calcium excess in CPC. This result was in agreement with the compressive strength result where the CPC increased its strength with 5 mole % of calcium excess but reduced with 15 mole % of calcium excess. The excess in calcium precursor also significantly improved the setting time but reduced the injectability of CPC.

  6. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex

    PubMed Central

    Thrane, Alexander Stanley; Zeppenfeld, Douglas; Lou, Nanhong; Xu, Qiwu; Nagelhus, Erlend Arnulf; Nedergaard, Maiken

    2012-01-01

    Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs. PMID:23112168

  7. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells.

    PubMed

    Cueno, Marni E; Kamio, Noriaki; Seki, Keisuke; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2015-07-01

    Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.

  8. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ha Young, E-mail: hayoung@skku.edu; Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714; Kim, Sang Doo

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foammore » cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.« less

  9. Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an "electrochemical harriman series".

    PubMed

    Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp

    2014-12-01

    A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    PubMed Central

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease. PMID:27488468

  11. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  12. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    PubMed Central

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  13. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    PubMed

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  14. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  15. Priming effect of platelet activating factor on leukotriene C4 from stimulated eosinophils of asthmatic patients.

    PubMed Central

    Shindo, K.; Koide, K.; Hirai, Y.; Sumitomo, M.; Fukumura, M.

    1996-01-01

    BACKGROUND: Eosinophils from asthmatic patients are known to release greater amounts of leukotrienes than normal eosinophils when stimulated by the calcium ionophore A23187. The effect of platelet activating factor (PAF) in priming eosinophils was investigated. METHODS: Eosinophils were obtained from 18 asthmatic patients and 18 healthy donors. Cells separated by the Percoll gradients were incubated with PAF (C-18) for 30 minutes and then stimulated with the calcium ionophore A23187 (2.5 microM) for 15 minutes. The amount of leukotriene C4 (LTC4) in supernatants was measured using a combination of high pressure liquid chromatography and radioimmunoassay. RESULTS: The mean (SD) amount of LTC4 released by eosinophils from asthmatic patients upon stimulation with the calcium ionophore A23187 alone was 27.9 (9.9) ng/10(6) cells (n = 6). The amount of LTC4 released following stimulation with the calcium ionophore A23187 after pretreatment with PAF (1, 5, and 10 microM) was 57.2 (8.9), 75.1 (14.3), and 52.6 (10.7) ng/10(6) cells (n = 6), respectively. Trace amounts of LTC4 (0.9 (0.02) ng/10(6) cells, n = 6) were detected in the supernatant of the cells after stimulation by PAF alone (5 microM). The amount of LTC4 released upon stimulation by calcium ionophore A23187 alone in eosinophils from healthy donors was 10.3 (3.7) ng/10(6) cells (n = 4). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with PAF at concentrations of 1, 5, and 10 microM were 11.9 (3.5), 17.8 (5.6), and 12.7 (5.1) ng/10(6) cells (n = 4), respectively. Trace amounts of LTC4 (0.6 (0.02) ng/10(6) cells, n = 4) were detected in the supernatant of the cells upon stimulation with PAF alone (5 microM). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with lyso-PAF at concentrations of 1, 5, and 10 microM (n = 4 or 6) were 30.8 (5.2), 22.9 (5.1), and 27.3 (4.3) ng/10(6) cells (n = 6) from the eosinophils of asthmatic

  16. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    PubMed Central

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  17. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2017-01-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  18. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    PubMed Central

    Liao, Yajin; Dong, Yuan; Cheng, Jinbo

    2017-01-01

    The mitochondrial calcium uniporter (MCU)—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders. PMID:28208618

  19. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism

    EPA Science Inventory

    The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of m...

  1. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    PubMed

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.

  2. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  3. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  4. Calcium supplementation prevents endothelial cell activation: possible relevance to preeclampsia.

    PubMed

    Chen, Qi; Tong, Mancy; Wu, Man; Stone, Peter R; Snowise, Saul; Chamley, Lawrence W

    2013-09-01

    Preeclampsia is a leading cause of maternal and fetal mortality and morbidity. A hallmark of preeclampsia is endothelial cell dysfunction/activation in response to 'toxins' from the placenta. Necrotic trophoblastic debris (NTD) is one possible placental toxin and other activators of endothelial cells include inflammatory cytokines. Calcium supplementation appears to protect 'at-risk' women from developing preeclampsia but how is unclear. Placental explants were cultured with interleukin-6 (IL-6) in varied concentrations of calcium. The resultant trophoblastic debris was exposed to endothelial cells. Endothelial cells were exposed to activators including NTD, IL-6, and preeclamptic sera in the presence of varied concentrations of calcium and activation monitored by quantifying cell surface markers by ELISA. Raising the levels of calcium did not prevent the IL-6-induced shedding of NTD from placental explants but did prevent the activation of endothelial cells in response to IL-6, preeclamptic sera, or NTD. Reducing the level of calcium directly induced the activation of endothelial cells. Inhibiting nitric oxide synthetase ablated the ability of high calcium levels to protect endothelial cell activation. The activity of endothelial cell nitric oxide synthetase was blocked with L-N-nitroarginine methyl ester. Our results demonstrate calcium levels do not affect the shedding of trophoblastic debris but are important to endothelial cell activation and supplemental calcium may reverse the activation of the endothelium in preeclamptic women. These results may in part explain the benefits of calcium supplementation in the reduction of risk for developing preeclampsia and provide in-vitro mechanistic support for the use of calcium supplementation in at-risk women.

  5. Effect of nitric oxide synthase inhibitor on increase in nasal mucosal blood flow induced by sensory and parasympathetic nerve stimulation in rats.

    PubMed

    Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi

    2010-06-01

    Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.

  6. Calcium signal communication in the central nervous system.

    PubMed

    Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc

    2004-02-01

    The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.

  7. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro

    NASA Technical Reports Server (NTRS)

    Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.

    1999-01-01

    Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.

  8. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  9. A randomized controlled clinical trial investigating the effect of calcium supplement plus low-dose aspirin on hs-CRP, oxidative stress and insulin resistance in pregnant women at risk for pre-eclampsia.

    PubMed

    Asemi, Z; Samimi, M; Heidarzadeh, Z; Khorrammian, H; Tabassi, Z

    2012-05-15

    Increased levels of pro-inflammatory factors, markers of oxidative stress and insulin resistance during pregnancy have been associated with the development of pre-eclampsia. There is some evidence to suggest that calcium supplement and aspirin can reduce the risk of the disorder. To our knowledge, no reports are available indicating the effects of consumed calcium supplement plus aspirin on high sensitivity C-reactive protein (hs-CRP), oxidative stress parameters and insulin resistance in pregnant women at risk for pre-eclampsia. This study was designed to investigate the effects of consumed calcium supplement plus low-dose aspirin on hs-CRP, oxidative stress parameters and insulin resistance among Iranian pregnant women at risk for pre-eclampsia. This randomized single-blind controlled clinical trial was carried out among 42 pregnant women at risk for pre-eclampsia, primigravida, aged 18-40 year old who were carrying singleton pregnancy at their third trimester. Subjects were randomly assigned to received either the placebo (n = 22) or calcium supplement plus low-dose aspirin (n = 20) for 9 weeks. Calcium supplement plus low-dose aspirin were containing 500 mg carbonate calcium plus 80 mg aspirin. Fasting blood samples were taken at baseline and after 9 weeks intervention to measure serum hs-CRP, oxidative stress parameters including plasma Total Antioxidant Capacity (TAC) and Total Glutathione (GSH), Fasting Plasma Glucose (FPG), serum insulin and HOMA-IR score. Consumption of calcium supplement plus low-dose aspirin resulted in a significant difference serum hs-CRP levels as compared to the placebo (102.87 vs. 3227.75 ng mL(-1), p = 0.01). Also, mean changes for plasma TAC (68.96 vs. -74.46 mmol L(-1), p = 0.04) and total GSH levels (304.33 vs. -39.33 micromol L(-1), p = 0.03) were significantly different between the two groups. No significant differences were found comparing calcium supplement plus low-dose aspirin and placebo in terms of their effects on FPG

  10. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    PubMed

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  12. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    PubMed

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  13. Voltage-gated calcium flux mediates Escherichia coli mechanosensation

    PubMed Central

    Weekley, R. Andrew; Dodd, Benjamin J. T.

    2017-01-01

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings. PMID:28808010

  14. Optical cell stimulation for neuronal excitation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-02-01

    Optical manipulation of cellular functions represents a growing field in biomedical sciences. The possibility to modulate specific targets with high spatial and temporal precision in a contactless manner allows a broad range of applications. Here, we present a study on stimulation of neuronal cells by optical means. As a long-term objective, we seek to improve the performance of current electric neurostimulation, especially in the context of cochlear implants. Firstly, we tested a gold nanoparticle mediated approach to modulate transmembrane conductivity by irradiation using a picosecond pulsed Nd:YAG laser at 532 nm for 40 ms in a neuroblastoma cell line (N2A) and primary murine neurons. The light absorption leads to a rapid temperature increase of the gold nanoparticles, which can induce an increased permeabilisation of the cellular membrane. Calcium transients were recorded as an indicator of neuronal activity. Although calcium signals were reliably detected upon laser irradiation, the temporal behavior did not resemble action potentials. The origin of these signals was investigated by an inhibitor study. These results indicate calcium induced calcium release (CICR) as the major source of the calcium transients. Consecutively, we tested alternative approaches for cell stimulation, such as glutamate release and optogenetics, and evaluated the potential of these methods for the application in a cochlear implant. Compared to the gold nanoparticle approach, both techniques induce less cellular stress and reliably produce action potentials.

  15. Data on calcium oxide and cow bone catalysts used for soybean biodiesel production.

    PubMed

    Ayodeji, Ayoola A; Blessing, Igho E; Sunday, Fayomi O

    2018-06-01

    Biodiesel was produced from soybean oil using calcium oxide and cow bone as heterogeneous catalysts, through transesterification process. The soybean oil used was characterized using gas chromatography mass spectrometer (GCMS) and the cow bone catalyst produced was characterized X-ray fluorescence (XRF) spectrometer. The effects of the variation of methanol/oil mole ratio, catalyst concentration and reaction temperature on biodiesel yield during the transesterification of soybean oil were investigated. Reaction time of 3 h and stirring rate of 500 rpm were kept constant. Using Response Optimizer (Minitab 17), the optimum conditions for biodiesel production were established. It was observed that the calcination of cow bone catalyst enhanced its conversion to apatite-CaOH. Also, the results obtained showed that the performance trends of calcined cow bone catalyst and the conventional CaO catalyst were similar.

  16. Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling.

    PubMed

    Derouiche, Sandra; Warnier, Marine; Mariot, Pascal; Gosset, Pierre; Mauroy, Brigitte; Bonnal, Jean-Louis; Slomianny, Christian; Delcourt, Philippe; Prevarskaya, Natalia; Roudbaraki, Morad

    2013-12-01

    Bisphenol A (BPA), the principal constituent of reusable water bottles, metal cans, and plastic food containers, has been shown to be involved in human prostate cancer (PCa) cell proliferation. The aim of the present study was to explore the effect of BPA on PCa cell migration and the pathways involved in these processes. Using the transwell technique, we clearly show for the first time that the pre-treatment of the cells with BPA (1-10 nM) induces human PCa cell migration. Using a calcium imaging technique, we show that BPA pre-treatment induces an amplification of Store-Operated Calcium Entry (SOCE) in LNCaP cells. RT-PCR and Western blot experiments allowed the identification of the ion channel proteins which are up-regulated by BPA pre-treatments. These include the Orai1 protein, which is known as an important SOCE actor in various cell systems, including human PCa cells. Using a siRNA strategy, we observed that BPA-induced amplification of SOCE was Orai1-dependent. Interestingly, the BPA-induced PCa cell migration was suppressed when the calcium entry was impaired by the use of SOCE inhibitors (SKF96365, BTP2), or when the extracellular calcium was chelated. Taken together, the results presented here show that BPA induces PCa cells migration via a modulation of the ion channel protein expression involved in calcium entry and in cancer cell migration. The present data provide novel insights into the molecular mechanisms involved in the effects of an environmental factor on cancer cells and suggest both the necessity of preventive measures and the possibility of targeting ion channels in the treatment of PCa cell metastasis.

  17. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    PubMed

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of inhibition of microsomal Ca(2+)-ATPase on cytoplasmic calcium and enzyme secretion in pancreatic acini.

    PubMed

    Metz, D C; Pradhan, T K; Mrozinski, J E; Jensen, R T; Turner, R J; Patto, R J; Gardner, J D

    1994-01-13

    We used thapsigargin (TG), 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ) and cyclopiazonic acid (CPA), each of which inhibits microsomal Ca(2+)-ATPase, to evaluate the effects of this inhibition on cytoplasmic free calcium ([Ca2+]i) and secretagogue-stimulated enzyme secretion in rat pancreatic acini. Using single-cell microspectrofluorimetry of fura-2-loaded acini we found that all three agents caused a sustained increase in [Ca2+]i by mobilizing calcium from inositol-(1,4,5)-trisphosphate-sensitive intracellular calcium stores and by promoting influx of extracellular calcium. Concentrations of all three agents that increased [Ca2+]i potentiated the stimulation of enzyme secretion caused by secretagogues that activate adenylate cyclase but inhibited the stimulation of enzyme secretion caused by secretagogues that activate phospholipase C. With BHQ, potentiation of adenylate cyclase-mediated enzyme secretion occurred immediately whereas inhibition of phospholipase C-mediated enzyme secretion occurred only after several min of incubation. In addition, the effects of BHQ and CPA on both [Ca2+]i and secretagogue-stimulated enzyme secretion were reversed completely by washing whereas the actions of TG could not be reversed by washing. Concentrations of BHQ in excess of those that caused maximal changes in [Ca2+]i inhibited all modes of stimulated enzyme secretion by a mechanism that was apparently unrelated to changes in [Ca2+]i. Finally, in contrast to the findings with TG and BHQ, CPA inhibited bombesin-stimulated enzyme secretion over a range of concentrations that was at least 10-fold lower than the range of concentrations over which CPA potentiated VIP-stimulated enzyme secretion.

  19. Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop

    PubMed Central

    Cheng, Jinbo; Liao, Yajin; Zhou, Lujun; Peng, Shengyi; Chen, Hong; Yuan, Zengqiang

    2016-01-01

    Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-β levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-β levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-β levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling. PMID:26892273

  20. Cardiac Myocyte-specific Knock-out of Calcium-independent Phospholipase A2γ (iPLA2γ) Decreases Oxidized Fatty Acids during Ischemia/Reperfusion and Reduces Infarct Size *

    PubMed Central

    Moon, Sung Ho; Mancuso, David J.; Sims, Harold F.; Liu, Xinping; Nguyen, Annie L.; Yang, Kui; Guan, Shaoping; Dilthey, Beverly Gibson; Jenkins, Christopher M.; Weinheimer, Carla J.; Kovacs, Attila; Abendschein, Dana; Gross, Richard W.

    2016-01-01

    Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca2+-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca2+ by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion. PMID:27453526

  1. The Role of Calcium in Ameliorating the Oxidative Stress of Fluoride in Rats.

    PubMed

    Mohamed, N E

    2016-03-01

    The present study was carried out to investigate the effects of fluoride toxicity on some biochemical, hormonal, and histological parameters of female rats and the protective role of calcium against such effects. Adult female albino rats were divided into five groups; control group received distilled water for 60 days, calcium group received calcium carbonate with dose of 50 mg/kg three times per week for 60 days, fluoride group received sodium fluoride with dose of 20 mg/kg three times per week for 60 days, calcium + fluoride group received calcium carbonate (50 mg/kg) then after 2 h received sodium fluoride (20 mg/kg) three times per week for 60 days, and fluoride + calcium group received sodium fluoride (20 mg/kg) three times per week for 30 days then received calcium carbonate (50 mg/kg) three times per week for another 30 days. The results showed that the levels of thiobarbituric acid reactive substances, urea, creatinine, alkaline phosphatase, triiodothyronine, thyroxine, parathormone, phosphorous, magnesium, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and gamma glutamyl transferase were significantly increased in rats treated with fluoride while serum estradiol, calcium, and organ glutathione were significantly decreased. The histological examination of the femur bone revealed that fluoride treatment induced thinning of bone trabeculae with wilding of marrow space, demineralization, and loss of trabeculae interconnections. Also, the histological examination of hepatic and renal tissues of fluoride-treated rats showed some damages in these tissues while administration of calcium carbonate for 30 or 60 days during fluoride treatment minimized such damages. It could be concluded that administration of calcium to female rats can ameliorate the hazardous effects of fluoride observed in the biochemical, hormonal, and histological parameters.

  2. Magnetically responsive calcium carbonate microcrystals.

    PubMed

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  3. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  4. The Yin and Yang of Calcium Effects on Synaptic Vesicle Endocytosis

    PubMed Central

    Wu, Xin-Sheng

    2014-01-01

    A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0–1 μm calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium. PMID:24523554

  5. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  6. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil.

    PubMed

    Correia, Leandro Marques; Saboya, Rosana Maria Alves; Campelo, Natália de Sousa; Cecilia, Juan Antonio; Rodríguez-Castellón, Enrique; Cavalcante, Célio Loureiro; Vieira, Rodrigo Silveira

    2014-01-01

    The catalytic activities of calcium oxide obtained from natural sources (crab shell and eggshell) were characterized and evaluated in the transesterification of vegetable oil. These catalysts are mainly composed of calcium carbonate, which is partially converted into CaO after calcination (900°C for 2h). The catalysts have some advantages, such as abundant occurrence, low cost, porous structure, and nontoxic. The materials were characterized by XRD, FTIR, TG/DTG, CO2-TPD, XPS, SEM, and BET methods. The thermal treatment produces small particles of CaCO3 and CaO that are responsible for the catalytic activity. The conversion from triglycerides to methyl ester was not observed in transesterification carried out using natural crab shell and eggshell. Under optimized reaction conditions, the conversions to YFAME using the calcined catalysts were: crab shell (83.10±0.27 wt.%) and eggshell (97.75±0.02 wt.%). These results, showed that these materials have promising viability in transesterification for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The role of calcium ions in cytological effects of hypogravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Palladina, T. A.; Tarasenko, V. A.

    Electron-cytochemical and biochemical methods made it possible to reveal certain differences in ATPase activity stimulation by calcium ions in root apex cells of pea seedlings and moss protonema Funaria hygrometrica grown under stationary and slow clinostatic (2 rev/min) conditions. It was showed that under clinostatic conditions in comparison with the control variant the ATPase activity decreases in plasmalemma. The protein content in the plasmalemma fraction was also twice as low under these conditions. The root apex cells of the pea seedlings grown under spaceflight conditions were found to contain high concentrations of membrane-bound calcium. The data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance and the system of active calcium ion transport through plasmalemma under hypogravity.

  8. Role of calcium in phosphoinositide metabolism and inhibition of norepinephrine transport into synaptic vesicles by amphetamine analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, S.M.

    1985-01-01

    Norepinephrine-(NE) and calcium ionophore A23187-stimulated phosphoinositide (PIn) metabolism in rat brain slices was studied under varying calcium conditions. Tissue was labelled with /sup 3/H-myo-inositol and /sup 3/H-inositol phosphates (IPn), products of PIn metabolism were measured. In the absence of media calcium the response to NE was decreased while that to A23187 was little affected A23187 can release calcium from intracellular stores. Basal and stimulated accumulation of /sup 3/H-IPn was reversibly antagonized with EGTA by addition of calcium. Using calcium buffers, approximately 10/sup -7/ M free calcium was required to support hydrolysis. Free intracellular calcium is maintained at approximately this level.more » Thus calcium is required for PIn hydrolysis but appears to play a permissive role, basal levels being sufficient to support metabolism. Conformationally-defined (rigid) and -restricted (semi-rigid) analogs of the most stable conformations of amphetamine, antiperiplanar (exo) and gauche (endo), were utilized to probe the conformational requirements of vesicular NE transport. Analogs tested were 2-aminotetralin (2AT), 3-methyltetrahydroisoquinoline, anti- and syn-9-aminobenzobicyclo(2.2.1)heptene, and endo and exo conformers of 2-aminobenzobicyclo(2.2.1)heptene and 2-aminobenzobicyclo(2.2.2)octene.« less

  9. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  10. Photoaffinity labelling of MSH receptors on Anolis melanophores: effects of catecholamines, calcium and forskolin.

    PubMed

    Eberle, A N; Girard, J

    1985-01-01

    Photoaffinity labelling of MSH receptors on Anolis melanophores was used as a tool for studying the effects of catecholamines, calcium and forskolin on hormone-receptor interaction and receptor-adenylate cyclase coupling. Covalent attachment of photoreactive alpha-MSH to its receptor was suppressed in calcium-free buffer but was hardly influenced by catecholamines or forskolin. The longlasting signal generated by the covalent MSH-receptor complex was readily and reversibly abolished by adrenaline, noradrenaline, dopamine or clonidine or by the absence of calcium. The suppression of pigment dispersion by catecholamines was blocked by the simultaneous presence of yohimbine but not prazosin, indicating that the catecholamines antagonize the alpha-MSH signal by inhibitory action on the adenylate cyclase system through an alpha-2 receptor. Forskolin, which stimulates melanophores by direct action on the catalytic unit of the adenylate cyclase and at about the same speed as alpha-MSH, produced a slower and weaker response in the presence of noradrenaline. If MSH receptors were covalently labelled and then exposed to noradrenaline, the characteristics of the forskolin-induced response were identical to those of unlabelled cells that had not been exposed to noradrenaline. This may point to a partial restoration of receptor-adenylate cyclase coupling by forskolin. The results show that the longlasting stimulation of Anolis melanophores by photoaffinity labelling proceeds via a permanently stimulated adenylate-cyclase system whose coupling to the receptor depends on calcium and is abolished by alpha-2 receptor agonists. Calcium is also essential for hormone-receptor binding.

  11. Effects of calcium carbonate, magnesium oxide and sodium citrate bicarbonate health supplements on the urinary risk factors for kidney stone formation.

    PubMed

    Allie, Shameez; Rodgers, Allen

    2003-01-01

    We describe a model to illustrate different chemical interactions that can occur in urine following ingestion of individual and combined health supplements. Two types of interactions are defined: synergism and addition. The model was applied to eight healthy males who participated in a study to investigate the chemical interactions between calcium carbonate, magnesium oxide and sodium citrate-bicarbonate health supplements on calcium oxalate urinary stone risk factors. Subjects ingested these components individually and in combination for 7 days. Twenty-four-hour urines were collected at baseline and during the final day of supplementation. These were analysed using standard laboratory techniques. Three different chemical interactions, all involving citrate, were identified: magnesium and citrate exerted a synergistic effect on lowering the relative superaturation (RS) of brushite; the same two components produced a synergistic effect on raising pH; finally, calcium and citrate exerted an additive effect on lowering the RS of uric acid. We propose that the novel approach described in this paper allows for the evaluation of individual, additive and synergistic interactions in the assessment of the efficacy of stone-risk reducing preparations.

  12. Nuclear calcium is required for human T cell activation

    PubMed Central

    Samstag, Yvonne

    2016-01-01

    Calcium signals in stimulated T cells are generally considered single entities that merely trigger immune responses, whereas costimulatory events specify the type of reaction. Here we show that the “T cell calcium signal” is a composite signal harboring two distinct components that antagonistically control genomic programs underlying the immune response. Using human T cells from healthy individuals, we establish nuclear calcium as a key signal in human T cell adaptogenomics that drives T cell activation and is required for signaling to cyclic adenosine monophosphate response element–binding protein and the induction of CD25, CD69, interleukin-2, and γ-interferon. In the absence of nuclear calcium signaling, cytosolic calcium activating nuclear factor of activated T cells translocation directed the genomic response toward enhanced expression of genes that negatively modulate T cell activation and are associated with a hyporesponsive state. Thus, nuclear calcium controls the T cell fate decision between a proliferative immune response and tolerance. Modulators of nuclear calcium–driven transcription may be used to develop a new type of pro-tolerance immunosuppressive therapy. PMID:27810914

  13. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    PubMed

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation.

    PubMed

    Park, Yeong-Joon; Song, Ho-Jun; Kim, In; Yang, Hong-So

    2007-04-01

    In this study, we characterized the surface of oxide film formed on titanium metal through the use of thermal treatment and investigated the effect of surface characteristics on the bioactivity of titanium. The as-received sample group was prepared by polishing and cleaning CP-Ti as a control group, and thermally oxidized sample groups were prepared by heat treating at 530, 600, 700, 800, 900, and 1000 degrees C respectively. Micro-morphology, crystalline structure, chemical composition, and binding state were evaluated using FE-SEM, XRD, and XPS. The bioactivity of sample groups was investigated by observing the degree of calcium phosphate formation from immersion testing in MEM. The surface characterization tests showed that hydroxyl group content in titanium oxide film was increased, as the density of titanium atoms was high and the surface area was large. In MEM immersion test, initial calcium phosphate formation was dependent upon the thickness of titanium oxide, and resultant calcium phosphate formation depended on the content of the hydroxyl group of the titanium oxide film surface.

  16. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  17. Physicochemical properties of calcium silicate cements associated with microparticulate and nanoparticulate radiopacifiers.

    PubMed

    Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane M; Viapiana, Raqueli; Berbert, Fabio Luiz C; Duarte, Marco Antonio Hungaro; Tanomaru-Filho, Mário

    2016-01-01

    The objective of this paper was to evaluate the physicochemical properties of calcium silicate cements with different chemical compositions, associated with radiopacifying agents. Mineral trioxide aggregate (MTA) Angelus, calcium silicate cement with additives (CSC), and resinous calcium silicate cement (CSCR) were evaluated, with the addition of the following radiopacifiers: microparticles (micro) or nanoparticles (nano) of zirconium oxide (ZrO(2)), niobium oxide (Nb(2)O(5)), bismuth oxide (Bi(2)O(3)), or calcium tungstate (CaWO(4)). Setting time was evaluated using Gilmore needles. Solubility was determined after immersion in water. The pH and calcium ion release were analyzed after 3, 12, and 24 h and 7, 14, and 21 days. The data obtained were submitted to analysis of variance and Tukey's test, at a level of significance of 5 %. CSC + CaWO(4) and CSCR + ZrO(2) micro, Nb(2)O(5) and CaWO(4) presented results similar to MTA, with a shorter final setting time than the other associations. CSC and CSCR+ ZrO(2) micro presented a higher degree of flow. All the cements evaluated presented low solubility. The materials presented alkaline pH and released calcium ions. ZrO(2) micro radiopacifier may be considered a potential substitute for Bi(2)O(3) when associated with CSC or CSCR. The proposed materials, especially when associated with ZrO(2), are potential materials for use as alternatives to MTA.

  18. Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry.

    PubMed

    Oh, Myongkeun; Zhao, Shunbing; Matveev, Victor; Nadim, Farzan

    2012-12-01

    Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.

  19. Hexamethyldisilazane Removal with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    PubMed

    Kao, Ching-Yang; Lin, Min-Fa; Nguyen, Nhat-Thien; Tsai, Hsiao-Hsin; Chang, Luh-Maan; Chen, Po-Han; Chang, Chang-Tang

    2018-05-01

    A large amount of calcium fluoride sludge is generated by the semiconductor industry every year. It also requires a high amount of fuel consumption using rotor concentrators and thermal oxidizers to treat VOCs. The mesoporous adsorbent prepared by calcium fluoride sludge was used for VOCs treatment. The semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s) due to the formation of silicon dioxide, which blocks porous adsorbents. The adsorption of HMDS (Hexamethyldisiloxane) was tested with mesoporous silica materials synthesized from calcium fluoride (CF-MCM). The resulting samples were characterized by XRD, XRF, FTIR, N2-adsorption-desorption techniques. The prepared samples possessed high specific surface area, large pore volume and large pore diameter. The crystal patterns of CF-MCM were similar with Mobil composite matter (MCM-41) from TEM image. The adsorption capacity of HMDS with CF-MCM was 40 and 80 mg g-1, respectively, under 100 and 500 ppm HMDS. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.

  20. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*

    PubMed Central

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren

    2014-01-01

    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  1. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    PubMed

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  3. Calcification and photosynthesis of the coral acropora cervicornis under calcium limited conditions

    NASA Technical Reports Server (NTRS)

    Rathfon, Megan; Brewer, Debbie

    1997-01-01

    Differing hypothesis about the function of calcification are based on an interesting dilemma. Is the purpose of calcification mainly a structural and protective one or does calcification serve other functions? Does photosynthesis increase carbonate ion activity and cause calcification or does calcification increase CO2 levels and stimulate photsynthesis? It is proposed that calcification in corals is not dependent upon photosynthesis but upon calcium levels in the water. Under normal ocean conditions, corals convert a certain percentage of energy to photosynthesis and respiration and another percentage to calcification. As corals become nutrient stressed, particularly calcium limited, the ratio of photosynthesis to calcification shifts towards calcification in order to generate protons. The protons generated during calcification may stimulate photosynthesis and aid in the uptake of nutrients and biocarbonates. The results of the calcification experiment show a trend towards increased calcification and decreased photosynthesis when the coral Acropora cervicornis is calcium limited, but the data are inconclusive and further research is needed.

  4. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    PubMed

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca 2+ -free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or Ca V 1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  5. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold

  6. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition

    PubMed Central

    Chia, Karin K. M.; Liu, Chia-Chi; Hamilton, Elisha J.; Garcia, Alvaro; Fry, Natasha A.; Hannam, William; Figtree, Gemma A.

    2015-01-01

    Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na+-K+ pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na+-K+ pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na+-K+ pump current (Ip). Coexposure to 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na+-K+ pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47phox NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22phox subunit, and it decreased O2·−-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47phox indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22phox and p47phox NADPH oxidase subunits and decrease β1-Na+-K+ pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo. PMID:26084308

  7. Calcium Homeostatasis and Mitochondrial Dysfunction in Dopaminergic Neurons of the Substantia Nigra

    DTIC Science & Technology

    2010-03-01

    discovery that calcium entry through L-type channels during normal pacemaking elevates the sensitivity of SNc dopaminergic neurons to toxins; • the...discovery that L-type calcium channels participate in but are not necessary for pacemaking; • the discovery that serum concentration of the...FDA approved doses; • the discovery that calcium entry through L-type channels during pacemaking elevates mitochondrial oxidant stress and leads

  8. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  9. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization

    PubMed Central

    Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert

    2012-01-01

    Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068

  10. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart

    PubMed Central

    Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.

    2016-01-01

    S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its

  11. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably

  12. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons.

    PubMed

    Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian

    2014-07-11

    Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  14. Intracellular calcium buffering capacity in isolated squid axons

    PubMed Central

    Brinley, FJ; Tiffert, T; Scarpa, A; Mullins, LJ

    1977-01-01

    Changes in ionized calcium were studied in axons isolated from living squid by measuring absorbance of the Ca binding dye Arsenazo III using multiwavelength differential absorption spectroscopy. Absorption changes measured in situ were calibrated in vitro with media of ionic composition similar to axoplasm containing CaEGTA buffers. Calcium loads of 50-2,500 μmol/kg axoplasm were induced by microinjection, by stimulation in 112 mM Ca seawater, or by soaking in choline saline with 1-10 mM Ca. Over this range of calcium loading of intact axoplasm, the ionized calcium in the axoplasm rose about 0.6 nM/μM load. Similar loading in axons preteated with carbonyl cyanide 4- trifluoromethoxyphenylhydrazone (FCCP) to inhibit the mitochondrial proton gradient increased ionized calcium by 5-7 percent of the imposed load, i.e. 93-95 percent of the calcium load was buffered by a process insensitive to FCCP. This FCCP- insensitive buffer system was not saturated by the largest calcium loads imposed, indicating a capacity of at least several millimolar. Treatment of previously loaded axons with FCCP or apyrase plus cyanide produced rises in ionized calcium which could be correlated with the extent of the load. Analysis of results indicated that, whereas only 6 percent of the endogenous calcium in fresh axons is stored in the FCCP-sensitive (presumably mitochondrial) buffer system, about 30 percent of an imposed exogenous load in the range of 50-2,500 μM is taken up by this system. PMID:894260

  15. Origins of intracellular calcium mobilization evoked by infrared laser stimulation

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.

    2015-03-01

    Cellular delivery of pulsed IR laser energy has been shown to stimulate action potentials in neurons. The mechanism for this stimulation is not completely understood. Certain hypotheses suggest the rise in temperature from IR exposure could activate temperature- or pressure-sensitive channels, or create pores in the cellular outer membrane. Studies using intensity-based Ca2+-responsive dyes show changes in Ca2+ levels after various IR stimulation parameters; however, determination of the origin of this signal proved difficult. An influx of larger, typically plasma-membrane-impermeant ions has been demonstrated, which suggests that Ca2+ may originate from the external solution. However, activation of intracellular signaling pathways, possibly indicating a more complex role of increasing Ca2+ concentration, has also been shown. By usingCa2+ sensitive dye Fura-2 and a high-speed ratiometric imaging system that rapidly alternates the excitation wavelengths, we have quantified the Ca2+ mobilization in terms of influx from the external solution and efflux from intracellular organelles. CHO-K1 cells, which lack voltage-gated Ca2+ channels, and NG-108 neuroblastoma cells, which do not produce action potentials in an early undifferentiated state, are used to determine the origin of the Ca2+ signals and investigate the role these mechanisms may play in IR neural stimulation.

  16. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  17. An inhibitor of polyamine synthesis arrests cells at an earlier stage of G1 than does calcium deprivation.

    PubMed Central

    Cheetham, B F

    1983-01-01

    Methylglyoxal bis(guanylhydrazone) completely inhibits the induction of thymidine kinase after serum stimulation of quiescent fibroblasts only if added within 3 h after serum, whereas calcium deprivation blocks this induction up to 12 h after serum stimulation. Experiments in which one of these blocks was imposed as the other was released confirmed that cells blocked by methylglyoxal bis(guanylhydrazone) are arrested at an earlier stage in G1 than cells blocked by calcium deprivation. PMID:6843551

  18. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  19. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuriya, Mutsuo; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This primingmore » effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. - Highlights: • Background NE augments the responsiveness of astrocytes to subsequent NE stimulation. • The priming effect is independent of neuronal activity and mediated by βadrenoceptor. • Background subthreshold NE may play gliomodulatory roles in the cerebral cortex.« less

  20. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  1. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Datamore » were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.« less

  2. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells

    PubMed Central

    Cokic, Bojana B Beleslin; Cokic, Vladan P; Suresh, Sukanya; Wirt, Stacey; Noguchi, Constance Tom

    2014-01-01

    Erythropoietin receptor (EPOR) expression level determines the extent of erythropoietin (EPO) response. Previously we showed that EPOR expression in endothelial cells is increased at low oxygen tension and that EPO stimulation of endothelial cells during hypoxia can increase endothelial nitric oxide (NO) synthase (eNOS) expression and activation as well as NO production. We now observe that while EPO can stimulate NO production, NO in turn can regulate EPOR expression. Human umbilical vein endothelial cells (HUVEC) treated with 10–50 μM of NO donor diethylenetriamine NONOate (DETANO) for 24 hours showed significant induction of EPOR gene expression at 5% and 2% of oxygen. Also human bone marrow microvascular endothelial cell line (TrHBMEC) cultured at 21 and 2% oxygen with 50 μM DETANO demonstrated a time and oxygen dependent induction of EPOR mRNA expression after 24 and 48 hours, particularly at low oxygen tension. EPOR protein was also induced by DETANO at 2% oxygen in TrHBMEC and HUVEC. The activation of signaling pathways by NO donor stimulation appeared to be distinct from EPO stimulation. In reporter gene assays, DETANO treatment of HeLa cells at 2% oxygen increased EPOR promoter activity indicated by a 48% increase in luciferase activity with a 2 kb EPOR promoter fragment and a 71% increase in activity with a minimal EPOR promoter fragment containing 0.2Kb 5′. We found that DETANO activated MAPK kinase in TrHBMEC both in normoxia and hypoxia, while MAPK kinase inhibition showed significant reduction of EPOR mRNA gene expression at low oxygen tension, suggesting MAPK involvement in NO mediated induction of EPOR. Furthermore, DETANO stimulated Akt anti-apoptotic activity after 30 minutes in normoxia, whereas it inhibited Akt phosphorylation in hypoxia. In contrast, EPO did not significantly increase MAPK activity while EPO stimulated Akt phosphorylation in TrHBMEC in normoxia and hypoxia. These observations provide a new effect of NO on EPOR expression

  3. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells.

    PubMed

    Cokic, Bojana B Beleslin; Cokic, Vladan P; Suresh, Sukanya; Wirt, Stacey; Noguchi, Constance Tom

    2014-03-01

    Erythropoietin receptor (EPOR) expression level determines the extent of erythropoietin (EPO) response. Previously we showed that EPOR expression in endothelial cells is increased at low oxygen tension and that EPO stimulation of endothelial cells during hypoxia can increase endothelial nitric oxide (NO) synthase (eNOS) expression and activation as well as NO production. We now observe that while EPO can stimulate NO production, NO in turn can regulate EPOR expression. Human umbilical vein endothelial cells (HUVEC) treated with 10-50 μM of NO donor diethylenetriamine NONOate (DETANO) for 24h showed significant induction of EPOR gene expression at 5% and 2% of oxygen. Also human bone marrow microvascular endothelial cell line (TrHBMEC) cultured at 21 and 2% oxygen with 50 μM DETANO demonstrated a time and oxygen dependent induction of EPOR mRNA expression after 24 and 48 h, particularly at low oxygen tension. EPOR protein was also induced by DETANO at 2% oxygen in TrHBMEC and HUVEC. The activation of signaling pathways by NO donor stimulation appeared to be distinct from EPO stimulation. In reporter gene assays, DETANO treatment of HeLa cells at 2% oxygen increased EPOR promoter activity indicated by a 48% increase in luciferase activity with a 2 kb EPOR promoter fragment and a 71% increase in activity with a minimal EPOR promoter fragment containing 0.2 kb 5'. We found that DETANO activated MAPK kinase in TrHBMEC both in normoxia and hypoxia, while MAPK kinase inhibition showed significant reduction of EPOR mRNA gene expression at low oxygen tension, suggesting MAPK involvement in NO mediated induction of EPOR. Furthermore, DETANO stimulated Akt anti-apoptotic activity after 30 min in normoxia, whereas it inhibited Akt phosphorylation in hypoxia. In contrast, EPO did not significantly increase MAPK activity while EPO stimulated Akt phosphorylation in TrHBMEC in normoxia and hypoxia. These observations provide a new effect of NO on EPOR expression to enhance EPO

  4. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  5. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells.

    PubMed

    Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas

    2010-11-01

    Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.

  6. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  7. Heteromerization of G2A and OGR1 enhances proton sensitivity and proton-induced calcium signals.

    PubMed

    Huang, Ya-Han; Su, Yeu-Shiuan; Chang, Chung-Jen; Sun, Wei-Hsin

    2016-12-01

    Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ∼ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH ≥ 6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH ≤ 5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.

  8. Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway.

    PubMed

    Lee, Hyeong-Seon; Lee, Gyeong-Seon; Kim, Seon-Hee; Kim, Hyun-Kyung; Suk, Dong-Hee; Lee, Dong-Seok

    2014-02-01

    Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway.

  9. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  10. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    USGS Publications Warehouse

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  11. Albuminuria enhances NHE3 and NCC via stimulation of mitochondrial oxidative stress/angiotensin II axis.

    PubMed

    Jia, Zhanjun; Zhuang, Yibo; Hu, Caiyu; Zhang, Xintong; Ding, Guixia; Zhang, Yue; Rohatgi, Rajeev; Hua, Hu; Huang, Songming; He, John Ci-Jiang; Zhang, Aihua

    2016-07-26

    Imbalance of salt and water is a frequent and challenging complication of kidney disease, whose pathogenic mechanisms remain elusive. Employing an albumin overload mouse model, we discovered that albuminuria enhanced the expression of NHE3 and NCC but not other transporters in murine kidney in line with the stimulation of angiotensinogen (AGT)/angiotensin converting enzyme (ACE)/angiotensin (Ang) II cascade. In primary cultures of renal tubular cells, albumin directly stimulated AGT/ACE/Ang II and upregulated NHE3 and NCC expression. Blocking Ang II production with an ACE inhibitor normalized the upregulation of NHE3 and NCC in cells. Interestingly, albumin overload significantly reduced mitochondrial superoxide dismutase (SOD2), and administration of a SOD2 mimic (MnTBAP) normalized the expression of NHE3, NCC, and the components of AGT/ACE pathway affected by albuminuria, indicating a key role of mitochondria-derived oxidative stress in modulating renin-angiotensin system (RAS) and renal sodium transporters. In addition, the functional data showing the reduced urinary excretion of Na and Cl and enhanced response to specific NCC inhibitor further supported the regulatory results of sodium transporters following albumin overload. More importantly, the upregulation of NHE3 and NCC and activation of ACE/Ang II signaling pathway were also observed in albuminuric patient kidneys, suggesting that our animal model accurately replicates the human condition. Taken together, these novel findings demonstrated that albuminuria is of importance in resetting renal salt handling via mitochondrial oxidative stress-initiated stimulation of ACE/Ang II cascade. This may also offer novel, effective therapeutic targets for dealing with salt and water imbalance in proteinuric renal diseases.

  12. Protein intake induced an increase in exercise stimulated fat oxidation during stable body weight.

    PubMed

    Soenen, Stijn; Plasqui, Guy; Smeets, Astrid J; Westerterp-Plantenga, Margriet S

    2010-12-02

    Protein-rich weight-loss diets spare fat-free mass at the cost of fat mass. The objective was to examine if there is a change in stimulated fat oxidation related to protein intake during stable body weight. Subjects' (BMI 22±2kg/m(2), age 25±8 years) maximal fat oxidation (Fat(max)) was assessed during a graded bicycle test, before and after a 3-month dietary-intervention of 2MJ/day supplements exchanged with 2MJ/d of habitual energy intake. The parallel design consisted of protein-rich supplements in the protein group and an isocaloric combination of carbohydrate and fat supplements in the control group. Daily protein intake was determined according to 24-h urine nitrogen. Body composition was measured according to a 4-compartment model by a combination of underwater-weighing technique, deuterium-dilution technique and whole-body dual-energy X-ray absorptiometry (DXA). Subjects were weight stable and did not change their physical activity. The protein group (n=12) increased protein intake (11±14g, P<0.05) and had significantly higher daily protein intake vs. control (n=4) (80±21 vs.59±11g, P<0.05). Fat(max) increased significantly in the protein group (0.08±0.08g/min, P<0.01). Fat-free mass increased independent of change in body weight (P<0.01), and fat mass and fat percentage decreased (P<0.05). Change in Fat(max) was a function of change in protein intake (r=0.623, P<0.05), and not of changes in body composition or VO(2)max. Increased stimulated fat oxidation was related to increased protein intake. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendling, W.W.; Harakal, C.

    1987-05-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips duringmore » 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.« less

  14. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.

    PubMed

    Takeda-Nakazawa, Hiroko; Harada, Narinobu; Shen, Jing; Kubo, Nobuo; Zenner, Hans-Peter; Yamashita, Toshio

    2007-08-01

    Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca2+]i) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+]i increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism.

  15. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.

    PubMed

    Takeda-Nakazawa, Hiroko; Harada, Narinobu; Shen, Jing; Kubo, Nobuo; Zenner, Hans-Peter; Yamashita, Toshio

    2007-05-01

    Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca(2+)-free solution. L-N(G)-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca(2+) concentrations ([Ca(2+)](i)) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca(2+) response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca(2+)](i) increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca(2+) response via the NO-cGMP-PKG pathway by a feedback mechanism.

  16. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  17. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    EPA Science Inventory

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  18. Calcium phosphates deposited on titanium electrode surface--part 1: Effect of the electrode polarity and oxide film on the deposited materials.

    PubMed

    Okawa, Seigo; Watanabe, Kouichi; Kanatani, Mitsugu

    2013-01-01

    We report experimental results about the effect of polarity of electrode and anodized titanium oxide film on the deposited materials by electrolysis of an acidic calcium phosphate solution. Mirror-polished titanium and anodized titanium were used as anode or cathode, and a Pt plate was used as a counter electrode. The load voltage was held constant at 20 VDC. No deposited materials were found on the anode surface. On the other hand, dicalcium phosphate dihydrate (DCPD) was deposited on the cathode surface at the beginning of the electrolysis. After the electrolysis time 600 s, the non-stoichiometric hydroxyapatite (HAp) with several hundred nanometers was formed on the specimen surface. Based on X-ray photoelectron spectroscopy data, the anodized oxide film contained both P(5+) and P(3+) ions. This characteristic of the oxide film and the electrolysis conditions were related to the behavior of the deposition of ultra fine HAp with high crystallinity.

  19. Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells

    PubMed Central

    Ortiz-Capisano, M. Cecilia; Liao, Tang-Dong; Ortiz, Pablo A.

    2009-01-01

    Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by calcium. We previously showed JG cells contain a calcium sensing receptor (CaSR), which, when stimulated, decreases cAMP formation and inhibits renin release. We hypothesize CaSR activation decreases cAMP and renin release, in part, by stimulating a calcium calmodulin-activated phosphodiesterase 1 (PDE1). We incubated our primary culture of JG cells with two selective PDE1 inhibitors [8-methoxymethil-IBMX (8-MM-IBMX; 20 μM) and vinpocetine (40 μM)] and the calmodulin inhibitor W-7 (10 μM) and measured cAMP and renin release. Stimulation of the JG cell CaSR with the calcimimetic cinacalcet (1 μM) resulted in decreased cAMP from a basal of 1.13 ± 0.14 to 0.69 ± 0.08 pM/mg protein (P < 0.001) and in renin release from 0.89 ± 0.16 to 0.38 ± 0.08 μg ANG I/ml·h−1·mg protein−1 (P < 0.001). However, the addition of 8-MM-IBMX with cinacalcet returned both cAMP (1.10 ± 0.19 pM/mg protein) and renin (0.57 ± 0.16 μg ANG I/ml·h−1·mg protein−1) to basal levels. Similar results were obtained with vinpocetine, and also with W-7. Combining 8-MM-IBMX and W-7 had no additive effect. To determine which PDE1 isoform is involved, we performed Western blot analysis for PDE1A, B, and C. Only Western blot analysis for PDE1C showed a characteristic band apparent at 80 kDa. Immunofluorescence showed cytoplasmic distribution of PDE1C and renin in the JG cells. In conclusion, PDE1C is expressed in isolated JG cells, and contributes to calcium's inhibitory modulation of renin release from JG cells. PMID:19741056

  20. A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators

    PubMed Central

    Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.

    2013-01-01

    Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972

  1. Release of Applied Mechanical Loading Stimulates Intercellular Calcium Waves in Drosophila Wing Discs.

    PubMed

    Narciso, Cody E; Contento, Nicholas M; Storey, Thomas J; Hoelzle, David J; Zartman, Jeremiah J

    2017-07-25

    Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca 2+ ) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca 2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for microorgans that enables systematic investigations of the crosstalk between an organ's mechanical stress environment and biochemical signaling under genetic and chemical perturbations. This method enabled us to define the essential conditions for generating organ-scale intercellular Ca 2+ waves in Drosophila wing discs that are also observed in vivo during organ development. We discovered that mechanically induced intercellular Ca 2+ waves require fly extract growth serum as a chemical stimulus. Using the chip-based regulated environment for microorgans, we demonstrate that not the initial application but instead the release of mechanical loading is sufficient, but not necessary, to initiate intercellular Ca 2+ waves. The Ca 2+ response depends on the prestress intercellular Ca 2+ activity and not on the magnitude or duration of the mechanical stimulation applied. Mechanically induced intercellular Ca 2+ waves rely on IP 3 R-mediated Ca 2+ -induced Ca 2+ release and propagation through gap junctions. Thus, intercellular Ca 2+ waves in developing epithelia may be a consequence of stress dissipation during organ growth. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Propionate stimulates pyruvate oxidation in the presence of acetate.

    PubMed

    Purmal, Colin; Kucejova, Blanka; Sherry, A Dean; Burgess, Shawn C; Malloy, Craig R; Merritt, Matthew E

    2014-10-15

    Flux through pyruvate dehydrogenase (PDH) in the heart may be reduced by various forms of injury to the myocardium, or by oxidation of alternative substrates in normal heart tissue. It is important to distinguish these two mechanisms because imaging of flux through PDH based on the appearance of hyperpolarized (HP) [(13)C]bicarbonate derived from HP [1-(13)C]pyruvate has been proposed as a method for identifying viable myocardium. The efficacy of propionate for increasing PDH flux in the setting of PDH inhibition by an alternative substrate was studied using isotopomer analysis paired with exams using HP [1-(13)C]pyruvate. Hearts from C57/bl6 mice were supplied with acetate (2 mM) and glucose (8.25 mM). (13)C NMR spectra were acquired in a cryogenically cooled probe at 14.1 Tesla. After addition of hyperpolarized [1-(13)C]pyruvate, (13)C NMR signals from lactate, alanine, malate, and aspartate were easily detected, in addition to small signals from bicarbonate and CO2. The addition of propionate (2 mM) increased appearance of HP [(13)C]bicarbonate >30-fold without change in O2 consumption. Isotopomer analysis of extracts from the freeze-clamped hearts indicated that acetate was the preferred substrate for energy production, glucose contribution to energy production was minimal, and anaplerosis was stimulated in the presence of propionate. Under conditions where production of acetyl-CoA is dominated by the availability of an alternative substrate, acetate, propionate markedly stimulated PDH flux as detected by the appearance of hyperpolarized [(13)C]bicarbonate from metabolism of hyperpolarized [1-(13)C]pyruvate. Copyright © 2014 the American Physiological Society.

  3. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  4. Low Density Lipoproteins Promote Unstable Calcium Handling Accompanied by Reduced SERCA2 and Connexin-40 Expression in Cardiomyocytes

    PubMed Central

    Cabello, Nuria; Llach, Anna; Vallmitjana, Alexander; Benítez, Raúl; Badimon, Lina; Cinca, Juan; Llorente-Cortés, Vicenta; Hove-Madsen, Leif

    2013-01-01

    The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose, mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 µg LDL/mL maximally reduced the calcium transient amplitude by 43% from 0.30±0.04 to 0.17±0.02 (p<0.05). Moreover, LDL-cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA levels. SERCA2 protein levels were also reduced by 43% at 200 µg LDL/mL (p<0.05) and SR calcium loading was reduced by 38±6% (p<0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.7±0.1 mm/s with 500 µg LDL/mL (p<0.05). This coincided with a reduction in Cx40 expression (by 44±3%; p<0.05 for mRNA and by 79±2%; p<0.05 for Cx40 protein at 200 µg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and Cx40 expression and by slowing the conduction velocity of the calcium signal. PMID:23516438

  5. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS)more » mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.« less

  6. Aberrant Subcellular Neuronal Calcium Regulation in Aging and Alzheimer’s Disease

    PubMed Central

    Camandola, Simonetta; Mattson, Mark P.

    2010-01-01

    In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer’s disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. PMID:20950656

  7. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex.

    PubMed

    Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato

    2017-01-29

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    PubMed

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  10. Dietary calcium induced cytological and biochemical changes in thyroid.

    PubMed

    Chandra, Amar K; Goswami, Haimanti; Sengupta, Pallav

    2012-09-01

    Certain epidemiological studies revealed correlation between hard water consumption (with high calcium) and thyroid size of the population, though the possible alterations in thyroid physiology upon calcium exposure are still inconclusive. Adult male Wistar strain rats were subjected to calcium treatment at the doses of 0.5g%, 1.0g% and 1.5g% calcium chloride (CaCl(2)) for 60 days. The parameters studied were - thyroid gland weight, histopathology, histomorphometry; thyroid peroxidase (TPO), 5'-deiodinase I (DI), sodium-potassium adenosine triphosphatase (Na(+)-K(+)-ATPase) activities; serum total and free thyroxine (tT4, fT4), total and free triiodothyronine (tT3, fT3), thyroid stimulating hormone (TSH) levels. Enlargement of thyroid with hypertrophic and hyperplastic changes, retarded TPO and 5'-DI but enhanced Na(+)-K(+)-ATPase activities, augmented serum total and free T4 and TSH but decreased total and free T3 levels and low T3/T4 ratio (T3:T4) were observed in the treated groups. All these findings indicate development of goitrogenesis upon exposure to excessive dietary calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells.

    PubMed

    Gambade, Audrey; Zreika, Sami; Guéguinou, Maxime; Chourpa, Igor; Fromont, Gaëlle; Bouchet, Ana Maria; Burlaud-Gaillard, Julien; Potier-Cartereau, Marie; Roger, Sébastien; Aucagne, Vincent; Chevalier, Stéphan; Vandier, Christophe; Goupille, Caroline; Weber, Günther

    2016-04-26

    Expression of the antimicrobial peptide hCAP18/LL-37 is associated to malignancy in various cancer forms, stimulating cell migration and metastasis. We report that LL-37 induces migration of three cancer cell lines by activating the TRPV2 calcium-permeable channel and recruiting it to pseudopodia through activation of the PI3K/AKT pathway. Ca2+ entry through TRPV2 cooperated with a K+ efflux through the BKCa channel. In a panel of human breast tumors, the expression of TRPV2 and LL-37 was found to be positively correlated. The D-enantiomer of LL-37 showed identical effects as the L-peptide, suggesting that no binding to a specific receptor was involved. LL-37 attached to caveolae and pseudopodia membranes and decreased membrane fluidity, suggesting that a modification of the physical properties of the lipid membrane bilayer was the underlying mechanism of its effects.

  13. Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells

    PubMed Central

    Guéguinou, Maxime; Chourpa, Igor; Fromont, Gaëlle; Bouchet, Ana Maria; Burlaud-Gaillard, Julien; Potier-Cartereau, Marie; Roger, Sébastien; Aucagne, Vincent; Chevalier, Stéphan; Vandier, Christophe

    2016-01-01

    Expression of the antimicrobial peptide hCAP18/LL-37 is associated to malignancy in various cancer forms, stimulating cell migration and metastasis. We report that LL-37 induces migration of three cancer cell lines by activating the TRPV2 calcium-permeable channel and recruiting it to pseudopodia through activation of the PI3K/AKT pathway. Ca2+ entry through TRPV2 cooperated with a K+ efflux through the BKCa channel. In a panel of human breast tumors, the expression of TRPV2 and LL-37 was found to be positively correlated. The D-enantiomer of LL-37 showed identical effects as the L-peptide, suggesting that no binding to a specific receptor was involved. LL-37 attached to caveolae and pseudopodia membranes and decreased membrane fluidity, suggesting that a modification of the physical properties of the lipid membrane bilayer was the underlying mechanism of its effects. PMID:26993604

  14. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    PubMed

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  15. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells.

    PubMed

    Çiğ, Bilal; Nazıroğlu, Mustafa

    2015-10-01

    TRPV1 is a Ca2+ permeable channel and gated by noxious heat, oxidative stress and capsaicin (CAP). Some reports have indicated that non-ionized electromagnetic radiation (EMR)-induces heat and oxidative stress effects. We aimed to investigate the effects of distance from sources on calcium signaling, cytosolic ROS production, cell viability, apoptosis, plus caspase-3 and -9 values induced by mobile phones and Wi-Fi in breast cancer cells MCF-7 human breast cancer cell lines were divided into A, B, C and D groups as control, 900, 1800 and 2450 MHz groups, respectively. Cells in Group A were used as control and were kept in cell culture conditions without EMR exposure. Groups B, C and D were exposed to the EMR frequencies at different distances (0 cm, 1 cm, 5 cm, 10 cm, 20 cm and 25 cm) for 1h before CAP stimulation. The cytosolic ROS production, Ca2+ concentrations, apoptosis, caspase-3 and caspase-9 values were higher in groups B, C and D than in A group at 0 cm, 1 cm and 5 cm distances although cell viability (MTT) values were increased by the distances. There was no statistically significant difference in the values between control, 20 and 25 cm. Wi-Fi and mobile phone EMR placed within 10 cm of the cells induced excessive oxidative responses and apoptosis via TRPV1-induced cytosolic Ca2+ accumulation in the cancer cells. Using cell phones and Wi-Fi sources which are farther away than 10 cm may provide useful protection against oxidative stress, apoptosis and overload of intracellular Ca2+. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen.

    PubMed

    Levičnik-Höfferle, Spela; Nicol, Graeme W; Ausec, Luka; Mandić-Mulec, Ines; Prosser, James I

    2012-04-01

    Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Survival of pathogenic enterohemorrhagic Escherichia coli (EHEC) and control with calcium oxide in frozen meat products.

    PubMed

    Ro, Eun Young; Ko, Young Mi; Yoon, Ki Sun

    2015-08-01

    This study investigated both the level of microbial contamination and the presence of enterohemorrhagic Escherichia coli (EHEC) in frozen meat products, followed by the evaluation of its survival over 180 days under frozen temperature. We also examined the effect of calcium oxide on the populations of EHEC, E. coli O157:H7 and EPEC under both 10 °C and -18 °C storage conditions. Afterward, the morphological changes occurring in EHEC cells in response to freezer storage temperature and calcium oxide (CaO) treatments were examined using transmission electron microscopy. Among the frozen meat products tested, the highest contamination levels of total aerobic counts, coliforms and E. coli were observed in pork cutlets. Examination showed that 20% of the frozen meat products contained virulence genes, including verotoxin (VT) 1 and 2. Over 180 days of frozen storage and after 3 freeze-thaw cycles, the population of EHEC did not change regardless of the type of products or initial inoculated concentration, indicating the strong survival ability of EHEC. Subsequent testing revealed that the growth of three pathogenic E. coli strains was completely inhibited in meat patties prepared with 1% CaO, stored at 10 °C. However, the addition of 2% CaO was necessary to control the survival of EHEC, E. coli O157:H7 and EPEC in meat patties stored at -18 °C. CaO reduced the population of E. coli O157:H7 more effectively than the other EHEC and EPEC strains at both 10 °C and -18 °C. Transmission electron microscopy analysis revealed that exposed EHEC cells were resistant to the freezer storage temperature, although some cells incurred injury and death after several freeze-thaw cycles. Most of the cells exposed to CaO were found to have died or lost their cellular integrity and membranes, indicating that CaO has the potential to be used as a powerful antimicrobial agent for manufacturing frozen meat products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Calcium ion propagation in cultured keratinocytes and other cells in skin in response to hydraulic pressure stimulation.

    PubMed

    Goto, Makiko; Ikeyama, Kazuyuki; Tsutsumi, Moe; Denda, Sumiko; Denda, Mitsuhiro

    2010-07-01

    We have previously suggested that a variety of environmental factors might be first sensed by epidermal keratinocytes, which represent the frontier of the body. To further examine this idea, in the present study, we examined the intracellular calcium responses of cultured keratinocytes to external hydraulic pressure. First, we compared the responses of undifferentiated and differentiated keratinocytes with those of fibroblasts, vascular endothelial cells (VEC), and lymphatic endothelial cells. Elevation of intracellular calcium was observed after application of pressure to keratinocytes, fibroblasts, and VEC. The calcium propagation extended over a larger area and continued for a longer period of time in differentiated keratinocytes, as compared with the other cells. The response of the keratinocytes was dramatically reduced when the cells were incubated in medium without calcium. Application of a non-selective transient receptor potential (TRP) channel blocker also attenuated the calcium response. These results suggest that differentiated keratinocytes are sensitive to external pressure and that TRP might be involved in the mechanism of their response. (c) 2010 Wiley-Liss, Inc.

  19. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    NASA Astrophysics Data System (ADS)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  20. Store-Operated Calcium Channels

    PubMed Central

    Lewis, Richard S.

    2015-01-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca2+ sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca2+ from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca2+ depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease. PMID:26400989

  1. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells.

    PubMed

    Fredholm, Bertil B; Assender, Jean W; Irenius, Eva; Kodama, Noriko; Saito, Naoaki

    2003-06-01

    1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.

  2. [INDICES OF THE OXIDATIVE STATUS IN CHRONIC ADMINISTRATION OF COLLOID CARBONATE CALCIUM PRAPARATION WITH FAUCET AND LOW-MINERALIZED DRINKING WATER IN RATS].

    PubMed

    Khripach, L V; Mikhaylova, R I; Koganova, Z I; Knyazeva, T D; Alekseeva, A V; Savostikova, O N; Ryzhova, I N; Kruglova, E V; Revzova, T L

    2015-01-01

    There are discussed the changes of an array of indices of the oxidative status in chronic administration of colloidal calcium carbonate preparation with faucet and low-mineralized drinking water to rats. Slight differences between significant effects of administration of 3 and 30 mg/L of preparation permit to suggest that the process of its incoming delivery into organism of rats has a bottleneck in the nature of total capacity of macrophages of intestinal lymphoid tissue to absorption of particles.

  3. Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.

    Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less

  4. Effect of calcium(ion) uptake by rat adrenal mitochondria on pregnenolone formation and spectral properties of cytochrome P-450.

    PubMed

    Simpson, E R; Williams-Smith, D L

    1975-10-09

    The effect of calcium on pregnenolone formation from endogenous precursors has been studied in mitochondria from rat decapsulated and capsular adrenal glands. In the presence of succinate, addition of calcium chloride in the concentration range 20-150 muM caused an inhibition of pregnenolone formation in both decapsulated and capsular adrenal mitochondria. 11beta-hydroxylation of added deoxycosticosterone in decapsulated adrenal mitochondria was also inhibited. Under these conditions, calcium inhibited the reduction of adrenodoxin, a component of the cytochrome P-450 reductase system, presumably because uptake of calcium by the mitochondria competes with energy-linked transhydrogenase for high-energy intermediates. For this reason, incubations were carried out in the presence of succinate plus isocitrate plus NADP+. Under these conditions, calcium chloride in the concentration range 120-875 muM caused a 2-4-fold stimulation of pregnenolone formation, but had no effect on corticosterone formation from added deoxycorticosterone. The effect of calcium on the optical spectra of cytochrome P-450 has also been examined in mitochondria from decapsulated and capsular rat adrenals. In the presence of succinate, calcium induced a spectral change resembling a type I difference spectrum of cytochrome P-450. Thus it appears that uptake of calcium by adrenal mitochondria can stimulate pregnenolone formation by increasing the interaction of mitochondrial cytochrome P-450 with endogenous substrate.

  5. Vitamin C-lipid metabolites: uptake and retention and effect on plasma C-reactive protein and oxidized LDL levels in healthy volunteers.

    PubMed

    Pancorbo, Dario; Vazquez, Carlos; Fletcher, Mary Ann

    2008-11-01

    Previously, a novel formulation of vitamin C-lipid metabolites (PureWay-C) was shown to be more rapidly taken-up by human T-lymphocytes and more rapidly stimulate neurite outgrowth, fibroblast adhesion and inhibition of xenobiotic-induced T-cell hyperactivation. Here, PureWay-C serum levels were measured in healthy volunteers after oral supplementation. Plasma C-reactive protein and oxidized low density lipoprotein levels (LDL) were also measured. Healthy volunteers maintained a low vitamin C diet for 14 days and, following an overnight fast, received a single oral dose of (vitamin C) 1000 mg of either ascorbic acid (AA), calcium ascorbate (CaA), vitamin C-lipid metabolites (PureWay-C), or calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C). Blood samples were collected immediately prior to the oral dose administration and at various times post ingestion. Twenty-four-hour urine collections were saved for oxalate and uric acid assays. PureWay-C supplementation leads to the highest absolute serum vitamin C levels when compared to AA, CaA and Ester-C. PureWay-C provides a statistically significant greater serum level than calcium ascorbate at 1, 2, 4, and 6 hours post oral supplementation whereas Ester-C shows a less but slightly statistically significant increase at only 1 and 4 hours. Oral supplementation with PureWay-C also led to a greater reduction in plasma C-reactive protein and oxidized LDL levels compared to the other vitamin C formulations. PureWay-C is more rapidly absorbed and leads to higher serum vitamin C levels and greater reduction of plasma levels of inflammatory and oxidative stress markers than other forms of vitamin C, including Ester-C.

  6. Calcium dobesilate prevents the oxidative stress and inflammation induced by diabetes in the retina of db/db mice.

    PubMed

    Bogdanov, Patricia; Solà-Adell, Cristina; Hernández, Cristina; García-Ramírez, Marta; Sampedro, Joel; Simó-Servat, Olga; Valeri, Marta; Pasquali, Christian; Simó, Rafael

    2017-10-01

    Calcium dobesilate (CaD) is beneficial in early stages of diabetic retinopathy (DR), but its mechanisms of action remains to be elucidated. The aim was to investigate the effect of CaD on proinflammatory cytokines and oxidative stress. db/db mice were randomly assigned to daily oral treatment with CaD (200mg/kg/day) or vehicle for 15days. Biomarkers of oxidative stress (dihydroethidium, malondialdehyde), NF-κB, and proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α, MCP-1) were examined in the retina by immunohistochemical analysis. Cultures of human retinal endothelial cells (HRECs) were used for complementary experiments. CaD significantly reduced the biomarkers of oxidative stress in the retina of db/db mice. In addition, CaD prevented the increase of NF-κB, IL-6, IL-8, TNF-α and MCP-1 induced by diabetes. CaD inhibited the activation of NF-kβ induced by IL-1β by preventing IKKB-α phosphorylation in HRECs and reduced the upregulation of IL-6 and IL-18 induced by TNF-α in a dose-dependent manner. Our results suggest that antioxidant and antiinflammatory effects are crucial in accounting for the effectiveness of CaD for treating DR. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex

    PubMed Central

    Li, Xu-Hui; Song, Qian; Chen, Tao; Zhuo, Min

    2017-01-01

    Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca2+ increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca2+signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca2+ influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons. PMID:28726541

  8. Physiological characterisation of a pH- and calcium-dependent sodium uptake mechanism in the freshwater crustacean, Daphnia magna.

    PubMed

    Glover, Chris N; Wood, Chris M

    2005-03-01

    Daphnia are highly sensitive to sodium metabolism disruption caused by aquatic acidification and ionoregulatory toxicants, due to their finely balanced ion homeostasis. Nine different water chemistries of varying pH (4, 6 and 8) and calcium concentration (0, 0.5 and 1 mmol l(-1)) were used to delineate the mechanism of sodium influx in Daphnia magna. Lowering water pH severely inhibited sodium influx when calcium concentration was high, but transport kinetic analysis revealed a stimulated sodium influx capacity (J(max)) when calcium was absent. At low pH increasing water calcium levels decreased J(max) and raised K(m) (decreased sodium influx affinity), while at high pH the opposite pattern was observed (elevated J(max) and reduced K(m)). These effects on sodium influx were mirrored by changes in whole body sodium levels. Further examination of the effect of calcium on sodium influx showed a severe inhibition of sodium uptake by 100 micromol l(-1) calcium gluconate at both low (50 micromol l(-1)) and high (1000 micromol l(-1)) sodium concentrations. At high sodium concentrations, stimulated sodium influx was noted with elevated calcium levels. These results, in addition to data showing amiloride inhibition of sodium influx (K(i)=180 micromol l(-1)), suggest a mechanism of sodium influx in Daphnia magna that involves the electrogenic 2Na(+)/1H(+) exchanger.

  9. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    PubMed

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  10. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo

    PubMed Central

    Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David

    2013-01-01

    Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539

  11. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of a single dose of menadione on the intestinal calcium absorption and associated variables.

    PubMed

    Marchionatti, Ana M; Díaz de Barboza, Gabriela E; Centeno, Viviana A; Alisio, Arturo E; Tolosa de Talamoni, Nori G

    2003-08-01

    The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.

  13. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  14. Long persistent and optically stimulated luminescence behaviors of calcium aluminates with different trap filling processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Buhao; Xu, Xuhui; Li, Qianyue

    Properties of long persistent luminescence (LPL) and optically stimulated luminescence (OSL) of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} (R=Nd, Dy, Tm) materials were investigated. The observed phenomenon indicates that R{sup 3+} ions (R=Nd, Dy, Tm) have different effects on trap properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}. The greatly improved LPL performance was observed in Nd{sup 3+} co-doped samples, which indicates that the incorporation of Nd{sup 3+} creates suitable traps for LPL. While co-doping Tm{sup 3+} ions, the intensity of high temperature of thermoluminescence band in CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors is enhanced for the formation of the most suitable trapsmore » which benefits the intense and stable OSL. These results suggest that the effective traps contributed to the LPL/OSL are complex, of which could be an aggregation formation with shallow and deep traps other than simple traps from co-doped R{sup 3+} ions. The mechanism presented in the end potentially provides explanations of why the OSL of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} exhibits different read-in/read-out performance as well. - Graphical abstract: OSL emission spectra of Ca{sub 0.995}Al{sub 2}O{sub 4}:0.0025Eu{sup 2+}, 0.0025R{sup 3+} (R=Nd, Dy, Tm) taken under varying stimulation time (0, 25, 50, 75, 100 s). Inset: Blue emission pictures under varying stimulation time. - Highlights: • The LPL and OSL properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} were investigated. • An alternative approach to control the trap depth of CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphor was proposed. • A new oxide ETM phosphor exhibiting intense and stable OSL was explored.« less

  15. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    PubMed

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  16. Influences of calcium oxide content in marine fuel oil on emission characteristics of marine furnaces under varying humidity and temperature of the inlet air.

    PubMed

    Lin, Cherng-Yuan; Chen, Wei-Cheng

    2004-01-01

    A marine furnace made of stainless steel. combined with an automatic small-size oil-fired burner, was used to experimentally investigate the influences of calcium oxide content in fuel oil on the combustion and emission characteristics under varying temperatures and humidity of the inlet air. Marine fuel oil generally contains various extents of metallic oxides such as CaO, Fe2O3, V2O5, etc which might affect its burning properties. In this study, an air-conditioner was used to adjust the humidity and temperatures of the inlet air to preset values prior to entering the burner. The adjusted inlet air atomized the marine diesel oil A containing a calcium oxide compound, to form a heterogeneous reactant mixture. The reactant mixture was thereafter ignited by a high-voltage electrode in the burner and burned within the marine furnace. The probes of a gas analyzer, H2S analyzer and a K-type thermocouple were inserted into the radial positions of the furnace through the eight rectangular slots which were cut in the upper side of the furnace. The experimental results showed that an increase of either humidity or temperature of the inlet air caused the promotion of the reaction rate of the fuel. The existence of calcium oxide compound in the diesel fuel also facilitated the oxidation reaction in the combustion chamber. The addition of CaO in the diesel fuel under the conditions of higher temperature or higher relative humidity of the inlet air produced the following: higher concentrations of CO2, SO2, and H2S emissions, an increased burning efficiency, a lowered O2 level, production of excess air and NOx emissions as well as a lower thermal loss and a lower burning gas temperature, as compared with the conditions of a lower temperature or a lower humidity of the inlet air. In addition, the burning of diesel fuel with added CaO compound caused a large variation in the burning efficiency, thermal loss, plus CO2, O2, and excess air emissions between the conditions of higher

  17. (−)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo

    2011-01-01

    The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365

  18. Bioactive calcium phosphate coatings on metallic implants

    NASA Astrophysics Data System (ADS)

    Sedelnikova, M. B.; Komarova, E. G.; Sharkeev, Yu. P.; Tolkacheva, T. V.; Khlusov, I. A.; Sheikin, V. V.

    2017-09-01

    Biocomposites based on bioinert metals or alloys and bioactive calcium phosphate coatings are a promising tendency of the new-generation implants development. In recent years, the approach of regenerative medicine based on the use of biodegradable biomaterials has been priority direction. Such materials are capable of initiating the bone tissue regeneration and replaced by the newly formed bone. The microarc oxidation (MAO) method allows obtaining the bioactive coatings with a porous structure, special functional properties, and modified by the essential elements. During the last decade, the investigations in the field of the nanostructured biocomposites based on bioinert Ti, Zr, Nb and their alloys with a calcium phosphate coatings deposited by the MAO method have been studied in the Institute of Strength Physics and Materials Science SB RAS, Tomsk. In this article the possibility to produce the bioactive coatings with high antibacterial and osseoconductive properties due to the introduction in the coatings of Zn, Cu, Ag, La, Si elements and wollastonite CaSiO3 was shown. The high hydrophilic and bioresorbed coatings stimulate the processes of osseointegration of the implant into the bone tissue. A promising direction in the field of the medical material science is a development of the metallic implants with good biomechanical compatibility to the bone, such as Ti-Nb alloys with a low elastic modulus that can be classified as biomaterials of the second generation. Zr and its alloys are promising materials for the dentistry and orthopedic surgery due to their high strength and corrosion resistance. Biodegradable Mg alloys are biomaterials of third generation. Such materials can dissolve with a certain speed in human body and excreted from the body thereby excluding the need for reoperation. This article presents the analysis of the study results of bioactive MAO coatings on Ti, Ti-Nb, Zr-Nb and Mg alloys and their promising medical application.

  19. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts.

    PubMed

    Fernandes, Rafael O; Bonetto, Jéssica H P; Baregzay, Boran; de Castro, Alexandre L; Puukila, Stephanie; Forsyth, Heidi; Schenkel, Paulo C; Llesuy, Susana F; Brum, Ilma Simoni; Araujo, Alex Sander R; Khaper, Neelam; Belló-Klein, Adriane

    2015-03-01

    Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.

  20. Interactions Between Adrenal and Calcium-Regulatory Hormones in Human Health

    PubMed Central

    Brown, Jenifer M.; Vaidya, Anand

    2014-01-01

    Purpose of Review To summarize evidence characterizing the interactions between adrenal- and calcium-regulating hormones, and the relevance of these interactions to human cardiovascular and skeletal health. Recent Findings Human studies support the regulation of parathyroid hormone (PTH) by the renin-angiotensin-aldosterone system (RAAS): angiotensin II may stimulate PTH secretion via an acute and direct mechanism, whereas aldosterone may exert a chronic stimulation of PTH secretion. Studies in primary aldosteronism, congestive heart failure, and chronic kidney disease have identified associations between hyperaldosteronism, hyperparathyroidism, and bone loss, which appear to improve when inhibiting the RAAS. Conversely, elevated PTH and insufficient vitamin D status have been associated with adverse cardiovascular outcomes, which may be mediated by the RAAS. Studies of primary hyperparathyroidism implicate PTH-mediated stimulation of the RAAS, and recent evidence shows that the vitamin D-vitamin D receptor (VDR) complex may negatively regulate renin expression and RAAS activity. Ongoing human interventional studies are evaluating the influence of RAAS inhibition on PTH and the influence of VDR agonists on RAAS activity. Summary While previously considered independent endocrine systems, emerging evidence supports a complex web of interactions between adrenal and calcium-regulating hormones, with implications for human cardiovascular and skeletal health. PMID:24694551

  1. LIGNOSULFONATE-MODIFIED CALCIUM HYDROXIDE FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    The article discusses the use of lignosulfonate-modified calcium hydroxide Ca(OH)2 for sulfur dioxide (SO2) control. The limestone injection multistage burner (LIMB) process is currently being developed at the U.S. EPA as a low cost retrofittable technology for controlling oxides...

  2. The Calcium-Sensing Receptor Couples to Gαs and Regulates PTHrP and ACTH Secretion in Pituitary Cells

    PubMed Central

    Mamillapalli, Ramanaiah; Wysolmerski, John

    2013-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor (GPCR) that binds and signals in response to extracellular calcium and other polycations. It is highly expressed on parathyroid and kidney cells, where it participates in the regulation of systemic calcium homeostasis. It is also expressed on many other cell types and is involved in a wide array of biological functions such as cell growth and differentiation, ion transport and hormone secretion. It has been described to couple to several different G-proteins including Gαi/0, Gαq/11 and Gα12/13. Recently, it has also been shown to stimulate cAMP production by coupling to Gαs in immortalized or malignant breast cells. The CaR is expressed on cells in the anterior pituitary and had previously been described to stimulate cAMP production in these cells. In this report, we examined signaling from the CaR in murine pituitary corticotroph-derived, AtT-20 cells. We found that CaR activation led to the stimulation of cAMP production, and PTHrP and ACTH secretion from these cells. Furthermore, manipulation of cAMP levels was able to modulate PTHrP and ACTH secretion independent of changes in extracellular calcium. Finally, we demonstrated that the CaR couples to Gαs in AtT-20 cells. Therefore, in pituitary corticotroph-like cells, as in breast cancer cells, the CaR utilizes Gαs and activates cAMP production to stimulate hormone secretion. PMID:20032198

  3. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    PubMed Central

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  4. Geloina coaxans shell as calcium source on synthesis hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Yanti, P. H.; Kamiah, A.

    2018-04-01

    Geloina coaxans shell (GCS) is one of mullusc shell mainly composed by calcium carbonate. In this work, calcium carbonate has been converted to calcium oxide by calcination at 1000°C for 12 hours. The calcined of geloina coaxans shell were treated with HNO3 to produce Ca(NO3)2 as calcium source on synthesis hydroxyapatite. Orthophosphoric acid (H3PO4) was used as phosphate donor. Reaction of Ca/P has been done by precipitation method at molar ratio of precursors of 1.67 and pH adjusted at 10 using NH4OH. The XRD result revealed that hydoxyapatite can be prepared at 3 M of HNO3 and stirring time for 240 minutes. Specific band of hydroxyapatite such as PO4 and OH observed using FTIR instrument. Analysis of crystal size using Schererr equation proved nanosize of powder hydroxyapatite can be produced.

  5. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells.

    PubMed

    Procino, Giuseppe; Carmosino, Monica; Tamma, Grazia; Gouraud, Sabine; Laera, Antonia; Riccardi, Daniela; Svelto, Maria; Valenti, Giovanna

    2004-12-01

    Urinary concentrating defects and polyuria are the most important renal manifestations of hypercalcemia and the resulting hypercalciuria. In this study, we tested the hypothesis that hypercalciuria-associated polyuria in kidney collecting duct occurs through an impairment of the vasopressin-dependent aquaporin 2 (AQP2) water channel targeting to the apical membrane possibly involving calcium-sensing receptor (CaR) signaling. AQP2-transfected collecting duct CD8 cells were used as experimental model. Quantitation of cell surface AQP2 immunoreactivity was performed using an antibody recognizing the extracellular AQP2 C loop. Intracellular cyclic adenosine monophosphate (cAMP) accumulation was measured in CD8 cells using a cAMP enzyme immunoassay kit. To study the translocation of protein kinase C (PKC), membranes or cytosol fractions from CD8 cells were subjected to Western blotting using anti-PKC isozymes antibodies. The amount of F-actin was determined by spectrofluorometric techniques. Intracellular calcium measurements were performed by spectrofluorometric analysis with Fura-2/AM. We demonstrated that extracellular calcium (Ca2+ o) (5 mmol/L) strongly inhibited forskolin-stimulated increase in AQP2 expression in the apical plasma membrane. At least three intracellular pathways activated by extracellular calcium were found to contribute to this effect. Firstly, the increase in cAMP levels in response to forskolin stimulation was drastically reduced in cells pretreated with Ca2+ o compared to untreated cells. Second, Ca2+ o activated PKC, known to counteract vasopressin response. Third, quantification of F-actin demonstrated that Ca2+ o caused a nearly twofold increase in F-actin content compared with basal conditions. All these effects were mimicked by a nonmembrane permeable agonist of the extracellular CaR, Gd3+. Together, these data demonstrate that extracellular calcium, possibly acting through the endogenous CaR, antagonizes forskolin-induced AQP2

  6. Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers.

    PubMed

    Camilleri, J; Gandolfi, M G

    2010-01-01

    To identify the suitable ratio of alternative radiopacifiers to impart the necessary radiopacity to calcium silicate cements (CSC) and assess the purity of the radiopacifying agents. Alternative radiopacifying materials for incorporation into CSC included barium sulphate, titanium oxide, zinc oxide, gold powder and silver/tin alloy. The chemical composition of the alternative radipacifying materials and bismuth oxide, which is used in mineral trioxide aggregate (MTA), was determined using energy dispersive X-ray analysis. In addition, using an aluminium step-wedge and densitometer, the radiopacity of each material was evaluated as recommended by international standards. The optical density was compared with the relevant thickness of aluminium (Al). A commercial MTA and CSC were used as controls. Statistical analysis comparing the radiodensity of the different cements to MTA was performed using anova with P = 0.05 and post hoc Tukey test. All percentage replacements of bismuth oxide, gold and silver-tin alloy powder, and the 25% and 30% replacements with barium sulphate and zinc oxide had radiopacities greater than 3 mm thickness of aluminium (Al) recommended by ISO 6876 (2002). The 25% replacement of cement with gold powder and 20% replacement of cement with silver/tin alloy powder exhibited radiopacity values of 8.04 mm Al and 7.52 mm Al, respectively, similar to MTA (P > 0.05). The cement replaced with 20% bismuth oxide showed a radiopacity of 6.83 mm Al, lower than MTA (P = 0.003). Silver/tin alloy and gold powder imparted the necessary radiopacity to a calcium silicate-based cement. Barium sulphate was also a suitable radiopacifier together with a lower concentration of silver/tin alloy and gold powder that achieved the radiodensity recommended by ISO 6876. Further research is required to investigate the broader properties of the calcium silicate-based cement with the different radiopacifiers.

  7. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    PubMed

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  8. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    PubMed Central

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  9. The effect of radiopacifiers agents on pH, calcium release, radiopacity, and antimicrobial properties of different calcium hydroxide dressings.

    PubMed

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; García-Godoy, Franklin; Moldauer, Bertram Ivan; Gagliardi Minotti, Paloma; Tercília Grizzo, Larissa; Duarte, Marco Antonio Hungaro

    2015-07-01

    The aim of this study was to evaluate the antimicrobial activity, pH level, calcium ion release, and radiopacity of calcium hydroxide pastes associated with three radiopacifying agents (iodoform, zinc oxide, and barium sulfate). For the pH and calcium release tests, 45 acrylic teeth were utilized and immersed in ultrapure water. After 24 h, 72 h, and 7 days the solution was analyzed by using a pH meter and an atomic absorption spectrophotometer. Polyethylene tubes filled with the pastes were used to perform the radiopacity test. For the antimicrobial test, 25 dentin specimens were infected intraorally in order to induce the biofilm colonization and treated with the pastes for 7 days. The Live/Dead technique and a confocal microscope were used to obtain the ratio of live cells. Parametric and nonparametric statistical tests were performed to show differences among the groups (P < 0.05). The pH analysis at 7 days showed significant differences (P < 0.05) among the groups. No differences among the pastes were found in the calcium release test on the 7th day (P > 0.05). The calcium hydroxide/iodoform samples had the highest radiopacity and antimicrobial activity against the biofilm-infected dentin in comparison to the other pastes (P < 0.05). Calcium hydroxide mixed with 17% iodoform and 35% propylene glycol into a paste had the highest pH, calcium ion release, radiopacity, and the greatest antimicrobial action versus similar samples mixed with BaSO4 or ZnO. © 2015 Wiley Periodicals, Inc.

  10. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release.

    PubMed

    Dautova, Yana; Kapustin, Alexander N; Pappert, Kevin; Epple, Matthias; Okkenhaug, Hanneke; Cook, Simon J; Shanahan, Catherine M; Bootman, Martin D; Proudfoot, Diane

    2018-02-01

    Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of osmotic swelling on voltage-gated calcium channel currents in rat anterior pituitary cells.

    PubMed

    Ben-Tabou De-Leon, Shlomo; Blotnick, Edna; Nussinovitch, Itzhak

    2003-10-01

    Decrease in extracellular osmolarity ([Os]e) results in stimulation of hormone secretion from pituitary cells. Different mechanisms can account for this stimulation of hormone secretion. In this study we examined the possibility that hyposmolarity directly modulates voltage-gated calcium influx in pituitary cells. The effects of hyposmolarity on L-type (IL) and T-type (IT) calcium currents in pituitary cells were investigated by using two hyposmotic stimuli, moderate (18-22% decrease in [Os]e) and strong (31-32% decrease in [Os]e). Exposure to moderate hyposmotic stimuli resulted in three response types in IL (a decrease, a biphasic effect, and an increase in IL) and in increase in IT. Exposure to strong hyposmotic stimuli resulted only in increases in both IL and IT. Similarly, in intact pituitary cells (perforated patch method), exposure to either moderate or strong hyposmotic stimuli resulted only in increases in both IL and IT. Thus it appears that the main effect of decrease in [Os]e is increase in calcium channel currents. This increase was differential (IL were more sensitive than IT) and voltage independent. In addition, we show that these hyposmotic effects cannot be explained by activation of an anionic conductance or by an increase in cell membrane surface area. In conclusion, this study shows that hyposmotic swelling of pituitary cells can directly modulate voltage-gated calcium influx. This hyposmotic modulation of IL and IT may contribute to the previously reported hyposmotic stimulation of hormone secretion. The mechanisms underlying these hyposmotic effects and their possible physiological relevance are discussed.

  13. Mechanistic roles for calcium and vitamin D in the regulation of body weight.

    PubMed

    Soares, M J; Murhadi, L L; Kurpad, A V; Chan She Ping-Delfos, W L; Piers, L S

    2012-07-01

    Low intakes of calcium and inadequate vitamin D status often cluster with higher prevalence rates of obesity. Consequently, there has been much interest in the mechanisms by which calcium and vitamin D could regulate body weight and adiposity. This review has focused on randomized controlled trials (RCTs) that have manipulated these nutrients and studied pathways of energy balance. Overall, there is consistent evidence that calcium and vitamin D increase whole body fat oxidation after single and multiple meals, and that calcium promotes a modest energy loss through increased faecal fat excretion. The evidence is equivocal for a greater diet-induced thermogenesis, increased lipolysis, suppression of key lipogenic enzymes, decreased hunger ratings or reduced energy/macronutrient intake. Emerging evidence suggests a potential improvement in insulin sensitivity following vitamin D that would impinge on food intake and substrate oxidation. However, the very few RCTs on supplemental vitamin D and energy balance have not explored postprandial avenues of the hormone's actions. Future efforts in this area need to define the threshold intake of these nutrients that would maximize metabolic and gastrointestinal outcomes. Such studies would provide a platform for endorsing the non-skeletal role of calcium and vitamin D in human pathophysiology. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  14. The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency.

    PubMed

    Xu, Shi-Wen; Yao, Hai-Dong; Zhang, Jian; Zhang, Zi-Wei; Wang, Jin-Tao; Zhang, Jiu-Li; Jiang, Zhi-Hui

    2013-02-01

    Dietary selenium (Se) deficiency can influence the function of the brain. Our objective was to investigate the effects of Se deficiency on oxidative damage and calcium (Ca) homeostasis in brain of chicken. In the present study, 1-day-old chickens were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 75 days. Then, brain injury biomarkers were examined, including histological analysis, ultrastructure assay, and apoptosis assay. We also examined the effect of Se deficiency on the Se-containing antioxidative enzyme glutathione peroxidase (GSH-Px), the level of glutathione (GSH), and the Ca homeostasis in brain of chicken. The results showed that the levels of Se and GSH and activity of GSH-Px are seriously reduced by 33.8-96 % (P < 0.001), 24.51-27.84 % (P < 0.001), and 20.70-64.24 % (P < 0.01), respectively. In the present study, we also perform histological analysis and ultrastructure assay and find that Se deficiency caused disorganized histological structure, damage to the mitochondria, fusion of nuclear membrane and nucleus shrinkage, higher apoptosis rate (P < 0.001), and increase of Ca homeostasis (P < 0.05 or P < 0.01 or P < 0.001) in the brain of chicken. In conclusion, the results demonstrated that Se deficiency induced oxidative damage and disbalance of Ca homeostasis in the brain of chicken. Similar to mammals, chickens brain is also extremely susceptible to oxidative damage and selenium deficiency.

  15. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  16. Ab-initio Computation of the Electronic, transport, and Bulk Properties of Calcium Oxide.

    NASA Astrophysics Data System (ADS)

    Mbolle, Augustine; Banjara, Dipendra; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We report results from ab-initio, self-consistent, local Density approximation (LDA) calculations of electronic and related properties of calcium oxide (CaO) in the rock salt structure. We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. Our calculations are non-relativistic. We implemented the LCAO formalism following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method involves a methodical search for the optimal basis set that yields the absolute minima of the occupied energies, as required by density functional theory (DFT). Our calculated, indirect band gap of 6.91eV, from towards the L point, is in excellent agreement with experimental value of 6.93-7.7eV, at room temperature (RT). We have also calculated the total (DOS) and partial (pDOS) densities of states as well as the bulk modulus. Our calculated bulk modulus is in excellent agreement with experiment. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  17. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  18. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    PubMed

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  19. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru

    2009-01-01

    Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508

  20. Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells.

    PubMed

    Fulop, Tiberiu; Smith, Corey

    2007-11-30

    Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.

  1. Inhibition of 4NQO-Induced Oral Carcinogenesis by Dietary Oyster Shell Calcium

    PubMed Central

    Chen, Ying; Jiang, Yi; Liao, Liyan; Zhu, Xiaoxin; Tang, Shengan; Yang, Qing; Sun, Lihua; Li, Yujie; Gao, Shuangrong; Xie, Zhongjian

    2015-01-01

    Oyster has gained much attention recently for its anticancer activity but it is unclear whether calcium, the major antitumor ingredient in oyster shell, is responsible for the anticarcinogenic role of the oyster. To address this issue, C57BL/6 mice were fed with the carcinogen 4-nitroquinoline-1-oxide (4NQO, 50 µg/mL) and normal diet or a diet containing oyster powder, oyster calcium, or calcium depleted oyster powder. The tongue tissue specimens isolated from these mice were histologically evaluated for hyperplasia, dysplasia, and papillary lesions, and then analyzed for proliferation and differentiation markers by immunohistochemistry. The results showed that mice on the diet containing oyster calcium significantly reduced rates of tumors in the tongue and proliferation and enhanced differentiation in the oral epithelium compared with the diet containing calcium depleted oyster powder. These results suggest that calcium in oyster plays a critical role in suppressing formation of oral squamous cell carcinoma and proliferation and promoting differentiation of the oral epithelium. PMID:26293805

  2. Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.

    PubMed

    Labat-Allietta, N; Thévenot, D R

    1998-01-01

    Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.

  3. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.

    PubMed

    Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian

    2014-02-01

    Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Calmodulin stimulation of calcium transport in carrot microsomal vesicles. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, W.S.; Sze, H.

    1987-04-01

    ATP-dependent /sup 45/Ca/sup 2 +/ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca/sup 2 +/ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca/sup 2 +/ uptake (at 1.17 g/cc) was not affected bymore » oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca/sup 2 +/. These results are consistent with the ER being an important site of intracellular Ca/sup 2 +/ regulation.« less

  5. Ecstasy produces left ventricular dysfunction and oxidative stress in rats

    PubMed Central

    Shenouda, Sylvia K.; Lord, Kevin C.; McIlwain, Elizabeth; Lucchesi, Pamela A.; Varner, Kurt J.

    2008-01-01

    Aims Our aim was to determine whether the repeated, binge administration of 3,4-methylenedioxymethamphetamine (ecstasy; MDMA) produces structural and/or functional changes in the myocardium that are associated with oxidative stress. Methods and results Echocardiography and pressure–volume conductance catheters were used to assess left ventricular (LV) structure and function in rats subjected to four ecstasy binges (9 mg/kg i.v. for 4 days, separated by a 10 day drug-free period). Hearts from treated and control rats were used for either biochemical and proteomic analysis or the isolation of adult LV myocytes. After the fourth binge, treated hearts showed eccentric LV dilation and diastolic dysfunction. Systolic function was not altered in vivo; however, the magnitude of the contractile responses to electrical stimulation was significantly smaller in myocytes from rats treated in vivo with ecstasy compared with myocytes from control rats. The magnitude of the peak increase in intracellular calcium (measured by Fura-2) was also significantly smaller in myocytes from ecstasy-treated vs. control rats. The relaxation kinetics of the intracellular calcium transients were significantly longer in myocytes from ecstasy-treated rats. Ecstasy significantly increased nitrotyrosine content in the left ventricle. Proteomic analysis revealed increased nitration of contractile proteins (troponin-T, tropomyosin alpha-1 chain, myosin light polypeptide, and myosin regulatory light chain), mitochondrial proteins (Ub-cytochrome-c reductase and ATP synthase), and sarcoplasmic reticulum calcium ATPase. Conclusion The repeated binge administration of ecstasy produces eccentric LV dilation and dysfunction that is accompanied by oxidative stress. These functional responses may result from the redox modification of proteins involved in excitation-contraction coupling and/or mitochondrial energy production. Together, these results indicate that ecstasy has the potential to produce serious

  6. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  7. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  8. Chronic alcohol feeding potentiates hormone‐induced calcium signalling in hepatocytes

    PubMed Central

    Bartlett, Paula J.; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L.; Combettes, Laurent; Hoek, Jan B.

    2017-01-01

    Key points Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined.We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+‐mobilizing hormones resulting in a leftward shift in the concentration–response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases.Our data demonstrate that alcohol‐dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone‐induced inositol 1,4,5 trisphosphate (IP3) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores.We suggest that prolonged and aberrant hormone‐evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol‐induced hepatocyte injury. Abstract ‘Adaptive’ responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide‐dependent cytosolic calcium ([Ca2+]i) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose–response for Ca2+‐mobilizing hormones resulting in more sustained and prolonged [Ca2+]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone‐induced calcium increases in control livers, but not after chronic alcohol‐feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone‐induced inositol 1,4,5 trisphosphate (IP3) accumulation and

  9. The salutary effect of dietary calcium on bone mass in a rat model of simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Globus, R.; Halloran, B. P.; Morey-Holton, E.

    1985-01-01

    Whether supplementation of dietary calcium reduces the differences in bone mass of unweighed limbs and normally weighted limbs, and whether parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH)2D) respond differently to dietary calcium in unweighted animals in comparison with pair-fed controls was studied. The hind limbs of rats were unweighted by a tail suspension method and diets containing 0.1% to 2.4% calcium. After 2 weeks serum calcium, phosphorus, PTH and 1,25(OH)2D intestinal calcium transport were determined and bone mass, ash weight, and calcium in the tibia, L-1 vertebra, and humerus were measured. No significant differences in body weights were observed among the various groups. Suspended rats maintained constant levels of serum calcium and phosphate over the wide range of dietary calcium. Serum PTH and 1,25(OH)2D and intestinal calcium transport fell as dietary calcium was increased. Bone calcium in the tibia and vertebra from suspended rats remained less than that from pair-fed control. It is suggested that although no striking difference between suspended and control animals was observed in response to dieteary calcium, increasing dietary calcium may reduce the negative impact of unloading on the calcium content of the unweighted bones. The salutary effect of high dietary calcium appears to be due to inhibition of bone resorption rather than to stimulation of bone formation.

  10. Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries

    DOE PAGES

    Berger, Cornelius M.; Mahmoud, Abdelfattah; Hermann, Raphaël P.; ...

    2016-08-08

    Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe 3O 5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe 3O 5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry,more » and scanning electron microscopy. Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.« less

  11. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  12. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    PubMed Central

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  13. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive.

    PubMed

    Baba, Toshiaki; Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups ( p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.

  14. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive

    PubMed Central

    Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC. PMID:27981048

  15. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer's Disease: A Calcinist Point of View.

    PubMed

    Gibson, Gary E; Thakkar, Ankita

    2017-06-01

    Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.

  16. Effects of calcium-fortified ice cream on markers of bone health.

    PubMed

    Ferrar, L; van der Hee, R M; Berry, M; Watson, C; Miret, S; Wilkinson, J; Bradburn, M; Eastell, R

    2011-10-01

    Premenopausal women with low calcium intakes consumed calcium-fortified ice cream daily for 28 days. Bone markers, NTX, CTX and PTH decreased significantly by 7 days, with some evidence of a calcium dose-dependent effect. Bone marker responses were observed within 1 h of consuming ice cream. Body weight remained constant over 28 days. Dietary calcium is important for lifelong bone health. Milk is a good source of bioavailable calcium, but consumption has declined among young adults. The aims were to determine whether calcium-fortified ice cream, a palatable source of calcium, produces significant, sustainable changes in bone turnover markers and parathyroid hormone (PTH) in premenopausal women with calcium intake below recommended UK levels. Eighty women, ages 20-39 years (calcium intake <750 mg/day) were randomised to consume lower saturated fat/sugar ice cream containing 96, 244, 459 or 676 mg calcium daily for 28 days. Urinary NTX/Cr, serum CTX, PINP, 1,25D and PTH were measured (baseline, days 1, 7 and 28). Acute changes in CTX and PTH were measured over 5 h (n = 29 women). There were significant mean decreases by 7 days in NTX/Cr, CTX, PTH and 1,25D and increases in PINP (one sample t tests), with a significant dose-dependent effect on CTX analysis of covariance. Only CTX remained suppressed at 28 days. Serum CTX and PTH decreased within 1 h. Body weight did not change significantly between baseline and 28 days. Daily consumption of calcium-fortified ice cream by premenopausal women may significantly reduce levels of the bone resorption marker serum CTX, without stimulating weight gain. The ice cream could be incorporated into the diet to replace low-calcium snacks and thus help individuals with habitually low calcium intakes to meet recommended intakes. The 244 mg calcium preparation would provide more than a quarter of the UK daily recommended nutrient intake for premenopausal women.

  17. Photobiomodulation by Infrared Diode Laser: Effects on Intracellular Calcium Concentration and Nitric Oxide Production of Paramecium.

    PubMed

    Amaroli, Andrea; Benedicenti, Alberico; Ferrando, Sara; Parker, Steven; Selting, Wayne; Gallus, Lorenzo; Benedicenti, Stefano

    2016-11-01

    In Paramecium, cilia beating is correlated to intracellular calcium concentration ([Ca 2+ ]i) and nitric oxide (NO) synthesis. Recent findings affirm that photobiomodulation (PBM) can transiently increase the [Ca 2+ ]i in mammalian cells. In this study, we investigated the effect of both 808 and 980 nm diode laser irradiated with flat-top hand-piece on [Ca 2+ ]i and NO production of Paramecium primaurelia, to provide basic information for the development of new therapeutic approaches. In the experiments, the laser power in CW varied (0.1; 0.5; 1; and 1.5 W) to generate the following respective fluences: 6.4; 32; 64; and 96 J cm -2 . The 6.4 J cm -2 did not induce PBM if irradiated by both 808 and 980 nm diode laser. Conversely, the 32 J cm -2 fluence had no effect on Paramecium cells if irradiated by the 808 nm laser, while if irradiated by the 980 nm laser induced increment in swimming speed (suggesting an effect on the [Ca 2+ ]i, NO production, similar to the 64 J cm -2 with the 808 nm wavelength). The more evident discordance occurred with the 96 J cm -2 fluence, which had the more efficient effect on PBM among the parameters if irradiated with the 808 nm laser and killed the Paramecium cells if irradiated by the 980 nm laser. Lastly, the 980 nm and 64 or 96 J cm -2 were the only parameters to induce a release of stored calcium. © 2016 The American Society of Photobiology.

  18. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.

    PubMed

    Shemwell, B; Levendis, Y A; Simons, G A

    2001-01-01

    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and

  19. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production

    PubMed Central

    Martin, Sophie; Andriambeloson, Emile; Takeda, Ken; Andriantsitohaina, Ramaroson

    2002-01-01

    The present study investigates the mechanisms by which polyphenolic compounds from red wine elicit Ca2+ mobilization in bovine aortic endothelial cells (BAECs). Two polyphenol-containing red wine extracts, red wine polyphenolic compounds (RWPC) and Provinols™, and delphinidin, an anthocyanin were used. RWPC stimulated a Ca2+-dependent release of nitric oxide (NO) from BAECs accounting for the relaxation of endothelium-denuded rat aortic rings as shown by cascade bioassay. RWPC, Provinols™ and delphinidin increased cytosolic free calcium ([Ca2+]i), by releasing Ca2+ from intracellular stores and by increasing Ca2+ entry. The RWPC-induced increase in [Ca2+]i was decreased by exposure to ryanodine (30 μM), whereas Provinols™ and delphinidin-induced increases in [Ca2+]i were decreased by bradykinin (0.1 μM) and thapsigargin (1 μM) pre-treatment. RWPC, Provinols™ and delphinidin-induced increases in [Ca2+]i were sensitive to inhibitors of phospholipase C (neomycin, 3 mM; U73122, 3 μM) and tyrosine kinase (herbimycin A, 1 μM). RWPC, Provinols™ and delphinidin induced herbimycin A (1 μM)-sensitive tyrosine phosphorylation of several intracellular proteins. Provinols™ released Ca2+ via both a cholera (CTX) and pertussis toxins (PTX)-sensitive pathway, whereas delphinidin released Ca2+ only via a PTX-sensitive mechanism. Our data contribute in defining the mechanisms of endothelial NO production caused by wine polyphenols including the increase in [Ca2+]i and the activation of tyrosine kinases. Furthermore, RWPC, Provinols™ and delphinidin display differences in the process leading to [Ca2+]i increases in endothelial cells illustrating multiple cellular targets of natural dietary polyphenolic compounds. PMID:11906973

  20. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process.

    PubMed

    Lohner, Svenja T; Becker, Dirk; Mangold, Klaus-Michael; Tiehm, Andreas

    2011-08-01

    This article for the first time demonstrates successful application of electrochemical processes to stimulate sequential reductive/oxidative microbial degradation of perchloroethene (PCE) in mineral medium and in contaminated groundwater. In a flow-through column system, hydrogen generation at the cathode supported reductive dechlorination of PCE to cis-dichloroethene (cDCE), vinyl chloride (VC), and ethene (ETH). Electrolytically generated oxygen at the anode allowed subsequent oxidative degradation of the lower chlorinated metabolites. Aerobic cometabolic degradation of cDCE proved to be the bottleneck for complete metabolite elimination. Total removal of chloroethenes was demonstrated for a PCE load of approximately 1.5 μmol/d. In mineral medium, long-term operation with stainless steel electrodes was demonstrated for more than 300 days. In contaminated groundwater, corrosion of the stainless steel anode occurred, whereas DSA (dimensionally stable anodes) proved to be stable. Precipitation of calcareous deposits was observed at the cathode, resulting in a higher voltage demand and reduced dechlorination activity. With DSA and groundwater from a contaminated site, complete degradation of chloroethenes in groundwater was obtained for two months thus demonstrating the feasibility of the sequential bioelectro-approach for field application.

  1. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats.

    PubMed

    Adi, Pradeepkiran Jangampalli; Burra, Siva Prasad; Vataparti, Amardev Rajesh; Matcha, Bhaskar

    2016-01-01

    This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn) or vitamin E (Vit-E) on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g) (n = 6) control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight) alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each) or Vit-E (20 mg/kg body weight) supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid peroxidase (LPx) were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity.

  2. Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides.

    PubMed

    Kim, Miae; Corkhill, Claire L; Hyatt, Neil C; Heo, Jong

    2018-03-28

    Calcium-aluminoborate (CAB) glasses were developed to sequester new waste compositions made of several rare-earth oxides generated from the pyrochemical reprocessing of spent nuclear fuel. Several important wasteform properties such as waste loading, processability and chemical durability were evaluated. The maximum waste loading of the CAB compositions was determined to be ~56.8 wt%. Viscosity and the electrical conductivity of the CAB melt at 1300 °C were 7.817 Pa·s and 0.4603 S/cm, respectively, which satisfies the conditions for commercial cold-crucible induction melting (CCIM) process. Addition of rare-earth oxides to CAB glasses resulted in dramatic decreases in the elemental releases of B and Ca in aqueous dissolution experiments. Normalized elemental releases from product consistency standard chemical durability test were <3.62·10 -5  g·m -2 for Nd, 0.009 g·m -2 for Al, 0.067 g·m -2 for B and 0.073 g·m -2 for Ca (at 90, after 7 days, for SA/V = 2000m -1 ); all meet European and US regulation limits. After 20 d of dissolution, a hydrated alteration layer of ~ 200-nm-thick, Ca-depleted and Nd-rich, was formed at the surface of CAB glasses with 20 mol% Nd 2 O 3 whereas boehmite [AlO(OH)] secondary crystalline phases were formed in pure CAB glass that contained no Nd 2 O 3 .

  3. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes.

    PubMed

    Shak, S; Goldstein, I M

    1984-08-25

    Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.

  4. Stimulation of inorganic pyrophosphate elaboration by cultured cartilage and chondrocytes.

    PubMed

    Ryan, L M; Kurup, I; Rosenthal, A K; McCarty, D J

    1989-08-01

    Inorganic pyrophosphate elaboration by articular cartilage may favor calcium pyrophosphate dihydrate crystal deposition. Frequently crystal deposits form in persons affected with metabolic diseases. The cartilage organ culture system was used to model these metabolic conditions while measuring the influence on extracellular pyrophosphate elaboration. Alterations of ambient pH, thyroid stimulating hormone levels, and parathyroid hormone levels did not change pyrophosphate accumulation in the media. However, subphysiologic ambient calcium concentrations (25, 100, 500 microM) increased pyrophosphate accumulation about chondrocytes 3- to 10-fold. Low calcium also induced release of [14C]adenine-labeled nucleotides from chondrocytes, potential substrates for generation of extracellular pyrophosphate by ectoenzymes. Exposing cartilage to 10% fetal bovine serum also enhanced by 50% the egress of inorganic pyrophosphate from the tissue.

  5. Characterization and evaluation of antibacterial activity of plant mediated calcium oxide (CaO) nanoparticles by employing Mentha pipertia extract

    NASA Astrophysics Data System (ADS)

    Ijaz, Umber; Bhatti, Ijaz Ahmed; Mirza, Saima; Ashar, Ambreen

    2017-10-01

    The antibacterial activity of green synthesized calcium oxide nanoparticles was investigated using leaf extract of Mentha piperita in this study. The synthesized nanomaterial was subjected to characterization using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray spectroscopy (EDX). The SEM images showed agglomeration of disc shaped nanoparticles, and FTIR and EDX spectroscopy indicated intensive peaks for calcium ions and oxygen. Subsequently, the potential of nanoscale CaO was also evaluated for antimicrobial index against E. coli using the well diffusion method. A maximum zone of inhibition up to 42 mm was observed when 100 µg ml-1 material was loaded with inoculum size 50 µl of E. coli in sunlight exposure of 5 h. The experimental conditions were optimized using a central composite design using a response surface methodology. The maximum antimicrobial index of the CaO nanoparticle was 6 mm as a result of the optimized response. Furthermore, the minimum inhibitory concentration of the CaO nanoparticle showed 25 µg ml-1, an effective initial concentration for E.coli removal. The results revealed that the CaO nanocomposite synthesized via a green route was a promising candidate for the removal of E. coli present in drinking water, which is an important fecal indicator.

  6. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  7. Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage.

    PubMed

    Menze, Michael A; Hutchinson, Kirk; Laborde, Susan M; Hand, Steven C

    2005-07-01

    When mammalian mitochondria are exposed to high calcium and phosphate, a massive swelling, uncoupling of respiration, and release of cytochrome c occur. These changes are mediated by opening of the mitochondrial permeability transition pore (MPTP). Activation of the MPTP in vivo in response to hypoxic and oxidative stress leads to necrotic and apoptotic cell death. Considering that embryos of the brine shrimp Artemia franciscana tolerate anoxia for years, we investigated the MPTP in this crustacean to reveal whether pore opening occurs. Minimum molecular constituents of the regulated MPTP in mammals are believed to be the voltage-dependent anion channel, the adenine nucleotide translocators, and cyclophilin D. Western blot analysis revealed that mitochondria from A. franciscana possess all three required components. When measured with a calcium-sensitive fluorescent probe, rat liver mitochondria are shown to release matrix calcium after addition of >/=100 microM extramitochondrial calcium (MPTP opening), whereas brine shrimp mitochondria continue to take up extramitochondrial calcium and do not release internal stores even up to 1.0 mM exogenously added calcium (no MPTP opening). Furthermore, no swelling of A. franciscana mitochondria in response to added calcium was observed, and no release of cytochrome c could be detected. HgCl(2)-dependent swelling and cytochrome c release were readily confirmed, which is consistent with the presence of an "unregulated pore." Although the absence of a regulated MPTP in A. franciscana mitochondria could contribute to the extreme hypoxia tolerance in this species, we speculate that absence of the regulated MPTP may be a general feature of invertebrates.

  8. A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells

    PubMed Central

    Fuchs, Paul Albert

    2014-01-01

    Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic cistern may play an essential role in calcium homeostasis, serving as sink or source, depending on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell. Activity-dependent synaptic modification may contribute to changes in hair cell innervation that occur during development, and in the aged or damaged cochlea. PMID:24566542

  9. Calcium channel blockers and transmitter release at the normal human neuromuscular junction.

    PubMed

    Protti, D A; Reisin, R; Mackinley, T A; Uchitel, O D

    1996-05-01

    Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and omega-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or omega-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.

  10. Secondary Ion Mass Spectrometers (SIMS) for calcium isotope measurements as an application to biological samples

    NASA Astrophysics Data System (ADS)

    Craven, S. M.; Hoenigman, J. R.; Moddeman, W. E.

    1981-11-01

    The potential use of secondary ion mass spectroscopy (SIMS) to analyze biological samples for calcium isotopes is discussed. Comparison of UTI and Extranuclear based quadrupole systems is made on the basis of the analysis of CaO and calcium metal. The Extranuclear quadrupole based system is superior in resolution and sensitivity to the UTI system and is recommended. For determination of calcium isotopes to within an accuracy of a few percent a high resolution quadrupole, such as the Extranuclear, and signal averaging capability are required. Charge neutralization will be mandated for calcium oxide, calcium nitrate, or calcium oxalate. SIMS is not capable of the high precision and high accuracy results possible by thermal ionization methods, but where faster analysis is desirable with an accuracy of a few percent, SIMS is a viable alternative.

  11. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  12. xCT expression reduces the early cell cycle requirement for calcium signaling

    PubMed Central

    Lastro, Michele; Kourtidis, Antonis; Farley, Kate; Conklin, Douglas S.

    2009-01-01

    Calcium has long been recognized as an important regulator of cell cycle transitions although the mechanisms are largely unknown. A functional genomic screen has identified genes involved in the regulation of early cell cycle progression by calcium. These genes when overexpressed confer the ability to bypass the G1/S arrest induced by Ca2+- channel antagonists in mouse fibroblasts. Overexpression of the cystine-glutamate exchanger, xCT, had the greatest ability to evade calcium antagonist-induced cell cycle arrest. xCT carries out the rate limiting step of glutathione synthesis in many cell types and is responsible for the uptake of cystine in most human cancer cell lines. Functional analysis indicates that the cystine uptake activity of xCT overcomes the G1/S arrest induced by Ca2+- channel antagonists by bypassing the requirement for calcium signaling. Since cells overexpressing xCT were found to have increased levels and activity of the AP-1 transcription factor in G1, redox stimulation of AP-1 activity accounts for the observed growth of these cells in the presence of calcium channel antagonists. These results suggest that reduced calcium signaling impairs AP-1 activation and that xCT expression may directly affect cell proliferation. PMID:18054200

  13. The addition of zeolite adsorbents and calcium oxide on purification of bioethanol from sugar palm (arenga pinnata merr)

    NASA Astrophysics Data System (ADS)

    Herlina, Netti; Siska Dewi Harahap, Ici

    2018-03-01

    Bioethanol (C2H5OH) is a biochemical liquid produced by microorganisms through fermentation process on sugar molecules from carbohydrates. Bioethanol is a fuel of vegetable oil that has similar properties to premium. With its main product of palm juice, Sugar palm (Arenga pinnata) is a potential source of sugar and carbohydrate for bioethanol production. Production of palm juice can reach up to 12-14 liters/tree/day with total sugar content in palm juice ranges from 12-15%. The purpose of this research was to produce highly-concentrated bioethanol from palm juice through fermentation proccess to subtitude fossil fuel. This study was conducted with three stages of treatment, namely: the fermentation of palm juice, distillation of bioethanol, and purification of bioethanol with the addition of adsorbent zeolite and calcium oxide.

  14. Effects of zinc oxide-eugenol and calcium hydroxide/ iodoform on delaying root resorption in primary molars without successors.

    PubMed

    Lin, Bichen; Zhao, Yuming; Yang, Jie; Wang, Wenjun; Ge, Li-hong

    2014-01-01

    The purpose of this study was to compare the effects of zinc oxide-eugenol (ZOE) and calcium hydroxide/iodoform paste (Vitapex), as root canal filling materials in pulpectomy, on delaying the root resorption of primary molars without permanent successors. Animal models without permanent successors were surgically established in beagle dogs. Root resorption was observed via periapical radiographs. The onset of root resorption of primary mandibular molars without successors occurred later (p<0.05) than physiologic resorption. ZOE pulpectomy clearly delayed the root resorption of primary molars without permanent successors (p<0.05), whereas resorption of primary molars with Vitapex pulpectomy started at almost the same time as physiologic resorption. Compared with Vitapex, ZOE was a more effective root canal filling material in delaying the root resorption of primary molars.

  15. Effects of the amphiphilic peptides mastoparan and adenoregulin on receptor binding, G proteins, phosphoinositide breakdown, cyclic AMP generation, and calcium influx.

    PubMed

    Shin, Y; Moni, R W; Lueders, J E; Daly, J W

    1994-04-01

    1. The amphiphilic peptide mastoparan is known to affect phosphoinositide breakdown, calcium influx, and exocytosis of hormones and neurotransmitters and to stimulate the GTPase activity of guanine nucleotide-binding regulatory proteins. Another amphiphilic peptide, adenoregulin was recently identified based on stimulation of agonist binding to A1-adenosine receptors. 2. A comparison of the effects of mastoparan and adenoregulin reveals that these peptides share many properties. Both stimulate binding of agonists to receptors and binding of GTP gamma S to G proteins in brain membranes. The enhanced guanyl nucleotide exchange may be responsible for the complete conversion of receptors to a high-affinity state, complexed with guanyl nucleotide-free G proteins. 3. Both peptides increase phosphoinositide breakdown in NIH 3T3 fibroblasts. Pertussis toxin partially inhibits the phosphoinositide breakdown elicited by mastoparan but has no effect on the response to adenoregulin. N-Ethylmaleimide inhibits the response to both peptides. 4. In permeabilized 3T3 cells, both adenoregulin and mastoparan inhibit GTP gamma S-stimulated phosphoinositide breakdown. Mastoparan slightly increases basal cyclic AMP levels in cultured cells, followed at higher concentrations by an inhibition, while adenoregulin has minimal effects. 5. Both peptides increase calcium influx in cultured cells and release of norepinephrine in pheochromocytoma PC12 cells. The calcium influx elicited by the peptides in 3T3 cells is not markedly altered by N-ethylmaleimide. 6. Multiple sites of action appear likely to underlie the effects of mastoparan/adenoregulin on receptors, G proteins, phospholipase C, and calcium.

  16. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations.

    PubMed

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-12-06

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.

  17. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  18. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons.

    PubMed

    Power, John M; Sah, Pankaj

    2008-03-19

    Acetylcholine (ACh) is an important modulator of learning, memory, and synaptic plasticity in the basolateral amygdala (BLA) and other brain regions. Activation of muscarinic acetylcholine receptors (mAChRs) suppresses a variety of potassium currents, including sI(AHP), the calcium-activated potassium conductance primarily responsible for the slow afterhyperpolarization (AHP) that follows a train of action potentials. Muscarinic stimulation also produces inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. Here, we show using whole-cell patch-clamp recordings and high-speed fluorescence imaging that focal application of mAChR agonists evokes large rises in cytosolic calcium in the soma and proximal dendrites in rat BLA projection neurons that are often associated with activation of an outward current that hyperpolarizes the cell. This hyperpolarization results from activation of small conductance calcium-activated potassium (SK) channels, secondary to the release of calcium from intracellular stores. Unlike bath application of cholinergic agonists, which always suppressed the AHP, focal application of ACh often evoked a paradoxical enhancement of the AHP and spike-frequency adaptation. This enhancement was correlated with amplification of the action potential-evoked calcium response and resulted from the activation of SK channels. When SK channels were blocked, cholinergic stimulation always reduced the AHP and spike-frequency adaptation. Conversely, suppression of the sI(AHP) by the beta-adrenoreceptor agonist, isoprenaline, potentiated the cholinergic enhancement of the AHP. These results suggest that competition between cholinergic suppression of the sI(AHP) and cholinergic activation of the SK channels shapes the AHP and spike-frequency adaptation.

  19. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer’s Disease - A Calcinist Point of View

    PubMed Central

    Gibson, Gary E.; Thakkar, Ankita

    2017-01-01

    Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer’s Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets. PMID:28181072

  20. Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells

    PubMed Central

    Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee

    2014-01-01

    Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  1. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed.more » Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.« less

  2. The Production of Nitric Oxide, IL-6, and TNF-Alpha in Palmitate-Stimulated PBMNCs Is Enhanced through Hyperglycemia in Diabetes

    PubMed Central

    Volpe, Caroline Maria Oliveira; Abreu, Luana Farnese Machado; Gomes, Pollyanna Stephanie; Gonzaga, Raquel Miranda; Veloso, Clara Araújo; Nogueira-Machado, José Augusto

    2014-01-01

    We examined nitric oxide (NO), IL-6, and TNF-α secretion from cultured palmitate-stimulated PBMNCs or in the plasma from type 2 diabetes mellitus (T2MD) patients or nondiabetic (ND) controls. Free fatty acids (FFA) have been suggested to induce chronic low-grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through inflammatory processes. The levels of NO, IL-6, TNF-α, and MDA were higher in supernatant of palmitate stimulated blood cells (PBMNC) or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate). These results suggest that hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress of diabetic complications. PMID:24803982

  3. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    PubMed

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  4. Thrombospondin-1 and Angiotensin II Inhibit Soluble Guanylyl Cyclase through an Increase in Intracellular Calcium Concentration

    PubMed Central

    Ramanathan, Saumya; Mazzalupo, Stacy; Boitano, Scott; Montfort, William R.

    2011-01-01

    Nitric Oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca2+]i) and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells, and that inhibition requires an increase in [Ca2+]i. Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca2+]i, up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca2+]i, also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca2+ remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in Km for GTP, which rises to 834 µM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca2+]i in response to NO, inducing vasodilation, but is also inhibited by high [Ca2+]i, providing a fine balance between signals for vasodilation and vasoconstriction. PMID:21823650

  5. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  6. Managing calcium oxalate scale in the bleach plant

    Treesearch

    Alan Rudie; Peter Hart

    2005-01-01

    To comply with the U.S. Environmental Protection Agency's "Cluster Rule," most U.S. mills have switched from the use of chlorine to chlorine dioxide as the oxidant in the first stage of bleaching. This process change has a downside. it increases the formation of mineral scale in bleach plants. Typically, calcium oxalate forms in the chlorine dioxide...

  7. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    PubMed

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P < 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P < 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P < 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Hydration behaviors of calcium silicate-based biomaterials.

    PubMed

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  9. Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells

    PubMed Central

    Shen, Wen; Slaughter, Malcolm M

    1998-01-01

    Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896

  10. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  11. Secondary ion mass spectrometers (SIMS) for calcium isotope measurements as an application to biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craven, S.M.; Hoenigman, J.R.; Moddeman, W.E.

    1981-11-20

    The potential use of secondary ion mass spectroscopy (SIMS) to analyze biological samples for calcium isotopes is discussed. Comparison of UTI and Extranuclear based quadrupole systems is made on the basis of the analysis of CaO and calcium metal. The Extranuclear quadrupole based system is superior in resolution and sensitivity to the UTI system and is recommended. For determination of calcium isotopes to within an accuracy of a few percent a high resolution quadrupole, such as the Extranuclear, and signal averaging capability are required. Charge neutralization will be mandated for calcium oxide, calcium nitrate, or calcium oxalate. SIMS is notmore » capable of the high precision and high accuracy results possible by thermal ionization methods, but where faster analysis is desirable with an accuracy of a few percent, SIMS is a viable alternative.« less

  12. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  13. Trpc2 Depletion Protects RBC from Oxidative Stress-Induced Hemolysis

    PubMed Central

    Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Keefer, Kerry; Conrad, Kathleen; Tong, Qin; Chen, Shu-jen; Bronson, Sarah; Cheung, Joseph Y.; Miller, Barbara A.

    2011-01-01

    Transient receptor potential channels Trpc2 and Trpc3 are expressed on normal murine erythroid precursors, and erythropoietin stimulates an increase in intracellular calcium ([Ca2+]i) through TRPC2 and TRPC3. Because modulation of [Ca2+]i is an important signaling pathway in erythroid proliferation and differentiation, Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were utilized to explore the roles of these channels in erythropoiesis. Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were not anemic, and had similar red blood cell counts, hemoglobins, and reticulocyte counts as wild type littermate controls. Although the erythropoietin induced increase in [Ca2+]i was reduced, these knockout mice showed no defects in red cell production. The major phenotypic difference at steady state was that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit of red cells were significantly greater in Trpc2 and Trpc2/Trpc3 double knockout mice, and mean corpuscular hemoglobin concentration was significantly reduced. All hematological parameters in Trpc3 knockout mice were similar to controls. When exposed to phenyhydrazine, unlike the Trpc3 knockouts, Trpc2 and Trpc2/Trpc3 double knockout mice showed significant resistance to hemolysis. This was associated with significant reduction in hydrogen peroxide-induced calcium influx in erythroblasts. While erythropoietin induced calcium influx through TRPC2 or TRPC3 is not critical for erythroid production, these data demonstrate that TRPC2 plays an important role in oxidative stress-induced hemolysis which may be related to reduced calcium entry in red cells in the presence of Trpc2 depletion. PMID:21924222

  14. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  15. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  16. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism.

    PubMed

    Spyridopoulos, I; Wischhusen, J; Rabenstein, B; Mayer, P; Axel, D I; Fröhlich, K U; Karsch, K R

    2001-03-01

    Controversy exists about the net effect of alcohol on atherogenesis. A protective effect is assumed, especially from the tannins and phenolic compounds in red wine, owing to their inhibition of low density lipoprotein (LDL) oxidation. However, increased atherogenesis occurs in subjects with moderate to heavy drinking habits. The purpose of this study was to investigate the influence of alcohol in combination with oxysterols on the endothelium. Cultured human arterial endothelial cells (HAECs) served as an in vitro model to test the cellular effects of various oxysterols. Oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and cholesterol-5,6-epoxides), which are assumed to be the most toxic constituents of oxidized LDL, induced apoptosis in HAECs through calcium mobilization followed by activation of caspase-3. Ethanol, methanol, isopropanol, tert-butanol, and red wine all potentiated oxysterol-induced cell death up to 5-fold, paralleled by further induction of caspase-3. The alcohol effect occurred in a dose-dependent manner and reached a plateau at 0.05% concentration. Alcohol itself did not affect endothelial cell viability, nor did other solvents such as dimethyl sulfoxide mimic the alcohol effect. So far as the physiologically occurring oxysterols are concerned, this effect was apparent only for oxysterols oxidized at the steran ring. The possibility of alcohol facilitating the uptake of oxysterols into the cell was not supported by the data from an uptake study with radiolabeled compounds. Finally, alcohol in combination with oxysterols did cause a dramatic increase in cytosolic calcium influx. Blockage of calcium influx by the calcium channel blocker aurintricarboxylic acid or the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abrogated the alcohol-mediated enhancement of oxysterol toxicity. We describe for the first time a mechanistic concept explaining possible adverse effects of alcohol in conjunction with

  17. Calcium and lithium ion production for laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, M.; Palm, K.; Stifler, C.

    2015-08-23

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-statemore » Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less

  18. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Brunson, Roy J.

    1979-01-01

    An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

  19. Flow rate, pH and calcium concentration of saliva of children and adolescents with type 1 diabetes mellitus.

    PubMed

    Moreira, A R; Passos, I A; Sampaio, F C; Soares, M S M; Oliveira, R J

    2009-08-01

    Alterations in salivary parameters may increase the caries risk in diabetic children, but, contradictory data on this issue have been reported. The aims of this study were to compare salivary parameters (flow rate, pH and calcium concentration) between healthy and type 1 diabetes mellitus (T1DM) individuals. The sample consisted of 7- to 18-year-old individuals divided into two groups: 30 subjects with T1DM (group A) and 30 healthy control subjects (group B). Fasting glucose levels were determined. Unstimulated and stimulated saliva was collected. The pH of unstimulated saliva was measured with paper strips and an electrode. Calcium concentrations in stimulated saliva were determined with a selective electrode. Group A individuals had inadequate blood glucose control (HbA(1C) >9%), with means +/- SD unstimulated salivary flow rate of 0.15 +/- 0.1 mL/min compared to 0.36 +/- 0.2 mL/min for group B (P < 0.01). Stimulated salivary flow rate was similar by both groups and above 2.0 mL/min. Saliva pH was 6.0 +/- 0.8 for group A and significantly different from 7.0 +/- 0.6 for group B (P < 0.01). Salivary calcium was 14.7 +/- 8.1 mg/L for group A and significantly higher than 9.9 +/- 6.4 mg/L for group B (P < 0.01). Except for elevated calcium concentrations in saliva, salivary parameters favoring caries such as low saliva pH and unstimulated salivary flow rate were observed in T1DM individuals.

  20. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons.

    PubMed

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Glück, Chaim; Stobart, Michael J; Zuend, Marc; Weber, Bruno

    2018-05-16

    Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP 3 R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.