Science.gov

Sample records for oxidative injury estrogen

  1. Estrogen Sulfotransferase Is an Oxidative Stress-responsive Gene That Gender-specifically Affects Liver Ischemia/Reperfusion Injury*

    PubMed Central

    Guo, Yan; Hu, Bingfang; Huang, Hai; Tsung, Allan; Gaikwad, Nilesh W.; Xu, Meishu; Jiang, Mengxi; Ren, Songrong; Fan, Jie; Billiar, Timothy R.; Huang, Min; Xie, Wen

    2015-01-01

    Estrogen sulfotransferase (EST) regulates estrogen homeostasis by sulfonating and deactivating estrogens. Liver ischemia and reperfusion (I/R) involves both hypoxia during the ischemic phase and oxidative damage during the reperfusion phase. In this report, we showed that the expression of EST was markedly induced by I/R. Mechanistically, oxidative stress-induced activation of Nrf2 was responsible for the EST induction, which was abolished in Nrf2−/− mice. EST is a direct transcriptional target of Nrf2. In female mice, the I/R-responsive induction of EST compromised estrogen activity. EST ablation attenuated I/R injury as a result of decreased estrogen deprivation, whereas this benefit was abolished upon ovariectomy. The effect of EST ablation was sex-specific because the EST−/− males showed heightened I/R injury. Reciprocally, both estrogens and EST regulate the expression and activity of Nrf2. Estrogen deprivation by ovariectomy abolished the I/R-responsive Nrf2 accumulation, whereas the compromised estrogen deprivation in EST−/− mice was associated with increased Nrf2 accumulation. Our results suggested a novel I/R-responsive feedback mechanism to limit the activity of Nrf2 in which Nrf2 induces the expression of EST, which subsequently increases estrogen deactivation and limits the estrogen-responsive activation of Nrf2. Inhibition of EST, at least in females, may represent an effective approach to manage hepatic I/R injury. PMID:25922074

  2. Estrogen Sulfotransferase Is an Oxidative Stress-responsive Gene That Gender-specifically Affects Liver Ischemia/Reperfusion Injury.

    PubMed

    Guo, Yan; Hu, Bingfang; Huang, Hai; Tsung, Allan; Gaikwad, Nilesh W; Xu, Meishu; Jiang, Mengxi; Ren, Songrong; Fan, Jie; Billiar, Timothy R; Huang, Min; Xie, Wen

    2015-06-01

    Estrogen sulfotransferase (EST) regulates estrogen homeostasis by sulfonating and deactivating estrogens. Liver ischemia and reperfusion (I/R) involves both hypoxia during the ischemic phase and oxidative damage during the reperfusion phase. In this report, we showed that the expression of EST was markedly induced by I/R. Mechanistically, oxidative stress-induced activation of Nrf2 was responsible for the EST induction, which was abolished in Nrf2(-/-) mice. EST is a direct transcriptional target of Nrf2. In female mice, the I/R-responsive induction of EST compromised estrogen activity. EST ablation attenuated I/R injury as a result of decreased estrogen deprivation, whereas this benefit was abolished upon ovariectomy. The effect of EST ablation was sex-specific because the EST(-/-) males showed heightened I/R injury. Reciprocally, both estrogens and EST regulate the expression and activity of Nrf2. Estrogen deprivation by ovariectomy abolished the I/R-responsive Nrf2 accumulation, whereas the compromised estrogen deprivation in EST(-/-) mice was associated with increased Nrf2 accumulation. Our results suggested a novel I/R-responsive feedback mechanism to limit the activity of Nrf2 in which Nrf2 induces the expression of EST, which subsequently increases estrogen deactivation and limits the estrogen-responsive activation of Nrf2. Inhibition of EST, at least in females, may represent an effective approach to manage hepatic I/R injury. PMID:25922074

  3. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  4. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cells with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.

  5. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury.

    PubMed

    Sivasinprasasn, Sivaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-02-01

    The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction. PMID:26786980

  6. Estrogen-related receptor γ controls hepatic CB1 receptor-mediated CYP2E1 expression and oxidative liver injury by alcohol

    PubMed Central

    Jang, Hyun-Hee; Park, Jinyoung; Kim, Jung Ran; Koh, Minseob; Jeong, Won-Il; Koo, Seung-Hoi; Park, Tae-Sik; Yun, Chul-Ho; Park, Seung Bum; Chiang, John Y L; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Background The hepatic endocannabinoid system and cytochrome P450 2E1 (CYP2E1), a key enzyme causing alcohol-induced reactive oxygen species (ROS) generation, are major contributors to the pathogenesis of alcoholic liver disease. The nuclear hormone receptor oestrogen-related receptor γ (ERRγ) is a constitutively active transcriptional activator regulating gene expression. Objective To investigate the role of ERRγ in the alcohol-mediated regulation of CYP2E1 and to examine the possibility to control alcohol-mediated oxidative stress and liver injury through an ERRγ inverse agonist. Design For chronic alcoholic hepatosteatosis study, C57BL/6J wild-type and CB1−/− mice were administered alcohol for 4 weeks. GSK5182 and chlormethiazole (CMZ) were given by oral gavage for the last 2 weeks of alcohol feeding. Gene expression profiles and biochemical assays were performed using the liver or blood of mice. Results Hepatic ERRγ gene expression induced by alcohol-mediated activation of CB1 receptor results in induction of CYP2E1, while liver-specific ablation of ERRγ gene expression blocks alcohol-induced expression of CYP2E1 in mouse liver. An ERRγ inverse agonist significantly ameliorates chronic alcohol-induced liver injury in mice through inhibition of CYP2E1-mediated generation of ROS, while inhibition of CYP2E1 by CMZ abrogates the beneficial effects of the inverse agonist. Finally, chronic alcohol-mediated ERRγ and CYP2E1 gene expression, ROS generation and liver injury in normal mice were nearly abolished in CB1−/− mice. Conclusions ERRγ, as a previously unrecognised transcriptional regulator of hepatic CB1 receptor, controls alcohol-induced oxidative stress and liver injury through CYP2E1 induction, and its inverse agonist could ameliorate oxidative liver injury due to chronic alcohol exposure. PMID:23023167

  7. Removal of estrogens by electrochemical oxidation process.

    PubMed

    Cong, Vo Huu; Iwaya, Sota; Sakakibara, Yutaka

    2014-06-01

    Treatments of estrogens such as Estrone (E1), Estradiol (E2) and Ethinylestradiol (EE2) were conducted using an electrolytic reactor equipped with multi-packed granular glassy carbon electrodes. Experimental results showed that E1, E2 and EE2 were oxidized in the range of 0.45-0.85 V and were removed through electro-polymerization. Observed data from continuous experiments were in good agreement with calculated results by a mathematical model constructed based on mass transfer limitation. In continuous treatment of trace estrogens (1 μg/L), 98% of E1, E2 and EE2 were stably removed. At high loading rate (100 μg/L), removal efficiency of E1 was kept around 74%-88% for 21 days, but removal efficiency reduced due to passivation of electrodes. However, removal efficiency was recovered after electrochemical regeneration of electrodes in presence of ozone. Electric energy consumption was observed in the range of 1-2 Wh/m(3). From these results, we concluded that the present electrochemical process would be an alternative removal of estrogens. PMID:25079848

  8. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury.

    PubMed

    Chakrabarti, Mrinmay; Das, Arabinda; Samantaray, Supriti; Smith, Joshua A; Banik, Naren L; Haque, Azizul; Ray, Swapan K

    2016-04-01

    Estrogen (EST) is a steroid hormone that exhibits several important physiological roles in the human body. During the last few decades, EST has been well recognized as an important neuroprotective agent in a variety of neurological disorders in the central nervous system (CNS), such as spinal cord injury (SCI), traumatic brain injury (TBI), Alzheimer's disease, and multiple sclerosis. The exact molecular mechanisms of EST-mediated neuroprotection in the CNS remain unclear due to heterogeneity of cell populations that express EST receptors (ERs) in the CNS as well as in the innate and adaptive immune system. Recent investigations suggest that EST protects the CNS from injury by suppressing pro-inflammatory pathways, oxidative stress, and cell death, while promoting neurogenesis, angiogenesis, and neurotrophic support. In this review, we have described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI. At the same time, we have emphasized on the recent in vitro and in vivo findings from our and other laboratories, implying potential clinical benefits of EST in the treatment of SCI and TBI. PMID:26461840

  9. Lung Cell Oxidant Injury

    PubMed Central

    Suttorp, Norbert; Simon, Lawrence M.

    1982-01-01

    The oxidant damage of lung tissue during in vivo hyperoxic exposure appears to be amplified by neutrophils that release toxic amounts of oxygen metabolites. In our studies cloned lung epithelial cells (L2 cells), lung fibroblasts, and pulmonary artery endothelial cells were cultured under either ambient (Po2 ∼ 140 torr) or hyperoxic (Po2 ∼ 630 torr) conditions for 48 h (24 h for endothelial cells). After cultivation, phorbol myristate acetate- or opsonized zymosan-stimulated neutrophils were added to the cultivated monolayers for 4 h, and lung cell damage was quantitated using 51Cr release as an index. The data show that stimulated neutrophils are able to injure the three lung cell lines tested, with endothelial cells being highly susceptible to this injury and L2 cells being slightly more susceptible than lung fibroblasts. The studies also demonstrate that all three lung cell lines exposed to sustained hyperoxia are more susceptible to neutrophil-mediated cytotoxicity than their time-matched air controls. Hydrogen peroxide was the main toxic oxygen metabolite because catalase (2,500 U/ml) completely protected the target cells. Equivalent quantities of hydrogen peroxide generated by glucose oxidase instead of by neutrophils gave a similar degree of target cell injury. Superoxide dismutase at high concentrations (250 μg/ml) provided some protection. Other systems that detoxify oxygen metabolites were without protective effect. These findings indicate that the increase in susceptibility of lung cells to neutrophil-mediated oxidant damage is a toxic effect of hyperoxia on lung cells. This specific manifestation of oxygen damage provides insight into the integration between primary mechanisms (oxygen exposure) and secondary mechanisms (release of oxygen metabolites by neutrophils) with respect to the cellular basis for pulmonary oxygen toxicity. PMID:6284800

  10. Cellular injury by oxidants.

    PubMed

    Cochrane, C G

    1991-09-30

    Oxidants, generated by stimulated leukocytes, induce a variety of distinct biochemical changes in target cells. Hypochlorous acid (HOCl), produced by the action of peroxidase on hydrogen peroxide (H2O2) in the presence of chloride ions, acts at low molar concentrations (10-20 microM) to damage proteins on cell membranes and destroy their function. H2O2 rapidly permeates cells and causes inhibition of adenosine triphosphate (ATP) synthesis via both glycolytic and oxidative phosphorylation (mitochondrial) pathways. In the glycolytic pathway, damage is limited to the step involving glyceraldehyde-3-PO4 dehydrogenase (GAPDH). This results from both an attack of H2O2 on GAPDH and, indirectly, by a reduction in concentration of the GAPDH cofactor, nicotinamide adenine dinucleotide (NAD). This latter effect was found to result from activation of the enzyme, poly(adenosine diphosphate) (ADP)-ribose polymerase, an enzyme involved in deoxyribonucleic acid (DNA) repair. DNA damage in target cells was found at low concentrations of H2O2 (20-80 microM) in many cell types. Strand breaks and base hydroxylation were observed, resulting in the generation of hydroxyl radicals (.OH) from H2O2, in the presence of a transition metal. DNA damage resulted in either cell injury and death or mutations of the base sequence and amino acid residues. These latter effects led to malignant transformations in cultured cells in both tissue cultures of the cells, and in vivo in athymic mice. Exposure of a proto-oncogene, K-ras 4B, also led to the development of a malignant transformation by virtue of mutations in codon positions 12 and 61. Thus, oxidant effects on target cells can damage multiple functional pathways inside the cells, as well as give rise to malignant transformation via DNA damage. PMID:1928208

  11. MiR-22/Sp-1 Links Estrogens With the Up-Regulation of Cystathionine γ-Lyase in Myocardium, Which Contributes to Estrogenic Cardioprotection Against Oxidative Stress.

    PubMed

    Wang, Long; Tang, Zhi-Ping; Zhao, Wei; Cong, Bing-Hai; Lu, Jian-Qiang; Tang, Xiao-Lu; Li, Xiao-Han; Zhu, Xiao-Yan; Ni, Xin

    2015-06-01

    Hydrogen sulfide, generated in the myocardium predominantly via cystathionine-γ-lyase (CSE), is cardioprotective. Our previous study has shown that estrogens enhance CSE expression in myocardium of female rats. The present study aims to explore the mechanisms by which estrogens regulate CSE expression, in particular to clarify the role of estrogen receptor subtypes and the transcriptional factor responsible for the estrogenic effects. We found that either the CSE inhibitor or the CSE small interfering RNA attenuated the protective effect of 17β-estradiol (E2) against H2O2- and hypoxia/reoxygenation-induced injury in primary cultured neonatal cardiomyocytes. E2 stimulates CSE expression via estrogen receptor (ER)-α both in cultured cardiomyocytes in vitro and in the myocardium of female mice in vivo. A specificity protein-1 (Sp-1) consensus site was identified in the rat CSE promoter and was found to mediate the E2-induced CSE expression. E2 increases ERα and Sp-1 and inhibits microRNA (miR)-22 expression in myocardium of ovariectomized rats. In primary cardiomyocytes, E2 stimulates Sp-1 expression through the ERα-mediated down-regulation of miR-22. It was confirmed that both ERα and Sp-1 were targeted by miR-22. In the myocardium of ovariectomized rats, the level of miR-22 inversely correlated to CSE, ERα, Sp-1, and antioxidant biomarkers and positively correlated to oxidative biomarkers. In summary, this study demonstrates that estrogens stimulate Sp-1 through the ERα-mediated down-regulation of miR-22 in cardiomyocytes, leading to the up-regulation of CSE, which in turn results in an increase of antioxidative defense. Interaction of ERα, miR-22, and Sp-1 may play a critical role in the control of oxidative stress status in the myocardium of female rats. PMID:25825815

  12. Estrogen

    MedlinePlus

    ... estrogen tablets. If you will be taking Estrace® brand tablets, tell your doctor and pharmacist if you are allergic to aspirin or tartrazine (a food color additive). Ask your pharmacist or check the manufacturer's ...

  13. Estrogen

    MedlinePlus

    Estrogen is used to treat hot flushes ('hot flashes'; sudden strong feelings of heat and sweating) in ... and cause problems with the skin or nervous system), very high or very low levels of calcium ...

  14. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    NASA Astrophysics Data System (ADS)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  15. Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats.

    PubMed

    Hao, Fan; Gu, Ying; Tan, Xing; Deng, Yu; Wu, Zhao-Tang; Xu, Ming-Juan; Wang, Wei-Zhong

    2016-01-01

    Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause. PMID:26640612

  16. Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats

    PubMed Central

    Hao, Fan; Gu, Ying; Tan, Xing; Deng, Yu; Wu, Zhao-Tang; Xu, Ming-Juan; Wang, Wei-Zhong

    2016-01-01

    Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause. PMID:26640612

  17. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β

    PubMed Central

    Ma, Yulong; Guo, Hang; Zhang, Lixia; Tao, Liang; Yin, Anqi; Liu, Zhaoyu; Li, Yan; Dong, Hailong; Xiong, Lize; Hou, Wugang

    2016-01-01

    The incidence of ischemic stroke is significantly increased in postmenopausal women. However, the neuroprotective effects of estrogen replacement therapy (ERT) against stroke remain controversial, and the role of astrocytes in ERT has rarely been explored. In this study, we investigated the effects of estrogen and selective estrogen receptor (ER) agonists on astrocytes activation and neuronal apoptosis in mice under conditions of cell culture oxygen and glucose deprivation and reperfusion (OGD-R), and global cerebral ischemia (GCI). We demonstrated that hippocampal astrocytes primarily express ERβ. In astrocytes, 2.5–20 nM 17β-estradiol (E2) or 10 nM DPN (ERβ agonist) not 10 nM PPT (ERα agonist), significantly increased GFAP expression. And 10 nM E2, DPN or E2+MPP (ERα antagonist), but not PPT or E2+PHTPP (ERβ antagonist), significantly reduced neuronal apoptosis following the subjection of astrocyte and neuronal cocultures to OGD-R. We also found that either 50 μg/kg E2 or 8 mg/kg DPN replacement (3 weeks) significantly increased GFAP expression and reduced GCI-induced neuronal apoptosis in hippocampal CA1 region of ovariectomized mice. These results indicate that estrogen-induced neuroprotection against ischemia-reperfusion injury involves activation of astrocytes via ERβ. Thus, the discovery and design of astrocyte-selective ERβ modulators may offer a new strategy for ERT of ischemic stroke. PMID:26891996

  18. Estrogen-induced breast cancer: Alterations in breast morphology and oxidative stress as a function of estrogen exposure

    SciTech Connect

    Mense, Sarah M.; Remotti, Fabrizio; Bhan, Ashima; Singh, Bhupendra; El-Tamer, Mahmoud; Hei, Tom K.; Bhat, Hari K.

    2008-10-01

    Epidemiological evidence indicates that prolonged lifetime exposure to estrogen is associated with elevated breast cancer risk in women. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. In the present study, we investigated changes in breast morphology and oxidative stress following estrogen exposure. Female ACI rats were treated with 17{beta}-estradiol (E{sub 2}, 3 mg, s.c.) for either 7, 15, 120 or 240 days. Animals were euthanized, tissues were excised, and portions of the tissues were either fixed in 10% buffered formalin or snap-frozen in liquid nitrogen. Paraffin-embedded tissues were examined for histopathologic changes. Proliferative changes appeared in the breast after 7 days of E{sub 2} exposure. Atypical ductal proliferation and significant reduction in stromal fat were observed following 120 days of E{sub 2} exposure. Both in situ and invasive carcinomas were observed in the majority of the mammary glands from rats treated with E{sub 2} for 240 days. Palpable breast tumors were observed in 82% of E{sub 2}-treated rats after 228 days, with the first palpable tumor appearing after 128 days. No morphological changes were observed in the livers, kidneys, lungs or brains of rats treated with E{sub 2} for 240 days compared to controls. Furthermore, 8-isoprostane (8-isoPGF{sub 2{alpha}}) levels as well as the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase, were quantified in the breast tissues of rats treated with E{sub 2} for 7, 15, 120 and 240 days and compared to activity levels in age-matched controls. 8-isoPGF{sub 2{alpha}} levels displayed time-dependent increases upon E{sub 2} treatment and were significantly higher than control levels at the 15, 120 and 240 day time-points. 8-isoPGF{sub 2{alpha}} observed in E{sub 2}-induced mammary tumors were significantly higher than levels found in control

  19. Plasma Estrogen Levels Are Associated With Severity of Injury and Outcomes After Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Crago, Elizabeth A.; Sherwood, Paula R.; Bender, Catherine; Balzer, Jeffrey; Ren, Dianxu; Poloyac, Samuel M.

    2015-01-01

    Background Biochemical mediators alter cerebral perfusion and have been implicated in delayed cerebral ischemia (DCI) and poor outcomes after aneurysmal subarachnoid hemorrhage (aSAH). Estrogens (estrone [E1] and estradiol [E2]) are mediators with neuroprotective properties that could play a role in DCI. This study explored associations between plasma estrogen levels and outcomes following aSAH. Methods Plasma samples from 1–4, 4–6, and 7–10 days after hemorrhage from 99 adult aSAH patients were analyzed for estrogen levels using liquid chromatography tandem mass spectrometry. DCI was operationalized as radiographic/ultrasonic evidence of impaired cerebral blood flow accompanied by neurological deterioration. Outcomes were assessed using the Modified Rankin Scale at 3 and 12 months after hemorrhage. Statistical analysis included correlation, regression, and group-based trajectory. Results Higher E1 and E2 levels were associated with higher Hunt and Hess grade (E1, p = .01; E2, p = .03), the presence of DCI (E1, p = .02; E2, p = .02), and poor 3-month outcomes (E1, p = .002; E2, p = .002). Trajectory analysis identified distinct populations over time for E1 (61 % E1 high) and E2 {68% E2 high). Patients in higher trajectory groups had higher Fisher grades (E1, p = .008; E2, p = .01), more frequent DCI (E1, p = .04; E2, p = .08), and worse 3-month outcomes (E1, p = .01; E2, p = .004) than low groups. Conclusions These results provide the first clinical evidence that plasma El and E2 concentrations are associated with severity of injury and outcomes after aSAH. PMID:25548393

  20. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice.

    PubMed

    Cheng, Qiang; Meng, Jia; Wang, Xin-Shang; Kang, Wen-Bo; Tian, Zhen; Zhang, Kun; Liu, Gang; Zhao, Jian-Ning

    2016-08-01

    Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10-12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI. PMID:27407175

  1. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice

    PubMed Central

    Cheng, Qiang; Meng, Jia; Wang, Xin-shang; Kang, Wen-bo; Tian, Zhen; Zhang, Kun; Liu, Gang; Zhao, Jian-ning

    2016-01-01

    Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10–12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI. PMID:27407175

  2. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  3. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration.

    PubMed

    Numakawa, Tadahiro; Matsumoto, Tomoya; Numakawa, Yumiko; Richards, Misty; Yamawaki, Shigeto; Kunugi, Hiroshi

    2011-01-01

    Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including excitotoxicity, Ca(2+) overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of neurotrophic factors and estrogen within this system. PMID:21776259

  4. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects.

    PubMed

    Liu, Peng; Jin, Xiang; Lv, Hao; Li, Jing; Xu, Wen; Qian, Hai-hua; Yin, Zhengfeng

    2014-12-01

    To investigate the effects of icaritin, an active ingredient extracted from Epimedium Sagittatum (Sieb. et Zucc.), on CCl4-induced liver injury and its possible mechanisms. Hepatocytes isolated from Sprague-Dawley male rats were treated with 3 mmol/L CCl4 for 24 h to induce acute liver cell injury, then icaritin (0.1, 1, 10, 100 μmol/L, respectively) was administrated to the cells, and estrogen receptor antagonist ICI182,780 (1 μmol/L) was co-treated with 10 μmol/L icaritin. Biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD)) and cell apoptosis were detected to evaluate the injury degree. Protein expressions of Bax, Bcl-2, liver fatty acid-binding protein (L-FABP), and peroxisome proliferator-activated receptor-α (PPAR-α) as well as reactive oxygen species (ROS) generation were determined by western blot. Icaritin alleviated CCl4-induced liver cell injury in a concentration-dependent manner and 10 μmol/L was the optimal concentration. Icaritin (10 μmol/L) significantly reduced activities of ALT, AST in cell culture medium and MDA level of the impaired liver cells, but increased the intercellular SOD activity. The apoptotic rate of the impaired liver cells was also decreased by icaritin (10 μmol/L) treatment. Icaritin might exert antioxidative and anti-apoptotic functions via estrogen-like effect, as the ratio of Bcl-2/Bax was significantly increased, while protein expressions of L-FABP and PPAR-α were markedly increased, and this function was blocked by the estrogen receptor antagonist ICI182,780 efficiently. Icaritin may be a promising drug candidate for acute liver injury benefiting from the antioxidative and anti-apoptotic functions via estrogen-like effect. PMID:25148823

  5. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    PubMed Central

    Naderi, Vida; Khaksari, Mohammad; Abbasi, Reza; Maghool, Fatemeh

    2015-01-01

    Objective(s): Estrogen (E2) has neuroprotective effects on blood-brain-barrier (BBB) after traumatic brain injury (TBI). In order to investigate the roles of estrogen receptors (ERs) in these effects, ER-α antagonist (MPP) and, ER-β antagonist (PHTPP), or non-selective estrogen receptors antagonist (ICI 182780) were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg) or oil were administered 30 min after TBI. 1 dose (150 µg/Kg) of each of MPP, PHTPP, and (4 mg/kg) ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content) and brain edema (brain water content) evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P<0.01). The brain edema in the MPP+E2 and PHTPP+E2 groups decreased compared to the vehicle (P<0.001). There was no significant difference in MPP+PHTPP+E2 and ICI+E2 compared to TBI. This parameter in MPP was similar to vehicle. Evans blue content in E2 group was lower than vehicle (P<0.05). The inhibitory effect of E2 on Evans blue was not reduced by MPP+E2 and PHTPP+E2 groups, but decreased by treatment with MPP+PHTPP or ICI. MPP had no effect on Evans blue content. Conclusion: A combined administration of MPP and PHTPP or ICI inhibited the E2-induced decrease in brain edema and BBB disruption; this may suggest that these effects were mediated via both receptors. PMID:25810887

  6. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-03-01

    Spinal cord injury (SCI) is a debilitating condition with neurological deficits and loss of motor function that, depending on the severity, may lead to paralysis. The only treatment currently available is methylprednisolone, which is widely used and renders limited efficacy in SCI. Therefore, other therapeutic agents must be developed. The neuroprotective efficacy of estrogen in SCI was studied with a pre-clinical and pro-translational perspective. Acute SCI was induced in rats that were treated with low doses of estrogen (1, 5, 10, or 100 μg/kg) and compared with vehicle-treated injured rats or laminectomy control (sham) rats at 48 h post-SCI. Changes in gliosis and other pro-inflammatory responses, expression and activity of proteolytic enzymes (e.g., calpain, caspase-3), apoptosis of neurons in SCI, and cell death were monitored via Western blotting and immunohistochemistry. Negligible pro-inflammatory responses or proteolytic events and very low levels of neuronal death were found in sham rats. In contrast, vehicle-treated SCI rats showed profound pro-inflammatory responses with reactive gliosis, elevated expression and activity of calpain and caspase-3, elevated Bax:Bcl-2 ratio, and high levels of neuronal death in lesion and caudal regions of the injured spinal cord. Estrogen treatment at each dose reduced pro-inflammatory and proteolytic activities and protected neurons in the caudal penumbra in acute SCI. Estrogen treatment at 10 μg was found to be as effective as 100 μg in ameliorating the above parameters in injured animals. Results from this investigation indicated that estrogen at a low dose could be a promising therapeutic agent for treating acute SCI. Experimental studies with low dose estrogen therapy in acute spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes. Estrogen has been found to ameliorate several degenerative pathways following SCI. Thus, such early protective effects may even lead to functional

  7. Early, But Not Late Onset Estrogen Replacement Therapy Prevents Oxidative Stress and Metabolic Alterations Caused by Ovariectomy

    PubMed Central

    López-Grueso, Raúl; Gambini, Juan; Abdelaziz, Kheira M.; Monleón, Daniel; Díaz, Ana; El Alami, Marya; Bonet-Costa, Vicent; Borrás, Consuelo

    2014-01-01

    Abstract Aims: The usefulness of estrogen replacement therapy (ERT) in preventing oxidative stress associated with menopause is controversial. We aimed to study if there is a critical time window for effective treatment of the effects of ovariectomy with estrogens at the molecular, metabolic, and cellular level. Results: Our main finding is that early, but not late onset of ERT prevents an ovariectomy-associated increase in mitochondrial hydrogen peroxide levels, oxidative damage to lipids and proteins, and a decrease in glutathione peroxidase and catalase activity in rats. This may be due to a change in the estrogen receptor (ER) expression profile: ovariectomy increases the ER α/β ratio and immediate estrogen replacement prevents it. Positron emission tomography analysis shows that ovariectomy decreases the brain glucose uptake in vivo and that estrogen administration is beneficial, but only if administered immediately after deprivation. Ovariectomy decreases GLUT-1 and 3 glucose transporters in the brain, and only early onset estrogen administration prevents it. Plasma from rats treated with estrogens immediately after ovariectomy show similar metabolomics profiles as controls. Innovation: We provide molecular basis for the recommendation of early onset ERT and explain its lack of effectiveness if a significant time period elapses after ovariectomy and probably after the onset of menopause. Conclusion: Only early, but not late onset administration of estrogens after ovariectomy has beneficial effects at molecular levels on oxidative stress, brain glucose uptake, and metabolomic profiles. Antioxid. Redox Signal. 20, 236–246. PMID:23725100

  8. Estrogen Regulates Angiotensin II Receptor Expression Patterns and Protects the Heart from Ischemic Injury in Female Rats.

    PubMed

    Xue, Qin; Xiao, Daliao; Zhang, Lubo

    2015-07-01

    Previous studies have shown that female offspring are resistant to fetal stress-induced programming of ischemic-sensitive phenotype in the heart; however, the mechanisms responsible remain unclear. The present study tested the hypothesis that estrogen plays a role in protecting females in fetal programming of increased heart vulnerability. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from Day 15 to 21 of gestation) groups. Ovariectomy (OVX) and estrogen (E2) replacement were performed in 8-wk-old female offspring. Hearts of 4-mo-old females were subjected to ischemia and reperfusion injury in a Langendorff preparation. OVX significantly decreased postischemic recovery of left ventricular function and increased myocardial infarction, and no difference was observed between normoxic and hypoxic groups. The effect of OVX was rescued by E2 replacement. OVX decreased the binding of glucocorticoid receptor (GR) to glucocorticoid response elements at angiotensin II type 1 (Agtr1) and type 2 (Agtr2) receptor promoters, resulting in a decrease in Agtr1 and an increase in Agtr2 in the heart. Additionally, OVX decreased estrogen receptor (ER) expression in the heart and inhibited ER/GR interaction in binding to glucocorticoid response elements at the promoters. Consistent with the changes in Agtrs, OVX significantly decreased Prkce abundance in the heart. These OVX-induced changes were abrogated by E2 replacement. The results indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in regulating cardiac Agtr1/Agtr2 expression patterns and protecting female hearts against ischemia and reperfusion injury. PMID:25972014

  9. Estrogen Regulates Angiotensin II Receptor Expression Patterns and Protects the Heart from Ischemic Injury in Female Rats1

    PubMed Central

    Xue, Qin; Xiao, Daliao; Zhang, Lubo

    2015-01-01

    Previous studies have shown that female offspring are resistant to fetal stress-induced programming of ischemic-sensitive phenotype in the heart; however, the mechanisms responsible remain unclear. The present study tested the hypothesis that estrogen plays a role in protecting females in fetal programming of increased heart vulnerability. Pregnant rats were divided into normoxic and hypoxic (10.5% O2 from Day 15 to 21 of gestation) groups. Ovariectomy (OVX) and estrogen (E2) replacement were performed in 8-wk-old female offspring. Hearts of 4-mo-old females were subjected to ischemia and reperfusion injury in a Langendorff preparation. OVX significantly decreased postischemic recovery of left ventricular function and increased myocardial infarction, and no difference was observed between normoxic and hypoxic groups. The effect of OVX was rescued by E2 replacement. OVX decreased the binding of glucocorticoid receptor (GR) to glucocorticoid response elements at angiotensin II type 1 (Agtr1) and type 2 (Agtr2) receptor promoters, resulting in a decrease in Agtr1 and an increase in Agtr2 in the heart. Additionally, OVX decreased estrogen receptor (ER) expression in the heart and inhibited ER/GR interaction in binding to glucocorticoid response elements at the promoters. Consistent with the changes in Agtrs, OVX significantly decreased Prkce abundance in the heart. These OVX-induced changes were abrogated by E2 replacement. The results indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in regulating cardiac Agtr1/Agtr2 expression patterns and protecting female hearts against ischemia and reperfusion injury. PMID:25972014

  10. Neonatal Androgenization Exacerbates Alcohol-Induced Liver Injury in Adult Rats, an Effect Abrogated by Estrogen

    PubMed Central

    Ellefson, Whitney M.; Lakner, Ashley M.; Hamilton, Alicia; McKillop, Iain H.; Bonkovsky, Herbert L.; Steuerwald, Nury M.; Huet, Yvette M.; Schrum, Laura W.

    2011-01-01

    Alcoholic liver disease (ALD) affects millions of people worldwide and is a major cause of morbidity and mortality. However, fewer than 10% of heavy drinkers progress to later stages of injury, suggesting other factors in ALD development, including environmental exposures and genetics. Females display greater susceptibility to the early damaging effects of ethanol. Estrogen (E2) and ethanol metabolizing enzymes (cytochrome P450, CYP450) are implicated in sex differences of ALD. Sex steroid hormones are developmentally regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which controls sex-specific cycling of gonadal steroid production and expression of hepatic enzymes. The aim of this study was to determine if early postnatal inhibition of adult cyclic E2 alters ethanol metabolizing enzyme expression contributing to the development of ALD in adulthood. An androgenized rat model was used to inhibit cyclic E2 production. Control females (Ctrl), androgenized females (Andro) and Andro females with E2 implants were administered either an ethanol or isocalorically-matched control Lieber-DeCarli diet for four weeks and liver injury and CYP450 expression assessed. Androgenization exacerbated the deleterious effects of ethanol demonstrated by increased steatosis, lipid peroxidation, profibrotic gene expression and decreased antioxidant defenses compared to Ctrl. Additionally, CYP2E1 expression was down-regulated in Andro animals on both diets. No change was observed in CYP1A2 protein expression. Further, continuous exogenous administration of E2 to Andro in adulthood attenuated these effects, suggesting that E2 has protective effects in the androgenized animal. Therefore, early postnatal inhibition of cyclic E2 modulates development and progression of ALD in adulthood. PMID:22206017

  11. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    PubMed Central

    Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo; da Rocha, Ivan Dias; Marcon, Raphael Martus

    2015-01-01

    OBJECTIVES: To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. METHODS: In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. RESULTS: The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. CONCLUSIONS: Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury. PMID:26598084

  12. Evaluation of activity of an estrogen-derivative as cardioprotector drug using an ischemia-reperfusion injury model

    PubMed Central

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Marcela, Rosas-Nexticapa; Eduardo, Pool-Gómez; Maria, Lopéz-Ramos; Fernanda, Rodriguez-Hurtado; Marissa, Chan-Salvador

    2015-01-01

    Myocardial ischemia/reperfusion injury is a serious problem involved in cardiovascular diseases. There data which indicate that some steroids induce cardioprotective effects on myocardial ischemia-reperfusion injury; however their activity and the molecular mechanism involved on myocardial ischemia-reperfusion injury are very confusing. Therefore, in this study some estrogen derivatives (compound 3 to 7) were synthesized with the objective of evaluating its activity on myocardial ischemia/reperfusion injury using an isolated heart model. Additionally, molecular mechanism involved in the activity exerted by the compounds 3 to 7 on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in absence or presence of following compounds; prazosin, metoprolol, indomethacin and nifedipine. The results showed that 7 reduce infarct size compared with the estrone and other estrogen derivatives (compounds 3, 4, 5, and 6). Other results showed that 7 significantly increase the perfusion pressure and coronary resistance in isolated heart in comparison with estrone, 3, 4, 5, and 6. Finally, other data indicate that 7 increased the left ventricular pressure in a dose-dependent manner; however, this phenomenon was significantly inhibited by nifedipine. In conclusion, all these data suggest that 7 exert a cardioprotective effect through calcium channels activation and consequently induce changes in the left ventricular pressure levels. This phenomenon results in decrease of myocardial necrosis after ischemia and reperfusion. PMID:26550116

  13. Protective Effect of Puerarin Against Oxidative Stress Injury of Neural Cells and Related Mechanisms

    PubMed Central

    Cheng, Yuan; Leng, Wei; Zhang, Jingshu

    2016-01-01

    Background Parkinson’s disease (PD) is manifested as degeneration of dopaminergic neurons in substantia nigra compacta. The mitochondrial dysfunction induced by oxidative stress is believed to a major cause of PD. Puerarin has been widely applied due to its estrogen nature and anti-oxidative function. This study thus investigated the protective role of puerarin against oxidative stress injury on PC12 neural cells, in addition to related mechanisms. Material/Methods PC12 cells were pre-treated with gradient concentrations of puerarin, followed by the induction of 0.5 mM H2O2. MTT assay was used to detect cell viability. Enzyme-linked immunosorbent assay (ELISA) was employed to detect intracellular level of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH). Cell apoptosis was determined by Annexin-V/7-AAD double labelling. Reactive oxidative species (ROS) and lactate dehydrogenase (LDH) activities were then measured. Cellular levels of caspase-3 and caspase-9 were also determined. Results The pre-treatment using puerarin significantly reversed H2O2-induced oxidative stress injury, as it can increase proliferation, SOD and GSH activities, decrease MDA activity, suppress apoptosis of PC12 cells, and decrease ROS and LDH production (p<0.05 in all cases). Further assays showed depressed up-regulation of caspase-3 and caspase-9 after puerarin pretreatment. Conclusions Puerarin pretreatment can decrease activity of caspase-3 and caspase-9 activity in PC12 cells, thus protecting cells from oxidative injury. PMID:27074962

  14. ERβ expression in the endothelium ameliorates ischemia/reperfusion-mediated oxidative burst and vascular injury.

    PubMed

    Zhan, Ying; Liu, Zhaoyu; Li, Min; Ding, Ting; Zhang, Laxi; Lu, Qiaomei; Liu, Xu; Zhang, Ziyun; Vlessidis, Athanasios; Aw, Tak Yee; Liu, Zhengxiang; Yao, Dachun

    2016-07-01

    Estrogen and estrogen receptors (ERs) have been reported to play protective roles in ischemia/reperfusion (I/R)-mediated injury, but the detailed mechanism remains to be fully understood. Nitric oxide (NO) and reactive oxygen species (ROS) also play important roles in the I/R process; however, due to the lack of sensitive and reproducible in vivo monitoring systems, we still do not have direct evidence for the effect of NO and ROS in vivo. In this study, we have established reliable in vivo monitoring systems to measure the variations in circulating ROS and NO during the I/R. We found that during the first few minutes of post-ischemia reperfusion, an oxidative burst occurred concurrent with a rapid loss of NO. Expression of ERβ in the endothelium reduced these effects that accompanied an attenuation in myocardial infarction and vascular damage. Further investigation showed that Tie2-driven lentivirus delivery of ERβ to the vascular wall in rats increased the expression of its target genes in the endothelium, including ERRα, SOD2 and eNOS. These changes modulate ROS generation, DNA damage, and mitochondrial function in rat endothelial cells. We also found that ERβ expression in the endothelium reduced ROS generation and restored mitochondrial function in cardiomyocytes; this may be due to ERβ-mediated NO formation and its high diffusibility to cardiomyocytes. We conclude that ERβ expression in the endothelium ameliorates ischemia/reperfusion-mediated oxidative burst and vascular injury. PMID:27130032

  15. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-05-01

    Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as

  16. Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity.

    PubMed

    Rangwala, Shamina M; Wang, Xiaomei; Calvo, Jennifer A; Lindsley, Loren; Zhang, Yunyu; Deyneko, Galina; Beaulieu, Valerie; Gao, Jiaping; Turner, Gordon; Markovits, Judit

    2010-07-16

    Estrogen-related receptor gamma (ERRgamma) regulates the perinatal switch to oxidative metabolism in the myocardium. We wanted to understand the significance of induction of ERRgamma expression in skeletal muscle by exercise. Muscle-specific VP16ERRgamma transgenic mice demonstrated an increase in exercise capacity, mitochondrial enzyme activity, and enlarged mitochondria despite lower muscle weights. Furthermore, peak oxidative capacity was higher in the transgenics as compared with control littermates. In contrast, mice lacking one copy of ERRgamma exhibited decreased exercise capacity and muscle mitochondrial function. Interestingly, we observed that increased ERRgamma in muscle generates a gene expression profile that closely overlays that of red oxidative fiber-type muscle. We further demonstrated that a small molecule agonist of ERRbeta/gamma can increase mitochondrial function in mouse myotubes. Our data indicate that ERRgamma plays an important role in causing a shift toward slow twitch muscle type and, concomitantly, a greater capacity for endurance exercise. Thus, the activation of this nuclear receptor provides a potential node for therapeutic intervention for diseases such as obesity, which is associated with reduced oxidative metabolism and a lower type I fiber content in skeletal muscle. PMID:20418374

  17. Estrogen-related Receptor γ Is a Key Regulator of Muscle Mitochondrial Activity and Oxidative Capacity

    PubMed Central

    Rangwala, Shamina M.; Wang, Xiaomei; Calvo, Jennifer A.; Lindsley, Loren; Zhang, Yunyu; Deyneko, Galina; Beaulieu, Valerie; Gao, Jiaping; Turner, Gordon; Markovits, Judit

    2010-01-01

    Estrogen-related receptor γ (ERRγ) regulates the perinatal switch to oxidative metabolism in the myocardium. We wanted to understand the significance of induction of ERRγ expression in skeletal muscle by exercise. Muscle-specific VP16ERRγ transgenic mice demonstrated an increase in exercise capacity, mitochondrial enzyme activity, and enlarged mitochondria despite lower muscle weights. Furthermore, peak oxidative capacity was higher in the transgenics as compared with control littermates. In contrast, mice lacking one copy of ERRγ exhibited decreased exercise capacity and muscle mitochondrial function. Interestingly, we observed that increased ERRγ in muscle generates a gene expression profile that closely overlays that of red oxidative fiber-type muscle. We further demonstrated that a small molecule agonist of ERRβ/γ can increase mitochondrial function in mouse myotubes. Our data indicate that ERRγ plays an important role in causing a shift toward slow twitch muscle type and, concomitantly, a greater capacity for endurance exercise. Thus, the activation of this nuclear receptor provides a potential node for therapeutic intervention for diseases such as obesity, which is associated with reduced oxidative metabolism and a lower type I fiber content in skeletal muscle. PMID:20418374

  18. Environmental estrogen Bisphenol A adsorption/oxidation on Graphene oxide/MnO2 (GO/MnO2) nanocomposite

    NASA Astrophysics Data System (ADS)

    Bele, Sotiria I.; Deliyanni, Eleni A.

    2015-04-01

    The environmental fate and decontamination of Bisphenol A (BPA), an environmental estrogen that is used as a monomer in plastic industry, are of emerging concern. This study focused on the kinetics, influencing factors and pathways of its adsorption and oxidative decomposition by MnO2. Additionally, Graphene oxide/MnO2 (GO/MnO2) nanocomposite was prepared and tested as a kind of adsorbent and/or catalysts for oxidative decomposition of Bisphenol A (BPA). A suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method was in situ transformed into GO/MnO2 nanocomposite in combination with KMnO4. It is found that MnO2 nanoparticles are uniformly distributed in the structure of GO. The surface chemistry and the porous texture of the prepared nanocomposite were characterized by thermal analysis (DTA), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and Nitrogen adsorption (BET). The nanocomposite presented superior catalytic activities, much higher than that of the bare MnO2 for the decomposition of BPA in the presence of H2O2. The high activity of GO/MnO2 nanocomposite for the decomposition of BPA could be related to the synergistic effect of GO and MnO2 with the assistance of H2O2 according to the adsorption-oxidation-desorption mechanism.

  19. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    PubMed Central

    Liu, Fu-Chao; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed. PMID:26161238

  20. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms

    PubMed Central

    CHEN, JINGYU; HU, RONG; GE, HONGFEI; DUANMU, WANGSHENG; LI, YUHONG; XUE, XINGSENG; HU, SHENGLI; FENG, HUA

    2015-01-01

    Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those

  1. Soy Isoflavone Protects Myocardial Ischemia/Reperfusion Injury through Increasing Endothelial Nitric Oxide Synthase and Decreasing Oxidative Stress in Ovariectomized Rats

    PubMed Central

    Tang, Yan; Li, Shuangyue; Zhang, Ping; Zhu, Jinbiao; Meng, Guoliang; Xie, Liping; Yu, Ying; Ji, Yong; Han, Yi

    2016-01-01

    There is a special role for estrogens in preventing and curing cardiovascular disease in women. Soy isoflavone (SI), a soy-derived phytoestrogen, has similar chemical structure to endogenous estrogen-estradiol. We investigate to elucidate the protective mechanism of SI on myocardial ischemia/reperfusion (MI/R) injury. Female SD rats underwent bilateral ovariectomy. One week later, rats were randomly divided into several groups, sham ovariectomy (control group), ovariectomy with MI/R, or ovariectomy with sham MI/R. Other ovariectomy rats were given different doses of SI or 17β-estradiol (E2). Four weeks later, they were exposed to 30 minutes of left coronary artery occlusion followed by 6 or 24 hours of reperfusion. SI administration significantly reduced myocardial infarct size and improved left ventricle function and restored endothelium-dependent relaxation function of thoracic aortas after MI/R in ovariectomized rats. SI also decreased serum creatine kinase and lactate dehydrogenase activity, reduced plasma malonaldehyde, and attenuated oxidative stress in the myocardium. Meanwhile, SI increased phosphatidylinositol 3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) signal pathway. SI failed to decrease infarct size of hearts with I/R in ovariectomized rats if PI3K was inhibited. Overall, these results indicated that SI protects myocardial ischemia/reperfusion injury in ovariectomized rats through increasing PI3K/Akt/eNOS signal pathway and decreasing oxidative stress. PMID:27057277

  2. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation.

    PubMed

    Arlos, Maricor J; Liang, Robert; Hatat-Fraile, Melisa M; Bragg, Leslie M; Zhou, Norman Y; Servos, Mark R; Andrews, Susan A

    2016-11-15

    The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO2) has potential applications for the removal of EDCs from water. TiO2 has been immobilized on supports using a variety of synthesis methods to increase its feasibility for water treatment. In this study, we immobilized TiO2 through the thermal-chemical oxidation of porous titania sheets. The efficiency of the material to degrade target EDCs under UV-LED irradiation was examined under a wide range of pH conditions. A yeast-estrogen screen assay was used to complement chemical analysis in assessing removal efficiency. All compounds but 17β-estradiol were degraded and followed a pseudo first-order kinetics at all pH conditions tested, with pH 4 and pH 11 showing the most and the least efficient treatments respectively. In addition, the total estrogenic activity was substantially reduced even with the inefficient degradation of 17β-estradiol. Additional studies will be required to optimize different treatment conditions, UV-LED configurations, and membrane fouling mitigation measures to make this technology a more viable option for water treatment. PMID:27469042

  3. Nitric oxide as a mediator of oxidant lung injury due to paraquat.

    PubMed Central

    Berisha, H I; Pakbaz, H; Absood, A; Said, S I

    1994-01-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either NG-nitro-L-arginine methyl ester or N omega-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury. PMID:7519778

  4. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  5. Removal of Estrogenic Compounds in Dairy Waste Lagoons by Ferrate (VI): Oxidation/Coagulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferrate(VI) was used to break down and/or remove steroidal estrogens (SE) from dairy waste lagoon effluent (DWLE). Dairy lagoon sites were sampled for estrogenic content (EC) and assayed using high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Effects of varying...

  6. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  7. Notoginsenoside R1 Protects against Neonatal Cerebral Hypoxic-Ischemic Injury through Estrogen Receptor-Dependent Activation of Endoplasmic Reticulum Stress Pathways.

    PubMed

    Wang, Yan; Tu, Liu; Li, Yingbo; Chen, Di; Wang, Shali

    2016-06-01

    Notoginsenoside R1 (NGR1) is a phytoestrogen that is isolated from Panax notoginseng It is used in China to treat many diseases, including hypoxic-ischemic encephalopathy (HIE), and it has been shown to target estrogen receptors. Endoplasmic reticulum (ER) stress plays an important role in the development of cell apoptosis during ischemia, and ER stress is known to be regulated by estrogen; however, the neuroprotective mechanisms of NGR1 in neonatal HIE is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL), followed by exposure to a hypoxic environment in 7-day-old postnatal Sprague-Dawley rats were used to mimic HIE episodes. Potential neuroprotective effects of NGR1 against neonatal HIE and its mechanisms were examined. After HIE conditions in vitro and in vivo, we administered NGR1 or the estrogen receptor inhibitor ICI-182780 and measured cell apoptosis, brain injury by MTT assay, TTC stain, and so forth. Expression of estrogen receptors α (ERα) and β (ERβ), ER stress-associated proteins was detected by Western blot upon stimulation with HIE, NGR1, or ICI-182780. Results showed that after HIE, ER chaperone GRP78 was activated, ER stress-associated proapoptotic proteins (CHOP, PERK, ERO1-α, and IRE1α) were increased, caspase-12 was increased, and BCL-2 was decreased. The ER stress response and neuronal apoptosis were attenuated by NGR1 treatment. However, neuroprotective properties of NGR1 against HIE-induced apoptosis and ER stress were attenuated by ICI-182780. These results suggest that NGR1 may be an effective treatment of HIE by reducing ER stress-induced neuronal apoptosis and brain injury via estrogen receptors. PMID:26892460

  8. Oxidative injury in multiple sclerosis cerebellar grey matter.

    PubMed

    Kemp, Kevin; Redondo, Juliana; Hares, Kelly; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2016-07-01

    Cerebellar dysfunction is a significant contributor to disability in multiple sclerosis (MS). Both white matter (WM) and grey matter (GM) injury occurs within MS cerebellum and, within GM, demyelination, inflammatory cell infiltration and neuronal injury contribute to on-going pathology. The precise nature of cerebellar GM injury is, however, unknown. Oxidative stress pathways with ultimate lipid peroxidation and cell membrane injury occur extensively in MS and the purpose of this study was to investigate these processes in MS cerebellar GM. Post-mortem human cerebellar GM from MS and control subjects was analysed immunohistochemically, followed by semi-quantitative analysis of markers of cellular injury, lipid peroxidation and anti-oxidant enzyme expression. We have shown evidence for reduction in myelin and neuronal markers in MS GM, coupled to an increase in expression of a microglial marker. We also show that the lipid peroxidation product 4-hydroxynonenal co-localises with myelin and its levels negatively correlate to myelin basic protein levels. Furthermore, superoxide dismutase (SOD1 and 2) enzymes, localised within cerebellar neurons, are up-regulated, yet the activation of subsequent enzymes responsible for the detoxification of hydrogen peroxide, catalase and glutathione peroxidase are relatively deficient. These studies provide evidence for oxidative injury in MS cerebellar GM and further help define disease mechanisms within the MS brain. PMID:27086975

  9. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  10. Oxidant/antioxidant status, paraoxonase activity, and lipid profile in plasma of ovariectomized rats under the influence of estrogen, estrogen combined with progesterone, and genistein

    PubMed Central

    Agacayak, Elif; Basaranoglu, Serdar; Tunc, Senem Yaman; Icen, Mehmet Sait; Findik, Fatih Mehmet; Kaplan, Ibrahim; Evliyaoglu, Osman; Gul, Talip

    2015-01-01

    Introduction The aim of this study was to investigate whether estradiol (E2), E2 combined with progesterone (Prog) (E2/Prog), and genistein (Gen) treatment had antioxidative and anti-hyperlipidemic effects in the plasma of ovariectomized (OVX) rats. Materials and methods Adult female Sprague–Dawley rats were divided into five groups. Rats in all groups, except for those in a sham group, underwent bilateral ovariectomy under general anesthesia. The groups were as follows: sham group; control OVX group; group treated with estrogen (0.014 mg/kg 17-β E2); group treated with a combination of E2 and Prog (0.014 mg/kg 17-β E2 plus 0.028 mg/kg drospirenone), and group treated with Gen (10 mg/kg/day). Plasma of rats of each treatment group was analyzed to determine the total antioxidant status, total oxidant status, paraoxonase activity, lipid profile, high-density lipoprotein (HDL-chol), low-density lipoprotein (LDL-chol), total cholesterol (Total-C), triacylglycerols, lipoprotein (a), and oxidative stress index. Results Plasma Total-C levels and body weight increased in all the OVX groups compared with the sham group (P<0.005). The group treated with E2 had significantly elevated total oxidant status, oxidative stress index, LDL-chol, and Total-C compared with the control group (P<0.005). Gen treatment might lead to lower LDL-chol and Total-C levels compared with E2 treatment. Conclusions Gen treatment might be preferred to E2 treatment for treatment of menopausal symptoms in patients at risk for cardiovascular diseases. However, considering the small sample size of this study, larger studies are needed in this area. PMID:26089646

  11. Age-Related Differences in Cardiac Ischemia-Reperfusion Injury: Effects of Estrogen Deficiency

    PubMed Central

    Korzick, D.H.; Lancaster, T.S.

    2013-01-01

    Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal females. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency, and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca2+ sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women. PMID:23525672

  12. CHEMICAL MODIFICATION MODULATES ESTROGENIC ACTIVITY, OXIDATIVE REACTIVITY, & METABOLIC STABILITY IN 4′F-DMA, A NEW BENZOTHIOPHENE SELECTIVE ESTROGEN RECEPTOR MODULATOR

    PubMed Central

    Liu, Hong; Bolton, Judy L.; Thatcher, Gregory R. J.

    2008-01-01

    The benzothiophene SERMs raloxifene and arzoxifene, in the clinic or clinical trials for treatment of breast cancer and postmenopausal symptoms, are highly susceptible to oxidative metabolism and formation of electrophilic metabolites. 4′F-DMA, fluoro-substituted desmethyl arzoxifene (DMA), showed attenuated oxidation to quinoids in incubation with rat hepatocytes as well as in rat and human liver microsomes. Incubations of 4′F-DMA with hepatocytes yielded only one glucuronide conjugate and no GSH conjugates; whereas DMA underwent greater metabolism giving two glucuronide conjugates, one sulfate conjugate, and two GSH conjugates. Phase I and phase II metabolism was further evaluated in human small intestine microsomes and in human intestinal Caco-2 cells. In comparison to DMA, 4′F-DMA formed significantly less glucuronide and sulfate conjugates. The formation of quinoids was futher explored in hepatocytes in which DMA was observed to give concentration and time dependent depletion of GSH accompanied by damage to DNA which showed inverse dependence on GSH; in contrast, GSH depletion and DNA damage were almost completely abrogated in incubations with 4′F-DMA. 4′F-DMA shows ligand binding affinity to ERα and ERβ with similarity to both raloxifene and to DMA. ER-mediated biological activity was measured with the ERE-luciferase reporter system in transfected MCF-7 cells and Ishikawa cells, and in MCF-7 cells proliferation was measured. In all systems, 4′F-DMA exhibited anitestrogenic acitivty of comparable potency to raloxifene, but did not manifest estrogenic properties, mirroring previous results on inhibition of estradiol-mediated induction of alkaline phosphatase activity in Ishikawa cells. These results suggest that 4′F-DMA might be an improved benzothiophene SERM with similar antiestrogenic activity to raloxifene, but improved metabolic stability and attenuated toxicity; showing that simple chemical modification can abrogate oxidative bioactivation

  13. Graphene oxide-based microspheres for the dispersive solid-phase extraction of non-steroidal estrogens from water samples.

    PubMed

    Wen, Yingying; Niu, Zongliang; Ma, Yanling; Ma, Jiping; Chen, Lingxin

    2014-11-14

    A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method based on the dispersive solid-phase extraction (dSPE) combined with high performance liquid chromatography (HPLC) was developed for the determination of non-steroidal estrogens in water samples. In this study, graphene oxide-based silica microspheres (SiO2@GO) were used as dSPE material for the preconcentration of analytes. HPLC was used for the separation and detection. This was the first time that the synthesized SiO2@GO microspheres were used as stationary phases for the off-line preconcentration of the non-steroidal estrogens in dSPE. dSPE parameters, such as sample pH, volume and type of eluent were optimized. Application of the developed method to analyze spiked lake, reservoir and tap water samples resulted in good recoveries values ranging from 70 to 106% with relative standard deviation values lower than 7.0% in all cases. Limits of detection were in the range of 0.2-6.1 μg/L. The combined data obtained in this study recommended that the proposed method is very fast, simple, repeatable and accurate for the detection of non-steroidal estrogens. Furthermore, the SiO2@GO microspheres application could potentially be expanded to extract and pre-concentrate other compounds in various matrices. PMID:25441340

  14. Long-term exposure of 3T3 fibroblast cells to endocrine disruptors alters sensitivity to oxidative injury.

    PubMed

    Nishimura, Yuka; Nakai, Yasuyoshi; Tanaka, Aiko; Nagao, Tetsuji; Fukushima, Nobuyuki

    2014-07-01

    When Swiss 3T3 fibroblasts were exposed to bisphenol A (BPA) or nonylphenol (NP) within a range of 0.1-100 nM for 30-45 days, increased resistance to oxidative injury was found. Western blot analysis indicated concomitant increased expression of bcl-2 protein and reduced histone methylation levels in cells after BPA or NP exposure. Using a heterologous expression system, both chemicals could stimulate G protein-coupled receptor 30 (GPR30), a transmembrane estrogen receptor predominantly expressed in 3T3 cells, at lower concentrations, which gave increased survival. Taken together, these results suggest that BPA or NP exposure might cause alterations in cellular activity against oxidative stress, possibly through GPR30. PMID:24604882

  15. Estrogen overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002584.htm Estrogen overdose To use the sharing features on this page, please enable JavaScript. Estrogen is a female hormone. Estrogen overdose occurs when ...

  16. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. PMID:26841289

  17. Mechanisms of oxidative injury in equine disease.

    PubMed

    Wong, David M; Moore, Rustin M; Brockus, Charles W

    2012-08-01

    Oxygen is essential to aerobic life, but it is also associated with the production of highly reactive compounds that can pose danger to physiologic systems when the oxygen concentration is excessive. Reactive oxygen species (ROS) are required for normal physiologic processes, but when produced in excess, they can overwhelm endogenous antioxidants, resulting in significant cellular damage and, eventually, cell death. Ischemic events can initiate numerous pathophysiologic mechanisms leading to increased production of ROS, loss of cellular energy production, and lipid peroxidation. Although reperfusion is a necessary step in cellular recovery from ischemia, it can be deleterious by leading to the generation of even more ROS and stimulating the accumulation of neutrophils. Both of these processes may contribute to irreversible cell death and, ultimately, organ failure. This article reviews oxygen metabolism, ischemia, and reperfusion injury and how these processes may occur in equine disorders. PMID:22935994

  18. Impaired myogenesis in estrogen-related receptor γ (ERRγ)-deficient skeletal myocytes due to oxidative stress

    PubMed Central

    Murray, Jennifer; Auwerx, Johan; Huss, Janice M.

    2013-01-01

    Specialized contractile function and increased mitochondrial number and oxidative capacity are hallmark features of myocyte differentiation. The estrogen-related receptors (ERRs) can regulate mitochondrial biogenesis or mitochondrial enzyme expression in skeletal muscle, suggesting that ERRs may have a role in promoting myogenesis. Therefore, we characterized myogenic programs in primary myocytes isolated from wild-type (M-ERRγWT) and muscle-specific ERRγ−/− (M-ERRγ−/−) mice. Myotube maturation and number were decreased throughout differentiation in M-ERRγ−/− primary myocytes, resulting in myotubes with reduced mitochondrial content and sarcomere assembly. Compared with M-ERRγWT myocytes at the same differentiation stage, the glucose oxidation rate was reduced by 30% in M-ERRγ−/− myotubes, while medium-chain fatty acid oxidation was increased by 34% in M-ERRγ−/− myoblasts and 36% in M-ERRγ−/− myotubes. Concomitant with increased reliance on mitochondrial β-oxidation, H2O2 production was significantly increased by 40% in M-ERRγ−/− myoblasts and 70% in M-ERRγ−/− myotubes compared to M-ERRγWT myocytes. ROS activation of FoxO and NF-κB and their downstream targets, atrogin-1 and MuRF1, was observed in M-ERRγ−/− myocytes. The antioxidant N-acetyl cysteine rescued myotube formation and atrophy gene induction in M-ERRγ−/− myocytes. These results suggest that loss of ERRγ causes metabolic defects and oxidative stress that impair myotube formation through activation of skeletal muscle atrophy pathways.—Murray, J., Auwerx, J., Huss, J. M. Impaired myogenesis in estrogen-related receptor γ (ERRγ)-deficient skeletal myocytes due to oxidative stress. PMID:23038752

  19. Hops (Humulus lupulus) inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A)

    PubMed Central

    Madhubhani, L.P.; Hemachandra, P.; Esala, R.; Chandrasena, P.; Chen, Shao-Nong; Main, Matthew; Lankin, David C.; Scism, Robert A.; Dietz, Birgit M.; Pauli, Guido F.; Thatcher, Gregory R. J.; Bolton, Judy L.

    2011-01-01

    Long-term exposure to estrogens including those in traditional hormone replacement therapy (HRT) increases the risk of developing hormone-dependent cancers. As a result, women are turning to over-the-counter (OTC) botanical dietary supplements such as black cohosh (Cimicifuga racemosa) and hops (Humulus lupulus) as natural alternatives to HRT. The two major mechanisms which likely contribute to estrogen and/or HRT cancer risk are: the estrogen receptor (ER) mediated hormonal pathway; and, the chemical carcinogenesis pathway involving formation of estrogen quinones that damage DNA and proteins, hence initiating and promoting carcinogenesis. Since OTC botanical HRT alternatives are in widespread use they may have the potential for chemopreventive effects on estrogen carcinogenic pathways in vivo. Therefore the effect of OTC botanicals on estrogen-induced malignant transformation of MCF-10A cells was studied. Cytochrome P450 catalyzed hydroxylation of estradiol at the 4-position leads to an o-quinone believed to act as the proximal carcinogen. LC-MS/MS analysis of estradiol metabolites showed that 4-hydroxylation was inhibited by hops, whereas black cohosh was without effect. Estrogen-induced expression of CYP450 1B1 and CYP450 1A1 was attenuated by the hops extract. Two phenolic constituents of hops (xanthohumol, XH; and 8-prenylnaringenin, 8-PN) were tested: 8-PN was a potent inhibitor whereas XH had no effect. Finally, estrogen-induced malignant transformation of MCF-10A cells was observed to be significantly inhibited by hops (5 μg/mL) and 8-PN (50 nM). These data suggest that hops extracts possess cancer chemopreventive activity through attenuation of estrogen metabolism mediated by 8-PN. PMID:21997247

  20. Hops (Humulus lupulus) inhibits oxidative estrogen metabolism and estrogen-induced malignant transformation in human mammary epithelial cells (MCF-10A).

    PubMed

    Hemachandra, L P; Madhubhani, P; Chandrasena, R; Esala, P; Chen, Shao-Nong; Main, Matthew; Lankin, David C; Scism, Robert A; Dietz, Birgit M; Pauli, Guido F; Thatcher, Gregory R J; Bolton, Judy L

    2012-01-01

    Long-term exposure to estrogens including those in traditional hormone replacement therapy (HRT) increases the risk of developing hormone-dependent cancers. As a result, women are turning to over-the-counter (OTC) botanical dietary supplements, such as black cohosh (Cimicifuga racemosa) and hops (Humulus lupulus), as natural alternatives to HRT. The two major mechanisms which likely contribute to estrogen and/or HRT cancer risk are: the estrogen receptor-mediated hormonal pathway; and the chemical carcinogenesis pathway involving formation of estrogen quinones that damage DNA and proteins, hence initiating and promoting carcinogenesis. Because, OTC botanical HRT alternatives are in widespread use, they may have the potential for chemopreventive effects on estrogen carcinogenic pathways in vivo. Therefore, the effect of OTC botanicals on estrogen-induced malignant transformation of MCF-10A cells was studied. Cytochrome P450 catalyzed hydroxylation of estradiol at the 4-position leads to an o-quinone believed to act as the proximal carcinogen. Liquid chromatography/tandem mass spectrometry analysis of estradiol metabolites showed that 4-hydroxylation was inhibited by hops, whereas black cohosh was without effect. Estrogen-induced expression of CYP450 1B1 and CYP450 1A1 was attenuated by the hops extract. Two phenolic constituents of hops (xanthohumol, XH; 8-prenylnaringenin, 8-PN) were tested: 8-PN was a potent inhibitor, whereas XH had no effect. Finally, estrogen-induced malignant transformation of MCF-10A cells was observed to be significantly inhibited by hops (5 μg/mL) and 8-PN (50 nmol/L). These data suggest that hops extracts possess cancer chemopreventive activity through attenuation of estrogen metabolism mediated by 8-PN. PMID:21997247

  1. CYP2E1 and Oxidative Liver Injury by Alcohol

    PubMed Central

    Lu, Yongke; Cederbaum, Arthur I.

    2008-01-01

    Ethanol-induced oxidative stress appears to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway appears to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions, and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide, and in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This Review Article summarizes some of the biochemical and toxicological properties of CYP2E1, and briefly describes the use of cell lines developed to constitutively express CYP2E1 in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help to understand the actions of CYP2E1 and its role in alcoholic liver injury. PMID:18078827

  2. Hydrogen-rich saline attenuates chemotherapy-induced ovarian injury via regulation of oxidative stress

    PubMed Central

    MENG, XIAOYIN; CHEN, HONGGUANG; WANG, GUOLIN; YU, YONGHAO; XIE, KELIANG

    2015-01-01

    Hydrogen has been reported to exert a therapeutic effect in several diseases due to its antioxidative, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to investigate whether hydrogen-rich saline treatment could attenuate ovarian damage induced by cisplatin. A total of 240 adult, virgin, female Sprague Dawley rats, weighing 180–220 g, were randomly divided into four groups (n=60 per group): Control (Con), control + hydrogen-rich saline (Con + H2), cisplatin-induced ovarian injury (OI) and cisplatin-induced ovarian injury + hydrogen-rich saline (OI + H2). Cisplatin was diluted in saline immediately before use. In the OI and OI + H2 groups, the rats were administered a dose of cisplatin on the 1st and 7th days. The rats in the Con + H2 and OI + H2 groups were intraperitoneally injected with hydrogen-rich saline (10ml/kg body weight) once a day over a 2-week period. On the 14th, 28th and 42nd days (T1, T2 and T3) after the cisplatin injection, femoral vein blood was collected. At the end of the experiment, ovarian homogenates were prepared, and the samples were used for estrogen (E2), follicle-stimulating hormone (FSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) examination. In addition, rats (n=10 per group) were sacrificed for bilateral ovary removal; one was fixed in formalin for follicle-counting analysis, while the other was used for nuclear factor erythroid 2-related factor 2 (Nrf2) detection by western blotting. Hydrogen-rich saline attenuated the FSH release, elevated the level of E2, improved the development of follicles, and reduced the damage to the ovarian cortex at T1, T2 and T3 in the OI + H2 rats. Cisplatin induced oxidative stress by increasing the levels of oxidation products and attenuating the activity of antioxidant enzyme, which could be reversed by hydrogen-rich saline treatment. Furthermore, hydrogen-rich saline regulated the Nrf2 protein expression in rats with ovarian damage. In

  3. Impaired myogenesis in estrogen-related receptor γ (ERRγ)-deficient skeletal myocytes due to oxidative stress.

    PubMed

    Murray, Jennifer; Auwerx, Johan; Huss, Janice M

    2013-01-01

    Specialized contractile function and increased mitochondrial number and oxidative capacity are hallmark features of myocyte differentiation. The estrogen-related receptors (ERRs) can regulate mitochondrial biogenesis or mitochondrial enzyme expression in skeletal muscle, suggesting that ERRs may have a role in promoting myogenesis. Therefore, we characterized myogenic programs in primary myocytes isolated from wild-type (M-ERRγWT) and muscle-specific ERRγ(-/-) (M-ERRγ(-/-)) mice. Myotube maturation and number were decreased throughout differentiation in M-ERRγ(-/-) primary myocytes, resulting in myotubes with reduced mitochondrial content and sarcomere assembly. Compared with M-ERRγWT myocytes at the same differentiation stage, the glucose oxidation rate was reduced by 30% in M-ERRγ(-/-) myotubes, while medium-chain fatty acid oxidation was increased by 34% in M-ERRγ(-/-) myoblasts and 36% in M-ERRγ(-/-) myotubes. Concomitant with increased reliance on mitochondrial β-oxidation, H(2)O(2) production was significantly increased by 40% in M-ERRγ(-/-) myoblasts and 70% in M-ERRγ(-/-) myotubes compared to M-ERRγWT myocytes. ROS activation of FoxO and NF-κB and their downstream targets, atrogin-1 and MuRF1, was observed in M-ERRγ(-/-) myocytes. The antioxidant N-acetyl cysteine rescued myotube formation and atrophy gene induction in M-ERRγ(-/-) myocytes. These results suggest that loss of ERRγ causes metabolic defects and oxidative stress that impair myotube formation through activation of skeletal muscle atrophy pathways. PMID:23038752

  4. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.

    PubMed

    Halladin, Natalie Løvland

    2015-04-01

    Ischemia-reperfusion injuries occur when the blood supply to an organ or tissue is temporarily cut-off and then restored. Even though the restoration of blood flow is absolutely essential in preventing tissue death, the reperfusion of oxygenated blood to the oxygen-deprived areas may in itself augment the tissue damage in excess of that produced by the ischemia alone. The process of ischemia-reperfusion is multifactorial and there are several mechanisms involved in the pathogenesis. Ample evidence shows that the injury is in part caused by an excessive generation of reactive oxygen species or free radicals. The free radicals consequently initiate an inflammatory response, which in some cases may affect distant organs, thus causing remote organ injuries. Ischemia-reperfusion injuries are a common complication in many diseases (acute myocardial infarctions, stroke) or surgical settings (transplantations, tourniquet-related surgery) and they have potential detrimental and disabling consequences. The tolerance of ischemia-reperfusion has proven to be time-of-day-dependent and the size of myocardial infarctions has proven to be significantly higher when occurring in the dark-to-light period. This period is characterized by and coincides with a rapid decrease in the plasma levels of the hormone melatonin. Melatonin is the body's most potent antioxidant and is capable of both direct free radical scavenging and indirect optimization of other anti-oxidant enzymes. It also possesses anti-inflammatory properties and is known to inhibit the mitochondrial permeability transition pore during reperfusion. This inhibiting property has been shown to be of great importance in reducing ischemia-reperfusion injuries. Furthermore, melatonin is a relatively non-toxic molecule, which has proven to be safe for use in clinical trials. Thus, there is compelling evidence of melatonin's effect in reducing ischemia-reperfusion injuries in many experimental studies, but the number of human

  5. Salvianolate Protects Hepatocytes from Oxidative Stress by Attenuating Mitochondrial Injury

    PubMed Central

    Zhao, Qiang; Peng, Yuan; Huang, Kai; Lei, Yang; Liu, Hong-Liang; Tao, Yan-Yan

    2016-01-01

    Salvianolate is widely used to treat angiocardiopathy in clinic in China, but its application in liver diseases remains unclear. Our study aims to investigate the effect of Salvianolate on rat hepatic injury by protecting hepatocyte mitochondria. To evaluate the effects of Salvianolate on injured hepatocytes, alpha mouse liver 12 (AML-12) cells were induced with hydrogen peroxide (H2O2) and treated with Salvianolate. Cell viability and MitoTracker Green for mitochondria and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazole-carbocyanide iodine (JC-1) levels and cytochrome C (Cyto-C) expressions were detected in vitro. To identify the effect of Salvianolate on protecting against mitochondria injury, male Wistar rats were injected with carbon tetrachloride (CCl4) and treated with Salvianolate (40 mg·kg−1). Serum liver function, parameters for peroxidative damage, hematoxylin and eosin (H&E) staining, and transmission electron microscope (TEM) of hepatocyte mitochondria were assayed. Our results showed that Salvianolate effectively protected hepatocytes, increased mitochondria vitality, and decreased Cyto-C expressions in vitro. Besides, Salvianolate alleviated the liver function, attenuated the indicators of peroxidation, and relieved the mitochondria injury in vivo. In conclusion, Salvianolate is effective in protecting hepatocytes from injury in vitro and in vivo, and the mechanism might be related to its protective effect on hepatocyte mitochondria against oxidative stress. PMID:27340417

  6. Oxidative stress and autophagy: Crucial modulators of kidney injury

    PubMed Central

    Sureshbabu, Angara; Ryter, Stefan W.; Choi, Mary E.

    2015-01-01

    Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. PMID:25613291

  7. Expression of estrogen receptor α in human breast cancer cells regulates mitochondrial oxidative stress under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zheng, Hong-xia; Tian, Wei-ming; Yan, Hong-ji; Jiang, Hua-dong; Liu, Shan-shan; Yue, Lei; Han, Fang; Wei, Li-jun; Chen, Xiong-biao; Li, Yu

    2012-05-01

    This study investigated intracellular oxidative stress and its underlying mechanisms in a rotary cell culture system used to achieve a simulated microgravity (SMG) environment. Experiments were conducted with human breast cancer cell lines MCF-7 (an estrogen receptor (ER) α positive cell line) and MDA-MB-231 (an ERα negative cell line) encapsulated in alginate/collagen carriers. After 48 h, SMG led to oxidative stress and DNA damage in the MDA-MB-231 cells but a significant increase in mitochondrial activity and minimal DNA damage in the MCF-7 cells. The activity of superoxide dismutase (SOD) significantly increased in the MCF-7 cells and decreased in MDA-MB-231 cells in the SMG environment compared with a standard gravity control. Moreover, SMG promoted expression of ERα and protein kinase C (PKC) epsilon in MCF-7 cells treated with PKC inhibitor Gö6983. Overall, exposure to SMG increased mitochondrial activity in ERα positive cells but induced cellular oxidative damage in ERα negative cells. Thus, ERα may play an important role in protecting cells from oxidative stress damage under simulated microgravity.

  8. Haptoglobin Genotype-dependent Differences in Macrophage Lysosomal Oxidative Injury*

    PubMed Central

    Asleh, Rabea; Ward, John; Levy, Nina S.; Safuri, Shady; Aronson, Doron; Levy, Andrew P.

    2014-01-01

    The major function of the Haptoglobin (Hp) protein is to control trafficking of extracorpuscular hemoglobin (Hb) thru the macrophage CD163 receptor with degradation of the Hb in the lysosome. There is a common copy number polymorphism in the Hp gene (Hp 2 allele) that has been associated with a severalfold increased incidence of atherothrombosis in multiple longitudinal studies. Increased plaque oxidation and apoptotic markers have been observed in Hp 2-2 atherosclerotic plaques, but the mechanism responsible for this finding has not been determined. We proposed that the increased oxidative injury in Hp 2-2 plaques is due to an impaired processing of Hp 2-2-Hb complexes within macrophage lysosomes, thereby resulting in redox active iron accumulation, lysosomal membrane oxidative injury, and macrophage apoptosis. We sought to test this hypothesis in vitro using purified Hp-Hb complex and cells genetically manipulated to express CD163. CD163-mediated endocytosis and lysosomal degradation of Hp-Hb were decreased for Hp 2-2-Hb complexes. Confocal microscopy using lysotropic pH indicator dyes demonstrated that uptake of Hp 2-2-Hb complexes disrupted the lysosomal pH gradient. Cellular fractionation studies of lysosomes isolated from macrophages incubated with Hp 2-2-Hb complexes demonstrated increased lysosomal membrane oxidation and a loss of lysosomal membrane integrity leading to lysosomal enzyme leakage into the cytoplasm. Additionally, markers of apoptosis, DNA fragmentation, and active caspase 3 were increased in macrophages that had endocytosed Hp 2-2-Hb complexes. These data provide novel mechanistic insights into how the Hp genotype regulates lysosomal oxidative stress within macrophages after receptor-mediated endocytosis of Hb. PMID:24778180

  9. Estrogen Injection

    MedlinePlus

    ... forms of estrogen injection are used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) ... If you are using estrogen injection to treat hot flushes, your symptoms should improve within 1 to ...

  10. Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.

    2013-01-01

    Acute ethanol lowers blood pressure (BP) and cardiac output in proestrus and after chronic estrogen (E2) replacement in ovariectomized (OVX) female rats. However, whether rapid nongenomic effects of estrogen mediate these hemodynamic effects of ethanol remains unanswered. To test this hypothesis, we investigated the effect of ethanol (0.5 or 1.5 g/kg iv) on left ventricular (LV) function and oxidative markers in OVX rats pretreated 30 min earlier with 1 μg/kg E2 (OVXE2) or vehicle (OVX) and in proestrus sham-operated (SO) rats. In SO rats, ethanol caused significant and dose-related reductions in BP, rate of rise in LV pressure (LV dP/dtmax), and LV developed pressure (LVDP). These effects of ethanol disappeared in OVX rats and were restored in OVXE2 rats, suggesting rapid estrogen receptor signaling mediates the detrimental effects of ethanol on LV function. Ex vivo studies revealed that the estrogen-dependent myocardial dysfunction caused by ethanol was coupled with higher LV 1) generation of reactive oxygen species (ROS), 2) expression of malondialdehyde and 4-hydroxynonenal protein adducts, 3) phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2), and 4) catalase activity. ERK1/2 inhibition by PD-98059 (1 mg/kg iv) abrogated the myocardial dysfunction, hypotension, and the elevation in myocardial ROS generation caused by ethanol. We conclude that rapid estrogen receptor signaling is implicated in cellular events that lead to the generation of aldehyde protein adducts and Akt/ERK1/2 phosphorylation, which ultimately mediate the estrogen-dependent LV oxidative stress and dysfunction caused by ethanol in female rats. PMID:24368668

  11. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries.

    PubMed

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  12. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    PubMed Central

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  13. Pulmonary vasodilation by inhaled nitric oxide after endothelial injury

    SciTech Connect

    Rimar, S.; Gillis, C.N. )

    1992-11-01

    Inhaled nitric oxide gas (NO) has recently been shown to reverse experimentally induced pulmonary vasoconstriction. To examine the effect of free radical injury and methylene blue exposure on inhaled NO-induced pulmonary vasodilation the authors studied ventilated rabbit lungs perfused with Krebs solution containing 3% dextran and indomethacin. When NO gas (120 ppm) was added to the inhaled mixture for 3 min, the elevated pulmonary arterial perfusion pressure (Ppa) induced by the thromboxane analogue U-46619 was significantly reduced [8 [+-] 2 (SE) mmHg]. Acetylcholine similarly reduced Ppa (9 [+-] 1 mmHg). After free radical injury and methylene blue exposure, inhaled NO again produced significant vasodilation (5 [+-] 1 and 9 [+-] 2 mmHg, respectively), but acetylcholine resulted in an increase in Ppa ([minus]9 [+-] 3 and [minus]4 [+-] 1 mmHg, respectively). These data demonstrate that pulmonary vasodilation produced by inhaled NO is unaffected by free radical injury or methylene blue in the intact lung despite concomitant reversal of acetylcholine-induced vasodilation. 21 refs., 4 figs.

  14. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle

    PubMed Central

    Parkash, Jyoti; D'Anglemont De Tassigny, Xavier; Bellefontaine, Nicole; Campagne, Celine; Mazure, Danièle; Buée-Scherrer, Valérie; Prevot, Vincent

    2010-01-01

    Within the preoptic region, nitric oxide (NO) production varies during the ovarian cycle and has the ability to impact hypothalamic reproductive function. One mechanism for the regulation of NO release mediated by estrogens during the estrous cycle includes physical association of the calcium-activated neuronal NO synthase (nNOS) enzyme with the glutamate N-methyl-D-aspartate (NMDA) receptor channels via the postsynaptic density 95 (PSD 95) scaffolding protein. Here, we demonstrate that endogenous variations in estrogens levels during the estrous cycle also coincide with corresponding changes in the state of nNOS Ser1412 phosphorylation, the level of association of this isoform with the NMDA receptor/PSD-95 complex at the plasma membrane and the activity of NOS. Neuronal NOS Ser1412 phosphorylation is maximal on the afternoon of proestrus, when both the levels of estrogens and the physical association of nNOS with NMDA receptors are highest. Estradiol mimicked these effects in ovariectomized (OVX) rats. In addition, the catalytic activity of NOS in membrane protein extracts from the preoptic region, i.e., independent of any functional protein-protein interactions or cell-cell signaling, was significantly increased in estradioltreated OVX rats compared to OVX rats. Finally, λ phosphatase-mediated nNOS dephosphorylation dramatically impaired NOS activity in preoptic region protein extracts, thus demonstrating the important role of phosphorylation in the regulation of NO production in the preoptic region. Taken together, these results yield new insights into the regulation of neuron-derived NO production by gonadal steroids within the preoptic region and raise the possibility that changes in nNOS phosphorylation during fluctuating physiological conditions may be involved in the hypothalamic control of key neuroendocrine functions, such as reproduction. PMID:20371700

  15. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury.

    PubMed

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F; Aggarwal, Saurabh; Emala, Charles W; Stober, Vandy P; Trempus, Carol S; Garantziotis, Stavros; Matalon, Sadis

    2015-05-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  16. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  17. Drug Targets for Oxidative Podocyte Injury in Diabetic Nephropathy

    PubMed Central

    Usman, Muhammad

    2015-01-01

    Diabetic nephropathy (DN) is one the most prevalent chronic complications of diabetes mellitus that affects as much as one-third of diabetic patients irrespective of the type of diabetes. Hyperglycemia is the key trigger for DN that initiates a number of microscopic and ultramicroscopic changes in kidney architecture. Microscopic changes include thickening of the glomerular basement membrane (GBM), tubular basement membrane (TBM), mesangial proliferation, arteriosclerosis, and glomerulotubular junction abnormalities (GTJA). Among the ultramicroscopic changes, effacement of podocytes and decrease in their density seem to be the centerpiece of DN pathogenesis. These changes in kidney architecture then produce functional deficits, such as microalbuminuria and decreased glomerular filtration rate (GFR). Among several mechanisms involved in inflicting damage to podocytes, injuries sustained by increased oxidative stress turns out to be the most important mechanism. Different variables that are included in increased production of reactive oxygen species (ROS) include a hyperglycemia-induced reduction in glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation via hyperglycemia, advanced glycation end products (AGEs), protein kinase C (PKC), and renin-angiotensin-aldosterone system (RAAS). Unfortunately, control of podocyte injury hasn’t received much attention as a treatment approach for DN. Therefore, this review article is mainly concerned with the exploration of various treatment options that might help in decreasing the podocyte injury, mainly by reducing the level of NADPH oxidase-mediated generation of ROS. This article concludes with a view that certain NADPH oxidase inhibitors, RAAS inhibitors, statins, antidiabetic drugs, and antioxidant vitamins might be useful in decreasing podocyte injury and resultant structural and functional kidney impairments in DN. PMID:26798569

  18. Drug Targets for Oxidative Podocyte Injury in Diabetic Nephropathy.

    PubMed

    Bhatti, Adnan Bashir; Usman, Muhammad

    2015-01-01

    Diabetic nephropathy (DN) is one the most prevalent chronic complications of diabetes mellitus that affects as much as one-third of diabetic patients irrespective of the type of diabetes. Hyperglycemia is the key trigger for DN that initiates a number of microscopic and ultramicroscopic changes in kidney architecture. Microscopic changes include thickening of the glomerular basement membrane (GBM), tubular basement membrane (TBM), mesangial proliferation, arteriosclerosis, and glomerulotubular junction abnormalities (GTJA). Among the ultramicroscopic changes, effacement of podocytes and decrease in their density seem to be the centerpiece of DN pathogenesis. These changes in kidney architecture then produce functional deficits, such as microalbuminuria and decreased glomerular filtration rate (GFR). Among several mechanisms involved in inflicting damage to podocytes, injuries sustained by increased oxidative stress turns out to be the most important mechanism. Different variables that are included in increased production of reactive oxygen species (ROS) include a hyperglycemia-induced reduction in glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation via hyperglycemia, advanced glycation end products (AGEs), protein kinase C (PKC), and renin-angiotensin-aldosterone system (RAAS). Unfortunately, control of podocyte injury hasn't received much attention as a treatment approach for DN. Therefore, this review article is mainly concerned with the exploration of various treatment options that might help in decreasing the podocyte injury, mainly by reducing the level of NADPH oxidase-mediated generation of ROS. This article concludes with a view that certain NADPH oxidase inhibitors, RAAS inhibitors, statins, antidiabetic drugs, and antioxidant vitamins might be useful in decreasing podocyte injury and resultant structural and functional kidney impairments in DN. PMID:26798569

  19. High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones.

    PubMed

    MachalováŠišková, Karolína; Jančula, Daniel; Drahoš, Bohuslav; Machala, Libor; Babica, Pavel; Alonso, Paula Godoy; Trávníček, Zdeněk; Tuček, Jiří; Maršálek, Blahoslav; Sharma, Virender K; Zbořil, Radek

    2016-07-28

    This paper presents solid state synthesis and characterization of tetra-oxy iron(iv) and iron(v) species in their salt forms (Na4FeO4-Fe(IV) and K3FeO4-Fe(V)). Stability of the synthesized salts, commonly called ferrates, in water was determined by applying the (57)Fe Mössbauer spectroscopy technique. Within 2 s in water, Fe(IV) converted into Fe(III) while Fe(V) transformed into Fe(VI) and Fe(III) at pH = 8.2. Comparatively, Fe(VI) (bought as K2FeO4) remained stable in aqueous solution during the short time period. The oxidative removal efficiency of the high-valent iron species was then tested against five environmentally important estrogenic hormones (estron (E1), 17-β-estradiol (E2), estriol (E3), 17-α-ethinylestradiol (EE2), and diethylstibestrol (DES)) in effluent water of a wastewater treatment plant. Three dosages of iron species (1, 10, and 100 mg L(-1)) were applied to the effluent water. An increase in the concentration of dosages enhanced the removal of estrogens. Both Fe(V) and Fe(VI) were effective in degrading estrogens, but Fe(IV) showed limited oxidation capacity to transform estrogens. The oxidized products of the estrogens were analyzed using Raman spectroscopy and high-performance liquid chromatography-mass spectrometry (HPLC-MS) techniques. Results demonstrated the transformation of estrogens into low molecular weight oxygenated compounds such as quinone-like and opened-aromatic ring species. A detailed study on E1 by using excess Fe(VI) showed the mineralization of the parent compound. The results demonstrate great potential of high-valent iron species in the degradation of endocrine disruptor chemicals like estrogens with several superior aspects including fast reactions, complete degradation and/or formation of benign organic species, and environmentally-acceptable iron oxide by-products. PMID:27344983

  20. Severe physical exertion, oxidative stress, and acute lung injury.

    PubMed

    Shah, Nikunj R; Iqbal, M Bilal; Barlow, Andrew; Bayliss, John

    2011-11-01

    We report the case of a 27-year-old male athlete presenting with severe dyspnoea 24 hours after completing an "Ironman Triathlon." Subsequent chest radiology excluded pulmonary embolus but confirmed an acute lung injury (ALI). Echocardiography corroborated a normal brain natriuretic peptide level by demonstrating good biventricular systolic function with no regional wall motion abnormalities. He recovered well, without requiring ventilatory support, on supplemental oxygen therapy and empirical antibiotics. To date, ALI following severe physical exertion has never been described. Exercise is a form of physiological stress resulting in oxidative stress through generation of reactive oxygen/nitrogen species. In its extreme form, there is potential for an excessive oxidative stress response--one that overwhelms the body's protective antioxidant mechanisms. As our case demonstrated, oxidative stress secondary to severe physical exertion was the most likely factor in the pathogenesis of ALI. Further studies are necessary to explore the pathological consequences of exercise-induced oxidative stress. Although unproven as of yet, further research may be needed to demonstrate if antioxidant therapy can prevent or ameliorate potential life-threatening complications in the acute setting. PMID:22064719

  1. Estrogen-Responsive nitroso-Proteome in Uterine Artery Endothelial Cells: Role of Endothelial Nitric Oxide Synthase and Estrogen Receptor-β

    PubMed Central

    Zhang, Hong-hai; Feng, Lin; Wang, Wen; Magness, Ronald R.; Chen, Dong-bao

    2011-01-01

    Covalent adduction of a NO moiety to cysteines (S-nitrosylation or SNO) is a major route for NO to directly regulate protein functions. In uterine artery endothelial cells (UAEC), estradiol-17β (E2) rapidly stimulated protein SNO that maximized within 10-30 min post-E2 exposure. E2-bovine serum albumin stimulated protein SNO similarly. Stimulation of SNO by both was blocked by ICI 182, 780, implicating mechanisms linked to specific estrogen receptors (ERs) localized on the plasma membrane. E2-induced protein SNO was attenuated by selective ERβ, but not ERα, antagonists. A specific ERβ but not ERα agonist was able to induce protein SNO. Overexpression of ERβ, but not ERα, significantly enhanced E2-induced SNO. Overexpression of both ERs increased basal SNO, but did not further enhance E2-stimulated SNO. E2-induced SNO was inhibited by N-nitro-L-arginine-methylester and specific endothelial NO synthase (eNOS) siRNA. Thus, estrogen-induced SNO is mediated by endogenous NO via eNOS and mainly ERβ in UAEC. We further analyzed the nitroso-proteomes by CyDye switch technique combined with two dimensional (2D) fluorescence difference gel electrophoresis. Numerous nitrosoprotein (spots) were visible on the 2D gel. Sixty spots were chosen and subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Among the 54 identified, 9 were novel SNO-proteins, 32 were increased, 8 were decreased, and the rest were unchanged by E2. Tandom MS identified Cys139 as a specific site for SNO in GAPDH. Pathway analysis of basal and estrogen-responsive nitroso-proteomes suggested that SNO regulates diverse protein functions, directly implicating SNO as a novel mechanism for estrogen to regulate uterine endothelial function and thus uterine vasodilatation. PMID:21374595

  2. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    PubMed

    Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  3. [Oxidative injury and its defense system in vivo].

    PubMed

    Niwa, Y

    1999-03-01

    We and other researchers verified that excessively produced free radicals by neutrophils induce various diseases such as Behçet's disease, MCLS, SLE (neutrophil-stimulated lymphocytes), RA (synovial fluid neutrophils), Crohn's disease, colitis ulcerosa, and dermatitis herpetiformis (Dühring). Recently, it was reported that environmental toxic agents including herbicides such as paraquat, insecticides, nitrogen oxide, and ultraviolet radiation produce free radicals. Nitrogen oxide, a main product of the combustion of petroleum, is a prominent component of exhaust from automobiles. Generation of 1O2 by ultraviolet radiation has also increased by breaks in the earth's ozone layer induced by halogenated hydrocarbon gas. Various diseases have been induced by these agents such as malignancies, severe adult atopic dermatitis, complication of cataract and retinolysis with atopic dermatitis, skin cancer, male infertility, severe collagen diseases, and lung fibrosis. It was also found that PCB, methyl-Hg and Mn, Cd induce neuropathic diseases through the increase in free radical production. On the other hand, a self-defense system exists against oxidative injuries; high-molecular-weight antioxidants such as SOD, catalase, and GSH-Px, and low-molecular-weight antioxidants such as vitamin C, E, A, polyphenols, flavonoids, and catechin. As protection from oxidative injury, various antioxidant products have been developed, however, the development of SOD injection was given up by all the pharmaceutical companies in the world on account of ineffectiveness due to rapid excretion from the kidney, low affinity to the receptor and weak penetration into the cell. A.M. Michelson, a French biochemist succeeded in developing an effective bovine liposomal-encapsulated SOD solving these problems, however, he also gave it up since French government prohibited bovine products due to the prion virus. Regarding low-molecular-weight antioxidants, synthetic products generally show low affinity

  4. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring.

    PubMed

    Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan

    2016-05-01

    We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile

  5. Estrogen receptor β activation impairs mitochondrial oxidative metabolism and affects malignant mesothelioma cell growth in vitro and in vivo

    PubMed Central

    Manente, A G; Valenti, D; Pinton, G; Jithesh, P V; Daga, A; Rossi, L; Gray, S G; O'Byrne, K J; Fennell, D A; Vacca, R A; Nilsson, S; Mutti, L; Moro, L

    2013-01-01

    Estrogen receptor (ER)-β has been shown to possess a tumor suppressive effect, and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma, we identified an ESR2 (ERβ coding gene) signature. High ESR2 expression was strongly associated with low succinate dehydrogenase B (SDHB) (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression, and that activated ERβ, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ERβ agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ERβ-mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma. PMID:24061575

  6. Estrogen Attenuates Ischemic Oxidative Damage via an ERα-Mediated Inhibition of NADPH Oxidase Activation

    PubMed Central

    Zhang, Quan-Guang; Raz, Limor; Wang, Ruimin; Han, Dong; De Sevilla, Liesl; Yang, Fang; Vadlamudi, Ratna K.; Brann, Darrell W.

    2009-01-01

    The goal of this study was to elucidate the mechanisms of 17β-estradiol (E2) antioxidant and neuroprotective actions in stroke. The results reveal a novel extranuclear receptor-mediated antioxidant mechanism for E2 during stroke, as well as a hypersensitivity of the CA3/CA4 region to ischemic injury after prolonged hypoestrogenicity. E2 neuroprotection was shown to involve a profound attenuation of NADPH oxidase activation and superoxide production in hippocampal CA1 pyramidal neurons after stroke, an effect mediated by extranuclear ERα-mediated nongenomic signaling, involving Akt activation and subsequent phosphorylation/inactivation of Rac1, a factor critical for activation of NOX2 NADPH oxidase. Intriguingly, E2 nongenomic signaling, antioxidant action and neuroprotection in the CA1 region were lost after long-term E2 deprivation; and this loss was tissue-specific, as the uterus remained responsive to E2. Correspondingly, a remarkable loss of ERα, but not ERβ, was observed in the CA1 following long-term E2 deprivation, with no change observed in the uterus. As a whole, the study reveals a novel, membrane-mediated antioxidant mechanism in neurons by E2, provides support and mechanistic insights for a “critical period” of E2 replacement in the hippocampus, and demonstrates a heretofore unknown hypersensitivity of the CA3/CA4 to ischemic injury after prolonged hypoestrogenicity. PMID:19889994

  7. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium. PMID:10490972

  8. Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury.

    PubMed

    Bao, Feng; Bailey, Christopher S; Gurr, Kevin R; Bailey, Stewart I; Rosas-Arellano, M Patricia; Dekaban, Gregory A; Weaver, Lynne C

    2009-02-01

    Traumatic injury can cause a systemic inflammatory response, increasing oxidative activity of circulating leukocytes and potentially exacerbating the original injury, as well as causing damage to initially unaffected organs. Although the importance of intraspinal inflammation after human spinal cord injury is appreciated, the role of the systemic inflammatory response to this injury is not widely recognised. We investigated oxidative activity of blood leukocytes from nine cord-injured subjects and six trauma controls (bone fractures without CNS injury) at 6 h-2 weeks after injury, comparing values to those of ten uninjured subjects. Neutrophil and monocyte free radical production, evaluated by flow cytometry, increased significantly more in cord injury subjects than in trauma controls (6-fold vs 50% increases). In leukocyte homogenates, the concentration of free radicals increased significantly more in cord injury subjects (2-fold) than in the trauma controls (1.6-fold) as did activity of myeloperoxidase (2.3-fold vs. 1.7-fold). Moreover, in homogenates and blood smears, expression of the NADPH oxidase subunit gp91(phox) and of the oxidative enzyme, inducible nitric oxide synthetase was 20-25% greater in cord injury subjects than in trauma controls. Expression of the pro-inflammatory transcription factor NF-kappaB and of cyclooxygenase-2 increased similarly after both injuries. Finally, aldehyde products of tissue-damaging lipid peroxidation also increased significantly more in the plasma of spinal cord injury subjects than in trauma controls (2.6 fold vs. 1.9-fold). Spinal cord injury causes a particularly intense systemic inflammatory response. Limiting this response briefly after cord injury should protect the spinal cord and tissues/organs outside the CNS from secondary damage. PMID:19056384

  9. Jujube promotes learning and memory in a rat model by increasing estrogen levels in the blood and nitric oxide and acetylcholine levels in the brain

    PubMed Central

    LI, BAOLI; WANG, LU; LIU, YONGXIAN; CHEN, YAHUI; ZHANG, ZHENGXIANG; ZHANG, JING

    2013-01-01

    The aim of this study was to observe the effects of jujube on learning and memory in ovariectomized rats. The effects of jujube on learning and memory in ovariectomized rats were observed using the Morris water maze method. The serum follicle-stimulating hormone (FSH), estrogen and luteinizing hormone (LH) levels, and the brain nitric oxide synthase (NOS) and acetylcholinesterase (AChE) levels of the rats were determined. The results indicated that jujube reduced the latency period and increased the number of crossings made by the ovariectomized rats in the Morris water maze test. Jujube also increased the serum estrogen level, reduced the serum FSH and corpus luteum LH levels, increased brain NOS activity and reduced AChE activity. The results indicate that jujube promoted the learning and memory of the ovariectomized rats. This effect may be correlated with the increase in the estrogen level in the blood, and the changes in the nitric oxide and acetylcholine levels in the brain. PMID:23837068

  10. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury. PMID:25731971

  11. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    PubMed Central

    Ferrari, Renata Salatti; Andrade, Cristiano Feijó

    2015-01-01

    Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients. PMID:26161240

  12. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.

    PubMed

    Cheng, Yedong; Di, Shouyin; Fan, Chongxi; Cai, Liping; Gao, Chao; Jiang, Peng; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Dong, Yushu; Li, Tian; Wu, Guiling; Lv, Jianjun; Yang, Yang

    2016-08-01

    Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells. PMID:27270300

  13. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression.

    PubMed

    Perillo, Bruno; Ombra, Maria Neve; Bertoni, Alessandra; Cuozzo, Concetta; Sacchetti, Silvana; Sasso, Annarita; Chiariotti, Lorenzo; Malorni, Antonio; Abbondanza, Ciro; Avvedimento, Enrico V

    2008-01-11

    Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription. PMID:18187655

  14. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. PMID:27517893

  15. Endothelial and neuronal nitric oxide synthases variably modulate the estrogen-mediated control of blood pressure and cardiovascular autonomic control

    PubMed Central

    El-Mas, Mahmoud M.; Abdel-Rahman, Abdel A.

    2014-01-01

    Summary We have previously shown that long-term estrogen (E2) replacement lowers blood pressure (BP) and improves the cardiovascular autonomic control in ovariectomized (OVX) rats. In this study, we investigated whether constitutive and/or inducible nitric oxide synthase (NOS) modulate these E2 effects.We evaluated changes in BP, myocardial contractility index (dP/dtmax), and power spectral indices of hemodynamic variability following selective inhibition of eNOS [N5-(1-iminoethyl)-L-ornithine; L-NIO], nNOS (Nω-propyl-L-arginine; NPLA), or iNOS (1400W) in telemetered OVX rats treated for 16 weeks with (OVXE2) or without (control, OVXC) E2.OVXE2 rats exhibited: (i) reduced BP, and increased dP/dtmax, (ii) cardiac parasympathetic dominance as reflected by the reduced low-frequency (LF, 0.25–0.75 Hz)/high-frequency (HF, 0.75–3 Hz) ratio of interbeat intervals (IBILF/HF), and (iii) reduced LF oscillations of systolic BP, suggesting a reduced vasomotor sympathetic tone.eNOS inhibition (L-NIO, 20 mg/kg i.p.) elicited a shorter-lived pressor response in OVXE2, than in OVXC, rats along with reductions in dP/dtmax and increases in the spectral index of spontaneous baroreflex sensitivity (index α). NPLA (1 mg/kg i.p.) reduced BP and increased IBILF/HF ratio in OVXE2, but not OVXC rats. The iNOS inhibitor 1400W (5 mg/kg i.p.) caused no hemodynamic changes in OVXC or OVXE2 rats.Overall, constitutive NOS isoforms exert restraining tonic modulatory BP effects, which encompass eNOS-mediated reduction and nNOS-mediated elevation in BP in OVXE2 rats. Baroreflex facilitation, and dP/dtmax reductions might account for the shorter pressor action of L-NIO in E2-treated, compared with untreated, OVX rats. PMID:24471817

  16. Lung ischemia–reperfusion injury: implications of oxidative stress and platelet–arteriolar wall interactions

    PubMed Central

    OVECHKIN, ALEXANDER V.; LOMINADZE, DAVID; SEDORIS, KARA C.; ROBINSON, TONYA W.; TYAGI, SURESH C.; ROBERTS, ANDREW M.

    2011-01-01

    Pulmonary ischemia–reperfusion (IR) injury may result from trauma, atherosclerosis, pulmonary embolism, pulmonary thrombosis and surgical procedures such as cardiopulmonary bypass and lung transplantation. IR injury induces oxidative stress characterized by formation of reactive oxygen (ROS) and reactive nitrogen species (RNS). Nitric oxide (NO) overproduction via inducible nitric oxide synthase (iNOS) is an important component in the pathogenesis of IR. Reaction of NO with ROS forms RNS as secondary reactive products, which cause platelet activation and upregulation of adhesion molecules. This mechanism of injury is particularly important during pulmonary IR with increased iNOS activity in the presence of oxidative stress. Platelet–endothelial interactions may play an important role in causing pulmonary arteriolar vasoconstriction and post-ischemic alveolar hypoperfusion. This review discusses the relationship between ROS, RNS, P-selectin, and platelet–arteriolar wall interactions and proposes a hypothesis for their role in microvascular responses during pulmonary IR. PMID:17522980

  17. Identification and Structure-Activity Relationships of a Novel Series of Estrogen Receptor Ligands Based on 7-Thiabicyclo[2.2.1]hept-2-ene-7-oxide1

    PubMed Central

    Wang, Pengcheng; Min, Jian; Nwachukwu, Jerome C.; Cavett, Valerie; Carlson, Kathryn E.; Guo, Pu; Zhu, Manghong; Zheng, Yangfan; Dong, Chune; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2012-01-01

    To develop estrogen receptor (ER) ligands having novel structures and activities, we have explored compounds in which the central hydrophobic core has a more three-dimensional topology than typically found in estrogen ligands and thus exploit the unfilled space in the ligand-binding pocket. Here, we build upon our previous investigations of 7-oxabicyclo[2.2.1]heptene core ligands, by replacing the oxygen bridge with a sulfoxide. These new 7-thiabicyclo[2.2.1]hept-2-ene-7-oxides were conveniently prepared by a Diels-Alder reaction of 3,4-diarylthiophenes with dienophiles in the presence of an oxidant and give cycloadducts with endo stereochemistry. Several new compounds demonstrated high binding affinities with excellent ERα selectivity, but unlike oxabicyclic compounds, which are transcriptional antagonists, most thiabicyclic compounds are potent, ERα-selective agonists. Modeling suggests that the gain in activity of the thiabicyclic compounds arises from their endo stereochemistry that stabilizes an active ER conformation. Further, the disposition of methyl substituents in the phenyl groups attached to the bicyclic core unit contribute to their binding affinity and subtype selectivity. PMID:22283328

  18. Role of oxidative stress in surgical cavernous nerve injury in a rat model.

    PubMed

    Wang, Hui; Ding, Xie-Gang; Li, Shi-Wen; Zheng, Hang; Zheng, Xin-Min; Navin, Shrestha; Li, Lu; Wang, Xing-Huan

    2015-06-01

    This study investigates the role of oxidative stress in surgical cavernous nerve (CN) injury in a rat model. Eighty-four male Sprague-Dawley rats were randomly divided into three groups: group 1, sham-operated rats; group 2, bilateral CN-crushed rats; and group 3, bilateral CN-transection-and-sutured-immediately rats. Oxidative stress was evaluated by malondialdehyde levels, super oxide dismutase (SOD) activities, and glutathione peroxidase (GPX) activities in serum. Erectile function was assessed by CN electrostimulation at 3 months with mean maximal intracavernous pressure (ICP) and maximal ICP per mean arterial pressure. Nerve injury was assessed by toluidine blue staining of CNs and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining of penile tissue. GPX protein expression and nitrotyrosine-3 (NT-3) levels in penile tissue were measured. Erectile function and the number of myelinated axons of CNs and NADPH-diaphorase-positive nerve fibers were statistically decreased between groups, from sham to crush to transection. For markers, both nerve-injury groups showed increased oxidative stress markers at early time points, with the transection group showing greater oxidative stress than the crushed group and values normalizing to sham levels by week 12. GPX expression and NT-3 levels in penile tissue were in concordance with the results of SOD and GPX. These results show that oxidative stress plays an important role in injured CNs, and different methods of CN injury can lead to different degrees of oxidative stress in a rat model. PMID:25597854

  19. Estrogen receptors and endothelium.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Billon-Galés, Audrey; Favre, Julie; Laurell, Henrik; Lenfant, Françoise; Gourdy, Pierre

    2010-08-01

    Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators. PMID:20631350

  20. Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs.

    PubMed

    Baek, Jin Hyen; Zhang, Xiaoyuan; Williams, Matthew C; Hicks, Wayne; Buehler, Paul W; D'Agnillo, Felice

    2015-07-01

    Methemoglobin-forming drugs, such as sodium nitrite (NaNO2), may exacerbate oxidative toxicity under certain chronic or acute hemolytic settings. In this study, we evaluated markers of renal oxidative stress and injury in guinea pigs exposed to extracellular hemoglobin (Hb) followed by NaNO2 at doses sufficient to simulate clinically relevant acute methemoglobinemia. NaNO2 induced rapid and extensive oxidation of plasma Hb in this model. This was accompanied by increased renal expression of the oxidative response effectors nuclear factor erythroid 2-derived-factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), elevated non-heme iron deposition, lipid peroxidation, interstitial inflammatory cell activation, increased expression of tubular injury markers kidney injury-1 marker (KIM-1) and liver-fatty acid binding protein (L-FABP), podocyte injury, and cell death. Importantly, these indicators of renal oxidative stress and injury were minimal or absent following infusion of Hb or NaNO2 alone. Together, these results suggest that the exposure to NaNO2 in settings associated with increased extracellular Hb may potentiate acute renal toxicity via processes that are independent of NaNO2 induced erythrocyte methemoglobinemia. PMID:25891524

  1. A Novel Role for Connexin Hemichannel in Oxidative Stress and Smoking-Induced Cell Injury

    PubMed Central

    Ramachandran, Srinivasan; Xie, Lai-Hua; John, Scott A.; Subramaniam, Shankar; Lal, Ratnesh

    2007-01-01

    Oxidative stress is linked to many pathological conditions, including ischemia, atherosclerosis and neurodegenerative disorders. The molecular mechanisms of oxidative stress induced pathophysiology and cell death are currently poorly understood. Our present work demonstrates that oxidative stress induced by reactive oxygen species and cigarette smoke extract depolarize the cell membrane and open connexin hemichannels. Under oxidative stress, connexin expression and connexin silencing resulted in increased and reduced cell deaths, respectively. Morphological and live/dead assays indicate that cell death is likely through apoptosis. Our studies provide new insights into the mechanistic role of hemichannels in oxidative stress induced cell injury. PMID:17684558

  2. Nitrosation, nitration, and autoxidation of the selective estrogen receptor modulator raloxifene by nitric oxide, peroxynitrite, and reactive nitrogen/oxygen species.

    PubMed

    Toader, Violeta; Xu, Xudong; Nicolescu, Adrian; Yu, Linning; Bolton, Judy L; Thatcher, Gregory R J

    2003-10-01

    The regulation of estrogenic and antiestrogenic effects by selective estrogen receptor modulators (SERMs) provides the basis for use in long-term therapy in cancer chemoprevention and postmenopausal osteoporosis. However, the evidence for carcinogenic properties within this class requires study of potential pathways of toxicity. There is strong evidence for the elevation of cellular levels of NO in tissue treated with SERMs, including the benzothiophene derivative, raloxifene, in part via up-regulation of nitric oxide synthases. Therefore, the reactions of 17beta-estradiol (E(2)), raloxifene, and an isomer with NO, peroxynitrite, and reactive nitrogen/oxygen species (RNOS) generated from NO(2)(-)/H(2)O(2) systems were examined. Peroxynitrite from bolus injection or slow release from higher concentrations of 3-morpholinosydnonimine (SIN-1) reacted with the benzothiophenes and E(2) to give aromatic ring nitration, whereas peroxynitrite, produced from the slow decomposition of lower concentrations of SIN-1, was relatively unreactive toward E(2) and yielded oxidation and nitrosation products with raloxifene and its isomer. The oxidation and nitrosation products formed were characterized as a dimer and quinone oxime derivative. Interestingly, the reaction of the benzothiophenes with NO in aerobic solution efficiently generated the same oxidation products. Stable quinone oximes are not unprecedented but have not been previously reported as products of RNOS-mediated metabolism. The reaction of glutathione (GSH) with the quinone oxime gave both GSH adducts from Michael addition and reduction to the corresponding o-aminophenol. The ready autoxidation of raloxifene, observed in the presence of NO, is the first such observation on the reactivity of SERMs and is potentially a general phenomenon of significance to SERM chemical toxicology. PMID:14565768

  3. Cellular and subcellular oxidative stress parameters following severe spinal cord injury

    PubMed Central

    Visavadiya, Nishant P.; Patel, Samir P.; VanRooyen, Jenna L.; Sullivan, Patrick G.; Rabchevsky, Alexander G.

    2015-01-01

    The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI) in adult female Sprague Dawley rats. At 24 h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH) content and production of nitric oxide (NO•), in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT), protein carbonyl (PC), 4-hydroxynonenal (4-HNE) and lipid peroxidation (LPO). Moreover, we assessed production of superoxide (O2•-) and hydrogen peroxide (H2O2) in mitochondrial fractions. Quantitative biochemical analyses showed that compared to sham, SCI significantly lowered GSH content accompanied by increased NO• production in both cellular and mitochondrial fractions. SCI also resulted in increased O2•- and H2O2 levels in mitochondrial fractions. Western blot analysis further showed that reactive oxygen/nitrogen species (ROS/RNS) mediated PC and 3-NT production were significantly higher in both fractions after SCI. Conversely, neither 4-HNE levels nor LPO formation were increased at 24 h after injury in either tissue homogenate or mitochondrial fractions. These results indicate that by 24 h post-injury ROS-induced protein oxidation is more prominent compared to lipid oxidation, indicating a critical temporal distinction in secondary pathophysiology that is critical in designing therapeutic approaches to mitigate consequences of oxidative stress. PMID:26760911

  4. Cellular and subcellular oxidative stress parameters following severe spinal cord injury.

    PubMed

    Visavadiya, Nishant P; Patel, Samir P; VanRooyen, Jenna L; Sullivan, Patrick G; Rabchevsky, Alexander G

    2016-08-01

    The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI) in adult female Sprague Dawley rats. At 24h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH) content and production of nitric oxide (NO(•)), in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT), protein carbonyl (PC), 4-hydroxynonenal (4-HNE) and lipid peroxidation (LPO). Moreover, we assessed production of superoxide (O2(•-)) and hydrogen peroxide (H2O2) in mitochondrial fractions. Quantitative biochemical analyses showed that compared to sham, SCI significantly lowered GSH content accompanied by increased NO(•) production in both cellular and mitochondrial fractions. SCI also resulted in increased O2(•-) and H2O2 levels in mitochondrial fractions. Western blot analysis further showed that reactive oxygen/nitrogen species (ROS/RNS) mediated PC and 3-NT production were significantly higher in both fractions after SCI. Conversely, neither 4-HNE levels nor LPO formation were increased at 24h after injury in either tissue homogenate or mitochondrial fractions. These results indicate that by 24h post-injury ROS-induced protein oxidation is more prominent compared to lipid oxidation, indicating a critical temporal distinction in secondary pathophysiology that is critical in designing therapeutic approaches to mitigate consequences of oxidative stress. PMID:26760911

  5. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat.

    PubMed

    Di Pietro, Valentina; Lazzarino, Giacomo; Amorini, Angela Maria; Tavazzi, Barbara; D'Urso, Serafina; Longo, Salvatore; Vagnozzi, Roberto; Signoretti, Stefano; Clementi, Elisabetta; Giardina, Bruno; Lazzarino, Giuseppe; Belli, Antonio

    2014-04-01

    Neuroglobin is a neuron-specific hexacoordinated globin capable of binding various ligands, including O2, NO, and CO, the biological function of which is still uncertain. Various studies seem to indicate that neuroglobin is a neuroprotective agent when overexpressed, acting as a potent inhibitor of oxidative and nitrosative stress. In this study, we evaluated the pathophysiological response of the neuroglobin gene and protein expression in the cerebral tissue of rats sustaining traumatic brain injury of differing severity, while simultaneously measuring the oxidant/antioxidant balance. Two levels of trauma (mild and severe) were induced in anesthetized animals using the weight-drop model of diffuse axonal injury. Rats were then sacrificed at 6, 12, 24, 48, and 120 h after traumatic brain injury, and the gene and protein expression of neuroglobin and the concentrations of malondialdehyde (as a parameter representative of reactive oxygen species-mediated damage), nitrite + nitrate (indicative of NO metabolism), ascorbate, and glutathione (GSH) were determined in the brain tissue. Results indicated that mild traumatic brain injury, although causing a reversible increase in oxidative/nitrosative stress (increase in malondialdehyde and nitrite + nitrate) and an imbalance in antioxidants (decrease in ascorbate and GSH), did not induce any change in neuroglobin. Conversely, severe traumatic brain injury caused an over nine- and a fivefold increase in neuroglobin gene and protein expression, respectively, as well as a remarkable increase in oxidative/nitrosative stress and depletion of antioxidants. The results of this study, showing a lack of effect in mild traumatic brain injury as well as asynchronous time course changes in neuroglobin expression, oxidative/nitrosative stress, and antioxidants in severe traumatic brain injury, do not seem to support the role of neuroglobin as an endogenous neuroprotective antioxidant agent, at least under pathophysiological conditions

  6. TEMPONE reduces renal dysfunction and injury mediated by oxidative stress of the rat kidney.

    PubMed

    Patel, Nimesh S A; Chatterjee, Prabal K; Chatterjee, Bristi E; Cuzzocrea, Salvatore; Serraino, Ivana; Brown, Paul A J; Stewart, Keith N; Mota-Filipe, Helder; Thiemermann, Christoph

    2002-12-01

    Here we investigate the effects of the stable, water-soluble nitroxyl radical, TEMPONE, on renal dysfunction and injury caused by ischemia/reperfusion (I/R) of the rat kidney in vivo. TEMPONE significantly improved both glomerular and tubular function (serum urea, creatinine, creatinine clearance, and fractional excretion of Na(+)) in a dose-dependent manner and significantly attenuated the reperfusion-injury associated with I/R (urinary N-acetyl-beta-D-glucosaminidase, aspartate aminotransferase, assessment of renal histology). TEMPONE also markedly reduced the immunohistochemical evidence of the formation of nitrotyrosine and poly(ADP-ribose), indicating reduction of nitrosative and oxidative stress, respectively. The latter was reflected in vitro, where TEMPONE significantly reduced cellular injury of primary cultures of rat renal proximal tubular (PT) cells caused by hydrogen peroxide in a dose-dependent manner. Importantly, in contrast to its in vivo metabolite TEMPOL (which also provided protective effects against renal I/R and oxidative stress of PT cells), TEMPONE reduced renal dysfunction and injury without causing a significant reduction in blood pressure upon administration. These results suggest, for the first time, that TEMPONE can reduce the renal dysfunction and injury caused by I/R and the injury caused to PT cells by oxidative stress without producing the adverse cardiovascular effects observed when using other nitroxyl radicals. PMID:12446215

  7. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model. PMID:26983591

  8. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability. PMID:27146535

  9. Time profile of oxidative stress and neutrophil activation in ovine acute lung injury and sepsis.

    PubMed

    Lange, Matthias; Szabo, Csaba; Traber, Daniel L; Horvath, Eszter; Hamahata, Atsumori; Nakano, Yoshimitsu; Traber, Lillian D; Cox, Robert A; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-05-01

    The formation of oxidative stress in the lung and activation of neutrophils are major determinants in the development of respiratory failure after acute lung injury and sepsis. However, the time changes of these pathogenic factors have not been sufficiently described. Twenty-four chronically instrumented sheep were subjected to cotton smoke inhalation injury and instillation of live Pseudomonas aeruginosa into both lungs. The sheep were euthanized at 4, 8, 12, 18, and 24 h after injury. Additional sheep received sham injury and were euthanized after 24 h. Pulmonary function was assessed by determination of oxygenation index and pulmonary shunt fraction. In addition, lung tissue was harvested at the respective time points for the measurement of malondialdehyde, interleukin 6, poly(ADP ribose), myeloperoxidase, and alveolar polymorphonuclear neutrophil score. The injury induced severe respiratory failure that was associated with an early increase in lipid peroxidation and interleukin 6 expression. The injury further led to an increase in poly(ADP ribose) activity that reached its peak at 12 h after injury and declined afterward. In addition, progressive increases in markers of neutrophil accumulation in the lung were observed. The peak of neutrophil accumulation in the lung was associated with a severe depletion of circulating neutrophils. The results from our model may enhance the understanding of the pathophysiological alterations after acute lung injury and sepsis and thus be useful in exploring therapeutic interventions directed at modifying the expression or activation of inflammatory mediators. PMID:22266977

  10. Role of mitochondrial-derived oxidants in renal tubular cell cold storage injury

    PubMed Central

    Mitchell, Tanecia; Saba, Hamida; Laakman, Joe; Parajuli, Nirmala; MacMillan-Crow, Lee Ann

    2013-01-01

    Cold storage (CS) is regarded as a necessary procedure during donation of a deceased donor kidney that helps to optimize organ viability. Increased oxidant generation during both CS as well as during the reperfusion (or rewarming/CS.RW) phase have been suggested to be a major contributor to renal injury; although the source and/or biochemical pathways involved with oxidant production remain unclear. The purpose of this study was to determine if renal tubular mitochondrial superoxide is capable of inducing oxidant production and mitochondrial damage in response to a CS.RW insult. To test the role of mitochondrial superoxide in CS.RW injury, we used rat renal proximal tubular (NRK) cells overexpressing manganese superoxide dismutase (MnSOD), the major mitochondrial antioxidant. Oxidant production, mitochondrial membrane potential, respiratory complex function, and cell death were all altered following exposure of NRK cells to CS.RW. MnSOD overexpression or inhibition of nitric oxide synthase (NOS) provided significant protection against oxidant generation, respiratory complex inactivation, and cell death. These findings implicate mitochondrial superoxide, nitric oxide, and their reaction product, peroxynitrite, as key signaling molecules involved in CS.RW injury of renal tubular cells, and suggest that therapeutic inhibition of these pathways may protect the donor kidney. PMID:20659553

  11. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  12. Nanoparticles, lung injury, and the role of oxidant stress.

    PubMed

    Madl, Amy K; Plummer, Laurel E; Carosino, Christopher; Pinkerton, Kent E

    2014-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion. PMID:24215442

  13. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  14. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury.

    PubMed

    Sparvero, Louis J; Amoscato, Andrew A; Kochanek, Patrick M; Pitt, Bruce R; Kagan, Valerian E; Bayir, Hülya

    2010-12-01

    Lipids, particularly phospholipids, are fundamental to CNS tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows detailed information to be obtained on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Furthermore, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass spectrometry and imaging mass spectrometry as they relate to studies of phospholipids in traumatic brain injury. PMID:20950335

  15. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process

    PubMed Central

    Mesquita-Ferrari, Raquel Agnelli

    2016-01-01

    Introduction Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified. Aim To evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process. Methods Wistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis. Results Lipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group. Conclusion The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process. PMID:27082964

  16. Hydrogen sulfide modulates sub-cellular susceptibility to oxidative stress induced by myocardial ischemic reperfusion injury.

    PubMed

    Ansari, Shakila Banu; Kurian, Gino A

    2016-05-25

    In this study, we compared the impact of H2S pre (HIPC) and post-conditioning (HPOC) on oxidative stress, the prime reason for myocardial ischemia reperfusion injury (I/R), in different compartments of the myocardium, such as the mitochondria beside its subpopulations (interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria) and microsomal fractions in I/R injured rat heart. The results demonstrated that compared to I/R rat heart, HIPC and HPOC treated hearts shows reduced myocardial injury, enhanced antioxidant enzyme activities and reduced the level of TBARS in different cellular compartments. The extent of recovery (measured by TBARS and GSH levels) in subcellular fractions, were in the following descending order: microsome > SSM > IFM in both HIPC and HPOC. In summary, oxidative stress mediated mitochondrial dysfunction, one of the primary causes for I/R injury, was partly recovered by HIPC and HPOC treatment, with significant improvement in SSM fraction compared to the IFM. PMID:27041072

  17. ARSENIC METHYLATION AND OXIDANT INJURY BY ESR IN VIVO AND IN VITRO

    EPA Science Inventory

    Arsenic Methylation and Oxidant Injury by ESR In Vivo and In Vitro.

    Although arsenic is naturally occurring and present in the environment, it is a serious environmental concern worldwide, because of the large number of known contaminated sites and millions of people at ri...

  18. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO. PMID:14643171

  19. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  20. Regulation of antioxidant enzymes in lung after oxidant injury.

    PubMed Central

    Quinlan, T; Spivack, S; Mossman, B T

    1994-01-01

    Studies have implicated active oxygen species (AOS) in the pathogenesis of various lung diseases. Many chemical and physical agents in the environment are potent generators of AOS, including ozone, hyperoxia, mineral dusts, paraquat, etc. These agents produce AOS by different mechanisms, but frequently the lung is the primary target of toxicity, and exposure results in damage to lung tissue to varying degrees. The lung has developed defenses to AOS-mediated damage, which include antioxidant enzymes, the superoxide dismutases [copper-zinc (CuZnSOD) and manganese-containing (MnSOD)], catalase, and glutathione peroxidase (GPX). In this review, antioxidant defenses to environmental stresses in the lung as well as in isolated pulmonary cells following exposure to a number of different oxidants, are summarized. Each oxidant appears to induce a different pattern of antioxidant enzyme response in the lung, although some common trends, i.e., induction of MnSOD following oxidants inducing inflammation or pulmonary fibrosis, in responses to oxidants occur. Responses may vary between the different cell types in the lung as a function of cell-cycle or other factors. Increases in MnSOD mRNA or immunoreactive protein in response to certain oxidants may serve as a biomarker of AOS-mediated damage in the lung. Images Figure 3. PMID:7523104

  1. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    SciTech Connect

    Eto, Hideyuki; Miyata, Masaaki . E-mail: miyatam@m3.kufm.kagoshima-u.ac.jp; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  2. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.

    PubMed

    Sosunov, Sergey A; Ameer, Xavier; Niatsetskaya, Zoya V; Utkina-Sosunova, Irina; Ratner, Veniamin I; Ten, Vadim S

    2015-01-01

    This study demonstrates that in mice subjected to hypoxia-ischemia (HI) brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF) and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on recovery of

  3. Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization

    PubMed Central

    Martindale, Joshua J.; Metzger, Joseph M.

    2014-01-01

    Myocardial ischemia/reperfusion (I/R) injury is a major clinical problem leading to cardiac dysfunction and myocyte death. It is widely held that I/R causes damage to membrane phospholipids, and is a significant mechanism of cardiac I/R injury. Molecular dissection of sarcolemmal damage in I/R, however, has been difficult to address experimentally. We studied here cardiac I/R injury under conditions targeting gain- or loss-of sarcolemma integrity. To implement gain-in-sarcolemma integrity during I/R, synthetic copolymer-based sarcolemmal stabilizers (CSS), including Poloxamer 188 (P188), were used as a tool to directly stabilize the sarcolemma. Consistent with the hypothesis of sarcolemmal stabilization, cellular markers of necrosis and apoptosis evident in untreated myocytes were fully blocked in sarcolemma stabilized myocytes. Unexpectedly, sarcolemmal stabilization of adult cardiac myocytes did not affect the status of myocyte-generated oxidants or lipid peroxidation in two independent assays. We also investigated the loss of sarcolemmal integrity using two independent genetic mouse models, dystrophin-deficient mdx or dysferlin knockout (Dysf KO) mice. Both models of sarcolemmal loss-of-function were severely affected by I/R injury ex vivo, and this was lessened by CSS. In vivo studies also showed that infarct size was significantly reduced in CSS-treated hearts. Mechanistically, these findings support a model whereby I/R-mediated increased myocyte oxidative stress is uncoupled from myocyte injury. Because the sarcolemma stabilizers used here do not transit across the myocyte membrane this is evidence that intracellular targets of oxidants are not sufficiently altered to affect cell death when sarcolemma integrity is preserved by synthetic stabilizers. These findings, in turn, suggest that sarcolemma destabilization, and consequent Ca2+ mishandling, as a focal initiating mechanism underlying myocardial I/R injury. PMID:24362314

  4. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    PubMed Central

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  5. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium.

    PubMed

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0-4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  6. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    PubMed

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  7. Nitric oxide as a mediator of gastrointestinal mucosal injury?—Say it ain't so

    PubMed Central

    Kubes, Paul

    1995-01-01

    Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury. PMID:18475671

  8. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    SciTech Connect

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-10-17

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK){zeta}, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGK{zeta} siRNA transfection decreased H{sub 2}O{sub 2}-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGK{zeta} also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGK{zeta} rapidly translocated to the cytoplasm following H{sub 2}O{sub 2} treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGK{zeta}, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells.

  9. Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models.

    PubMed

    Schuh, Cornelia; Wimmer, Isabella; Hametner, Simon; Haider, Lukas; Van Dam, Anne-Marie; Liblau, Roland S; Smith, Ken J; Probert, Lesley; Binder, Christoph J; Bauer, Jan; Bradl, Monika; Mahad, Don; Lassmann, Hans

    2014-08-01

    Recent data suggest that oxidative injury may play an important role in demyelination and neurodegeneration in multiple sclerosis (MS). We compared the extent of oxidative injury in MS lesions with that in experimental models driven by different inflammatory mechanisms. It was only in a model of coronavirus-induced demyelinating encephalomyelitis that we detected an accumulation of oxidised phospholipids, which was comparable in extent to that in MS. In both, MS and coronavirus-induced encephalomyelitis, this was associated with massive microglial and macrophage activation, accompanied by the expression of the NADPH oxidase subunit p22phox but only sparse expression of inducible nitric oxide synthase (iNOS). Acute and chronic CD4(+) T cell-mediated experimental autoimmune encephalomyelitis lesions showed transient expression of p22phox and iNOS associated with inflammation. Macrophages in chronic lesions of antibody-mediated demyelinating encephalomyelitis showed lysosomal activity but very little p22phox or iNOS expressions. Active inflammatory demyelinating lesions induced by CD8(+) T cells or by innate immunity showed macrophage and microglial activation together with the expression of p22phox, but low or absent iNOS reactivity. We corroborated the differences between acute CD4(+) T cell-mediated experimental autoimmune encephalomyelitis and acute MS lesions via gene expression studies. Furthermore, age-dependent iron accumulation and lesion-associated iron liberation, as occurring in the human brain, were only minor in rodent brains. Our study shows that oxidative injury and its triggering mechanisms diverge in different models of rodent central nervous system inflammation. The amplification of oxidative injury, which has been suggested in MS, is only reflected to a limited degree in the studied rodent models. PMID:24622774

  10. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  11. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury

    PubMed Central

    YE, JUN; YAO, JIAN-PING; WANG, XU; ZHENG, MINYING; LI, PENG; HE, CHENGWEI; WAN, JIAN-BO; YAO, XIAOLI; SU, HUANXING

    2016-01-01

    Ginsenosides exhibit various neuroprotective effects against oxidative stress. However, which ginsenoside provides optimal effects for the treatment of neurological disorders as a potent antioxidant remains to be elucidated. Therefore, the present study investigated and compared the neuroprotective effects of the Rb1, Rd, Rg1 and Re ginsenosides on neural progenitor cells (NPCs) following tert-Butylhydroperoxide (t-BHP)-induced oxidative injury. Primary rat embryonic cortical NPCs were prepared from E14.5 embryos of Sprague-Dawley rats. The oxidative injury model was established with t-BHP. A lactate dehydrogenase assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used to measure the viability of the NPCs pre-treated with ginsenosides under oxidative stress. Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the activation of intracellular signaling pathways triggered by the pretreatment of ginsenosides. Among the four ginsenosides, only Rb1 attenuated t-BHP toxicity in the NPCs, and the nuclear factor (erythroizd-derived 2)-like 2/heme oxygenase-1 pathway was found to be key in the intracellular defense against oxidative stress. The present study demonstrated the anti-oxidative effects of ginsenoside Rb1 on NPCs, and suggested that Rb1 may offer potential as a potent antioxidant for the treatment of neurological disorders. PMID:26935530

  12. Mitochondrial phospholipid bilayer structure is ruined after liver oxidative injury in vivo.

    PubMed

    Megli, Francesco M; Sabatini, Karen

    2004-08-27

    The purpose of this study was to investigate whether, after oxidative injury in vivo, liver mitochondrial phospholipids suffered from structural defects similar to those we have previously observed after either chemical oxidation or respiration state IV incubation of isolated mitochondria in vitro. Oxidative injury of the liver was simulated by endogastric administration of CCl4 to rats in variable amounts for different times, under various conditions. Measurements of the phospholipid bilayer packing order were carried out by electron paramagnetic resonance (EPR) spectrometry of oriented planar samples of phospholipids extracted from liver mitochondria, spin labeled with 5-doxylstearoyl-lecithin. Disordering of the bilayer was revealed by the anisotropy loss of EPR spectra and reached a maximum value 4.5 h after CCl4 administration, vanishing thereafter. The observed disorder also increased with the amount of CCl4 administered, showing distinct dose-dependence, while administration of resveratrol soon after carbon tetrachloride decreased bilayer disordering by 50%. On the contrary, the order parameter S of spin labeled lecithin in isolated mitochondrial membranes from intoxicated rats revealed no change in membrane fluidity after oxidative stress. It is concluded that the phospholipid damage leading to disturbed bilayer geometry after oxidative attack already observed in model membranes and in isolated mitochondria in vitro also occurs in a simulated pathological state in vivo, indicating its possible occurrence also in real oxidative stress-linked pathologies as a contribution to the onset/sustaining of related diseases. PMID:15327977

  13. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury.

    PubMed

    Ye, Jun; Yao, Jian-Ping; Wang, Xu; Zheng, Minying; Li, Peng; He, Chengwei; Wan, Jian-Bo; Yao, Xiaoli; Su, Huanxing

    2016-04-01

    Ginsenosides exhibit various neuroprotective effects against oxidative stress. However, which ginsenoside provides optimal effects for the treatment of neurological disorders as a potent antioxidant remains to be elucidated. Therefore, the present study investigated and compared the neuroprotective effects of the Rb1, Rd, Rg1 and Re ginsenosides on neural progenitor cells (NPCs) following tert-Butylhydroperoxide (t-BHP)-induced oxidative injury. Primary rat embryonic cortical NPCs were prepared from E14.5 embryos of Sprague-Dawley rats. The oxidative injury model was established with t‑BHP. A lactate dehydrogenase assay and terminal deoxynucleotidyl transferase dUTP nick‑end labeling staining were used to measure the viability of the NPCs pre‑treated with ginsenosides under oxidative stress. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the activation of intracellular signaling pathways triggered by the pretreatment of ginsenosides. Among the four ginsenosides, only Rb1 attenuated t‑BHP toxicity in the NPCs, and the nuclear factor (erythroizd‑derived 2)‑like 2/heme oxygenase‑1 pathway was found to be key in the intracellular defense against oxidative stress. The present study demonstrated the anti-oxidative effects of ginsenoside Rb1 on NPCs, and suggested that Rb1 may offer potential as a potent antioxidant for the treatment of neurological disorders. PMID:26935530

  14. Oxidative stress-mediated apoptosis induced by ethanolic mango seed extract in cultured estrogen receptor positive breast cancer MCF-7 cells.

    PubMed

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Rasedee, Abdullah; Mirghani, Mohamed Elwathig Saeed

    2015-01-01

    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent. PMID:25664859

  15. Synergistic Effect of Vaginal Trauma and Ovariectomy in a Murine Model of Stress Urinary Incontinence: Upregulation of Urethral Nitric Oxide Synthases and Estrogen Receptors

    PubMed Central

    Chen, Huey-Yi; Chen, Wen-Chi; Lin, Yu-Ning

    2014-01-01

    The molecular mechanisms underlying stress urinary incontinence (SUI) are unclear. We aimed to evaluate the molecular alterations in mice urethras following vaginal trauma and ovariectomy (OVX). Twenty-four virgin female mice were equally distributed into four groups: noninstrumented control; vaginal distension (VD) group; OVX group; and VD + OVX group. Changes in leak point pressures (LPPs), genital tract morphology, body weight gain, plasma 17β-estradiol level and expressions of neuronal nitric oxide synthase (nNOS), induced nitric oxide synthase (iNOS), and estrogen receptors (ERs—ERα and ERβ) were analyzed. Three weeks after VD, the four groups differed significantly in genital size and body weight gain. Compared with the control group, the plasma estradiol levels were significantly decreased in the OVX and VD + OVX groups, and LPPs were significantly decreased in all three groups. nNOS, iNOS, and ERα expressions in the urethra were significantly increased in the VD and VD + OVX groups, whereas ERβ expression was significantly increased only in the VD + OVX group. These results show that SUI following vaginal trauma and OVX involves urethral upregulations of nNOS, iNOS, and ERs, suggesting that NO- and ER-mediated signaling might play a role in the synergistic effect of birth trauma and OVX-related SUI pathogenesis. PMID:25258476

  16. Hepatocellular Protection by Nitric Oxide or Nitrite in Ischemia and Reperfusion Injury

    PubMed Central

    Abe, Yuta; Hines, Ian; Zibari, Gazi; Grisham, Matthew B.

    2009-01-01

    Ischemia and reperfusion (I/R)-induced liver injury occurs in several pathophysiological disorders including hemorrhagic shock and burn as well as resectional and transplantation surgery. One of the earliest events associated with reperfusion of ischemic liver is endothelial dysfunction characterized by the decreased production of endothelial cell-derived nitric oxide (NO). This rapid post-ischemic decrease in NO bioavailability appears to be due to decreased synthesis of NO, enhanced inactivation of NO by the overproduction of superoxide or both. This review presents the most current evidence supporting the concept that decreased bioavailability of NO concomitant with enhanced production of reactive oxygen species initiates hepatocellular injury and that endogenous NO or exogenous NO produced from nitrite play important roles in limiting post-ischemic tissue injury. PMID:18940177

  17. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  18. Mass-Spectrometry Based Oxidative Lipidomics and Lipid Imaging: Applications in Traumatic Brain Injury

    PubMed Central

    Sparvero, LJ; Amoscato, AA; Kochanek, PM; Pitt, BR; Kagan, VE; Bayır, H

    2012-01-01

    Lipids, particularly phospholipids, are fundamental to central nervous system (CNS) tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows obtaining detailed information on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury (TBI) which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Further, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass-spectrometry and imaging mass-spectrometry as they relate to studies of phospholipids in TBI. PMID:20950335

  19. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation

    PubMed Central

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  20. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation.

    PubMed

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  1. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  2. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen.

    PubMed

    Dias, Amanda Cristina Vieira; Gomes, Frederico Wegenast; Bila, Daniele Maia; Sant'Anna, Geraldo Lippel; Dezotti, Marcia

    2015-10-01

    The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants. PMID:26024813

  3. Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia.

    PubMed

    Wang, Y; Mathews, W R; Guido, D M; Farhood, A; Jaeschke, H

    1995-10-01

    The potential role of nitric oxide (NO) was investigated in the pathophysiology of liver injury after priming with 20 min hepatic ischemia-reperfusion and administration of .5 mg/kg Salmonella enteritidis endotoxin. Liver injury during the early reperfusion phase of 4 h was characterized by severe vascular oxidant stress, lipid peroxidation (LPO), neutrophil infiltration, and a 33% reduction of the microvascular blood flow in the liver. Inhibition of NO synthesis with N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) aggravated liver injury by 90%, reduced LPO, and did not affect liver neutrophils but further impaired microvascular blood flow. Treatment with the NO-donor spermine-NONOate or L-arginine did not affect these parameters in postischemic animals, however, treatment did restore all values of L-NAME-treated animals back to disease control levels. These data suggest that endogenous NO formation is sufficient to limit ischemic liver injury during reperfusion but inhibition of NO synthesis will result in additional ischemic damage. NO may also be involved in scavenging of superoxide in the vasculature and in inducing LPO. PMID:8564557

  4. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury.

    PubMed

    Ji, Jing; Kline, Anthony E; Amoscato, Andrew; Samhan-Arias, Alejandro K; Sparvero, Louis J; Tyurin, Vladimir A; Tyurina, Yulia Y; Fink, Bruno; Manole, Mioara D; Puccio, Ava M; Okonkwo, David O; Cheng, Jeffrey P; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Wipf, Peter; Kagan, Valerian E; Bayır, Hülya

    2012-10-01

    The brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin, which, because of its polyunsaturation, can readily undergo oxygenation. Using global lipidomics analysis in experimental traumatic brain injury (TBI), we found that TBI was accompanied by oxidative consumption of polyunsaturated cardiolipin and the accumulation of more than 150 new oxygenated molecular species of cardiolipin. RNAi-based manipulations of cardiolipin synthase and cardiolipin levels conferred resistance to mechanical stretch, an in vitro model of traumatic neuronal injury, in primary rat cortical neurons. By applying a brain-permeable mitochondria-targeted electron scavenger, we prevented cardiolipin oxidation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that cardiolipin oxygenation generates neuronal death signals and that prevention of it by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery. PMID:22922784

  5. Regulation of Injury-Induced Neurogenesis by Nitric Oxide

    PubMed Central

    Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês M.

    2012-01-01

    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS. PMID:22997523

  6. Nitrogen Substituent Polarity Influences Dithiocarbamate-Mediated Lipid Oxidation, Nerve Copper Accumulation, and Myelin Injury

    PubMed Central

    Valentine, Holly L.; Viquez, Olga M.; Amarnath, Kalyani; Amarnath, Venkataraman; Zyskowski, Justin; Kassa, Endalkachew N.; Valentine, William M.

    2009-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate’s nitrogen substituents influences the lipophilicity of the copper complexes it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generate dithiocarbamate-copper complexes that are lipid and water soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined and the quantity of protein carbonyls measured to assess levels of oxidative stress and injury. The data provide evidence that dithiocarbamate-copper complexes are redox active; and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid soluble copper complex, significant increases in copper accumulation, oxidative stress and myelin

  7. Oxidative stress is important in the pathogenesis of liver injury induced by sulindac and lipopolysaccharide cotreatment

    PubMed Central

    Zou, Wei; Roth, Robert A.; Younis, Husam S.; Burgoon, Lyle D.; Ganey, Patricia E.

    2010-01-01

    Among all the nonsteroidal anti-inflammatory drugs, sulindac (SLD) is associated with the greatest incidence of idiosyncratic hepatotoxicity in humans. Previously, an animal model of SLD-induced idiosyncratic hepatotoxicity was developed by cotreating rats with a nonhepatotoxic dose of LPS. Tumor necrosis factor-alpha (TNF) was found to be critically important to the pathogenesis. In this study, the mechanism of liver injury induced by SLD/LPS cotreatment was further explored. Protein carbonyls, products of oxidative stress, were elevated in liver mitochondria of SLD/LPS-cotreated rats. The results of analyzing gene expression in livers of rats before the onset of liver injury indicated that genes associated with oxidative stress were selectively regulated by SLD/LPS cotreatment. Antioxidant treatment with either ebselen or dimethyl sulfoxide attenuated SLD/LPS-induced liver injury. The role of oxidative stress was further investigated in vitro. SLD sulfide, the toxic metabolite of SLD, enhanced TNF-induced cytotoxicity and caspase 3/7 activity in HepG2 cells. SLD sulfide also increased dichlorofluorescein fluorescence, suggesting generation of reactive oxygen species (ROS). Hydrogen peroxide and TNF cotreatment of HepG2 cells caused greater cytotoxicity than either treatment alone. Either antioxidant tempol or a pancaspase inhibitor Z-VAD-FMK decreased cell death as well as caspase 3/7 activity induced by SLD sulfide/TNF coexposure. These results indicate that SLD/LPS treatment causes oxidative stress in livers of rats and suggest that ROS are important in SLD/LPS-induced liver injury in vivo. Furthermore, ROS contribute to the cytotoxic interaction of SLD and TNF by activating caspase 3/7. PMID:20371263

  8. Inhaled nitric oxide protects males but not females from neonatal mouse hypoxia-ischemia brain injury.

    PubMed

    Zhu, Changlian; Sun, Yanyan; Gao, Jianfeng; Wang, Xiaoyang; Plesnila, Nikolaus; Blomgren, Klas

    2013-04-01

    It was recently discovered that while under normal conditions inhaled nitric oxide (iNO) does not affect cerebral blood flow, it selectively dilates arterioles in the ischemic penumbra during experimental cerebral ischemia, thereby increasing collateral blood flow and reducing ischemic brain damage. The mechanism was verified in multiple models, but only in male animals. Our aim was to evaluate the effects of iNO on brain injury in neonatal males and females. Nine-day-old mice were subjected to unilateral hypoxia-ischemia (HI), using 10% oxygen balanced with nitrogen, with or without 50 ppm NO. Brain injury 72 h after HI was reduced by iNO as judged by percentage of injury (-21.7%), atrophy (-23.7%), and total pathological score (-29%). The injury was significantly reduced in males (-32.4%, p<0.05) but not in females (-7.1%, n.s.). Neither the numbers nor the proliferation rates of neural stem cells in the dentate gyrus were affected by iNO. In summary, intraischemic iNO reduced neonatal HI brain injury in a gender-related manner. PMID:24323275

  9. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury.

    PubMed

    Logsdon, Aric F; Lucke-Wold, Brandon P; Nguyen, Linda; Matsumoto, Rae R; Turner, Ryan C; Rosen, Charles L; Huber, Jason D

    2016-07-15

    Traumatic brain injury (TBI) is the leading cause of trauma related morbidity in the developed world. TBI has been shown to trigger secondary injury cascades including endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation. The link between secondary injury cascades and behavioral outcome following TBI is poorly understood warranting further investigation. Using our validated rodent blast TBI model, we examined the interaction of secondary injury cascades following single injury and how these interactions may contribute to impulsive-like behavior after a clinically relevant repetitive TBI paradigm. We targeted these secondary pathways acutely following single injury with the cellular stress modulator, salubrinal (SAL). We examined the neuroprotective effects of SAL administration on significantly reducing ER stress: janus-N-terminal kinase (JNK) phosphorylation and C/EBP homology protein (CHOP), oxidative stress: superoxide and carbonyls, and neuroinflammation: nuclear factor kappa beta (NFκB) activity, inducible nitric oxide synthase (iNOS) protein expression, and pro-inflammatory cytokines at 24h post-TBI. We then used the more clinically relevant repeat injury paradigm and observed elevated NFκB and iNOS activity. These injury cascades were associated with impulsive-like behavior measured on the elevated plus maze. SAL administration attenuated secondary iNOS activity at 72h following repetitive TBI, and most importantly prevented impulsive-like behavior. Overall, these results suggest a link between secondary injury cascades and impulsive-like behavior that can be modulated by SAL administration. PMID:27131989

  10. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited

    PubMed Central

    Kurian, Gino A.; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  11. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited.

    PubMed

    Kurian, Gino A; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  12. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    PubMed

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers. PMID:25683270

  13. An Immunohistochemical Panel to Assess Ultraviolet Radiation Associated Oxidative Skin Injury

    PubMed Central

    Adams, L; Serravallo, M; Heilman, E; Siegel, D; Brody, N; Jagdeo, J

    2015-01-01

    Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years, and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation. PMID:24809881

  14. An immunohistochemical panel to assess ultraviolet radiation-associated oxidative skin injury.

    PubMed

    Mamalis, Andrew; Fiadorchanka, Natallia; Adams, Lauren; Serravallo, Melissa; Heilman, Edward; Siegel, Daniel; Brody, Neil; Jagdeo, Jared

    2014-05-01

    Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation. PMID:24809881

  15. Neuroprotective effects of okadaic acid following oxidative injury in organotypic hippocampal slice culture.

    PubMed

    Kim, Un Jeng; Won, Ran; Lee, Kyung Hee

    2015-08-27

    Oxidative stress produces neurotoxicity often related with various CNS disorders. A phosphatase inhibitor enhances the actions of the signaling kinases. Protein kinases mediated-action shows the neural protection in brain injury. Phosphatase inhibitor, okadaic acid (OA), may enhance the protection effect and benefit to improve neuronal plasticity in post-injury. Thus, we investigated that the protein prophatase inhibitor affects neuroprotective signaling and neuroplastic changes in hippocampus after oxidative injury. Electrophysiological and biochemical assays were used to observe changes in synaptic efficacy following electrical and/or pharmacological manipulation of synaptic function. Neuronal cell death, as assessed by propidium iodide (PI) uptake, was reduced by OA treatment (24 and 48 h) compared with KA treatment. The pattern of DCFH-DA fluorescence in hippocampal slices corresponded well with PI uptake. The phospho-AKT/AKT ratio showed that the level of phospho-AKT was significantly increased in the OA-treated group. Furthermore, the OA-treated group exhibited significantly increased expression of SOD2 compared with the KA-only group. Optical imaging revealed that KA treatment tended to delay the latency of electrical stimulation and decrease the amplitude of optical signals of synaptic activity. These results suggest that OA may protect hippocampal neurons against oxidative stress and the survived neurons may functional to synaptic plasticity changes. PMID:26067888

  16. Skin nitric oxide and its metabolites are increased in nonburned skin after thermal injuries.

    PubMed

    Oliveira, Gisele V; Shimoda, Katsumi; Enkhbaatar, Perenlei; Jodoin, Jeff; Burke, A S; Chinkes, D L; Hawkins, Hal K; Herndon, David N; Traber, Lillian; Traber, Daniel; Murakami, Kazunori

    2004-09-01

    Local and systemic inflammation can lead to progression of burn wounds, converting second- to third-degree wounds or extending the burn to adjacent areas. Previous studies have suggested that the skin is an important site of production of nitric oxide (NO), synthesized by inducible nitric oxide synthase (iNOS) activation after injury. NO increases in burned wounds, but its formation in noninjured skin has not been investigated. We hypothesized that after severe burns, NO and cytotoxic peroxynitrite would increase in noninjured skin. We also tested the hypothesis that BBS-2, a specific inhibitor of iNOS, would impair NO formation after burn. Thirteen female sheep were randomized into burn injury and smoke inhalation (n = 5, group 1), burn and smoke treated with BBS-2 (n = 3, group 2), and sham (saline treatment, no injury) (n = 5, group 3). All the animals, including the sham-injury group, were mechanically ventilated for 48 h. Samples of nonburned skin and plasma were collected from each animal, and levels of NO and its metabolites were evaluated using a NO chemiluminescent detector. Nitrotyrosine and iNOS expression were determined in the skin by Immunoperoxidase staining, and scoring of masked slides (epidermis, hair follicles, vessels, glands, and stroma) was performed. Skin NO and metabolites significantly increased in the burn and smoke injury group, and this was inhibited by BBS-2. Nitrotyrosine expression also increased significantly in the skin of burned animals. BBS-2 prevented the increase of NOx but not the increase of nitrotyrosine expression in skin. Plasma levels of NO increased in burned animals when compared with sham, but this increase was not significant. The increase of NO and its metabolites after burn in noninjured skin is followed by a significant increase in peroxynitrite, a potent cytotoxic mediator. PMID:15316399

  17. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  18. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  19. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI. PMID:25955644

  20. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury.

    PubMed

    White, Nathan J; Wang, Yi; Fu, Xiaoyun; Cardenas, Jessica C; Martin, Erika J; Brophy, Donald F; Wade, Charles E; Wang, Xu; St John, Alexander E; Lim, Esther B; Stern, Susan A; Ward, Kevin R; López, José A; Chung, Dominic

    2016-07-01

    Victims of trauma often develop impaired blood clot formation (coagulopathy) that contributes to bleeding and mortality. Fibrin polymerization is one critical component of clot formation that can be impacted by post-translational oxidative modifications of fibrinogen after exposure to oxidants. In vitro evidence suggests that Aα-C domain methionine sulfoxide formation, in particular, can induce conformational changes that prevent lateral aggregation of fibrin protofibrils during polymerization. We used mass spectrometry of plasma from trauma patients to find that fibrinogen Aα-C domain methionine sulfoxide content was selectively-increased in patients with coagulopathy vs. those without coagulopathy. This evidence supports a novel linkage between oxidative stress, coagulopathy, and bleeding after injury. PMID:27105953

  1. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  2. Parboiled Germinated Brown Rice Protects Against CCl4-Induced Oxidative Stress and Liver Injury in Rats.

    PubMed

    Wunjuntuk, Kansuda; Kettawan, Aikkarach; Charoenkiatkul, Somsri; Rungruang, Thanaporn

    2016-01-01

    Parboiled germinated brown rice (PGBR) of Khao Dawk Mali 105 variety was produced by steaming germinated paddy rice, which is well-known for its nutrients and bioactive compounds. In this study we determined the in vivo antioxidant and hepatoprotective effects of PGBR in carbon tetrachloride (CCl(4))-induced oxidative stress in rats. Male Sprague-Dawley rats, (weight 200-250 g) were randomly divided into (1) control, (2) CCl(4), (3) white rice (WR)+CCl(4), (4) brown rice (BR)+CCl(4), and (5) PGBR+CCl(4) groups. PGBR, BR, and WR diets were produced by replacing corn starch in the AIN76A diet with cooked PGBR, BR, and WR powders, respectively. All rats except the control group were gavaged with 50% CCl4 in olive oil (v/v, 1 mL/kg) twice a week for 8 weeks. CCl(4)-treated rats exhibited significant liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as obvious changes to liver histopathology compared to control. In addition, CCl(4) treatment decreased the activities of CYP2E1 and antioxidant enzymes: glutathione S-transferase, glutathione peroxidase, superoxide dismutase and catalase, and glutathione (GSH) content. However, the PGBR+CCl(4) group exhibited less liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as better antioxidant enzyme activities and GSH content. Furthermore, PGBR inhibited degradation of CYP2E1 in CCl(4)-induced decrease of CYP2E1 activity. These data suggest that PGBR may prevent CCl(4)-induced liver oxidative stress and injury through enhancement of the antioxidant capacities, which may be due to complex actions of various bioactive compounds, including phenolic acids, γ-oryzanol, tocotrienol, and GABA. PMID:26075965

  3. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation.

    PubMed

    Zhang, Weixin; Yin, Lianhong; Tao, Xufeng; Xu, Lina; Zheng, Lingli; Han, Xu; Xu, Youwei; Wang, Changyuan; Peng, Jinyong

    2016-07-01

    In our previous study, the effects of dioscin against alcohol-, carbon tetrachloride- and acetaminophen-induced liver damage have been found. However, the activity of it against dimethylnitrosamine (DMN)-induced acute liver injury remained unknown. In the present study, dioscin markedly decreased serum ALT and AST levels, significantly increased the levels of SOD, GSH-Px, GSH, and decreased the levels of MDA, iNOS and NO. Mechanism study showed that dioscin significantly decreased the expression levels of IL-1β, IL-6, TNF-α, IκBα, p50 and p65 through regulating TLR4/MyD88 pathway to rehabilitate inflammation. In addition, dioscin markedly up-regulated the expression levels of SIRT1, HO-1, NQO1, GST and GCLM through increasing nuclear translocation of Nrf2 against oxidative stress. Furthermore, dioscin significantly decreased the expression levels of FasL, Fas, p53, Bak, Caspase-3/9, and upregulated Bcl-2 level through decreasing IRF9 level against apoptosis. In conclusion, dioscin showed protective effect against DMN-induced acute liver injury via ameliorating apoptosis, oxidative stress and inflammation, which should be developed as a new candidate for the treatment of acute liver injury in the future. PMID:27317992

  4. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  5. Cross-talk between pulmonary injury, oxidant stress, and gap junctional communication.

    PubMed

    Johnson, Latoya N; Koval, Michael

    2009-02-01

    Gap junction channels interconnect several different types of cells in the lung, ranging from the alveolar epithelium to the pulmonary vasculature, each of which expresses a unique subset of gap junction proteins (connexins). Major lung functions regulated by gap junctional communication include coordination of ciliary beat frequency and inflammation. Gap junctions help enable the alveolus to regulate surfactant secretion as an integrated system, in which type I cells act as mechanical sensors that transmit calcium transients to type II cells. Thus, disruption of epithelial gap junctional communication, particularly during acute lung injury, can interfere with these processes and increase the severity of injury. Consistent with this, connexin expression is altered during lung injury, and connexin-deficiency has a negative impact on the injury response and lung-growth control. It has recently been shown that alcohol abuse is a significant risk factor associated with acute respiratory distress syndrome. Oxidant stress and hormone-signaling cascades in the lung induced by prolonged alcohol ingestion are discussed, as well as the effects of these pathways on connexin expression and function. PMID:18816185

  6. Anti-inflammatory effects of a Chinese herbal medicine in atherosclerosis via estrogen receptor β mediating nitric oxide production and NF-κB suppression in endothelial cells

    PubMed Central

    Wang, L; Qiu, X-M; Hao, Q; Li, D-J

    2013-01-01

    Bu-Shen-Ning-Xin Decoction (BSNXD) administration has alleviated the early pathologic damage of atherosclerosis by inhibiting the adhesion molecule expression and upregulating the estrogen receptor (ER) β expression in endothelial cells, and increasing the serum nitric oxide (NO) level without any effect on serum lipid status, endometrium and fat deposition in liver in ovariectomized rabbits. The BSNXD-derived serum increases ER β expression in the human umbilical vein endothelial cells (HUVECs), and decreases malondialdehyde (MDA) production, and upregulates eNOS expression then increases NO synthesis through ERβ-dependent pathway. NO not only suppresses the LPS-induced NF-κB transcription in HUVECs, but also decreases apoptosis of endothelial cells. The BSNXD-derived serum decreases monocyte chemoattractant protein-1 production, and suppresses cell adhesion molecules (ICAM-1, VCAM-1 and E-selectin) expression in HUVECs injured by oxidized low-density lipoproteins (ox-LDL), and these effects can be abolished by ERβ antagonist (R,RTHC) and NO synthase inhibitor (L-NAME). The BSNXD-derived serum-treated HUVECs supernatant reduces CCR2, LFA-1 and VLA-4 expression in monocytes cell line U937 cells, which in turn inhibits adherence of U937 to injured endothelial cells. NO synthesis increases, and MDA production decreases through ERβ-mediated pathway that suppresses apoptosis and NF-κB activity in endothelial cells that downregulates adhesion molecules expression on endothelial cells via ERβ/NO/NF-κB pathway, and in turn leukocyte adhesion, which suggests BSNXD potential value in prophylaxis atherosclerosis. PMID:23519120

  7. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  8. Estrogen and Bazedoxifene

    MedlinePlus

    Estrogen and bazedoxifene tablets are used to treat hot flashes (sudden feelings of warmth, especially in the ... women may experience other symptoms and body changes). Estrogen and bazedoxifene tablets are also used to prevent ...

  9. Estrogen and cancer.

    PubMed

    Liang, Jing; Shang, Yongfeng

    2013-01-01

    Estrogen exhibits a broad spectrum of physiological functions ranging from regulation of the menstrual cycle and reproduction to modulation of bone density, brain function, and cholesterol mobilization. Despite the beneficial actions of endogenous estrogen, sustained exposure to exogenous estrogen is a well-established risk factor for various cancers. We summarize our current understanding of the molecular mechanisms of estrogen signaling in normal and cancer cells and discuss the major challenges to existing antiestrogen therapies. PMID:23043248

  10. Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses' Health Study and Nurses' Health Study II.

    PubMed

    Hirko, Kelly A; Fortner, Renée T; Hankinson, Susan E; Wu, Tianying; Eliassen, A Heather

    2016-07-01

    Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed, although no studies have focused on estrogen receptor-negative (ER-) tumors which may be more strongly associated with oxidative stress. We examined prediagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER- breast cancer in a nested case-control study in the Nurses' Health Study and Nurses' Health Study II. ER- breast cancer cases (n = 355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status, and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER- breast cancer. We did not observe any significant associations between FlOP measures and risk of ER- breast cancer overall; the RRQ4vsQ1 (95 %CI) 0.70 (0.43-1.13), p trend = 0.09 for FlOP_360; 0.91(0.56-1.46), p trend = 0.93 for FlOP_320; and 0.62 (0.37-1.03), p trend = 0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels and in models stratified by age and total carotenoids. Although high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER- breast cancer in lean women (body mass index (BMI) < 25 kg/m(2)) but not in overweight/obese women, these differences were not statistically significant (pint = 0.23 for FlOP_360; pint = 0.37 for FlOP_400). Our findings suggest that positive associations of plasma FlOP concentrations and ER- breast cancer risk are unlikely. PMID:27294610

  11. Global lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of acute brain injury

    PubMed Central

    Ji, Jing; Kline, Anthony E; Amoscato, Andrew; Arias, Alejandro S; Sparvero, Louis J; Tyurin, Vladimir A; Tyurina, Yulia Y; Fink, Bruno; Manole, Mioara D; Puccio, Ava M; Okonkwo, David O; Cheng, Jeffrey P; Alexander, Henry; Clark, Robert SB; Kochanek, Patrick M; Wipf, Peter; Kagan, Valerian E; Bayýr, Hülya

    2013-01-01

    Brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin (CL), which - due to its polyunsaturation - can readily undergo oxygenation. Here, we used global lipidomics analysis in experimental traumatic brain injury (TBI) and showed that TBI was accompanied by oxidative consumption of polyunsaturated CL and accumulation of more than 150 new oxygenated molecular species in CL. RNAi-based manipulations of CL-synthase and CL levels conferred resistance of primary rat cortical neurons to mechanical stretch - an in vitro model of traumatic neuronal injury. By applying the novel brain permeable mitochondria-targeted electron-scavenger, we prevented CL oxygenation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that CL oxygenation generates neuronal death signals and that its prevention by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery. PMID:22922784

  12. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  13. [Estrogens and pharmacological modulation of estrogen receptors].

    PubMed

    Sanidize, T V; Ratiani, L R; Gabuniia, L Iu; Tortladze, M L; Kuridze, N N

    2009-02-01

    Estrogens belong to more or less frequently prescribed preparations. Main fields of application of these preparations (as in monotherapy as well as in combination) are contraception and hormone replacement therapy during menopause. More uncommon indications of estrogens are growth inhibition and hypogonadism (in this case they are prescribed along with gonadotropic hormones). Synthesis and metabolism of estrogens, as well as their intracellular receptors are well studied these days, which allow us to understand physiology and pharmacology of these hormones. In pharmacology the main stage is detection of estrogen receptors inside of cells of targets. There are two types of estrogen receptors alpha- and beta- coded by different genes. A number of steroid and non-steroid compounds have characteristics of estrogens. Likely in the future their popularity will increase, as by the aging of population number of those women, who receive replacement therapy, will increase. Investigations to find an ideal elective modulator of estrogen receptors, that will possess anti-estrogenic activity in connection with mammal gland and develop indifference in connection with endometrium and at the same time will display ability to reduce hot flushes, bone resorption, atrophy of mucous membranes of vagina and urinary bladder, as well as it will favorably effect on metabolism of lipoproteins are carried out. PMID:19276483

  14. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    SciTech Connect

    Landry, L.G.; Last, R.L.; Chapple, C.C.S.

    1995-12-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs.

  15. WldS and PGC-1α Regulate Mitochondrial Transport and Oxidation State after Axonal Injury

    PubMed Central

    O'Donnell, Kelley C.; Vargas, Mauricio E.

    2013-01-01

    Mitochondria carry out many of the processes implicated in maintaining axon health or causing axon degeneration, including ATP and reactive oxygen species (ROS) generation, as well as calcium buffering and protease activation. Defects in mitochondrial function and transport are common in axon degeneration, but how changes in specific mitochondrial properties relate to degeneration is not well understood. Using cutaneous sensory neurons of living larval zebrafish as a model, we examined the role of mitochondria in axon degeneration by monitoring mitochondrial morphology, transport, and redox state before and after laser axotomy. Mitochondrial transport terminated locally after injury in wild-type axons, an effect that was moderately attenuated by expressing the axon-protective fusion protein Wallerian degeneration slow (WldS). However, mitochondrial transport arrest eventually occurred in WldS-protected axons, indicating that later in the lag phase, mitochondrial transport is not required for axon protection. By contrast, the redox-sensitive biosensor roGFP2 was rapidly oxidized in the mitochondrial matrix after injury, and WldS expression prevented this effect, suggesting that stabilization of ROS production may mediate axon protection. Overexpression of PGC-1α, a transcriptional coactivator with roles in both mitochondrial biogenesis and ROS detoxification, dramatically increased mitochondrial density, attenuated roGFP2 oxidation, and delayed Wallerian degeneration. Collectively, these results indicate that mitochondrial oxidation state is a more reliable indicator of axon vulnerability to degeneration than mitochondrial motility. PMID:24027278

  16. Sesamin ameliorates oxidative liver injury induced by carbon tetrachloride in rat

    PubMed Central

    Lv, Dan; Zhu, Chang-Qing; Liu, Li

    2015-01-01

    Sesamin is naturally occurring lignan from sesame oil with putative antioxidant property. The present study was designed to investigate the protective role of sesamin against carbon tetrachloride induced oxidative liver injury. Male Wistar albino rats (180-200 g) were divided in to 5 groups (n=6). Hepatotoxicity was induced by the administration of CCl4 (0.1 ml/100 g bw., 50% v/v with olive oil) intraperitoneally. Sesamin was administered in two different dose (5 and 10 ml/kg bw) to evaluate the hepatoprotective activity. Sesamin significantly reduced the elevated serum liver marker enzymes (P<0.0001). Reduction of TBARS (P<0.01 and P<0.001) followed by enhancement of GSH., SOD and catalase (P<0.0001) in liver homogenate in sesamin treated groups shows the amelioration of oxidative stress induced by CCl4. Histopathological report also supported the hepatoprotection offered by sesamin. Sesamin effects in both the dose were in comparable to reference standard drug silymarin. From these above findings it has been concluded that sesamin ameliorate the oxidative liver injury in terms of reduction of lipid peroxidation and enhancement of liver antioxidant enzymes. PMID:26191289

  17. Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis

    PubMed Central

    Simon, Noémie; Hertig, Alexandre

    2015-01-01

    Renal proximal tubular cells are the most energy-demanding cells in the body. The ATP that they use is mostly produced in their mitochondrial and peroxisomal compartments, by the oxidation of fatty acids. When those cells are placed under a biological stress, such as a transient hypoxia, fatty acid oxidation (FAO) is shut down for a period of time that outlasts injury, and carbohydrate oxidation does not take over. Facing those metabolic constraints, surviving tubular epithelial cells exhibit a phenotypic switch that includes cytoskeletal rearrangement and production of extracellular matrix proteins, most probably contributing to acute kidney injury-induced renal fibrogenesis, thence to the development of chronic kidney disease. Here, we review experimental evidence that dysregulation of FAO profoundly affects the fate of tubular epithelial cells, by promoting epithelial-to-mesenchymal transition, inflammation, and eventually interstitial fibrosis. Restoring physiological production of energy is undoubtedly a possible therapeutic approach to unlock the mesenchymal reprograming of tubular epithelial cells in the kidney. In this respect, the benefit of the use of fibrates is uncertain, but new drugs that could specifically target this metabolic pathway, and, hopefully, attenuate renal fibrosis merit future research. PMID:26301223

  18. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene.

    PubMed

    Yue, Rongchuan; Xia, Xuewei; Jiang, Jiahui; Yang, Dezhong; Han, Yu; Chen, Xiongwen; Cai, Yue; Li, Liangpeng; Wang, Wei Eric; Zeng, Chunyu

    2015-09-01

    Mitochondrial (mt) dysfunction and oxidative stress are involved in the pathogenesis of ischemia/reperfusion (I/R)-injury. Lycopene, a lipophilic antioxidant found mainly in tomatoes and in other vegetables and fruits, can protect mtDNA against oxidative damage. However, the role of mtDNA in myocardial I/R-injury is unclear. In the present study, we aimed to determine if and how lycopene protects cardiomyocytes from I/R-injury. In both in vitro and in vivo studies, I/R-injury increased mt 8-hydroxyguanine (8-OHdG) content, decreased mtDNA content and mtDNA transcription levels, and caused mitochondrial dysfunction in cardiomyocytes. These effects of I/R injury on cardiomycoytes were blocked by pre-treatment with lycopene. MtDNA depletion alone was sufficient to induce cardiomyocyte death. I/R-injury decreased the protein level of a key activator of mt transcription, mitochondrial transcription factor A (Tfam), which was blocked by lycopene. The protective effect of lycopene on mtDNA was associated with a reduction in mitochondrial ROS production and stabilization of Tfam. In conclusion, lycopene protects cardiomyocytes from the oxidative damage of mtDNA induced by I/R-injury. PMID:25656550

  19. Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury.

    PubMed

    Pathak, Elina; MacMillan-Crow, Lee Ann; Mayeux, Philip R

    2012-01-01

    Oxidative stress has been implicated to play a major role in multiorgan dysfunction during sepsis. To study the mechanism of oxidant generation in acute kidney injury (AKI) during sepsis, we developed an in vitro model of sepsis using primary cultures of mouse cortical tubular epithelial cells exposed to serum (2.5-10%) collected from mice at 4 h after induction of sepsis by cecal ligation and puncture (CLP) or Sham (no sepsis). CLP serum produced a concentration-dependent increase in nitric oxide (NO) (nitrate + nitrite) release at 6 h and cytotoxicity (lactate dehydrogenase release) at 18 h compared with Sham serum treatment. Before cytotoxicity there was a decrease in mitochondrial membrane potential, which was followed by increased superoxide and peroxynitrite levels compared with Sham serum. The role of oxidants was evaluated by using the superoxide dismutase mimetic and peroxynitrite scavenger manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin tetratosylate hydroxide (MnTmPyP). MnTmPyP (10-100 μM) produced a concentration-dependent preservation of ATP and protection against cytotoxicity. MnTmPyP blocked mitochondrial superoxide and peroxynitrite generation produced by CLP serum but had no effect on NO levels. Although MnTmPyP did not block the initial CLP serum-induced fall in mitochondrial membrane potential, it allowed mitochondrial membrane potential to recover. Data from this in vitro model suggest a time-dependent generation of mitochondrial oxidants, mitochondrial dysfunction, and renal tubular epithelial cell injury and support the therapeutic potential of manganese porphyrin compounds in preventing sepsis-induced AKI. PMID:22011433

  20. Phototherapy and the Risk of Photo-Oxidative Injury in Extremely Low Birth Weight Infants.

    PubMed

    Stevenson, David K; Wong, Ronald J; Arnold, Cody C; Pedroza, Claudia; Tyson, Jon E

    2016-06-01

    Phototherapy has been used to treat newborns with jaundice for more than 50 years with the presumption that it is safe and effective for all infants. In fact, this presumption may not be true for all infants, especially the smallest and most immature. The safety and efficacy of phototherapy have never really been questioned or adequately tested in the latter, yet clinical applications of phototherapy have been further refined as its mechanisms of action have been better understood and alternative light sources have become available. This article addresses what is known about the possible risks of photo-oxidative injury in extremely low birth weight infants. PMID:27235208

  1. Vascular Effects of Estrogenic Menopausal Hormone Therapy

    PubMed Central

    Reslan, Ossama M.; Khalil, Raouf A.

    2011-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women’s Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the ‘timing hypothesis’, which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of

  2. Estrogens, inflammation and cognition.

    PubMed

    Au, April; Feher, Anita; McPhee, Lucy; Jessa, Ailya; Oh, Soojin; Einstein, Gillian

    2016-01-01

    The effects of estrogens are pleiotropic, affecting multiple bodily systems. Changes from the body's natural fluctuating levels of estrogens, through surgical removal of the ovaries, natural menopause, or the administration of exogenous estrogens to menopausal women have been independently linked to an altered immune profile, and changes to cognitive processes. Here, we propose that inflammation may mediate the relationship between low levels of estrogens and cognitive decline. In order to determine what is known about this connection, we review the literature on the cognitive effects of decreased estrogens due to oophorectomy or natural menopause, decreased estrogens' role on inflammation - both peripherally and in the brain - and the relationship between inflammation and cognition. While this review demonstrates that much is unknown about the intersection between estrogens, cognition, inflammation, we propose that there is an important interaction between these literatures. PMID:26774208

  3. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury

    PubMed Central

    Chandrika, Bhavya B.; Yang, Cheng; Ou, Yang; Feng, Xiaoke; Muhoza, Djamali; Holmes, Alexandrea F.; Theus, Sue; Deshmukh, Sarika; Haun, Randy S.; Kaushal, Gur P.

    2015-01-01

    We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase–3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase–3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo. PMID:26444017

  4. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  5. Does manganese protect cultured human skin fibroblasts against oxidative injury by UVA, dithranol and hydrogen peroxide?

    PubMed

    Parat, M O; Richard, M J; Leccia, M T; Amblard, P; Favier, A; Beani, J C

    1995-10-01

    Reactive oxygen species (ROS) are involved in the mechanism of photoaging and carcinogenesis. Skin is endowed with antioxidant enzymes including superoxide dismutases (SOD): cytosolic copper zinc SOD and mitochondrial manganese SOD. The aim of our study was to estimate the protective effect of manganese against oxidative injury on cultured human skin fibroblasts. Dithranol, hydrogen peroxide and UV-A radiation (375 nm) were employed as oxidative stressors. The supply of manganese chloride produced an increase in cellular content of this element up to 24 fold without concomitant elevation of MnSOD activity. Nevertheless, manganese protects cells against two of the three ROS generating systems assessed, namely hydrogen peroxyde and UV-A. This protective effect depends on the concentration of manganese in the medium, 0.1 mM and 0.2 mM protect against UVA cytotoxicity, only 0.2 mM protects against H2O2 cytotoxicity. PMID:7493040

  6. Etanercept Attenuates Myocardial Ischemia/Reperfusion Injury by Decreasing Inflammation and Oxidative Stress

    PubMed Central

    Yang, Mei; Chen, Jianchang; Zhao, Jing; Meng, Mei

    2014-01-01

    The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress. PMID:25260027

  7. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    PubMed Central

    Palejwala, Ali H.; Fridley, Jared S.; Mata, Javier A.; Samuel, Errol L. G.; Luerssen, Thomas G.; Perlaky, Laszlo; Kent, Thomas A.; Tour, James M.; Jea, Andrew

    2016-01-01

    Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury. PMID:27625885

  8. Glutamate ameliorates copper-induced oxidative injury by regulating antioxidant defences in fish intestine.

    PubMed

    Jiang, Jun; Wu, Xiao-Yun; Zhou, Xiao-Qiu; Feng, Lin; Liu, Yang; Jiang, Wei-Dan; Wu, Pei; Zhao, Ye

    2016-07-01

    The objective of this study was to determine the protective effect of glutamate (Glu) in Cu-induced oxidative injury in fish intestine in vivo and enterocytes in vitro. The results indicated that exposure to 6 mg/l Cu for 72 h induced the production of reactive oxygen species, thereby increasing protein oxidation and lipid peroxidation in enterocytes of grass carp in vitro. Cells exposed to Cu alone resulted in a significant increase in lactate dehydrogenase release, which is accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), glutathione S-transferase (GST), glutathione reductase (GR), anti-superoxide anion (ASA), anti-hydroxy radical (AHR) activities and GSH content. Pre-treatment with Glu remarkably prevented the toxic effects of Cu on the T-SOD, GST, GR, AHR, and ASA activities and GSH content in enterocytes. However, Cu induced an adaptive increase in the activities of catalase and glutathione peroxidase (GPx). Glu supplementation further increased GPx activity in enterocytes. Interestingly, the experiment in vivo showed that Glu pre-supplementation significantly elevated SOD, GPx, GST, GR, ASA and AHR activities, as well as GSH content. Further results showed that pre-treatment with Glu could alleviate Cu-induced oxidative injury by elevating antioxidant enzyme activities through regulating the expression of NF-E2-related nuclear factor 2 (Nrf2) mRNA. Together, these results indicated that Glu could attenuate Cu-induced cellular oxidative damage in fish intestine, likely mediated through Nrf2 signalling pathways regulating mRNA expressions of antioxidant enzyme genes and synthesis of GSH. PMID:27184647

  9. Acute kidney injury mediated by oxidative stress in Egyptian horses with exertional rhabdomyolysis.

    PubMed

    el-Ashker, Maged R

    2011-06-01

    The present study was carried out to evaluate the role of oxidative stress in the pathophysiologic process of acute renal failure associated with exertional rhabdomyolysis (ER) in Egyptian horses. ER was tentatively diagnosed in 31 Baladi horses based on case history, physical examination findings and confirmed by elevation of plasma creatine kinase (CK) and urine myoglobin concentrations. According to severity of the condition, the diseased horses were categorized into two main groups; the first group included 18 horses with minimal clinical signs and plasma CK <60 000 IU/L; whereas, the second group included 13 horses with overt clinical signs and plasma CK >100 000 IU/L). It was found that plasma creatol (CTL) was positively correlated (p < 0.01) with plasma malondialdehyde (MDA) (r = 0.775), nitric oxide (NO) (r = 0.768), methyguanididne (MG) (r = 0.995), CK (r = 0.768), urine glucose (r = 0.778), urine protein (r = 0.767), renal failure index (RFI) (r = 0.814) and urine sodium (r = 0.799) and negatively correlated (p < 0.01) with total antioxidant capacity (TAC) (r = -0.795), superoxide dismutase (SOD) (r = -0.815), glutathione peroxidase (GSH-Px) (r = -0.675), Vitamin C (r = -0.830), urine creatinine (r = -0.800), urine/plasma creatinine ratio (r = -0.827) and urine/plasma urea ratio (r = -0.807). The correlation between these biochemical variables might suggest a possible role of oxidative stress in renal injury associated with severe rhabdomyolysis in horses. It is suggested that exaggeration of oxidative stress associated with increased muscle membrane leakage plays a key role in acute kidney injury in Baladi horses with severe rhabdomyolysis. PMID:21461642

  10. Role of estrogen in diastolic dysfunction

    PubMed Central

    Zhao, Zhuo; Wang, Hao; Jessup, Jewell A.; Lindsey, Sarah H.; Chappell, Mark C.

    2014-01-01

    The prevalence of left ventricular diastolic dysfunction (LVDD) sharply increases in women after menopause and may lead to heart failure. While evidence suggests that estrogens protect the premenopausal heart from hypertension and ventricular remodeling, the specific mechanisms involved remain elusive. Moreover, whether there is a protective role of estrogens against cardiovascular disease, and specifically LVDD, continues to be controversial. Clinical and basic science have implicated activation of the renin-angiotensin-aldosterone system (RAAS), linked to the loss of ovarian estrogens, in the pathogenesis of postmenopausal diastolic dysfunction. As a consequence of increased tissue ANG II and low estrogen, a maladaptive nitric oxide synthase (NOS) system produces ROS that contribute to female sex-specific hypertensive heart disease. Recent insights from rodent models that mimic the cardiac phenotype of an estrogen-insufficient or -deficient woman (e.g., premature ovarian failure or postmenopausal), including the ovariectomized congenic mRen2.Lewis female rat, provide evidence showing that estrogen modulates the tissue RAAS and NOS system and related intracellular signaling pathways, in part via the membrane G protein-coupled receptor 30 (GPR30; also called G protein-coupled estrogen receptor 1). Complementing the cardiovascular research in this field, the echocardiographic correlates of LVDD as well as inherent limitations to its use in preclinical rodent studies will be briefly presented. Understanding the roles of estrogen and GPR30, their interactions with the local RAAS and NOS system, and the relationship of each of these to LVDD is necessary to identify new therapeutic targets and alternative treatments for diastolic heart failure that achieve the cardiovascular benefits of estrogen replacement without its side effects and contraindications. PMID:24414072

  11. Role of estrogen in diastolic dysfunction.

    PubMed

    Zhao, Zhuo; Wang, Hao; Jessup, Jewell A; Lindsey, Sarah H; Chappell, Mark C; Groban, Leanne

    2014-03-01

    The prevalence of left ventricular diastolic dysfunction (LVDD) sharply increases in women after menopause and may lead to heart failure. While evidence suggests that estrogens protect the premenopausal heart from hypertension and ventricular remodeling, the specific mechanisms involved remain elusive. Moreover, whether there is a protective role of estrogens against cardiovascular disease, and specifically LVDD, continues to be controversial. Clinical and basic science have implicated activation of the renin-angiotensin-aldosterone system (RAAS), linked to the loss of ovarian estrogens, in the pathogenesis of postmenopausal diastolic dysfunction. As a consequence of increased tissue ANG II and low estrogen, a maladaptive nitric oxide synthase (NOS) system produces ROS that contribute to female sex-specific hypertensive heart disease. Recent insights from rodent models that mimic the cardiac phenotype of an estrogen-insufficient or -deficient woman (e.g., premature ovarian failure or postmenopausal), including the ovariectomized congenic mRen2.Lewis female rat, provide evidence showing that estrogen modulates the tissue RAAS and NOS system and related intracellular signaling pathways, in part via the membrane G protein-coupled receptor 30 (GPR30; also called G protein-coupled estrogen receptor 1). Complementing the cardiovascular research in this field, the echocardiographic correlates of LVDD as well as inherent limitations to its use in preclinical rodent studies will be briefly presented. Understanding the roles of estrogen and GPR30, their interactions with the local RAAS and NOS system, and the relationship of each of these to LVDD is necessary to identify new therapeutic targets and alternative treatments for diastolic heart failure that achieve the cardiovascular benefits of estrogen replacement without its side effects and contraindications. PMID:24414072

  12. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways. PMID:24888717

  13. Short-term nitric oxide inhibition induces progressive nephropathy after regression of initial renal injury.

    PubMed

    Fujihara, Clarice K; Sena, Claudia R; Malheiros, Denise M A C; Mattar, Ana L; Zatz, Roberto

    2006-03-01

    Chronic nitric oxide (NO) inhibition and salt overload (HS) promote severe hypertension and renal injury, which regress quickly, although not completely, on treatment withdrawal. We investigated whether renal function and structure remain stable 6 mo after cessation of these treatments. Adult male Munich-Wistar rats were distributed among three groups: HS, receiving 3.1% Na diet; HS+N, receiving HS and the NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 30 mg.kg(-1).day(-1) orally); and HS+N+L, receiving HS+N and the ANG II blocker losartan (L; 50 mg.kg(-1).day(-1) orally). In studies performed after 20 days of treatment (protocol 1), HS+N rats exhibited severe glomerular and systemic hypertension, massive albuminuria, glomerular and interstitial injury, and infiltration by macrophages and cells expressing ANG II. These abnormalities were largely prevented in the HS+N+L group. A second cohort (protocol 2) received HS+N for 20 days, followed by a conventional (0.5% Na) diet and no l-NAME treatment during the subsequent 30 days. At this time, systemic and glomerular pressure, along with parameters of renal injury and inflammation, were still higher than in HS or HS+N+L rats, although differences were much smaller than in protocol 1. Six months after 20-day l-NAME/salt overload treatment was ceased (protocol 3), severe albuminuria, hypertension, and renal injury developed in HS+N rats. Again, losartan prevented most of these changes. We conclude 1) short-term HS+N treatment triggers the autonomous development of progressive glomerulosclerosis; 2) this process may involve activation of the AT(1) receptor; and 3) temporary HS+N treatment may represent a new model of slowly progressive chronic nephropathy. PMID:16204410

  14. Endothelial Nitric Oxide Synthase Deficient Mice Are Protected from Lipopolysaccharide Induced Acute Lung Injury

    PubMed Central

    Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Ham III, P. Benson; Meadows, Mary Louise; Cherian-Shaw, Mary; Kangath, Archana; Sridhar, Supriya; Lucas, Rudolf; Black, Stephen M.

    2015-01-01

    Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria induces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflammation, diffuse alveolar damage, and severe respiratory insufficiency. We have previously reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instillation of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the LPS mediated increase in inflammatory cell infiltration, inflammatory cytokine production, and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation and improved lung mechanics. The protection in eNOS-/- mice was associated with an attenuated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive species play an important role in the development of LPS-mediated lung injury. PMID:25786132

  15. Targeted Nitric Oxide Delivery by Supramolecular Nanofibers for the Prevention of Restenosis After Arterial Injury

    PubMed Central

    Bahnson, Edward S.M.; Kassam, Hussein A.; Moyer, Tyson J.; Jiang, Wulin; Morgan, Courtney E.; Vercammen, Janet M.; Jiang, Qun; Flynn, Megan E.; Stupp, Samuel I.

    2016-01-01

    Abstract Aims: Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. Results: Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. Innovation: This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. Conclusion: We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases. Antioxid. Redox Signal. 27, 401–418. PMID:26593400

  16. Protective Role of Nitric Oxide in Ischemia and Reperfusion Injury of the Liver

    PubMed Central

    Shimamura, Tsuyoshi; Zhu, Yue; Zhang, Shimin; Jin, Maeng Bong; Ishizaki, Naoki; Urakami, Atsushi; Totsuka, Eishi; Kishida, Akihiro; Lee, Randall; Subbotin, Vladimir; Furukawa, Hiroyuki; Starzl, Thomas E; Todo, Satoru

    2010-01-01

    Background The suppressed production of nitric oxide (NO), associated with endothelial dysfunction, is thought to be a cause of ischemia and reperfusion injury of the liver. But findings of the salutary effects of NO enhancement on such injury have been conflicting. In this study, we tested our hypothesis that NO enhancement would attenuate ischemic liver injury. For this purpose, an NO precursor, L-arginine, and a novel NO donor, FK409, were applied to a 2-hour total hepatic vascular exdusion model in dogs. Study Design L-arginine was administered IV at a dose of 100 mg/kg twice (n = 5), while 300 mg/kg twice of FK409 was infused continuously into the portal vein (n = 5). The drugs were given to the animals for 30 and 60 minutes before and after ischemia, respectively. Nontreated animals were used as the control (n = 10). Two-week survival, systemic and hepatic hemodynamics indices, liver function tests, energy metabolism, and histopathology were analyzed. Results Both treatments comparably augmented hepatic tissue blood flow, decreased liver enzyme release, and increased high-energy phosphate restoration during the reperfusion period, all of which contributed to rescuing all of the treated animals from the 2-hour total hepatic ischemia. In contrast, ischemia caused 70% mortality in the control group. Histologically, structural abnormality and neutrophil infiltration were markedly attenuated by the treatments. Systemic hypotension was observed in the animals treated with FK409, however. Conclusions Our data demonstrate that NO enhancement alleviates the liver injury caused by ischemia and reperfusion. The supplementation of L-arginine, rather than FK409, is considered more applicable to clinical use because of the absence of systemic adverse effects. PMID:9915241

  17. Studies on electrochemical oxidation of estrogenic disrupting compound bisphenol AF and its interaction with human serum albumin.

    PubMed

    Wang, Xin; Yang, Jichun; Wang, Yuejiao; Li, Yanhui; Wang, Fang; Zhang, Lei

    2014-07-15

    Bisphenol AF (BPAF) is an environmental pollutant to disrupt endocrine system or cause cancer, thus the detection of trace BPAF is very important. In this study, a simple and highly sensitive electroanalytical method for the determination of BPAF was developed. In pH 6.0 phosphate buffer solutions, carboxyl functionalized multi-walled carbon nanotubes (MWCNT-COOH) modified glassy carbon electrode exhibits an enhanced effectiveness for the oxidation of BPAF. This electrode exhibited two linear relationships with BPAF concentration range of 0.02μmolL(-1) to 8.0μmolL(-1) and a detection limit of 0.0077μmolL(-1) (S/N=3). The proposed method was successfully applied to determine BPAF in real samples and the results were satisfactory. The MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. The electrochemistry and spectroscopy methods are also described for the evaluation of BPAF-HSA interaction. In the presence of HSA, the peak currents of BPAF decreased linearly due to the formation of a super-molecular complex. The binding constant between BPAF and HSA, obtained by differential pulse voltammetry (DPV), was consistent with the fluorescence analysis. The molecular modeling studies were carried out to clearly describe the interaction between BPAF and HSA. PMID:24866560

  18. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury.

    PubMed

    Jansová, Hana; Macháček, Miloslav; Wang, Qin; Hašková, Pavlína; Jirkovská, Anna; Potůčková, Eliška; Kielar, Filip; Franz, Katherine J; Simůnek, Tomáš

    2014-09-01

    Oxidative stress is a common denominator of numerous cardiovascular disorders. Free cellular iron catalyzes the formation of highly toxic hydroxyl radicals, and iron chelation may thus be an effective therapeutic approach. However, using classical iron chelators in diseases without iron overload poses risks that necessitate more advanced approaches, such as prochelators that are activated to chelate iron only under disease-specific oxidative stress conditions. In this study, three cell-membrane-permeable iron chelators (clinically used deferasirox and experimental SIH and HAPI) and five boronate-masked prochelator analogs were evaluated for their ability to protect cardiac cells against oxidative injury induced by hydrogen peroxide. Whereas the deferasirox-derived agents TIP and TRA-IMM displayed negligible protection and even considerable toxicity, the aroylhydrazone prochelators BHAPI and BSIH-PD provided significant cytoprotection and displayed lower toxicity after prolonged cellular exposure compared to their parent chelators HAPI and SIH, respectively. Overall, the most favorable properties in terms of protective efficiency and low inherent cytotoxicity were observed with the aroylhydrazone prochelator BSIH. BSIH efficiently protected both H9c2 rat cardiomyoblast-derived cells and isolated primary rat cardiomyocytes against hydrogen peroxide-induced mitochondrial and lysosomal dysregulation and cell death. At the same time, BSIH was nontoxic at concentrations up to its solubility limit (600 μM) and in 72-h incubation. Hence, BSIH merits further investigation for prevention and/or treatment of cardiovascular disorders associated with a known (or presumed) component of oxidative stress. PMID:24992833

  19. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury

    PubMed Central

    Jansová, Hana; Macháček, Miloslav; Wang, Qin; Hašková, Pavlína; Jirkovská, Anna; Potůčková, Eliška; Kielar, Filip; Franz, Katherine J.; Šimůnek, Tomáš

    2014-01-01

    Oxidative stress is a common denominator of numerous cardiovascular disorders. Free cellular iron catalyzes formation of highly toxic hydroxyl radicals and iron chelation may thus be an effective therapeutic approach. However, using classical iron chelators in diseases without iron overload poses risks that necessitate more advanced approaches, such as prochelators that are activated to chelate iron only under disease-specific oxidative stress conditions. In this study, three cell membrane-permeable iron chelators (clinically-used deferasirox and experimental SIH and HAPI) and five boronate-masked prochelator analogs were evaluated for their ability to protect cardiac cells against oxidative injury induced by hydrogen peroxide. Whereas the deferasirox-derived agents TIP and TRA-IMM displayed negligible protection and even considerable toxicity, aroylhydrazone prochelators BHAPI and BSIH-PD provided significant cytoprotection and displayed lower toxicity following prolonged cellular exposure compared to their parent chelators HAPI and SIH, respectively. Overall, the most favorable properties in terms of protective efficiency and low inherent cytotoxicity were observed with aroylhydrazone prochelator BSIH. BSIH efficiently protected both H9c2 rat cardiomyoblast-derived cells as well as isolated primary rat cardiomyocytes against hydrogen peroxide-induced mitochondrial and lysosomal dysregulation and cell death. At the same time, BSIH was non-toxic at concentrations up to its solubility limit (600 µM) and 72-hour incubation. Hence, BSIH merits further investigation for prevention and/or treatment of cardiovascular disorders associated with a known (or presumed) component of oxidative stress. PMID:24992833

  20. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    PubMed Central

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  1. Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Reid, W. Darlene; Harris, R. Luke; Jafari, Siavash; Powers, Scott K.; O'Brien, Peter J.

    2012-08-01

    During orthopedic procedures, the tourniquets used to maintain bloodless surgical fields cause ischemia and then reperfusion (I/R), leading to oxidative muscle injury. Established methods exist neither for monitoring orthopedic I/R nor for predicting the extent of tourniquet-associated oxidative injury. To develop a predictive model for tourniquet-associated oxidative muscle injury, this study combined real-time near-infrared spectroscopy (NIRS) monitoring of I/R with Western blotting (WB) for oxidized proteins. We hypothesized strong correlations between NIRS-derived I/R indices and muscle protein oxidation. In 17 patients undergoing ankle fracture repair, a thigh tourniquet was inflated on the injured limb (300 mmHg). Using a continuous-wave (CW) NIRS setup, oxygenated (O2Hb), deoxygenated (HHb), and total (tHb) hemoglobin were monitored bilaterally (tourniquet versus control) in leg muscles. Leg muscle biopsies were collected unilaterally (tourniquet side) immediately after tourniquet inflation (pre) and before deflation (post). Average ischemia duration was 43.2±14.6 min. In post-compared to pre-biopsies, muscle protein oxidation (quantified using WB) increased 172.3%±145.7% (P<0.0005). Changes in O2Hb and tHb were negatively correlated with protein oxidation (respectively: P=0.040, R2=0.25 and P=0.003, R2=0.58). Reoxygenation rate was positively correlated with protein oxidation (P=0.041, R2=0.25). These data indicate that using CW NIRS, it is possible to predict orthopedic tourniquet-associated muscle oxidative injury noninvasively.

  2. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy; Gow, Andrew J.; Sinko, Patrick J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  3. Estrogens, cartilage, and osteoarthritis.

    PubMed

    Richette, Pascal; Corvol, Maïté; Bardin, Thomas

    2003-08-01

    A role for estrogens in osteoarthritis is consistent with the larger increases in women than in men in the incidence and prevalence of hip, knee, and finger osteoarthritis after 50 years of age. Furthermore, hormone replacement therapy for the menopause seems to be associated with a decrease in the prevalence of symptoms and radiological alterations related to hip and knee osteoarthritis. The two estrogen receptors alpha and beta (ERalpha and Erbeta) have been identified in normal and osteoarthritic cartilage, indicating that cartilage can respond to estrogens. Finally, in vivo experiments in animals and in vitro studies have shed light on the mechanisms by which estrogens may influence chondrocyte metabolism. PMID:12951307

  4. Estrogen effects in allergy and asthma

    PubMed Central

    Bonds, Rana S.; Midoro-Horiuti, Terumi

    2012-01-01

    Purpose of review Asthma prevalence and severity are greater in women than in men, and mounting evidence suggests this is in part related to female steroid sex hormones. Of these, estrogen has been the subject of much study. This review highlights recent research exploring the effects of estrogen in allergic disease. Recent findings Estrogen receptors are found on numerous immunoregulatory cells and estrogen’s actions skew immune responses toward allergy. It may act directly to create deleterious effects in asthma, or indirectly via modulation of various pathways including secretory leukoprotease inhibitor, transient receptor potential vanilloid type 1 ion channel and nitric oxide production to exert effects on lung mechanics and inflammation. Not only do endogenous estrogens appear to play a role, but environmental estrogens have also been implicated. Environmental estrogens (xenoestrogens) including bisphenol A and phthalates enhance allergic sensitization in animal models and may enhance development of atopic disorders like asthma in humans. Summary Estrogen’s role in allergic disease remains complex. As allergic diseases continue to increase in prevalence and affect women disproportionately, gaining a fuller understanding of its effects in these disorders will be essential. Of particular importance may be effects of xenoestrogens on allergic disease. PMID:23090385

  5. Correlation of Oxidative and Antioxidative Processes in the Blood of Patients with Cervical Spinal Cord Injury

    PubMed Central

    Woźniak, Bartosz; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Kasprzak, Heliodor Adam

    2016-01-01

    The effect of cervical spinal cord injury (CSCI) on oxidative stress parameters was assessed. The study was conducted in 42 patients with CSCI (studied group), 15 patients with cerebral concussion, without CSCI (Control II), and 30 healthy volunteers (Control I). Blood was taken from the basilic vein: before and seven days after the spinal cord decompression surgery (mean time from CSCI to surgery: 8 hours) in the studied group and once in the controls. Thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD) concentrations, and glutathione peroxidase (GPx), catalase (CAT), and creatine kinase (CK) activities before the surgery were higher in the studied group than in the controls. Reduced glutathione concentration was similar in all groups. Superoxide dismutase (SOD) in the studied group was 16% lower (P ≤ 0.001) than in Control I. Lipid peroxidation products, and GPx and CAT activities in erythrocytes seven days after the surgery were lower (P ≤ 0.001), while SOD was 25% higher (P ≤ 0.001) than before the surgery. CK in blood plasma after the surgery was 34% lower (P ≤ 0.001) than before it. CSCI is accompanied by oxidative stress. Surgical and pharmacological treatment helps to restore the oxidant-antioxidant balance. PMID:26881034

  6. p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy

    PubMed Central

    Xu, Xiaoxuan; Zhu, Xuejing; Ma, Mingming; Han, Yachun; Hu, Chun; Yuan, Shuguang; Yang, Yuan; Xiao, Li; Liu, Fuyou; Kanwar, Yashpal S.; Sun, Lin

    2016-01-01

    Increased p66Shc expression has been associated with diabetic nephropathy (DN). However, whether p66Shc can serve as a potential biomarker for tubular oxidative injury in DN is unknown. We measured the expression of p66Shc in peripheral blood monocytes (PBMs) and renal biopsy tissues from DN patients and then analysed the relationship between p66Shc expression and the clinical characteristics of patients with DN. Patients were divided into 4 groups (class IIa, class IIb, class III and the control group). qPCR, Western blotting and immunohistochemistry were performed. The results showed that both p66Shc and p-p66Shc expression significantly increased in PBMs and kidney tissues of DN patients. Moreover, Spearman’s correlation and multiple regression analyses were carried out. A positive relationship between the p66Shc expression and oxidative stress was found. p66Shc and oxidative stress were significant predictors of the degree of tubular damage. In addition, p66Shc expression was positively correlated with the concentrations of β-NAG, UACR and 8-OHdG, low-density lipoprotein and blood glucose levels, and duration of diabetes in patients with DN from class IIa to class III. These data indicated that increased expression of p66Shc may serve as a therapeutic target and a novel biomarker of DN. PMID:27377870

  7. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  8. Chronic estrogen deficiency in mice alters FoxO1 signaling in a mixed fiber skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, characterized by reduced estrogen levels, is associated with increased adiposity and metabolic pathology. Molecular mechanisms underlying this association between low estrogen status and metabolic disease are not fully elucidated. Dysregulated skeletal muscle fatty acid oxidation (FAO) pr...

  9. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    PubMed

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications. PMID:26078397

  10. Nitric Oxide-Releasing Aspirin Suppresses NF-κB Signaling in Estrogen Receptor Negative Breast Cancer Cells in Vitro and in Vivo.

    PubMed

    Nath, Niharika; Chattopadhyay, Mitali; Rodes, Deborah B; Nazarenko, Anna; Kodela, Ravinder; Kashfi, Khosrow

    2015-01-01

    Estrogen receptor negative (ER(-)) breast cancer is aggressive, responds poorly to current treatments and has a poor prognosis. The NF-κB signaling pathway is implicated in ER(-) tumorigenesis. Aspirin (ASA) is chemopreventive against ER(+) but not for ER(-) breast cancers. Nitric oxide-releasing aspirin (NO-ASA) is a safer ASA where ASA is linked to an NO-releasing moiety through a spacer. In vitro, we investigated anti-proliferation effects of NO-ASA (para- and meta-isomers) against ER(-) breast cancer cells MDA-MB-231 and SK-BR-23, effects on NF-κB signaling, and reactive oxygen species by standard techniques. In vivo, effects of NO-ASA were evaluated in a mouse xenograft model using MDA-MB-231 cells. p-NO-ASA inhibited the growth of MDA-MB-231 and SK-BR-3 cells at 24 h, the respective IC50s were 13 ± 2 and 17 ± 2 μM; ASA had an IC50 of >3000 μM in both cell lines. The IC50s for m-NO-ASA in MDA-MB-231 and SK-BR-3 were 173 ± 15 and 185 ± 12 μM, respectively, therefore, implying p-NO-ASA as a stronger inhibitor of growth p-NO-ASA reduced cell growth by inhibiting proliferation, inducing apoptosis and causing G0/G1 cell cycle block. Activation of NF-κB was inhibited by both isomers as demonstrated by decreases in NF-κB-DNA binding and luciferase activity at 24 h, However, m-NO-ASA produced transient effects at 3 h such as increased NF-κB-DNA-binding, increased levels of nuclear p50, even though both isomers inhibited IκB degradation. Increase in nuclear p50 by m-NO-ASA was associated with translocation of p50 in to the nucleus as observed by immunoflouresence at 3 h. NO-ASA induced reactive oxygen species (ROS) as evidenced by overall increases in both H2DCFDA (2',7'-dichlorodihydrofluorescein) and DHE (dihydroethidium)-derived fluorescence. Inhibition of ROS by N-acetyl-cysteine reversed the m-NO-ASA-mediated translocation of p50 in to the nucleus. In xenografts, p-NO-ASA inhibited tumor growth by inhibiting proliferation (PCNA and tumor volume

  11. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1

    PubMed Central

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Introduction: Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Methods: Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Results: In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Conclusions: Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury. PMID:26884836

  12. A Protective Hsp70-TLR4 Pathway in Lethal Oxidant Lung Injury

    PubMed Central

    Zhang, Yi; Zhang, Xuchen; Shan, Peiying; Hunt, Clayton R.; Pandita, Tej K.; Lee, Patty J.

    2013-01-01

    Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that toll-like receptor 4 (TLR4) confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild type, TLR4−/− and Trif−/− (a TLR4 adapter protein) murine lung endothelial cells (MLEC) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from mice lung and MLEC after hyperoxia. We confirmed that Hsp70 and TLR4 co-immunoprecipitate in lung tissue and MLEC. Hsp70-mediated NFκB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif-dependent, MyD88-independent. Hsp70-deficient mice have increased mortality during hyperoxia and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild type mice. Our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries. PMID:23817427

  13. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    PubMed Central

    Wang, Liangrong; Shan, Yuanlu; Chen, Lei; Lin, Bi; Xiong, Xiangqing; Lin, Lina; Jin, Lida

    2016-01-01

    Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups IR group, colchicine treated-IR (CO) group and sham operation (SM) group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg) was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD) and myeloperoxidase (MPO) activities, and malondialdehyde (MDA), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the muscle samples. Plasma creatinine kinase (CK) and lactate dehydrogenase (LDH) levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D) ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P<0.05). Colchicine treatment significantly reduced muscle damage and edema, oxidative stress and levels of the inflammatory parameters in the CO group compared to the IR group (P<0.05). Conclusion: Colchicine attenuates IR-induced skeletal muscle injury in rats. PMID:27482349

  14. Sesamin Ameliorates High-Fat Diet–Induced Dyslipidemia and Kidney Injury by Reducing Oxidative Stress

    PubMed Central

    Zhang, Ruijuan; Yu, Yan; Deng, Jianjun; Zhang, Chao; Zhang, Jinghua; Cheng, Yue; Luo, Xiaoqin; Han, Bei; Yang, Haixia

    2016-01-01

    The study explored the protective effect of sesamin against lipid-induced renal injury and hyperlipidemia in a rat model. An animal model of hyperlipidemia was established in Sprague-Dawley rats. Fifty-five adult Sprague-Dawley rats were divided into five groups. The control group was fed a standard diet, while the other four groups were fed a high-fat diet for 5 weeks to induce hyperlipidemia. Three groups received oral sesamin in doses of 40, 80, or 160 mg/(kg·day). Seven weeks later, the blood lipids, renal function, antioxidant enzyme activities, and hyperoxide levels in kidney tissues were measured. The renal pathological changes and expression levels of collagen type IV (Col-IV) and α-smooth muscle actin (α-SMA) were analyzed. The administration of sesamin improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, apolipoprotein-B, oxidized-low-density lipoprotein, and serum creatinine levels in hyperlipidemic rats, while it increased the high-density lipoprotein cholesterol and apolipoprotein-A levels. Sesamin reduced the excretion of 24-h urinary protein and urinary albumin and downregulated α-SMA and Col-IV expression. Moreover, sesamin ameliorated the superoxide dismutase activity and reduced malondialdehyde levels in kidney tissue. Sesamin could mediate lipid metabolism and ameliorate renal injury caused by lipid metabolism disorders in a rat model of hyperlipidemia. PMID:27171111

  15. Thymoquinone Protects against Myocardial Ischemic Injury by Mitigating Oxidative Stress and Inflammation

    PubMed Central

    Ojha, Shreesh; Azimullah, Sheikh; Mohanraj, Rajesh; Sharma, Charu; Yasin, Javed; Arya, Dharamvir S.; Adem, Abdu

    2015-01-01

    The present study was aimed at investigating the cardioprotective activity of thymoquinone (TMQ), an active principle of the herb, Nigella sativa, which is used for the management of various diseases. The present study examined the cardioprotective effect of TMQ in isoproterenol- (ISP-) induced myocardial infarction in rats. Myocardial infarction was induced by two subcutaneous injections of ISP (85 mg/kg) at an interval of 24 hr. TMQ (20 mg/kg) was administered orally for 21 days. ISP-treated rats showed depletion of antioxidants and marker enzymes from myocardium along with lipid peroxidation and enhanced levels of proinflammatory cytokines. ISP also induced histopathological alterations in myocardium. Treatment with TMQ prevented the depletion of endogenous antioxidants and myocyte injury marker enzymes and inhibited lipid peroxidation as well as reducing the levels of proinflammatory cytokines. TMQ pretreatment also reduced myonecrosis, edema, and infiltration of inflammatory cells and showed preservation of cardiomyocytes histoarchitecture. The present study results demonstrate that TMQ exerts cardioprotective effect by mitigating oxidative stress, augmenting endogenous antioxidants, and maintaining structural integrity. The results of the present study indicate that TMQ may serve as an excellent agent alone or as adjuvant to prevent the onset and progression of myocardial injury. PMID:26101531

  16. Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat.

    PubMed

    Duckrow, R B; LaManna, J C; Rosenthal, M; Levasseur, J E; Patterson, J L

    1981-05-01

    To assess the metabolic and vascular effects of head trauma, fluid-percussion pressure waves were transmitted to the brains of anesthetized, paralyzed, and artificially ventilated cats. Changes in the redox state of cytochrome a,a3, and relative local blood volume were measured in situ by dual-wavelength reflection spectrophotometry of the cortical surface viewed through an acrylic cranial window implanted within the closed skull. Initial fluid-percussion impacts of 0.5 to 2.8 atm peak pressure produced consistent transient oxidation of cytochrome a,a3 and increases of cortical blood volume. These changes occurred despite the presence of transient posttraumatic hypotension i some cases. Also, impact-induced alterations of vascular tone occurred, independent of the presence or absence of transient hypertension in the posttraumatic period. These data demonstrate that hypoxia does not play a role in the immediate posttraumatic period in cerebral cortex, and are consistent with the idea that after injury there is increased cortical energy conservation. These data also support the concept that head trauma alters the relationship of metabolism and cerebral circulation in the period immediately after injury. PMID:7229699

  17. [Prognostic value of the parameters of free radical oxidation in traumatic brain injury].

    PubMed

    Lvovskaya, E I; Derginskyi, N V; Sadova, V A; Symnaya, D B

    2016-01-01

    The dynamics of lipoperoxides content and activity of antioxidant (glutathione peroxidase, superoxide dismutase, catalase) and prooxidant (xanthine oxidase) enzymes were investigated in the blood and cerebrospinal fluid of patients with traumatic brain injury of various severity depending on the left- or right-hemisphere localization of injuries. Reciprocal relationship between lipid peroxidation and oxidative modification of proteins from first to 14th day, increase of the level of total antioxidant activity, accompanied with the growth of GP and catalase activity, against the background of decrease in SOD activity from 1 to 7 day have been revealed. Were set lower "average" content of lipid peroxides in the blood and cerebrospinal fluid of patients with the subsequent development of lethal results in compare with cases of favorable outcomes, decrease of geptanofilic lipid peroxides in serum below the reference level, as well as the reduction of antioxidant activity in the blood and cerebrospinal fluid, associated with a sharp falling in superoxide dismutase activity and a significant increase of xanthine oxidase activity, which preceded the lethal results. PMID:26973198

  18. Sesamin Ameliorates High-Fat Diet-Induced Dyslipidemia and Kidney Injury by Reducing Oxidative Stress.

    PubMed

    Zhang, Ruijuan; Yu, Yan; Deng, Jianjun; Zhang, Chao; Zhang, Jinghua; Cheng, Yue; Luo, Xiaoqin; Han, Bei; Yang, Haixia

    2016-01-01

    The study explored the protective effect of sesamin against lipid-induced renal injury and hyperlipidemia in a rat model. An animal model of hyperlipidemia was established in Sprague-Dawley rats. Fifty-five adult Sprague-Dawley rats were divided into five groups. The control group was fed a standard diet, while the other four groups were fed a high-fat diet for 5 weeks to induce hyperlipidemia. Three groups received oral sesamin in doses of 40, 80, or 160 mg/(kg·day). Seven weeks later, the blood lipids, renal function, antioxidant enzyme activities, and hyperoxide levels in kidney tissues were measured. The renal pathological changes and expression levels of collagen type IV (Col-IV) and α-smooth muscle actin (α-SMA) were analyzed. The administration of sesamin improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, apolipoprotein-B, oxidized-low-density lipoprotein, and serum creatinine levels in hyperlipidemic rats, while it increased the high-density lipoprotein cholesterol and apolipoprotein-A levels. Sesamin reduced the excretion of 24-h urinary protein and urinary albumin and downregulated α-SMA and Col-IV expression. Moreover, sesamin ameliorated the superoxide dismutase activity and reduced malondialdehyde levels in kidney tissue. Sesamin could mediate lipid metabolism and ameliorate renal injury caused by lipid metabolism disorders in a rat model of hyperlipidemia. PMID:27171111

  19. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress

    PubMed Central

    Lei, Tao; Li, Haifeng; Fang, Zhen; Lin, Junbin; Wang, Shanshan; Xiao, Lingyun; Yang, Fan; Liu, Xin; Zhang, Junjian; Huang, Zebo; Liao, Weijing

    2014-01-01

    Angelica sinensis has antioxidative and neuroprotective effects. In the present study, we aimed to determine the neuroprotective effect of polysaccharides isolated from Angelica sinensis. In a preliminary experiment, Angelica sinensis polysaccharides not only protected PC12 neuronal cells from H2O2-induced cytotoxicity, but also reduced apoptosis and intracellular reactive oxygen species levels, and increased the mitochondrial membrane potential induced by H2O2 treatment. In a rat model of local cerebral ischemia, we further demonstrated that Angelica sinensis polysaccharides enhanced the antioxidant activity in cerebral cortical neurons, increased the number of microvessels, and improved blood flow after ischemia. Our findings highlight the protective role of polysaccharides isolated from Angelica sinensis against nerve cell injury and impairment caused by oxidative stress. PMID:25206810

  20. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    PubMed Central

    Chen, Meihui; Hou, Yu; Lin, Dingkun

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:27022401

  1. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways.

    PubMed

    Chen, Meihui; Hou, Yu; Lin, Dingkun

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:27022401

  2. Fatal oxidative haemolysis and methaemoglobinaemia in a patient with alkaptonuria and acute kidney injury

    PubMed Central

    Mullan, Adam; Cocker, Derek; Taylor, Gordon; Millar, Colin; Ranganath, Lakshminarayan

    2015-01-01

    Alkaptonuria (AKU) is a rare inherited disorder of tyrosine metabolism, which leads to an accumulation of homogentisic acid (HGA) and is associated with a progressive arthropathy. Fatal complications are unusual and usually result from cardiac disease or progressive renal impairment; rapidly fatal haematological complications are exceptionally rare and described in only a handful of case reports. This case involves a 63-year-old male with AKU and modest chronic kidney disease who developed rapidly fatal haemolysis and methaemoglobinuria following an episode of acute kidney injury triggered by an obstructing ureteric calculus and urosepsis. The patient succumbed despite aggressive antioxidant therapy with ascorbic acid and n-acetyl cysteine. A rapid build-up of HGA due to reduced renal clearance, triggering oxidative haemolysis and methaemoglobinuria is proposed as the mechanism. Alternative strategies to consider when conventional antioxidants fail are discussed including the potent inhibitor of HGA production, nitisonone. PMID:25713720

  3. Ukrain (NSC 631570) ameliorates intestinal ischemia-reperfusion-induced acute lung injury by reducing oxidative stress

    PubMed Central

    Kocak, Cengiz; Kocak, Fatma Emel; Akcilar, Raziye; Akcilar, Aydin; Savran, Bircan; Zeren, Sezgin; Bayhan, Zulfu; Bayat, Zeynep

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) causes severe destruction in remote organs. Lung damage is a frequently seen complication after intestinal I/R. Ukrain (NSC 631570) is a synthetic thiophosphate derivative of alkaloids from the extract of the celandine (Chelidonium majus L.) plant. We investigated the effect of Ukrain in animals with lung injury induced by intestinal I/R. Adult male Spraque-Dawley rats were randomly divided into four groups: control, Ukrain, I/R, I/R with Ukrain. Before intestinal I/R was induced, Ukrain was administered intraperitoneally at a dose of 7.0 mg/body weight. After 1 h ischemia and 2 h reperfusion period, lung tissues were excised. Tissue levels of total oxidative status (TOS), total antioxidant status (TAS) were measured and oxidative stress indices (OSI) were calculated. Lung tissues were also examined histopathologically. TOS and OSI levels markedly increased and TAS levels decreased in the I/R group compared to the control group (P < 0.05). TOS and OSI levels markedly decreased and TAS levels increased in the I/R with Ukrain group compared with the group subjected to IR only (P < 0.05). Severe hemorrhage, alveolar septal thickening, and leukocyte infiltration were observed in the I/R group. In the I/R with Ukrain group, morphologic changes occurring as a result of lung damage attenuated and histopathological scores reduced compared to the I/R group (P < 0.05). Our results suggest that Ukrain pretreatment could reduce lung injury induced by intestinal I/R induced via anti-inflammatory and antioxidant effects. PMID:26773189

  4. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells.

    PubMed Central

    Schraufstätter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G

    1985-01-01

    Exposure of target cells to a bolus of H2O2 induced cell lysis after a latent period of several hours, which was prevented only when the H2O2 was removed within the first 30 min of injury by addition of catalase. This indicated that early metabolic events take place that are important in the fate of the cell exposed to oxidants. In this study, we described two early and independent events of H2O2-induced injury in P388D1 macrophagelike tumor cells: activation of the glutathione cycle and depletion of cellular NAD. Glutathione cycle and hexose monophosphate shunt (HMPS) were activated within seconds after the addition of H2O2. High HMPS activity maintained glutathione that was largely reduced. However, when HMPS activity was inhibited--by glucose depletion or by incubation at 4 degrees C--glutathione remained in the oxidized state. Total pyridine nucleotide levels were diminished when cells were exposed to H2O2, and the breakdown product, nicotinamide, was recovered in the extracellular medium. Intracellular NAD levels fell by 80% within 20 min of exposure of cells to H2O2. The loss of NADP(H) and stimulation of the HMPS could be prevented when the glutathione cycle was inhibited by either blocking glutathione synthesis with buthionine sulfoximine (BSO) or by inhibiting glutathione reductase with (1,3-bis) 2 chlorethyl-1-nitrosourea. The loss of NAD developed independently of glutathione cycle and HMPS activity, as it also occurred in BSO-treated cells. PMID:3840176

  5. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury

    PubMed Central

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H.; Barnes, Peter J.; Adcock, Ian M.; Huang, Mao

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  6. Ibuprofen prevents oxidant lung injury and in vitro lipid peroxidation by chelating iron.

    PubMed Central

    Kennedy, T P; Rao, N V; Noah, W; Michael, J R; Jafri, M H; Gurtner, G H; Hoidal, J R

    1990-01-01

    Because ibuprofen protects from septic lung injury, we studied the effect of ibuprofen in oxidant lung injury from phosgene. Lungs from rabbits exposed to 2,000 ppm-min phosgene were perfused with Krebs-Henseleit buffer at 50 ml/min for 60 min. Phosgene caused no increase in lung generation of cyclooxygenase metabolites and no elevation in pulmonary arterial pressure, but markedly increased transvascular fluid flux (delta W = 31 +/- 5 phosgene vs. 8 +/- 1 g unexposed, P less than 0.001), permeability to albumin (125I-HSA) lung leak index 0.274 +/- 0.035 phosgene vs. 0.019 +/- 0.001 unexposed, P less than 0.01; 125I-HSA lavage leak index 0.352 +/- 0.073 phosgene vs. 0.008 +/- 0.001 unexposed, P less than 0.01), and lung malondialdehyde (50 +/- 7 phosgene vs. 24 +/- 0.7 mumol/g dry lung unexposed, P less than 0.01). Ibuprofen protected lungs from phosgene (delta W = 10 +/- 2 g; lung leak index 0.095 +/- 0.013; lavage leak index 0.052 +/- 0.013; and malondialdehyde 16 +/- 3 mumol/g dry lung, P less than 0.01). Because iron-treated ibuprofen failed to protect, we studied the effect of ibuprofen in several iron-mediated reactions in vitro. Ibuprofen attenuated generation of .OH by a Fenton reaction and peroxidation of arachidonic acid by FeCl3 and ascorbate. Ibuprofen also formed iron chelates that lack the free coordination site required for iron to be reactive. Thus, ibuprofen may prevent iron-mediated generation of oxidants or iron-mediated lipid peroxidation after phosgene exposure. This suggests a new mechanism for ibuprofen's action. PMID:2173723

  7. Ventilator-induced lung injury is reduced in transgenic mice that overexpress endothelial nitric oxide synthase.

    PubMed

    Takenaka, Kaori; Nishimura, Yoshihiro; Nishiuma, Teruaki; Sakashita, Akihiro; Yamashita, Tomoya; Kobayashi, Kazuyuki; Satouchi, Miyako; Ishida, Tatsuro; Kawashima, Seinosuke; Yokoyama, Mitsuhiro

    2006-06-01

    Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space. PMID:16399791

  8. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  9. Effects of microRNA-139 on myocardial cell injury induced by oxidative stress

    PubMed Central

    Li, Tao; Liang, Sumei; Zhang, Yuxiu; Chen, Yongqing

    2015-01-01

    Objective: This study aims to explore the effects of miR-139 on myocardial cell injury induced by oxidative stress and its mechanisms. Methods: H9c2 cells were used in this study. They were divided into control group, H2O2 group, H2O2+miR-139-5-p NC group and H2O2+miR-139-5-p mimics group. Cell activity was detected by MTT method. ROS level was detected by DCFH-DA probe method. MDA and SOD levels and Caspase 3 activity were detected by spectrophotometry. The cell apoptosis was detected by Hoechst 33342 and Annexin V-FITC/PI staining methods. The expression levels of AKT, GSK-3β, Bax and Bcl-2 were determined by Western blotting methods. Results: It showed that the activity of H9c2 cells decreased with the increase of the dose of H2O2. The activity of miR-139-5-p in H9c2 cells decreased after treatment of H2O2 for 6 h (P<0.01). Compared with control group, cell activity in H2O2 group and H2O2+miR-139-5-p NC group decreased (P<0.01), ROS fluorescence intensity increased (P<0.01), MDA content increased (P<0.01), SOD content decreased (P<0.01), apoptosis degree, Caspase 3 activity and Bax levels increased (P<0.01), Bcl-2, AKT and GSK-3β decreased (P<0.01). However, they were opposite in H2O2+miR-139-5-p mimics compared with H2O2 group and H2O2+miR-139-5-p NC group. Conclusions: miR-139-5-p expressed low in oxidative stress of H9c2 cells induced by H2O2 and the oxidative stress injury could be inhibited after increasing the expression of miR-139-5-p, which could be related with the elimination of intracellular oxidative stress products and the resistance to apoptosis through AKT/GSK-3β signaling pathway. PMID:26884911

  10. Role of glutathione in protecting endothelial cells (EC) against H/sub 2/O/sub 2/ oxidant injury

    SciTech Connect

    Andreoli, S.P.; Mallett, C.; Bergstein, J.M.

    1986-03-01

    To determine the mechanism responsible for enhanced susceptibility of EC to oxidant injury in the absence of glucose, the authors determined EC injury (by /sup 3/HDOG release) in the presence of various oxygen radical scavengers (S) and they measured EC levels of glutathione following oxidant injury in the presence and absence of glucose. EC were damaged with oxygen radicals generated by phorbol myristate acetate (PMA) activated polymorphonuclear leukocytes (PMN) (90 minutes) or xanthine-xanthine oxidase (X-XO) (60 minutes) in the presence and absence of glucose and catalase (S of H/sub 2/O/sub 2/), superoxide dismutase (S of O/sub 2/-), isoleucine, valine, and serine (S of HOCl), or mannitol, ethanol, benzoic acid, dimethylsulfoxide and dimethylthiourea (S of OH/sup -/). In each oxygen radical generating system, in the presence and absence of glucose, only catalase significantly protected the EC from oxidant injury (P < 0.001). In the presence of glucose, EC glutathione levels were 10.3 +/- 4.7 nmoles/mg protein following a one hour exposure to 0.08 units/ml XO compared to 8.2 +/- 3.3 nmoles/mg protein in control EC (NS). In the absence of glucose EC glutathione levels decreased significantly (P < 0.01) to 4.3 +/- 1.3 nmoles/mg protein after a one hour exposure to 0.004 units/ml XO compared to 8.7 +/- 3.1 nmoles/mg protein in control EC. The authors conclude that H/sub 2/O/sub 2/ is the oxygen radical responsible for EC damage and that oxidant injury in the absence of glucose resulted in enhanced EC injury due to depletion of glutathione stores important in detoxifying H/sub 2/O/sub 2/.

  11. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    PubMed Central

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  12. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea.

    PubMed Central

    Fox, R B

    1984-01-01

    Toxic, partially reduced metabolites of oxygen (toxic oxygen radicals) are increasingly implicated in acute leukocyte-mediated tissue injury. To further probe the roles of oxygen radicals in acute lung edema, I studied the effects of a recently described and very potent oxygen radical scavenger, dimethylthiourea (DMTU) (Fox, R. B., R. N. Harada, R. M. Tate, and J. E. Repine, 1983, J. Appl. Physiol., 55:1456-1459) on polymorphonuclear leukocyte (PMN) oxidant function and on two types of lung injury mediated by oxygen radicals and PMN. DMTU (10 mM) blocked 79% of hydroxyl radical (OH) production by PMN in vitro without interfering with other PMN functions, such as O-2 production, myeloperoxidase activity, chemotaxis, degranulation, or aggregation. When isolated rat lung preparations were perfused with PMN activated to produce OH, lung weights were increased from 2.3 +/- 0.2 to 11.2 +/- 0.8 g. DMTU (10 mM) prevented 70% of these increases (lung weights, 5.0 +/- 1.1 g, P less than 0.005). Finally, when intact rats were exposed to 100% O2 for 66 h, lung weight:body weight ratios were increased from 5.78 +/- 0.33 to 8.87 +/- 0.16 g. DMTU (500 mg/kg) prevented 83% of this hyperoxia-induced lung edema in vivo (lung:body weight ratios, 6.05 +/- 0.21, P less than 0.001). Pharmacokinetic studies showed that DMTU diffused effectively into lung interstitial fluids and had a relatively long half-life (25-35 h) in the circulation. Because a variety of oxygen radicals, such as superoxide (O-2), hydrogen peroxide (H2O2), or OH are produced by PMN, there is usually some uncertainty about which one is responsible for injury. However, in these studies, DMTU did not scavenge O-2 and scavenged H2O2 only very slowly while scavenging OH very effectively. Therefore, DMTU may be useful in the investigation of the roles of oxygen radicals, especially OH, in acute granulocyte-mediated tissue injury. PMID:6090504

  13. Remote effect of kidney ischemia-reperfusion injury on pancreas: role of oxidative stress and mitochondrial apoptosis

    PubMed Central

    Abogresha, Noha M.; Abdelaziz, Eman Z.; Khalil, Waleed F.

    2015-01-01

    Introduction Recent studies have demonstrated remote effects of renal ischemia/reperfusion (IR) injury on some organs such as brain, liver, and lungs. Oxidative stress is reported to be the cornerstone in such ischemic conditions. Associated apoptosis is also reported in remote lung, liver and myocardial injury after acute kidney injury. So, we postulated that renal IR may affect the pancreas by its remote effect. Oxidative stress and mitochondrial mediated apoptosis may play a crucial role in this injury. We investigated the effects of kidney IR on pancreatic exocrine and endocrine functions, antioxidant enzyme activity, and apoptosis. Material and methods The protective effect of vitamin C was also investigated. The animals were submitted to non-traumatic bilateral renal IR, sham operation or treatment with vitamin C after IR. Rats were sacrificed on the 1st, 3rd, and 7th days of the experiment to evaluate the parameters of oxidative stress (catalase, lipid peroxidase, reduced glutathione and superoxide dismutase), pancreatic endocrine and exocrine function (amylase, insulin and fasting blood glucose), renal functions (serum creatinine and blood urea nitrogen), cellular injury and apoptotic markers (Bcl-2, Bax and caspase-3). Results Kidney I/R significantly increased the renal and pancreatic functions at 1, 3 and 7 days, while fasting insulin was significantly increased at day 3 after ischemia. Moreover, I/R significantly increased the studied oxidative stress markers and decreased the antioxidant capacity in pancreatic tissues. In addition, renal I/R induced numerous histopatological lesions in pancreatic tissues and increased the apoptosis-related genes. Treating the rats with vitamin C (100 mg/kg) significantly restored the renal and pancreatic functions, improved the pancreatic antioxidant capacity and protected the pancreatic tissues from apoptotic necrosis. Conclusions The results suggested that bilateral renal ischemia for 45 min caused significant

  14. Estrogen Actions on Mitochondria-Physiological and Pathological Implications

    PubMed Central

    Simpkins, James W.; Yang, ShaoHua; Sarkar, Saumyendra N.; Pearce, Virginia

    2009-01-01

    Estrogens are potent neuroprotective hormones and mitochondria are the site of cellular life-death decisions. As such, it is not surprising that we and other have shown that estrogens have remarkable effects on mitochondrial function. Herein we provide evidence for a primary effect of estrogens on mitochondrial function, achieved in part by the import of estrogen receptor β (ERβ) into the mitochondria where it mediates a number of estrogen actions on this vital organelle. ERβ is imported into the mitochondria, through tethering to cytosolic chaperone protein and/or through direct interaction with mitochondrial import proteins. In the mitochondria, ERβ can affect transcription of critical mitochondrial genes through the interaction with estrogen response elements (ERE) or through protein-protein interactions with mitochondrially imported transcription factors. The potent effects of estrogens on mitochondrial function, particularly during mitochondrial stress, argues for a role of estrogens in the treatment of mitochondrial defects in chronic neurodegenerative diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD) and more acute conditions of mitochondrial compromise, like cerebral ischemia and traumatic brain injury. PMID:18571833

  15. Regular exercise alleviates renovascular hypertension-induced cardiac/endothelial dysfunction and oxidative injury in rats.

    PubMed

    Kumral, Z N O; Sener, G; Ozgur, S; Koc, M; Suleymanoglu, S; Hurdag, C; Yegen, B C

    2016-02-01

    alterations in echocardiographic and oxidative parameters. Regular exercise commenced after RVH surgery alleviated renovascular hypertension-induced oxidative injury, by modulating oxidant-antioxidant balance via the involvement of the endothelial NO system. PMID:27010894

  16. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress.

    PubMed

    Zhong, Dandan; Wang, Hongkai; Liu, Ming; Li, Xuechen; Huang, Ming; Zhou, Hong; Lin, Shuqian; Lin, Zhibin; Yang, Baoxue

    2015-01-01

    Ganoderma lucidum polysaccharide peptide (GLPP) scavenges oxygen free radicals that are a key factor in the pathogenesis of renal ischemia reperfusion injury (RIRI). The aim of this study was to determine whether GLPP could attenuate RIRI by counteracting the oxidative stress. The mechanism involved was assessed by an in vivo mouse RIRI model and an in vitro hypoxia/reoxygenation model, and tunicamycin-stimulated NRK-52E cells were used to explore the GLPP-mediated alleviation of ER stress. Experimental results showed that renal dysfunction and morphological damage were reduced in GLPP-treated group. The imbalance of redox status was reversed and production of ROS was reduced by GLPP. RIRI-induced mitochondrial- and ER stress-dependent apoptosis were dramatically inhibited in GLPP-treated group. Intriguingly, JNK activation in the kidney with RIRI or hypoxia/reoxygenation was inhibited by GLPP. These results suggest that the protective effect of GLPP against RIRI may be due to reducing oxidative stress, alleviating the mitochondrial and ER stress-dependent apoptosis caused by excessive ROS. PMID:26603550

  17. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep.

    PubMed

    Deng, Shoulong; Yu, Kun; Wu, Qian; Li, Yan; Zhang, Xiaosheng; Zhang, Baolu; Liu, Guoshi; Liu, Yixun; Lian, Zhengxing

    2016-01-01

    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis. PMID:26640618

  18. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress.

    PubMed

    Martin, Erica; Rosenthal, Robert E; Fiskum, Gary

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  19. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress

    PubMed Central

    Zhong, Dandan; Wang, Hongkai; Liu, Ming; Li, Xuechen; Huang, Ming; Zhou, Hong; Lin, Shuqian; Lin, Zhibin; Yang, Baoxue

    2015-01-01

    Ganoderma lucidum polysaccharide peptide (GLPP) scavenges oxygen free radicals that are a key factor in the pathogenesis of renal ischemia reperfusion injury (RIRI). The aim of this study was to determine whether GLPP could attenuate RIRI by counteracting the oxidative stress. The mechanism involved was assessed by an in vivo mouse RIRI model and an in vitro hypoxia/reoxygenation model, and tunicamycin-stimulated NRK-52E cells were used to explore the GLPP-mediated alleviation of ER stress. Experimental results showed that renal dysfunction and morphological damage were reduced in GLPP-treated group. The imbalance of redox status was reversed and production of ROS was reduced by GLPP. RIRI-induced mitochondrial- and ER stress-dependent apoptosis were dramatically inhibited in GLPP-treated group. Intriguingly, JNK activation in the kidney with RIRI or hypoxia/reoxygenation was inhibited by GLPP. These results suggest that the protective effect of GLPP against RIRI may be due to reducing oxidative stress, alleviating the mitochondrial and ER stress-dependent apoptosis caused by excessive ROS. PMID:26603550

  20. Dexmedetomidine Pretreatment Attenuates Kidney Injury and Oxidative Stress during Orthotopic Autologous Liver Transplantation in Rats

    PubMed Central

    Wu, Shan; Jin, Yi; Wang, Yiheng; Cai, Jun

    2016-01-01

    This paper aims to explore whether pretreatment with dexmedetomidine (Dex) has antioxidative and renal protective effects during orthotopic autologous liver transplantation (OALT) and its impact on nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Sprague-Dawley rats were randomized into groups that include sham-operated (group S), model (group M), low dose Dex (group D1), high dose Dex (group D2), atipamezole (a nonspecific α2 receptor blocker) + high dose Dex (group B1), ARC239 (a specific α2B/c receptor blocker) + high dose Dex (group B2), and BRL-44408 (a specific α2A receptor blocker) + high dose Dex (group B3). Then histopathologic examination of the kidneys and measurement of renal function, the renal Nrf2 protein expression, and oxidants and antioxidants were performed 8 hours after OALT. We found that pretreatment with Dex activated Nrf2 in glomerular cells and upregulated antioxidants but reduced oxidants (all P < 0.01, group D2 versus group M). Atipamezole and BRL-44408, but not ARC239, reversed these protective effects. In conclusion, pretreatment with Dex activates Nrf2 through α2A receptor, increases the antioxidant levels, and attenuates renal injury during OALT. PMID:26682005

  1. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  2. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    PubMed

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J

    2016-01-01

    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  3. Pyruvate Dehydrogenase Complex: Metabolic Link to Ischemic Brain Injury and Target of Oxidative Stress

    PubMed Central

    Martin, Erica; Rosenthal, Robert E.; Fiskum, Gary

    2008-01-01

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO2. This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-l-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-l-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  4. Perspectives on Molecular Biomarkers of Oxidative Stress and Antioxidant Strategies in Traumatic Brain Injury

    PubMed Central

    Mendes Arent, André; de Souza, Luiz Felipe; Walz, Roger; Dafre, Alcir Luiz

    2014-01-01

    Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies. PMID:24689052

  5. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep

    PubMed Central

    Deng, Shoulong; Yu, Kun; Wu, Qian; Li, Yan; Zhang, Xiaosheng; Zhang, Baolu; Liu, Guoshi; Liu, Yixun; Lian, Zhengxing

    2016-01-01

    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis. PMID:26640618

  6. Estrogens and Prostate Cancer: Etiology, Mediators, Prevention, and Management

    PubMed Central

    Ho, Shuk-Mei; Lee, Ming-tsung; Lam, Hung-Ming; Leung, Yuet-Kin

    2011-01-01

    The relationship between hormones and the pathogenesis of prostate cancer (PCa) has been studied extensively. All the mainstay targets for hormonal PCa therapies are based on negating androgen action. Recent epidemiologic and experimental data have clearly pinpointed the key roles of estrogens in PCa development and progression. Racial and geographical differences, as well as age-associated changes, in estrogen synthesis and metabolism contribute significantly to the etiology by increasing the ratio of circulating estrogen to androgen, sex hormone binding globulin synthesis, and aromatase activity and reducing androgen glucuronidation and tissue bioactivation. Promotion of aberrant cell growth, evasion of apoptosis, increased oxidative stress and inflammation, and gains in adiposity and bioactivation to genotoxic carcinogens during adulthood are probable mechanisms of estrogen carcinogenicity, while “estrogen imprinting” via epigenetics in early-life also determines PCa risk. Although the effects of estrogens are known to be mediated by genomic actions of the two estrogen receptor (ER) subtypes (ERα and ERβ), other non-canonical mediators, including the different ERβ isoforms, membrane and mitochondrial ERs, and G protein-coupled receptor 30, may have major actions diverging from classical ER actions. These new discoveries have led to renewed interest among the public and the medicinal field in estrogens and antiestrogens as singular and adjuvant PCa treatment and prevention regimens. This review summarizes current knowledge on how different estrogens/antiestrogens/estrogen mimics contribute to prostate carcinogenesis, the roles of the different mediators of estrogen in the process, and the potentials of new estrogenic/antiestrogenic compounds as targeted therapies for prevention and treatment of PCa. PMID:21889723

  7. Differential Fmo3 Gene Expression in Various Liver Injury Models Involving Hepatic Oxidative Stress in Mice

    PubMed Central

    Rudraiah, Swetha; Moscovitz, Jamie E.; Donepudi, Ajay C.; Campion, Sarah N.; Slitt, Angela L.; Aleksunes, Lauren M.; Manautou, José E.

    2015-01-01

    Flavin-containing monooxygenase-3 (FMO3) catalyzes metabolic reactions similar to cytochrome P450 monooxygenase however, most metabolites of FMO3 are considered non-toxic. Recent findings in our laboratory demonstrated Fmo3gene induction following toxic acetaminophen (APAP) treatment in mice.The goal of this study was to evaluate Fmo3gene expression in diverseother mouse models of hepatic oxidative stress and injury. Fmo3 gene regulation by Nrf2 was also investigated using Nrf2 knockout (Nrf2 KO) mice. In our studies, male C57BL/6J mice were treated with toxic dosesof hepatotoxicants or underwent bile duct ligation (BDL, 10d). Hepatotoxicants included APAP (400 mg/kg, 24 to 72h), alpha-naphthylisothiocyanate (ANIT; 50 mg/kg, 2 to 48h), carbontetrachloride (CCl4;10 or 30 μL/kg, 24 and 48h) and allyl alcohol (AlOH; 30 or 60 mg/kg, 6 and 24h). Because oxidative stress activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2), additional studies investigated Fmo3 gene regulation by Nrf2 using Nrf2 knockout (Nrf2 KO) mice. At appropriate time-points, blood and liver samples were collected for assessment of plasma alanine aminotransferase (ALT) activity, plasma and hepatic bile acid levels, as well as liver Fmo3 mRNA and protein expression. Fmo3 mRNA expression increased significantly by 43-fold at 12h after ANIT treatment,and this increase translates to a 4-fold change in protein levels. BDL also increased Fmo3 mRNA expression by 1899-fold, but with no change in protein levels. Treatment of mice with CCl4decreased liver Fmo3gene expression, whileno change in expression was detected with AlOH treatment. Nrf2 KO mice are more susceptible to APAP (400 mg/kg, 72h) treatment compared to their wild-type (WT) counterparts, which is evidenced by greater plasma ALT activity. Fmo3 mRNA and protein expression increased in Nrf2 KO mice after APAP treatment. Collectively, not all hepatotoxicantsthat produce oxidative stress alter Fmo3gene expression. Along with APAP, toxic ANIT

  8. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats.

    PubMed

    Qiao, Yu-Feng; Guo, Wen-Juan; Li, Lu; Shao, Shan; Qiao, Xi; Shao, Jin-Jin; Zhang, Qiong; Li, Rong-Shan; Wang, Li-Hua

    2016-01-01

    The aim of the present study was to investigate the protective effects of melatonin (MLT) on hypertension-induced renal injury and identify its mechanism of action. Twenty-four healthy male Wistar rats were divided into a sham control group (n=8), which was subjected to sham operation and received vehicle treatment (physiological saline intraperitoneally at 0.1 ml/100 g), a vehicle group (n=8), which was subjected to occlusion of the left renal artery and vehicle treatment, and the MLT group (n=8), which was subjected to occlusion of the left renal artery and treated with MLT (10 mg/kg/day). Pathological features of the renal tissues were determined using hematoxylin and eosin staining and Masson staining. Urine protein, serum creatinine (Scr), superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical analysis was performed to determine the expression of heme oxygenase‑1 (HO‑1), intercellular adhesion molecule‑1 (ICAM‑1), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). Furthermore, reverse transcription polymerase chain reaction was conducted to determine the mRNA expression of HO‑1, ICAM‑1, eNOS and iNOS. A marked decrease in blood pressure was noticed in the MLT group at week 4 compared with that of the vehicle group (P<0.01). Furthermore, MLT treatment attenuated the infiltration of inflammatory cells and oedema/atrophy of renal tubules. MLT attenuated hypertension-induced increases in urine protein excretion, serum creatinine and MDA as well as decreases in SOD activity in renal tissues. Furthermore, MLT attenuated hypertension-induced increases in iNOS and ICAM‑1 as well as decreases in eNOS and HO‑1 expression at the mRNA and protein level. In conclusion, the results of the present study indicated that MLT had protective roles in hypertension‑induced renal injury. Its mechanism of action is, at least in part, associated with the inhibition of oxidative stress. PMID:26531807

  9. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats

    PubMed Central

    QIAO, YU-FENG; GUO, WEN-JUAN; LI, LU; SHAO, SHAN; QIAO, XI; SHAO, JIN-JIN; ZHANG, QIONG; LI, RONG-SHAN; WANG, LI-HUA

    2016-01-01

    The aim of the present study was to investigate the protective effects of melatonin (MLT) on hypertension-induced renal injury and identify its mechanism of action. Twenty-four healthy male Wistar rats were divided into a sham control group (n=8), which was subjected to sham operation and received vehicle treatment (physiological saline intraperitoneally at 0.1 ml/100 g), a vehicle group (n=8), which was subjected to occlusion of the left renal artery and vehicle treatment, and the MLT group (n=8), which was subjected to occlusion of the left renal artery and treated with MLT (10 mg/kg/day). Pathological features of the renal tissues were determined using hematoxylin and eosin staining and Masson staining. Urine protein, serum creatinine (Scr), superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical analysis was performed to determine the expression of heme oxygenase-1 (HO-1), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). Furthermore, reverse transcription polymerase chain reaction was conducted to determine the mRNA expression of HO-1, ICAM-1, eNOS and iNOS. A marked decrease in blood pressure was noticed in the MLT group at week 4 compared with that of the vehicle group (P<0.01). Furthermore, MLT treatment attenuated the infiltration of inflammatory cells and oedema/atrophy of renal tubules. MLT attenuated hypertension-induced increases in urine protein excretion, serum creatinine and MDA as well as decreases in SOD activity in renal tissues. Furthermore, MLT attenuated hypertension-induced increases in iNOS and ICAM-1 as well as decreases in eNOS and HO-1 expression at the mRNA and protein level. In conclusion, the results of the present study indicated that MLT had protective roles in hypertension-induced renal injury. Its mechanism of action is, at least in part, associated with the inhibition of oxidative stress. PMID:26531807

  10. Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation.

    PubMed

    Tyurina, Yulia Y; Tyurin, Vladimir A; Kapralova, Valentyna I; Wasserloos, Karla; Mosher, Mackenzie; Epperly, Michael W; Greenberger, Joel S; Pitt, Bruce R; Kagan, Valerian E

    2011-05-01

    Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A(2) revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury. PMID:21338246