Science.gov

Sample records for oxidative stress levels

  1. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans

    PubMed Central

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Monique Nuyt, Anne; Fraser, William D.; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-01-01

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = −0.32, p < 0.0001 for MDA; r = −0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = −0.13, p = 0.04 for MDA; r = −0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental “programming” the vulnerability to metabolic syndrome related disorders remain to be elucidated. PMID:26643495

  2. Oxidative Stress Levels in Aqueous Humor from High Myopic Patients

    PubMed Central

    Kim, Eun Bi; Kim, Ha Kyoung; Hyon, Joon Young; Wee, Won Ryang

    2016-01-01

    Purpose To compare oxidative stress status in the aqueous humor of highly myopic eyes and control eyes. Methods Aqueous humor samples were collected from 15 highly myopic eyes (high myopia group) and 23 cataractous eyes (control group) during cataract surgery. Central corneal thickness, corneal endothelial cell density, hexagonality of corneal endothelial cells, and cell area of corneal endothelial cells were measured using specular microscopy. Axial length was measured using ultrasound biometry. 8-Hydroxydeoxyguanosine (8-OHdG) and malondialdehyde levels were measured using enzyme-linked immunosorbent assay. Results 8-OHdG level was lower in the aqueous humor of myopic patients than in that of control group (p = 0.014) and was positively correlated with central corneal thickness and negatively correlated with axial length (r = 0.511, p = 0.02; r = -0.382, p < 0.001). There was no correlation between 8-OHdG level and corneal endothelial cell density, hexagonality, or cell area. Malondialdehyde level did not show any correlation with any parameters evaluated. Conclusions 8-OHdG might be a sensitive biomarker for evaluating oxidative stress status in the eye. Oxidative stress level was lower in the aqueous humor of highly myopic eyes compared to that in control eyes, which indicates lower metabolic activity in these eyes. PMID:27247516

  3. Plasma levels of oxidative stress-responsive apoptosis inducing protein (ORAIP) in rats subjected to physicochemical oxidative stresses.

    PubMed

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Seko, Yoshinori

    2016-01-01

    Oxidative stress is known to play a pivotal role in the pathogenesis of various disorders including atherosclerosis, aging and especially ischaemia/reperfusion injury. It causes cell damage that leads to apoptosis. However, the precise mechanism has been uncertain. Recently, we identified an apoptosis-inducing humoral factor in a hypoxia/reoxygenated medium of cardiac myocytes. We named this novel post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) as oxidative stress-responsive apoptosis inducing protein (ORAIP). We developed a sandwich ELISA and confirmed that myocardial ischaemia/reperfusion markedly increased plasma levels of ORAIP. To investigate whether the role of ORAIP is common to various types of oxidative stress, we measured plasma ORAIP levels in rats subjected to three physicochemical models of oxidative stress including N2/O2 inhalation, cold/warm-stress (heat shock) and blood acidification. In all three models, plasma ORAIP levels significantly increased and reached a peak level at 10-30 min after stimulation, then decreased within 60 min. The (mean±S.E.M.) plasma ORAIP levels before and after (peak) stimulation were (16.4±9.6) and (55.2±34.2) ng/ml in N2/O2 inhalation, (14.1±12.4) and (34.3±14.6) ng/ml in cold/warm-stress, and (18.9±14.3) and (134.0±67.2) ng/ml in blood acidification study. These data strongly suggest that secretion of ORAIP in response to oxidative stress is universal mechanism and plays an essential role. ORAIP will be an important novel biomarker as well as a specific therapeutic target of these oxidative stress-induced cell injuries. PMID:26934977

  4. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  5. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise.

    PubMed

    de Lucas, Ricardo Dantas; Caputo, Fabrizio; Mendes de Souza, Kristopher; Sigwalt, André Roberto; Ghisoni, Karina; Lock Silveira, Paulo Cesar; Remor, Aline Pertile; da Luz Scheffer, Débora; Guglielmo, Luiz Guilherme Antonacci; Latini, Alexandra

    2014-01-01

    The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced. PMID:24117160

  6. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  7. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study.

    PubMed

    Galan-Chilet, Inmaculada; Tellez-Plaza, Maria; Guallar, Eliseo; De Marco, Griselda; Lopez-Izquierdo, Raul; Gonzalez-Manzano, Isabel; Carmen Tormos, M; Martin-Nuñez, Gracia M; Rojo-Martinez, Gemma; Saez, Guillermo T; Martín-Escudero, Juan C; Redon, Josep; Javier Chaves, F

    2014-09-01

    The role of selenium exposure in preventing chronic disease is controversial, especially in selenium-repleted populations. At high concentrations, selenium exposure may increase oxidative stress. Studies evaluating the interaction of genetic variation in genes involved in oxidative stress pathways and selenium are scarce. We evaluated the cross-sectional association of plasma selenium concentrations with oxidative stress levels, measured as oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8-oxo-7,8-dihydroguanine (8-oxo-dG) in urine, and the interacting role of genetic variation in oxidative stress candidate genes, in a representative sample of 1445 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.76 µg/L. In fully adjusted models the geometric mean ratios for oxidative stress biomarker levels comparing the highest to the lowest quintiles of plasma selenium levels were 0.61 (0.50-0.76) for GSSG/GSH, 0.89 (0.79-1.00) for MDA, and 1.06 (0.96-1.18) for 8-oxo-dG. We observed nonlinear dose-responses of selenium exposure and oxidative stress biomarkers, with plasma selenium concentrations above ~110 μg/L being positively associated with 8-oxo-dG, but inversely associated with GSSG/GSH and MDA. In addition, we identified potential risk genotypes associated with increased levels of oxidative stress markers with high selenium levels. Our findings support that high selenium levels increase oxidative stress in some biological processes. More studies are needed to disentangle the complexity of selenium biology and the relevance of potential gene-selenium interactions in relation to health outcomes in human populations. PMID:25017966

  8. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress.

    PubMed

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-10-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  9. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  10. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    PubMed

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. PMID:25445987

  11. Membrane water permeability of maize root cells under two levels of oxidative stress.

    PubMed

    Velikanov, G A; Sibgatullin, T A; Belova, L P; Ionenko, I F

    2015-09-01

    Changes in the total water permeability of two cell membranes (plasmalemma and tonoplast), estimated by the effective diffusion coefficient of water (D ef), were controlled using the NMR method. The time dynamics of D ef in maize (Zea mays L.) root cells was studied in response to (i) root excision from seedling and the following 6-h incubation in the growth medium (wound stress) and (ii) the superposition of wound stress plus paraquat, which induces the excess of reactive oxygen species (ROS). The dynamics of lipid peroxidation, oxygen consumption, and heat production was studied to estimate general levels of oxidative stress in two variants of experiments. Under wound stress (the weak oxidative stress), the reversible by dithiothreitol increase in cell membrane water permeability was observed. The applicability of mercury test to aquaporin activity in our experiments was verified. The results of wound stress effect, obtained using this test, are discussed in terms of oxidative upregulation of aquaporin activity by ROS. The increase of oxidative stress in cells (wound-paraquat stress), contrary to wound stress, was accompanied by downregulation of membrane water permeability. In this case, ROS is supposed to affect the aquaporins not directly but via such processes as peroxidation of lipids, inactivation of some intracellular proteins, and relocalization of aquaporins in cells. PMID:25596933

  12. Relationship Between the Levels of Oxidative Stress in Mesenteric and Peripheral Serum and Clinicopathological Variables in Colorectal Cancer

    PubMed Central

    Yücel, Ahmet Fikret; Kemik, Özgür; Kemik, Ahu Sarbay; Purisa, Sevim; Tüzün, İshak Sefa

    2012-01-01

    Objective: To explore the differences existing between the levels of oxidative stress in peripheral and mesenteric serum in patients with colorectal cancer. Material and Methods One hundred fifty patients with colorectal cancer who underwent surgery between May 2005 and March 2010 were prospectively analyzed. The differences between oxidative stress parameters in their peripheral and mesenteric blood were measured. The associations between peripheral and mesenteric levels and the staging and clinicopathological variables were investigated. Results: Oxidative stress parameters were higher in patients with advanced tumor staging (p<0.01), lymph node invasion (p<0.01), and venous invasion (p<0.01). Differences between oxidative stress parameters in peripheral and mesenteric blood samples were also observed. Conclusions: The mesenteric levels of the oxidative stress markers were higher than the peripheral levels in these colorectal cancer patients. Higher levels of these oxidative stress markers are associated with an advanced state of cancer. PMID:25206984

  13. Total oxidative stress, paraoxonase and arylesterase levels at patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma

    PubMed Central

    Dursun, Feyza; Vural Ozec, Ayse; Aydin, Huseyin; Topalkara, Aysen; Dursun, Ayhan; Toker, Mustafa Ilker; Erdogan, Haydar; Arici, Mustafa Kemal

    2015-01-01

    AIM To investigate the oxidative stress status of the aqueous humor and serum of patients with pseudoexfoliation (PEX) syndrome and pseudoexfoliative glaucoma (PEG) and to measure paraoxonase (PON) and arylesterase (ARE) levels. METHODS A total of 78 patients were enrolled in the study, with 26 patients in each separate group. The patients were divided into three groups: the first group entailed PEX syndrome patients, while the second group consisted of patients with PEG and the third group involved patients with no additional systemic diseases, other than the diagnosis of cataract as control. Total oxidative stress (TOS), total antioxidant capacity (TAC), PON, and ARE levels in aqueous humor and serum were measured. RESULTS TAC, PON and arylesterase levels in aqueous humor and serum of the PEX syndrome and PEG patients were significantly decreased compared with control group (P<0.05). TOS values were higher in patients with PEX syndrome and PEG than controls (P<0.05). TAC, PON and ARE levels of aqueous humor did not differ significantly between the PEX syndrome and PEG groups CONCLUSION These findings are potentially of significance and add to the growing body of evidence for oxidative stress in PEX syndrome and PEG. Decreased antioxidant defense and increased oxidative stress system may play an important role in the pathogenesis of PEX syndrome and PEG. PMID:26558214

  14. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    PubMed Central

    Chang, Dong; Zhang, Xuefei; Rong, Shengzhong; Sha, Qian; Liu, Peipei; Han, Tao; Pan, Hongzhi

    2013-01-01

    Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and oxidation degradation products of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl (PC), and 8-hydroxydeoxyguanosine (8-OHdG). Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P < 0.05). The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P < 0.05, P < 0.01). Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P < 0.01). And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis. PMID:23781296

  15. The Level of Selenium and Oxidative Stress in Workers Chronically Exposed to Lead.

    PubMed

    Pawlas, Natalia; Dobrakowski, Michał; Kasperczyk, Aleksandra; Kozłowska, Agnieszka; Mikołajczyk, Agnieszka; Kasperczyk, Sławomir

    2016-03-01

    The possible beneficial role of selenium (Se) on the oxidative stress induced by lead (Pb) is still unclear in humans. Therefore, the aim of the present study was to explore the associations among the Se levels, chronic Pb exposure, oxidative stress parameters, and parameters characterizing the function of the antioxidant defense system in men who are occupationally exposed to Pb. Based on the median serum Se concentrations, the 324 study subjects were divided into two subgroups: a subgroup with a low Se level (L-Se) and a subgroup with a high Se level (H-Se). The levels of lead (PbB) and zinc protoporphyrin (ZPP) in the blood and the delta-aminolevulinic acid (ALA) level in the urine served as indices of Pb exposure. The PbB level was significantly lower in the H-Se group compared to that in the L-Se group by 6 %. The levels of 8-hydroxyguanosine and lipofuscin (LPS) and the activity of superoxide dismutase were significantly lower in the H-Se group compared to that in the L-Se group by 17, 19, and 11 %, respectively. However, the glutathione level (GSH) and the activities of glutathione peroxidase (GPx) and catalase were significantly higher by 9, 23, and 3 %. Spearman correlations showed positive associations between the Se level and GPx activity and GSH level. A lower serum Se level in chronically Pb-exposed subjects is associated with higher Pb blood levels and an elevated erythrocyte LPS level, which reflects the intensity of oxidative stress. Besides, in a group of Pb-exposed subjects with lower serum Se level, depleted GSH pool and decreased activity of GPx in erythrocytes were reported. However, the present results are inadequate to recommend Se supplementation for chronic lead exposure at higher doses than would be included in a normal diet except for selenium deficiency. PMID:26179085

  16. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels

    PubMed Central

    Kim, Mi Kyung; Cho, Sang Woon

    2012-01-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores. PMID:22586505

  17. Low level laser therapy reduces oxidative stress in cortical neurons in vitro

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Ying; Tedford, Clark E.; McCarthy, Thomas; Hamblin, Michael R.

    2012-03-01

    It is accepted that the mechanisms of low level laser therapy (LLLT) involves photons that are absorbed in the mitochondria of cells and lead to increase of mitochondrial metabolism resulting in more electron transport, increase of mitochondrial membrane potential, and more ATP production. Intracellular calcium changes are seen that correlate with mitochondrial stimulation. The situation with two other intermediates is more complex however: reactive oxygen species (ROS) and nitric oxide (NO). Evidence exists that low levels of ROS are produced by LLLT in normal cells that can be beneficial by (for instance) activating NF-kB. However high fluences of light can produce large amounts of ROS that can damage the cells. In oxidatively stressed cells the situation may be different. We exposed primary cultured cortical neurons to hydrogen peroxide (H2O2) or cobalt chloride (CoCl2) oxidative insults in the presence or absence of LLLT (810-nm laser at 0.3 or 3 J/cm2). Cell viability of cortical neurons was determined by lactate dehydrogenase assay. ROS in neurons was detected using an ROS probe, MitoRox with confocal microscopy. Results showed that LLLT dose-dependently reversed ROS production and protected cortical neurons against H2O2 or CoCl2 induced oxidative injury in cultured cortical neurons. Conclusion: LLLT can protect cortical neurons against oxidative stress by reversing the levels of ROS.

  18. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis. PMID:25595415

  19. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  20. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea.

    PubMed

    Ahmad, Parvaiz; Abdel Latef, Arafat A; Hashem, Abeer; Abd Allah, Elsayed F; Gucel, Salih; Tran, Lam-Son P

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  1. Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer's disease pathology.

    PubMed

    Scheff, Stephen W; Ansari, Mubeen A; Mufson, Elliott J

    2016-06-01

    Neuritic amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD) and are major components used for the clinical diagnosis of this disorder. However, many individuals with no cognitive impairment (NCI) also present at autopsy with high levels of these AD pathologic hallmarks. In this study, we evaluated 15 autopsy cases from NCI individuals with high levels of AD-like pathology (high pathology no cognitive impairment) and compared them to age- and postmortem-matched cohorts of individuals with amnestic mild cognitive impairment and NCI cases with low AD-like pathology (low pathology no cognitive impairment [LPNCI]). Individuals classified as high pathology no cognitive impairment or amnestic mild cognitive impairment had a significant loss of both presynaptic and postsynaptic proteins in the hippocampus compared with those in the LPNCI cohort. In addition, these 2 groups had a significant increase in 3 different markers of oxidative stress compared with that in the LPNCI group. The changes in levels of synaptic proteins are strongly associated with levels of oxidative stress. These data suggest that cognitively older subjects without dementia but with increased levels of AD-like pathology may represent a very early preclinical stage of AD. PMID:27143416

  2. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    SciTech Connect

    Kippler, Maria; Bakhtiar Hossain, Mohammad; Lindh, Christian; Moore, Sophie E.; Kabir, Iqbal; Vahter, Marie; Broberg, Karin

    2012-01-15

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11-17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 {mu}g/L, and breast-milk Cd 0.13 {mu}g/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  3. Constitutively Elevated Levels of Putrescine and Putrescine-Generating Enzymes Correlated with Oxidant Stress Resistance in Conyza bonariensis and Wheat.

    PubMed Central

    Ye, B.; Muller, H. H.; Zhang, J.; Gressel, J.

    1997-01-01

    Oxidant stress resistance in Conyza bonariensis and wheat (Triticum aestivum) has been correlated with high levels of antioxidant enzyme activities. Additionally, external oxidant stresses can increase a plant's levels of the enzymes of polyamine biosynthesis and polyamines, especially putrescine. We investigated the constitutive relationships between putrescine, putrescine-generating enzymes, and oxidant stress resistance in wheat and C. bonariensis. Putrescine was Constitutively elevated (2.5- to 5.7-fold) in 2-week-old-resistant wheat and C. bonariensis biotypes, which correlated with a 10- to 15-fold increase in paraquat oxidant resistance. Arginine and ornithine decarboxylase activities doubled, along with higher putrescine levels in resistant C. bonariensis. The variations in levels of putrescine and arginine and ornithine decarboxylase activities paralleled the constitutive variation of antioxidant enzymes, as well as oxidant resistance. Higher levels of both putrescine and antioxidant enzyme activities occurred during a peak of oxidant resistance at 10 weeks, when paraquat resistance in C. bonariensis plants is >50-fold greater than in the sensitive biotype. Application of 100 [mu]M putrescine can double oxidant-stress resistance in the resistant C. bonariensis. Putrescine may play an important role in contributing to the base level of oxidant resistance found at the nonpeak period. PMID:12223875

  4. Constitutively Elevated Levels of Putrescine and Putrescine-Generating Enzymes Correlated with Oxidant Stress Resistance in Conyza bonariensis and Wheat.

    PubMed

    Ye, B.; Muller, H. H.; Zhang, J.; Gressel, J.

    1997-12-01

    Oxidant stress resistance in Conyza bonariensis and wheat (Triticum aestivum) has been correlated with high levels of antioxidant enzyme activities. Additionally, external oxidant stresses can increase a plant's levels of the enzymes of polyamine biosynthesis and polyamines, especially putrescine. We investigated the constitutive relationships between putrescine, putrescine-generating enzymes, and oxidant stress resistance in wheat and C. bonariensis. Putrescine was Constitutively elevated (2.5- to 5.7-fold) in 2-week-old-resistant wheat and C. bonariensis biotypes, which correlated with a 10- to 15-fold increase in paraquat oxidant resistance. Arginine and ornithine decarboxylase activities doubled, along with higher putrescine levels in resistant C. bonariensis. The variations in levels of putrescine and arginine and ornithine decarboxylase activities paralleled the constitutive variation of antioxidant enzymes, as well as oxidant resistance. Higher levels of both putrescine and antioxidant enzyme activities occurred during a peak of oxidant resistance at 10 weeks, when paraquat resistance in C. bonariensis plants is >50-fold greater than in the sensitive biotype. Application of 100 [mu]M putrescine can double oxidant-stress resistance in the resistant C. bonariensis. Putrescine may play an important role in contributing to the base level of oxidant resistance found at the nonpeak period. PMID:12223875

  5. Does Dietary Iodine Regulate Oxidative Stress and Adiponectin Levels in Human Breast Milk?

    PubMed Central

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico

    2014-01-01

    Abstract Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1 μM potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. Antioxid. Redox Signal. 20, 847–853. PMID:24001137

  6. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk?

    PubMed

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico; García-Fuentes, Eduardo

    2014-02-10

    Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1 μM potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. PMID:24001137

  7. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations.

    PubMed

    Sharma, Vyom; Collins, Leonard B; Chen, Ting-Huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A; Nakamura, Jun

    2016-05-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  8. Effect of high fluoride and high fat on serum lipid levels and oxidative stress in rabbits.

    PubMed

    Sun, Liyan; Gao, Yanhui; Zhang, Wei; Liu, Hui; Sun, Dianjun

    2014-11-01

    The purpose of this study was to explore the effects of high fluoride and high fat on triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total antioxidant capacity (T-AOC), lipid peroxide (LPO) and malondialdehyde (MDA) in rabbits. A factorial experimental design was used, with two factors (fluoride and fat) and three levels. Seventy-two male rabbits were randomly assigned into nine groups according to initial weight and serum lipid levels. The rabbits were fed with basic feed, moderate fat feed or high fat feed and drank tap water, fluoridated water at levels of 50 and 100mgfluorion/L freely. Biological materials were collected after 5 months, and serum lipid, T-AOC, LPO, and MDA levels were then measured. Using these data, the separate and interactive effects of high fluoride and high fat were analyzed. High fluoride and high fat both increased serum levels of TC, HDL-C and LDL-C significantly (P<0.05), and there was also a synergistic effect between high fluoride and high fat (P<0.05). High fluoride and high fat had different effects on TG levels: high fat significantly increased TG levels (P<0.01) whereas high fluoride had nothing to do with TG levels (P>0.05). High fat significantly elevated LPO and MDA levels and lowered T-AOC levels in serum (P<0.05). Similarly, high fluoride significantly increased LPO and MDA levels in serum (P<0.05). However, there was no interactive effect between high fat and high fluoride on these indexes. In summary, high fluoride and high fat increased serum TC and LDL-C levels individually and synergistically, and this would cause and aggravate hypercholesterolemia in rabbits. At the same time, high fluoride and high fat both made the accumulation of product of oxidative stress in experimental animals. PMID:25461561

  9. Oxidative stress in autism.

    PubMed

    Chauhan, Abha; Chauhan, Ved

    2006-08-01

    Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein), are decreased in children with autism. There is a positive correlation between reduced levels of these proteins and loss of previously acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism. The levels of phosphatidylethanolamine (PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Furthermore, environmental and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed. PMID:16766163

  10. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients

    PubMed Central

    Brzović-Šarić, Vlatka; Landeka, Irena; Šarić, Borna; Barberić, Monika; Andrijašević, Lidija; Cerovski, Branimir; Oršolić, Nada

    2015-01-01

    Purpose In diabetes, an impaired antioxidant defense system contributes to the development of diabetic retinopathy. The main objective of this paper was to find correlations of oxidative stress parameters within and between the vitreous and serum in patients with type 2 diabetes who had developed proliferative diabetic retinopathy. Methods The study included and compared two groups of patients who underwent vitrectomy: 37 patients with type 2 diabetes and proliferative retinopathy (PDR), and 50 patients with non-diabetic eye disorders (NDED). Vascular endothelial growth factor (VEGF), advanced oxidized protein product (AOPP), and oxidative stress markers (direct lipid hydroperoxidation (LPO), malondialdehyde (MDA), total superoxide dismutase (SOD), and glutathione (GSH)) were measured in the vitreous and serum of both groups and correlated with one another, between humoral compartments and with gender, age, and serum glucose levels. Results In the vitreous of PDR patients, VEGF, LPO, and MDA (p<0.05) were increased and SOD values were slightly lowered (p<0.05) than in NDED patients. Vitreous AOPP and GSH showed no differences between the groups. In the serum, AOPP, MDA, and SOD were increased (p<0.05) and VEGF was slightly increased (p<0.05) in the PDR group compared to NDED. With regard to gender, similar changes were recorded for both groups, except for the lower serum MDA in males than females in the NDED group. Advanced age showed no significant effect on changes of measured parameters in the vitreous. In the serum, VEGF was positively correlated (p<0.05) and MDA and SOD negatively correlated (p<0.05) with increasing age. Among measured parameters within and between the vitreous and serum, several correlative links occurred in the PDR group that were not present in the NDED group. The most prominent correlation changes were between serum LPO and vitreal LPO, serum SOD and vitreal LPO, serum LPO and serum SOD, and vitreal VEGF and serum SOD. Conclusions Among

  11. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters

    PubMed Central

    Khosrowbeygi, Ali; Zarghami, Nosratollah

    2007-01-01

    morphology. Conclusion Decreasing seminal plasma antioxidants levels, especially catalase and TAC, could have significant role in etiology of impaired sperm function. Measurement of 8-Isoprostane may be used as a specific biomarker for assessing oxidative stress on sperm. PMID:17540046

  12. Telomere protein RAP1 levels are affected by cellular aging and oxidative stress

    PubMed Central

    Swanson, Mark J.; Baribault, Michelle E.; Israel, Joanna N.; Bae, Nancy S.

    2016-01-01

    Telomeres are important for maintaining the integrity of the genome through the action of the shelterin complex. Previous studies indicted that the length of the telomere did not have an effect on the amount of the shelterin subunits; however, those experiments were performed using immortalized cells with stable telomere lengths. The interest of the present study was to observe how decreasing telomere lengths over successive generations would affect the shelterin subunits. As neonatal human dermal fibroblasts aged and their telomeres became shorter, the levels of the telomere-binding protein telomeric repeat factor 2 (TRF2) decreased significantly. By contrast, the levels of one of its binding partners, repressor/activator protein 1 (RAP1), decreased to a lesser extent than would be expected from the decrease in TRF2. Other subunits, TERF1-interacting nuclear factor 2 and protection of telomeres protein 1, remained stable. The decrease in RAP1 in the older cells occurred in the nuclear and cytoplasmic fractions. Hydrogen peroxide (H2O2) stress was used as an artificial means of aging in the cells, and this resulted in RAP1 levels decreasing, but the effect was only observed in the nuclear portion. Similar results were obtained using U251 glioblastoma cells treated with H2O2 or grown in serum-depleted medium. The present findings indicate that TRF2 and RAP1 levels decrease as fibroblasts naturally age. RAP1 remains more stable compared to TRF2. RAP1 also responds to oxidative stress, but the response is different to that observed in aging. PMID:27446538

  13. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    PubMed

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks. PMID:26580741

  14. Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters.

    PubMed

    Zhou, Si-Si; Cao, Li-Li; Xu, Wei-Dong; Cao, Jing; Zhao, Zhi-Jun

    2015-11-01

    According to the rate of living-free radical hypothesis, higher metabolic rates should increase reactive oxygen species (ROS) production. However, the "uncoupling to survive" hypothesis postulates that uncoupling proteins (UCPs) can decrease ROS production by lowering the potential of the inner mitochondrial membrane, in which case the correlation between metabolic rate and ROS levels would be a negative rather than positive. In this study, we examined energy intake, oxidative stress levels, antioxidant activity and the expression of UCPs in brown adipose tissue (BAT), and in the liver, heart, skeletal muscle and brain, of striped hamsters (Cricetulus barabensis) acclimated to either 5 °C or 32.5 °C. The energy intake of hamsters acclimated to 5 °C increased by 70.7%, whereas the energy intake of hamsters acclimated to 32.5 °C decreased by 31.3%, relative to hamsters kept at room temperature (21 °C) (P<0.05). Malonadialdehyde (MDA) levels, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity in BAT significantly decreased in 5 °C group, but increased in 32.5 °C group, relative to the 21 °C group. Neither ROS levels (i.e. H2O2 levels), nor antioxidants in skeletal muscle, liver, heart or brain tissue, were affected by temperature. UCP1 expression in BAT was significantly up-regulated in 5 °C group, but down-regulated in 32.5 °C group, relative to the 21 °C group. UCP3 expression of skeletal muscle was also up-regulated significantly in hamsters acclimated to 5 °C. These results suggest that the relationship between ROS levels and metabolic rate was negative, rather than positive. UCP1 expression in BAT may have played a role in lowering ROS levels. PMID:26244518

  15. Oxidative stress by inorganic nanoparticles.

    PubMed

    Tee, Jie Kai; Ong, Choon Nam; Bay, Boon Huat; Ho, Han Kiat; Leong, David Tai

    2016-05-01

    Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website. PMID:26359790

  16. Association of Circulating Follistatin-Like 1 Levels with Inflammatory and Oxidative Stress Markers in Healthy Men

    PubMed Central

    Hayakawa, Satoko; Ohashi, Koji; Shibata, Rei; Takahashi, Ryotaro; Otaka, Naoya; Ogawa, Hayato; Ito, Masanori; Kanemura, Noriyoshi; Hiramatsu-Ito, Mizuho; Ikeda, Nobuo; Murohara, Toyoaki; Ouchi, Noriyuki

    2016-01-01

    Objectives Follistatin-like 1 (Fstl1) is a circulating glycoprotein that plays a crucial role in cardiovascular diseases and inflammation-related disorders. We have shown that Fstl1 acts as an anti-inflammatory factor that protects against ischemic heart disease and chronic kidney disease. Here we examined whether plasma level of Fstl1 associates with markers of inflammation and oxidative stress in apparently healthy Japanese men. Methods and Results Plasma Fstl1 levels were measured by enzyme-linked immunosorbent assay. Circulating Fstl1 concentrations positively correlated with levels of fasting immune-reactive insulin (FIRI), high-sensitive CRP (hsCRP) and derivatives of reactive oxidative metabolites (dROMs), an indicator of oxidative stress. The levels of hsCRP positively associated with Fstl1, body mass index (BMI), triglyceride, FIRI and dROMs levels. dROMs levels positively associated with Fstl1, Hemoglobin A1c and hsCRP levels. Multiple regression analysis with confounding factors revealed that Fstl1 levels, together with BMI and FIRI, correlated with hsCRP and that Fstl1 levels correlated with dROMs. Conclusion Our observations indicate that measurement of plasma Fstl1 levels can be valuable for assessment of pro-inflammatory and oxidative stress conditions. PMID:27145224

  17. GENDER DIFFERENCES IN BRAIN SUSCEPTIBILITY TO OXIDATIVE STRESS ARE MEDIATED BY LEVELS OF PARAOXONASE-2 (PON2) EXPRESSION

    PubMed Central

    Giordano, G.; Tait, L.; Furlong, C.E.; Cole, T.B.; Kavanagh, T.J.; Costa, L.G.

    2013-01-01

    Paraoxonase 2 (PON2), a member of a gene family that also includes PON1 and PON3, is expressed in most tissues, including the brain. In mouse brain, PON2 levels are highest in dopaminergic areas (e.g. striatum), and are higher in astrocytes than in neurons. PON2 is primarily located in mitochondria and exerts a potent antioxidant effect, protecting mouse CNS cells against oxidative stress. The aim of this study was to characterize PON2 expression and functions in the brains of male and female mice. Levels of PON2 (protein, mRNA, and lactonase activity) were higher in brain regions and cells of female mice. Astrocytes and neurons from male mice were significantly more sensitive (by 3–4-fold) to oxidative stress-induced toxicity than the same cells from female mice. Glutathione levels did not differ between genders. Importantly, no significant gender differences in susceptibility to the same oxidants were seen in cells from PON2−/− mice. Treatment with estradiol induced a time- and concentration-dependent increase in the levels of PON2 protein and mRNA in male (4.5-fold) and female (1.8-fold) astrocytes, which was dependent on activation of estrogen receptor alpha. In ovariectomized mice, PON2 protein and mRNA were decreased to male levels in brain regions and in liver. Estradiol protected astrocytes from wild-type mice against oxidative stress-induced neurotoxicity, but did not protect cells from PON2−/− mice. These results suggest that PON2 is a novel major intracellular factor that protects CNS cells against oxidative stress, and confers gender-dependent susceptibility to such stress. The lower expression of PON2 in males may have broad ramifications for susceptibility to diseases involving oxidative stress, including neurodegenerative diseases. PMID:23376469

  18. Effect of Different Selenium Supplementation Levels on Oxidative Stress, Cytokines, and Immunotoxicity in Chicken Thymus.

    PubMed

    Wang, Yachao; Jiang, Li; Li, Yuanfeng; Luo, Xuegang; He, Jian

    2016-08-01

    This study assessed the effects of different selenium (Se) supplementation levels on oxidative stress, cytokines, and immunotoxicity in chicken thymus. A total of 180 laying hens (1 day old; Mianyang, China) were randomly divided into 4 groups (n = 45). The chickens were maintained either on a basic diet (control group) containing 0.2 mg/kg Se, a low-supplemented diet containing 5 mg/kg Se, a medium-supplemented diet containing 10 mg/kg Se, or a high-supplemented diet containing 15 mg/kg Se for 15, 30, and 45 days, respectively. Over the entire experimental period, serum and thymus samples were collected and used for the detection of the experimental index. The results indicated that the antioxidative enzyme activities and messenger RNA (mRNA) levels of antioxidative enzymes, IFN-γ and IL-2 in the thymus, and the content of IFN-γ and IL-2 in the serum of excessive-Se-treated chickens at all time points (except for the 5 mg/kg Se supplement group at 15 days) were significantly decreased (P < 0.05) compared to the corresponding control groups. Interestingly, a significantly increase (P < 0.05) in the content of IFN-γ was observed in the serum and thymus in the 5 mg/kg Se supplement group at 15 and 30 days compared to the corresponding control groups. In histopathological examination, the thymus tissue from excessive-Se-treated chickens revealed different degrees of cortex drop, incrassation of the medulla, and degeneration of the reticular cells. These results suggested that the excessive Se could result in a decrease in immunity, an increase in oxidative damage, and a series of clinical pathology changes, such as cortex drop, incrassation of the medulla, and degeneration of the reticular cells. PMID:26740218

  19. Analysis of oxidative stress status through MN test and serum MDA levels in PCOS women.

    PubMed

    Deepika, M L N; Nalini, S; Maruthi, G; Ramchander, Vinish; Ranjith, K; Latha, K Prasanna; Rani, V Usha; Jahan, P

    2014-04-01

    Polycystic Ovary Syndrome (PCOS) is a multifactorial reproductive healthcare problem affecting 4-12% of women and a leading cause of female infertility worldwide. The potential genetic contributors of PCOS are unclear. However, over the past decade emerging evidence has shown that increased Oxidative Stress (OS) and decreased antioxidant status were often linked with PCOS. The present case-control study was aimed to assess the reactive oxygen species induced OS in women from South India. A total of 164 individuals comprising of 89 patients and 75 controls were enrolled in the present study. For all the subjects, the frequency of micronucleated cells (MNC) in epithelial samples and serum Malondialdehyde (MDA) levels were estimated to assess genomic instability and cytotoxicity respectively. A statistically significant difference between the groups were identified with respect to Body Mass Index, Waist to Hip Ratio, luteinizing hormone and prolactin levels (< 0.05), however the mean follicle stimulating hormone was not different between the groups (p = 0.055). The frequency of MN cells (5.89 ± 4.86 vs. 2.24 ± 2.01) and mean serum MDA (360.84 ± 87.08 vs. 301.70 ± 82.82) levels were considerably higher in patients than controls (p = < 0.0001), furthermore, a positive correlation was observed between MNC and MDA levels in patients (r = 0.349, p = 0.0008) and not in controls (r = 0.104, p = 0.37), suggest high OS in PCOS women. Therefore, MN assay and serum MDA levels may serve together or individually as biomarkers of OS in PCOS women. PMID:25911850

  20. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function.

    PubMed

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Naldini, Antonella; Carraro, Fabio; Giordano, Daniela; Verde, Cinzia; Ascenzi, Paolo; Marino, Maria

    2016-01-01

    The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention. PMID:27149623

  1. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function

    PubMed Central

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Naldini, Antonella; Carraro, Fabio; Giordano, Daniela; Verde, Cinzia; Ascenzi, Paolo; Marino, Maria

    2016-01-01

    The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention. PMID:27149623

  2. Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.

    PubMed

    Barone, Eugenio; Cenini, Giovanna; Di Domenico, Fabio; Noel, Teresa; Wang, Chi; Perluigi, Marzia; St Clair, Daret K; Butterfield, D Allan

    2015-11-01

    Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels. PMID:26251011

  3. Evaluation of the Serum Levels of Nitric Oxide among Diabetic Patients and its Correlation with Lipid Profile as well as Oxidative Stress in North Indian Setting

    PubMed Central

    Trivedi, Arvind; Verma, Neetu; Panwar, Ajay; Kumar, Pradeep

    2016-01-01

    Introduction Diabetes mellitus is a disease with a rapidly increasing prevalence, needs continue research for novel methods to both prevent and treat this disorder. Obesity and decreased physical activity are the major risk factor for the development of diabetes. Recently the emphasis is focused on oxidative stress in pathogenesis of this disease. Aim To assess the serum levels of Nitric Oxide (NO) among diabetic patients and its correlation with lipid profile as well as oxidative stress in north Indian setting. Materials and Methods This was a cross-sectional study. Subjects suffering from type 2 diabetes for more than 1 year and age between 30 to 50 years with hyperuricaemia were included in the study. The patients were divided into three groups: Group I- Type 2 diabetics with dyslipidemia and hyperuricaemia, Group II- Type 2 diabetics with dyslipidemia and normouricaemia and Group III- Type 2 diabetics with normolipidemia and normouricaemia. Results The nitric oxide level was significantly lower in Group I and Group II than Group III. The oxidative stress parameters had poor correlation with NO level in all the groups. Conclusion Our data suggests that there is definite role of Nitric Oxide (NO) in pathogenesis of type -2 diabetes mellitus with dyslipidemia and hyperuricaemia. PMID:27437271

  4. Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients.

    PubMed

    Gonçalves, Ana Cristina; Cortesão, Emília; Oliveiros, Barbara; Alves, Vera; Espadana, Ana Isabel; Rito, Luís; Magalhães, Emília; Pereira, Sónia; Pereira, Amélia; Costa, José Manuel Nascimento; Mota-Vieira, Luisa; Sarmento-Ribeiro, Ana Bela

    2016-08-01

    Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p < 0.001; superoxide/GSH: 1.76 ± 0.21 vs 1.31 ± 0.10, p = 0.007). Patients with methylated P16 and at least one methylated gene had higher peroxide levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation. PMID:25982567

  5. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    PubMed Central

    Forkink, Marleen; Basit, Farhan; Teixeira, José; Swarts, Herman G.; Koopman, Werner J.H.; Willems, Peter H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24 h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY581/591 and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling. PMID:26516986

  6. Does short-term exposure to elevated levels of natural gamma radiation in Ramsar cause oxidative stress?

    PubMed Central

    Mortazavi, SMJ; Niroomand-Rad, A; Roshan-Shomal, P; Razavi-Toosi, SMT; Mossayeb-Zadeh, M; Moghadam, M

    2014-01-01

    Background: Ramsar, a city in northern Iran, has areas with some of the highest recorded levels of natural radiation among inhabited areas measured on the earth. Aims: To determine whether short-term exposure to extremely high levels of natural radiation induce oxidative stress. Materials and Methods: In this study, 53 Wistar rats were randomly divided into five groups of 10-12 animals. Animals in the 1st group were kept for 7 days in an outdoor area with normal background radiation while the 2nd , 3rd , 4th and 5th groups were kept in four different outdoor areas with naturally elevated levels of gamma radiation in Ramsar. A calibrated RDS-110 survey meter, mounted on a tripod approximately 1 m above the ground, was used to measure exposure rate at each location. On days 7 and 9 blood sampling was performed to assess the serum levels of catalase (CAT) and malondialdehyde (MDA). On day 8, all animals were exposed to a lethal dose of 8 Gy gamma radiations emitted by a Theratron Phoenix (Theratronics, Canada) Cobalt-60 (55 cGy/min) at Radiotherapy Department of Razi Hospital in Rasht, Iran. Results: Findings obtained in this study indicate that high levels of natural radiation cannot induce oxidative stress. CAT and MDA levels in almost all groups were not significantly different (P = 0.69 and P = 0.05, respectively). After exposure to the lethal dose, CAT and MDA levels in all groups were not significantly different (P = 0.054 and P = 0.163, respectively). Conclusions: These findings indicate that short-term exposure to extremely high levels of natural radiation (up to 196 times higher than the normal background) does not induce oxidative stress. PMID:25143879

  7. Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans.

    PubMed

    Zaragoza, Oscar; González-Párraga, Pilar; Pedreño, Yolanda; Alvarez-Peral, Francisco J; Argüelles, Juan-Carlos

    2003-06-01

    Growing cells of the Candida albicans trehalose-deficient mutant tps1/tps1 were extremely sensitive to severe oxidative stress exposure (H2O2). However, their viability was not affected after saline stress or heat-shock treatments, being roughly equivalent to that of the parental strain. In wild-type cells, these adverse conditions induced the intracellular accumulation of trehalose together with activation of trehalose-6P synthase, whereas the endogenous trehalose content and the corresponding biosynthetic activity were barely detectable in the tps1/tps1 mutant. The addition of cycloheximide did not prevent the marked induction of trehalose-6P synthase activity. Furthermore, the presence of H2O2 decreased the level of TPS1 mRNA expression. Hence, the conspicuous trehalose accumulation in response to oxidative stress is not induced by increased transcription of TPS1. Our results are consistent with a specific requirement of trehalose in order to withstand a severe oxidative stress in C. albicans, and suggest that trehalose accumulation observed under these conditions is a complex process that most probably involves post-translational modifications of the trehalose synthase complex. PMID:12783274

  8. Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab.

    PubMed

    Hirao, Makoto; Yamasaki, Naomi; Oze, Hiroki; Ebina, Kosuke; Nampei, Akihide; Kawato, Yoshitaka; Shi, Kenrin; Yoshikawa, Hideki; Nishimoto, Norihiro; Hashimoto, Jun

    2012-12-01

    Regarding the pathobiology of rheumatoid arthritis, oxidative stress induced by reactive oxygen species is an important mechanism that underlies destructive and proliferative synovitis. Abundant amounts of reactive oxygen species have been detected in the synovial fluid of inflamed rheumatoid joints. It is reported that drugs that block tumor necrosis factor-α reduce the oxidative stress marker levels in patients with rheumatoid arthritis. In this study, we measured reactive oxygen species using a free radical analytical system in patients with rheumatoid arthritis treated with disease-modifying antirheumatic drugs, tumor necrosis factor-α-blocking drugs (infliximab, etanercept), and an interleukin-6-blocking drug (tocilizumab). The serum level of oxidative stress was drastically low in patients with rheumatoid arthritis treated with tocilizumab, suggesting that interleukin-6 blocking therapy reduces not only joint damage, but also vascular degeneration in patients with rheumatoid arthritis. We believe that such a drastic effect would reduce the incidence of cardiovascular events and mortality in patients with rheumatoid arthritis. PMID:21909945

  9. Evaluation of Low Blood Lead Levels and Its Association with Oxidative Stress in Pregnant Anemic Women: A Comparative Prospective Study.

    PubMed

    Tiwari, Amit Kumar Mani; Mahdi, Abbas Ali; Zahra, Fatima; Sharma, Sudarshna; Negi, Mahendra Pal Singh

    2012-07-01

    To correlate blood lead levels (BLLs) and oxidative stress parameters in pregnant anemic women. A total of 175 pregnant women were found suitable and included for this study. Following WHO criteria, 50 each were identified as non-anemic, mild anemic and moderate anemic and 25 were severe anemic. The age of all study subjects ranged from 24-41 years. At admission, BLLs and oxidative stress parameters were estimated as per standard protocols and subjected with ANOVA, Pearson correlation analysis and cluster analysis. Results showed significantly (p < 0.01) high BLLs, zinc protoporphyrin (ZPP), oxidized glutathione (GSSG), lipid peroxide (LPO) levels while low delta aminolevulinic acid dehydratase (δ-ALAD), iron (Fe), selenium (Se), zinc (Zn), haemoglobin (Hb), haematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), red blood cell (RBC) count, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (TAC) in all groups of anemic pregnant women as compared with non anemic pregnant women. In all groups of pregnant women, BLLs showed significant (p < 0.01) and direct association with ZPP, GSSG and LPO while inverse relation with δ-ALAD, Fe, Se, Zn, Hb, Hct, MCV, MCH, MCHC, RBC, GSH, SOD, CAT and TAC. Study concluded that low BLLs perturb oxidant-antioxidant balance and negatively affected hematological parameters which may eventually Pb to Fe deficiency anemia during pregnancy. PMID:26405382

  10. Impact of iron overload on interleukin-10 levels, biochemical parameters and oxidative stress in patients with sickle cell anemia

    PubMed Central

    Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro

    2013-01-01

    Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881

  11. Low-Level Laser Therapy (808 nm) Reduces Inflammatory Response and Oxidative Stress in Rat Tibialis Anterior Muscle After Cryolesion

    PubMed Central

    Assis, Lívia; Moretti, Ana I.S.; Abrahão, Thalita B.; Cury, Vivian; Souza, Heraldo P.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2012-01-01

    Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n = 20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808 nm, tip area of 0.00785 cm2, power 30 mW, application time 47 seconds, fluence 180 J/cm2; 3.8 mW/cm2; and total energy 1.4 J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-kβ and COX-2 and by TNF-α and IL-1β concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. PMID:23001637

  12. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    PubMed

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  13. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

    PubMed Central

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-01-01

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  14. Changes in oxidative stress in response to different levels of energy restriction in obese ponies.

    PubMed

    Bruynsteen, Lien; Janssens, Geert P J; Harris, Patricia A; Duchateau, Luc; Valle, Emanuela; Odetti, Patrizio; Vandevelde, Kimberley; Buyse, Johan; Hesta, Myriam

    2014-10-28

    The present study evaluated the effect of different levels of energy restriction on metabolic parameters in obese ponies. Relative weight changes, markers of lipid metabolism and oxidant/antioxidant balance were monitored. A total of eighteen obese (body condition score ≥ 7/9) Shetland ponies were studied over a 23·5-week trial, which was divided into three periods. The first period involved a 4-week adaptation period in which each animal was fed 100% of their maintenance energy requirements needed to maintain a stable obese body weight (MERob). This was followed by a 16·5-week weight-loss period in which ponies were assigned to receive either 100% (control group, CONTROL), 80% (slow weight-loss (SLOW) group) or 60% (rapid weight-loss (RAPID) group) of their MERob. During the 3-week end-phase period, all ponies were again fed 100% of their MERob. Relative weight loss was higher in the RAPID group (P< 0·001) compared with the SLOW group. No linear relationship was found as a doubling of the percentage of energy restriction was accompanied by a tripling of the percentage of weight loss. Relative weight gain afterwards in the end-phase period was higher in the RAPID group (P< 0·001) compared with the SLOW and CONTROL groups. During the weight-loss period, TAG and NEFA concentrations were highest in the RAPID group, as were α-tocopherol and ferric-reducing ability of plasma concentrations. After 8 weeks of weight loss, the concentrations of advanced oxidation protein products were higher in the RAPID group compared with the SLOW and CONTROL groups (P< 0·001). In conclusion, the level of energy restriction influences the extent of changes in oxidant/antioxidant balance. Practically, more severe energy restriction regimens may be associated with a greater regain of weight after the restriction period. PMID:25181634

  15. Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains

    PubMed Central

    Paidi, Maya D.; Schjoldager, Janne G.; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-01-01

    Antioxidant defences are comparatively low during foetal development making the brain particularly susceptible to oxidative stress during antioxidant deficiencies. The brain is one of the organs containing the highest concentration of vitamin C (VitC) and VitC deficiency during foetal development may place the brain at risk of redox status imbalance. In the present study, we investigated the developmental pattern and effect of VitC deficiency on antioxidants, vitamin E and superoxide dismutase (SOD), assessed oxidative damage by measuring malondialdehyde (MDA), hydroxynonenal (HNE) and nitrotyrosine (NT) and analysed gene and protein expression of apoptosis marker caspase-3 in the guinea pig foetal brain at two gestational (GD) time points, GD 45/pre-term and GD 56/near term following either a VitC sufficient (CTRL) or deficient (DEF) maternal dietary regime. We show that except for SOD, antioxidants and oxidative damage markers are differentially expressed between the two GDs, with high VitC (p<0.0001), NT modified proteins (p<0.0001) and active caspase-3 levels (p<0.05) at pre-term and high vitamin E levels (p<0.0001), HNE (p<0.0001) and MDA (p<0.0001) at near term. VitC deficiency significantly increased SOD activity (p<0.0001) compared to CTRLs at both GDs indicating a compensatory response, however, low levels of VitC significantly elevated MDA levels (p<0.05) in DEF at near term. Our results show a differential regulation of the investigated markers during late gestation and suggest that immature brains are susceptible to oxidative stress due to prenatal vitC deficiency in spite of an induction of protective adaptation mechanisms. PMID:24563854

  16. Ozone oxidative postconditioning ameliorates joint damage and decreases pro-inflammatory cytokine levels and oxidative stress in PG/PS-induced arthritis in rats.

    PubMed

    Vaillant, Jaqueline Dranguet; Fraga, Angela; Díaz, María Teresa; Mallok, A; Viebahn-Hänsler, Renate; Fahmy, Ziad; Barberá, Ariana; Delgado, Liván; Menéndez, Silvia; Fernández, Olga Sonia León

    2013-08-15

    Rheumatoid Arthritis (RA) is the most prevalent chronic condition present in ~1% of the adult population. Many pro-inflammatory mediators are increased in RA, including Reactive Oxygen Species such as nitric oxide NO, pro-inflammatory cytokines as tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β) and other molecules. Ozone oxidative postconditioning has regulatory effects on some pathological targets associated with RA. Thus, the aim of this study was to investigate the efficacy of ozone therapy in PG/PS-induced arthritis in rats in point of joints inflammation and morphology. Moreover, cytokines, nitric oxide and oxidative stress levels in spleen homogenates were evaluated. Ozone treatment ameliorated joint damage, reduced TNF-α concentrations as well as TNF-α and IL-1β mRNA levels. Besides, cellular redox balance, nitric oxide and fructolysine levels were reestablished after ozone oxidative postconditioning. It was concluded that pleiotropic ozone's effects clarify its therapeutic efficacy in RA. Decreasing inflammation and joint injury, reduction of pro-inflammatory cytokines, TNF-α and IL-1β transcripts and re-establishment of cellular redox balance after ozone treatment were demonstrated. PMID:23911887

  17. Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis.

    PubMed

    Polachini, Carla Roberta Nunes; Spanevello, Roselia Maria; Zanini, Daniela; Baldissarelli, Jucimara; Pereira, Luciane Belmonte; Schetinger, Maria Rosa Chitolina; da Cruz, Ivana Beatrice Mânica; Assmann, Charles Elias; Bagatini, Margarete Dulce; Morsch, Vera Maria

    2016-02-01

    Multiple sclerosis (MS) is an autoimmune neurological disorder of unknown etiology. Oxidative stress and alterations in vitamin D levels have been implicated in the pathophysiology of MS. The aim of this study was to investigate δ-aminolevulinate dehydratase (δ-ALA-D) activity as well as the levels of vitamin D, lipid peroxidation levels, carbonyl protein content, DNA damage, superoxide dismutase (SOD) and catalase (CAT) activities, and the vitamin C, vitamin E, and non-protein thiol (NPSH) content in samples from patients with the relapsing-remitting form of MS (RRMS). The study population consisted of 29 RRMS patients and 29 healthy subjects. Twelve milliliters of blood was obtained from each individual and used for biochemical determinations. The results showed that δ-ALA-D and CAT activities were significantly increased, while SOD activity was decreased in the whole blood of RRMS patients compared to the control group (P < 0.05). In addition, we observed a significant increase in lipid peroxidation, carbonyl protein levels in serum and damaged DNA in leucocytes in RRMS patients compared with the control group (P < 0.05). Nonetheless, the levels of vitamin C, vitamin E, NPSH, and vitamin D were significantly decreased in RRMS patients in relation to the healthy individuals (P < 0.05). In conclusion, our results suggested that the increase in δ-ALA-D activity may be related to the inflammatory and immune process in MS in an attempt to maintain the cellular metabolism and reduce oxidative stress. Moreover, the alterations in the oxidant/antioxidant balance and lower vitamin D levels may contribute to the pathophysiology of MS. PMID:26690779

  18. Oxidative Stress and Insulin Resistance

    PubMed Central

    Park, Kyong; Gross, Myron; Lee, Duk-Hee; Holvoet, Paul; Himes, John H.; Shikany, James M.; Jacobs, David R.

    2009-01-01

    OBJECTIVE Although cumulative evidence suggests that increased oxidative stress may lead to insulin resistance in vivo or in vitro, community-based studies are scarce. This study examined the longitudinal relationships of oxidative stress biomarkers with the development of insulin resistance and whether these relationships were independent of obesity in nondiabetic young adults. RESEARCH DESIGN AND METHODS Biomarkers of oxidative stress (F2-isoprostanes [F2Isop] and oxidized LDL [oxLDL]), insulin resistance (the homeostasis model assessment of insulin resistance [HOMA-IR]), and various fatness measures (BMI, waist circumference, and estimated percent fat) were obtained in a population-based observational study (Coronary Artery Risk Development in Young Adults) and its ancillary study (Young Adult Longitudinal Trends in Antioxidants) during 2000–2006. RESULTS There were substantial increases in estimated mean HOMA-IR over time. OxLDL and F2Isop showed little association with each other. Mean evolving HOMA-IR increased with increasing levels of oxidative stress markers (P < 0.001 for oxLDL and P = 0.06 for F2Isop), measured in 2000–2001. After additional adjustment for adiposity, a positive association between oxLDL and HOMA-IR was strongly evident, whereas the association between F2Isop and HOMA-IR was not. CONCLUSIONS We observed positive associations between each of two oxidative stress markers and insulin resistance. The association with oxidized LDL was independent of obesity, but that with F2Isop was not. PMID:19389821

  19. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity

    PubMed Central

    KASUYA, NORIAKI; OHTA, SHOICHIRO; TAKANAMI, YOSHIKAZU; KAWAI, YUKARI; INOUE, YUTAKA; MURATA, ISAMU; KANAMOTO, IKUO

    2015-01-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia. PMID:25780409

  20. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  1. The effects of prenatal oxidative stress levels on infant adiposity development during the first year of life.

    PubMed

    Loy, S L; Sirajudeen, K N S; Hamid Jan, J M

    2014-04-01

    Although numerous studies have been conducted to examine the causal factors of childhood obesity, the implications of intrauterine oxidative stress on early postnatal adiposity development remain to be elucidated. The Universiti Sains Malaysia Birth Cohort Study aimed to investigate the effects of prenatal oxidative stress levels on the development of infant adiposity during the first year of life. This study was conducted on the healthy pregnant women aged 19-40 years, from April 2010 to December 2012 in Kelantan, Malaysia. Maternal blood samples were drawn in the second trimester to analyse for oxidative stress markers. Infant anthropometric measurements were taken at birth, 2, 6 and 12 months of age. A total of 153 pregnant women and full-term infants were included in the analysis. Statistical test was conducted by using multiple linear regression. Through the infant first year of life, as maternal DNA damage level in the second trimester increased, infant weights at birth (β=-0.122, P<0.001), 2 months (β=-0.120, P=0013), 6 months (β=-0.209, P=0.003) and 12 months of age (β=-0.241, P=0.006) decreased after adjusting for confounders. Similar results were noted when infant body mass index-for-age Z-scores and triceps skinfold-for-age Z-scores were used as the adiposity indicators. In conclusion, the present study shows a consistent inverse association between maternal DNA damage and infant adiposity during the first year of life. These infants with reduced growth and adiposity in early postnatal life may have a high tendency to experience catch-up growth during childhood, which could be strongly associated with later obesity. PMID:24847700

  2. The short-term effects of antioxidant and zinc supplements on oxidative stress biomarker levels in plasma: a pilot investigation

    PubMed Central

    Brantley, Milam A.; Osborn, Melissa P.; Sanders, Barton J.; Rezaei, Kasra A.; Lu, Pengcheng; Li, Chun; Milne, Ginger L.; Cai, Jiyang; Sternberg, Paul

    2012-01-01

    Purpose To determine if short-term Age-Related Eye Disease Study (AREDS) antioxidant and zinc supplementation affects biomarkers of oxidative stress, possibly serving as a predictor of their efficacy. Design Prospective interventional case series Methods Nineteen subjects, 12 with intermediate or advanced age-related macular degeneration (AMD) (AREDS categories 3 or 4) and 7 non-AMD controls, were admitted to the Vanderbilt General Clinical Research Center and placed on a controlled diet for 7 days. Antioxidant and zinc supplements were stopped two weeks prior to study enrollment. Dietary supplementation with 500 mg vitamin C, 400 IU vitamin E, 15 mg β-carotene, 80 mg zinc oxide, and 2 mg cupric oxide per day was instituted on Study Day 2. Blood was drawn on Study Days 2 and 7, and plasma concentrations of cysteine (Cys), cystine (CySS), glutathione (GSH), isoprostane (IsoP), and isofuran (IsoF) were determined. Results Short-term AREDS supplementation significantly lowered mean plasma levels of CySS in participants on a regulated diet (p = 0.034). No significant differences were observed for Cys, GSH, IsoP, or IsoF. There were no significant differences between AMD patients and controls. Conclusions This pilot interventional study shows that a 5-day course of antioxidant and zinc supplements can modify plasma levels of CySS, suggesting that this oxidative stress biomarker could help predict how likely an individual is to benefit from AREDS supplementation. Further, CySS may be useful for the evaluation of new AMD therapies, particularly those hypothesized to affect redox status. PMID:22381365

  3. Assessment at the Single-Cell Level Identifies Neuronal Glutathione Depletion As Both a Cause and Effect of Ischemia-Reperfusion Oxidative Stress

    PubMed Central

    Kim, Ji-Eun; Cittolin-Santos, Giordano Fabricio; Swanson, Raymond A.

    2015-01-01

    Oxidative stress contributes to neuronal death in brain ischemia-reperfusion. Tissue levels of the endogenous antioxidant glutathione (GSH) are depleted during ischemia-reperfusion, but it is unknown whether this depletion is a cause or an effect of oxidative stress, and whether it occurs in neurons or other cell types. We used immunohistochemical methods to evaluate glutathione, superoxide, and oxidative stress in mouse hippocampal neurons after transient forebrain ischemia. GSH levels in CA1 pyramidal neurons were normally high relative to surrounding neuropil, and exhibited a time-dependent decrease during the first few hours of reperfusion. Colabeling for superoxide in the neurons showed a concurrent increase in detectable superoxide over this interval. To identify cause–effect relationships between these changes, we independently manipulated superoxide production and GSH metabolism during reperfusion. Mice in which NADPH oxidase activity was blocked to prevent superoxide production showed preservation of neuronal GSH content, thus demonstrating that neuronal GSH depletion is result of oxidative stress. Conversely, mice in which neuronal GSH levels were maintained by N-acetyl cysteine treatment during reperfusion showed less neuronal superoxide signal, oxidative stress, and neuronal death. At 3 d following ischemia, GSH content in reactive astrocytes and microglia was increased in the hippocampal CA1 relative to surviving neurons. Results of these studies demonstrate that neuronal GSH depletion is both a result and a cause of neuronal oxidative stress after ischemia-reperfusion, and that postischemic restoration of neuronal GSH levels can be neuroprotective. PMID:25948264

  4. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress

    PubMed Central

    Yao, Liqiong; Liu, Zhiwu; Zhu, Jinhong; Li, Bin; Chai, Chen; Tian, Yunlin

    2015-01-01

    Objective: to investigated the circulating microRNA expression profile in sepsis and its clinical evaluation. Methods: 70 patients with sepsis and 30 patients with SIRS were selected and their blood samples were collected. Using liquid bead array with 3 statistical analysis approaches analyzed the circulating microRNA expression profiles, for confirming the data of liquid bead array, qRT-PCR was performed. The prognostic value of the changed microRNA in sepsis was determined and compared with CRP and PCT by analyzing the receiver operating characteristic (ROC) curves. To reveal whether the selected microRNAs could predict the outcome of patients, 28 d survival rate were calculated using Kaplan-Meier curves. Furthermore, the level of malondialdehyde (MDA), activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in plasma were detected and the relationship with the changed microRNA was determined. Results: By integrating data from liquid bead array, we ultimately identified 6 microRNAs that were consistently changed in both of 3 statistical analysis approaches, however, only the change of microRNA-25 was significant according to the qPCR’s result. The area under ROC curve showed that the clinical accuracy of microRNA-25 for sepsis diagnosis was better than CRP and PCT (AUG=0.806, 0.676 and 0.726, P<0.05).The decrease in level of microRNA-25 was correlated with the severity of sepsis, SOFA score, CRP and PCT level, meanwhile, microRNA-25 level can be used for predicting the prognosis of patients, the patients with microRNA-25 level ≤0.492 had a lower 28 d survival rate. Moreover, Decreased microRNA-25 level was related to the level of oxidative stress indicators in sepsis patients. Conclusions: microRNA-25 can be used as a biomarker for the diagnosis and assessment of sepsis. Meanwhile, microRNA-25 level may be associated with oxidative stress in patients with sepsis, and it is expected to become a target for anti-oxidation therapy. PMID

  5. Oxidative Stress Markers in Sputum

    PubMed Central

    Antus, Balazs

    2016-01-01

    Although oxidative stress is thought to play a pivotal role in the pathogenesis of inflammatory airway diseases, its assessment in clinical practice remains elusive. In recent years, it has been conceptualized that oxidative stress markers in sputum should be employed to monitor oxidative processes in patients with asthma, chronic obstructive pulmonary disease (COPD), or cystic fibrosis (CF). In this review, the use of sputum-based oxidative markers was explored and potential clinical applications were considered. Among lipid peroxidation-derived products, 8-isoprostane and malondialdehyde have been the most frequently investigated, while nitrosothiols and nitrotyrosine may serve as markers of nitrosative stress. Several studies have showed higher levels of these products in patients with asthma, COPD, or CF compared to healthy subjects. Marker concentrations could be further increased during exacerbations and decreased along with recovery of these diseases. Measurement of oxidized guanine species and antioxidant enzymes in the sputum could be other approaches for assessing oxidative stress in pulmonary patients. Collectively, even though there are promising findings in this field, further clinical studies using more established detection techniques are needed to clearly show the benefit of these measurements in the follow-up of patients with inflammatory airway diseases. PMID:26885248

  6. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-12-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions

  7. Analysis of Oxidative Stress in Zebrafish Embryos

    PubMed Central

    Mugoni, Vera; Camporeale, Annalisa; Santoro, Massimo M.

    2014-01-01

    High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer. PMID:25046434

  8. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    SciTech Connect

    Jiménez-Garza, Octavio; Baccarelli, Andrea A.; Byun, Hyang-Min; Márquez-Gamiño, Sergio; Barrón-Vivanco, Briscia Socorro

    2015-08-01

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m{sup 3}) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m{sup 3}) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1

  9. Oxidative Stress and Psychological Disorders

    PubMed Central

    Salim, Samina

    2014-01-01

    Oxidative stress is an imbalance between cellular production of reactive oxygen species and the counteracting antioxidant mechanisms. The brain with its high oxygen consumption and a lipid-rich environment is considered highly susceptible to oxidative stress or redox imbalances. Therefore, the fact that oxidative stress is implicated in several mental disorders including depression, anxiety disorders, schizophrenia and bipolar disorder, is not surprising. Although several elegant studies have established a link between oxidative stress and psychiatric disorders, the causal relationship between oxidative stress and psychiatric diseases is not fully determined. Another critical aspect that needs much attention and effort is our understanding of the association between cellular oxidative stress and emotional stress. This review examines some of the recent discoveries that link oxidative status with anxiety, depression, schizophrenia and bipolar disorder. A discussion of published results and questions that currently exist in the field regarding a causal relationship between oxidative and emotional stress is also provided. PMID:24669208

  10. Cutaneous oxidative stress.

    PubMed

    Polefka, Thomas G; Meyer, Thomas A; Agin, Patricia P; Bianchini, Robert J

    2012-03-01

    The earliest known microfossil records suggest that microorganisms existed on the earth approximately 3.8 billion years ago. Not only did sunlight drive this evolutionary process, but it also allowed photosynthetic organisms to elaborate oxygen and fundamentally change the earth's atmosphere and subsequent evolution. Paradoxically, however, an atmosphere of 20% oxygen offers aerobic organisms both benefits and some key challenges, particularly, to the external integument. This mini-review summarizes almost 40 years of research and provides a "60 000-foot" perspective on cutaneous oxidative stress. Topics reviewed include the following: What are free radicals and reactive oxygen species? Where do they come from? What is their chemistry? What are their roles and/or impact on the skin? What antioxidant defenses are available to mitigate oxidative stress. PMID:22360336

  11. Expression of FOXO6 is Associated With Oxidative Stress Level and Predicts the Prognosis in Hepatocellular Cancer: A Comparative Study.

    PubMed

    Chen, Hai-Yong; Chen, Yao-Min; Wu, Jian; Yang, Fu-Chun; Lv, Zhen; Xu, Xiao-Feng; Zheng, Shu-Sen

    2016-05-01

    The aim of this study was to explore the association of Forkhead box O6 (FOXO6) expression with oxidative stress level and prognosis of hepatocellular cancer (HCC).The case group included tissues of HCC from 128 patients who were hospitalized in Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery of First Affiliated Hospital, School of Medicine, Zhejiang University. The control group included normal liver tissues from 74 patients. RT-PCR and Western blot were used to test expressions of FOXO6, heme oxygenase (HO)-1, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). Dihydroethidium (DHE) was dyed to observe reactive oxygen species (ROS) level. Immunohistochemistry was used to test FOXO6 expression. FOXO6 was silenced in HepG2 cells to detect cell proliferation and apoptosis. The expressions of ROS, HO-1, GPx, SOD, CAT, p27, and cyclin D1 were also detected to further explore the possible mechanism.The expressions of FOXO6, HO-1, GPx, SOD, and CAT in HCC tissue was significantly higher than those in normal and adjacent HCC tissues (P <0.05). The tumor size, TNM stage, Alpha-fetoprotein (AFP) level, the presence or absence of hepatitis B surface antigen (HbsAg), and differentiation degree were related to FOXO6 expression level (all P <0.05). COX analysis showed that high FOXO6 expression, male, positive HBsAg, advanced TNM staging, high expression of AFP, and low degree of differentiation were all risk factors for prognosis in HCC (P <0.05). Compared with the blank group (C group, without transfection) and the negative control (NC) group, the mRNA expressions of ROS, FOXO6, HO-1, SOD, GPx, and CAT were decreased (P <0.05). si-RNA group had significantly decreased proliferation speed during 24 to 72 hours (P <0.05), whereas si-FOXO6 group had remarkably increased G0/G1 staged cells and decreased S-staged cells (P <0.05). The si-FOXO6 group showed notably increased apoptosis rate (P <0.05) and p27

  12. Oxidative Stress and Major Depression

    PubMed Central

    Verma, Akhilesh Kumar; Srivastava, Mona; Srivastava, Ragini

    2014-01-01

    Background: Major causative factor for major depression is inflammation, autoimmune tissue damage and prolonged psychological stress, which leads to oxidative stress. The aim of this study was to know the association of free radicals and antioxidant status in subjects suffering from major depression. Materials and Methods: Sixty patients diagnosed as a case of unipolar depression as per DSM IV, fulfilling the inclusion and exclusion criteria were compared with 40 healthy age and sex matched controls. The sera of both the groups were collected taking aseptic precautions and were evaluated for the markers of oxidative stress and for the antioxidants. The age group of the sample and the controls was between 18-60 y, both males and females were equally represented in the groups. Results: A significantly high level of malondialdehyde (MDA) was found in the patients with major depression (1.95 ± 1.04 mmol/L) as compared to healthy controls (0.366 ± 0.175 mmol/L) (p < 0.0001). The serum level of nitrite was found to be lower in cases (23.18 ± 12.08 μmol/L) in comparison to controls (26.18 ± 8.68 μmol/L) (p = 0.1789). Similarly the serum level of ascorbic acid and superoxide dismutase (SOD) were significantly below as compared to healthy controls (all p < 0.0001). Ceruloplasmin levels were also depressed in cases (p = 0.3943). Conclusion: The study concluded that in the absence of known oxidative injury causative agents, the lowered levels of antioxidants and higher levels of MDA implicate the high degree of oxidative stress in unipolar depression. PMID:25653939

  13. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  14. Anti-inflammatory Montelukast prevents toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin: Oxidative stress, histological alterations in liver, and serum cytokine levels.

    PubMed

    Bentli, Recep; Ciftci, Osman; Cetin, Asli; Otlu, Ali

    2016-05-01

    This study aimed to investigate the potential beneficial effects of the montelukast (ML) on oxidative stress and histological alterations in liver tissues and cytokine levels in rats intoxicated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rats were divided randomly into four equal groups (control, TCDD, ML, TCDD + ML). TCDD were administered by gavages dissolved in corn oil at the doses of 2 µg/kg/week, and ML was given intraperitoneally at the dose of 10 mg/kg/day. Oxidative status, histological alterations, and cytokine levels were analyzed on day 60. The results showed that although TCDD induced oxidative stress via significant increase in formation of thiobarbituric acid reactive substance, it caused a significant decline in glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) levels in liver. Besides, TCDD led to significant histopathological damage in liver and serum cytokine levels alterations (increase in tumor necrosis factor α and interleukin 1β levels). In contrast, ML treatment reversed oxidative effects of TCDD by increasing the levels of GSH, CAT, and SOD and decreasing the formation of TBARS. Also, it can normalize the levels of histological and cytokine alterations induced by TCDD. In conclusion, it was determined that TCDD exposure caused adverse effects on cytokine levels, histological alterations, and oxidative stress in rats. However, ML treatment partially eliminated toxic effects of TCDD. Thus, it was judged that coadministration of ML with TCDD may be useful to attenuate the negative effects of TCDD. PMID:24215062

  15. Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF

    PubMed Central

    Tafforeau, Lionel; Le Blastier, Sophie; Bamps, Sophie; Dewez, Monique; Vandenhaute, Jean; Hermand, Damien

    2006-01-01

    We describe a new member of the F-box family, Pof14, which forms a canonical, F-box dependent SCF (Skp1, Cullin, F-box protein) ubiquitin ligase complex. The Pof14 protein has intrinsic instability that is abolished by inactivation of its Skp1 interaction motif (the F-box), Skp1 or the proteasome, indicating that Pof14 stability is controlled by an autocatalytic mechanism. Pof14 interacts with the squalene synthase Erg9, a key enzyme in ergosterol metabolism, in a membrane-bound complex that does not contain the core SCF components. pof14 transcription is induced by hydrogen peroxide and requires the Pap1 transcription factor and the Sty1 MAP kinase. Pof14 binds to and decreases Erg9 activity in vitro and a pof14 deletion strain quickly loses viability in the presence of hydrogen peroxide due to its inability to repress ergosterol synthesis. A pof14 mutant lacking the F-box and an skp1-3 ts mutant behave as wild type in the presence of oxidant showing that Pof14 function is independent of SCF. This indicates that modulation of ergosterol level plays a key role in adaptation to oxidative stress. PMID:17016471

  16. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  17. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress.

    PubMed

    García-Lara, Lucia; Pérez-Severiano, Francisca; González-Esquivel, Dinora; Elizondo, Guillermo; Segovia, José

    2015-09-01

    L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue. PMID:26013807

  18. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    PubMed Central

    Agarwal, Avinash; Robo, Roto; Jain, Nirdesh; Gutch, Manish; Consil, Shuchi; Kumar, Sukriti

    2014-01-01

    Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP) poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC) given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD) and glutathione reductase (GR). The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required), while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008) and SOD (P < 0.01) levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4%) expired and 15 (32.6%) survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043). Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning. PMID:25316977

  19. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione--Post-hoc analysis of data from a smoking cessation trial.

    PubMed

    Mons, Ute; Muscat, Joshua E; Modesto, Jennifer; Richie, John P; Brenner, Hermann

    2016-02-01

    Cigarette smoke contains high concentrations of free radical components that induce oxidative stress. Smoking-induced oxidative stress is thought to contribute to chronic obstructive pulmonary disease, cardiovascular disease and lung cancer through degenerative processes in the lung and other tissues. It is uncertain however whether smoking cessation lowers the burden of oxidative stress. We used data from a randomized controlled cessation trial of 434 current smokers for a post-hoc examination of the effects of smoking cessation on blood plasma levels of total glutathione (tGSH), the most abundant endogenous antioxidant in cells, and total cysteine (tCys), an amino acid and constituent of glutathione. Smoking status was validated based on serum cotinine levels. Multivariate linear mixed models were fitted to examine the association of smoking cessation and change in cigarette consumption with tGSH and tCys. After 12 months follow-up, quitters (n=55) had significantly increased levels of tGSH compared to subjects who continued to smoke (P<0.01). No significant change in tGSH was found for subjects who continued to smoke but reduced their intensity of smoking. No significant effect of smoking cessation or reduction was observed on levels of tCys. These results suggest that smoking cessation but not smoking reduction reduces levels of oxidative stress. PMID:26708755

  20. Levodopa increases oxidative stress and repulsive guidance molecule A levels: a pilot study in patients with Parkinson's disease.

    PubMed

    Müller, Thomas; Trommer, Isabel; Muhlack, Siegfried; Mueller, Bernhard K

    2016-04-01

    Exposure to free radicals influences synthesis, degradation and function of proteins, such as repulsive guidance molecule A. Decay of this protein is essential for neuronal maintenance and recovery. Levodopa elevates oxidative stress. Therefore levodopa may impact repulsive guidance molecule A metabolism. Objectives were to investigate plasma concentrations of repulsive guidance molecule A, levodopa, cysteine and cysteinyl-glycine before and 1 h after levodopa application in patients with Parkinson's disease. Cysteine and cysteinyl-glycine as biomarkers for oxidative stress exposure decreased, repulsive guidance molecule A and levodopa rose. Repulsive guidance molecule A remained unchanged in levodopa naïve patients, but particularly went up in patients on a prior chronic levodopa regimen. Decay of cysteine specifically cysteinyl-glycine results from an elevated glutathione generation with rising cysteine consumption respectively from the alternative glutathione transformation to its oxidized form glutathione disulfide after free radical scavenging. Repulsive guidance molecule A rise may inhibit physiologic mechanisms for neuronal survival. PMID:26880022

  1. Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortex.

    PubMed

    Czapski, Grzegorz A; Cakala, Magdalena; Kopczuk, Dorota; Strosznajder, Joanna B

    2004-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair, replication and cell cycle. However, its overactivation leads to nicotinamide adenine dinucleotide and ATP depletion and cell death. The inhibitors of PARP-1 were successfully used in the basic studies and in animal models of different diseases. For this reason, it is important to discriminate between specific and non-specific antioxidant properties of PARP-1 inhibitors. The aim of this study was to investigate the effect of PARP-1 inhibitors on the free radical level and oxidation of macromolecules and to compare their properties with the efficacy of antioxidants. Oxidative stress was induced in the brain cortex homogenate by FeCl(2) or CuSO(4) at 25 microM during 15 min incubation at 37 degrees C. PARP-1 inhibitors 3-aminobenzamide (3-AB), 1,5-dihydroxyisoquinoline (DHIQ) and 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), and the antioxidants alpha-tocopherol, resveratrol and Tempol were used at 0-5 mM. Free radical contents were estimated by spin-trapping using HPLC. Lipid and protein oxidation were determined by measuring thiobarbituric acid reactive substances and carbonyl groups or using fluorescent probe TyrFluo, respectively. Our data indicate that 3-AB and DHIQ are potent hydroxyl radical scavengers and inhibitors of protein oxidation. DHIQ additionally decreases lipid peroxidation. DPQ has no antioxidant properties and seems to be a specific PARP-1 inhibitor, however, it is a water insoluble compound. Among the investigated antioxidants, the most potent was resveratrol and then alpha-tocopherol and Tempol. These results indicate that 3-A beta, benzamide and DHIQ are potent hydroxyl radical scavengers and antioxidants. These data ought to be taken into consideration when properties of these compounds as PARP inhibitors are evaluated. PMID:14746898

  2. (-)-Epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle.

    PubMed

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-12-01

    Muscular dystrophies (MDs) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism of disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD, and probably represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (-)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild-type or δ-SG null 2.5-month-old male mice were treated via oral gavage with either water (controls) or Epi (1 mg·kg(-1) , twice daily) for 2 weeks. The results showed significant normalization of total protein carbonylation, recovery of the glutathione/oxidized glutathione ratio and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in the protein levels of thioredoxin, glutathione peroxidase, superoxide dismutase 2, catalase, and mitochondrial endpoints. Furthermore, we found decreases in heart and skeletal muscle fibrosis, accompanied by an improvement in skeletal muscle function, with treatment. These results warrant further investigation of Epi as a potential therapeutic agent to mitigate MD-associated muscle degeneration. PMID:25284161

  3. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    PubMed Central

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  4. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes. PMID:25625523

  5. Low levels of tissue factor lead to alveolar hemorrhage, potentiating murine acute lung injury and oxidative stress

    PubMed Central

    Bastarache, J.A.; Sebag, S. C.; Clune, J.K.; Grove, B.S.; Lawson, W.E.; Janz, D. R.; Roberts, L. J.; Dworski, R; Mackman, N.; Ware, L. B.

    2013-01-01

    Background Systemic blockade of Tissue Factor (TF) attenuates acute lung injury (ALI) in animal models of sepsis but the effects of global TF deficiency are unknown. Hypothesis We used mice with complete knockout of mouse TF and low levels (~1%) of human TF (LTF mice) to test the hypothesis that global TF deficiency attenuates lung inflammation in direct lung injury. Methods LTF mice were treated with 10 μg of lipopolysaccharide (LPS) or vehicle administered by direct intratracheal (IT) injection and studied at 24 hours. Results Contrary to our hypothesis, LTF mice had increased lung inflammation and injury as measured by bronchoalveolar lavage cell count (3.4 × 105 WT LPS versus 3.3 × 105 LTF LPS, p=0.947) and protein (493 μg/ml WT LPS versus 1014 μg/ml LTF LPS, p=0.006), proinflammatory cytokines (TNF-α, IL-10, IL-12, p<0.035 WT LPS versus LTF LPS) and histology compared to wild type mice. LTF mice also had increased hemorrhage and free hemoglobin in the airspace accompanied by increased oxidant stress as measured by lipid peroxidation products (F2-Isoprostanes and Isofurans). Conclusions These findings indicate that global TF deficiency does not confer protection in a direct lung injury model. Rather, TF deficiency causes increased intra-alveolar hemorrhage following LPS leading to increased lipid peroxidation. Strategies to globally inhibit tissue factor may be deleterious in patients with ALI. PMID:23033361

  6. Primary and secondary oxidative stress in Bacillus.

    PubMed

    Mols, Maarten; Abee, Tjakko

    2011-06-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This minireview highlights novel insights in the primary oxidative stress response caused by oxidizing compounds including hydrogen peroxide and the secondary oxidative stress responses apparent upon exposure to a range of agents and conditions leading to environmental stresses such as antibiotics, heat and acid. Insights in the pathways and damaging radicals involved have been compiled based among others on transcriptome studies, network analyses and fluorescence techniques for detection of ROS at single cell level. Exploitation of the current knowledge for the control of spoilage and pathogenic bacteria is discussed. PMID:21352461

  7. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Staňková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous

  8. Lymphocyte oxidative stress/genotoxic effects are related to serum IgG and IgA levels in coke oven workers.

    PubMed

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  9. Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers

    PubMed Central

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  10. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells.

    PubMed

    Smirnova, Olga A; Isaguliants, Maria G; Hyvonen, Mervi T; Keinanen, Tuomo A; Tunitskaya, Vera L; Vepsalainen, Jouko; Alhonen, Leena; Kochetkov, Sergey N; Ivanov, Alexander V

    2012-09-01

    Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress. PMID:22579641

  11. Oxidative Stress in Neurodegenerative Diseases.

    PubMed

    Niedzielska, Ewa; Smaga, Irena; Gawlik, Maciej; Moniczewski, Andrzej; Stankowicz, Piotr; Pera, Joanna; Filip, Małgorzata

    2016-08-01

    The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction. PMID:26198567

  12. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    PubMed Central

    Mattace-Raso, Francesco; van Saase, Jan L. C. M.; Postorino, Maurizio; Tripepi, Giovanni Luigi; Mallamaci, Francesca; PROGREDIRE Study Group

    2016-01-01

    Alkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT) levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase) was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03) and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2) (P for the effect modification = 0.02). These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population. PMID:27525053

  13. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer's disease.

    PubMed

    Turunc Bayrakdar, E; Uyanikgil, Y; Kanit, L; Koylu, E; Yalcin, A

    2014-02-01

    The underlying mechanisms of Alzheimer's Disease (AD) are still unclear. It is suggested that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation can cause neuroinflammation and cell death. In this study we searched the effects of nicotinamide (NA), endogenous PARP-1 inhibitor, on oxidative stress, apoptosis, and the regulation of PARP-1 and nuclear factor kappa B (NF-κB) in amyloid beta peptide (1-42) (Aβ(1-42))-induced neurodegeneration. Sprague-Dawley rats were divided into four groups as control, Aβ(1-42), Aβ(1-42) + NA(100 and 500 mg/kg). All groups were stereotaxically injected bilaterally into the hippocampus with Aβ(1-42) or saline. After surgery NA administrations were made intraperitoneally (ip) for 7 days. In order to investigate the effects of Aβ(1-42) and NA, protein carbonyls, lipid peroxidation, reactive oxygen species (ROS) production, glutathione (GSH) levels, activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), mitochondrial function, mRNA and protein levels of PARP-1, NF-κB, p53, Bax, and Bcl-2 were measured in specific brain regions such as cortex and hippocampus. Aβ(1-42) treatment only increased the oxidative stress parameters and caused decline in antioxidant enzyme activities, mitochondrial function, and GSH levels. Also, overexpression of PARP-1, NF-κB, p53, Bax, and the decreased levels of Bcl-2 were observed in Aβ(1-42)-treated group. NA treatments against Aβ(1-42)-upregulated Bcl-2 and downregulated PARP-1, NF-κB, p53, and Bax levels. NA treatments also decreased the oxidative stress parameters and elevated antioxidant enzyme activities, GSH levels, and mitochondrial function against Aβ(1-42) treatment. These data suggest that NA may have a therapeutic potential in neurodegenerative processes due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activity. PMID:24151909

  14. Oxidative Stress in Cystinosis Patients

    PubMed Central

    Vaisbich, Maria Helena; Pache de Faria Guimaraes, Luciana; Shimizu, Maria Heloisa Mazzola; Seguro, Antonio Carlos

    2011-01-01

    Background/Aims Nephropathic cystinosis (NC) is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS) and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS) in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p < 0.0001). We detected no significant correlation between plasma TBARS levels and renal function. Conclusion An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients. PMID:22470381

  15. Fusarium oxysporum-induced oxidative stress and antioxidative defenses of yellow lupine embryo axes with different sugar levels.

    PubMed

    Morkunas, Iwona; Bednarski, Waldemar

    2008-01-01

    This study was designed to investigate whether and to what extent oxidative stress is induced in embryo axes of Lupinus luteus L. cv. Polo inoculated with a necrotrophic fungus, Fusarium oxysporum and cultured on Heller medium for 96h. Four variants were compared: inoculated embryo axes cultured with 60mM sucrose (+Si) or without it (-Si), and non-inoculated embryo axes cultured with 60mM sucrose (+Sn) or without it (-Sn). After inoculation, an accumulation of stable free radicals and Mn2+ ions in +Si and -Si were detected by electron paramagnetic resonance. Concentrations of the radicals with g-values of 2.0052+/-0.0004 and 2.0029+/-0.0003 were generally higher in -Si than in +Si. Beginning at 24h after inoculation, in both +Si and -Si the concentrations of these ions decreased, but more strongly in -Si than in +Si. After inoculation, the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) were higher in -Si than in +Si. SOD and CAT zymograms showed that the synthesis of new isoforms was induced after inoculation. Simultaneously, superoxide anions were assayed in embryo axes by using their specific indicator dihydroethidium (DHE). The DHE-derived fluorescence was stronger and covered a much larger tissue area in +Si than in -Si. The respiration rate was generally much higher in +Si than in -Si. Electron micrographs revealed that, in contrast to -Si cells, +Si cells had numerous mitochondria with less reduced numbers of cristae and long sections of rough endoplasmic reticulum and Golgi bodies. These results indicate that different defensive strategies against F. oxysporum were induced depending on soluble sugar levels in yellow lupine embryo axes. PMID:17913293

  16. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  17. The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level.

    PubMed

    Zhang, Bing; Yu, Qilin; Wang, Yuzhou; Xiao, Chenpeng; Li, Jianrong; Huo, Da; Zhang, Dan; Jia, Chang; Li, Mingchun

    2016-09-01

    The actin cytoskeleton coordinates numerous fundamental cellular processes. Fimbrins are a class of evolutionally conserved ABPs that mediate actin bundling and regulate actin dynamics and functions. In this study, we identified the fimbrin Sac6 from the important fungal pathogen, Candida albicans. Interestingly, deletion of SAC6 led to increased tolerance to oxidative stress, while its overexpression caused hyper-susceptibility to this stress. Further investigations revealed that Sac6, by interaction with actin, negatively regulated the cytosol-to-nucleus transport of the key OSR (oxidative stress response) transcription factor Cap1 and consequent expression of OSR genes. Moreover, loss of Sac6 enhanced hyphal maintenance, and its overexpression caused a defect in hyphal development, which was attributed to abnormal expression of morphogenesis-related genes. In addition, Sac6 was involved in regulation of secretion of lytic enzymes and virulence of C. albicans. This study reveals a novel mechanism by which fimbrin transcriptionally regulates OSR and morphogenesis, and sheds a novel light on the functions of actin cytoskeleton. PMID:27275845

  18. Oxidative Stress and Antioxidant Levels in Patients with Anorexia Nervosa after Oral Re-alimentation: A Systematic Review and Exploratory Meta-analysis.

    PubMed

    Solmi, Marco; Veronese, Nicola; Luchini, Claudio; Manzato, Enzo; Sergi, Giuseppe; Favaro, Angela; Santonastaso, Paolo; Correll, Christoph U

    2016-03-01

    Oxidative stress markers seem to be higher in patients with anorexia nervosa (AN) than healthy controls, but the potentially beneficial effects of weight gain is not known. We calculated random effects standardised mean differences (SMDs) as effect size measures of oxidative stress marker changes after re-alimentation reported in two or more studies, summarising others descriptively. Seven longitudinal studies (n = 104) were included. After a median follow-up period of 8 weeks, AN patients significantly increased their body mass index (15.1 ± 2.1 to 17.1 ± 2.2, p < 0.0001). This weight gain was followed by a significant increase in serum levels of the antioxidant albumin (studies = 6, SMD = 0.50, 95%CI = 0.18; 0.82, p = 0.002; I(2) = 16%) and a significant decrease in the oxidative stress marker Apolipoprotein B (studies = 2, n = 19, SMD = -0.85, 95%CI = -1.53; -0.17, p = 0.01; I(2) = 0). In one study, catalase and total antioxidant capacity increased, whilst superoxide dismutase significantly decreased. In conclusion, oral re-alimentation, even without full-weight normalisation, seems to improve oxidative stress in people with AN. PMID:26663703

  19. Oxidative stress in Alzheimer disease

    PubMed Central

    Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765

  20. Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Hattab, Sabrine; Boughattas, Iteb; Boussetta, Hamadi; Viarengo, Aldo; Banni, Mohamed; Sforzini, Susanna

    2015-12-01

    This study investigated the stress response of earthworms (Eisenia andrei) to exposure to a commonly used herbicide, 2,4 dichloro-phenoxy-acetic acid (2,4-D). We evaluated both stress biomarkers and the transcriptional expression levels and activity of three enzymes involved in oxidative stress responses. Earthworms were exposed to three sublethal concentration of 2,4-D (3.5, 7, and 14 mg kg(-1)) for 7 and 14 days. Exposure to 7 and 14 mg kg(-1) 2,4-D significantly reduced both worm body weight and lysosomal membrane stability (LMS); the latter is a sensitive stress biomarker in coelomocytes. Exposure to 2,4-D caused a pronounced increase in the accumulation of malonedialdehyde (MDA), a marker of oxidative stress, and significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD),and glutathione-S-transferase (GST). Compared to expression in controls, the expression levels of the sod, cat, and gst genes increased in worms exposed to all three 2,4-D doses for 7 days. However, after 14 days of exposure, only the expression of the gst gene remained higher than controls. These data provide new insights into the cytotoxicity of 2,4-D in the earthworm E. andrei and should be carefully considered in view of the biological effects of herbicides in soils organisms. PMID:26210610

  1. Oxidant stress in the vasculature.

    PubMed

    Maytin, M; Leopold, J; Loscalzo, J

    1999-09-01

    Vascular disease and vasomotor responses are largely influenced by oxidant stress. Superoxide is generated via the cellular oxidase systems, xanthine oxidase, and NADH/NADPH oxidases. Once formed, superoxides participate in a number of reactions, yielding various free radicals such as hydrogen peroxide, peroxynitrite, oxidized low-density lipoprotein, or hypochlorous acid. Numerous cellular antioxidant systems exist to defend against oxidant stress; glutathione and the enzymes superoxide dismutase and glutathione peroxidase are critical for maintaining the redox balance of the cell. However, the redox state is disrupted by certain vascular diseases. It appears that oxidant stress both promotes and is induced by diseases such as hypertension, atherosclerosis, and restenosis as well as by certain risk factors for coronary artery disease including hyperlipidemia, diabetes, and cigarette smoking. Once oxidant stress is invoked, characteristic pathophysiologic features ensue, namely adverse vessel reactivity, vascular smooth muscle cell proliferation, macrophage adhesion, platelet activation, and lipid peroxidation. PMID:11122705

  2. What Does Carotenoid-Dependent Coloration Tell? Plasma Carotenoid Level Signals Immunocompetence and Oxidative Stress State in Birds–A Meta-Analysis

    PubMed Central

    Simons, Mirre J. P.; Cohen, Alan A.; Verhulst, Simon

    2012-01-01

    Abstract Mechanisms maintaining honesty of sexual signals are far from resolved, limiting our understanding of sexual selection and potential important parts of physiology. Carotenoid pigmented visual signals are among the most extensively studied sexual displays, but evidence regarding hypotheses on how carotenoids ensure signal honesty is mixed. Using a phylogenetically controlled meta-analysis of 357 effect sizes across 88 different species of birds, we tested two prominent hypotheses in the field: that carotenoid-dependent coloration signals i) immunocompetence and/or ii) oxidative stress state. Separate meta-analyses were performed for the relationships of trait coloration and circulating carotenoid level with different measures of immunocompetence and oxidative stress state. For immunocompetence we find that carotenoid levels (r = 0.20) and trait color intensity (r = 0.17) are significantly positively related to PHA response. Additionally we find that carotenoids are significantly positively related to antioxidant capacity (r = 0.10), but not significantly related to oxidative damage (r = −0.02). Thus our analyses provide support for both hypotheses, in that at least for some aspects of immunity and oxidative stress state the predicted correlations were found. Furthermore, we tested for differences in effect size between experimental and observational studies; a larger effect in observational studies would indicate that co-variation might not be causal. However, we detected no significant difference, suggesting that the relationships we found are causal. The overall effect sizes we report are modest and we discuss potential factors contributing to this, including differences between species. We suggest complementary mechanisms maintaining honesty rather than the involvement of carotenoids in immune function and oxidative stress and suggest experiments on how to test these. PMID:22905205

  3. Ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress.

    PubMed

    Erem, Cihangir; Suleyman, Akile Karacin; Civan, Nadim; Mentese, Ahmet; Nuhoglu, İrfan; Uzun, Aysegul; Ersoz, Halil Onder; Deger, Orhan

    2015-01-01

    The main purpose of this study was to evaluate the levels of ischemia-modified albumin (IMA) and malondialdehyde (MDA) in patients with OHyper and SHyper, to assess the effects of antithyroid drug (ATD) therapy on the oxidative stress (OS) parameters. Forty-five untreated patients with overt hyperthyroidism (OHyper), 20 untreated patients with subclinical hyperthyroidism (SHyper) and 30 age-and sex-matched healthy controls were prospectively included in the study. Biochemical and hormonal parameters were evaluated in all patients before and after treatment. Compared with the control subjects, the levels of MDA, glucose and TG were significantly increased in patients with SHyper (p<0.05), whereas LDL-C levels were significantly decreased (p<0.01). Patients with OHyper showed significantly elevated MDA and glucose levels (p<0.001) and significantly decreased LDL-C and HDL-C levels compared with the controls (p<0.01). In patients with Graves' disease, serum TSH levels were inversely correlated with plasma MDA levels (r: -0.42, p<0.05). Plasma MDA levels significantly decreased and levels of TC, LDL-C and HDL-C significantly increased in the groups of OHyper and SHyper after treatment. Serum IMA levels did not significantly change at baseline and with the therapy in all subjects. In conclusion, increased MDA levels in both patient groups represent increased lipid peroxidation which might play an important role in the pathogenesis of the atherosclerosis in these patients. Increased oxidative stress in patients with SHyper and OHyper could be improved by ATD therapy. Also, MDA can be used as a reliable marker of OS and oxidative damage, while IMA is considered to be inappropriate. PMID:25843331

  4. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands

    PubMed Central

    Kruk-Slomka, Marta; Boguszewska-Czubara, Anna; Slomka, Tomasz; Budzynska, Barbara; Biala, Grazyna

    2016-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection of a selective CB1 receptor antagonist, AM 251, improved long-term memory acquisition and consolidation in the PA test in mice, while a mixed CB1/CB2 receptor agonist WIN 55,212-2 impaired both stages of cognition. Additionally, JWH 133, a selective CB2 receptor agonist, and AM 630, a competitive CB2 receptor antagonist, significantly improved memory. Additionally, an acute administration of the highest used doses of JWH 133, WIN 55,212-2, and AM 630, but not AM 251, increased total antioxidant capacity (TAC) in the brain. In turn, the processes of lipids peroxidation, expressed as the concentration of malondialdehyde (MDA), were more advanced in case of AM 251. Thus, some changes in the PA performance may be connected with the level of oxidative stress in the brain. PMID:26839719

  5. Etiologies of sperm oxidative stress

    PubMed Central

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-01-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  6. Etiologies of sperm oxidative stress.

    PubMed

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-04-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  7. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels

    PubMed Central

    Zhou, Xiaoling; Li, Yifei; Shi, Xiaozhe; Ma, Chun

    2016-01-01

    Alzheimer’s disease (AD) is the most common underlying cause of dementia, and novel drugs for its treatment are needed. Of the different theories explaining the development and progression of AD, “amyloid hypothesis” is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein (APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflammation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) inhibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and appears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunction. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demonstrated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the prevention of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeutics prevalent in the AD treatment nowadays. It also delineates the

  8. [Statins and oxidative stress].

    PubMed

    Filip-Ciubotaru, Florina; Foia, Liliana; Manciuc, Carmen

    2009-01-01

    Statins, as inhibitors of the first regulatory enzyme in cholesterol biosynthesis --HMG-CoA reductase--have a special impact in medical practice. Given their therapeutic efficacy, statins are believed to be the strongest class of agents in the treatment of cardiovascular disorders. Moreover, besides decreasing total cholesterol and C-LDL levels, numerous fundamental and clinical researches suggest that statins also have an antiinflammatory effect. Inflammation is closely related to the production of oxygen-derived reactive species (ROS). The antioxidant effects of statins associated with their ability to block the formation and/or action of ROS may add up their therapeutic efficacy. Within this context, the present paper presents data in literature related to the effect of statins on the expression and activity of NAD(P)H oxidase, activity of the enzymes involved in the antioxidative defence (SOD, GPx, catalase, paraoxonase), and their ability to act as free radical scavengers and oxidized-LDL inhibitors. By their antioxidant properties statins may decrease the atherogenic potential of lipoproteins. PMID:21495335

  9. Effect of Vitamin C Supplementation on Blood Lead Level, Oxidative Stress and Antioxidant Status of Battery Manufacturing Workers of Western Maharashtra, India

    PubMed Central

    Ghanwat, Ganesh; Patil, Jyotsna; Kshirsagar, Mandakini; Sontakke, Ajit; Ayachit, R.K.

    2016-01-01

    Introduction The high blood lead level induces oxidative stress and alters the antioxidant status of battery manufacturing workers. Supplementation of vitamin C is beneficial to reduce the oxidative stress and to improve the antioxidant status of these workers. Aim The main aim of this study was to observe the changes in blood lead levels, oxidative stress i.e. serum lipid peroxide and antioxidant status parameters such as erythrocyte superoxide dismutase and catalase and serum nitrite after the vitamin C supplementation in battery manufacturing workers. Materials and Methods This study included 36 battery manufacturing workers from Western Maharashtra, India, having age between 20-60 years. All study group subjects were provided vitamin C tablets (500 mg/day for one month) and a blood sample of 10 ml each was drawn by puncturing the anterior cubital vein before and after vitamin C supplementation. The biochemical parameters were estimated by using the standard methods. Results Blood lead levels were not significantly altered, however, serum lipid peroxide (p<0.001, -15.56%) and serum nitrite (p<0.001, -21.37%) levels showed significant decrease and antioxidant status parameters such as erythrocyte superoxide dismutase (p<0.001, 38.02%) and catalase (p<0.001, 32.36%) revealed significant increase in battery manufacturing workers after the supplementation of vitamin C. Conclusion One month vitamin C supplementation in battery manufacturing workers is not beneficial to decrease the blood lead levels. However, it is helpful to reduce the lipid peroxidation and nitrite formation and enhances the erythrocytes superoxide dismutase and catalase activity. PMID:27190789

  10. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    PubMed Central

    Rahal, Anu; Kumar, Amit; Singh, Vivek; Yadav, Brijesh

    2014-01-01

    Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. PMID:24587990

  11. [Heme metabolism and oxidative stress].

    PubMed

    Kaliman, P A; Barannik, T B

    2001-01-01

    The role of heme metabolism in oxidative stress development and defense reactions formation in mammals under different stress factors are discussed in the article. Heme metabolism is considered as the totality of synthesis, degradation, transport and exchange processes of exogenous heme and heme liberated from erythrocyte hemoglobin under erythrocyte aging and hemolysis. The literature data presented display normal heme metabolism including mammals heme-binding proteins and intracellular free heme pool and heme metabolism alterations under oxidative stress development. The main attention is focused to the prooxidant action of heme, the interaction of heme transport and lipid exchange, and to the heme metabolism key enzymes (delta-aminolevulinate synthase and heme oxygenase), serum heme-binding protein hemopexin and intracellular heme-binding proteins participating in metabolism adaptation under the action of factors, which cause oxidative stress. PMID:11599427

  12. Prognostic Value of Pentraxin-3 Level in Patients with STEMI and Its Relationship with Heart Failure and Markers of Oxidative Stress

    PubMed Central

    Tomandlova, Marie; Jarkovsky, Jiri; Tomandl, Josef; Kubkova, Lenka; Kala, Petr; Gottwaldova, Jana; Kubena, Petr; Ganovska, Eva; Poloczek, Martin; Spinar, Jindrich; Mueller, Christian; Mebazaa, Alexandre; Pavkova Goldbergova, Monika; Parenica, Jiri

    2015-01-01

    Objective. Pentraxin-3 (PTX3) appears to have a cardioprotective effect through a positive influence against postreperfusion damage. This study assesses the prognostic value of PTX3 level and its relationship with clinical parameters and markers of oxidative stress and nitric oxide metabolism in patients with ST-elevation myocardial infarction (STEMI). Methods. Plasma/serum levels of several biomarkers of inflammation and oxidative stress and nitrite/nitrate were assessed upon admission and 24 h after STEMI onset in patients treated by primary percutaneous coronary intervention. Results. ROC analysis showed that plasma PTX3 at 24 h was a strong predictor of 30-day and 1-year mortality and independent predictor of combined end-point of left ventricle dysfunction or mortality in 1 year. The inflammatory response expressed by PTX3 had a significant relationship with age, heart failure, infarct size, impaired flow in the infarct-related artery, and renal function and positively correlated with neopterin, TNF-α, 8-hydroxy-2′-deoxyguanosine, and nitrite/nitrate. Conclusions. Plasma PTX3 at 24 h after STEMI onset is a strong predictor of 30-day and 1-year mortality. PTX3 as a single biomarker is comparable with currently used scoring systems (TIMI or GRACE) or B-type natriuretic peptide. PTX3 is also an independent predictor of combined end-point of left ventricle dysfunction or mortality in 1 year. PMID:25922551

  13. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs.

    PubMed

    Abhilash, P A; Harikrishnan, R; Indira, M

    2012-02-01

    Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β(1), TNF-α and α(1)(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β(1), TNF-α and α(1) (I) collagen in hepatic tissues. PMID:22149461

  14. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels.

    PubMed

    Mendes, Fernando; Sales, Tiago; Domingues, Cátia; Schugk, Susann; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Teixo, Ricardo; Silva, Rita; Casalta-Lopes, João; Rocha, Clara; Laranjo, Mafalda; Simões, Paulo César; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena; Rosa, Manuel Santos

    2015-12-01

    Lung cancer (LC) ranks as the most prevalent and deadliest cause of cancer death worldwide. Treatment options include surgery, chemotherapy and/or radiotherapy, depending on LC staging, without specific highlight. The aim was to evaluate the effects of X-radiation in three LC cell lines. H69, A549 and H1299 cell lines were cultured and irradiated with 0.5-60 Gy of X-radiation. Cell survival was evaluated by clonogenic assay. Cell death and the role of reactive oxygen species, mitochondrial membrane potential, BAX, BCL-2 and cell cycle were analyzed by flow cytometry. Total and phosphorylated P53 were assessed by western blotting. Ionizing radiation decreases cell proliferation and viability in a dose-, time- and cell line-dependent manner, inducing cell death preferentially by apoptosis with cell cycle arrest. These results may be related to differences in P53 expression and oxidative stress response. The results obtained indicate that sensibility and/or resistance to radiation may be dependent on molecular LC characteristics which could influence response to radiotherapy and treatment success. PMID:26582337

  15. Phagocytes and oxidative stress.

    PubMed

    Babior, B M

    2000-07-01

    Neutrophils and other phagocytes manufacture O(2)(-) (superoxide) by the one-electron reduction of oxygen at the expense of NADPH. Most of the O(2)(-) reacts with itself to form H(2)O(2) (hydrogen peroxide). From these agents a large number of highly reactive microbicidal oxidants are formed, including HOCl (hypochlorous acid), which is produced by the myeloperoxidase-catalyzed oxidation of Cl(-) by H(2)O(2); OH(*) (hydroxyl radical), produced by the reduction of H(2)O(2) by Fe(++) or Cu(+); ONOO(-) (peroxynitrite), formed by the reaction between O(2)(-) and NO(*); and many others. These reactive oxidants are manufactured for the purpose of killing invading microorganisms, but they also inflict damage on nearby tissues, and are thought to be of pathogenic significance in a large number of diseases. Included among these are emphysema, acute respiratory distress syndrome, atherosclerosis, reperfusion injury, malignancy and rheumatoid arthritis. PMID:10936476

  16. The Association between Diabetic Retinopathy and Levels of Ischemia-Modified Albumin, Total Thiol, Total Antioxidant Capacity, and Total Oxidative Stress in Serum and Aqueous Humor

    PubMed Central

    Kirboga, Kadir; Ozec, Ayse V.; Kosker, Mustafa; Dursun, Ayhan; Toker, Mustafa I.; Aydin, Huseyin; Erdogan, Haydar; Topalkara, Aysen; Arici, Mustafa K.

    2014-01-01

    Purpose. To investigate the oxidant and antioxidant status of patients with type 2 diabetes mellitus and nonproliferative diabetic retinopathy (DRP). Methods. Forty-four patients who had cataract surgery were enrolled in the study. We included 22 patients with DRP in one group and 22 patients in the control group. Samples of aqueous humor and serum were taken from all patients. Serum and aqueous ischemia-modified albumin (IMA), total thiol, total antioxidant capacity (TAC), and total oxidative stress (TOS) levels were compared in two groups. Results. Median serum IMA levels were 44.80 absorbance units in the DRP group and 40.15 absorbance units in the control group (P = 0.031). Median serum total thiol levels in the DRP group were significantly less than those in the control group (3051.13 and 3910.12, resp., P = 0.004). Mean TOS levels in the serum were 2.93 ± 0.19 in the DRP group and 2.61 ± 0.26 in the control group (P = 0.039). The differences in mean total thiol, TAC, and TOS levels in the aqueous humor and mean TAC levels in the serum were not statistically significant. Conclusion. IMA, total thiol, and TOS levels in the serum might be useful markers in monitoring the risk of DRP development. PMID:25580282

  17. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    PubMed Central

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  18. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  19. Lipid peroxidation and oxidative stress responses in juvenile salmon exposed to waterborne levels of the organophosphate compounds tris(2-butoxyethyl)- and tris(2-chloroethyl) phosphates.

    PubMed

    Arukwe, Augustine; Carteny, Camilla Catarci; Eggen, Trine

    2016-01-01

    There is limited knowledge on the toxicological, physiological, and molecular effects attributed to organophosphate (OP) compounds currently used as flame retardants or additives in consumer products. This study investigated the effects on oxidative stress and lipid peroxidation in juvenile Atlantic salmon liver and brain samples after exposure to two OP compounds, tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroethyl) phosphate (TCEP). In this study, groups of juvenile Atlantic salmon were exposed using a semistatic experimental protocol over a 7-d period to 3 different concentrations (0.04, 0.2, or 1 mg/L) of TBOEP and TCEP. When toxicological factors such as bioaccumulation and bioconcentration, and chemical structural characteristics and behavior, including absorption to solid materials, are considered, these concentrations represent environmentally relevant concentrations. The concentrations of the contaminants were derived from levels of their environmental occurrence. The expression of genes related to oxidative stress-glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST)-and to lipid peroxidation-peroxisome proliferator-activated receptors (PPAR)-were determined using quantitative (real-time) polymerase chain reaction (PCR). The presence of PPAR proteins was also investigated using immunochemical methods. Levels of thiobarbituric acid-reactive substances (TBARS) in liver were used as a measure of lipid peroxidation. Overall, our data show an increase in lipid peroxidation, and this was associated with an augmented expression of genes from the glutathione family of responses. Interestingly, PPAR expression in liver after exposure to TBOEP and TCEP was consistently decreased compared to controls, while expression in brain did not show a similar trend. The results suggest that OP contaminants may induce oxidative stress and thus production of reactive oxygen substances (ROS), and modulate lipid peroxidation processes

  20. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  1. Potential Modulation of Sirtuins by Oxidative Stress.

    PubMed

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  2. Ethanol and oxidative stress.

    PubMed

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  3. Hemoglobin oxidative stress

    NASA Astrophysics Data System (ADS)

    Croci, S.; Ortalli, I.; Pedrazzi, G.; Passeri, G.; Piccolo, P.

    2000-07-01

    Venous blood obtained from healthy donors and from patients suffering from breast cancer have been treated with acetylphenylhydrazine (APH) for different time. Mössbauer spectra of the packed red cells have been recorded and compared. The largest difference occurs after 50 min of treatment with APH where the patient samples show a broad spectral pattern indicating an advanced hemoglobin oxidation. These results may have some relevance in early cancer diagnosis.

  4. Polycyclic aromatic hydrocarbon levels and measures of oxidative stress in the Mediterranean endemic bivalve Pinna nobilis exposed to the Don Pedro oil spill.

    PubMed

    Sureda, Antoni; Tejada, Silvia; Box, Antonio; Deudero, Salud

    2013-06-15

    The fan mussel (Pinna nobilis Linné, 1758) is the largest endemic Mediterranean bivalve subject to strict protection as an endangered species. Antioxidant biomarkers in P. nobilis gills for biomonitoring marine pollution were researched after the Don Pedro oil spill. Two sampling locations on the east and southeast of the island of Ibiza (Western Mediterranean, Spain) were selected, one extensively affected by the oil spill and the other unaffected (control area). Mussels were sampled 1 month, 6 months and 1 year after the accident. Polycyclic aromatic hydrocarbon levels and antioxidant enzymes significantly increased as result of the oil spill in all sampling periods (p<0.05). Oxidative damage in lipids significantly increased in the mussels collected in the affected area (p<0.05), though such damage was back to normal after 1 year. In conclusion, the Don Pedro oil spill induced a situation of oxidative stress on P. nobilis that continued a year later. PMID:23623655

  5. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  6. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  7. Organohalogenated contaminants in white-tailed eagle (Haliaeetus albicilla) nestlings: An assessment of relationships to immunoglobulin levels, telomeres and oxidative stress.

    PubMed

    Sletten, Silja; Bourgeon, Sophie; Bårdsen, Bård-Jørgen; Herzke, Dorte; Criscuolo, Francois; Massemin, Sylvie; Zahn, Sandrine; Johnsen, Trond Vidar; Bustnes, Jan Ove

    2016-01-01

    Biomagnifying organohalogenated compounds (OHCs) may have adverse effects on the health of birds, especially marine avian top predators that accumulate high OHC loads. Contaminants may impair the humoral immunity and also influence the antioxidant enzyme activity (i.e. oxidative stress). Moreover, physical conditions and oxidative stress during development may reduce telomere lengths, one of the main mechanisms explaining cell senescence. To examine the potential effects of environmental contaminants on physiological biomarkers of health, OHCs with different 'physicochemical' properties were related to immunoglobulin Y levels (IgY; humoral immunity), superoxide dismutase enzyme (SOD) activity in blood plasma, and telomere length (measured in red blood cells) in individual 7-8weeks old nestlings (n=35) of white-tailed eagles (Haliaeetus albicilla) in the Norwegian Sub-Arctic. Different organochlorines (OCs) and perfluoroalkylated substances (PFASs) were measured in blood plasma of nestlings, demonstrating higher concentrations of the emerging contaminants (PFASs), notably perfluorooctane sulfonate (PFOS), compared to legacy OCs. There were no relationships between the contaminant loads and plasma IgY levels. Moreover, differences between years were found for telomere lengths, but this was not related to contaminants and more likely a result of different developmental conditions. However, there were significant and negative relationships between the OC loadings and the SOD activity. This suggests that some legacy OCs challenge the antioxidant capacity in nestlings of white-tailed eagles. PMID:26367189

  8. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  9. Sustained stress response after oxidative stress in trabecular meshwork cells

    PubMed Central

    Li, Guorong; Luna, Coralia; Liton, Paloma B.; Navarro, Iris; Epstein, David L.

    2007-01-01

    Purpose To investigate the mechanisms by which chronic oxidative stress may lead to a sustained stress response similar to that previously observed in the trabecular meshwork (TM) of glaucoma donors. Methods Porcine TM cells were treated with 200 μM H2O2 twice a day for four days and were allowed to recover for three additional days. After the treatment, TM cells were analyzed for generation of intracellular reactive oxygen species (iROS), mitochondrial potential, activation of NF-κB, and the expression of inflammatory markers IL-1α, IL-6, IL-8, and ELAM-1. Potential sources of iROS were evaluated using inhibitors for nitric oxide, nitric oxide synthetase, cyclooxygenase, xanthine oxidase, NADPH oxidase, mitochondrial ROS, and PKC. The role of NF-κB activation in the induction of inflammatory markers was evaluated using the inhibitors Lactacystin and BAY11–7082. Results Chronic oxidative stress simulated by H2O2 exposure of porcine TM cells resulted in the sustained production of iROS by the mitochondria. Inhibition of mitochondrial iROS had a significant inhibitory effect on the activation of NF-κB and the induction of IL-1α, IL-6, IL-8, and ELAM-1 triggered by chronic oxidative stress. Inhibition of NF-κB partially prevented the induction of IL-1α, IL-8, and ELAM-1, but not IL-6. Conclusions Chronic oxidative stress in TM cells induced iROS production in mitochondria. This increase in iROS may contribute to the pathogenesis of the TM in glaucoma by inducing the expression of inflammatory mediators previously observed in glaucoma donors as well as the levels of oxidative damage in the tissue. PMID:18199969

  10. Space flight and oxidative stress.

    PubMed

    Stein, T P

    2002-10-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress. PMID:12361781

  11. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  12. Oxidative stress and alopecia areata

    PubMed Central

    Prie, BE; Voiculescu, VM; Ionescu-Bozdog, OB; Petrutescu, B; Iosif, L; Gaman, LE; Clatici, VG; Stoian, I; Giurcaneanu, C

    2015-01-01

    Alopecia areata (AA) is an inflammatory and autoimmune disease presenting with non-scarring hair loss. The aethiopathogenesis of alopecia areata is unclear and many factors including autoimmunity, genetic predisposition, emotional and environmental stress are thought to play important roles in its development. Antioxidant/ oxidant balance perturbation is a common feature in autoimmune, emotional and environmental stress. Therefore, our paper discusses the implications of oxidative stress in alopecia areata. Abbreviations: AA = alopecia areata, ROS = reactive oxygen species, H2O2 = hydrogen peroxide, TBARS = thiobarbituric acid rective substances, MDA = malondialdehyde, TBARS = thiobarbituric acid-reactive substances, SOD = superoxide dismutase, CAT = catalase, GSH-Px = glutathione peroxidase, PON1 = paraoxonase 1, HO-1 = hemoxigenase 1, TrxR = thioredoxin reductase, GSH = glutathione PMID:26361510

  13. Marine carotenoids and oxidative stress.

    PubMed

    Riccioni, Graziano

    2012-01-01

    Oxidative stress induced by reactive oxygen species plays an important role in the etiology of many diseases. Dietary phytochemical products, such as bioactive food components and marine carotenoids (asthaxantin, lutein, β-carotene, fucoxanthin), have shown an antioxidant effect in reducing oxidative markers stress. Scientific evidence supports the beneficial role of phytochemicals in the prevention of some chronic diseases. Many carotenoids with high antioxidant properties have shown a reduction in disease risk both in epidemiological studies and supplementation human trials. However, controlled clinical trials and dietary intervention studies using well-defined subjects population have not provided clear evidence of these substances in the prevention of diseases. The most important aspects of this special issue will cover the synthesis, biological activities, and clinical applications of marine carotenoids, with particular attention to recent evidence regarding anti-oxidant and anti-inflammatory properties in the prevention of cardiovascular disease. PMID:22363224

  14. Marine Carotenoids and Oxidative Stress

    PubMed Central

    Riccioni, Graziano

    2012-01-01

    Oxidative stress induced by reactive oxygen species plays an important role in the etiology of many diseases. Dietary phytochemical products, such as bioactive food components and marine carotenoids (asthaxantin, lutein, β-carotene, fucoxanthin), have shown an antioxidant effect in reducing oxidative markers stress. Scientific evidence supports the beneficial role of phytochemicals in the prevention of some chronic diseases. Many carotenoids with high antioxidant properties have shown a reduction in disease risk both in epidemiological studies and supplementation human trials. However, controlled clinical trials and dietary intervention studies using well-defined subjects population have not provided clear evidence of these substances in the prevention of diseases. The most important aspects of this special issue will cover the synthesis, biological activities, and clinical applications of marine carotenoids, with particular attention to recent evidence regarding anti-oxidant and anti-inflammatory properties in the prevention of cardiovascular disease. PMID:22363224

  15. Selected oxidative stress markers in gynecological laparoscopy

    PubMed Central

    Koźlik, Jacek; Przybyłowska, Joanna; Mikrut, Kinga; Zwoliński, Jacek; Piątek, Jacek; Sobczak, Paweł

    2014-01-01

    Introduction The surgical stress response after laparoscopy is smaller when compared with open surgery, and it is expected that after minimally invasive surgery the possible development of oxidative stress will be less severe. Aim To evaluate markers of pro-oxidant activity – levels of lipid peroxides and malondialdehyde – and activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase in the perioperative period in patients undergoing gynecological laparoscopy and to determine whether the duration of laparoscopy can affect these changes. Material and methods The study included 64 patients, divided into two groups: group 1 with duration of laparoscopy up to 20 min, and group 2 with duration of the operation over 40 min. Blood samples were collected before anesthesia, 5 min after release of pneumoperitoneum, and 10 h after surgery. Results A statistically significant increase in the levels of lipid peroxides and malondialdehyde in samples collected after surgery was found in comparison with values obtained before surgery. Also statistically significant differences existed between groups of patients with different duration of surgery. Superoxide dismutase and glutathione peroxidase activity values were significantly decreased. They were also significantly different between the two groups with different duration of surgery. Conclusions In our study, levels of the markers of pro-oxidant activity increased and levels of the markers of antioxidant enzymes decreased, suggesting development of oxidative stress. The duration of laparoscopic procedures affects the severity of the presented changes. PMID:25960799

  16. Hypoxia, Oxidative Stress and Fat.

    PubMed

    Netzer, Nikolaus; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Pramsohler, Stephan; Pesta, Dominik

    2015-01-01

    Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators. PMID:26061760

  17. Transcription levels of CHS5 and CHS4 genes in Paracoccidioides brasiliensis mycelial phase, respond to alterations in external osmolarity, oxidative stress and glucose concentration.

    PubMed

    Niño-Vega, Gustavo A; Sorais, Françoise; San-Blas, Gioconda

    2009-10-01

    The complete sequence of Paracoccidioides brasiliensis CHS5 gene, encoding a putative chitin synthase revealed a 5583nt open reading frame, interrupted by three introns of 82, 87 and 97bp (GenBank Accession No EF654132). The deduced protein contains 1861 amino acids with a predicted molecular weight of 206.9kDa. Both its large size and the presence of a N-terminal region of approx. 800 residues with a characteristic putative myosin motor-like domain, allow us to include PbrChs5 into class V fungal chitin synthases. Sequence analysis of over 4kb from the 5' UTR region in CHS5, revealed the presence of a previously reported CHS4 gene in P. brasiliensis, arranged in a head-to-head configuration with CHS5. A motif search in this shared region showed the presence of stress response elements (STREs), three binding sites for the transcription activators Rlm1p (known to be stimulated by hypo-osmotic stress) and clusters of Adr1 (related to glucose repression). A quantitative RT-PCR analysis pointed to changes in transcription levels for both genes following oxidative stress, alteration of external osmolarity and under glucose-repressible conditions, suggesting a common regulatory mechanism of transcription. PMID:19616626

  18. Oxidative stress and adrenocortical insufficiency

    PubMed Central

    Prasad, R; Kowalczyk, J C; Meimaridou, E; Storr, H L; Metherell, L A

    2014-01-01

    Maintenance of redox balance is essential for normal cellular functions. Any perturbation in this balance due to increased reactive oxygen species (ROS) leads to oxidative stress and may lead to cell dysfunction/damage/death. Mitochondria are responsible for the majority of cellular ROS production secondary to electron leakage as a consequence of respiration. Furthermore, electron leakage by the cytochrome P450 enzymes may render steroidogenic tissues acutely vulnerable to redox imbalance. The adrenal cortex, in particular, is well supplied with both enzymatic (glutathione peroxidases and peroxiredoxins) and non-enzymatic (vitamins A, C and E) antioxidants to cope with this increased production of ROS due to steroidogenesis. Nonetheless oxidative stress is implicated in several potentially lethal adrenal disorders including X-linked adrenoleukodystrophy, triple A syndrome and most recently familial glucocorticoid deficiency. The finding of mutations in antioxidant defence genes in the latter two conditions highlights how disturbances in redox homeostasis may have an effect on adrenal steroidogenesis. PMID:24623797

  19. Oxidative stress in prostate cancer.

    PubMed

    Khandrika, Lakshmipathi; Kumar, Binod; Koul, Sweaty; Maroni, Paul; Koul, Hari K

    2009-09-18

    As prostate cancer and aberrant changes in reactive oxygen species (ROS) become more common with aging, ROS signaling may play an important role in the development and progression of this malignancy. Increased ROS, otherwise known as oxidative stress, is a result of either increased ROS generation or a loss of antioxidant defense mechanisms. Oxidative stress is associated with several pathological conditions including inflammation and infection. ROS are products of normal cellular metabolism and play vital roles in stimulation of signaling pathways in response to changing intra- and extracellular environmental conditions. Chronic increases in ROS over time are known to induce somatic mutations and neoplastic transformation. In this review we summarize the causes for increased ROS generation and its potential role in etiology and progression of prostate cancer. PMID:19185987

  20. [Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity].

    PubMed

    Stetsenko, L A; Vedenicheva, N P; Likhnevsky, R V; Kuznetsov, V V

    2015-01-01

    The effect of abscisic acid (ABA) and fluridone on the content of endogenous phytohormones and free polyamines and the intensity of oxidative stress was studied in plants of Mesembryanthemum crystallinum L. under salinity. It was shown that the pretreatment of plant roots with 1 μM ABA, followed by the action of 300 mM NaCl, caused a protective effect and improved the physiological state of the plants, which was manifested in increased biomass and content of available cytokinins and reduced values of the indicators of oxidative stress. It was noted that the inhibitor fluridone reduced the effect of ABA and acted as a pro-oxidant. PMID:26021155

  1. Mitochondria Influence CDR1 Efflux Pump Activity, Hog1-Mediated Oxidative Stress Pathway, Iron Homeostasis, and Ergosterol Levels in Candida albicans

    PubMed Central

    Thomas, Edwina; Roman, Elvira; Claypool, Steven; Manzoor, Nikhat; Pla, Jesús

    2013-01-01

    Mitochondrial dysfunction in Candida albicans is known to be associated with drug susceptibility, cell wall integrity, phospholipid homeostasis, and virulence. In this study, we deleted CaFZO1, a key component required during biogenesis of functional mitochondria. Cells with FZO1 deleted displayed fragmented mitochondria, mitochondrial genome loss, and reduced mitochondrial membrane potential and were rendered sensitive to azoles and peroxide. In order to understand the cellular response to dysfunctional mitochondria, genome-wide expression profiling of fzo1Δ/Δ cells was performed. Our results show that the increased susceptibility to azoles was likely due to reduced efflux activity of CDR efflux pumps, caused by the missorting of Cdr1p into the vacuole. In addition, fzo1Δ/Δ cells showed upregulation of genes involved in iron assimilation, in iron-sufficient conditions, characteristic of iron-starved cells. One of the consequent effects was downregulation of genes of the ergosterol biosynthesis pathway with a commensurate decrease in cellular ergosterol levels. We therefore connect deregulated iron metabolism to ergosterol biosynthesis pathway in response to dysfunctional mitochondria. Impaired activation of the Hog1 pathway in the mutant was the basis for increased susceptibility to peroxide and increase in reactive oxygen species, indicating the importance of functional mitochondria in controlling Hog1-mediated oxidative stress response. Mitochondrial phospholipid levels were also altered as indicated by an increase in phosphatidylserine and phosphatidylethanolamine and decrease in phosphatidylcholine in fzo1Δ/Δ cells. Collectively, these findings reinforce the connection between functional mitochondria and azole tolerance, oxidant-mediated stress, and iron homeostasis in C. albicans. PMID:23979757

  2. An Evaluation of Acylated Ghrelin and Obestatin Levels in Childhood Obesity and Their Association with Insulin Resistance, Metabolic Syndrome, and Oxidative Stress

    PubMed Central

    Razzaghy-Azar, Maryam; Nourbakhsh, Mitra; Pourmoteabed, Abdolreza; Nourbakhsh, Mona; Ilbeigi, Davod; Khosravi, Mohsen

    2016-01-01

    Background: Ghrelin is a 28-amino acid peptide with an orexigenic property, which is predominantly produced by the stomach. Acylated ghrelin is the active form of this hormone. Obestatin is a 23-amino acid peptide which is produced by post-translational modification of a protein precursor that also produces ghrelin. Obestatin has the opposite effect of ghrelin on food intake. The aim of this study was to evaluate acylated ghrelin and obestatin levels and their ratio in obese and normal-weight children and adolescents, and their association with metabolic syndrome (MetS) parameters. Methods: Serum acyl-ghrelin, obestatin, leptin, insulin, fasting plasma glucose (FPG), lipid profile, and malondialdehyde (MDA) were evaluated in 73 children and adolescents (42 obese and 31 control). Insulin resistance was calculated by a homeostasis model assessment of insulin resistance (HOMA-IR). MetS was determined according to IDF criteria. Results: Acyl-ghrelin levels were significantly lower in obese subjects compared to the control group and lower in obese children with MetS compared to obese subjects without MetS. Obestatin was significantly higher in obese subjects compared to that of the control, but it did not differ significantly among those with or without MetS. Acyl-ghrelin to obestatin ratio was significantly lower in obese subjects compared to that in normal subjects. Acyl-ghrelin showed significant negative and obestatin showed significant positive correlations with body mass index (BMI), BMI Z-score, leptin, insulin, and HOMA-IR. Acyl-ghrelin had a significant negative correlation with MDA as an index of oxidative stress. Conclusion: Ghrelin is decreased and obestatin is elevated in obesity. Both of these hormones are associated with insulin resistance, and ghrelin is associated with oxidative stress. The balance between ghrelin and obestatin seems to be disturbed in obesity. PMID:27348010

  3. Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase

    PubMed Central

    Peled-Kamar, M.; Lotem, J.; Wirguin, I.; Weiner, L.; Hermalin, A.; Groner, Y.

    1997-01-01

    Cases of familial amyotrophic lateral sclerosis (fALS; a neurodegenerative disorder) have been reported in which the gene for Cu/Zn superoxide dismutase (CuZnSOD) was mutated. Several studies with the fALS mutant CuZnSOD in transgenic mice and cells showed that the fALS mutations act through an as yet undefined dominant gain-of-function mechanism. Wild-type CuZnSOD catalyzes the dismutation of superoxide (O2⨪) but also produces hydroxyl radicals (•OH) with H2O2 as substrate. Two laboratories have recently demonstrated that the •OH production ability was preferentially enhanced by the fALS mutant CuZnSOD, suggesting that this might be the function gained in fALS. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of wild-type CuZnSOD was also associated with increased •OH production and impaired muscle function. Enhanced formation of •OH was detected, by spin trapping, in brain and muscle extracts of the Tg-CuZnSOD mice. Three independently derived Tg-CuZnSOD lines showed muscle abnormalities, reflected by altered electromyography (EMG) and diminished performance in the rope grip test. After treatment with paraquat (PQ), a widely used herbicide and O2⨪-generating compound, muscle disability significantly deteriorated in Tg-CuZnSOD mice but not in control mice. The results indicate that elevated levels of CuZnSOD cause indigenous long-term oxidative stress leading to impairment of muscle function. These findings may provide valuable clues about the concurred role of indigenous oxidative stress and exogenous agents in the etiology of sporadic ALS and several other neurodegenerative diseases in which a specific subset of neurons is affected. PMID:9108073

  4. Oxidative Stress in Patients With Acne Vulgaris

    PubMed Central

    Arican, Ozer; Belge Kurutas, Ergul; Sasmaz, Sezai

    2005-01-01

    Acne vulgaris is one of the common dermatological diseases and its pathogenesis is multifactorial. In this study, we aim to determine the effects of oxidative stress in acne vulgaris. Forty-three consecutive acne patients and 46 controls were enrolled. The parameters of oxidative stress such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), and malondialdehyde (MDA) in the venous blood of cases were measured spectrophotometrically. The values compared with control group, the relation between the severity and distribution of acne, and the correlation of each enzyme level were researched. CAT and G6PD levels in patients were found to be statistically decreased, and SOD and MDA levels were found to be statistically increased (P < .001). However, any statistical difference and correlation could not be found between the severity and distribution of lesions and the mean levels of enzymes. In addition, we found that each enzyme is correlated with one another. Our findings show that oxidative stress exists in the acne patients. It will be useful to apply at least one antioxidant featured drug along with the combined acne treatment. PMID:16489259

  5. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  6. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akaln, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  7. ROS Function in Redox Signaling and Oxidative Stress

    PubMed Central

    Schieber, Michael; Chandel, Navdeep S.

    2014-01-01

    Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS are also signaling molecules i.e. redox biology that maintain physiological functions. In this review we discuss the two faces of ROS, redox signaling and oxidative stress, and their contribution to both physiological and pathological conditions. Redox biology refers to low levels of ROS that activate signaling pathways to initiate biological processes while oxidative stress denotes high levels of ROS that incur damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis. The In this review, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. PMID:24845678

  8. Protein Quality Control Under Oxidative Stress Conditions

    PubMed Central

    Dahl, Jan-Ulrik; Gray, Michael J.; Jakob, Ursula

    2015-01-01

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the E. coli protein RidA, and the mammalian protein α2-macroglobin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and of how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  9. Protein quality control under oxidative stress conditions.

    PubMed

    Dahl, Jan-Ulrik; Gray, Michael J; Jakob, Ursula

    2015-04-10

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and we will review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the Escherichia coli protein RidA, and the mammalian protein α2-macroglobulin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  10. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT. PMID:26861983

  11. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress

    PubMed Central

    Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies. PMID:26083527

  12. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River

    PubMed Central

    Farombi, E. O.; Adelowo, O. A.; Ajimoko, Y. R.

    2007-01-01

    Clarias gariepinus were significantly (P<0.001) elevated in the liver, kidney, gills and heart by 177%, 102%, 168% and 71% respectively compared to that from Agodi fish farm. Overall, the results demonstrate that alteration in the antioxidant enzymes, glutathione system and induction of lipid peroxidation reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution. PMID:17617680

  13. Oxidative Stress in Cardiovascular Disease

    PubMed Central

    Csányi, Gábor; Miller, Francis J.

    2014-01-01

    In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS)-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine. PMID:24722571

  14. Oxidative stress in cardiovascular disease.

    PubMed

    Csányi, Gábor; Miller, Francis J

    2014-01-01

    In the special issue "Oxidative Stress in Cardiovascular Disease" authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS)-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine. PMID:24722571

  15. Oxidative stress in inherited mitochondrial diseases.

    PubMed

    Hayashi, Genki; Cortopassi, Gino

    2015-11-01

    Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production or decreased ROS protection. The role of oxidative stress in the five most common inherited mitochondrial diseases, Friedreich ataxia, LHON, MELAS, MERRF, and Leigh syndrome (LS), is discussed. Published reports of oxidative stress involvement in the pathomechanisms of these five mitochondrial diseases are reviewed. The strongest evidence for an oxidative stress pathomechanism among the five diseases was for Friedreich ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for "oxidative stress" citation count frequency for each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is for Friedreich ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich ataxia. PMID:26073122

  16. Oxidative stress in oral diseases.

    PubMed

    Kesarwala, A H; Krishna, M C; Mitchell, J B

    2016-01-01

    Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes. PMID:25417961

  17. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    PubMed

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  18. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  19. The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice

    PubMed Central

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Hurst, Jane; Derous, Davina; Green, Cara; Chen, Luonan; Han, Jackie J.D.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Douglas, Alex; Speakman, John R.

    2015-01-01

    Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR. PMID:26061745

  20. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels.

    PubMed

    Ma, Tingting; Chen, Li'ke; Wu, Longhua; Zhang, Haibo; Luo, Yongming

    2016-01-01

    Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed. PMID:26982081

  1. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels

    PubMed Central

    Ma, Tingting; Chen, Li’ke; Wu, Longhua; Zhang, Haibo; Luo, Yongming

    2016-01-01

    Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed. PMID:26982081

  2. Peroxisomal metabolism and oxidative stress.

    PubMed

    Nordgren, Marcus; Fransen, Marc

    2014-03-01

    Peroxisomes are ubiquitous and multifunctional organelles that are primarily known for their role in cellular lipid metabolism. As many peroxisomal enzymes catalyze redox reactions as part of their normal function, these organelles are also increasingly recognized as potential regulators of oxidative stress-related signaling pathways. This in turn suggests that peroxisome dysfunction is not only associated with rare inborn errors of peroxisomal metabolism, but also with more common age-related diseases such as neurodegeneration, type 2 diabetes, and cancer. This review intends to provide a comprehensive picture of the complex role of mammalian peroxisomes in cellular redox metabolism. We highlight how peroxisomal metabolism may contribute to the bioavailability of important mediators of oxidative stress, with particular emphasis on reactive oxygen species. In addition, we review the biological properties of peroxisome-derived signaling messengers and discuss how these molecules may mediate various biological responses. Furthermore, we explore the emerging concepts that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. This is particularly relevant to the observed demise of peroxisome function which accompanies cellular senescence, organismal aging, and age-related diseases. PMID:23933092

  3. Changes in Levels of Seminal Nitric Oxide Synthase, Macrophage Migration Inhibitory Factor, Sperm DNA Integrity and Caspase-3 in Fertile Men after Scrotal Heat Stress

    PubMed Central

    Shi, Zhi-Da; Wang, Lei-Guang; Qiu, Yi

    2015-01-01

    Background This study observes changes in levels of seminal nitric oxide (NO), nitric oxide synthase (NOS), macrophage migration inhibitory factor (MIF), sperm DNA integrity, chromatin condensation and Caspase-3in adult healthy men after scrotal heat stress (SHS). Methods Exposure of the scrotum of 25 healthy male volunteers locally at 40–43°C SHS belt warming 40 min each day for successive 2 d per week. The course of SHS was continuously 3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, Aniline blue (AB) staining, HOS/AB and terminal deoxynucleotidyl transferase-mediated d UDP nick-end labeling (TUNEL) were carried out before, during and after SHS. Seminal NO and NOS contents were determined by nitrate reduction method. The activated Caspase-3 levels of spermatozoa and MIF in seminal plasma were measured by the enzyme-linked immunosorbent assay (ELISA) method. Statistical significance between mean values was determined using statistical ANOVA tests. Results The mean parameters of sperm concentration, motile and progressive motile sperm and normal morphological sperm were significantly decreased in groups during SHS 1, 2 and 3 months compared with those in groups of pre-SHS (P<0.001). Statistically significant differences of sperm DNA fragmentation, normal sperm membrane, and Caspase-3 activity as well as the level of NO, NOS and MIF in semen were observed between the groups before SHS and after SHS 3 months and the groups during SHS 1, 2 and 3 months (P<0.001). After three months of the SHS, various parameters recovered to the level before SHS. WBC in semen showed a positively significant correlation with the levels of NO, NOS, MIF and Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS showed a positively significant correlation with that of HOS/AB. Conclusions The continuously constant SHS can impact the semen quality and sperm DNA and chromatin, which may be contributed to the high level of NO, NOS, MIF and Caspase

  4. Inflammation, Oxidative Stress, and Obesity

    PubMed Central

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173

  5. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P.; Ward, William O.; Peltier, Richard E.; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    potentially have adversely affected the respiratory system – in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/ biochemical changes in situ. PMID:24911330

  6. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P; Ward, William O; Peltier, Richard E; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    to WTC dusts could potentially have adversely affected the respiratory system - in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/biochemical changes in situ. PMID:24911330

  7. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent. PMID:25931267

  8. Expression Levels of the Oxidative Stress Response Gene ALDH3A2 in Granulosa-Lutein Cells Are Related to Female Age and Infertility Diagnosis.

    PubMed

    González-Fernández, Rebeca; Hernández, Jairo; Martín-Vasallo, Pablo; Puopolo, Maria; Palumbo, Angela; Ávila, Julio

    2016-05-01

    Oxidative stress (OS) plays an important role in all physiological processes. The effect of OS on cellular processes is modulated by the ability of the cell to express genes implicated in the reversal of lipid, protein, and DNA injury. Aldehyde dehydrogenase 3, member A2 (ALDH3A2) is a ubiquitous enzyme involved in lipid detoxification. The objective of this study was to investigate the expression ofALDH3A2in human granulosa-lutein (GL) cells of women undergoing in vitro fertilization (IVF) and its relationship with age, infertility diagnosis, and IVF outcome variables. Relative expression levels ofALDH3A2were determined by quantitative reverse transcription-polymerase chain reaction. To investigate the effect of age onALDH3A2expression, 72 women between 18 and 44 years of age with no ovarian factor (NOF) were analyzed. To evaluate the effect of infertility diagnosis onALDH3A2expression, the following groups were analyzed: 22 oocyte donors (ODs), 24 women >40 years old (yo) with tubal or male factor and no ovarian pathology, 18 poor responders (PRs), 19 cases with endometriosis (EM), and 18 patients with polycystic ovarian syndrome (PCOS). In NOF,ALDH3A2expression correlated positively with age and with the doses of follicle-stimulating hormone and luteinizing hormone administered and negatively with the number of total and mature oocytes. When different groups were analyzed,ALDH3A2expression levels were higher in patients >40 yo and in PR compared to OD. On the contrary, EM and PCOS levels were lower than expected for age. These data suggest that GL cellALDH3A2expression levels correlate with age, cause of infertility, and ovarian response to stimulation. PMID:26449735

  9. Anesthetic requirements and stress hormone responses in chronic spinal cord-injured patients undergoing surgery below the level of injury: nitrous oxide vs remifentanil

    PubMed Central

    Kang, Dong Ho; Lee, Seong-Heon; Kim, Seok Jai; Choi, Jeong-Il; Jeong, Cheol-Won; Jeong, Seong Wook

    2013-01-01

    Background Nitrous oxide (N2O) and remifentanil both have anesthetic-reducing and antinociceptive effects. We aimed to determine the anesthetic requirements and stress hormone responses in spinal cord-injured (SCI) patients undergoing surgery under sevoflurane anesthesia with or without pharmacodynamically equivalent doses of N2O or remifentanil. Methods Forty-five chronic, complete SCI patients undergoing surgery below the level of injury were randomly allocated to receive sevoflurane alone (control, n = 15), or in combination with 67% N2O (n = 15) or target-controlled infusion of 1.37 ng/ml remifentanil (n = 15). Sevoflurane concentrations were titrated to maintain a Bispectral Index (BIS) value between 40 and 50. Measurements included end-tidal sevoflurane concentrations, mean arterial blood pressure (MAP), heart rate (HR), and plasma catecholamine and cortisol concentrations. Results During surgery, MAP, HR, and BIS did not differ among the groups. Sevoflurane concentrations were lower in the N2O group (0.94 ± 0.30%) and the remifentanil group (1.06 ± 0.29%) than in the control group (1.55 ± 0.34%) (P < 0.001, both). Plasma concentrations of norepinephrine remained unchanged compared to baseline values in each group, with no significant differences among groups throughout the study. Cortisol levels decreased during surgery as compared to baseline values, and returned to levels higher than baseline at 1 h after surgery (P < 0.05) without inter-group differences. Conclusions Remifentanil (1.37 ng/ml) and N2O (67%) reduced the sevoflurane requirements similarly by 31-39%, with no significant differences in hemodynamic and neuroendocrine responses. Either remifentanil or N2O can be used as an anesthetic adjuvant during sevoflurane anesthesia in SCI patients undergoing surgery below the level of injury. PMID:24427459

  10. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process

    PubMed Central

    Mesquita-Ferrari, Raquel Agnelli

    2016-01-01

    Introduction Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified. Aim To evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process. Methods Wistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis. Results Lipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group. Conclusion The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process. PMID:27082964

  11. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  12. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  13. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy.

    PubMed

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen; Chen, Gang

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  14. Diversity in Robustness of Lactococcus lactis Strains during Heat Stress, Oxidative Stress, and Spray Drying Stress

    PubMed Central

    Dijkstra, Annereinou R.; Setyawati, Meily C.; Bayjanov, Jumamurat R.; Alkema, Wynand; van Hijum, Sacha A. F. T.; Hugenholtz, Jeroen

    2014-01-01

    In this study we tested 39 Lactococcus lactis strains isolated from diverse habitats for their robustness under heat and oxidative stress, demonstrating high diversity in survival (up to 4 log units). Strains with an L. lactis subsp. lactis phenotype generally displayed more-robust phenotypes than strains with an L. lactis subsp. cremoris phenotype, whereas the habitat from which the strains had been isolated did not appear to influence stress survival. Comparison of the stress survival phenotypes with already available comparative genomic data sets revealed that the absence or presence of specific genes, including genes encoding a GntR family transcriptional regulator, a manganese ABC transporter permease, a cellobiose phosphotransferase system (PTS) component, the FtsY protein, and hypothetical proteins, was associated with heat or oxidative stress survival. Finally, 14 selected strains also displayed diversity in survival after spray drying, ranging from 20% survival for the most robust strains, which appears acceptable for industrial application, to 0.1% survival for the least-tolerant strains. The high and low levels of survival upon spray drying correlated clearly with the combined robustness under heat and oxidative stress. These results demonstrate the relevance of screening culture collections for robustness under heat and oxidative stress on top of the typical screening for acidifying and flavor-forming properties. PMID:24212574

  15. Ferritin and the response to oxidative stress.

    PubMed Central

    Orino, K; Lehman, L; Tsuji, Y; Ayaki, H; Torti, S V; Torti, F M

    2001-01-01

    Iron is required for normal cell growth and proliferation. However, excess iron is potentially harmful, as it can catalyse the formation of toxic reactive oxygen species (ROS) via Fenton chemistry. For this reason, cells have evolved highly regulated mechanisms for controlling intracellular iron levels. Chief among these is the sequestration of iron in ferritin. Ferritin is a 24 subunit protein composed of two subunit types, termed H and L. The ferritin H subunit has a potent ferroxidase activity that catalyses the oxidation of ferrous iron, whereas ferritin L plays a role in iron nucleation and protein stability. In the present study we report that increased synthesis of both subunits of ferritin occurs in HeLa cells exposed to oxidative stress. An increase in the activity of iron responsive element binding proteins in response to oxidative stress was also observed. However, this activation was transient, allowing ferritin protein induction to subsequently proceed. To assess whether ferritin induction reduced the accumulation of ROS, and to test the relative contribution of ferritin H and L subunits in this process, we prepared stable transfectants that overexpressed either ferritin H or ferritin L cDNA under control of a tetracycline-responsive promoter. We observed that overexpression of either ferritin H or ferritin L reduced the accumulation of ROS in response to oxidant challenge. PMID:11415455

  16. Evaluation of Stress Levels of Professionals.

    ERIC Educational Resources Information Center

    Schnorr, Janet K.; McWilliams, Jettie M.

    This study was conducted to analyze levels and areas of stress of professionals in selected service professions and to establish national norms of stress for these professions. The 60-item Tennessee Stress Scale-R (TSS-R) is a work-related stress inventory for professionals which provides a measure of stress in three areas: stress producers,…

  17. Comparison of Effect of Two-Hour Exposure to Forest and Urban Environments on Cytokine, Anti-Oxidant, and Stress Levels in Young Adults

    PubMed Central

    Im, Su Geun; Choi, Han; Jeon, Yo-Han; Song, Min-Kyu; Kim, Won; Woo, Jong-Min

    2016-01-01

    The purpose of this study was to investigate the effect of two-hour exposure to a forest environment on cytokine, anti-oxidant and stress levels among university students and to compare the results to those measured in urban environments. Forty-one subjects were recruited. For our crossover design, subjects were divided into two groups based on similar demographic characteristics. Group A remained in the urban environment and was asked to perform regular breathing for 2 h. Blood samples were collected and the serum levels of cytokines including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and glutathione peroxidase (GPx) were examined. Subjects were moved to a small town in a rural area for an equal amount of time to exclude carryover effects, and then remained for another 2 h in a forest environment. The second set of blood samples was collected to assess the effect of exposure to the forest environment. Using the same method, Group B was first exposed to the forest environment, followed by exposure to the urban environment. Blood samples collected after the subjects were exposed to the forest environment showed significantly lower levels of IL-8 and TNF-α compared to those in samples collected after urban environment exposure (10.76 vs. 9.21, t = 4.559, p < 0.001, and 0.97 vs. 0.87, t = 4.130, p < 0.001). The GPx concentration increased significantly after exposure to the forest environment (LnGPx = 5.09 vs. LnGPx = 5.21, t = −2.039, p < 0.05). PMID:27347982

  18. Comparison of Effect of Two-Hour Exposure to Forest and Urban Environments on Cytokine, Anti-Oxidant, and Stress Levels in Young Adults.

    PubMed

    Im, Su Geun; Choi, Han; Jeon, Yo-Han; Song, Min-Kyu; Kim, Won; Woo, Jong-Min

    2016-01-01

    The purpose of this study was to investigate the effect of two-hour exposure to a forest environment on cytokine, anti-oxidant and stress levels among university students and to compare the results to those measured in urban environments. Forty-one subjects were recruited. For our crossover design, subjects were divided into two groups based on similar demographic characteristics. Group A remained in the urban environment and was asked to perform regular breathing for 2 h. Blood samples were collected and the serum levels of cytokines including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and glutathione peroxidase (GPx) were examined. Subjects were moved to a small town in a rural area for an equal amount of time to exclude carryover effects, and then remained for another 2 h in a forest environment. The second set of blood samples was collected to assess the effect of exposure to the forest environment. Using the same method, Group B was first exposed to the forest environment, followed by exposure to the urban environment. Blood samples collected after the subjects were exposed to the forest environment showed significantly lower levels of IL-8 and TNF-α compared to those in samples collected after urban environment exposure (10.76 vs. 9.21, t = 4.559, p < 0.001, and 0.97 vs. 0.87, t = 4.130, p < 0.001). The GPx concentration increased significantly after exposure to the forest environment (LnGPx = 5.09 vs. LnGPx = 5.21, t = -2.039, p < 0.05). PMID:27347982

  19. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. PMID:26987496

  20. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  1. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  2. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  3. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  4. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  5. Salivary Nitric Oxide, a Biomarker for Stress and Anxiety?

    PubMed Central

    Al-Smadi, Ahmed Mohammad; Ashour, Ala Fawzi; Al-Awaida, Wajdy

    2016-01-01

    Objective To investigate if salivary nitrate correlates to the daily psychological stress and anxiety in a group of human subjects. Methods The convenient sample recruitment method was employed; data from seventy three subjects were analyzed. The Perceived Stress Scale (PSS) and Hamilton Anxiety Rating Scale (HAM-A) inventories were used to determine stress and anxiety scores respectively. Salivary nitric oxide was measured through nitrate (NOx) levels using the Griess reaction method. Results Although stress and anxiety were correlated. No significant correlation exists between salivary nitrate and daily psychological stress and anxiety in the study's participants. Conclusion While all previous studies focused NOx levels in acute stress models. This is the first study to investigate the correlation between salivary nitrates and daily psychological stress and anxiety. Although stress and anxiety were correlated, there is no correlation between salivary nitrates and daily psychological stress and anxiety. Further studies are required to investigate this correlation using other biological samples such as plasma. PMID:27247597

  6. A Meta-Analysis of Oxidative Stress Markers in Depression

    PubMed Central

    Liu, Tao; Zhong, Shuming; Liao, Xiaoxiao; Chen, Jian; He, Tingting; Lai, Shunkai; Jia, Yanbin

    2015-01-01

    Object Studies have suggested that depression was accompanied by oxidative stress dysregulation, including abnormal total antioxidant capacity (TAC), antioxidants, free radicals, oxidative damage and autoimmune response products. This meta-analysis aims to analyse the clinical data quantitatively by comparing the oxidative stress markers between depressed patients and healthy controls. Methods A search was conducted to collect the studies that measured the oxidative stress markers in depressed patients. Studies were searched in Embase, Medline, PsychINFO, Science direct, CBMDisc, CNKI and VIP from 1990 to May 2015. Data were subjected to meta-analysis by using a random effects model for examining the effect sizes of the results. Bias assessments, heterogeneity assessments and sensitivity analyses were also conducted. Results 115 articles met the inclusion criteria. Lower TAC was noted in acute episodes (AEs) of depressed patients (p<0.05). Antioxidants, including serum paraoxonase, uric acid, albumin, high-density lipoprotein cholesterol and zinc levels were lower than controls (p<0.05); the serum uric acid, albumin and vitamin C levels were increased after antidepressant therapy (p<0.05). Oxidative damage products, including red blood cell (RBC) malondialdehyde (MDA), serum MDA and 8-F2-isoprostanes levels were higher than controls (p<0.05). After antidepressant medication, RBC and serum MDA levels were decreased (p<0.05). Moreover, serum peroxide in free radicals levels were higher than controls (p<0.05). There were no differences between the depressed patients and controls for other oxidative stress markers. Conclusion This meta-analysis supports the facts that the serum TAC, paraoxonase and antioxidant levels are lower, and the serum free radical and oxidative damage product levels are higher than controls in depressed patients. Meanwhile, the antioxidant levels are increased and the oxidative damage product levels are decreased after antidepressant medication

  7. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  8. Oxidative stress in haemodialysis--intradialytic changes.

    PubMed

    Srinivasa Rao, P V; Dakshinamurty, K V; Saibaba, K S; Raghavan, M S; Vijayabhaskar, M; Sreekrishna, V; Ambekar, J G; Jayaseelan, L

    2001-01-01

    Oxidative stress is likely to be involved in the development of complications due to haemodialysis. Though there is evidence for production of oxygen free radicals during haemodialysis, reports on net oxidative imbalance due to a single dialysis session are conflicting. Hence, a time-course analysis of changes in lipid peroxides (LPO) along with antioxidant enzymes and vitamins was carried out. Hourly changes in LPO and antioxidants were studied during a first-use cuprophan membrane and acetate dialysis in 20 patients on regular haemodialysis treatment. Data were corrected for haemoconcentration and standardised to measure the rate of change before statistical evaluation using analysis of variance for repeated measures. The results of the study showed a net oxidative stress due to a single dialysis session in the form of increased plasma and erythrocyte lipid peroxidation, decrease in plasma vitamin E, slight increase in plasma superoxide dismutase and erythrocyte glutathione peroxidase and no change in plasma glutathione peroxidase. erythrocyte superoxide dismutase and plasma vitamin A levels. The oxygen radical production was found to be maximum in the first hour of dialysis. PMID:11778848

  9. Increased oxidative stress in foam cells obtained from hemodialysis patients.

    PubMed

    Gonçalves, Marlene S B; Fabris, Bruno A; Brinholi, Francis F; Bortolasci, Chiara C; Watanabe, Maria A E; Oliveira, Karen B; Delfino, Vinícius D A; Lavado, Edson L; Barbosa, Décio S

    2013-04-01

    Premature atherosclerosis represents the main cause of mortality among end-stage renal disease patients (ESRD). Increased inflammation and oxidative stress are involved in initiation and progression of the atherosclerotic plaque. As foam cells are capable of producing significant amounts of inflammatory mediators and free radicals, we hypothesized that foam cells from uremic patients could produce more inflammation and oxidative stress than foam cells from normal people and be, somehow, involved in the accelerated atherosclerosis of uremia. To test this hypothesis, the levels of a few markers of inflammation and oxidative stress: Tumor necrosis factor-α, inducible nitric oxide synthase, malondialdehyde, nitric oxide by-products were measured in the supernatants of macrophage-derived foam cells cultures from 18 hemodialysis patients and 18 apparently healthy individuals controls. Malondialdehyde levels in the supernatant of cell cultures (macrophages stimulated or not with native and oxidized lipoprotein) were significantly increased in uremic patients; no statistically significant difference was found between the supernatant concentrations of nitric oxide by-products, inducible nitric oxide synthase activity, and tumor necrosis factor-α between patients and controls. Our results, obtained with human macrophages and macrophage-derived foam cells, are compatible with the theory that increased cellular oxidative stress and inflammatory activity in ESRD patients could accelerate the atherosclerotic process. The present culture protocol showed it is possible to use human mononuclear cells to evaluate the oxidative metabolism of foam cells, which are considered to be the initial step of atherosclerotic lesions. PMID:22928784

  10. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  11. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  12. Phase I pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (PAMPR): study protocol

    PubMed Central

    Hobson, Sebastian R; Lim, Rebecca; Gardiner, Elizabeth E; Alers, Nicole O; Wallace, Euan M

    2013-01-01

    Introduction Pre-eclampsia is a common pregnancy condition affecting between 3% and 7% of women. Unfortunately, the exact pathophysiology of the disease is unknown and as such there are no effective treatments that exist notwithstanding prompt delivery of the fetus and culprit placenta. As many cases of pre-eclampsia occur in preterm pregnancies, it remains a significant cause of maternal and perinatal morbidity and mortality. Recently, in vitro and animal studies have highlighted the potential role of antioxidants in mitigating the effects of the disease. Melatonin is a naturally occurring antioxidant hormone and provides an excellent safety profile combined with ease of oral administration. We present the protocol for a phase I pilot clinical trial investigating the efficacy and side effects of maternal treatment with oral melatonin in pregnancies affected by preterm pre-eclampsia. Methods and analysis We propose undertaking a single-arm open label clinical trial recruiting 20 women with preterm pre-eclampsia (24+0–35+6 weeks). We will take baseline measurements of maternal and fetal well-being, levels of oxidative stress, ultrasound Doppler studies and other biomarkers of pre-eclampsia. Women will then be given oral melatonin (10 mg) three times daily until delivery. The primary outcome will be time interval between diagnosis and delivery compared to historical controls. Secondary outcomes will compare the baseline measurements previously mentioned with twice-weekly measurements during treatment and then 6 weeks postpartum. Ethics and dissemination Ethical approval has been obtained from Monash Health Human Research Ethics Committee B (HREC 13076B). Data will be presented at international conferences and published in peer-reviewed journals. Trial registration number ACTRN12613000476730 (ANZCTR). PMID:24056493

  13. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  14. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  15. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  16. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy. PMID:26851532

  17. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  18. Oxidative Stress, Lens Gap Junctions, and Cataracts

    PubMed Central

    Beyer, Eric C.

    2009-01-01

    Abstract The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation. Antioxid. Redox Signal. 11, 339–353. PMID:18831679

  19. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  20. Oxidative Stress Related Diseases in Newborns.

    PubMed

    Ozsurekci, Yasemin; Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  1. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. PMID:25542633

  2. Mitochondrial Oxidative Stress in Temporal Lobe Epilepsy

    PubMed Central

    Waldbaum, Simon; Patel, Manisha

    2011-01-01

    Mitochondrial oxidative stress and dysfunction are contributing factors to various neurological disorders. Recently, there has been increasing evidence supporting the association between mitochondrial oxidative stress and epilepsy. Although certain inherited epilepsies are associated with mitochondrial dysfunction, little is known about its role in acquired epilepsies such as temporal lobe epilepsy. Mitochondrial oxidative stress and dysfunction are emerging as key factors that not only result from seizures, but may also contribute to epileptogenesis. The occurrence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, suggesting a further involvement of mitochondrial dysfunction in seizure generation. Mitochondria have critical cellular functions that effect neuronal excitability including production of adenosine triphosphate (ATP), fatty acid oxidation, control of apoptosis and necrosis, regulation of amino acid cycling, neurotransmitter biosynthesis, and regulation of cytosolic Ca2+ homeostasis. Mitochondria are the primary site of reactive oxygen species (ROS) production making them uniquely vulnerable to oxidative stress and damage which can further affect cellular macromolecule function, the ability of the electron transport chain to produce ATP, antioxidant defenses, mitochondrial DNA stability, and synaptic glutamate homeostasis. Oxidative damage to one or more of these cellular targets may affect neuronal excitability and increase seizure susceptibility. The specific targeting of mitochondrial oxidative stress, dysfunction, and bioenergetics with pharmacological and non-pharmacological treatments may be a novel avenue for attenuating epileptogenesis and seizure initiation. PMID:19850449

  3. Correlation of Zinc with Oxidative Stress Biomarkers

    PubMed Central

    Morales-Suárez-Varela, María; Llopis-González, Agustín; González-Albert, Verónica; López-Izquierdo, Raúl; González-Manzano, Isabel; Cháves, Javier; Huerta-Biosca, Vicente; Martin-Escudero, Juan C.

    2015-01-01

    Hypertension and smoking are related with oxidative stress (OS), which in turn reports on cellular aging. Zinc is an essential element involved in an individual’s physiology. The aim of this study was to evaluate the relation of zinc levels in serum and urine with OS and cellular aging and its effect on the development of hypertension. In a Spanish sample with 1500 individuals, subjects aged 20–59 years were selected, whose zinc intake levels fell within the recommended limits. These individuals were classified according to their smoking habits and hypertensive condition. A positive correlation was found (Pearson’s C = 0.639; p = 0.01) between Zn serum/urine quotient and oxidized glutathione levels (GSSG). Finally, risk of hypertension significantly increased when the GSSG levels exceeded the 75 percentile; OR = 2.80 (95%CI = 1.09–7.18) and AOR = 3.06 (95%CI = 0.96–9.71). Low zinc levels in serum were related with OS and cellular aging and were, in turn, to be a risk factor for hypertension.  PMID:25774936

  4. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  5. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  6. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease.

    PubMed

    Mota, Sandra I; Costa, Rui O; Ferreira, Ildete L; Santana, Isabel; Caldeira, Gladys L; Padovano, Carmela; Fonseca, Ana C; Baldeiras, Inês; Cunha, Catarina; Letra, Liliana; Oliveira, Catarina R; Pereira, Cláudia M F; Rego, Ana Cristina

    2015-07-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells. PMID:25857617

  7. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring.

    PubMed

    Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan

    2016-05-01

    We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile

  8. Oxidative stress in normal and diabetic rats.

    PubMed

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (p<0.001) greater than the control levels. The diabetic animals presented an amount of vitamin E far greater (p<0.0001) than the controls, as was also the case for the vitaminE/polyunsaturated fatty acid (PUFA) and vitaminE/linoleic acid (C18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected. PMID:10523056

  9. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  10. Diaphragmatic breathing reduces exercise-induced oxidative stress.

    PubMed

    Martarelli, Daniele; Cocchioni, Mario; Scuri, Stefania; Pompei, Pierluigi

    2011-01-01

    Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals. PMID:19875429

  11. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    PubMed Central

    Ermakov, Aleksei V.; Konkova, Marina S.; Kostyuk, Svetlana V.; Izevskaya, Vera L.; Veiko, Natalya N.

    2013-01-01

    The term “cell-free DNA” (cfDNA) was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA). Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS) that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2) that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments. PMID:23533696

  12. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  13. Characterization of RNA damage under oxidative stress in Escherichia coli

    PubMed Central

    Liu, Min; Gong, Xin; Alluri, Ravi Kumar; Wu, Jinhua; Sablo, Tene’; Li, Zhongwei

    2012-01-01

    We have examined the level of 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine, in RNA in Escherichia coli under normal and oxidative stress conditions. The level of 8-oxo-G in RNA rises rapidly and remains high for hours in response to hydrogen peroxide (H2O2) challenge in a dose-dependent manner. H2O2 induced elevation of 8-oxo-G content is much higher in RNA than that of 8-hydroxydeoxyguanosine (8-oxo-dG) in DNA. Under normal conditions, the 8-oxo-G level is low in RNA isolated from the ribosome and it is nearly three times higher in non-ribosomal RNAs. In contrast, 8-oxo-G generated by a short exposure to H2O2 is almost equally distributed in various RNA species, suggesting that although ribosomal RNAs are normally less oxidized, they are not protected against exogenous H2O2. Interestingly, highly folded RNA is not protected from oxidation because 8-oxo-G generated by H2O2 treatment in vitro increases to approximately the same levels in tRNA and rRNA in both native and denatured forms. Lastly, increased RNA oxidation is closely associated with cell death by oxidative stress. Our data suggests that RNA is a primary target for reactive oxygen species and RNA oxidation is part of the paradox that cells have to deal with under oxidative stress. PMID:22718628

  14. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides. PMID:27085889

  15. p66Shc, oxidative stress and aging

    PubMed Central

    Pinton, Paolo; Rizzuto, Rosario

    2009-01-01

    The 66 KDa isoform of Shc and its signalling properties have attracted in the past years major interest in aging research. Here, we summarize p66Shc functions and outline a specific signalling route leading to mitochondrial import, that accounts for its pro-apoptotic activity upon oxidative stress. This model, that could explain the alterations of mitochondrial Ca2+ homeostasis observed after oxidative stress, highlights novel pharmacological targets in age-related disorders. PMID:18235239

  16. Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage

    PubMed Central

    Bijak, Michał; Miller, Elżbieta; Miller, Sergiusz

    2015-01-01

    Multiple sclerosis (MS) is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases) were examined to evaluate the biological activity of blood platelets (adhesion, aggregation), especially their response to the most important physiological agonists (thrombin, ADP, and collagen) and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2−∙ in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets. PMID:26064417

  17. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams. Results The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways. Conclusion The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information. PMID:24341908

  18. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats

    PubMed Central

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases. PMID:24250417

  19. Impaired Metabolic Reactivity to Oxidative Stress in Early Psychosis Patients

    PubMed Central

    Fournier, Margot; Ferrari, Carina; Baumann, Philipp S.; Polari, Andrea; Monin, Aline; Bellier-Teichmann, Tanja; Wulff, Jacob; Pappan, Kirk L.; Cuenod, Michel; Conus, Philippe; Do, Kim Q.

    2014-01-01

    Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients’ fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors. PMID:24687046

  20. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  1. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  2. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  3. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  4. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  5. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  6. Chlorophytum borivilianum Root Extract Maintains near Normal Blood Glucose, Insulin and Lipid Profile Levels and Prevents Oxidative Stress in the Pancreas of Streptozotocin-Induced Adult Male Diabetic Rats

    PubMed Central

    Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

    2014-01-01

    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes. Methods: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated. Results: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats. Conclusions: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes. PMID:25249786

  7. Oxidative Stress in Placenta: Health and Diseases.

    PubMed

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  8. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  9. Oxidative stress in developmental brain disorders.

    PubMed

    Hayashi, Masaharu; Miyata, Rie; Tanuma, Naoyuki

    2012-01-01

    In order to examine the involvement of oxidative stress in developmental brain disorders, we have performed immunohistochemistry in autopsy brains and enzyme-linked immunosorbent assay (ELISA) in the cerebrospinal fluid and urines of patients. Here, we review our data on the hereditary DNA repair disorders, congenital metabolic errors and childhood-onset neurodegenerative disorders. First, in our studies on hereditary DNA repair disorders, increased oxidative DNA damage and lipid peroxidation were carried out in the degeneration of basal ganglia, intracerebral calcification and cerebellar degeneration in patients with xeroderma pigmentosum, Cockayne syndrome and ataxia-telangiectasia-like disorder, respectively. Next, congenital metabolic errors, apoptosis due to lipid peroxidation seemed to cause neuronal damage in neuronal ceroid-lipofuscinosis. Oxidative stress of DNA combined with reduced expression of antioxidant enzymes occurred in the lesion of the cerebral cortex in mucopolysaccharidoses and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. In childhood-onset neurodegenerative disorders, increased oxidative DNA damage and lipid peroxidation may lead to motor neuron death in spinal muscular atrophy like in amyotrophic lateral sclerosis. In patients with dentatorubral-pallidoluysian atrophy, a triplet repeat disease, deposition of oxidative products of nucleosides and reduced expression of antioxidant enzymes were found in the lenticular nucleus. In contrast, the involvement of oxidative stress is not definite in patients with Lafora disease. Rett syndrome patients showed changes of oxidative stress markers and antioxidant power in urines, although the changes may be related to systemic complications. PMID:22411250

  10. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  11. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  12. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  13. Mild oxidative stress is beneficial for sperm telomere length maintenance

    PubMed Central

    Mishra, Swetasmita; Kumar, Rajeev; Malhotra, Neena; Singh, Neeta; Dada, Rima

    2016-01-01

    AIM: To evaluate telomere length in sperm DNA and its correlation with oxidative stress (normal, mild, severe). METHODS: The study included infertile men (n = 112) and age matched fertile controls (n = 102). The average telomere length from the sperm DNA was measured using a quantitative real time PCR based assay. Seminal reactive oxygen species (ROS) and 8-Isoprostane (8-IP) levels were measured by chemiluminescence assay and ELISA respectively. RESULTS: Average sperm telomere length in infertile men and controls was 0.609 ± 0.15 and 0.789 ± 0.060, respectively (P < 0.0001). Seminal ROS levels in infertile was higher [66.61 ± 28.32 relative light units (RLU)/s/million sperm] than in controls (14.04 ± 10.67 RLU/s/million sperm) (P < 0.0001). The 8-IP level in infertile men was significantly higher (421.55 ± 131.29 pg/mL) than in controls (275.94 ± 48.13 pg/mL) (P < 0.001). When correlated to oxidative stress, in normal range of oxidative stress (ROS, 0-21.3 RLU/s/million sperm) the average telomere length in cases was 0.663 ± 0.14, in mild oxidative stress (ROS, 21.3-35 RLU/s/million sperm) it was elevated (0.684 ± 0.12) and in severe oxidative stress (ROS > 35 RLU/s/million sperm) average telomere length was decreased to 0.595 ± 0.15. CONCLUSION: Mild oxidative stress results in lengthening of telomere length, but severe oxidative stress results in shorter telomeres. Although telomere maintenance is a complex trait, the study shows that mild oxidative stress is beneficial in telomere length maintenance and thus a delicate balance needs to be established to maximize the beneficial effects of free radicals and prevent harmful effects of supra physiological levels. Detailed molecular evaluation of telomere structure, its correlation with oxidative stress would aid in elucidating the cause of accelerated telomere length attrition. PMID:27376021

  14. In vitro model suggests oxidative stress involved in keratoconus disease

    NASA Astrophysics Data System (ADS)

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-04-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.

  15. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level.

    PubMed

    Kumar, Abhay; Prasad, M N V; Mohan Murali Achary, V; Panda, Brahma B

    2013-07-01

    Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75-1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare. PMID:23263755

  16. Iron-Deficiency Anemia Enhances Red Blood Cell Oxidative Stress

    PubMed Central

    Nagababu, Enika; Gulyani, Seema; Earley, Christopher J.; Cutler, Roy G.; Mattson, Mark P.; Rifkind, Joseph M.

    2009-01-01

    Oxidative stress associated with iron deficiency anemia in a murine model was studied feeding an iron deficient diet. Anemia was monitored by a decrease in hematocrit and hemoglobin. For the 9 week study an increase in total iron binding capacity was also demonstrated. Anemia resulted in an increase in red blood cells (RBC) oxidative stress as indicated by increased levels of fluorescent heme degradation products (1.24 fold after 5 weeks; 2.1 fold after 9 weeks). The increase in oxidative stress was further confirmed by elevated levels of methemoglobin for mice fed an iron deficient diet. Increased hemoglobin autoxidation and subsequent generation of ROS can account for the shorter RBC lifespan and other pathological changes associated with iron deficiency anemia. PMID:19051108

  17. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  18. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  19. Linking phosphorus availability with photo-oxidative stress in plants.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2015-05-01

    Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole

  20. Oxidative stress in patients with obstructive sleep apnoea syndrome.

    PubMed

    Passali, D; Corallo, G; Yaremchuk, S; Longini, M; Proietti, F; Passali, G C; Bellussi, L

    2015-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a disorder that leads to metabolic abnormalities and increased cardiovascular risk. The aim of this study was to identify early laboratory markers of cardiovascular disease through analysis of oxidative stress in normal subjects and patients with OSAS. A prospective study was designed to compare outcomes of oxidative stress laboratory tests in 20 adult patients with OSAS and a control group of 20 normal subjects. Laboratory techniques for detecting and quantifying free radical damage must be targeted to assess the pro-oxidant component and the antioxidant in order to obtain an overall picture of oxidative balance. No statistical differences in age, sex distribution, or BMI were found between the two groups (p>0.05). There were significant differences in the apnoea/hypopnoea index (AHI) between OSAS patients and the control group (p<0.05). Statistically significant differences in isoprostane, advanced oxidation protein products (AOPP) and non-protein bound iron (NPBI) levels were found between the study and control groups. No significant difference in the levels of thiol biomarkers was found between the two groups. The main finding of the present study was increased production of oxidative stress biomarkers in OSAS patients. The major difference between thiols and other oxidative stress biomarkers is that thiols are antioxidants, while the others are expressions of oxidative damage. The findings of the present study indicate that biomarkers of oxidative stress in OSAS may be used as a marker of upper airway obstructive episodes due to mechanical trauma, as well as a marker of hypoxaemia causing local oropharyngeal inflammation. PMID:26900248

  1. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health. PMID:26574302

  2. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  3. Oxidative and nitrative stress in neurodegeneration.

    PubMed

    Cobb, Catherine A; Cole, Marsha P

    2015-12-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  4. Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease

    PubMed Central

    Wang, Xinglong; Wang, Wenzhang; Li, Li; Perry, George; Lee, Hyoung-gon; Zhu, Xiongwei

    2013-01-01

    Alzheimer’s disease (AD) exhibits extensive oxidative stress throughout the body, being detected peripherally as well as associated with the vulnerable regions of the brain affected in disease. Abundant evidence not only demonstrates the full spectrum of oxidative damage to neuronal macromolecules, but also reveals the occurrence of oxidative events early in the course of the disease and prior to the formation of the pathology, which support an important role of oxidative stress in AD. As a disease of abnormal aging, AD demonstrats oxidative damage at levels that significantly surpass that of elderly controls, which suggests the involvement of additional factor(s). Structurally and functionally damaged mitochondria, which are more proficient at producing reactive oxygen species but less so in ATP, are also an early and prominent feature of the disease. Since mitochondria are also vulnerable to oxidative stress, it is likely that a vicious downward spiral involving the interactions between mitochondrial dysfunction and oxidative stress contributes to the initiation and/or amplification of reactive oxygen species that is critical to the pathogenesis of AD. PMID:24189435

  5. Oxidative stress, mitochondrial damage and neurodegenerative diseases

    PubMed Central

    Guo, Chunyan; Sun, Li; Chen, Xueping; Zhang, Danshen

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases. PMID:25206509

  6. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described. PMID:26607273

  7. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention. PMID:26596837

  8. Oxidative stress and antioxidant strategies in dermatology.

    PubMed

    Baek, Jinok; Lee, Min-Geol

    2016-07-01

    Oxidative stress results from a prooxidant-antioxidant imbalance, leading to cellular damage. It is mediated by free radicals, such as reactive oxygen species or reactive nitrogen species, that are generated during physiological aerobic metabolism and pathological inflammatory processes. Skin serves as a protective organ that plays an important role in defending both external and internal toxic stimuli and maintaining homeostasis. It is becoming increasingly evident that oxidative stress is involved in numerous skin diseases and that antioxidative strategies can serve as effective and easy methods for improving these conditions. Herein, we review dysregulated antioxidant systems and antioxidative therapeutic strategies in dermatology. PMID:26020527

  9. Oxidative Stress in Schizophrenia: An Integrated Approach

    PubMed Central

    Bitanihirwe, Byron K.Y.; Woo, Tsung-Ung W.

    2010-01-01

    Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioural and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-D-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons.[bkyb1] Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia. PMID:20974172

  10. Mitochondrial oxidative stress promotes atrial fibrillation

    PubMed Central

    Xie, Wenjun; Santulli, Gaetano; Reiken, Steven R.; Yuan, Qi; Osborne, Brent W.; Chen, Bi-Xing; Marks, Andrew R.

    2015-01-01

    Oxidative stress has been suggested to play a role in the pathogenesis of atrial fibrillation (AF). Indeed, the prevalence of AF increases with age as does oxidative stress. However, the mechanisms linking redox state to AF are not well understood. In this study we identify a link between oxidative stress and aberrant intracellular Ca2+ release via the type 2 ryanodine receptor (RyR2) that promotes AF. We show that RyR2 are oxidized in the atria of patients with chronic AF compared with individuals in sinus rhythm. To dissect the molecular mechanism linking RyR2 oxidation to AF we used two murine models harboring RyR2 mutations that cause intracellular Ca2+ leak. Mice with intracellular Ca2+ leak exhibited increased atrial RyR2 oxidation, mitochondrial dysfunction, reactive oxygen species (ROS) production and AF susceptibility. Both genetic inhibition of mitochondrial ROS production and pharmacological treatment of RyR2 leakage prevented AF. Collectively, our results indicate that alterations of RyR2 and mitochondrial ROS generation form a vicious cycle in the development of AF. Targeting this previously unrecognized mechanism could be useful in developing effective interventions to prevent and treat AF. PMID:26169582