Science.gov

Sample records for oxide film obta

  1. Structural conformation in a poly (ethylene oxide) film obta inedfrom X-ray emission spectroscopy (XES)

    SciTech Connect

    Kashtanov, S.; Zhuang, G.V.; Augustsson, A.; Guo, J.-H.; Nordgren, J.; Luo, Y.; Ross, P.N.

    2007-03-16

    The electronic structure of poly(ethylene oxide) (PEO) in a thin (< 1 {micro}) film sample was experimentally probed by X-ray emission spectroscopy. The emission spectra from this film were much sharper with more resolved fine structure than the spectra from the bulk polymer from which it was cast. Both non-resonant and resonant X-ray emission spectra were simulated using density functional theory (DFT) applied to four different models representing different conformations in the polymer. Calculated spectra were compared with experimental results for the PEO film. It was found that the best fit was obtained with the polymer conformation in PEO electrolytes from which the salt (LiMF6, M=P, As, or Sb) had been removed. This conformation is different from that in the crystalline bulk polymer and implies that film casting, commonly used to form electrolytes for Li polymer batteries, induces the same conformation in the polymer with or without the salt present.

  2. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  3. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  4. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  5. Electrochromism in nickel oxide films

    SciTech Connect

    Wruck, D.A.

    1991-01-01

    Optical absorption in a thin-film nickel oxide electrode depends on the state of charge of the electrode; the effect has been called electrochromism, and it may have practical applications in low-speed light modulation devices. In this dissertation, the physical and chemical processes which lead to the change in optical properties are investigated. Preparation of NiO film electrodes by reactive sputtering of a Ni target in an Ar + O[sub 2] gas mixture is described, and the electrochromic response is correlated to film growth conditions. Structural, electronic, and electrochemical properties of the NiO films are characterized by x-ray diffraction, infrared absorption, x-ray photoemission, optical absorption, electrical conductivity, and electrochemical measurements. It is proposed that the electrochromism results from the adsorption and desorption of protons at the oxygen-rich surface of a granular and porous NiO film. The surface electronic levels are then modified by the presence or absence of the O-H bonds, and the effect on the film electronic properties is discussed. A general discussion is also given of the current-limiting processes at the NiO film electrodes.

  6. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  7. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  8. Silicon oxide films grown in microwave discharge

    NASA Technical Reports Server (NTRS)

    Kraitchman, J.

    1968-01-01

    Silicon oxide films thicker than 1000 angstrom are produced in the dense plasma of a microwave discharge. The oxide growth is characterized by a rate limiting diffusion process modified by sputtering effects produced by the discharge. Silicon is rapidly oxidized at temperatures estimated to be 500 degrees C or lower.

  9. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  10. CVD diamond film oxidation resistance research

    NASA Astrophysics Data System (ADS)

    Jing, Longwei; Wang, Xiaoping; Wang, Lijun; Pan, Xiufang; Sun, Yiqing; Wang, Jinye; Sun, Hongtao

    2013-12-01

    Diamond films were deposited on a silicon substrate by microwave plasma chemical vapor deposition system, and its oxidation experiments were carried out in atmospheric environmental condition by using a muffle furnace. Inatmospheric environment (the temperature is from 400°C to 900°C) the oxidation resistance of diamond thin films was investigated. The results indicate that under the atmospheric environment diamond thin film surface morphology did not change after 6 hours at 400°C. Diamond thin film surface morphology began to change after 2 hours at 600°C, and when time was extended to 4 hours, the diamond thin film surface morphology changed significantly. The surface morphology of diamond films began to change after 15 minutes at a 700°C condition and when time was extended to 6 hours diamond films were all destroyed. All the diamond films on the silicon substrate disappeared completely in 20 minutes at 900°C. The intact crystal face is the reason that natural diamond has stable chemical property. The crystal face of synthetic diamond film has a lot of defects, especially on the side. Oxidation of the diamond films begin with the grain boundary and defects.

  11. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  12. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  13. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  14. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  15. Oxidation behavior of titanium nitride films

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Ying; Lu, Fu-Hsing

    2005-07-01

    The oxidation behavior of titanium nitride (TiN) films has been investigated by using x-ray diffraction, Raman scattering spectroscopy, and field emission scanning electron microscopy. TiN films were deposited onto Si substrates by using cathodic arc plasma deposition technique. After that, the films were annealed in the air at 500-800 °C for 2 h. The x-ray diffraction spectra showed that rutile-TiO2 appeared above 600 °C. The relative intensity of TiO2 rapidly increased with temperatures. Only rutile-TiO2 was detected above 700 °C. Raman scattering spectra indicated the presence of rutile-TiO2 signals above 500 °C. Meanwhile an additional Si peak appeared at 700 °C in Raman spectra, above which only Si peak appeared. Many nano pores were found on the surface of films annealed at temperatures between 600 and 700 °C in field emission scanning electron microscopy, while the granular structure existed at 800 °C. The as-deposited TiN films had an apparent columnar structure. The thin and dense oxide overlayer appeared at 500 °C, and thicker oxide layer existed above 600 °C. The elongated grain structure with many voids existed in the film at 800 °C. These pores-voids might result from the nitrogen release during the oxidation of the nitride. The oxide layer obviously grows inward indicating the oxidation of TiN films belongs to an inward oxidation. The pre-exponential factor and the activation energy of the oxidation were evaluated by Arrhenius-type relation. These values were 2.2×10-6 cm2/s and 110+/-10 kJ/mol, which are consistent with those reports in the literature.

  16. Microstructural evolution of tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  17. Electro-deposition of superconductor oxide films

    DOEpatents

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  18. Graphene oxide film as solid lubricant.

    PubMed

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  19. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  20. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  1. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  2. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  3. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  4. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  5. Interfacial Assembly of Graphene Oxide Films

    NASA Astrophysics Data System (ADS)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  6. Influence of doping with third group oxides on properties of zinc oxide thin films

    SciTech Connect

    Palimar, Sowmya Bangera, Kasturi V.; Shivakumar, G. K.

    2013-03-15

    The study of modifications in structural, optical and electrical properties of vacuum evaporated zinc oxide thin films on doping with III group oxides namely aluminum oxide, gallium oxide and indium oxide are reported. It was observed that all the films have transmittance ranging from 85 to 95%. The variation in optical properties with dopants is discussed. On doping the film with III group oxides, the conductivity of the films showed an excellent improvement of the order of 10{sup 3} {Omega}{sup -1} cm{sup -1}. The measurements of activation energy showed that all three oxide doped films have 2 donor levels below the conduction band.

  7. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  8. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    PubMed

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-01

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping. PMID:26599729

  9. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  10. Plasma deposition of aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Catherine, Y.; Talebian, A.

    1988-03-01

    A plasma deposition technique for amorphous aluminum oxide films is discussed. A 450 kHz or 13.56 MHz power supply was used to generate the plasma and the deposition of the film was achieved at low plasma power using trimethyl-aluminum and carbon dioxide reactant sources. It has been found that for the low frequency plasma the growth is strongly dependent upon TMA concentration, indicating that the growth process is mass transport limited. On the other hand using the 13.56 MHz discharge results in a surface controlled growth rate. An increase in the deposition temperature up to 300° C makes the films more dense and lowers their etching rate. FTIR and ESCA measurements showed that oxidation is only completed with high CO2 concentrations and a deposition temperature above 250° C. The dielectric films were found to have a dielectric constant in the range 7.3=2-9 and a refractive index between 1.5 1.8 depending upon deposition conditions.

  11. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  12. Investigation of photoelectrochemical-oxidized p-GaSb films

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Huang, Hung-Lin; Lee, Ching-Ting; Petrovich Pchelyakov, Oleg; Andreevich Pakhanov, Nikolay

    2012-12-01

    GaSb oxide films were directly formed on the p-GaSb films using the bias-assisted photoelectrochemical (PEC) oxidation method. X-ray photoelectron spectroscopy analysis indicated that the resulting GaSb oxide films consisted of Ga2O3, Sb2O3, and Sb2O5. Different from the non-PEC oxides, the PEC derived oxide contained much more Sb2O5 than Sb2O3. Besides, the interface state density between the PEC oxide and p-GaSb was lower than that of the ordinary oxide/p-GaSb interface. The high quality of the PEC-oxidized GaSb films was attributed to the increase of the stable Sb2O5 content and decrease of the elemental Sb content in the films.

  13. Copper oxide thin films for ethanol sensing

    NASA Astrophysics Data System (ADS)

    Lamri Zeggar, M.; Bourfaa, F.; Adjimi, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    The present is a study of a new active layer for ethanol (C2H5OH) vapour sensing devices based on copper oxide (CuO). CuO films were prepared by spray ultrasonic pyrolysis at a substrate temperature of 350 °C. Films microstructure was examined by X-ray diffraction and atomic force microscopy. Vapour-sensing testing was conducted using static vapour-sensing system, at different operating temperatures in the range of 100°C to 175°C for the vapour concentration of 300 ppm. The results show a high response of 45% at relatively low operating temperatures of 150°C towards ethanol vapour.

  14. Thin zinc oxide and cuprous oxide films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Jeong, Seongho

    Metal oxide semiconductors and heterojunctions made from thin films of metal oxide semiconductors have broad range of functional properties and high potential in optical, electrical and magnetic devices such as light emitting diodes, spintronic devices and solar cells. Among the oxide semiconductors, zinc oxide (ZnO) and cuprous oxide (Cu2O) are attractive because they are inexpensive, abundant and nontoxic. As synthesized ZnO is usually an intrinsic n - type semiconductor with wide band gap (3.4 eV) and can be used as the transparent conducting window layer in solar cells. As synthesized Cu2O is usually a p - type semiconductor with a band gap of 2.17 eV and has been considered as a potential material for the light absorbing layer in solar cells. I used various techniques including metal organic chemical vapor deposition, magnetron sputtering and atomic layer deposition to grow thin films of ZnO and Cu2O and fabricated Cu2O/ZnO heterojunctions. I specifically investigated the optical and electrical properties of Cu 2O thin films deposited on ZnO by MOCVD and showed that Cu2O thin films grow as single phase with [110] axis aligned perpendicular to the ZnO surface which is (0001) plane and with in-plane rotational alignment due to (220) Cu2O || (0002)ZnO; [001]Cu2O || [12¯10]ZnO epitaxy. Moreover, I fabricated solar cells based on these Cu2O/ZnO heterojunctions and characterized them. Electrical characterization of these solar cells as a function of temperature between 100 K and 300 K under illumination revealed that interface recombination and tunneling at the interface are the factors that limit the solar cell performance. To date solar cells based on Cu2O/ZnO heterojunctions had low open circuit voltages (~ 0.3V) even though the expected value is around 1V. I achieved open circuit voltages approaching 1V at low temperature (~ 100 K) and showed that if interfacial recombination is reduced these cells can achieve their predicted potential.

  15. Oxidation resistance of Pb-Te-Se optical recording film

    NASA Astrophysics Data System (ADS)

    Terao, Motoyasu; Horigome, Shinkichi; Shigematsu, Kazuo; Miyauchi, Yasushi; Nakazawa, Masatoshi

    1987-08-01

    The dependence of oxidation resistance of metal-Te-Se optical recording films on film composition is investigated, as well as the effects of oxidation on laser beam recorded hole shape. The films are deposited by vacuum evaporation on substrates with a glass/UV light curing resin/cellulose nitrate structure. The role of Se in the film is to inhibit the oxidation. With at least 14% Se addition, film oxidation is completely inhibited even at 60 °C, relative humidity 95%. Depth profiles of elements in the recording films are analyzed by Auger electron and x-ray photoelectron spectroscopy to clarify the mechanisms of oxidation inhibition by Se addition. A selenium condensed layer is found at the inner part of an oxidized surface layer. The surface Te oxide layer and the Se-rich layer should inhibit the film inside from oxidizing. The role of the metallic elements In, Pb, Sn, Bi, and Sb in the film is to inhibit cracking and to decrease noise in reproduced signals by decreasing the size of crystal grains. Lead is found to be the best among these metallic elements, because the recorded hole shape is clean even when recorded after 15 days accelerated oxidation at 60 °C, relative humidity 95%. A very long storage life is expected for the Pb-Te-Se optical recording film.

  16. Electrochromism: from oxide thin films to devices

    NASA Astrophysics Data System (ADS)

    Rougier, A.; Danine, A.; Faure, C.; Buffière, S.

    2014-03-01

    In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers. Herein, our approach for optimized ECDs is illustrated through the example of WO3 electrochromic layer in the visible and in the IR domain as well as ZnO based transparent conducting oxide layer. Targeting the field of printed electronics, simplification of the device architecture for low power ECDs is also reported.

  17. Transparent Conductive Oxides in Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hamelmann, Frank U.

    2014-11-01

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion.

  18. Oxidizing annealing effects on VO2 films with different microstructures

    NASA Astrophysics Data System (ADS)

    Dou, Yan-Kun; Li, Jing-Bo; Cao, Mao-Sheng; Su, De-Zhi; Rehman, Fida; Zhang, Jia-Song; Jin, Hai-Bo

    2015-08-01

    Vanadium dioxide (VO2) films have been prepared by direct-current magnetron sputter deposition on m-, a-, and r-plane sapphire substrates. The obtained VO2 films display different microstructures depending on the orientation of sapphire substrates, i.e. mixed microstructure of striped grains and equiaxed grains on m-sapphire, big equiaxed grains on a-sapphire and fine-grained microstructure on r-sapphire. The VO2 films were treated by the processes of oxidation in air. The electric resistance and infrared transmittance of the oxidized films were characterized to examine performance characteristics of VO2 films with different microstructures in oxidation environment. The oxidized VO2 films on m-sapphire exhibit better electrical performance than the other two films. After air oxidization for 600 s at 450 °C, the VO2 films on m-sapphire show a resistance change of 4 orders of magnitude over the semiconductor-to-metal transition. The oxidized VO2 films on a-sapphire have the highest optical modulation efficiency in infrared region compared to other samples. The different performance characteristics of VO2 films are understood in terms of microstructures, i.e. grain size, grain shape, and oxygen vacancies. The findings reveal the correlation of microstructures and performances of VO2 films, and provide useful knowledge for the design of VO2 materials to different applications.

  19. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  20. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  1. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  2. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  3. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  4. Effects of oxidative treatments on human hair keratin films.

    PubMed

    Fujii, T; Ito, Y; Watanabe, T; Kawasoe, T

    2012-01-01

    The effects of hydrogen peroxide and commercial bleach on hair and human hair keratin films were examined by protein solubility, scanning electron microscopy (SEM), immunofluorescence microscopy, immunoblotting, and Fourier-transform infrared spectroscopy. Protein solubility in solutions containing urea decreased when the keratin films were treated with hydrogen peroxide or bleach. Oxidative treatments promoted the urea-dependent morphological change by turning films from opaque to transparent in appearance. Immunofluorescence microscopy and immunoblotting showed that the oxidation of amino acids and proteins occurred due to the oxidative treatments, and such occurrence was more evident in the bleach-treated films than in the hydrogen peroxide-treated films. Compared with hair samples, the formation of cysteic acid was more clearly observed in the keratin films after the oxidative treatments. PMID:22487448

  5. Crystalline state and acoustic properties of zinc oxide films

    SciTech Connect

    Kal'naya, G.I.; Pryadko, I.F.; Yarovoi, Yu.A.

    1988-08-01

    We study the effect of the crystalline state of zinc oxide films, prepared by magnetron sputtering, on the efficiency of SAW transducers based on the layered system textured ZnO film-interdigital transducer (IDT)-fused quartz substrate. The crystalline perfection of the ZnO films was studied by the x-ray method using a DRON-2.0 diffractometer. The acoustic properties of the layered system fused quartz substrate-IDT-zinc oxide film were evaluated based on the squared electromechanical coupling constant K/sup 2/ for strip filters. It was found that K/sup 2/ depends on the magnitude of the mechanical stresses. When zinc oxide films are deposited by the method of magnetron deposition on fused quartz substrates, depending on the process conditions limitations can arise on the rate of deposition owing to mechanical stresses, which significantly degrade the efficiency of SAW transducers based on them, in the ZnO films.

  6. Resputtering of zinc oxide films prepared by radical assisted sputtering

    SciTech Connect

    Song Qiuming; Jiang Yousong; Song Yizhou

    2009-02-15

    Sputtering losses of zinc oxide films prepared by radical assisted sputtering were studied. It was found that the sputtering loss can be very severe in oxygenous sputtering processes of zinc oxide films. In general, resputtering caused by negative oxygen ions dominates the sputtering loss, while diffuse deposition plays a minor role. Resputtering is strongly correlated with the sputtering threshold energy of the deposited films and the concentration of O{sup -} in the sputtering zone. The balance between the oxygen concentration in the sputtering zone and the oxidation degree of the growing films depends on the sputtering rate. Our research suggests that a lower oxygen concentration in the sputtering zone and a higher oxidation degree of the growing films are favorable for reducing the resputtering losses. The sputtering loss mechanisms discussed in this work are also helpful for understanding the deposition processes of other magnetron sputtering systems.

  7. Amorphous tin-cadmium oxide films and the production thereof

    DOEpatents

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  8. Rapid Deposition of Titanium Oxide and Zinc Oxide Films by Solution Precursor Plasma Spray

    NASA Astrophysics Data System (ADS)

    Ando, Yasutaka

    In order to develop a high rate atmospheric film deposition process for functional films, as a basic study, deposition of titanium oxide film and zinc oxide film by solution precursor plasma spray (SPPS) was conducted in open air. Consequently, in the case of titanium oxide film deposition, anantase film and amorphous film as well as rutile film could be deposited by varying the deposition distance. In the case of anatase dominant film, photo-catalytic properties of the films could be confirmed by wettability test. In addition, the dye sensitized sollar cell (DSC) using the TiO2 film deposited by this SPPS technique as photo voltaic device generates 49mV in OCV. On the other hand, in the case of zinc oxide film deposition, it was proved that well crystallized ZnO films with photo catalytic properties could be deposited. From these results, this process was found to have high potential for high rate functional film deposition process conducted in the air.

  9. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. PMID:26344323

  10. Characterization and stability of thin oxide films on plutonium surfaces

    NASA Astrophysics Data System (ADS)

    Flores, H. G. García; Roussel, P.; Moore, D. P.; Pugmire, D. L.

    2011-02-01

    X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed to study oxide films on plutonium metal surfaces. Measurements of the relative concentrations of oxygen and plutonium, as well as the resulting oxidation states of the plutonium (Pu) species in the near-surface region are presented. The oxide product of the auto-reduction (AR) of plutonium dioxide films is evaluated and found to be an oxide species which is reduced further than what is expected. The results of this study show a much greater than anticipated extent of auto-reduction and challenge the commonly held notion of the stoichiometric stability of Pu 2O 3 thin-films. The data indicates that a sub-stoichiometric plutonium oxide (Pu 2O 3 - y ) exists at the metal-oxide interface. The level of sub-stoichiometry is shown to depend, in part, on the carbidic contamination of the metal surface.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Low reflectance sputtered vanadium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Esther, A. Carmel Mary; Dey, Arjun; Rangappa, Dinesh; Sharma, Anand Kumar

    2016-07-01

    Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100-700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200-2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.

  13. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  14. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  15. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  16. Unidirectional oxide hetero-interface thin-film diode

    NASA Astrophysics Data System (ADS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ˜105 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 102 Hz < f < 106 Hz, providing a high feasibility for practical applications.

  17. Unidirectional oxide hetero-interface thin-film diode

    SciTech Connect

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  18. Morphological instability leading to formation of porous anodic oxide films

    NASA Astrophysics Data System (ADS)

    Hebert, Kurt R.; Albu, Sergiu P.; Paramasivam, Indhumati; Schmuki, Patrik

    2012-02-01

    Electrochemical oxidation of metals, in solutions where the oxide is somewhat soluble, produces anodic oxides with highly regular arrangements of pores. Although porous aluminium and titanium oxides have found extensive use in functional nanostructures, pore initiation and self-ordering are not yet understood. Here we present an analysis that examines the roles of oxide dissolution and ionic conduction in the morphological stability of anodic films. We show that patterns of pores with a minimum spacing are possible only within a narrow range of the oxide formation efficiency (the fraction of oxidized metal atoms retained in the film), which should exist when the metal ion charge exceeds two. Experimentally measured efficiencies, over diverse anodizing conditions on both aluminium and titanium, lie within the different ranges predicted for each metal. On the basis of these results, the relationship between dissolution chemistry and the conditions for pore initiation can now be understood in quantitative terms.

  19. Morphological instability leading to formation of porous anodic oxide films.

    PubMed

    Hebert, Kurt R; Albu, Sergiu P; Paramasivam, Indhumati; Schmuki, Patrik

    2012-02-01

    Electrochemical oxidation of metals, in solutions where the oxide is somewhat soluble, produces anodic oxides with highly regular arrangements of pores. Although porous aluminium and titanium oxides have found extensive use in functional nanostructures, pore initiation and self-ordering are not yet understood. Here we present an analysis that examines the roles of oxide dissolution and ionic conduction in the morphological stability of anodic films. We show that patterns of pores with a minimum spacing are possible only within a narrow range of the oxide formation efficiency (the fraction of oxidized metal atoms retained in the film), which should exist when the metal ion charge exceeds two. Experimentally measured efficiencies, over diverse anodizing conditions on both aluminium and titanium, lie within the different ranges predicted for each metal. On the basis of these results, the relationship between dissolution chemistry and the conditions for pore initiation can now be understood in quantitative terms. PMID:22138790

  20. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures

    SciTech Connect

    Lad, Robert J.

    1999-12-14

    This project focused on three different aspects of oxide thin film systems: (1) Model metal/oxide and oxide/oxide interface studies were carried out by depositing ultra-thin metal (Al, K, Mg) and oxide (MgO, AlO{sub x}) films on TiO{sub 2}, NiO and {alpha}-Al{sub 2}O{sub 3} single crystal oxide substrates. (2) Electron cyclotron resonance (ECR) oxygen plasma deposition was used to fabricate AlO{sub 3} and ZrO{sub 2} films on sapphire substrates, and film growth mechanisms and structural characteristics were investigated. (3) The friction and wear characteristics of ZrO{sub 2} films on sapphire substrates in unlubricated sliding contact were studied and correlated with film microstructure. In these studies, thin film and interfacial regions were characterized using diffraction (RHEED, LEED, XRD), electron spectroscopies (XPS, UPS, AES), microscopy (AFM) and tribology instruments (pin-on-disk, friction microprobe, and scratch tester). By precise control of thin film microstructure, an increased understanding of the structural and chemical stability of interface regions and tribological performance of ultra-thin oxide films was achieved in these important ceramic systems.

  1. Depression of melting point for protective aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Dreizin, E. L.; Allen, D. J.; Glumac, N. G.

    2015-01-01

    The protective aluminum oxide film naturally formed on a surface of aluminum has a thickness in the range of 3-5 nm. Its melting causes loss of its continuity, which may significantly affect the ignition and combustion processes and their relative time scales. Melting of the alumina film also plays an important role when aluminum powders are used to prepare composites and/or being sintered. This letter quantifies depression of the melting point of an alumina film based on its nano-meter thickness. A theoretical estimate is supported by experiments relying on a detected change in the optical properties of naturally oxidized aluminum particles heated in an inert environment.

  2. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  3. Lithium cobalt oxide thin film and its electrochromism

    NASA Astrophysics Data System (ADS)

    Wei, Guang; Haas, Terry E.; Goldner, Ronald B.

    1989-06-01

    Thin films of lithium cobalt oxide have been prepared by RF-sputtering from powdered LiCoO2. These films permit reversible electrolytic removal of lithium ions upon application of an anodic voltage in a propylene carbonate-lithium perchlorate electrolyte, the films changing in color from a pale amber transparent state to a dark brown. A polycrystalline columnar film structure was revealed with SEM and TEM. X ray examination of the films suggests that the layered rhombohedral LiCoO2 structure is the major crystalline phase present. Oxidation-reduction titration and atomic absorption were used for the determination of the film stoichiometry. The results show that the as deposited-films on glass slides are lithium deficient (relative to the starting material) and show a high average cobalt oxidation state near +3.5. The measurements of dc conductivity suggest a band to band conduction at high temperature (300 to 430 K) and hopping conduction in localized states at low temperature (4 to 270 K). The thermoelectric power data show that the films behave as p-type semiconductors. Transmission and reflectance measurements from 400 nm to 2500 nm show significant near-IR reflectivity.

  4. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  5. Understanding organic film behavior on alloy and metal oxides.

    PubMed

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash; Gawalt, Ellen S

    2010-02-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides, namely nickel, chromium, molybdenum, manganese, iron, and titanium, were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid, and octadecylsulfonic acid on these substrates were examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy, and matrix-assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  6. Structural characterization of impurified zinc oxide thin films

    SciTech Connect

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  7. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  8. High temperature coefficient of resistance molybdenum oxide and nickel oxide thin films for microbolometer applications

    NASA Astrophysics Data System (ADS)

    Jin, Yao O.; John, David Saint; Podraza, Nikolas J.; Jackson, Thomas N.; Horn, Mark W.

    2015-03-01

    Molybdenum oxide (MoOx) and nickel oxide (NiOx) thin films were deposited by reactive biased target ion beam deposition. MoOx thin film resistivity varied from 3 to 2000 Ω.cm with a temperature coefficient of resistance (TCR) from -1.7% to -3.2%/K, and NiOx thin film resistivity varied from 1 to 300 Ω.cm with a TCR from -2.2% to -3.3%/K, both easily controlled by varying the oxygen partial pressure. Biased target ion beam deposited high TCR MoOx and NiOx thin films are polycrystalline semiconductors and have good stability in air. Compared with commonly used vanadium oxide thin films, MoOx or NiOx thin films offer improved process control for resistive temperature sensors.

  9. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  10. NEXAFS Study of Air Oxidation for Mg Nanoparticle Thin Film

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S.

    2013-03-01

    The air oxidation reaction of Mg nanoparticle thin film has been investigated by Mg K-edge NEXAFS technique. It is revealed that MgO is formed on the Mg nanoparticle surfaces at the early stage of the air oxidation for Mg nanoparticle thin film. The simulation of NEXAFS spectrum using standard spectra indicates the existence of complex magnesium carbonates (x(MgCO3).yMg(OH2).z(H2O)) in addition to MgO at the early stage of the air oxidation.

  11. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    SciTech Connect

    Lee, Ching-Ting Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  12. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance gm change, threshold voltage VT change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  13. Growth of Epitaxial Oxide Thin Films on Graphene.

    PubMed

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M; Klein, Norbert; Alford, Neil M; Petrov, Peter K

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  14. Growth of Epitaxial Oxide Thin Films on Graphene

    PubMed Central

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K.

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  15. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  16. Synthesis and Oxidation Resistance of h-BN Thin Films

    NASA Astrophysics Data System (ADS)

    Stewart, David; Meulenberg, Robert; Lad, Robert

    Hexagonal boron nitride (h-BN) is an exciting 2D material for use in sensors and other electronic devices that operate in harsh, high temperature environments. Not only is h-BN a wide band gap material with excellent wear resistance and high temperature stability, but recent reports indicate that h-BN can prevent metallic substrates from oxidizing above 600°C in low O2 pressures. However, the PVD of highly crystalline h-BN films required for this oxidation protection has proven challenging. In this work, we have explored the growth of h-BN thin films by reactive RF magnetron sputtering from an elemental B target in an Ar/N2 atmosphere. The film growth rate is extremely slow and the resulting films are atomically smooth and homogeneous. Using DC biasing during deposition and high temperature annealing treatments, the degree of film crystallinity can be controlled. The oxidation resistance of h-BN films deposited on inert sapphire and reactive metal substrates such as Zr and ZrB2 has been examined by techniques such as XPS, XRD, and SEM after oxidation between 600 and 1200°C under varying oxygen pressures. The success of h-BN as a passivation layer for metallic substrates in harsh environments is shown to depend greatly on its crystalline quality and defects. Supported by the NSF SusChEM program.

  17. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.

  18. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGESBeta

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  19. Growth control of the oxidation state in vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2 + 3 O 3 , V + 4 O 2 , and V2 + 5 O 5 . A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O2). The films grown either in lower (<10 mTorr) or higher P(O2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  20. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung; Park, Sungkyun; Egami, Takeshi

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  1. Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films.

    PubMed

    Wang, Xiaohan; Kholmanov, Iskandar; Chou, Harry; Ruoff, Rodney S

    2015-09-22

    Here we report an electrochemical method to simultaneously reduce and delaminate graphene oxide (G-O) thin films deposited on metal (Al and Au) substrates. During the electrochemical reaction, interface charge transfer between the G-O thin film and the electrode surface was found to be important in eliminating oxygen-containing groups, yielding highly reduced graphene oxide (rG-O). In the meantime, hydrogen bubbles were electrochemically generated at the rG-O film/electrode interface, propagating the film delamination. Unlike other metal-based G-O reduction methods, the metal used here was either not etched at all (for Au) or etched a small amount (for Al), thus making it possible to reuse the substrate and lower production costs. The delaminated rG-O film exhibits a thickness-dependent degree of reduction: greater reduction is achieved in thinner films. The thin rG-O films having an optical transmittance of 90% (λ = 550 nm) had a sheet resistance of 6390 ± 447 Ω/□ (ohms per square). rG-O-based stretchable transparent conducting films were also demonstrated. PMID:26257072

  2. Stress and phase transformation phenomena in oxide films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J.

    1992-04-01

    In situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution- deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO{sub 2}) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm{sup +3}:Y{sub 3}Al{sub 5}O{sub 12}) or transition metal (Cr{sup +3}:Al{sub 2}O{sub 3}) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.

  3. Submicron fabrication by local anodic oxidation of germanium thin films

    NASA Astrophysics Data System (ADS)

    Oliveira, A. B.; Medeiros-Ribeiro, G.; Azevedo, A.

    2009-08-01

    Here we describe a lithography scheme based on the local anodic oxidation of germanium film by a scanning atomic force microscope in a humidity-controlled atmosphere. The oxidation kinetics of the Ge film were investigated by a tapping mode, in which a pulsed bias voltage was synchronized and applied with the resonance frequency of the cantilever, and by a contact mode, in which a continuous voltage was applied. In the tapping mode we clearly identified two regimes of oxidation as a function of the applied voltage: the trench width increased linearly during the vertical growth and increased exponentially during the lateral growth. Both regimes of growth were interpreted taking into consideration the Cabrera-Mott mechanism of oxidation applied to the oxide/Ge interface. We also show the feasibility of the bottom-up fabrication process presented in this work by showing a Cu nanowire fabricated on top of a silicon substrate.

  4. Multifunctional oxide thin films for magnetoelectric and electromechanical applications

    NASA Astrophysics Data System (ADS)

    Baek, Seung Hyub

    Epitaxial multifunctional oxide thin films have been extensively researched to understand and exploit a variety of their physical properties. In order to integrate such versatile properties into real devices, there are several critical issues: (1) high-quality thin film growth, (2) fundamental understanding on reliable performance, and (3) device fabrication process preserving functionality of oxides. We have investigated all these issues, employing two different materials: multiferroic BiFeO3 and piezoelectric Pb(Mg1/3 Nb2/3)O3-PbTiO3 (PMN-PT) epitaxial thin films. For the high-quality thin film growth, we have chosen both BiFeO 3 and PMN-PT thin films as a model system. Bi2O3and PbO are the volatile species in these oxides, which makes it hard to grow phase-pure stoichiometric thin films. Because the properties of oxides are sensitive to stoichiometry and defects, it is highly required to fix such volatile elements during thin film growth. We have grown high-quality epitaxial thin films using a fast-rate off-axis sputtering method and vicinal substrates. In addition, we were able to control domain structures of BiFeO3 thin films using vicinal substrates. For the study on the reliability issues in oxides, we have used BiFeO 3 thin films within the framework of magnetoelectric device applications. For reliable magnetoelectric performance of BiFeO3, polarization switching path has to be (1) deterministic, and to be retained along with (2) time---retention, and (3) cycles--- fatigue. We have used monodomain BiFeO3 thin films as a model system. Based on theoretical predictions, we have studied polarization switching paths, and achieved both selective polarization switching and retention problems using island BiFeO3 structure. We have also investigated polarization fatigue, dependent on switching path. For the demonstration of working devices preserving the original functionality of oxides, we have fabricated micro-cantilevers using PMN-PT heterostructure on Si. The

  5. Thermal stability of sputtered iridium oxide films

    SciTech Connect

    Sanjines, R.; Aruchamy, A.; Levy, F. )

    1989-06-01

    Dry and partially hydrated films of IrO/sub 2/ were prepared by reactive sputtering. The authors discuss their thermal stability investigated by means of XPS, x-ray diffraction, and resistivity measurements. Dry films decomposed at about 400{sup 0}C iin air and at 200{sup 0}C in vacuum (10/sup -2/ Pa), whereas partially hydrated films decomposed at 350{sup 0} and 150{sup 0}C, respectively. After electrochemical treatments of the films mounted as electrochromic electrodes in an electrolytic cell, the decomposition occurred at different temperatures. In particular, the bleached state was found to have the relatively low decomposition temperature of about 100{sup 0}C in air.

  6. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  7. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  8. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    SciTech Connect

    A Meyer; I Flege; S Senanayake; B Kaemena; R Rettew; F Alamgir; J Falta

    2011-12-31

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  9. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  10. Electrochromic behavior in CVD grown tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Gogova, D.; Iossifova, A.; Ivanova, T.; Dimitrova, Zl; Gesheva, K.

    1999-03-01

    Solid state electrochemical devices (ECDs) for smart windows, large area displays and automobile rearview mirrors are of considerable technological and commercial interest. In this paper, we studied the electrochromic properties of amorphous and polycrystalline CVD carbonyl tungsten oxide films and the possibility for sol-gel thin TiO 2 film to play the role of passive electrode in an electrochromic window with solid polymer electrolyte.

  11. Review of solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Yoon, Seokhyun; Kim, Hyun Jae

    2014-02-01

    In this review, we summarize solution-processed oxide thin-film transistors (TFTs) researches based on our fulfillments. We describe the fundamental studies of precursor composition effects at the beginning in order to figure out the role of each component in oxide semiconductors, and then present low temperature process for the adoption of flexible devices. Moreover, channel engineering for high performance and reliability of solution-processed oxide TFTs and various coating methods: spin-coating, inkjet printing, and gravure printing are also presented. The last topic of this review is an overview of multi-functional solution-processed oxide TFTs for various applications such as photodetector, biosensor, and memory.

  12. Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors.

    PubMed

    Rembert, Thomas; Battaglia, Corsin; Anders, André; Javey, Ali

    2015-10-28

    A room temperature cathodic arc deposition technique is used to produce high-mobility ZnO thin films for low voltage thin-film transistors (TFTs) and digital logic inverters. All-oxide, fully transparent devices are fabricated on alkali-free glass and flexible polyimide foil, exhibiting high performance. This provides a practical materials platform for the low-temperature fabrication of all-oxide TFTs on virtually any substrate. PMID:26455916

  13. Mechanisms of polarization switching in graphene oxides and poly(vinylidene fluoride)-graphene oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zheng, Guangping; Zhan, Ke; Han, Zhuo; Wang, Hao

    2016-04-01

    Polarization switching in graphene oxides (GOs) and poly(vinylidene fluoride) (PVDF)-GO nanocomposite is investigated by piezoelectric force microscopy (PFM). The dynamical switching results reveal that GO films exhibit ferroelectric and piezoelectric properties with two-dimensional characteristics. Abnormal polarization switching is observed in PVDF-GO films, which is promising for electronic applications.

  14. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  15. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  16. Large and pristine films of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-12-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost.

  17. Large and pristine films of reduced graphene oxide

    PubMed Central

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-01-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost. PMID:26689267

  18. Enhanced optical constants of nanocrystalline yttrium oxide thin films

    SciTech Connect

    Ramana, C. V.; Mudavakkat, V. H.; Bharathi, K. Kamala; Atuchin, V. V.; Pokrovsky, L. D.; Kruchinin, V. N.

    2011-01-17

    Yttrium oxide (Y{sub 2}O{sub 3}) films with an average crystallite-size (L) ranging from 5 to 40 nm were grown by sputter-deposition onto Si(100) substrates. The optical properties of grown Y{sub 2}O{sub 3} films were evaluated using spectroscopic ellipsometry measurements. The size-effects were significant on the optical constants and their dispersion profiles of Y{sub 2}O{sub 3} films. A significant enhancement in the index of refraction (n) is observed in well-defined Y{sub 2}O{sub 3} nanocrystalline films compared to that of amorphous Y{sub 2}O{sub 3}. A direct, linear L-n relationship found for Y{sub 2}O{sub 3} films suggests that tuning optical properties for desired applications can be achieved by controlling the size at the nanoscale dimensions.

  19. Comparison of topotactic fluorination methods for complex oxide films

    SciTech Connect

    Moon, E. J. Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J.; Barbash, D.

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  20. Combinatorial measurements of Hall effect and resistivity in oxide films.

    PubMed

    Clayhold, J A; Kerns, B M; Schroer, M D; Rench, D W; Logvenov, G; Bollinger, A T; Bozovic, I

    2008-03-01

    A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m3/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect. PMID:18377026

  1. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  2. Characterization of reliability of printed indium tin oxide thin films.

    PubMed

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments. PMID:24245331

  3. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  4. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    SciTech Connect

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-04

    Tungsten oxide (WO{sub x}) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 Multiplication-Sign 10{sup -4} S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO{sub x}-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 Multiplication-Sign 10{sup 6}, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm{sup 2}/V s was realized. Our results demonstrated that WO{sub x}-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  5. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-01

    Tungsten oxide (WOx) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10-4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WOx-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 106, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm2/V s was realized. Our results demonstrated that WOx-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  6. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  7. Tungsten oxide nanowire synthesis from amorphous-like tungsten films.

    PubMed

    Seelaboyina, Raghunandan

    2016-03-18

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis. PMID:26871521

  8. Ambient-Temperature Sputtering Of Composite Oxide Films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1992-01-01

    Technique for deposition of homogeneous films of multicomponent oxides on substrates at ambient temperature based on sequential sputter deposition of individual metal components, as alternating ultra-thin layers, from multiple targets. Substrates rotated over sputtering targets of lead, zirconium, and titanium. Dc-magnetron sputtering of constituent metals in reactive ambient of argon and oxygen leads to formation of the respective metal oxides intermixed on extremely fine scale in desired composition. Compatible with low-temperature microelectronic processing.

  9. Tungsten oxide nanowire synthesis from amorphous-like tungsten films

    NASA Astrophysics Data System (ADS)

    Seelaboyina, Raghunandan

    2016-03-01

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis.

  10. Manganese oxide nanowires, films, and membranes and methods of making

    SciTech Connect

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  11. Effects of the polarizability and packing density of transparent oxide films on water vapor permeation.

    PubMed

    Koo, Won Hoe; Jeong, Soon Moon; Choi, Sang Hun; Kim, Woo Jin; Baik, Hong Koo; Lee, Sung Man; Lee, Se Jong

    2005-06-01

    The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed. PMID:16852387

  12. New fabrication of zinc oxide nanostructure thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Hendi, A. A.; Alorainy, R. H.

    2014-02-01

    The copper doped zinc oxide thin films have been prepared by sol-gel spin coating method. The structural and morphology properties of the Cu doped films were characterized by X-ray diffraction and atomic force microscope. XRD studies confirm the chemical structure of the ZnO films. The optical spectra method were used to determined optical constants and dispersion energy parameters of Cu doped Zno thin films. The optical band gap of undoped ZnO was found to be 3.16 eV. The Eg values of the films were changed with Cu doping. The refractive index dispersion of Cu doped ZnO films obeys the single oscillator model. The dispersion energy and oscillator energy values of the ZnO films were changed with Cu doping. The Cu doped ZnO nanofiber-based NH3 gas sensors were fabricated. The sensor response of the sensors was from 464.98 to 484.61 when the concentration of NH3 is changed 6600-13,300 ppm. The obtained results indicate that the response of the ZnO film based ammonia gas sensors can be controlled by copper content.

  13. Correlation between density and oxidation temperature for pyrolytic-gas passivated ultrathin silicon oxide films

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi

    2004-01-01

    Pyrolytic-gas passivation (PGP) with a small amount nitrogen gas enhances the breakdown reliability of silicon oxide gate films. To clarify the reliability retention of the PGP-grown films oxidized at low temperature, densities (ρox's) of the 3.5-6.5-nm-thick PGP-grown films on Si(100) oxidized at 700-900 °C were investigated. Since ρox's correlate well with the reliability and are useful as an index of the intrinsic structural characteristics of the films. Moreover, changes in ρox and nitrogen content corresponding to oxidation temperature are similar to those in breakdown reliability and interface state density (Dit), respectively. In addition, ρox's of the 700 °C-grown PGP films do not deteriorate as much when compared with those of the films grown by normal ultradry oxidation at 800 °C and their Dit's are less than about 6×1010/eV cm2. This suggests that PGP probably improves the reliability by generating the higher-ρox microscopic structure with few Si dangling bonds and effective passivation. .

  14. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  15. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    PubMed Central

    Durrani, Sardar M. A.; Al-Kuhaili, Mohammad F.; Bakhtiari, Imran A.; Haider, Muhammad B.

    2012-01-01

    Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively. PMID:22736967

  16. Growth of ultrathin vanadium oxide films on Ag(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuya; Sugizaki, Yuichi; Ishida, Shuhei; Edamoto, Kazuyuki; Ozawa, Kenichi

    2016-07-01

    Vanadium oxide films were grown on Ag(100) by vanadium deposition in O2 and subsequent annealing at 450 °C. It was found that at least three types of ordered V oxide films, which showed (1 × 1), hexagonal, and (4 × 1) LEED patterns, were formed on Ag(100) depending on the O2 pressure during deposition and conditions during postannealing. The films with the hexagonal and (1 × 1) periodicities were characterized by photoelectron spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The film with the (1 × 1) periodicity was ascribed to a VO(100) film. On the other hand, the film with the hexagonal periodicity was found to be composed of V2O3, and the analysis of the LEED pattern revealed that the lattice parameter of the hexagonal lattice is 0.50 nm, which is very close to that of corundum V2O3(0001) (0.495 nm).

  17. Nanostructured zinc oxide thin film by simple vapor transport deposition

    NASA Astrophysics Data System (ADS)

    Athma, P. V.; Martinez, Arturo I.; Johns, N.; Safeera, T. A.; Reshmi, R.; Anila, E. I.

    2015-09-01

    Zinc oxide (ZnO) nanostructures find applications in optoelectronic devices, photo voltaic displays and sensors. In this work zinc oxide nanostructures in different forms like nanorods, tripods and tetrapods have been synthesized by thermal evaporation of zinc metal and subsequent deposition on a glass substrate by vapor transport in the presence of oxygen. It is a comparatively simpler and environment friendly technique for the preparation of thin films. The structure, morphology and optical properties of the synthesized nanostructured thin film were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL). The film exhibited bluish white emission with Commission International d'Eclairage (CIE) coordinates x = 0.22, y = 0.31.

  18. Magnetic Transparent Conducting Oxide Film And Method Of Making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  19. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  20. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  1. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  2. Optical properties of thin In-Sn oxide films

    NASA Astrophysics Data System (ADS)

    Christian, K. D. J.; Shatynski, S. R.

    Indium-tin oxide (ITO) films were produced by evaporating an alloy of In-5wt%Sn in vacuum (1 × 10 -7 Torr) or in an oxygen partial pressure of 1 × 10 -4 Torr on soda-lime glass. After evaporation, these films were annealed in air at 95°C for 22 h. The films were examined using a ratio recording spectrophotometer to determine the transmission of both the visible and infra-red radiation. Further analysis of the samples was performed using SEM and EDAX analysis. Excellent optical properties were obtained for ITO films on soda-lime glass by evaporating 250 Å of In-5wt%Sn in an oxygen environment of 1 × 10 -4 Torr on a substrate held at 50°C and annealing at 95°C for 22 h.

  3. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  4. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness

    NASA Astrophysics Data System (ADS)

    Park, Bong-Ok; Lokhande, C. D.; Park, Hyung-Sang; Jung, Kwang-Deog; Joo, Oh-Shim

    Thin-film ruthenium oxide electrodes are prepared by cathodic electrodeposition on a titanium substrate. Different deposition periods are used to obtain different film thicknesses. The electrodes are used to form a supercapacitor with a 0.5 M H 2SO 4 electrolyte. The specific capacitance and charge-discharge periods are found to be dependent on the electrode thickness. A maximum specific capacitance of 788 F g -1 is achieved with an electrode thickness of 0.0014 g cm -2. These results are explained by considering the morphological changes that take place with increasing film thickness.

  5. Epitaxial Zinc Oxide Semiconductor Film deposited on Gallium Nitride Substrate

    NASA Astrophysics Data System (ADS)

    McMaster, Michael; Oder, Tom

    2011-04-01

    Zinc oxide (ZnO) is a wide bandgap semiconductor which is very promising for making efficient electronic and optical devices. The goal of this research was to produce high quality ZnO film on gallium nitride (GaN) substrate by optimizing the substrate temperature. The GaN substrates were chemically cleaned and mounted on a ceramic heater and loaded into a vacuum deposition chamber that was pumped down to a base pressure of 3 x 10-7 Torr. The film deposition was preceded by a 30 minute thermal desorption carried in vacuum at 500 ^oC. The ZnO thin film was then sputter-deposited using an O2/Ar gas mixture onto GaN substrates heated at temperatures varying from 20 ^oC to 500 ^oC. Post-deposition annealing was done in a rapid thermal processor at 900 ^oC for 5 min in an ultrapure N2 ambient to improve the crystal quality of the films. The films were then optically characterized using photoluminescence (PL) measurement with a UV laser excitation. Our measurements reveal that ZnO films deposited on GaN substrate held at 200 ^oC gave the best film with the highest luminous intensity, with a peak energy of 3.28 eV and a full width half maximum of 87.4 nm. Results from low temperature (10 K) PL measurements and from x-ray diffraction will also be presented.

  6. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices. PMID:24867286

  7. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  8. Texture Control in Cerium Oxide Films (Poster)

    SciTech Connect

    van Hest, M. F. A. M.; Leenheer, A. J.; Perkins, J. D.; Teplin, C. W.; Ginley, D. S.

    2006-05-01

    The conclusions are: (1) Texture control is possible in cerium oxide by epitaxial growth or adjusting the substrate angle; (2) Biaxial (111) texture emerges with inclined angle depositions on glass; and (3) Biaxial (200) texture emerges by epitaxial growth on YSZ.

  9. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  10. Zinc oxide doped graphene oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.

    2016-05-01

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  11. Changes in the Young Modulus of hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Vargas, André Luís Marin; de Araújo Ribeiro, Fabiana; Hübler, Roberto

    2015-12-01

    Hafnium-oxide (HfO2)-based materials have been extensively researched due to their excellent optical and electrical properties. However, the literature data on the mechanical properties of these materials and its preparation for heavy machinery application is very limited. The aim of this work is to deposit hafnium oxide thin films by DC reactive magnetron sputtering with different Young's Modulus from the Ar/O2 concentration variation in the deposition chamber. The thin films were deposited by DC reactive magnetron sputtering with different Ar/O2 gas concentrations in plasma. After deposition, HfOx thin films were characterized through XRD, AFM, RBS and XRF. In this regard, it was observed that the as-deposited HfO2 films were mostly amorphous in the lower Ar/O2 gas ratio and transformed to polycrystalline with monoclinic structure as the Ar/O2 gas ratios grows. RBS technique shows good compromise between the experimental data and the simulated ones. It was possible to tailored the Young Modulus of the films by alter the Ar/O2 content on the deposition chamber without thermal treatment.

  12. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1991-08-01

    The objective of the project is to develop TiO{sub 2}-based photocatalysts for the solar assisted oxidative dissolution of oil slicks. In a TiO{sub 2} crystal, absorption of a photon generates an electron-hole pair. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds, usually via an intermediate OH radical. Since the density of TiO{sub 2} (3.8g/cc for anatase, 4.3 g/cc for rutile) is greater than that of either oil or seawater, TiO{sub 2} crystals are attached to inexpensive, engineered hollow glass microspheres to ensure flotation on the oil slick surface. Portions of the microsphere surface not covered by TiO{sub 2} are made oleophilic so that the microbeads will be preferentially attracted to the oil-air interface.

  13. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  14. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  15. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  16. Investigation and characterization of oxidized cellulose and cellulose nanofiber films

    NASA Astrophysics Data System (ADS)

    Yang, Han

    Over the last two decades, a large amount of research has focused on natural cellulose fibers, since they are "green" and renewable raw materials. Recently, nanomaterials science has attracted wide attention due to the large surface area and unique properties of nanoparticles. Cellulose certainly is becoming an important material in nanomaterials science, with the increasing demand of environmentally friendly materials. In this work, a novel method of preparing cellulose nanofibers (CNF) is being presented. This method contains up to three oxidation steps: periodate, chlorite and TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation. The first two oxidation steps are investigated in the first part of this work. Cellulose pulp was oxidized to various extents by a two step-oxidation with sodium periodate, followed by sodium chlorite. The oxidized products can be separated into three different fractions. The mass ratio and charge content of each fraction were determined. The morphology, size distribution and crystallinity index of each fraction were measured by AFM, DLS and XRD, respectively. In the second part of this work, CNF were prepared and modified under various conditions, including (1) the introduction of various amounts of aldehyde groups onto CNF by periodate oxidation; (2) the carboxyl groups in sodium form on CNF were converted to acid form by treated with an acid type ion-exchange resin; (3) CNF were cross-linked in two different ways by employing adipic dihydrazide (ADH) as cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide (EDC) as carboxyl-activating agent. Films were fabricated with these modified CNF suspensions by vacuum filtration. The optical, mechanical and thermo-stability properties of these films were investigated by UV-visible spectrometry, tensile test and thermogravimetric analysis (TGA). Water vapor transmission rates (WVTR) and water contact angle (WCA) of these films were also studied.

  17. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film.

    PubMed

    Lin, Ziyin; Liu, Yan; Wong, Ching-ping

    2010-10-19

    We demonstrated a facile strategy of producing superhydrophobic octadecylamine (ODA)-functionalized graphite oxide (GO) films. ODA was chemically grafted on GO sheets by the nucleophilic substitution reaction of amine groups with epoxy groups. The long hydrocarbon chain in ODA reduces the surface energy of the GO sheet. The fabricated ODA-functionalized GO film exhibited a high contact angle (163.2°) and low hysteresis (3.1°). This method is promising in terms of low-cost and large-scale superhydrophobic coatings and has potential applications for surface modification of GO paper or other GO-based composite materials. PMID:20857962

  18. Vapor-gel processing and applications in oxide film depositions

    SciTech Connect

    Chour, K.W.; Xu, R.; Takada, T.

    1995-12-31

    The Vapor-gel processing of oxide films is discussed for the prototypic system of LiTa(OBut{sup n}){sub 6}-LiTaO{sub 3}. It is found that the hydrolysis-polycondensation reaction scheme, commonly used in Sol-gel processing, can be used in a vapor deposition environment. High quality films can be deposited at low temperatures. We present some initial results regarding this deposition method and discuss its advantages and disadvantages as compared with Sol-gel processing and typical MOCVD.

  19. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.

    PubMed

    Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju

    2012-02-01

    Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate. PMID:22630013

  20. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J.

    Direct current reactive sputtering deposition of ruthenium oxide thin films (bottom and top electrodes) at 400°C are performed to produce a solid-state thin-film supercapacitor (TFSC). The supercapacitor has a cell structure of RuO 2/Li 2.94PO 2.37N 0.75 (Lipon)/RuO 2/Pt. Radio frequency, reactive sputtering deposition of an Li 2.94PO 2.37N 0.75 electrolyte film is performed on the bottom RuO 2 film at room temperature to separate the bottom and top RuO 2 electrodes electrically. The stoichiometry of the RuO 2 thin film is investigated by Rutherford back-scattering spectrometry (RBS). X-ray diffraction (XRD) shows that the as-deposited RuO 2 thin film is an amorphous phase. Scanning electron microscopy (SEM) measurements reveal that the RuO 2/Lipon/RuO 2 hetero-interfaces have no inter-diffusion problems. Charge-discharge measurements with constant current at room temperature clearly reveal typical supercapacitor behaviour for a RuO 2/Lipon/RuO 2/Pt cell structure. Since the electrolyte thin film has low ionic mobility, the capacity and cycle performance are inferior to those of a bulk type of supercapacitor. These results indicate that a high performance, TFSC can be fabricated by a solid electrolyte thin film with high ionic conductivity.

  1. Formation of zinc oxide films using submicron zinc particle dispersions

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Varga, Tamas; Kovarik, Libor; Sanghavi, Rahul P.; Shutthanandan, V.; Thevuthasan, Suntharampillai; Han, Seungyeol; Chang, Chih-hung; Herman, Gregory S.

    2012-07-27

    The thermal oxidation of submicron metallic Zn particles was studied as a method to form nanostructured ZnO films. The particles used for this work were characterized by electron microscopy, x-ray diffraction and thermal analysis to evaluate the Zn-ZnO core shell structure, surface morphology, and oxidation characteristics. Significant nanostructural changes were observed for films annealed to 400 °C or higher, where nanoflakes, nanoribbons, nanoneedles and nanorods were formed as a result of stress induced fractures arising in the ZnO outer shell due to differential thermal expansion between the metallic Zn core and the ZnO shell. Mass transport occurs through these defects due to the high vapor pressure for metallic Zn at temperatures above 230 °C, whereupon the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. The Zn particles were also incorporated into zinc indium oxide precursor solutions to form thin film transistor test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing.

  2. rf plasma oxidation of Ni thin films sputter deposited to generate thin nickel oxide layers

    NASA Astrophysics Data System (ADS)

    Hoey, Megan L.; Carlson, J. B.; Osgood, R. M.; Kimball, B.; Buchwald, W.

    2010-10-01

    Nickel oxide (NiO) layers were formed on silicon (Si) substrates by plasma oxidation of nickel (Ni) film lines. This ultrathin NiO layer acted as a barrier layer to conduction, and was an integral part of a metal-insulator-metal (MIM) diode, completed by depositing gold (Au) on top of the oxide. The electrical and structural properties of the NiO thin film were examined using resistivity calculations, current-voltage (I-V) measurements and cross-sectional transmission electron microscopy (XTEM) imaging. The flow rate of the oxygen gas, chamber pressure, power, and exposure time and their influence on the characteristics of the NiO thin film were studied.

  3. A comparative analysis of graphene oxide films as proton conductors

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Denisov, N. N.; Dremova, N. N.; Vol'fkovich, Y. M.; Rychagov, A. Y.; Sosenkin, V. E.; Belay, K. G.; Gutsev, G. L.; Shulga, N. Yu.; Shulga, Y. M.

    2014-12-01

    The electrical conductivity of graphene oxide (GO) films in vapors of water and acid solutions is found to be close to the conductivity of a film formed after drying the solution of phenol-2,4-disulfonic acid in polyvinyl alcohol, which is known to be a proton conductor. We found that the conductivity of a GO film in vapors of the H2O-H2SO4 electrolyte possesses a sharp maximum at ~1 % by weight of sulfuric acid. The highest conductivity of GO films can be expected when placing the films over acid vapors where the acid concentration is essentially lower than in the acid solutions at their maximum conductivity. Since the conductivity of the H2O-H2SO4 electrolyte itself has a maximum at ~30 % by weight of sulfuric acid, the use of intermediate concentrations of H2SO4 is recommended in practical applications. The GO films permeated with water or acid solution in water are expected to possess the proton-exchange properties similar to those of other proton-exchanging membranes.

  4. Electrochromism Properties of Palladium Doped Tungsten-Oxide Thin Films Prepared with RF Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Yabumoto, Taihei; Iwai, Yuki; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    Palladium doped tungsten oxide thin films were prepared by RF reactive sputtering in a mixture of argon and oxygen at room temperature. XRD patterns indicated that these films were amorphous. SEM imaging indicated a smaller grain size of palladium doped thin film compared with that of undoped tungsten oxide thin film. With electrochromism, palladium doped tungsten oxide exhibited a reverse optical modulation with respect to the applied potential.

  5. Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Li, Yan; Zhang, Changxing; Dong, Xuelin; Feng, Xue

    2016-09-01

    Scanning probe microscopy (SPM) equipped in high temperature nanoindentation instrument is adopted to in situ characterize the oxide film growth on Ni-base single crystal at nanoscale. SPM images reveal a transition of oxide film configuration that the originally flat surface roughens during oxidation. Based on the stress-diffusion coupling effect during oxidation, the stress evolution in the oxide film and the evolution of surface configuration are analyzed. A new method to infer the critical stress in the oxide film at the transition point is proposed by measuring the undulated surface wavelength based on the surface morphology obtained by SPM.

  6. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1990-10-01

    The objective of the project is to develop a method for the solar assisted oxidation of oil slicks. A semiconducting photocatalyst, titanium dioxide, is used. Upon absorbing a photon, an electron-hole pair is generated in the TiO{sub 2} microcrystal. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds. Titanium dioxide is denser than either oil or seawater; the density of its anatase phase is 3.8 and that of its rutile phase is 4.3. In order to keep the titanium dioxide at the air/oil interface, it is attached to a low density, floating material. The particles of the latter are sufficiently small to make the system economical. Specifically, the photocatalyst particles are attached to inexpensive hollow glass microbeads of about 100{mu}m diameter. Those areas of the microbeads that are not covered by photocatalyst are made oleophilic, so that the microbeads will follow the oil slick and not migrate to either the air/water or the water/oil interface.

  7. Vanadium oxide thin film with improved sheet resistance uniformity

    NASA Astrophysics Data System (ADS)

    Généreux, Francis; Provençal, Francis; Tremblay, Bruno; Boucher, Marc-André; Julien, Christian; Alain, Christine

    2014-06-01

    This paper reports on the deposition of vanadium oxide thin films with sheet resistance uniformity better than 2.5% over a 150 mm wafer. The resistance uniformity within the array is estimated to be less than 1%, which is comparable with the value reported for amorphous silicon-based microbolometer arrays. In addition, this paper also shows that the resistivity of vanadium oxide, like amorphous silicon, can be modeled by Arrhenius' equation. This result is expected to significantly ease the computation of the correction table required for TEC-less operation of VOx-based microbolometer arrays.

  8. Preparation and Evaluation of Nitrogen Doped Tungsten Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Nakagawa, Koichi; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    Nitrogen doped tungsten oxide thin films were prepared by RF reactive sputtering in a gas mixture of argon, oxygen and nitrogen at room temperature. As a result of X-ray photoelectron spectroscopy, it was thought that the doped nitrogen in the films is bonding to tungsten of WO3 bonding states as anion and exits in substitution sites in WO3. The optical absorption edge was shifted to lower energy region with nitrogen doping. The nitrogen doped thin films exhibit a coloration to black from transparent yellow by electrochromism. Additionally, a new peak at 2.3 eV related to nitrogen doping is observed in the spectra of color center at bleaching process.

  9. Reversible superconductivity in electrochromic indium-tin oxide films

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.; Xiong, Ka; Cho, Kyeongjae; Salamon, M. B.

    2012-12-01

    Transparent conductive indium tin oxide (ITO) thin films, electrochemically intercalated with sodium or other cations, show tunable superconducting transitions with a maximum Tc at 5 K. The transition temperature and the density of states, D(EF) (extracted from the measured Pauli susceptibility χp) exhibit the same dome shaped behavior as a function of electron density. Optimally intercalated samples have an upper critical field ≈ 4 T and Δ/kBTc ≈ 2.0. Accompanying the development of superconductivity, the films show a reversible electrochromic change from transparent to colored and are partially transparent (orange) at the peak of the superconducting dome. This reversible intercalation of alkali and alkali earth ions into thin ITO films opens diverse opportunities for tunable, optically transparent superconductors.

  10. Infrared spectroscopic study of sputtered tungsten oxide films

    SciTech Connect

    Paul, J.L.; Lassegues, J.C. )

    1993-10-01

    Recent infrared and Raman spectroscopic studies of various tungsten oxide films concluded either the formation of W=O terminal bonds or the transformation of such bonds into W-OH groups upon proton insertion. The infrared transmission and reflection spectra of bleached and colored sputtered films were reinvestigated in order to resolve the previous contradictory interpretations and for better insight into the mechanism of electrochromism at the molecular level. The new results confirm the first interpretation and allow us to show that H[sup +] or Li[sup +] insertion creates shorter ([approximately]1.7[angstrom]) and longer ([approximately]2 [angstrom]) W-O bonds around the W[sup 5+] centers. These results are in agreement with the concepts of small polaron and of intervalence charge transfer mechanism. They illustrate the local lattice distortion around a W[sup 5+] site. Aging of the initial films has also been followed and characterized by H/D in situ isotopic exchange.

  11. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  12. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  13. Tungsten oxide nanowires grown on amorphous-like tungsten films.

    PubMed

    Dellasega, D; Pietralunga, S M; Pezzoli, A; Russo, V; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A; Passoni, M

    2015-09-11

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500-710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W18O49-Magneli phase to monoclinic WO3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. PMID:26292084

  14. Combinatorial study of zinc tin oxide thin-film transistors

    SciTech Connect

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-07

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO:SnO{sub 2} ratio of the film varies as a function of position on the sample, from pure ZnO to SnO{sub 2}, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2 to 12 cm{sup 2}/V s, with two peaks in mobility in devices at ZnO fractions of 0.80{+-}0.03 and 0.25{+-}0.05, and on/off ratios as high as 10{sup 7}. Transistors composed predominantly of SnO{sub 2} were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  15. Investigation of tungsten doped tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Meng, Ting; Yang, Zhao; Cui, Can; Zhang, Qun

    2015-11-01

    Tungsten doped tin oxide thin film transistors (TWO-TFTs) were fabricated by radio frequency magnetron sputtering. With TWO thin films as the channel layers, the TFTs show lower off-current and positive shift turn-on voltage than the intrinsic tin oxide TFTs, which can be explained by the reason that W doping is conducive to suppress the carrier concentration of the TWO channel layer. It is important to elect an appropriate channel thickness for improving the TFT performance. The optimum TFT performance in enhancement mode is achieved at W doping content of 2.7 at% and channel thickness of 12 nm, with the saturation mobility, turn-on voltage, subthreshold swing value and on-off current ratio of 5 cm2 V-1 s-1, 0.4 V, 0.4 V/decade and 2.4  ×  106, respectively.

  16. Photocatalytic oxide films in the built environment

    NASA Astrophysics Data System (ADS)

    Österlund, Lars; Topalian, Zareh

    2014-11-01

    The possibility to increase human comfort in buildings is a powerful driving force for the introduction of new technology. Among other things our sense of comfort depends on air quality, temperature, lighting level, and the possibility of having visual contact between indoors and outdoors. Indeed there is an intimate connection between energy, comfort, and health issues in the built environment, leading to a need for intelligent building materials and green architecture. Photocatalytic materials can be applied as coatings, filters, and be embedded in building materials to provide self-cleaning, antibacterial, air cleaning, deodorizing, and water cleaning functions utilizing either solar light or artificial illumination sources - either already present in buildings, or by purposefully designed luminaries. Huge improvements in indoor comfort can thus be made, and also alleviate negative health effects associated with buildings, such as the sick-house syndrome. At the same time huge cost savings can be made by reducing maintenance costs. Photocatalytic oxides can be chemically modified by changing their acid-base surface properties, which can be used to overcome deactivation problems commonly encountered for TiO2 in air cleaning applications. In addition, the wetting properties of oxides can be tailored by surface chemical modifications and thus be made e.g. oleophobic and water repellent. Here we show results of surface acid modified TiO2 coatings on various substrates by means of photo-fixation of surface sulfate species by a method invented in our group. In particular, we show that such surface treatments of photocatalytic concrete made by mixing TiO2 nanoparticles in reactive concrete powders result in concrete surfaces with beneficial self-cleaning properties. We propose that such approaches are feasible for a number of applications in the built environment, including glass, tiles, sheet metals, plastics, etc.

  17. Oxidative stability of LARC (tm)-TPI films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.

    1992-01-01

    The oxidative aging of 50-micron-thick films of LARC-TPI was studied using conventional thermogravimetric techniques and measurements of plane-stress fracture toughness. It was shown that at high temperature, most of the toughness loss occurred very early relative to the weight loss. The difficulties of interpreting TGA results in this regime and the problems of extrapolations to long times are discussed.

  18. Laser micromachining of oxygen reduced graphene-oxide films

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2014-03-01

    Non-conductive graphene-oxide (GO) inks can be synthesized from inexpensive graphite powders and deposited on functionalized flexible substrates using inkjet printing technology. Once deposited, the electrical conductivity of the GO film can be restored through laser assisted thermal reduction. Unfortunately, the inkjet nozzle diameter (~40μm) places a limit on the printed feature size. In contrast, a tightly focused femtosecond pulsed laser can create precise micro features with dimensions in the order of 2 to 3 μm. The smallest feature size produced by laser microfabrication is a function of the laser beam diameter, power level, feed rate, material characteristics and spatial resolution of the micropositioning system. Laser micromachining can also remove excess GO film material adjacent to the electrode traces and passive electronic components. Excess material removal is essential for creating stable oxygen-reduced graphene-oxide (rGO) printed circuits because electron buildup along the feature edges will alter the conductivity of the non-functional film. A study on the impact of laser ablation on the GO film and the substrate are performed using a 775nm, 120fs pulsed laser. The average laser power was 25mW at a spot size of ~ 5μm, and the feed rate was 1000-1500mm/min. Several simple microtraces were fabricated and characterized in terms of electrical resistance and surface topology.

  19. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

    PubMed

    Figueroa, A I; van der Laan, G; Harrison, S E; Cibin, G; Hesjedal, T

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  20. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  1. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    PubMed Central

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  2. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-03-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state.

  3. Mixed metal oxide films as pH sensing materials

    NASA Astrophysics Data System (ADS)

    Arshak, Khalil; Gill, Edric; Korostynska, Olga; Arshak, Arousian

    2007-05-01

    Due to the demand for accurate, reliable and highly sensitive pH sensors, research is being pursued to find novel materials to achieve this goal. Semiconducting metal oxides, such as TiO, SnO and SnO II and insulating oxides such as Nb IIO 5 and Bi IIO 3, and their mixtures in different proportions are being investigated for this purpose. The films of these materials mixtures are used in conjunction with an interdigitated electrode pattern to produce a conductimetric/capacitive pH sensor. The advantages of this approach include straightforward manufacturing, versatility and cost-effectiveness. It was noted that upon contact with a solution, the electrical parameters of the films, such as resistance etc., change. The correlation of these changes with pH values is the basis for the proposed system development. The ultimate goal is to find materials composition, which would have the highest sensitivity towards the pH level of the solutions. It was found that the materials that produced the highest sensitivity either had a long response time or were unstable over a wide pH range. Those exhibiting lower sensitivities were found to be more stable over a wide pH range. All oxide films tested demonstrated a change in electrical parameters upon contact with buffers of known pH value.

  4. Oxidation of electrodeposited black chrome selective solar absorber films

    SciTech Connect

    Holloway, P.H.; Shanker, K.; Pettit, R.B.; Sowell, R.R.

    1980-01-01

    X-ray photoelectron and Auger electron spectroscopies have been used to study the composition and oxidation of electrodeposited black chrome films. The outer layer of the film is Cr/sub 2/O/sub 3/ with the inner layer being a continuously changing mixture of Cr + Cr/sub 2/O/sub 3/. Initially, approximately 40% by volume of the film is combined as Cr/sub 2/O/sub 3/, and the volume percentage of Cr/sub 2/O/sub 3/ increases to greater than 60% after only 136 hours at 250/sup 0/C. After approximately 3600 hours at 400/sup 0/C, the volume percentage of Cr/sub 2/O/sub 3/ increased to as high as 80%. The thermal emittance decreased approximately linearly with increasing oxide content, while the solar absorptance remained constant until the percentage of Cr/sub 2/O/sub 3/ exceeded approximately 70%. Oxidation was slower when the Cr/sup +3/ concentration in the plating bath was reduced from 16 g/l to 8 g/l, and when black chrome was deposited on stainless steel rather than sulfamate nickel.

  5. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  6. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  7. Electrical properties of vanadium tungsten oxide thin films

    SciTech Connect

    Nam, Sung-Pill; Noh, Hyun-Ji; Lee, Sung-Gap; Lee, Young-Hie

    2010-03-15

    The vanadium tungsten oxide thin films deposited on Pt/Ti/SiO{sub 2}/Si substrates by RF sputtering exhibited good TCR and dielectric properties. The dependence of crystallization and electrical properties are related to the grain size of V{sub 1.85}W{sub 0.15}O{sub 5} thin films with different annealing temperatures. It was found that the dielectric properties and TCR properties of V{sub 1.85}W{sub 0.15}O{sub 5} thin films were strongly dependent upon the annealing temperature. The dielectric constants of the V{sub 1.85}W{sub 0.15}O{sub 5} thin films annealed at 400 {sup o}C were 44, with a dielectric loss of 0.83%. The TCR values of the V{sub 1.85}W{sub 0.15}O{sub 5} thin films annealed at 400 {sup o}C were about -3.45%/K.

  8. Investigation of optical loss mechanisms in oxide thin films

    SciTech Connect

    Chow, A.F.; Kingon, A.I.; Auciello, O.; Poker, D.B.

    1995-05-01

    KNbO{sub 3}, K(Ta,Nb)O{sub 3}, KTaO{sub 3}, and Ta{sub 2}O{sub 5} thin films have been grown by ion-beam sputter deposition. KNbO{sub 3} has excellent nonlinear properties for second harmonic generation; however, high optical losses are still characteristic of these films. Several loss mechanisms, such as, high angle grain boundaries, twin domains, interface and surface scattering, and oxygen vacancies can all contribute to the high losses. In order to isolate the various mechanisms, amorphous Ta{sub 2}O{sub 5} films, epitaxial cubic KTaO{sub 3} and tetragonal K(Ta,Nb)O{sub 3} films were grown on MgO and Al{sub 2}O{sub 3} substrates subjected to post-deposition annealing treatments and various oxygen pressure conditions. The optical losses and refractive indices were observed to differ depending on the substrate surface and annealing treatments. Resonant scattering experiments were performed to analyze the oxygen composition. The optical properties of these oxide thin film systems are reported and the breakdown of the loss mechanisms is addressed.

  9. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  10. Electrical characterization of hydrogenated amorphous silicon oxide films

    NASA Astrophysics Data System (ADS)

    Itoh, Takashi; Katayama, Ryuichi; Yamakawa, Koki; Matsui, Kento; Saito, Masaru; Sugiyama, Shuhichiroh; Sichanugrist, Porponth; Nonomura, Shuichi; Konagai, Makoto

    2015-08-01

    The electrical characterization of hydrogenated amorphous silicon oxide (a-SiOx:H) films was performed by electron spin resonance (ESR) and electrical conductivity measurements. In the ESR spectra of the a-SiOx:H films, two ESR peaks with g-values of 2.005 and 2.013 were observed. The ESR peak with the g-value of 2.013 was not observed in the ESR spectra of a-Si:H films. The photoconductivity of the a-SiOx:H films decreased with increasing spin density estimated from the ESR peak with the g-value of 2.005. On the other hand, photoconductivity was independent of spin density estimated from the ESR peak with the g-value of 2.013. The optical absorption coefficient spectra of the a-SiOx:H films were also measured. The spin density estimated from the ESR peak with the g-value of 2.005 increased proportionally with increasing optical absorption owing to the gap-state defect.

  11. Synthesis and tribology of doped carbon films and oxide multilayers

    NASA Astrophysics Data System (ADS)

    Freyman, Christina A.

    The focus of this research is to synthesize thin films coatings by reactive magnetron sputtering with properties that will result in energy savings. Tailoring of hydrogenated carbon film properties to minimize environment effects on friction is accomplished by sulfur doping. Synthesis results in smooth surfaces and mid-range hardness. The stabilization of ultra-low friction in humid air can be attributed to the reduction of water adsorption on the surface, which is verified by results of quartz crystal microbalance and temperature-programmed desorption experiments. Even at 90% relative humidity, sulfur-doped films have less than one monolayer of water adsorbed on the surface. This reduction in water coverage is due to the decrease in residence time of water on the surface, which is related to the strength of the bonding between water molecules and the sulfur-doped surface. These results indicate that sulfur doping results in weaker bonding between water and the film surface due to a reduction in the polar nature of the surface. Metal nitrides, carbides, and borides are widely used as protective coatings due to their high hardness, but are not stable above 600°C due to coating oxidation. Hardness enhancement techniques have been applied to thermally stable oxide multilayers for use at high temperatures. Amorphous Al2 O3 and crystalline TiO2 nanoscale layers have been deposited using reactive d.c. magnetron sputtering at different partial pressures of oxygen. Hardness enhancement of twice the rule of mixtures has been observed in oxide multilayers for the first time due to clear interfaces and large difference in modulus between amorphous Al2O3 and crystalline TiO2 layers. Multilayer films with majority bilayer component of Al2O3 showed greater resistance to wear due to increased elastic recovery and H/E ratio over monolithic films and TiO2 majority phase multilayers. Multilayer films retain their high hardness up to ˜800°C in air; some hardness enhancement in the

  12. Aqueous sol-gel routes to conducting films of indium oxide and indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Perry, Carole C.; McGiveron, J. K.; Harrison, Philip G.

    2000-05-01

    Thin films of indium tin oxide (ITO) are of interest because of their high transparency and low electrical resistivity. Applications include use as electrodes for liquid crystal display and as heat mirrors for solar energy devices. We have developed totally aqueous routes to indium oxide (IO) and ITO materials because, (1) the particulate sols afford a longer shelf life than for alkoxyide derived materials, (2) organics do not have to be removed from the films by baking, and (3) the starting materials are cheaper than the corresponding alkoxides. Indium and mixed indium/tin sols have been prepared form inorganic solutions and treated with alkali to produce white thixotropic sols ca. 0.64 in Mz+ ions. This films were prepared by spinning on low iron or pure silica slides previously cleaned with DECON and washed with distilled water. Films were subsequently heated at 773K in air, or 1173K in air or nitrogen. The film with the lowest resistivity contained ca. 5 percent Sn and had an average optical transmittance between 400 and 600nm of 95 percent. The film was non-porous, smooth in texture, approximately 300nm thick and had a band gap energy of 3.22eV.

  13. Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition.

    SciTech Connect

    Comstock, D. J.; Christensen, S. T.; Elam, J. W.; Pellin, M. J.; Hersam, M. C.

    2010-08-01

    Iridium oxide (IrOx) has been widely studied due to its applications in electrochromic devices, pH sensing, and neural stimulation. Previous work has demonstrated that both Ir and IrOx films with porous morphologies prepared by sputtering exhibit significantly enhanced charge storage capacities. However, sputtering provides only limited control over film porosity. In this work, we demonstrate an alternative scheme for synthesizing nanoporous Ir and activated IrOx films (AIROFs). This scheme utilizes atomic layer deposition to deposit a thin conformal Ir film within a nanoporous anodized aluminum oxide template. The Ir film is then activated by potential cycling in 0.1 M H{sub 2}SO{sub 4} to form a nanoporous AIROF. The morphologies and electrochemical properties of the films are characterized by scanning electron microscopy and cyclic voltammetry, respectively. The resulting nanoporous AIROFs exhibit a nanoporous morphology and enhanced cathodal charge storage capacities as large as 311 mC/cm{sup 2}.

  14. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect

    Wang, Liang; Rhee, Hongjoo; Felicelli, Sergio D.; Sabau, Adrian S; Berry, John T.

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  15. Electrochemical deposition of conducting ruthenium oxide films from solution

    SciTech Connect

    Anderson, D.P.; Warren, L.F.

    1984-02-01

    In the last decade, ruthenium oxide, RuO /sub x/ (x less than or equal to 2), has been used extensively as the active anode electrocatalyst constituent for Cl/sub 2/ and O/sub 2/ evolution reactions, in chlorate production, and in metal electrowinning from mixed chloride-sulfate solutions. More recently, this material has been incorporated in several light-induced water electrolysis schemes and apparently possesses the ability to inhibit CdS photocorrosion by acting as a hole scavenger. The numerous applications for this catalyst material certainly warrant further studies of its electrochemical properties on a variety of substrates, e.g., semiconductors. The lack of a simple technique for controlled deposition of ruthenium oxide onto conducting substrates prompted us to investigate an electrochemical approach to this problem. We describe here a new way to electrochemically deposit conducting films of hydrated ruthenium oxide from an aqueous solution of the benzeneruthenium (II)aqua complex. The films slowly dissolve in aqueous electrolytes upon potential cycling, yet appear to be catalytic with regards to water oxidation.

  16. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors

    SciTech Connect

    Gao, Xu E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Mitoma, Nobuhiko; Lin, Meng-Fang; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-07-14

    Oxide thin film transistor employing copper source/drain electrodes shows a small turn on voltage and reduced hysteresis. Cross-sectional high-resolution transmission electron microscopy image confirmed the formation of ∼4 nm CuO{sub x} related interlayer. The lower bond-dissociation energy of Cu-O compared to Si-O and In-O suggests that the interlayer was formed by adsorbing oxygen molecules from surrounding environment instead of getting oxygen atoms from the semiconductor film. The formation of CuO{sub x} interlayer acting as an acceptor could suppress the carrier concentration in the transistor channel, which would be utilized to control the turn on voltage shifts in oxide thin film transistors.

  17. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    NASA Astrophysics Data System (ADS)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  18. Magnetic transparent conducting oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  19. Electrical and Optical Properties of Copper Oxide Thin Films by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Shariffudin, S. S.; Saad, P. S. M.; Ridah, H. A. M.

    2015-11-01

    Copper oxide were prepared by sol-gel technique and deposited onto quartz substrates as thin films using spin coating method. The aim of this research was to study the effects of different spin coating speeds of copper oxide thin films on the electrical and optical properties of the thin films. Five samples of copper oxide thin films with different spin coating speeds of 1000, 1500, 2000, 2500 and 3000 rpm were annealed at 600°C for 30 minutes. UV-Vis spectrophotometer and two-point probe technique were used to characterize the optical and electrical properties of the deposited films. Based on the results obtained, it revealed that the electrical conductivity of the copper oxide thin films reduce as the spin coating speeds increase. The calculated optical band gap and the resistivity of the copper oxide thin films also decrease when the spin coating speeds are increased.

  20. CSA doped polypyrrole-zinc oxide thin film sensor

    NASA Astrophysics Data System (ADS)

    Chougule, M. A.; Jundale, D. M.; Raut, B. T.; Sen, Shashwati; Patil, V. B.

    2013-02-01

    The polypyrrole-zinc oxide (PPy-ZnO) hybrid sensor doped with different weight ratios of camphor sulphonic acid (CSA) were prepared by spin coating technique. These CSA doped PPy-ZnO hybrids were characterized by field emission scanning electron microscope (FESEM) and fourier transform infrared (FTIR) which proved the formation of polypyrrole, PPy-ZnO and the interaction between polypyrrole - ZnO (PPy-ZnO) hybrid with CSA doping. The gas sensing properties of the PPy-ZnO hybrid films doped with CSA have been studied for oxidizing (NO2) as well as reducing (H2S, NH3, CH4OH and CH3OH) gases at room temperature. We demonstrate that CSA doped PPy-ZnO hybrid films are highly selective to NO2 along with high-sensitivity at low concentration (80% to 100 ppm) and better stability, which suggested that the CSA doped PPy-ZnO hybrid films are potential candidate for NO2 detection at room temperature.

  1. Solution-Processed Indium Oxide Based Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Xu, Wangying

    Oxide thin-film transistors (TFTs) have attracted considerable attention over the past decade due to their high carrier mobility and excellent uniformity. However, most of these oxide TFTs are usually fabricated using costly vacuum-based techniques. Recently, the solution processes have been developed due to the possibility of low-cost and large-area fabrication. In this thesis, we have carried out a detailed and systematic study of solution-processed oxide thin films and TFTs. At first, we demonstrated a passivation method to overcome the water susceptibility of solution-processed InZnO TFTs by utilizing octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs). The unpassivated InZnO TFTs exhibited large hysteresis in their electrical characteristics due to the adsorbed water at the semiconductor surface. Formation of a SAM of ODPA on the top of InZnO removed water molecules weakly absorbed at the back channel and prevented water diffusion from the surroundings. Therefore the passivated devices exhibited significantly reduced hysteretic characteristics. Secondly, we developed a simple spin-coating approach for high- k dielectrics (Al2O3, ZrO2, Y 2O3 and TiO2). These materials were used as gate dielectrics for solution-processed In2O3 or InZnO TFTs. Among the high-k dielectrics, the Al2O3-based devices showed the best performance, which is attributed to the smooth dielectric/semiconductor interface and the low interface trap density besides its good insulating property. Thirdly, the formation and properties of Al2O3 thin films under various annealing temperatures were intensively studied, revealing that the sol-gel-derived Al2O3 thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide. Besides, the Al2O 3 film was used as gate dielectric for solution-processed oxide TFTs, resulting in high mobility and low operating voltage. Finally, we proposed a green route for

  2. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    NASA Astrophysics Data System (ADS)

    Denayer, Jessica; Bister, Geoffroy; Simonis, Priscilla; Colson, Pierre; Maho, Anthony; Aubry, Philippe; Vertruyen, Bénédicte; Henrist, Catherine; Lardot, Véronique; Cambier, Francis; Cloots, Rudi

    2014-12-01

    Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  3. Highly conductive grain boundaries in copper oxide thin films

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  4. Rapid thermal chemical vapor deposition of thin silicon oxide films using silane and nitrous oxide

    NASA Astrophysics Data System (ADS)

    Xu, X. L.; Kuehn, R. T.; Wortman, J. J.; Öztürk, M. C.

    1992-06-01

    Thin (80-200 Å) silicon dioxide (SiO2) films have been deposited by low pressure rapid thermal chemical vapor deposition (RTCVD), using silane (SiH4) and nitrous oxide (N2O) as the reactive gases for the first time. A deposition rate of 55 Å/min has been achieved at 800 °C with a SiH4/N2O flow rate ratio of 2%. Auger electron spectroscopy (AES) and Rutherford back scattering spectroscopy (RBS) have shown a uniform and stoichiometric composition throughout the deposited oxide films. Electrical characterization of the films have shown an average catastrophic breakdown field of 13 MV/cm and a midgap interface trap density (Dit) of equal to or less than 5×1010 eV-1 cm-2. The results suggest that the deposited RTCVD SiO2 films using SiH4-N2O gas system may have the potential to be used as the gate dielectric in future low-temperature metal oxide semiconductor (MOS) device processes for ultralarge scale integration (ULSI).

  5. Oxide Film Aging on Alloy 22 in Halide Containing Solutions

    SciTech Connect

    Rodriguez, Martin A.; Carranza, Ricardo M.; Rebak, Raul B.

    2007-07-01

    Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

  6. Studies on nickel-tungsten oxide thin films

    SciTech Connect

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  7. Studies on nickel-tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-01

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm-1 and 1100 cm-1 correspond to Ni-O vibration and the peak at 860 cm-1 can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  8. High angular sensitivity thin film tin oxide sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Madaan, Divya; Sharma, V. K.; Kapoor, A.

    2016-05-01

    We present theoretical anlaysis of a thin film SnO2 (Tin Oxide) sensor for the measurement of variation in the refractive index of the bulk media. It is based on lossy mode resonance between the absorbing thin film lossy modes and the evanescent wave. Also the addition of low index dielectric matching layer between the prism and the lossy waveguiding layer future increase the angular sensitivity and produce an efficient refractive index sensor. The angular interrogation is done and obtained sensitivity is 110 degree/RIU. Theoretical analysis of the proposed sensor based on Fresnel reflection coefficients is presented. This enhanced sensitivity will further improve the monitoring of biomolecular interactions and the higher sensitivity of the proposed configurations makes it to be a much better option to be employed for biosensing applications.

  9. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  10. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  11. Electrochemical glucose oxidation on dendritic cuprous oxide film fabricated by PSS-assisted electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Jin, Xiaoqi; Huang, Qiao

    2011-02-01

    Cuprous oxides (Cu 2O) with different morphologies were deposited on F-doped tin oxide (FTO) covered glass substrates by potentiostatic deposition. The as-deposited samples were characterized by XRD, BET surface area and SEM. The effects of Poly(styrene sulfonic acid) sodium salt (PSS) on the crystal morphologies of Cu 2O were studied. Different crystal morphologies of Cu 2O can be obtained by varying the concentrations of PSS in the electrolytes. The formation of dendritic microstructure in Cu 2O film depends on the concentration of PSS in the electrolyte. Dendritic Cu 2O crystals formed gradually with the increase of the concentration of PSS in the electrolyte from 0 to 4 g L -1. More symmetrical Cu 2O crystals appear when the concentration of PSS is changed from 4 to 8 g L -1. However, the Cu 2O nanoparticles formed instead of dendritic Cu 2O crystals if the concentration of PSS reaches to 12 g L -1, which is due to the slower diffusion rate of reactive species in high concentration of PSS. The as-deposited Cu 2O thin films with different morphologies all exhibit the electrochemical glucose oxidation properties. The improved performance of glucose oxidation is achieved on the dendritic Cu 2O film electrode. The result indicates that the dendritic microstructure is beneficial for decreasing the resistance and improving transportation and diffusion of reactants and products.

  12. Vibrational spectra of CO adsorbed on oxide thin films: A tool to probe the surface defects and phase changes of oxide thin films

    SciTech Connect

    Savara, Aditya

    2014-03-15

    Thin films of iron oxide were grown on Pt(111) single crystals using cycles of physical vapor deposition of iron followed by oxidative annealing in an ultrahigh vacuum apparatus. Two procedures were utilized for film growth of ∼15–30 ML thick films, where both procedures involved sequential deposition+oxidation cycles. In procedure 1, the iron oxide film was fully grown via sequential deposition+oxidation cycles, and then the fully grown film was exposed to a CO flux equivalent to 8 × 10{sup −7} millibars, and a vibrational spectrum of adsorbed CO was obtained using infrared reflection-absorption spectroscopy. The vibrational spectra of adsorbed CO from multiple preparations using procedure 1 show changes in the film termination structure and/or chemical nature of the surface defects—some of which are correlated with another phase that forms (“phase B”), even before enough of phase B has formed to be easily detected using low energy electron diffraction (LEED). During procedure 2, CO vibrational spectra were obtained between deposition+oxidation cycles, and these spectra show that the film termination structure and/or chemical nature of the surface defects changed as a function of sequential deposition+oxidation cycles. The authors conclude that measurement of vibrational spectra of adsorbed CO on oxide thin films provides a sensitive tool to probe chemical changes of defects on the surface and can thus complement LEED techniques by probing changes not visible by LEED. Increased use of vibrational spectra of adsorbed CO on thin films would enable better comparisons between films grown with different procedures and by different groups.

  13. Deposition of transparent, conductive tin oxide films on glass using a radio-frequency induction heater.

    PubMed

    Solano, I; Schwoebel, P R

    2009-12-01

    Tin oxide films are often used as transparent, conductive coatings on glass in the scientific research setting. The standard approach of depositing these films in an oven leads to poor visibility of the substrate and thus inhibits the ready formation of uniform, low resistivity films. In this note we describe a simple tin oxide film deposition technique using a radio-frequency induction heater that allows for in situ visualization of the deposition process and resulting film. Uniform films having resistivities as low as 2 mohm cm with transmittances of approximately 85% in the visible light spectrum were readily deposited. PMID:20059179

  14. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    PubMed

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures. PMID:27070754

  15. High temperature nitrogen oxides sensing enabled by indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Kannan, Srinivasan

    Generation of power using fossil fuel combustion invariably results in formation of undesirable gas species (NOx, SOx, CO, CO2, etc.) at high-temperatures which are harmful to the environment. Thus, there is a continual need to develop sensitive, responsive, stable, selective, robust and low-cost sensor systems and sensor materials for combustion monitoring. This work investigates the viability of microfabricated NO x sensors based on sputtered indium oxide (In2O3) utilizing microhotplate structures. The material becomes resistive when exposed to oxidizing gases like NOx, with its conductivity dependent upon the temperature, partial pressure of the test gas and morphological structure. We believe this device would help increase efficiency and decrease emissions through improved combustion process control, leading to a comparably economic and responsive sensor. In this work, more than 600 sensors were fabricated and tested, including RF and pulsed-DC sputtered films. About 50 unique sensor conditions were characterized and related to the gas sensor response. The sensor conditions included deposition parameters (power, pressure, time, etc.) and postdeposition processes (anneals, promoter layers, etc.). In2O3 thin films were RF sputter deposited on microhotplate structures with different thickness (40 to 300 nm) in pure Ar. Additionally, a combination of reactive and RF sputtering of In2O3 material was-deposited in Ar and O2 (10% and 25%) mixture. In2O3 films without promoter layers and with gold or TiOx promoter layers (~ 3 nm) were investigated for NOx sensing. Selectivity, stability and repeatability of indium oxide (In2O3) thin film sensor to detect NOx (25 ppm) in presence of other exhaust gas pollutants including H2, NH3 and CO2 at high operating temperatures (greater than 350 °C) was investigated in N2 carrier gas. In2O 3 films (150nm thick) deposited in Ar and O2 (25% O 2) presented the highest response (S ~ 50) to 25 ppm NOx at 500 °C when compared to films

  16. Rate of organic film formation and oxidation on aqueous drops

    NASA Astrophysics Data System (ADS)

    Aumann, E.; Tabazadeh, A.

    2008-12-01

    Previous studies suggest that saturated fatty acids or other lipids, which are known to be strong film-forming agents, form condensed films on aqueous drops. Specifically, stearic acid (SA) has been used in laboratory and modeling studies to mimic the surface composition of some particles in the atmosphere. In this study, laboratory measurements were used to determine the rate of SA spreading from a solid on aqueous surfaces,ranging in composition from ammonium sulfate to highly acidic sulfuric acid. Maximum spreading rates were measured on neutral electrolyte solutions, while spreading was not observed on aqueous sulfuric and hydrochloric acids (pH < 0). Also, the spreading rates on water and electrolyte surfaces declined sharply as the solution pH was lowered from 7 to 3. Spreading rates are reported with a dependence on the length of solid-aqueous-air boundary (triple interface perimeter). Spreading rates measured on bulk solutions were modeled on atmospheric particles to determine the time constant of organic film formation on aqueous drops. The time required for a saturated fatty acid to spread and coat a submicron salt particle or a cloud drop is on the order of seconds to minutes or minutes to hours, respectively. In conclusion, lipid coatings can form quickly on neutral or slightly acidic salt drops if a sufficient amount of lipid is present in the drop and the lipid is in direct contact with the aqueous solution surface. Rapid film formation and fast heterogeneous oxidation can provide an efficient way of converting water-insoluble organic films into more water-soluble components in aerosols or cloud drops.

  17. Absorption of ac fields in amorphous indium-oxide films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2014-08-01

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (InxO) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In2O3-x) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  18. Effect of Oxidation Condition on Growth of N: ZnO Prepared by Oxidizing Sputtering Zn-N Film

    NASA Astrophysics Data System (ADS)

    Qin, Xuesi; Li, Guojian; Xiao, Lin; Chen, Guozhen; Wang, Kai; Wang, Qiang

    2016-06-01

    Nitrogen-doped zinc oxide (N: ZnO) films have been prepared by oxidizing reactive RF magnetron-sputtering zinc nitride (Zn-N) films. The effect of oxidation temperature and oxidation time on the growth, transmittance, and electrical properties of the film has been explored. The results show that both long oxidation time and high oxidation temperature can obtain the film with a good transmittance (over 80 % for visible and infrared light) and a high carrier concentration. The N: ZnO film exhibits a special growth model with the oxidation time and is first to form a N: ZnO particle on the surface, then to become a N: ZnO layer, and followed by the inside Zn-N segregating to the surface to oxidize N: ZnO. The surface particle oxidized more adequately than the inside. However, the X-ray photoemission spectroscopy results show that the lower N concentration results in the lower N substitution in the O lattice (No). This leads to the formation of n-type N: ZnO and the decrease of carrier concentration. Thus, this method can be used to tune the microstructure, optical transmittance, and electrical properties of the N: ZnO film.

  19. Effect of Oxidation Condition on Growth of N: ZnO Prepared by Oxidizing Sputtering Zn-N Film.

    PubMed

    Qin, Xuesi; Li, Guojian; Xiao, Lin; Chen, Guozhen; Wang, Kai; Wang, Qiang

    2016-12-01

    Nitrogen-doped zinc oxide (N: ZnO) films have been prepared by oxidizing reactive RF magnetron-sputtering zinc nitride (Zn-N) films. The effect of oxidation temperature and oxidation time on the growth, transmittance, and electrical properties of the film has been explored. The results show that both long oxidation time and high oxidation temperature can obtain the film with a good transmittance (over 80 % for visible and infrared light) and a high carrier concentration. The N: ZnO film exhibits a special growth model with the oxidation time and is first to form a N: ZnO particle on the surface, then to become a N: ZnO layer, and followed by the inside Zn-N segregating to the surface to oxidize N: ZnO. The surface particle oxidized more adequately than the inside. However, the X-ray photoemission spectroscopy results show that the lower N concentration results in the lower N substitution in the O lattice (No). This leads to the formation of n-type N: ZnO and the decrease of carrier concentration. Thus, this method can be used to tune the microstructure, optical transmittance, and electrical properties of the N: ZnO film. PMID:27251324

  20. Defect Mediated Ferromagnetism in Zinc Oxide Thin Film Heterostructures

    NASA Astrophysics Data System (ADS)

    Mal, Siddhartha

    Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. Since zinc oxide (ZnO) posits a promising player, it is important to elucidate the critical issues regarding the origin and nature of magnetism in ZnO thin film heterostructures. Another critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial thin films on the existing technology based on Si (100) substrates, which requires appropriate substrate templates. The present research work is focused on the study of room temperature ferromagnetism (RTFM) caused by intrinsic defects and precise control of RTFM using thermal treatments and laser and ion irradiation. We performed a systematic study of the structural, chemical, electrical, optical and magnetic properties of undoped ZnO films grown under different conditions as well as the films that were annealed in various environments. Oxygen annealed films displayed a sequential transition from ferromagnetism to diamagnetism as a function of the annealing temperature. An increase in the green band intensity has been observed in oxygen annealed ZnO films. Reversible switching of room-temperature ferromagnetism and n-type conductivity have been demonstrated by oxygen and vacuum annealing. Detailed electron energy loss spectroscopy and secondary ion mass spectroscopy studies have been presented to rule out the possibility of external source of magnetism. Electron-Paramagnetic Resonance (EPR) measurements indicate the presence of a broad peak at g=2.01. This would be most consistent with the magnetic moment arising from the oxygen vacancies (g=1.996), although the possible contribution from Zn vacancies (g=2.013) cannot be entirely ruled out. The magnetic moment in these films may arise from the

  1. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  2. Nanoscale reduction of graphene oxide thin films and its characterization

    NASA Astrophysics Data System (ADS)

    Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, Francesc; Mescola, A.; Torre, B.

    2015-07-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  3. Transient laser annealing of zinc oxide nanoparticle inks to fabricate zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Willemann, Michael

    Display technology, which relies exclusively on amorphous silicon as the active material for driver electronics, has reached multiple impasses that limit future progress. In order to deliver higher resolutions, higher refresh rates, new display technologies, and innovative form factors, driver electronics must transition to higher performance materials like amorphous oxide semiconductors (AOSs). Transient laser annealing offers an attractive means to maximize performance while minimizing thermal budget, making it compatible with flexible back plane materials and roll-to-roll processing. This research investigates the deposition and annealing of zinc oxide nanoparticle inks to form fully densified crystalline and amorphous zinc oxide films. Processing routes for nanoparticle annealing, including ligand removal, calcining, and excimer pulse laser sintering on the nanosecond time scale, will be introduced that minimize defect formation and suppress the anomalous n-conductivity which is a major challenge to zinc oxide processing. Resistivities as high as 6 x 107 O-cm have been demonstrated. Laser processing on longer millisecond time scales can control defect formation to produce ZnO films without extrinsic doping which have low resistivity for intrinsic oxides, in the range of 10-1 - 10-2 O-cm. Finally, a viable process for the production of backgated ZnO transistors with promising characteristics is presented and the future implications for AOSs and transient thermal processing will be discussed.

  4. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    NASA Astrophysics Data System (ADS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn3O4, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20-30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 - 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9-10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  5. Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kim, Da-Som; Kim, Sun-Kyung; Yoo, Young-Zo; Lee, Jeong Hwan; Kim, Sang-Woo; Seong, Tae-Yeon

    2016-08-01

    In this study, the electrical, optical, and bending characteristics of amorphous indium gallium zinc oxide (IGZO)/Ag/IGZO (39 nm/19 nm/39 nm) multilayer films deposited on polyethylene terephthalate (PET) substrate at room temperature were investigated and compared with those of Sn-doped indium oxide (ITO) (100 nm thick) films. At 500 nm the ITO film transmitted 91.3% and the IGZO/Ag/IGZO multilayer film transmitted 88.8%. The calculated transmittance spectrum of the multilayer film was similar to the experimental result. The ITO film and IGZO/Ag/IGZO multilayer film, respectively, showed carrier concentrations of 1.79 × 1020 and 7.68 × 1021 cm-3 and mobilities of 27.18 cm2/V s and 18.17 cm2/V s. The ITO film had a sheet resistance of 134.9 Ω/sq and the IGZO/Ag/IGZO multilayer film one of 5.09 Ω/sq. Haacke's figure of merit (FOM) was calculated to be 1.94 × 10-3 for the ITO film and 45.02 × 10-3 Ω-1 for the IGZO/Ag/IGZO multilayer film. The resistance change of 100 nm-thick ITO film was unstable even after five cycles, while that of the IGZO/Ag/IGZO film was constant up to 1000 cycles.

  6. Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kim, Da-Som; Kim, Sun-Kyung; Yoo, Young-Zo; Lee, Jeong Hwan; Kim, Sang-Woo; Seong, Tae-Yeon

    2016-05-01

    In this study, the electrical, optical, and bending characteristics of amorphous indium gallium zinc oxide (IGZO)/Ag/IGZO (39 nm/19 nm/39 nm) multilayer films deposited on polyethylene terephthalate (PET) substrate at room temperature were investigated and compared with those of Sn-doped indium oxide (ITO) (100 nm thick) films. At 500 nm the ITO film transmitted 91.3% and the IGZO/Ag/IGZO multilayer film transmitted 88.8%. The calculated transmittance spectrum of the multilayer film was similar to the experimental result. The ITO film and IGZO/Ag/IGZO multilayer film, respectively, showed carrier concentrations of 1.79 × 1020 and 7.68 × 1021 cm-3 and mobilities of 27.18 cm2/V s and 18.17 cm2/V s. The ITO film had a sheet resistance of 134.9 Ω/sq and the IGZO/Ag/IGZO multilayer film one of 5.09 Ω/sq. Haacke's figure of merit (FOM) was calculated to be 1.94 × 10-3 for the ITO film and 45.02 × 10-3 Ω-1 for the IGZO/Ag/IGZO multilayer film. The resistance change of 100 nm-thick ITO film was unstable even after five cycles, while that of the IGZO/Ag/IGZO film was constant up to 1000 cycles.

  7. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    SciTech Connect

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  8. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides. PMID:21389384

  9. Growth of Ordered Ultrathin Tungsten Oxide Films on Pt(111)

    SciTech Connect

    Li, Zhenjun; Zhang, Zhenrong; Kim, Yu Kwon; Smith, R. Scott; Netzer, Falko; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2011-04-07

    Ordered tungsten oxide ultra-thin films were prepared on a Pt(111) substrate at 700 K via direct sublimation of monodispersed cyclic (WO3)3 trimers. The surface composition, structure and morphology were determined using a combination of atomically resolved imaging, ensemble-averaged surface-sensitive spectroscopies, and density functional theory (DFT). We find that half of the (WO3)3 tungsten atoms get partially reduced to the (5+) oxidation state in the first layer at the Pt(111) interface. The opening of the (WO3)3 ring leads to the formation of a tungsten oxide layer with a zig-zag chain structure with a c(4×2) periodicity. In the second layer, the (WO3)3 clusters remain intact and form an ordered (3×3) array of molecularly-bound (WO3)3. DFT calculations provide a detailed understanding of the structure, oxidation states, and the vibrational frequencies for both the c(4×2) and (3×3) overlayers.

  10. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film.

    PubMed

    Chae, Sang Hoon; Jin, Youngjo; Kim, Tae Soo; Chung, Dong Seob; Na, Hyunyeong; Nam, Honggi; Kim, Hyun; Perello, David J; Jeong, Hye Yun; Ly, Thuc Hue; Lee, Young Hee

    2016-01-26

    Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster. PMID:26735305

  11. Energy dissipation of highly charged ions on Al oxide films

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Pomeroy, J. M.; Sosolik, C. E.

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xeq + for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  12. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  13. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  14. Formation of hybrid hafnium oxide by applying sacrifacial silicon film

    NASA Astrophysics Data System (ADS)

    Lin, Chiung-Wei; Zheng, Bo-Shen; Huang, Jing-Wei

    2016-01-01

    In the fabrication of hafnium oxide (HfO2)-based metal-insulator-semiconductor (MIS) devices, a sacrificial amorphous silicon (a-Si) film was used as silicon source for facilitating the formation of hafnium silicate (Hf-silicate; HfSiO) between HfO2 and crystallized Si (c-Si). HfSiO can assist in changing the phase of the HfO2 film into the tetragonal phase and achieve high dielectric constant. The combination of HfSiO and HfO2 was named as “Hybrid HfO2”. When this Hybrid HfO2 insulator was applied to MIS devices, it can form a good insulator/semiconductor interface with c-Si. Hybrid HfO2 cannot only suppress the leakage current but also show high dielectric strength. The Hybrid HfO2 film in this work exhibited a high dielectric constant of 25.5 and a high dielectric strength of 17.9 MV/cm.

  15. Pulsed laser deposition of nanostructured indium-tin-oxide film

    NASA Astrophysics Data System (ADS)

    Yong, Thian Kok; Nee, Chen Hon; Yap, Seong Shan; Siew, Wee Ong; Sáfran, György; Yap, Yoke Kin; Tou, Teck Yong

    2010-08-01

    Effects of O2, N2, Ar and He on the formation of micro- and nanostructured indium tin oxide (ITO) thin films were investigated in pulsed Nd:YAG laser deposition on glass substrate. For O2 and Ar, ITO resistivity of <= 4 × 10-4 Ωcm and optical transmittance of > 90% were obtained with substrate temperature of 250 °C. For N2 and He, low ITO resisitivity could be obtained but with poor optical transmittance. SEM images show nano-structured ITO thin films for all gases, where dense, larger and highly oriented, microcrystalline structures were obtained for deposition in O2 and He, as revealed from the XRD lines. EDX results indicated the inclusion of Ar and N2 at the expense of reduced tin (Sn) content. When the ITO films were applied for fabrication of organic light emitting devices (OLED), only those deposited in Ar and O2 produced comparable performance to single-layer OLED fabricated on the commercial ITO.

  16. Electrochromic properties of electrodeposited tungsten oxide (WO3) thin film

    NASA Astrophysics Data System (ADS)

    Dalavi, D. S.; Kalagi, S. S.; Mali, S. S.; More, A. J.; Patil, R. S.; Patil, P. S.

    2012-06-01

    In this work, we report on a potentiostatic electrochemical procedure employing an ethanolic solution of peroxotungstic acid yielded tungsten oxide (WO3) films specifically for transmissive electrochromic devices (ECDs) such as "smart windows". WO3 film was confirmed from the binding energy determination by X-ray photoelectron spectroscopic studies. The diffusion coefficient during intercalation and deintercalation was found to be 2.59×10-10 and 2.40×10-10 cm2/C. Electrodeposited WO3 produce high color/bleach transmittance difference up to 74% at 630 nm. On reduction of WO3, the CIELAB 1931 2% color space coordinates show the transition from colorless to the deep blue state (L=95.18, a=2.12, b=0.3138, and L=57.78, a=-21.79, b=0.244) with steady decrease in relative luminance. The highest coloration efficiency (CE) of 92 cm2/C and good response time of 10.28 for coloration (reduction) and 3.2 s for bleaching (oxidation) was observed with an excellent reversibility of 89%.

  17. Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications

    SciTech Connect

    Shaik, Ummar Pasha; Krishna, M. Ghanashyam

    2014-04-24

    Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500°C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

  18. Surface plasmon resonance biochip based on ZnO thin film for nitric oxide sensing.

    PubMed

    Feng, Wei-Yi; Chiu, Nan-Fu; Lu, Hui-Hsin; Shih, Hsueh-Ching; Yang, Dongfang; Lin, Chii-Wann

    2008-01-01

    In this study, the design of a novel optical sensor that comprises surface plasmon resonance sensing chip and zinc oxide nano-film was proposed for the detection of nitric oxide gas. The electrical and optical properties of zinc oxide film vary in the presence of nitric oxide. This effect was utilized to prepare biochemical sensors with transduction based on surface plasmon resonance. Due to the refractive index of the transparent zinc oxide film that was deposited on the gold film, however, changes will be observed in the surface plasmon resonance spectra. For this reason, the thickness of zinc oxide film will be investigated and determined in this study. The interaction of nitric oxide with a 20 nm zinc oxide layer on gold leads to the shift of the resonance angle. The analysis on the reflectance intensity of light demonstrates that such effect is caused by the variation of conductivity and permittivity of zinc oxide film. Finally, a shift in surface plasmon resonance angle was measured in 25 ppm nitric oxide at 180 C and a calibration curve of nitride oxide concentration versus response intensity was successfully obtained in the range of 250 to 1000 ppm nitric oxide at lower temperature of 150 C. Moreover, these effects are quasi-reversible. PMID:19164025

  19. Optical and structural characterization of iron oxide and cobalt oxide thin films at 800 nm

    NASA Astrophysics Data System (ADS)

    Garcia, Hans A.; de Melo, Ronaldo P.; Azevedo, Antonio; de Araújo, Cid B.

    2013-05-01

    We report on optical and structural properties of α-Fe2O3 and Co3O4 thin films, grown by direct oxidation of pure metal films deposited on soda-lime glass. Structural characteristics and morphology of the films were investigated by X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Linear optical absorption, and linear refraction as well as nonlinear optical properties were investigated. The third-order optical susceptibilities were measured applying the Thermally managed Z- scan technique using a Ti: sapphire laser (150 fs; 800 nm). The results obtained for the Co3O4 film were {Re} χ^{( 3 )} = -(5.7 ± 2.4) ×10-9 esu and {Im} χ^{(3)} = -(1.8 ± 0.2) ×10-8 esu while for the α-Fe2O3 film we determined {Re} χ^{(3)} = +(6.6 ± 2.4) ×10-10 esu and {Im} χ^{(3)} = +(2.2 ± 0.4) ×10-10 esu.

  20. Thin Films and Josephson Junctions of Yttrium Barium Copper Oxide

    NASA Astrophysics Data System (ADS)

    Rosenthal, Peter Andrew

    We have studied the growth of superconducting films of rm Y_1Ba_2Cu_3O _{7-delta} using reactive electron beam coevaporation. Emphasis was placed on determining the most important growth parameters, and optimizing the instrumentation for controlling the growth environment. We have experimented with atomic absorption based deposition rate control, quartz lamp based substrate heating, and various forms of activated oxygen. Methods for generating and delivering molecular oxygen, oxygen ion beams, ozone and atomic oxygen were investigated and their effects on film quality were characterized. We found that the specific method of oxidation was not critical to the film quality but that optimal films were produced at lower pressures (~10^{-4} T) for more chemically reactive allotropes of oxygen. Composition was found to be quite important in determining the film properties. These results are discussed in the context of growth kinetics and equilibrium thermodynamics. We have studied the transport properties of artificial grain boundary Josephson junctions of rm Y_1Ba_2Cu_3O_{7-delta }. Measurements and modeling of the magnetic interference patterns of the critical currents revealed the presence of extensive disorder within the junctions. The temperature dependence of the critical currents revealed behavior consistent with the resistively shunted junction (RSJ) model. Modeling the inhomogeneous junctions as parallel arrays of RSJ-like junctions explained the clean RSJ-like current-voltage characteristics even in junctions showing extremely complicated magnetic interference patterns. The observed modulation period of the single junction interference patterns showed an unusual w^{-2} width dependence that could be quantitatively explained by a model of flux focusing based on the London theory. A model of the diffraction patterns for junctions fabricated from extremely thin films shows unexpected deviations from the usual behavior. These peculiarities are understood in terms of

  1. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.

    PubMed

    Sirviö, Juho Antti; Kolehmainen, Aleksi; Visanko, Miikka; Liimatainen, Henrikki; Niinimäki, Jouko; Hormi, Osmo E O

    2014-08-27

    In this work, three self-standing nanocellulose films were produced from birch pulp using regioselective oxidation and further derivatization treatments. The modified celluloses were synthesized using periodate oxidation, followed by chlorite oxidation, bisulfite addition, or reductive amination with amino acid taurine, which resulted in dicarboxylic acid cellulose (DCC), α-hydroxy sulfonic acid cellulose (HSAC), and taurine-modified cellulose (TC), respectively. The nanocelluloses were fabricated by mechanical disintegration using high-pressure homogenization. Mechanical and barrier properties of the nanocellulose films were characterized. Two (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) oxidation-based nanocellulose films were also produced, and their properties were compared to the periodate-based nanocellulose films. All of the periodate-based nanocellulose films showed high tensile strength (130-163 MPa) and modulus (19-22 GPa). Oxygen barrier properties of the films were superior to many synthetic and composite materials; in particular, the nanofibrillated DCC films had oxygen permeability as low as 0.12 cm(3) μm/(m(2) d kPa) at 50% relative humidity. Compared to films of TEMPO-oxidized nanocelluloses, all of the periodate-based nanocellulose films had similar or even better mechanical and barrier properties, demonstrating versatility of periodate oxidation to obtain nanocellulose films with adjustable properties. Also, for the first time, amino-acid-based cellulose modification was used in the production of nanocellulose. PMID:25089516

  2. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  3. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias

    DOE PAGESBeta

    Liu, Zhiqi; Biegalski, Michael D.; Hsu, Shang-Lin; Shang, Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha S.; Meyer, Tricia L.; Wong, Anthony T.; et al

    2015-11-05

    High-quality epitaxial growth of intermetallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Thus, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  4. Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias.

    PubMed

    Liu, Zhiqi; Biegalski, Michael D; Hsu, Shang-Lin; Shang, Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha; Meyer, Tricia L; Wong, Anthony T; Nichols, John A; Chen, Deyang; You, Long; Chen, Zuhuang; Wang, Kai; Wang, Kevin; Ward, Thomas Z; Gai, Zheng; Lee, Ho Nyung; Sefat, Athena S; Lauter, Valeria; Liu, Zi-Kui; Christen, Hans M

    2016-01-01

    High-quality epitaxial growth of inter-metallic MnPt films on oxides is achieved, with potential for multiferroic heterostructure applications. Antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer. PMID:26539758

  5. Wettability of oxide thin films prepared by pulsed laser deposition: New insights

    NASA Astrophysics Data System (ADS)

    Prakash, Saurav

    The objective of the thesis is to investigate the wettability of good quality oxide thin films prepared by pulsed laser deposition (PLD). In this work, many shortfalls in the water contact angle measurement of thin films of oxides, responsible for the wide scatter in the values reported in literature, have been addressed. (Abstract shortened by UMI.).

  6. Doped, porous iron oxide films and their optical functions and anodic photocurrents for solar water splitting

    SciTech Connect

    Kronawitter, Coleman X.; Mao, Samuel S.; Antoun, Bonnie R.

    2011-02-28

    The fabrication and morphological, optical, and photoelectrochemical characterization of doped iron oxide films is presented. The complex index of refraction and absorption coefficient of polycrystalline films are determined through measurement and modeling of spectral transmission and reflection data using appropriate dispersion relations. Photoelectrochemical characterization for water photo-oxidation reveals that the conversion efficiencies of electrodes are strongly influenced by substrate temperature during their oblique-angle physical vapor deposition. These results are discussed in terms of the films' morphological features and the known optoelectronic limitations of iron oxide films for application in solar water splitting devices.

  7. Structural and physical properties of tin oxide thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lin, Su-Shia; Tsai, Yung-Shiang; Bai, Kai-Ren

    2016-09-01

    Tin oxide films were deposited on glass substrates by RF magnetron sputtering. At a lower sputtering pressure, the tin oxide film comprised nanocrystalline orthorhombic SnO with a (110) orientation, greater p-type conductivity and better hydrophobicity. Increasing substrate temperature resulted in the coexistence of nanocrystalline orthorhombic SnO and tetragonal SnO2 in the deposited film, favoring hydrophilicity, changing the p-type conductivity to n-type conductivity, and reducing resistivity. As the sputtering pressure or substrate temperature increased, the tin oxide film exhibited a lower surface roughness, a larger optical energy gap, and higher optical transmission.

  8. Anisotropy and micromagnetics in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Wynn, Thomas Andrew

    Complex oxide perovskites are a class of material with a remarkably wide range of functional properties including magnetism, superconductivity, metal-to-insulator transitions, colossal magnetoresistance, and in some cases high magnetocrystalline anisotropy. Reduction in length scales through thin film deposition and nanopatterning results in altered properties from their bulk constituents. In this work, thin films of La0.7Sr0.3CoO3 (LSCO) and LSCO/La 0.7Sr0.3MnO3 (LSMO) bilayers of varying thicknesses were deposited onto (LaAlO3)0.3(Sr2TaAlO 6)0.7 (LSAT) substrates, and their anisotropic magnetic properties were measured along the in- plane [100] and [110] directions using superconducting quantum interference device (SQUID) magnetometry and soft x-ray magnetic spectroscopy. The LSCO showed thickness dependent magnetism, and films were non-magnetic below a critical thickness of 4 nm. Magnetic LSCO films showed unique anisotropic effects on the saturation magnetization (Ms), with a lower M s in the [110] direction than the [100] direction. This potentially indicates the existence of a hard component in the [110] direction that is not being switched at fields in the SQUID magnetometer (7 T). Normalized hysteresis loops indicate the LSCO films display little magnetocrystalline anisotropy within the plane of the film. LSCO/LSMO bilayers with a fixed LSMO layer of 6 nm in thickness showed cobalt magnetism at thicknesses where single layers were non-magnetic, suggesting that the substrate/film interface is not the cause of the non-magnetic layer in the LSCO thin films. Magnetic coupling occurs in bilayers with LSCO layer thicknesses of below 4 nm, and both LSCO and LSMO layers showed a [110] easy axis. When the layer thickness of LSCO was increased above 8 nm, the LSCO layer developed a soft component at the LSCO/LSMO interface. This soft LSCO component remained coupled with the LSMO, though the easy axis changed to the [100] direction, and the harder, non-interface LSCO

  9. Growth and Dissolution of Iron and Manganese Oxide Films

    SciTech Connect

    Scot T. Martin

    2008-12-22

    Growth and dissolution of Fe and Mn oxide films are key regulators of the fate and transport of heavy metals in the environment, especially during changing seasonal conditions of pH and dissolved oxygen. The Fe and Mn are present at much higher concentrations than the heavy metals, and, when Fe and Mn precipitate as oxide films, heavy metals surface adsorb or co-precipitate and are thus essentially immobilized. Conversely, when the Fe and Mn oxide films dissolve, the heavy metals are released to aqueous solution and are thus mobilized for transport. Therefore, understanding the dynamics and properties of Fe and Mn oxide films and thus on the uptake and release of heavy metals is critically important to any attempt to develop mechanistic, quantitative models of the fate, transport, and bioavailablity of heavy metals. A primary capability developed in our earlier work was the ability to grow manganese oxide (MnO{sub x}) films on rhodochrosite (MnCO{sub 3}) substrate in presence of dissolved oxygen under mild alkaline conditions. The morphology of the films was characterized using contact-mode atomic force microscopy. The initial growth began by heteroepitaxial nucleation. The resulting films had maximum heights of 1.5 to 2 nm as a result of thermodynamic constraints. Over the three past years, we have investigated the effects of MnO{sub x} growth on the interactions of MnCO{sub 3} with charged ions and microorganisms, as regulated by the surface electrical properties of the mineral. In 2006, we demonstrated that MnO{sub x} growth could induce interfacial repulsion and surface adhesion on the otherwise neutral MnCO{sub 3} substrate under environmental conditions. Using force-volume microscopy (FVM), we measured the interfacial and adhesive forces on a MnO{sub x}/MnCO{sub 3} surface with a negatively charged silicon nitride tip in a 10-mM NaNO3 solution at pH 7.4. The interfacial force and surface adhesion of MnOx were approximately 40 pN and 600 pN, respectively

  10. The effect of lithiation on the electrochromism of sol-gel derived niobium oxide films

    SciTech Connect

    Macek, M.; Orel, B.; Krasovec, U.O.

    1997-09-01

    Niobium oxide films are promising cathodic electrochromic materials that in certain aspects can compete with the more frequently studied WO{sub 3} films. The films reported here were prepared using the sol-gel route from a NbCl{sub 5} precursor. The electrochromic properties were pronounced for crystalline films heat-treated at 500 C exhibiting transmittance changes between the colored and bleached states of 60% in the ultraviolet (UV) and 80% in the visible and near-infrared spectral regions. The reversibility of electrochromic changes of thick niobium oxide films (d > 250 nm) was enhanced by lithiation.

  11. Transparent conductive reduced graphene oxide thin films produced by spray coating

    NASA Astrophysics Data System (ADS)

    Shi, HongFei; Wang, Can; Sun, ZhiPei; Zhou, YueLiang; Jin, KuiJuan; Yang, GuoZhen

    2015-01-01

    Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide. The dispersion was produced by chemical reduction of graphene oxide, and the film thickness was controlled with the amount of spray volume. AFM measurements revealed that the thin films have near-atomically flat surface. The chemical and structural parameters of the samples were analyzed by Raman and XPS studies. It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region. The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 kΩ with a light transmittance of 68.69% at 550 nm. The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.

  12. Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO{sub 2} films

    SciTech Connect

    Pal, Sudipto; De, Goutam

    2009-02-04

    Reversible transformation of silver oxide and metallic nanoparticles inside a relatively porous silica film has been established. Annealing of Ag-doped films in oxidizing (air) atmosphere at 450 deg. C yielded colorless films containing AgO{sub x}. These films were turned yellow when heated in H{sub 2}-N{sub 2} (reducing atmosphere) due to the formation of Ag nanoparticles. This yellow coloration (due to nano Ag{sup 0}) and bleaching (conversion of Ag{sup 0} {yields} Ag{sup +}) are reversible. Optical and photoluminescence spectra are well consistent with this coloration and bleaching. The soaking test of the air-annealed film in Na{sub 2}S{sub 2}O{sub 3} solution supports the presence of Ag{sup +}. Grazing incidence X-ray diffraction and transmission electron microscopy studies reveal the formation of Ag-oxides and Ag nanoparticles in the oxidized and reduced films, respectively.

  13. Carboxylate Precursor Effects on MOD Derived Metal Oxide (Nickel/Nickel Oxide ) Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Xiang

    Thin films in the (Ni/NiO) system have been widely studied because of their significant potential for use in batteries, fuel cells, solar cells, supercapacitors, magnetic devices and various sensor applications. Such films typically are deposited onto suitable substrates by electrochemical or vapor deposition methods, followed by heat treatment to develop the oxide structure. In this study, by contrast, the Ni/NiO thin films were prepared by metallo-organic decomposition (MOD) technique in order to facilitate the development of nano structure feature as well as molecular scale mixing and excellent composition control. Critical parameters that must be controlled during this deposition process to achieve high quality films include: carboxylate precursor chemistry, solution chemistry, film structure chemistry, film deposition characteristics, film structure development and pyrolysis characteristics. These crucial control parameters are, for the most areas, poorly understood for this system especially for the carboxylate precursor chemistry effects on properties of Ni/NiO thin films. The goal of this work, therefore, is to understand and design those parameters in term of precursor species, viscosity, solute concentration and solvent composition as well as film deposition and heat treatment conditions that can lead to the controlled fabrication of nano-sized, high surface area, low resistive Ni/NiO thin films on Si and metallic substrates such as stainless steels and silver. The solvent system used consisted of a unique mixture of propionic acid and amylamine, in molar ratio of 0.5--2.0, with Ni acetate as the solute precursor in the concentration range of 0.2--2 mol/l. The films were prepared by spin deposition at 3000 rpm from carboxylate solution precursors with viscosity range of 10--640 cP. Good quality nano-sized Ni/NiO thin films, in the range of 0.2--2 microm thickness, on Si or stainless steel substrates were obtained by a mixed AA/PPA solvent system in the

  14. Determination of an oxide film on the surface of perlite steel

    SciTech Connect

    Krutikov, P.G.; Bykova, E.M.; Nemirov, N.V.; Papurin, N.M.

    1986-04-01

    When studying the formation of oxide films on the surface of circuits and systems in atomic and thermal power stations made of perlite steels, the need arises for the determination of the specific amount and thickness of oxide films. In order to reduce the error and the time required for such a determination, the authors have developed a new procedure, based on the selective dissolution of iron oxides with a proposed composition in the weak etching of themetal base. In this approach, the sample of perlite steel with the film is weighed before and after immersion in a solution of hydrochloric acid in acetone. The proposed procedure can be applied to dissolve dense oxide films. The total duration of a determination of the specific amount of oxide film on the surface of perlite steel by the proposed procedure is 20-25 minutes by using six samples at a time.

  15. Measurements of the optical properties of thin films of silver and silver oxide

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, Robert C.; Brown, Yolanda; Gregory, John C.; Nag, Pallob K.; Christl, Ligia

    1995-01-01

    The optical properties of silver films and their oxides are measured to better characterize such films for use as sensors for atomic oxygen. Good agreement between properties of measured pure silver films and reported optical constants is observed. Similar comparisons for silver oxide have not been possible because of a lack of reported constants, but self-consistencies and discrepancies in our measured results are described.

  16. Electrochemical oxide film formation at noble metals as a surface-chemical process

    NASA Astrophysics Data System (ADS)

    Conway, B. E.

    1995-08-01

    The mechanisms of electrochemical oxide film formation at noble metals are described and exemplified by the cases of Pt and Au, especially in the light of recent experimentation by means of cyclic voltammetry, ellipsometry and vacuum surface-science studies using LEED and AES. Unlike the mechanisms of base-metal oxidation, e.g., in corrosion processes, anodic oxide film formation at noble metals proceeds by surface chemical processes involving, initially, sub-monolayer, through monolayer, formation of 2-dimensional {OH}/{O} arrays. During such 2-d processes, place-exchange between electrosorbed OH or O species on the surface, and Pt or Au atoms within the surface lattice, takes place leading to a quasi-2-d compact film which then grows ultimately to a multilayer hydrous oxide film, probably by continuing injection of ions of the substrate metal and their migration through the growing film under the influence of the field. The initial, sub-monolayer stage of electrosorption of OH involves competitive chemisorption by anions, e.g. HSO 4-, ClO 4-, Cl -, which inhibits onset of the first stage of surface oxidation. These processes are demonstrable in experiments on single-crystal surfaces. The combination of such anion effects with place-exchange during the extension of the film, leads to a general mechanism of noble metal oxide film formation. The formation of the oxide films can be examined in detail by recording the distinguishable stages in the film's electrochemical reduction in linear-sweep voltammetry which is sensitive down to {OH}/{O} fractional coverages as low as 0.5% and over time-scales down to 50μs in experiments on time-evolution and transformation of the states of the oxide films. By means of LEED, AES and STM or AFM experiments, the reconstructions and perturbations (e.g. generation of stepped terraces) which oxide films cause on singlecrystal surfaces can be followed.

  17. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  18. Electronic properties of epitaxial cerium oxide films during controlled reduction and oxidation studied by resonant inelastic X-ray scattering.

    PubMed

    Gasperi, Gabriele; Amidani, Lucia; Benedetti, Francesco; Boscherini, Federico; Glatzel, Pieter; Valeri, Sergio; Luches, Paola

    2016-07-27

    We investigated the evolution of the electronic structure of cerium oxide ultrathin epitaxial films during reduction and oxidation processes using resonant inelastic X-ray scattering at the Ce L3 absorption edge, a technique sensitive to the electronic configurations at the 4f levels and in the 5d band thanks to its high energy resolution. We used thermal treatments in high vacuum and in oxygen partial pressure to induce a controlled and reversible degree of reduction in cerium oxide ultrathin epitaxial films of different thicknesses. Two dominant spectral components contribute to the measured spectra at the different degrees of oxidation/reduction. In ultrathin films a modification of the electronic properties associated with platinum substrate proximity and with dimensionality is identified. The different electronic properties induce a higher reducibility in ultrathin films, ascribed to a decrease of the surface oxygen vacancy formation energy. PMID:27405957

  19. Ultrastrong, Chemically Resistant Reduced Graphene Oxide-based Multilayer Thin Films with Damage Detection Capability.

    PubMed

    Guin, Tyler; Stevens, Bart; Krecker, Michelle; D'Angelo, John; Humood, Mohammad; Song, Yixuan; Smith, Ryan; Polycarpou, Andreas; Grunlan, Jaime C

    2016-03-01

    Multilayer thin films of graphene oxide (GO) and poly(vinylamine) (PVAm) were deposited via layer-by-layer assembly. Poly(vinylamine) pH was used to tailor film thickness and GO layer spacing. Graphene oxide concentration in the films was controlled through simple pH adjustment. Thermal reduction of the PVAm/GO multilayer thin films rendered them electrically conductive, which could be further tailored with PVAm pH. These reduced films also exhibited exceptionally high elastic modulus of 30 GPa and hardness of 1.8 GPa, which are among the highest of any graphene-filled polymer composite values ever reported. Cross-linking of these films with glutaraldehyde improved their chemical resistance, allowing them to survive strongly acidic or salty solutions. Additionally, scratches in the films can be instantaneously detected by a simple electrical resistance measurement. These films are promising for a variety of packaging and electronic applications. PMID:26885558

  20. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films.

    PubMed

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision. PMID:25273741

  1. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  2. Aqueous phase deposition of dense tin oxide films with nano-structured surfaces

    SciTech Connect

    Masuda, Yoshitake Ohji, Tatsuki; Kato, Kazumi

    2014-06-01

    Dense tin oxide films were successfully fabricated in an aqueous solution. The pH of the solutions was controlled to pH 1.3 by addition of HCl. Precise control of solution condition and crystal growth allowed us to obtain dense tin oxide films. Concave–convex surface of fluorine-doped tin oxide (FTO) substrates was entirely-covered with the continuous films. The films were about 65 nm in thickness and had nano-structured surfaces. Morphology of the films was strikingly different from our previous reported nano-sheet assembled structures. The films were not removed from the substrates by strong water flow or air blow to show strong adhesion strength. The aqueous solution process can be applied to surface coating of various materials such as nano/micro-structured surfaces, particles, fibers, polymers, metals or biomaterials. - Graphical abstract: Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. They had nano-structured surfaces. Concave-convex substrates were entirely-covered with the continuous films. - Highlights: • Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. • They had nano-structured surfaces. • Concave–convex substrates were entirely-covered with the continuous films.

  3. Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films

    NASA Astrophysics Data System (ADS)

    Choudhary, Sumita; Sarma, J. V. N.; Gangopadhyay, Subhashis

    2016-04-01

    We report a simple and efficient technique to form high quality single phase cuprous oxide films on glass substrate using thermal evaporation of thin copper films followed by controlled thermal oxidation in air ambient. Crystallographic analysis and oxide phase determination, as well as grain size distribution have been studied using X-ray diffraction (XRD) method, while scanning electron microscopy (SEM) has been utilized to investigate the surface morphology of the as grown oxide films. The formation of various copper oxide phases is found to be highly sensitive to the oxidation temperature and a crystalline, single phase cuprous oxide film can be achieved for oxidation temperatures between 250°C to 320°C. Cu2O film surface appeared in a faceted morphology in SEM imaging and a direct band gap of about 2.1 eV has been observed in UV-visible spectroscopy. X-ray photoelectron spectroscopy (XPS) confirmed a single oxide phase formation. Finally, a growth mechanism of the oxide film has also been discussed.

  4. Thermally-driven structural changes of graphene oxide multilayer films deposited on glass substrate

    NASA Astrophysics Data System (ADS)

    Lazauskas, A.; Baltrusaitis, J.; Grigaliūnas, V.; Guobienė, A.; Prosyčevas, I.; Narmontas, P.; Abakevičienė, B.; Tamulevičius, S.

    2014-11-01

    Graphene oxide (GO) has been recognized as an important intermediate compound for a potential low-cost large-scale graphene-like film fabrication. In this work, graphene oxide multilayer films deposited on glass substrate were reduced using different thermal reduction methods, including low-temperature annealing, flame-induced and laser reduction, and the corresponding surface morphology and structural properties were investigated. These graphene oxide thermal reduction methods strongly affected surface morphology and differently facilitated structural and chemical transformations of graphene oxide. As evidenced by Raman measurements, thermal annealing and laser reduction of graphene oxide produced more ordered graphene-like structure multilayer films. However, surface morphological differences were observed and attributed to the different de-oxidation mechanisms of GO. This Letter provides an important systematic comparison between the GO reduction methods and thermally-driven structural changes they provide to the reduced GO multilayer films obtained.

  5. Deformation behavior of the oxide film on the surface of cold sprayed powder particle

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Wang, Xiaofang; Li, Wenya; Liao, Hanlin; Jie, Hongen

    2012-10-01

    In cold spraying, oxide-free interface is an important factor for metal-to-metal contact between powder particles and substrate, which determines the bonding strength and final coating quality. In this study, a systematic finite element analysis (FEA) is performed to examine the deformation behavior of the oxide film on an Al 6061-T6 particle surface after deposition. The simulation results show that the oxide film can be disrupted during the high velocity impact. Part of the cracked oxides remains at the interface and mainly accumulates at the central region after particle deposition. Substrate hardness, particle velocity and spray angle are found to influence the deformation behavior and final state of the oxide film. Besides, interparticle interaction is also investigated in the present work to clarify the deformation behavior of the oxide film inside the coating.

  6. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGESBeta

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, chargemore » density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  7. Continuously Controlled Optical Band Gap in Oxide Semiconductor Thin Films.

    PubMed

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-03-01

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. Charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques. PMID:26836282

  8. ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Afdi Yunaz, Ihsanul; Miyajima, Shinsuke; Konagai, Makoto

    2010-05-01

    We successfully increased the haze value of zinc oxide (ZnO) films fabricated using metal-organic chemical vapor deposition (MOCVD) by conducting glass-substrate etching before film deposition. It was found that with increasing the glass treatment time, the surface morphology of ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like multi texture. Further, the rms roughness and the haze value of the films increased remarkably. Using ZnO films with a high haze value as front transparent conductive oxide (TCO) films in hydrogenated microcrystalline silicon (µc-Si:H) solar cells, we improved the quantum efficiency of these cells particularly in the long-wavelength region.

  9. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.

    PubMed

    Cheng, Yuanhang; Yang, Qing-Dan; Xiao, Jingyang; Xue, Qifan; Li, Ho-Wa; Guan, Zhiqiang; Yip, Hin-Lap; Tsang, Sai-Wing

    2015-09-16

    Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer. PMID:26280249

  10. Nickel oxide and molybdenum oxide thin films for infrared imaging prepared by biased target ion-beam deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yao; Saint John, David; Jackson, Tom N.; Horn, Mark W.

    2014-06-01

    Vanadium oxide (VOx) thin films have been intensively used as sensing materials for microbolometers. VOx thin films have good bolometric properties such as low resistivity, high negative temperature coefficient of resistivity (TCR) and low 1/f noise. However, the processing controllability of VOx fabrication is difficult due to the multiple valence states of vanadium. In this study, metal oxides such as nickel oxide (NiOx) and molybdenum oxide (MoOx) thin films have been investigated as possible new microbolometer sensing materials with improved process controllability. Nickel oxide and molybdenum oxide thin films were prepared by reactive sputtering of nickel and molybdenum metal targets in a biased target ion beam deposition tool. In this deposition system, the Ar+ ion energy (typically lower than 25 eV) and the target bias voltage can be independently controlled since ions are remotely generated. A residual gas analyzer (RGA) is used to precisely control the oxygen partial pressure. A real-time spectroscopic ellipsometry is used to monitor the evolution of microstructure and properties of deposited oxides during growth and post-deposition. The properties of deposited oxide thin films depend on processing parameters. The resistivity of the NiOx thin films is in the range of 0.5 to approximately 100 ohm-cm with a TCR from -2%/K to -3.3%/K, where the resistivity of MoOx is between 3 and 2000 ohm-cm with TCR from -2.1%/K to -3.2%/K. We also report on the thermal stability of these deposited oxide thin films.

  11. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    NASA Astrophysics Data System (ADS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  12. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  13. High dielectric constant nickel-doped titanium oxide films prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Fan, Cho-Han

    2014-09-01

    The electrical characteristics of nickel-doped titanium oxide films prepared by liquid-phase deposition on p-type (100) silicon substrate were investigated. The aqueous solutions of ammonium hexafluorotitanate and boric acid were used as precursors for the growth of titanium oxide films and the dielectric constant is 29. The dielectric constant can be improved to 94 by nickel doping at the thermal annealing at 700 °C in nitrous oxide.

  14. Preparation and optical properties of sol-gel-deposited electrochromic iron oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Tepehan, Fatma; Tepehan, Galip

    1997-10-01

    The preparation and optical properties of sol-gel deposited iron oxide films are investigated in this study. The films are deposited on glass by spin-coating from polymeric sol-gel solutions. The coating solutions were prepared from Fe(OCH3H7)3 and isopropanol. Fe2O3 films were obtained at a firing temperature 180 degrees Celsius. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and UV-Vis spectroscopy. The electrochemical properties of the films were studied in 0.5 M LiClO4/propylene carbonate (PC) solution. The CV results showed reversibility of the Li+/e- insertion/extraction process in the Fe2O3 films up to 200 cycles. Reduction and oxidation of the amorphous films in 0.5 M LiClO4-PC solution caused noticeable changes in optical absorption. XRD of the films showed that they had an amorphous structure. Fourier transform infrared spectroscopy (FTIR) measurements showed that the composition of the film is Fe2O3. In-situ spectrophotometric measurements indicated that these films show weak electrochromism in the spectral range of 350 - 800 nm. The optical band gap is estimated to be 1.92 eV for the amorphous film. The spectroelectrochemical properties clearly indicated that cyclic stability of the iron oxide films deteriorated above 200 cycles.

  15. Copper Oxide Substrates and Epitaxial Copper Oxide/Zinc Oxide Thin Film Heterostructures for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Darvish, Davis Solomon

    Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu 2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

  16. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    DOE PAGESBeta

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; Brochu, Mathieu

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bondsmore » between the films and the substrates.« less

  17. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    SciTech Connect

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; Brochu, Mathieu

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bonds between the films and the substrates.

  18. Crystal structure of thin oxide films grown on Zr-Nb alloys studied by RHEED

    NASA Astrophysics Data System (ADS)

    Khatamian, D.; Lalonde, S. D.

    1997-05-01

    The highly surface sensitive reflection high energy electron diffraction (RHEED) technique was used to determine thecrystal structure of oxide films grown on Zr-Nb alloys in air up to 673 K. The results show that the oxide films grown on Zr-2.5 wt% Nb(α-Zr + β-Zr) have a mixture of nearly-cubic-tetragona and monoclinic structures for films of 200 nm thick or less and that the outer layers of films thicker than 800 nm only have the monoclinic crystal structure. However, oxide films grown on Zr-20 wt% Nb (β-Zr) have a stabilized nearly-cubic-tetragonal structure for all film thicknesses, studied here, up to 2100 nm.

  19. Absorption of ac fields in amorphous indium-oxide films

    SciTech Connect

    Ovadyahu, Z.

    2014-08-20

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (In{sub x}O) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In{sub 2}O{sub 3−x}) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  20. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. PMID:27507447

  1. Electrocatalytic oxidation of methanol on polypyrrole film modified with platinum microparticles

    SciTech Connect

    Yang, H.; Lu, T.; Xue, K.; Sun, S.; Lu, G.; Chen, S.

    1997-07-01

    The electrocatalytic oxidation of methanol on polypyrrole (PPy) film modified with platinum microparticles has been studied by means of electrochemical and in situ Fourier transform infrared techniques. The Pt microparticles, which were incorporated in the PPy film by the technique of cyclic voltammetry, were uniformly dispersed. The modified electrode exhibits significant electrocatalytic activity for the oxidation of methanol. The catalytic activities were found to be dependent on Pt loading and the thickness of the PPy film. The linearly adsorbed CO species is the only intermediate of electrochemical oxidation of methanol and can be readily oxidized at the modified electrodes. The enhanced electrocatalytic activities may be due to the uniform dispersion of Pt microparticles in the PPy film and the synergistic effects of the highly dispersed Pt microparticles and the PPy film. Finally, a reaction mechanism is suggested.

  2. Optical and electrochromic properties of sol-gel-deposited tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozkan, Esra; Lee, Se-Hee; Liu, Ping; Tracy, C. Ed; Tepehan, Fatma Z.; Pitts, J. Roland; Deb, Satyen K.

    2001-11-01

    The electrochromic properties of sol-gel and mesoporous tungsten oxide thin films were investigated. Tungsten oxide films were prepared by a spin coating technique from an ethanolic solution of tungsten hexachloride. A block copolymer (BASF Pluronic p123, (p1) was employed as a template to generate the mesoporous structure. The electrochromic and optical properties of such films are described and compared to standard sol-gel tungsten oxide films. A novel ultraviolet (UV) illumination method was developed to remove the polymer templates and was found to improve the coloration efficiency of tungsten oxide in general. All types of films were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM), x- ray diffractometry and cyclic voltammetry.

  3. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  4. Formation of carriers in Ti-oxide thin films by substitution reactions

    SciTech Connect

    Liu, Y. S.; Lin, Y. H.; Wei, Y. S.; Liu, C. Y.

    2012-02-15

    Conductive Ti-oxide thin films are produced using a reactive sputtering and post-annealing process. The lowest resistivity of Ti-oxide thin films (2.30 x 10{sup -2}{Omega}-cm) can be achieved after annealing for 1 h at 400 deg. C in ambient O{sub 2}. Additionally, the Hall measurement results indicate that the carrier concentration increases during the initial 1-h annealing process before decreasing during subsequent annealing. By curve fitting the O{sub ls} core-level peaks in the x ray photoelectron spectroscopy (XPS) spectrum of the annealed Ti-oxide thin films, we found that the oxygen (O) vacancy concentration monotonically increases with annealing time, which differs from the behavior of the carrier concentration regarding annealing time. This means that the O-vacancy mechanism alone cannot explain the formation of carriers in Ti-oxide thin films. By curve-fitting core-level Ti peaks in the XPS spectrum of annealed Ti-oxide thin films, a Ti{sup 3+}-to-Ti{sup 4+} substitution reaction in the TiO{sub 2} phase of the Ti-oxide thin film after annealing plays the dominant role in the formation of conduction carriers. Instead of the O-vacancy mechanism, the Ti{sup 3+}-to-Ti{sup 4+} substitution mechanism can explain the concentration of carriers in Ti-oxide thin films following annealing.

  5. Production of Silicon Oxide like Thin Films by the Use of Atmospheric Plasma Torch

    NASA Astrophysics Data System (ADS)

    Ozono, E. M.; Fachini, E. R.; Silva, M. L. P.; Ruchko, L. F.; Galvão, R. M. O.

    2015-03-01

    The advantages of HMDS (hexamethyldisilazane) APT-plasma films for sensor applications were explored producing films in a three-turn copper coil APT equipment. HMDS was introduced into the argon plasma at four different conditions. Additional flux of oxygen could modulate the presence of organic components in the film, the composition varying from pure inorganic oxides to organo-silane polymers. Oxygen promoted deposition rates as high as 900 nm/min on silicon, acrylic or piezoelectric quartz crystal substrates. Films with a clustered morphology and refractive index of 1.45 were obtained, mainly due to a silicon oxide structure. Raman spectroscopy and XPS data showed the presence of CHn and amorphous carbon in the inorganic matrix. The films were sensitive to the humidity of the air. The adsorptive capabilities of outstanding films were tested in a Quartz Crystal Microbalance (QCM). The results support that those films can be a useful and simple alternative for the development of sensors.

  6. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  7. Permeability and partitioning of ferrocene ethylene oxide and propylene oxide oligomers into electropolymerized films from acetonitrile and polyether solutions

    SciTech Connect

    Pyati, R.; Murray, R.W. )

    1994-10-27

    We report the first electrochemically-based measurements of the rates of small polymer permeation into another polymer. The small polymer permeants are ferrocene ethylene oxide oligomers containing 2, 7, and 16 units and a propylene oxide oligomer containing 3 units. Their permeation into ultrathin microelectrode-supported films of the metal complex polymer poly[Ru(vbpy)[sub 3

  8. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    NASA Astrophysics Data System (ADS)

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-09-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles.

  9. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  10. Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Thompson, G. E.

    2015-01-01

    A sequential breakdown anodizing conditions on cp-Ti in phosphoric acid has been investigated in the present study. Anodic oxide films were formed at 100, 150, and 200 V, examined by scanning electron microscopy, Raman spectroscopy, glow discharge optical emission spectrometry, and electrochemical impedance spectroscopy. A porous oxide texture was formed at each voltage. The thickness of anodic porous oxide increased with the increase of anodic voltage. Nano-particulates were formed around and within the pores, and the size of pores increased with increased voltage due to the expansion of particulates. The amorphous-to-crystalline transition was initiated during the film growth. The degree of crystallinity in the anodic oxide film fabricated at 200 V is more abundant than 150 and 100 V. Increased content of the phosphorus species was incorporated into the porous film with the increase of anodic voltage, stabilizing for the nanocrystals developed within the oxide.

  11. Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide

    NASA Astrophysics Data System (ADS)

    Uplane, M. M.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S.; Sonavane, A. C.; Patil, P. S.

    2007-10-01

    Nickel oxide thin films were grown onto FTO-coated glass substrates by a two-step process: electrodeposition of nickel sulphide and their thermal oxidation at 425, 475 and 525 °C. The influence of thermal oxidation temperature on structural, optical, morphological and electrochromic properties was studied. The structural properties undoubtedly revealed NiO formation. The electrochromic properties were studied by means of cyclic voltammetry. The films exhibited anodic electrochromism, changing from a transparent state to a coloured state at +0.75 V versus SCE, i.e. by simultaneous ion and electron ejection. The transmittance in the coloured and bleached states was recorded to access electrochromic quality of the films. Colouration efficiency and electrochromic reversibility were found to be maximum (21 mC/cm 2 and 89%, respectively) for the films oxidized at 425 °C. The optical band gap energy of nickel oxide slightly varies with increase in annealing temperature.

  12. Tribocorrosion behavior of biofunctional titanium oxide films produced by micro-arc oxidation: Synergism and mechanisms.

    PubMed

    Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Cruz, Nilson Cristino da; Mesquita, Marcelo Ferraz; Takoudis, Christos; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim Adelino Ricardo

    2016-07-01

    Dental implants, inserted into the oral cavity, are subjected to a synergistic interaction of wear and corrosion (tribocorrosion), which may lead to implant failures. The objective of this study was to investigate the tribocorrosion behavior of Ti oxide films produced by micro-arc oxidation (MAO) under oral environment simulation. MAO was conducted under different conditions as electrolyte composition: Ca/P (0.3M/0.02M or 0.1M/0.03M) incorporated with/without Ag (0.62g/L) or Si (0.04M); and treatment duration (5 and 10min). Non-coated and sandblasted samples were used as controls. The surfaces morphology, topography and chemical composition were assessed to understand surface properties. ANOVA and Tukey׳s HSD tests were used (α=0.05). Biofunctional porous oxide layers were obtained. Higher Ca/P produced larger porous and harder coatings when compared to non-coated group (p<0.001), due to the presence of rutile crystalline structure. The total mass loss (Kwc), which includes mass loss due to wear (Kw) and that due to corrosion (Kc) were determined. The dominant wear regime was found for higher Ca/P groups (Kc/Kw≈0.05) and a mechanism of wear-corrosion for controls and lower Ca/P groups (Kc/Kw≈0.11). The group treated for 10min and enriched with Ag presented the lowest Kwc (p<0.05). Overall, MAO process was able to produce biofunctional oxide films with improved surface features, working as tribocorrosion resistant surfaces. PMID:26773646

  13. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  14. Effect of substrate temperature on structural and electrical properties of RF sputtered hafnium oxide thin films

    SciTech Connect

    Das, K. C.; Ghosh, S. P.; Tripathy, N.; Kar, J. P.; Bose, G.; Lee, T.; Myoung, J. M.

    2015-06-24

    In this work hafnium oxide thin films were deposited on p-type silicon substrate by Radio frequency magnetron sputtering at different substrate temperature ranging from room temperature to 300 °C. The structural and electrical properties of the sputtered films were investigated by x-ray diffraction, capacitance-voltage and current-voltage measurements. The XRD results show the formation monoclinic structure of the hafnium oxide thin films. The shifting of C-V curves towards negative voltage side depicts the increase in positive oxide charges with the rise of substrate temperature. Leakage current was found increased, when temperature enhanced from room temperature to 300 °C.

  15. Induction of superconductivity of a La2CuO4 thin film chemically oxidized by NaClO

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Cui, M. L.; Zheng, X.; Zhu, J.

    High-quality, c-axis-oriented La2CuO4 thin films have been fabricated by the pulsed laser ablation technique. Superconductivity has been successfully induced in the films after chemical oxidation using sodium hypochlorite solution as oxidizing agent. The structural properties, surface morphology, and electrical resistivity before and after oxidation are compared. In addition, the oxidation mechanism is discussed.

  16. Electrochromic characteristics of niobium-doped titanium oxide film on indium tin oxide/glass by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Chia-Jung

    2015-10-01

    Ammonium hexafluorotitanate and boric acid aqueous solutions were used as precursors for the growth of titanium oxide films on indium tin oxide (ITO)/glass substrate. For as-grown titanium oxide film used in an electrochromic device, Li+ ions from electrolyte will be trapped to hydroxyl groups and degrade the electrochromic durability during the cyclic voltammogram characterization. For niobium doped titanium oxide film, lower growth rate from more HF incorporation from the niobium doped solution and rougher surface morphology from the formation of nanocrystals were obtained. However, niobium doping reduces hydroxyl groups and the electrochromic durability is enhanced from 5 × 103 to 1 × 104 times. The transmittance is enhanced from 37 to 51% at the wavelength of 550 nm.

  17. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  18. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    SciTech Connect

    Nicholas, Jason.D.

    2007-06-30

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  19. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  20. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    SciTech Connect

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  1. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  2. Nontraditional Amorphous Oxide Semiconductor Thin-Film Transistor Fabrication

    NASA Astrophysics Data System (ADS)

    Sundholm, Eric Steven

    Fabrication techniques and process integration considerations for amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this dissertation. Within this theme three primary areas of focus are pursued. The first focus involves formulating a general framework for assessing passivation. Avoiding formation of an undesirable backside accumulation layer in an AOS bottom-gate TFT is accomplished by (i) choosing a passivation layer in which the charge neutrality level is aligned with (ideal case) or higher in energy than that of the semiconductor channel layer charge neutrality level, and (ii) depositing the passivation layer in such a manner that a negligible density of oxygen vacancies are present at the channel-passivation layer interface. Two AOS TFT passivation schemes are explored. Sputter-deposited zinc tin silicon oxide (ZTSO) appears promising for suppressing the effects of negative bias illumination stress (NBIS) with respect to ZTO and IGZO TFTs. Solution-deposited silicon dioxide is used as a barrier layer to subsequent PECVD silicon dioxide deposition, yielding ZTO TFT transfer curves showing that the dual-layer passivation process does not significantly alter ZTO TFT electrical characteristics. The second focus involves creating an adaptable back-end process compatible with flexible substrates. A detailed list of possible via formation techniques is presented with particular focus on non-traditional and adaptable techniques. Two of the discussed methods, “hydrophobic surface treatment”and “printed local insulator,” are demonstrated and proven effective. The third focus is printing AOS TFT channel layers in order to create an adaptable and additive front-end integrated circuit fabrication scheme. Printed zinc indium aluminum oxide (ZIAO) and indium gallium zinc oxide (IGZO) channel layers are demonstrated using a SonoPlot piezoelectric printing system. Finally, challenges associated with printing electronic

  3. Chemical and optical properties of thermally evaporated manganese oxide thin films

    SciTech Connect

    Al-Kuhaili, M. F.

    2006-09-15

    Manganese oxide thin films were deposited using thermal evaporation from a tungsten boat. Films were deposited under an oxygen atmosphere, and the effects of thickness, substrate temperature, and deposition rate on their properties were investigated. The chemical properties of the films were studied using x-ray photoelectron spectroscopy and x-ray fluorescence. The optical properties were determined from normal-incidence transmittance and reflectance. Based on the chemical and optical characterizations, the optimum conditions for the deposition of the films were investigated. Subsequently, the optical properties (refractive index, extinction coefficient, and band gap) of these films were determined.

  4. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    SciTech Connect

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  5. Electrochromism of dip-coated Fe-oxide, Fe/Ti-oxide and Fe/Si-oxide films prepared by the sol-gel route

    SciTech Connect

    Orel, B.; Macek, M.; Surca, A.

    1994-12-31

    Iron oxide films which were synthesized via the sol-gel route from the iron (III) chloride precursor exhibit electrochromism (T{sub b}-T{sub c} {approx_equal} 55% at 400 nm) in LiOH (0.01 M) electrolyte. The structure of the XRD amorphous films was identified with the help of near-normal reflection absorption (6{degree}) (IRRA) and near-grazing incidence angle (NGIA) FT-IR spectroscopy to correspond to the nano-crystalline {gamma}-Fe{sub 2}O{sub 3}. Ex-situ NGIA FT-IR spectra of bleached and re-colored films were measured and it was found that the Fe-oxide films irreversibly change to the new phase in which ``amorphous iron oxide`` is admixed with the characteristic LO mode at 545 cm{sup {minus}1}. Electrochemical stability of the Fe-oxide film was modified by admixing other non-absorbing Ti and Si-oxides. The structure of the mixed oxide films was identified from the corresponding IR spectra and was described as translatory disordered solid solution in which the phonon modes exhibit one mode (Fe/Ti-oxide) and two-mode (Fe/Si-oxide) behavior. Electrochemical investigations revealed that the films are able to uptake reversibly Li{sup +}, Na{sup +}, K{sup +} ions with Q/d values in the range 0.1--0.31 mQ/cm{sup 2}nm. The electrochromic properties of the films investigated were established from the measured in-situ UV-VIS spectroelectrochemical measurements which revealed that the electrochromic efficiencies ({Delta}OD/Q{sub (de)int}) are in the range of 6--14 cm{sup 2}/C. The nature of the electrochromic process is discussed and correlated to the absorption edges of the various iron oxygenated compounds.

  6. Quantitative analysis of oxygen content in copper oxide films using ultra microbalance

    SciTech Connect

    Shu, Yonghua; Wang, Lianhong; Liu, Chong; Fan, Jing

    2014-12-09

    Copper oxide films were prepared on quartz substrates through electron beam physical vapor deposition in a vacuum chamber, and the films were observed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The oxygen content of the films were analyzed using an ultra microbalance. Results indicated that when the substrate was heated to 600°C and the oxygen flow rate was 5 sccm, the film was composed of 47% Cu and 53% Cu2O (mass percent), and the oxidation ratio of copper was 25%. After the deposition process at the same condition, i.e. the substrate at temperature of 600°C and blowed by oxygen flowrate of 5 sccm, then in-stu annealed at 600°C in low oxygen pressure of 10 Pa for 30 minutes, the film composition became 22% Cu2O and 78% CuO (mass percent), and the oxidation ratio of copper greatly increased to about 88%.

  7. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid.

    PubMed

    Hanawa, T; Asami, K; Asaoka, K

    1998-06-15

    The change in potential during repassivation of titanium in artificial bioliquids was examined, and the regenerated surface oxide film on titanium was characterized using X-ray photoelectron spectroscopy and Auger electron spectroscopy to elucidate the repassivation reaction of titanium in a biological system. The repassivation rate in Hanks' solution was slower than that in saline and was not influenced by the pH of the solution. This indicates that more titanium ions dissolve in a biological system than hitherto was predicted when the surface film is destroyed. Phosphate ions are taken up preferentially in the surface film during regeneration, and the film consists of titanium oxide and titanium oxyhydroxide containing titanium phosphate. Calcium ions and phosphate ions are adsorbed by the film after regeneration, and calcium phosphate or calcium titanium phosphate is formed at the outermost surface. Ions constituting Hanks' solution other than calcium and phosphate were absent from the surface oxide. PMID:9599028

  8. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  9. Electrochromic properties of vanadium oxide thin films prepared by PSPT: Effect of substrate temperature

    NASA Astrophysics Data System (ADS)

    Patil, C. E.; Jadhav, P. R.; Tarwal, N. L.; Deshmukh, H. P.; Karanjakar, M. M.; Wali, A. A.; Patil, P. S.

    2013-06-01

    Electrochromic vanadium oxide (V2O5) thin films were deposited onto glass and fluorine doped tin oxide (FTO) coated glass substrates from methanolic vanadium chloride solution by pulsed spray pyrolysis technique (PSPT). The films were synthesized at different substrate temperatures ranging from 350°C-450°C with a temperature step of 50°C. The structural, morphological, optical and electrochromic properties of the synthesized films were investigated. The films were polycrystalline with tetragonal crystal structure. Scanning electron microscopy reveals compact morphology at high temperature. All films exhibited cathodic electrochromism in lithium containing electrolyte (0.5 M LiClO4 + Propylene Carbonate). Maximum coloration efficiency (CE) 15.16 cm2C-1, was observed for the films deposited at 350°C.

  10. Sputtered cadmium oxide as a surface pretreatment for graphite solid-lubricant films

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1987-01-01

    Sputtered films of cadmium oxide were applied to sand blasted AISI 440C HT stainless steel disks as a surface pretreatment for the application of rubbed graphite films. Mixtures of cadmium oxide and graphite were applied to the nonpretreated sandblasted metal and evaluated. The results were compared to graphite films applied to other commercially available surface pretreatments. It is found that sputtered CdO pretreated surfaces increase the endurance lives of the graphite films and decrease the counterface steady state wear rate of the pins almost an order of magnitude compared to commercially available pretreatments. The CdO additions in general improved the tribological properties of graphite. The greatest benefit occurred when it was applied to the substrate rather than mixing it with the graphite and that sputtered films of CdO perform much better than rubbed CdO films.

  11. Sputtered cadmium oxide as a surface pretreatment for graphite solid lubricant films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1986-01-01

    Sputtered films of cadmium oxide were applied to sand blasted AISI 440C HT stainless steel disks as a surface pretreatment for the application of rubbed graphite films. Mixtures of cadmium oxide and graphite were applied to the nonpretreated sandblasted metal and evaluated. The results were compared to graphite films applied to other commercially available surface pretreatments. It is found that sputtered CdO pretreated surfaces increase the endurance lives of the graphite films and decrease the counterface steady state wear rate of the pins almost an order of magnitude compared to commercially available pretreatments. The CdO additions in general improved the tribological properties of graphite. The greatest benefit occurred when it was applied to the substrate rather than mixing it with the graphite and that sputtered films of CdO perform much better than rubbed CdO films.

  12. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Han-Ki; Seong, Tae-Yeon; Lim, Jae-Hong; Cho, Won, Ii; Soo Yoon, Young

    The electrochemical and structural properties of cobalt oxide films which are deposited at different sputtering gas-ratios of O 2/(Ar+O 2) are investigated. In order to examine the electrochemical properties of the as-deposited films, all solid-state thin-film supercapacitors (TFSCs) are fabricated. There consist of Co 3O 4 electrodes and an amorphous LiPON thin-film electrolyte. It is shown that the capacitance behaviour of the Co 3O 4/LiPON/Co 3O 4 TFSCs is similar to bulk-type supercapacitor behaviour. It is further shown that the electrochemical behaviour of the TFSCs is dependent on the sputtering gas-ratios. The gas-ratio dependence of the capacitance of the oxide electrode films is discussed based on X-ray diffraction (XRD) and electrical results for the Co 3O 4 films.

  13. Direct growth of oxide nanowires on CuOx thin film.

    PubMed

    Kim, Hwansoo; Lee, Byung Kook; An, Ki-Seok; Ju, Sanghyun

    2012-02-01

    Oxide nanowires were directly grown on a CuO(x) thin film deposited by plasma-enhanced atomic layer deposition without additional metal catalysts. Oxide nanowires would exhibit metal-catalyst-free growth on the CuO(x) thin film with oxide materials diffused on the top. Through a focused ion beam and transmission electron microscopy, we could verify that SnO(2) and ZnO nanowires were grown as single-crystalline structures just above the CuO(x) thin film. Bottom-gate structural SnO(2) and ZnO nanowire transistors exhibited mobilities of 135.2 and 237.6 cm(2) V(-1) s(-1), respectively. We anticipate that a variety of large-area and high-density oxide nanowires can be grown at low cost by using the CuO(x) thin film. PMID:22214566

  14. Oxide film defects in Al alloys and the formation of hydrogen- related porosity

    NASA Astrophysics Data System (ADS)

    Griffiths, W. D.; Gerrard, A. J.; Yue, Y.

    2016-03-01

    Double oxide film defects have also been held responsible for the origins of hydrogen porosity, where hydrogen dissolved in the Al melt passes into the interior atmosphere of the double oxide film defect causing it to inflate. However, this is in opposition to long- established evidence that H cannot readily diffuse through aluminium oxide. To investigate this further, samples of commercial purity Al were first degassed to remove their initial H content, and then heated to above their melting point and held in atmospheres of air and nitrogen respectively, to determine any differences in H pick-up. The experiment showed that samples held in an oxidising atmosphere, and having an oxide skin, picked up significantly less H than when the samples were held in a nitrogen atmosphere, which resulted in the formation of AlN in cracks in the oxide skin of the sample. It is suggested that double oxide film defects can give rise to hydrogen-related porosity, but this occurs more quickly when the oxygen in the original oxide film defect has been consumed by reaction with the surrounding melt and nitrogen reacts to form AlN, which is more permeable to H than alumina, more easily allowing the oxide film defect to give rise to a hydrogen pore. This is used to interpret results from an earlier synchrotron experiment, in which a small pore was seen to grow into a larger pore, while an adjacent large pore remained at a constant size.

  15. Synthesis and characterization of barium iron oxide and bismuth iron oxide epitaxial films

    NASA Astrophysics Data System (ADS)

    Callender Bennett, Charlee J.

    Much interest exists in perovskite oxide materials and the potential they have in possessing two or more functional properties. In recent years, research on developing new materials with simultaneous ferromagnetic and ferroelectric behavior is the key to addressing possible challenges of new storage information applications. This work examines the fundamental properties of a perovskite oxide, namely BaFeO3, and the investigation of properties of a solid solution between BaFeO3 and BiFeO3. The growth and properties of epitaxial BaFeO3 thin films in the metastable cubic perovskite phase are examined. BaFeO3 films were grown on (012) LaAlO3 and (001) SrTiO3 single crystal substrates by pulsed-laser deposition. X-ray diffraction shows that in situ growth at temperatures between 650-850°C yields an oxygen-deficient BaFeO 2.5+x pseudo-cubic perovskite phase that is insulating and paramagnetic. Magnetization measurements on the asdeposited BaFeO3 films indicate non-ferromagnetic behavior. Annealing these films in 1 atm oxygen ambient converts the films into a pseudo-cubic BaFeO3-x phase that is ferromagnetic with a Curie temperature of 235 K. The observation of ferromagnetism with increasing oxygen content is consistent with superexchange coupling of Fe +4-O-Fe+4. The effects of anneal conditions on BaFeO3 are studied. X-ray characterization, such as reciprocal space maps, show more complex structure for as-grown BaFeO3-x epitaxial films. Epitaxial films grown at low laser energies are highly crystalline. However, they decompose after annealing. When grown at high laser energies, films exhibit complex structure which "cleans up" to a single pseudocubic or tetragonal structure upon ex situ anneal in oxygen ambient environment. Superlattices of BaFeO 3/SrTiO3 were synthesized to explore the nature of "cracking" in annealed BaFeO3, which occurs due to large change in lattice parameter. Magnetization of ex situ annealed BaFeO3-x epitaxial films were examined as a function of

  16. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  17. Platinum-induced structural collapse in layered oxide polycrystalline films

    NASA Astrophysics Data System (ADS)

    Wang, Jianlin; Huang, Haoliang; Liu, Changhui; Fu, Zhengping; Zhai, Xiaofang; Peng, Ranran; Lu, Yalin

    2015-03-01

    Effect of a platinum bottom electrode on the SrBi5Fe1-xCoxTi4O18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO2, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO2, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  18. Fabrication and Characterization of Rapidly Oxidized p-Type Cu2O Films from Cu Films and their Application to Heterojunction Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Soo; Lim, Jung Wook; Yun, Sun Jin; Park, Min A.; Park, Se Yong; Lee, Seong Eui; Lee, Hee Chul

    2013-10-01

    In this study, we report that the metal Cu deposited on a glass substrate is formed into a stable p-type Cu2O film with excellent properties through rapid thermal oxidation (RTO). The pre-deposited Cu film layer went through thermal oxidation in the temperature range of 200-500 °C in O2 and air ambient, and the electrical and optical properties were intensively investigated. The optimized p-type Cu2O film heat-treated at a temperature of 200 °C in an air ambient has a carrier concentration of 1.25×1017 cm-3, mobility of 0.51 cm2 V-1 s-1, and resistivity of 9.86 Ω cm; its optical band gap reaches about 2.4 eV. Using the p-type Cu2O film with i- and n-type amorphous silicon layers, heterojunction thin-film solar cells were fabricated on glass substrates. These transparent solar cells employed Ga-doped ZnO films as top and bottom electrodes. Solar cells with Cu2O film oxidized at 200 °C in an air ambient have an open circuit voltage of 0.36 V, short-circuit current of 15.2 mA/cm2, and photoelectric conversion efficiency of 1.98%.

  19. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    PubMed

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-01

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. PMID:26097134

  20. Preparation Of Transparent Conducting Zinc Oxide Films By RF Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Vasanelli, L.; Valentini, A.; Losacco, A.

    1986-09-01

    Transparent conducting zinc oxide films have been prepared by reactive sputtering in an Ar/H2 mixture. The optical and electrical properties of the films are presented and discussed. The effects of some post-deposition thermal treatment have been also investigated. ZnO/CdTe heterojunctions have .been prepared by sputtering ZnO films on CdTe single crystals. The photovoltaic conversion efficiencies of the obtained solar cells was 6.8%.

  1. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  2. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.

    PubMed

    Wang, Ranran; Sun, Jing; Gao, Lian; Xu, Chaohe; Zhang, Jing; Liu, Yangqiao

    2011-03-01

    SWCNT-reduced graphite oxide hybrid films were prepared by a filtration method. An efficient post-treatment procedure was designed to reduce GO and remove dispersants simultaneously. The sheet resistance decreased significantly after treatment, by a factor of 4-13 times. Films with excellent performance (95.6%, 655 Ω per square) were obtained and had great potential applications. PMID:21132173

  3. Structural evolution and adhesion of titanium oxide film containing phosphorus and calcium on titanium by anodic oxidation.

    PubMed

    Lin, C S; Chen, M T; Liu, J H

    2008-05-01

    This study investigated the microstructure evolution and defects of the titanium oxide layer containing calcium (Ca) and phosphorus (P) formed by anodic oxidation in a solution containing Ca and P compounds. Results show that the anodic film exhibited a two-layer structure: a pore-containing amorphous titanium oxide layer dispersed with nano-sized crystallites formed prior to sparking, and a porous overlay dotted with craters formed after sparking. Ca and P were predominantly incorporated in the porous overlay, in which the amorphous region contained more Ca and P than the crystalline region regardless of the anodizing voltages. Moreover, the ratio of amorphous to crystalline regions in the porous overlay changed insignificantly with anodizing voltage. Increasing anodizing voltage enhanced the incorporation of Ca and P in the anodic film, but deteriorated the adhesion of the anodic film to the substrate. This deterioration was related to two inherent adhesive weaknesses: the aligned pores in the titanium oxide layer and the craters in the major overlay, signifying that a new anodic oxidation process that can produce high Ca- and P-containing oxide film at relatively-low anodizing voltages, i.e. approximately 200 V, is a necessity. PMID:17688247

  4. CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation.

    PubMed

    Durrani, S M A; Khawaja, E E; Al-Kuhaili, M F

    2005-03-15

    Undoped thin films of tin oxide and those doped with indium oxide and nickel oxides were deposited by electron beam evaporation. The effects of the film thickness and preparation conditions (films prepared with or without the presence of oxygen environment during deposition) on the optical and carbon monoxide sensing properties of the films were studied. The films were characterized using X-ray diffraction and X-ray photoelectron spectroscopy and optical spectroscopy techniques. All the films were found to be amorphous. It was found that the sensitivity of the films to CO increased with the thickness and the porosity of the films. It was found that their selectivity to CO gas relative to CO(2) and SO(2) gases could be improved upon doping the films with indium (or nickel) oxide. PMID:18969926

  5. [XPS and UPS characterization for Cr and Mn in high-temperature oxide films of bulk nanocrystalline 304 stainless steel].

    PubMed

    Xu, Song-Ning; Wang, Sheng-Gang; Han, Hai-Bao; Sun, Nai-Kun

    2013-03-01

    The authors studied the binding energies of valence electrons of two oxide scales, the atomic percentages of Cr and Mn elements in two oxide films, the work function of two oxide films on bulk nanocrystalline 304 stainless steel (BN-SS304) and conventional polycrystalline 304 stainless steel (CP-SS304). BN-SS304 was prepared by severe rolling technique, and the two oxide films were formed in atmosphere at 900 degrees C for 24 hours oxidation on BN-SS304 and CP-SS304 surfaces. In the two oxide films, Cr and Mn elements exist in the forms of Cr3+, Cr0, Mn4+ and Mn0. The atomic percentage ratios of Cr+ / (Cr3+ + Cr0) and Mn4+ / (Mn4+ + Mn0) in the oxide film on BN-SS304 are lower than those in the oxide film on CP-SS304. The interactions of the two oxides and the valence electrons of elements are Mn-O, Cr-O,3d and 4s of Mn0 and Cr0. The binding energies of the valence electrons in the oxide film on BN-SS304 are larger than those in the oxide film on CP-SS304, the work function of the oxide film on BN-SS304 is 0.07 eV larger than that on CP-SS304. PMID:23705465

  6. Characterization of quaternary metal oxide films by synchrotron x-ray fluorescence microprobe

    SciTech Connect

    Perry, D.L.; Thompson, A.C.; Russo, R.E.

    1997-04-01

    A high demand for thin films in industrial technology has been responsible for the creation of new techniques for the fabrication of such films. One highly effective method for the syntheses of variable composition thin films is pulsed-laser deposition (PLD). The technique has a large number of characteristics which make it an attractive approach for making films. It offers rapid deposition rates, congruent material transfer, simple target requirements from which to make the films, in situ multilayer deposition, and no gas composition or pressure requirements. Additionally, the technique can also afford crystalline films and films with novel structures. Pulsed-laser deposition can be used to make films of semiconductors, insulators, high-temperature superconductors, diamond-like films, and piezoelectric materials. Quaternary metal oxides involving calcium, nickel, and potassium have been shown to be quite effective in the catalysis of coal gasification and methane coupling. One approach to incorporating all three of the metal oxides into one phase is the use of laser ablation to prepare films of the catalysts so that they may be used for coatings, smooth surfaces on which to conduct detailed studies of gas-solid interface reactions that are involved in catalytic processes, and other applications. The problem of dissimilar boiling points of the three metal oxides system is overcome, since the laser ablation process effects the volatilization of all three components from the laser target essentially simultaneously. There is strong interest in gaining an understanding of the chemical and morphological aspects of the films that are deposited. Phenomena such as lattice defects and chemical heterogeneity are of interest. The experimental data discussed here are restricted to the matrix homogeneity of the films themselves for films which were void of microparticles.

  7. Effects of working pressure on physical properties of tungsten-oxide thin films sputtered from oxide target

    SciTech Connect

    Riech, I.; Acosta, M.; Pena, J. L.; Bartolo-Perez, P.

    2010-03-15

    Tungsten-oxide films were deposited on glass substrates from a metal-oxide target by nonreactive radio-frequency sputtering. The authors have studied the effect that changing Ar gas pressure has on the electrical, optical, and chemical composition in the thin films. Resistivity of WO{sub 3} changed ten orders of magnitude with working gas pressure values from 20 to 80 mTorr. Thin films deposited at 20 mTorr of Ar sputtering pressure showed lower resistivity and optical transmittance. X-ray photoelectron spectroscopy (XPS) measurements revealed similar chemical composition for all samples irrespective of Ar pressure used. However, XPS analyses of the evolution of W 4f and O 1s peaks indicated a mixture of oxides dependent on the Ar pressure used during deposition.

  8. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  9. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  10. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  11. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    NASA Astrophysics Data System (ADS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-05-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water.

  12. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation.

    PubMed

    Salomäki, Mikko; Tupala, Matti; Parviainen, Timo; Leiro, Jarkko; Karonen, Maarit; Lukkari, Jukka

    2016-04-26

    The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction. PMID:27049932

  13. In situ x-ray photoemission studies of the oxidation of Y-Ba-Cu films

    SciTech Connect

    Price, R.J.; Jackman, R.B.; Foord, J.S.

    1988-12-15

    X-ray photoemission has been used to investigate the formation of Y-Ba-Cu films on Si(100) and as an in situ probe of their subsequent oxidation to yield the associated oxide ceramic. The layers are prepared by coevaporation of the metallic components under ultrahigh vacuum, and pure alloy phases can be deposited at 300 K; reaction with the underlying substrate resulting in loss of Cu and incorporation by Si in the film takes place, however, at higher temperatures. Room-temperature oxidation stabilizes the film against this interaction and results in the preferential oxidation and surface segregation of barium at the expense of Cu. This segregation process becomes even more apparent during higher temperature (approx.600 K) oxidation reactions. Chemical shifts and associated effects in x-ray photoelectron spectra are used to infer information on the chemical changes that occur in the film as oxidation proceeds. The thin-film phases prepared in situ in this work reveal a very similar surface composition to bulk superconducting samples prepared ex situ. This suggests that the surface segregation in bulk samples does not simply result from reaction with species such as water vapor, but instead may represent an equilibrium state of the oxide-oxygen interface.

  14. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates

    NASA Astrophysics Data System (ADS)

    Yan, Baojun; Liu, Shulin; Heng, Yuekun

    2015-04-01

    Microchannel plate (MCP) as a key part is a kind of electron multiplied device applied in many scientific fields. Oxide thin films such as zinc oxide doped with aluminum oxide (ZnO:Al2O3) as conductive layer and pure aluminum oxide (Al2O3) as secondary electron emission (SEE) layer were prepared in the pores of MCP via atomic layer deposition (ALD) which is a method that can precisely control thin film thickness on a substrate with a high aspect ratio structure. In this paper, nano-oxide thin films ZnO:Al2O3 and Al2O3 were prepared onto varied kinds of substrates by ALD technique, and the morphology, element distribution, structure, and surface chemical states of samples were systematically investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS), respectively. Finally, electrical properties of an MCP device as a function of nano-oxide thin film thickness were firstly studied, and the electrical measurement results showed that the average gain of MCP was greater than 2,000 at DC 800 V with nano-oxide thin film thickness approximately 122 nm. During electrical measurement, current jitter was observed, and possible reasons were preliminarily proposed to explain the observed experimental phenomenon.

  15. Low energy SIMS characterization of passive oxide films formed on a low-nickel stainless steel in alkaline media

    NASA Astrophysics Data System (ADS)

    Fajardo, S.; Bastidas, D. M.; Ryan, M. P.; Criado, M.; McPhail, D. S.; Morris, R. J. H.; Bastidas, J. M.

    2014-01-01

    Low-energy secondary ion mass spectrometry (SIMS) was used to study the oxide films formed on a low-nickel austenitic stainless steel (SS), potential replacement to conventional AISI 304 SS in reinforced concrete structures (RCS) that are subjected to aggressive environments. The effect of carbonation and the presence of chloride ions were studied. The oxide films formed a chemically gradated bi-layer structure with an outer layer predominately constituted by iron oxides and an inner layer enriched in chromium oxides. Chloride ions were not found in the oxide film but did have an effect on film structure and thickness.

  16. Investigation on vanadium oxide thin films deposited by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Margoni, Mudaliar Mahesh; Mathuri, S.; Ramamurthi, K.; Babu, R. Ramesh; Sethuraman, K.

    2016-05-01

    Vanadium oxide thin films were deposited at 400 °C by spray pyrolysis technique using 0.1 M aqueous precursor solution of ammonium meta vanadate (AMV) with two different pH values. X-ray diffraction results showed that the film prepared using aqueous precursor AMV solution (solution A; pH 7) is amorphous in nature and the film prepared by adding HNO3 in the AMV aqua solution A (solution B; pH 3) is polycrystalline in nature. Vanadium oxide film prepared from the precursor solution B is in the mixed phases of V2O5 and V4O7. Crystallinity is improved for the film prepared using solution B when compared to film prepared from solution A. Crystallite size, strain and dislocation density calculated for the film prepared from solution B is respectively 72.1 nm, 0.4554 × 10-3 lin.-2m-4 and 1.7263 × 1014 lin.m-2. Morphology study revealed that the size of the flakes formed on the surface of the films is influenced by the pH of the precursor solution. Average Visible Transmittance and maximum transmittance of the deposited films exceed 70% and the direct optical band gap value calculated for the films deposited from A and B solution is 1.91 eV and 2.08 eV respectively.

  17. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  18. Low temperature deposition of indium tin oxide films by plasma ion-assisted evaporation.

    PubMed

    Füchsel, Kevin; Schulz, Ulrike; Kaiser, Norbert; Tünnermann, Andreas

    2008-05-01

    Coatings of transparent conductive oxides, especially indium tin oxide (ITO), are important in different fields. So far, application of these materials has been limited to substrates with high thermal stability. We describe an improved coating process for ITO based on plasma ion-assisted evaporation at a substrate temperature below 100 degrees C, which is suitable for organic substrates. In characterizing the thin films, we used the classical Drude theory to calculate the resistivity from optical film properties and compared the data with linear four-point measurements. X-ray diffraction spectroscopy was used to determine the structural properties of the thin films. PMID:18449263

  19. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  20. Effect of substrate temperature on electrochromic properties of spray-deposited Ir-oxide thin films

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.

    2005-08-01

    Electrochromic iridium oxide thin films were prepared by using a simple and inexpensive spray pyrolysis technique onto fluorine doped tin oxide (FTO)-coated glass substrates, from iridium chloride solution. The substrate temperature was varied between 250 and 400 °C. The as-deposited samples were amorphous. The electrochromic properties of thin films were studied in aqueous electrolyte (0.5N H 2SO 4) using cyclic voltammetry (CV), chronoamperometry (CA) and spectroelectrochemical techniques. The films exhibit anodic electrochromism upon intercalation and deintercalation of H + ions. The colouration efficiency at 630 nm was calculated and found maximum for I 250 sample, owing its hydration.

  1. Atomic layer deposition of quaternary oxide (La,Sr)CoO3-δ thin films.

    PubMed

    Ahvenniemi, E; Matvejeff, M; Karppinen, M

    2015-05-01

    A novel atomic layer deposition (ALD) process was developed for fabricating quaternary cobalt oxide (La1-xSrx)CoO3-δ thin films having the eye on future applications of such films in e.g. solid oxide fuel cell cathodes, oxygen separation membranes or thermocouples. The deposition parameters and the conditions of a subsequent annealing step were systematically investigated, and using the thus optimized parameters the cation stoichiometry in the films could be accurately tuned. The most detailed study was conducted for x = 0.7, i.e. the composition with the highest application potential within the (La1-xSrx)CoO3-δ system. PMID:25826428

  2. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    PubMed Central

    2013-01-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO. PMID:24059434

  3. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    SciTech Connect

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-03-15

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential <111> texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory.

  4. Structural Characterisation of Complex Oxide & Rare Earth Manganite Thing Films by Microscopy

    NASA Astrophysics Data System (ADS)

    Jehanathan, Neerushana

    This PhD thesis presents the work on specific complex oxides and rare earth manganite thin films which were characterized mainly by transmission electron microscopy (TEM). The scientific results are divided in two main parts: the first part is devoted to the complex oxide films and the second to the rare earth manganite films. I. Complex oxides: The compositional influence of Cr, Al and Y on the microstructure of Mg-Cr-O, Mg-Al-O, Mg-Y-0 and Y-Al-O films synthesized by a reactive magnetron sputtering technique is reported. The study was based on a series of films with a range of compositions (metal ratios) deposited on Si substrates (without external substrate heating). The film thickness is about 1 μm (±200 nm). The effect of high temperatures (973 K to 1223 K) on the microstructural evolution of Mg-AlO, Mg-Cr-O and Y-Al-O films with specific metal ratios is also reported. II. Rare Earth Manganite Films: The microstructure and defect characterisation of hexagonal ReMnO3 (Re=Y, Tb, Dy, Ho and Er) thin films and multilayers is reported. The effect of off-stoichiometry on the microstructure of some hexagonal ReMnO3 (Re=Er, Dy and Ho) films with specific cationic ratios is also discussed. These thin films and multilayers were deposited on (111) YSZ and (111) Pt/TiO2/SiO 2/Si (stack) substrates by liquid injection metal organic chemical vapour deposition (MOCVD). The thickness of the films and multilayers is between 10 nm and 500 nm.

  5. Synthesis of nanometric iron oxide films by RPLD and LCVD for thermo-photo sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.; Gorbachuk, N. T.

    2011-11-01

    Iron oxide films were deposited on <100> Si substrates by reactive pulsed laser deposition (RPLD) using a KrF laser (248 nm). These films were deposited too by laser (light) chemical vapor deposition (LCVD) using continuous ultraviolet photodiode radiation (360 nm). The deposited films demonstrated semiconducting properties. These films had large thermo-electromotive force (e.m.f.) coefficient ( S) and high photosensitivity ( F). For films deposited by RPLD the S coefficient varied in the range 0.8-1.65 mV/K at 205-322 K. This coefficient depended on the band gap ( E g ) of the semiconductor films, which varied in the range 0.43-0.93 eV. The largest F value found was 44 Vc/W for white light at power density I≅0.006 W/cm2. Using LCVD, iron oxide films were deposited from iron carbonyl vapor. For these films, the S coefficient varied in the range -0.5 to 1.5 mV/K at 110-330 K. The S coefficient depended on E g of the semiconductor films, which varied in the range 0.44-0.51 eV. The largest F value of these films was about 40 Vc/W at the same I≅0.006 W/cm2. Our results showed that RPLD and LCVD can be used to synthesize iron oxide thin films with variable stoichiometry and, consequently, with different values of E g . These films have large S coefficient and high photosensitivity F and therefore can be used as multi-parameter sensors: thermo-photo sensors.

  6. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  7. Difference in charge transport properties of Ni-Nb thin films with native and artificial oxide

    SciTech Connect

    Trifonov, A. S.; Lubenchenko, A. V.; Polkin, V. I.; Pavolotsky, A. B.; Ketov, S. V.; Louzguine-Luzgin, D. V.

    2015-03-28

    Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope. Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The shape of current-voltage characteristic curves is unique in both cases and no analogical behavior is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to detect chemical composition of the oxide films and the oxidation state of the alloy components. Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists of Ni-NbO{sub x} top layer and nickel enriched bottom layer which provides n-type conductivity. In contrast, in the artificial oxide film Nb is oxidized completely to Nb{sub 2}O{sub 5}, Ni atoms migrate into bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb{sub 2}O{sub 5} interface providing p-type conductivity.

  8. Densification of chemical vapor deposition silicon dioxide film using oxygen radical oxidation

    SciTech Connect

    Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu; Suwa, Tomoyuki; Hattori, Takeo; Ohmi, Tadahiro; Umeda, Hiroshi

    2012-02-01

    Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films were decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.

  9. Densification of chemical vapor deposition silicon dioxide film using oxygen radical oxidation

    NASA Astrophysics Data System (ADS)

    Kawase, Kazumasa; Teramoto, Akinobu; Umeda, Hiroshi; Suwa, Tomoyuki; Uehara, Yasushi; Hattori, Takeo; Ohmi, Tadahiro

    2012-02-01

    Silicon dioxide (SiO2) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O2 plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO2 films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO2 films were increased near the SiO2 surface. The densities of the carrier trap centers in these films were decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO2 film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.

  10. Correlation Between Metal-Insulator Transition Characteristics and Electronic Structure Changes in Vanadium Oxide Thin Films

    SciTech Connect

    Ruzmetov,D.; Senanayake, S.; Narayanamurti, V.; Ramanathan, S.

    2008-01-01

    We correlate electron transport data directly with energy band structure measurements in vanadium oxide thin films with varying V-O stoichiometry across the VO2 metal-insulator transition. A set of vanadium oxide thin films were prepared by reactive dc sputtering from a V target at various oxygen partial pressures (O2 p.p.). Metal-insulator transition (MIT) characteristic to VO2 can be seen from the temperature dependence of electrical resistance of the films sputtered at optimal O2 p.p. Lower and higher O2 p.p. result in disappearance of the MIT. The results of the near edge x-ray absorption fine structure spectroscopy of the O K edge in identical VO films are presented. Redistribution of the spectral weight from {sigma}* to {pi}* bands is found in the vanadium oxide films exhibiting stronger VO2 MIT. This is taken as evidence of the strengthening of the metal-metal ion interaction with respect to the metal-ligand and indirect V-O-V interaction in vanadium oxide films featuring sharp MIT. We also observe a clear correlation between MIT and the width and area of the lower {pi}* band, which is likely to be due to the emergence of the d|| band overlapping with {pi}*. The strengthening of this d|| band near the Fermi level only in the vanadium oxide compounds displaying the MIT points out the importance of the role of the d|| band and electron correlations in the phase transition.

  11. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  12. Electrochromic properties of nickel oxide thin films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Miki, Takeshi; Yoshimura, Kazuki; Tai, Yutaka; Tazawa, Masato; Jin, Ping; Tanemura, Sakae

    1995-08-01

    The electrochromic nickel oxide films were prepared onto transparent conducting film on glass substrate by the sol-gel method using an ethylene glycol solution of nickel nitrate hexahydrate. The films produced by the dip-coating method and calcined at 250, 300, and 350 degree(s)C. The formed films were characterized by their electrochromic behavior in cyclic voltammetry. The formed films showed electrochromic behavior in 1M KOH aqueous solution as electrolytic solution. The cyclic voltammograms were recorded up to 100 cycles for each film. The anodic peak of the coloration reaction appeared at approximately +400 mV, while the cathodic peak of the bleaching reaction occurred at about +200 mV versus Ag/AgCl. Both the anodic peak and the cathodic peak increased with an increase of the cyclic numbers in voltammograms, whereas these peaks at 100 cycles decreased with an increase of the calcination temperature of nickel oxide films. The calcination gave great influence on the other electrochromic behaviors of nickel oxide films.

  13. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    NASA Astrophysics Data System (ADS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO2)/FTO bilayer films. Large and densely arranged grains were observed on all TiO2/FTO bilayer films. The presence of TiO2 tetragonal rutile phase in the TiO2/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO2/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10-2 Ω-1, higher than 1.78 × 10-2 Ω-1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO2/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10-2 Ω-1, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  14. Reversible oxidation and rereduction of entire thin films of transition-metal phthalocyanines

    SciTech Connect

    Green, J.M.; Faulkner, L.R.

    1983-05-18

    Thin films (1000 to 2000A thick) of iron(II) (Fe), cobalt(II) (Co), nickel(II) (Ni), copper(II) (Cu), and zinc(II) (Zr) phthalocyanines (Pc) on gold or indium oxide electrodes undergo stoichiometric oxidation and rereduction. Except for FePc and CoPc, the process is essentially reversible. Chronocoulometry showed that ZnPc films oxidized to the extent of 1.21 electrons per ZnPc molecule; CoPc required 1.92 electrons per molecule. Charge compensation is attained upon oxidation by uptake of anions from the electrolyte and by expulsion of anions upon reduction. Auger electron spectrometry allowed detection of the ions and characterization of their distributions. In partially oxidized films, the anions appear to be homogeneously distributed. Oxidation seems to proceed at all grains with equal probability, with anions entering and departing along grain boundaries. Smaller anions allow full oxidation at rapid rates; larger ones inhibit the oxidation with respect to rate. Optical spectroscopy showed evidence for reorganizaton of the crystalline lattices. The rereduced form is not the same as the original material, but it can be restored to the original form by annealing at 125/sup 0/C. In cyclic oxidations and rereductions, there is a gradual loss of charge-consuming ability, apparently related to electrical isolation of small domains, perhaps grains. The oxidations and rereductions are electrochromic, and the various color changes are described. 10 figures, 1 table.

  15. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling. PMID:25919917

  16. Synthesis of iridescent Ni-containing anodic aluminum oxide films by anodization in oxalic acid

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Ma, Hong-Mei; Zhang, Yan-Jun; Li, Ru-Song; Sun, Hui-Yuan

    2016-02-01

    Ni-containing anodic aluminum oxide films with highly saturated colors were synthesized using an ac electrodeposition method, and the optical and magnetic characteristics of the films were characterized. Precisely controllable color tuning could be obtained using wet-chemical etching to thin and widen the anodic aluminum oxide films pores isotropically before Ni deposition. Magnetic measurements indicate that such colored composite films not exhibit obvious easy magnetization direction. The resulted short (200 nm in length) and wide (50 nm in diameter) Ni nanowires present only fcc phase. The magnetization reversal mechanism is in good agreement with the symmetric fanning reversal mode which is discussed in detail. Such films may find applications in decoration, display and multifunctional anti-counterfeiting applications.

  17. Preparation of superconducting thin films of calcium strontium bismuth copper oxides by coevaporation

    SciTech Connect

    Rice, C.E.; Levi, A.F.J.; Fleming, R.M.; Marsh, P.; Baldwin, K.W.; Anzlowar, M.; White, A.E.; Short, K.T.; Nakahara, S.; Stormer, H.L.; and others

    1988-05-23

    Superconducting films of Ca-Sr-Bi-Cu oxides have been prepared by coevaporation of CaF/sub 2/, SrF/sub 2/, Bi, and Cu, followed by post-oxidation in wet O/sub 2/. The films were characterized by four-probe resistivity measurements, Rutherford backscattering, transmission electron microscopy, x-ray diffraction, and Hall measurements. Zero resistance was achieved at approx.80 K, although evidence of traces of superconductivity at higher temperatures was seen in resistivity and Hall data. The critical current at 4.2 K was 1.0 x 10/sup 6/ A cm/sup -2/. The films were epitaxial on <100> and <110> SrTiO/sub 3/ substrates. The electrical and structural properties of the films were insensitive to film composition over a wide range of stoichiometries.

  18. Microstructure and optoelectronic properties of galliumtitanium-zinc oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Shou-bu; Lu, Zhou; Zhong, Zhi-you; Long, Hao; Gu, Jin-hua; Long, Lu

    2016-07-01

    Gallium-titanium-zinc oxide (GTZO) transparent conducting oxide (TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic properties of GTZO thin films on Ar gas pressure were observed. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increment of Ar gas pressure, the microstructure and optoelectronic properties of GTZO thin films will be changed. When Ar gas pressure is 0.4 Pa, the deposited films possess the best crystal quality and optoelectronic properties.

  19. Structural and optical properties of zinc oxide film using RF-sputtering technique

    SciTech Connect

    Hashim, A. J.; Jaafar, M. S.; Ghazai, Alaa J.

    2012-11-27

    This paper reports the fabrication of zinc oxide (ZnO) film using RF-sputtering technique. Determination of the structural properties using High Resolution X-ray Diffraction (HRXRD) confirmed that ZnO film deposited on silicon (Si) substrate has a high quality. This result is in line with the Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) which were used to image the morphology of the film, in which a rough surface was demonstrated. Photoluminescence (PL) emission is included to study the optical properties of ZnO film that shows two PL peak in the UV region at 371 nm and in visible region at 530 nm respectively.

  20. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    PubMed

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring. PMID:26305842

  1. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Feng, Yiyu; Wu, Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-07-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO2-s-MWNTs) was prepared from a suspension of TiO2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO2-s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO2 into consideration.

  2. Real-time and indicator-free detection of aqueous nitric oxide with hydrogel film

    NASA Astrophysics Data System (ADS)

    Chao, Yu-Chiang; Yeh, Shih-De; Zan, Hsiao-Wen; Chang, Gao-Fong; Meng, Hsin-Fei; Hung, Chen-Hsiung; Meng, Tzu-Ching; Hsu, Chain-Shu; Horng, Sheng-Fu

    2010-05-01

    A sensing hydrogel film is demonstrated for real-time and indicator-free detection of nitric oxide (NO) in aqueous solution. The film composed of NO probe 11,16-bisphenyl-6,6,21,21-tetramethyl-m-benzi-6,21-porphodimetheno-chloro-zinc(II) and host polymer poly(2-hydroxyethyl methacrylate). The water-containing nature of this sensing hydrogel film makes the surface area high. The response time is bellow 10 s. This sensing hydrogel film also shows high selectivity, sensitivity, and stability in various pH values.

  3. Stress reduction in ion beam sputtered mixed oxide films.

    PubMed

    Pond, B J; Debar, J I; Carniglia, C K; Raj, T

    1989-07-15

    Thin films deposited by ion beam sputtering typically have a high compressive stress. This paper demonstrates that this stress can be reduced by cosputtering two materials. Thin film mixtures of zirconia (ZrO(2)) and silica (SiO(2)) were prepared with a range of compositions using ion beam sputtering. The refractive index was found to vary almost linearly with composition. The large stress observed in zirconia films was found to be reduced significantly by the addition of silica. PMID:20555602

  4. Stress reduction in ion beam sputtered mixed oxide films

    SciTech Connect

    Pond, B. J.; DeBar, J. I.; Carniglia, C. K.; Raj, T.

    1989-07-15

    Thin films deposited by ion beam sputtering typically have a high compressive stress. This paper demonstrates that this stress can be reduced by cosputtering two materials. Thin film mixtures of zirconia (ZrO/sub 2/) and silica (SiO/sub 2/) were prepared with a range of compositions using ion beam sputtering. The refractive index was found to vary almost linearly with composition. The large stress observed in zirconia films was found to be reduced significantly by the addition of silica.

  5. Tungsten oxide-Au nanosized film composites for glucose oxidation and sensing in neutral medium

    PubMed Central

    Gougis, Maxime; Ma, Dongling; Mohamedi, Mohamed

    2015-01-01

    In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2) solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 μA cm−2 mM−1 up to 10 mM of glucose and a low detection limit of 10 μM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future. PMID:25931820

  6. Electrochromic performance, wettability and optical study of copper manganese oxide thin films: Effect of annealing temperature

    NASA Astrophysics Data System (ADS)

    Falahatgar, S. S.; Ghodsi, F. E.; Tepehan, F. Z.; Tepehan, G. G.; Turhan, İ.

    2014-01-01

    In the present work, the nanostructured copper manganese oxide (CMO) thin films were prepared from acetate based sol-gel precursors and deposited on glass and indium tin oxide (ITO) substrates by dip-coating technique. The films were annealed at 300, 400 and 500 °C in ambient atmosphere. The effects of annealing temperature on structural, morphological, wettability, electrochromic and optical properties of CMO thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), water contact angle measurement (WCA), cyclic voltammetry (CV) measurements and ultraviolet-visible (UV-vis) spectrophotometery. The presence of mixed oxide phases comprising of copper manganese oxide (CuMn2O4) and manganese oxide at different annealing temperature was confirmed by XRD patterns. The results showed that the Mn3O4 phase has been changed to Mn2O3 when the annealing temperature is increased from 300 to 500 °C. The FESEM images indicated that the granular surface morphology was sensitive to annealing temperature. EDX studies indicated that the thin films contained O, Mn and Cu species. Wettability studies showed that the water contact angle of the nanostructured CMO thin films coated on glass substrates was influenced by the variation of annealing temperature and the surface nature of thin films was changed from hydrophilic to hydrophobic. The results of CVs measurement indicated that the anodic and cathodic charge density and capacitance of all CMO samples decreased with increasing scan rate in potential range of -1-1 eV. Also, the annealed CMO thin film at 500 °C showed better electrochromic performance with respect to other samples at lower scan rate. The thickness, refractive index, extinction coefficient and optical band gap of thin films coated on glass substrates were calculated from reflectance and transmittance spectra using an iterative numerical method. The optical band gap of

  7. Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin films

    SciTech Connect

    Jolly Bose, R.; Kumar, R. Vinod; Sudheer, S. K.; Mahadevan Pillai, V. P.; Reddy, V. R.; Ganesan, V.

    2012-12-01

    Silver incorporated tungsten oxide thin films are prepared by RF magnetron sputtering technique. The effect of silver incorporation in micro structure evolution, phase enhancement, band gap tuning and other optical properties are investigated using techniques such as x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and UV-Visible spectroscopy. Effect of silver addition in phase formation and band gap tuning of tungsten oxide thin films are investigated. It is found that the texturing and phase formation improves with enhancement in silver content. It is also found that as the silver incorporation enhances the thickness of the films increases at the same time the strain in the film decreases. Even without annealing the desired phase can be achieved by doping with silver. A broad band centered at the wavelength 437 nm is observed in the absorption spectra of tungsten oxide films of higher silver incorporation and this can be attributed to surface plasmon resonance of silver atoms present in the tungsten oxide matrix. The transmittance of the films is decreased with increase in silver content which can be due to increase in film thickness, enhancement of scattering, and absorption of light caused by the increase of grain size, surface roughness and porosity of films and enhanced absorption due to surface plasmon resonance of silver. It is found that silver can act as the seed for the growth of tungsten oxide grains and found that the grain size increases with silver content which in turn decreases the band gap of tungsten oxide from 3.14 eV to 2.70 eV.

  8. Surface reconstruction evolution and anatase formation in the process of oxidation of titanium nitride film

    SciTech Connect

    Wu, S. X.; Liu, Y. J.; Xing, X. J.; Yu, X. L.; Xu, L. M.; Yu, Y. P.; Li, S. W.

    2008-03-15

    Titanium nitride film was grown on MgO(001) substrate by plasma-assisted molecular beam epitaxy and then oxidized by oxygen plasma. Reflection high-energy electron diffraction (RHEED) was employed to in situ monitor the process of growth and oxidation. After the TiN film was oxidized for a moment, spots among main streaks were observed in RHEED pattern, which should be attributed to the isolated surface reconstruction domains disorderedly distributing on flat surface. Subsequently, the spots gradually evolved to streaks so that more clear RHEED patterns of (2x1) surface reconstruction were observed. It was argued that the disordered and isolated reconstruction domains congregated to large domains or even perfect reconstruction surface with oxidation time evolving. After oxidation, a series of characterization methods were applied to study the TiO{sub 2} phase, which consistently confirmed that the phase of oxidized titanium nitride is anatase but not rutile.

  9. The growth and evolution of thin oxide films on delta-plutonium surfaces

    SciTech Connect

    Garcia Flores, Harry G; Pugmire, David L

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  10. Electrochromic Properties of Iridium Oxide Films Prepared by Pulsed Anodic Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jung, Youngwoo; Tak, Yongsug; Lee, Jaeyoung

    2002-12-01

    Thin films of iridium oxide to be used as an electrochromic material were prepared by pulsed anodic current electrodeposition onto indium tin oxide (ITO) coated glass substrates. Before the pulsed electrodeposition, iridium oxide films formed by cyclic voltammetry (CV) played an important role in good adhesion as a seed layer. Iridium oxide films with light-blue color (100 mC/cm2) were deposited when anodic current of 0.07 mA/cm2 for 0.5 sec was superimposed on off-time of 0.5 sec (i.e., zero current) in each cycle. During CV experiment in phosphate buffered saline solution, electrodeposited iridium oxide films exhibited anodic electrochromism of blue and black color at two oxidation potentials (i.e., the ejection of H+) of +0.5 V and +0.9 V (vs. SCE), respectively, while on the cathodic scan, black thin film became colorless due to the injection of H+. When +0.9 V and -0.7 V were applied for coloring and bleaching observation in different pulse voltammetry, minimal times needed for each process are 9 sec and 5 sec, respectively.

  11. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  12. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes.

    PubMed

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  13. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  14. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  15. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  16. Effect of nitrogen containing plasmas on interface stability of hafnium oxide ultrathin films on Si (100)

    NASA Astrophysics Data System (ADS)

    Chen, P.; Bhandari, H. B.; Klein, T. M.

    2004-08-01

    Hafnium oxide dielectric thin films were deposited by metalorganic chemical vapor deposition with Hf (IV) t-butoxide and either an O2, N2, or N2O plasma in a 1:1 ratio with helium. Films approximately 5nm thick were analyzed using angle-resolved x-ray photoelectron spectroscopy (XPS) and variable angle ellipsometry before and after heat treatment in an ultrahigh vacuum up to 470°C. Interdiffusion and/or reaction of the film with the silicon substrate, as measured by an increase in thickness and an increase in Si-O type bonding at the interface was most apparent with O2 plasma deposited films and least observed with N2 plasma deposited films. Also, the Hf (4f) XPS peak shifts toward higher binding energy after anneals for the N2 and N2O plasma deposited films indicates further oxidation of the film. In contrast, oxygen plasma deposited films do not exhibit a Hf (4f) peak shift. These results provide evidence that high-κ film/substrate stability may be controlled by applying appropriate plasma chemistry.

  17. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    PubMed Central

    Schneider, Andreas M; Eiden, Stefanie

    2015-01-01

    Summary In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity. PMID:25977851

  18. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition.

    PubMed

    Waltz, Florian; Schwarz, Hans-Christoph; Schneider, Andreas M; Eiden, Stefanie; Behrens, Peter

    2015-01-01

    In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity. PMID:25977851

  19. Electrical and optical characterization of multilayered thin film based on pulsed laser deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Marotta, V.; Orlando, S.; Parisi, G. P.; Giardini, A.; Perna, G.; Santoro, A. M.; Capozzi, V.

    2000-12-01

    Thin films of semiconducting oxides such as In2O3, SnO2, and multilayers of these two compounds have been deposited by reactive pulsed laser ablation, with the aim to produce toxic gas sensors. Deposition of these thin films has been carried out by a frequency doubled Nd-YAG laser (λ=532 nm) on silicon (1 0 0) substrates. A comparison, among indium oxide, tin oxide, and multilayers of indium and tin oxides, has been performed. The influence of physical parameters such as substrate temperature, laser fluence and oxygen pressure in the deposition chamber has been investigated. The deposited films have been characterized by X-ray diffraction (XRD), optical and electric resistance measurements.

  20. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    SciTech Connect

    Flötotto, D. Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  1. Luminescence of europium-doped anode oxide films on titanium-aluminum composites

    NASA Astrophysics Data System (ADS)

    Sokol, V. A.; Pinaeva, M. M.; Gurskaya, E. A.; Stekol'Nikov, A. A.

    2000-03-01

    The luminescence of europium in anode oxide films (AOF) on titanium-aluminum film composites is investigated. It is shown that the intensity distribution in the continuous and line luminescence spectra of europium introduced into the AOF directly in the process of anodic oxidation essentially depends on the sequence of arrangement of the layers of metal films and on the temperature of their heat treatment preceding the process of anodic oxidation. It is established that the nature of the luminescence spectrum of the AOF correlates with the chronovoltammetry diagrams of anodic oxidation. Composites with a high degree of europium doping are found and methods of searching for composites for creating new materials of electronic technology are outlined.

  2. Electrochemical properties of highly degenerate and low cost cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Mundinamani, S. P.; Rabinal, M. K.

    2015-11-01

    In the present work, we describe a simple and easy method for the deposition of nanostructured cadmium oxide films on glass by spray pyrolysis. The electrochemical capacitive properties of these films have been studied for different electrolyte species under the different scan rates. The present results show a high value of specific capacitance of 18 F g-1 in 1 M NaOH electrolyte for the scan rate of 10 mV s-1. This value of specific capacitance is the highest ever reported value for cadmium oxide thin films. These results emphasize that the ion diffusion between the electrode and the electrolyte is significantly high due to the highly porous nanostructure of cadmium oxide and these results confirms the cadmium oxide as a capacitive material. The constructed devices were stable even after the 1000 cycle.

  3. Thick film oxidation of copper in an electroplated MEMS process

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.; Bedair, S. S.; Song, X.; Boteler, L. M.; Kierzewski, I. M.

    2013-06-01

    Copper forms a porous oxide, allowing the formation of oxide layers up to tens of microns thick to be created at modest processing temperatures. In this work, the controlled oxidation of copper is employed within an all-metal electroplating process to create electrically insulating, structural posts and beams. This capability could eliminate the additional dielectric deposition and patterning steps that are often needed during the construction of sensors, waveguides, and other microfabricated devices. In this paper, copper oxidation rates for thermal and plasma-assisted growth methods are characterized. Time control of the oxide growth enables larger copper structures to remain conductive while smaller copper posts are fully oxidized. The concept is demonstrated using the controlled oxidation of a copper layer between two nickel layers to fabricate nickel inductors having both copper electrical vias and copper oxide support pillars. Nickel was utilized in this demonstration for its resistance against low temperature oxidation and interdiffusion with copper.

  4. Determination of the surface isoelectric point of oxide films on metals by contact angle titration

    SciTech Connect

    McCafferty, E.; Wightman, J.P.

    1997-10-15

    The surface isoelectric point for the native air-formed oxide films on aluminum, chromium, and tantalum has been determined by measurement of contact angles at the hexadecane/aqueous solution interface as a function of pH of the aqueous phase. Application of Young`s equation, the Gibbs equation, and surface equilibria conditions for hydroxylated oxide films leads to a mathematical expression which shows that the contact angle goes through a maximum at the isoelectric point of the oxide. The experimentally determined isoelectric point of oxide-covered chromium is 5.2 to 5.3, of oxide-covered aluminum is 9.5, and of oxide-covered tantalum is approximately {minus}0.7. These values for the oxide films are within one to three pH units of the reported isoelectric points for the corresponding bulk oxide powders. The oxide-covered metal surfaces were cleaned by argon plasma treatment prior to measurement of contact angles, in that XPS measurements showed this treatment to be effective in reducing the thickness of the carbon contamination layer. In addition, interfacial tensions were measured at the hexadecane/aqueous solution interface and were observed to have only a slight dependence on the pH of the aqueous phase.

  5. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  6. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    PubMed

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p < 0.01] between the amorphous oxide (AO) and the electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties. PMID:17072844

  7. Synthesis and Applications of Titanium Oxide Nanotube Thin Films

    NASA Astrophysics Data System (ADS)

    Miyauchi, Masahiro; Tokudome, Hiromasa

    Layer-by-layer or vertically aligned TiO2 nanotube thin films were fabricated by using hydrothermally grown titanate nanotubes. These films were optically transparent and exhibited various functions. Layer-by-layer growth of TiO2 nanotubes on glass substrates was achieved by alternate layer deposition using an aqueous solution of colloidal titanate nanotubes and that of a polycation. These films exhibited photoinduced hydrophilic conversion, low-reflectivity, and significant electrochromism, owing to their unique one dimensional open-pore nanostructure. In addition, transparent thin films of vertically aligned TiO2 nanotube arrays were grown by a hydrothermal treatment of metal Ti thin film on glass substrates. These nanotube arrays were well adhered to the substrates and exhibited super-hydrophilicity even under the dark condition and the efficient electron field emission.

  8. Physical properties in thin films of iron oxides.

    SciTech Connect

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Girata, D.; Morales, A. L.; Hoffmann, A.; Materials Science Division; Univ. de Antioquia

    2008-01-01

    We have grown hematite ({alpha}-Fe{sub 2}O{sub 3}) thin films on stainless steel substrates and magnetite (Fe{sub 3}O{sub 4}) thin films on (0 0 1)-Si single crystal substrates by a RF magnetron sputtering process. {alpha}-Fe{sub 2}O{sub 3} thin films were grown in an Ar atmosphere at substrate temperatures around 400 C, and Fe{sub 3}O{sub 4} thin films in an Ar/O{sub 2} reactive atmosphere at substrate temperatures around 500 C. Conversion electron Moessbauer (CEM) spectra of {alpha}-Fe{sub 2}O{sub 3} thin films exhibit values for hyperfine parameter characteristic of the hematite stoichiometric phase in the weak ferromagnetic state [R.E. Vandenberghe, in: Moessbauer Spectroscopy and Applications in Geology, University Gent, Belgium, 1990. [1

  9. Metal-organic chemical vapor deposition of aluminum oxide thin films via pyrolysis of dimethylaluminum isopropoxide

    SciTech Connect

    Schmidt, Benjamin W.; Sweet, William J. III; Rogers, Bridget R.; Bierschenk, Eric J.; Gren, Cameron K.; Hanusa, Timothy P.

    2010-03-15

    Metal-organic chemical vapor deposited aluminum oxide films were produced via pyrolysis of dimethylaluminum isopropoxide in a high vacuum reaction chamber in the 417-659 deg. C temperature range. Deposited films contained aluminum, oxygen, and carbon, and the carbon-to-aluminum ratio increased with increased deposition temperature. Aluminum-carbon bonding was observed in films deposited at 659 deg. C by x-ray photoelectron spectroscopy, but not in films deposited at 417 deg. C. The apparent activation energy in the surface reaction controlled regime was 91 kJ/mol. The O/Al and C/Al ratios in the deposited films were greater and less than, respectively, the ratios predicted by the stoichiometry of the precursor. Flux analysis of the deposition process suggested that the observed film stoichiometries could be explained by the participation of oxygen-containing background gases present in the reactor at its base pressure.

  10. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciTech Connect

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen; Zhao, Xiaojing; Liu, Feng

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  11. Influence of Heat Treatment Conditions on the Properties of Vanadium Oxide Thin Films for Thermochromic Applications.

    PubMed

    Kim, Donguk; Kwon, Samyoung; Park, Young; Boo, Jin-Hyo; Nam, Sang-Hun; Joo, Yang Tae; Kim, Minha; Lee, Jaehyeong

    2016-05-01

    In present work, the effects of the heat treatment on the structural, optical, and thermochromic properties of vanadium oxide films were investigated. Vanadium dioxide (VO2) thin films were deposited on glass substrate by reactive pulsed DC magnetron sputtering from a vanadium metal target in mixture atmosphere of argon and oxygen gas. Various heat treatment conditions were applied in order to evaluate their influence on the crystal phases formed, surface morphology, and optical properties. The films were characterized by an X-ray diffraction (XRD) in order to investigate the crystal structure and identify the phase change as post-annealing temperature of 500-600 degrees C for 5 minutes. Surface conditions of the obtained VO2(M) films were analyzed by field emission scanning electron microscopy (FE-SEM) and the semiconductor-metal transition (SMT) characteristics of the VO2 films were evaluate by optical spectrophotometry in the UV-VIS-NIR, controlling temperature of the films. PMID:27483853

  12. Reduced graphene oxide based silver sulfide hybrid films formed at a liquid/liquid interface

    SciTech Connect

    Bramhaiah, K. John, Neena S.

    2014-04-24

    Free-standing, ultra-thin films of silver sulfide and reduced graphene oxide (RGO) based silver sulfide hybrids are prepared at a liquid/liquid interface employing in situ chemical reaction strategy. Ag{sub 2}S and RGO−Ag{sub 2}S hybrid films are characterized by various techniques such as UV-visible and photo luminescence spectroscopy, X-ray diffraction and scanning electron microscopy. The morphology of hybrid films consists of Ag{sub 2}S nanocrystals on RGO surface while Ag{sub 2}S films contains branched network of dendritic structures. RGO−Ag{sub 2}S exhibit interesting optical and electrical properties. The hybrid films absorb in the region 500–650 nm and show emission in the red region. A higher conductance is observed for the hybrid films arising from the RGO component. This simple low cost method can be extended to prepare other RGO based metal sulfides.

  13. Characteristics of Indium-Tin Oxide Thin Film Etched by Reactive Ion Etching

    NASA Astrophysics Data System (ADS)

    Yokoyama, Meiso; Li, Jiin; Su, Shui; Su, Yan

    1994-12-01

    Indium-tin oxide (ITO) films coated on glass have been etched by reactive ion etching (RIE) with a gas mixture of Ar and Cl2. The etching rates of ITO films depend strongly on power density, gas pressure, the composition of reactive gases, and the total flow rate of etchants. According to the results from the study, we can postulate that the ITO films' etching follows the ion-assisted chemical etching. A high etching rate above 100 Å/min can be achieved, and an etching mechanism will be proposed. The selectivity of ITO films to glass reaches 35 with a 30 line/mm pattern. After exposure of ITO films to an Ar/Cl2 mixed gas plasma discharge, their sheet resistance does not markedly change. The residue of Cl atoms exists only in the region near the surface. By means of parameter control, we can obtain good pattern images of ITO films measured by scanning electron microscopy (SEM).

  14. Evolution of microstructure in vanadium oxide bolometer film during annealing process

    NASA Astrophysics Data System (ADS)

    Su, Yu-Yu; Cheng, Xing-Wang; Li, Jing-Bo; Dou, Yan-Kun; Rehman, Fida; Su, De-Zhi; Jin, Hai-Bo

    2015-12-01

    Vanadium oxide thin films were prepared through direct current magnetron reactive sputtering and post annealing process. The evolution of composition, microstructure, and electrical properties of as-deposited amorphous films during the annealing process was clarified by X-ray diffraction, scanning electron microscopy and temperature-dependent resistance measurement. A new composition of thin film was acquired which consisted of crystalline V6O13 and amorphous phase. Sheet resistance and temperature coefficient of resistance (TCR) of the thin film are 90 kΩ/□ (measured at room temperature) and 2.52%/K, respectively. No metal-to-semiconductor transition was observed in the obtained film at temperatures ranging from room-temperature to 90 °C, suggesting the thin film is suitable for the application in microbolometer.

  15. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes

    NASA Astrophysics Data System (ADS)

    Deng, Jiajia; Gu, Ming; Di, Junwei

    2011-04-01

    Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.

  16. Fabrication of metal-oxide nano-composite films from aqueous solution by metal-oxide co-electrodeposition

    NASA Astrophysics Data System (ADS)

    Fujita, N.; Izaki, M.; Inoue, M.

    2006-05-01

    Fe-Ce-O films were synthesized by a newly developed electrochemical method called the "metal-oxide co-electrodeposition method", i.e. the simultaneous deposition of Fe and Ce-O from a reaction solution containing FeSO 4, CeCl 3, (NH 4) 2SO 4, and L-ascorbic acid. L-ascorbic acid prevents the oxidation of Fe 2+ to Fe 3+. (NH 4) 2SO 4 acts as the complexing agent for Fe 2+ and was effective in avoiding the precipitation of Fe-OH. Therefore, ferromagnetic Fe and Ce-O coexisted films were successfully formed. The Fe-Ce-O films prepared had a uniform surface. The Fe content in the deposited films was subject to change from 0 to 100 vol% depending on the concentration of the FeSO 4 in the reaction solution. The saturation magnetization of the films fabricated from the reaction solution with (NH 4) 2SO 4 became larger than that of the films prepared from a non-(NH 4) 2SO 4 solution.

  17. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  18. Zinc-oxide nanorod/copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-11-01

    A novel p- n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 °C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 °C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 °C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  19. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Radić, Nenad; Stefanov, Plamen; Grbić, Boško; Vasilić, Rastko

    2015-11-01

    This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb2O5 hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  20. Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films

    NASA Astrophysics Data System (ADS)

    Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; Sutter, Peter; Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2016-04-01

    Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O2 pressures (10- 5-10 mbar) and temperatures (450-923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. The silicate layer does however strongly passivate the Ru surface towards RuO2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. The results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.

  1. Influences of the main anodic electroplating parameters on cerium oxide films

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu; Zhang, Zhao; Zhang, Jianqing

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  2. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films

    PubMed Central

    Taz, H.; Sakthivel, T.; Yamoah, N. K.; Carr, C.; Kumar, D.; Seal, S.; Kalyanaraman, R.

    2016-01-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10−4 Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe0 oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics. PMID:27298196

  3. Native oxidation of ultra high purity Cu bulk and thin films

    NASA Astrophysics Data System (ADS)

    Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M.

    2006-12-01

    The effect of microstructure and purity on the native oxidation of Cu was studied by using angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and spectroscopic ellipsometry (SE). A high quality copper film prepared by ion beam deposition under a substrate bias voltage of -50 V (IBD Cu film at Vs = -50 V) showed an oxidation resistance as high as an ultra high purity copper (UHP Cu) bulk, whereas a Cu film deposited without substrate bias voltage (IBD Cu film at Vs = 0 V) showed lower oxidation resistance. The growth of Cu 2O layer on the UHP Cu bulk and both types of the films obeyed in principle a logarithmic rate law. However, the growth of oxide layer on the IBD Cu films at Vs = 0 and -50 V deviated upward from the logarithmic rate law after the exposure time of 320 and 800 h, respectively. The deviation from the logarithmic law is due to the formation of CuO on the Cu 2O layer after a critical time.

  4. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films

    NASA Astrophysics Data System (ADS)

    Taz, H.; Sakthivel, T.; Yamoah, N. K.; Carr, C.; Kumar, D.; Seal, S.; Kalyanaraman, R.

    2016-06-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10‑4 Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe0 oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics.

  5. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films.

    PubMed

    Taz, H; Sakthivel, T; Yamoah, N K; Carr, C; Kumar, D; Seal, S; Kalyanaraman, R

    2016-01-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10(-4) Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe(0) oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics. PMID:27298196

  6. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    SciTech Connect

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J.

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  7. Laser-induced oxidation of Zn and Zn alloy films for direct-write grayscale photomasks

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Chang, Marian; Tu, Yuqiang; Poon, David K.; Chapman, Glenn H.; Choo, Chinheng; Peng, Jun

    2006-02-01

    Previous research showed that bimetallic Bi/In and Sn/In films exhibit good grayscale levels after laser exposure due to controlled film oxidation. While giving a large alteration in optical density (OD) from 3.0OD to 0.22OD at 365 nm, Bi/In and Sn/In films show a very nonlinear OD change with laser power, making fine control of grayscale writing difficult at some gray levels. This paper studies Zn and Zn alloy films as possible candidates for improved direct-write grayscale photomask applications. Zn and Zn alloys laser oxidation have been reported previously, but without grayscale optical measurements and applications. In this paper Zn films (50 nm ~ 240 nm), Sn/Zn (100 nm), Al/Zn (100 nm), Bi/Zn (100 nm) and In/Zn (100 nm) were DC- and RF-sputtered onto glass slides and then were scanned by argon ion CW laser (488 nm). Among these films, the highest OD change, 3OD (from 3.2OD before exposure to 0.2OD after laser exposure) at 365 nm, was found in the In/Zn (25/75 nm or 84at% Zn) film. The characterization of grayscale level to laser power modulation in Zn and Zn alloy films with various thickness or composition ratios were investigated. The Zn OD change versus laser power curve is more linear than those of Sn/In and Bi/In films. In/Zn films have better characterization of grayscale level versus laser writing power than pure Zn film. Among these four Zn alloy films, Zn/Al shows most linear relation of OD at 365 nm to laser power modulation.

  8. Retardation of lipid oxidation using gelatin film incorporated with longan seed extract compared with BHT.

    PubMed

    Sai-Ut, Samart; Benjakul, Soottawat; Rawdkuen, Saroat

    2015-09-01

    The aim of the present work was to apply the gelatin films with different levels of longan seed extract (LS) or butylated hydroxytoluene (BHT) on retardation of lipid oxidation in soybean oil. The films incorporated with various concentrations of aqueous LS (0, 50, 100, 300, and 500 ppm) or BHT (50, and 100 ppm) were developed. The films had transmittance percentages of 60-80 % at 570 nm and showed good light barrier properties when the concentration of LS or BHT increased. About 97 % protein solubility and 41 to 54 % water solubility were obtained for the developed films. Antioxidative activity of gelatin films incorporated with LS increased markedly with increasing storage time as indicated by the increase in DPPH radical scavenging activity (41-50 %) (P < 0.05). Films incorporated with LS or BHT showed the preventive effect on lipid oxidation of soybean oil during 30 days of storage. At the level of 500 ppm, LS provided the highest efficacy for lipid oxidation retardation as evidenced by lower conjugated diene (CD) values (P > 0.05). According to these findings, gelatin film incorporated with longan seed extract or BHT could be used as a tool to prolong the shelf-life of oily foods. PMID:26344999

  9. Thermal transport properties of polycrystalline tin-doped indium oxide films

    SciTech Connect

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-04-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In{sub 2}O{sub 3} and 10 wt %SnO{sub 2}). The resistivity and carrier density of the ITO films ranged from 2.9x10{sup -4} to 3.2x10{sup -3} {omega} cm and from 1.9x10{sup 20} to 1.2x10{sup 21} cm{sup -3}, respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10{sup -6} m{sup 2}/s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant ({lambda}{sub ph}=3.95 W/m K), which was about twice that for amorphous indium zinc oxide films.

  10. Growth, microstructure and supercapacitive performance of copper oxide thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Purusottam Reddy, B.; Sivajee Ganesh, K.; Hussain, O. M.

    2016-02-01

    The supercapacitive performance of copper oxide thin film electrodes mainly relies on micro structure, phase, surface area and conductivity which in turn depend on the deposition technique and process parameters during growth. In the present study, thin films of copper oxide were prepared by RF magnetron sputtering on stainless steel substrates keeping O2-to-Ar ratio at 1:11 and RF power at 250 W and varying the substrate temperature. The microstructure and the induced phase changes in copper oxide films are observed to be strongly influenced by the substrate temperature since the relaxation time, surface diffusion and surface structural changes are thermally activated. The XRD and Raman studies reveal that the films deposited at low substrate temperature (<200 °C) exhibited CuO, while the films deposited at substrate temperature >200 °C exhibited Cu2O phase. The films prepared at 350 °C exhibited reflections correspond to cubic Cu2O with predominant (111) orientation. The estimated maximum grain size from AFM studies was 72 nm with surface roughness of 51 nm. These films exhibited a highest areal capacitance of 30 mF cm-2 at scan rate of 5 mV s-1. The galvanostatic charge-discharge studies demonstrated high specific capacitance of 908 F g-1 at 0.5 mA cm-2 current density with 80 % of its initial capacity retention even after 1000 cycles.

  11. Epitaxial thin films of the superconducting spinel oxide LiTi2O4

    NASA Astrophysics Data System (ADS)

    Chopdekar, Rajesh; Suzuki, Yuri

    2006-03-01

    Lithium titanate is the only superconducting spinel oxide documented in literature. Related oxide spinels[1] such as the heavy fermion system LiV2O4 and charge-ordered LiMn2O4 indicate that electron correlations are strong in these systems. We have fabricated epitaxial films of LiTi2O4 on MgAl2O4 and MgO single crystalline substrates to explore such behavior in thin film form. Atomic force microscopy indicates <1nm RMS surface roughness, and 2- and 4-circle x-ray diffraction confirms film epitaxy. Films on MgAl2O4 have a critical temperature Tc of up to 11.3K with a resistivity transition width of 0.25K, while films on MgO have lower Tc with broader transitions. Magnetization vs. magnetic field of a zero-field cooled sample shows Meissner shielding consistent with Type II superconductors. Such films can be used in spin-polarization measurements of complex oxide half-metallic thin films, as well as fundamental studies of the effect of epitaxial strain, microstructure, and cation disorder/substitution on the superconducting properties of LiTi2O4. [1] M. Lauer et al, Phys Rev B 69, 075117 (2004).

  12. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  13. Structure and properties of uranium oxide thin films deposited by pulsed dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Dahan, Isaac; Valderrama, Billy; Manuel, Michele V.

    2014-05-01

    Crystalline uranium oxide thin films were deposited in an unbalanced magnetron sputtering system by sputtering from a depleted uranium target in an Ar + O2 mixture using middle frequency pulsed dc magnetron sputtering. The substrate temperature was constantly maintained at 500 °C. Different uranium oxide phases (including UO2-x, UO2, U3O7 and U3O8) were obtained by controlling the percentage of the O2 flow rate to the total gas flow rate (f) in the chamber. The crystal structure of the films was characterized using X-ray diffraction and the microstructure of the films was studied using transmission electron microscopy and atom probe tomography. When the f was below 10%, the film contains a mixture of metallic uranium and UO2-x phases. As the f was controlled in the range of 10-13%, UO2 films with a (2 2 0) preferential orientation were obtained. The oxide phase rapidly changed to a mixture of U3O7 and U3O8 as the f was increased to the range of 15-18%. Further increasing the f to 20% and above, polycrystalline U3O8 thin films with a (0 0 1) preferential orientation were formed. The hardness and Young's modulus of the uranium oxide films were evaluated using nanoindentation. The film containing a single UO2 phase exhibited the maximum hardness of 14.3 GPa and a Young's modulus of 195 GPa. The UO2 thin film also exhibited good thermal stability in that no phase change was observed after annealing at 600 °C in vacuum for 104 h.

  14. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films

    PubMed Central

    2013-01-01

    Background Graphene oxide (GO)can be dispersed through functionalization, or chemically converted to make different graphene-based nanocomposites with excellent mechanical and thermal properties. Chitosan, a partially deacetylated derivative of chitin, is extensively used for food packaging, biosensors, water treatment, and drug delivery. GO can be evenly dispersed in chitosan matrix through the formation of amide linkages between them, which is different from previous reports focusing on preparing GO/chitosan nanocomposites through physical mixing. Results In this study, free-standing graphene oxide-chitosan (GO-chitosan) nanocomposite films have been prepared. The GO-chitosan films are biologically compatible and mechanically reinforced. Through the formation of amide linkages between GO’s carboxylic acid groups and chitosan's amine groups, GO could be evenly dispersed within the chitosan matrix. We also characterized the GO-chitosan composite films using element analysis, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, differential scanning calorimetry, and thermo gravimetric analysis. Compared to pristine chitosan film, the tensile strength of GO-chitosan film is improved by 2.5 folds and Young’s modulus increases by nearly 4.6 folds. The glass transition temperature of GO-chitosan composite film shifts from 118°C to 158°C compared to the pristine chitosan, indicating its enhanced thermal stability. GO-chitosan composite film was also evaluated for its biocompatibility with C3H10T1/2 cells by in vitro fluorescent staining. The graphene oxide-reinforced chitosan composite films could have applications in functional biomaterials. Conclusion The present study describes a useful and simple method to chemically attach biocompatible chitosan onto graphene oxide. We envision that the GO-chitosan film will open avenues for next-generation graphene applications in the realm of functional biomaterial. PMID:23442350

  15. Electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices

    NASA Astrophysics Data System (ADS)

    He, Zhen

    The focus of this dissertation is the electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices. The electrochemical reduction of metal oxides to metals has been studied for decades as an alternative to pyrometallurgical processes for the metallurgy industry. However, the previous work was conducted on bulk polycrystalline metal oxides. Paper I in this dissertation shows that epitaxial face-centered cubic magnetite (Fe3O4 ) thin films can be electrochemically reduced to epitaxial body-centered cubic iron (Fe) thin films in aqueous solution on single-crystalline Au substrates at room temperature. This technique opens new possibilities to produce special epitaxial metal/metal oxide heterojunctions and a wide range of epitaxial metallic alloy films from the corresponding mixed metal oxides. Electrodeposition, like biomineralization, is a soft solution processing method which can produce functional materials with special properties onto conducting or semiconducting solid surfaces. Paper II in this dissertation presents the electrodeposition of cobalt-substituted magnetite (CoxFe3-xO4, 0 of cobalt-substituted magnetite (CoxFe3-xO4, 0films and superlattices on Au single-crystalline substrates, which can be potentially used in spintronics and memory devices. Paper III in this dissertation reports the electrodeposition of crystalline cobalt oxide (Co3O4) thin films on stainless steel and Au single-crystalline substrates. The crystalline Co3O4 thin films exhibit high catalytic activity towards the oxygen evolution reaction in an alkaline solution. A possible application of the electrodeposited Co 3O4 is the fabrication of highly active and low-cost photoanodes for photoelectrochemical water-splitting cells.

  16. Fluorination of epitaxial oxides: Creating ferrite and nickelate oxyfluoride films

    NASA Astrophysics Data System (ADS)

    May, Steven; Moon, Eun; Xie, Yujun; Keavney, David; Goebel, Justin; Laird, Eric; Li, Christopher

    2013-03-01

    In ABO3 perovskites, the physical properties are directly coupled to the nominal valence state of the B-site cation. In epitaxial thin films, the dominant strategy to control B-site valence is through the selection of a di- or trivalent cation on the A-site. However, this approach is limited, particularly when electron doping on the B-site is desired. Here we report a simple method for realizing oxyfluoride films, where the substitution of F for O is expected to reduce the B-site valence, providing a new means to tune electronic, optical and magnetic properties in thin films. Fluorination is achieved by spin coating an oxygen deficient film with poly(vinylidene fluoride). The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-δFδ and LaNiO3-δFδ (δ ? 0.5) films, as confirmed by x-ray photoemission spectroscopy and x-ray absorption spectroscopy. This work is supported by the U. S. Army Research Office under grant number W911NF-12-1-0132. Work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under contract DE-AC02-06CH11357.

  17. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    PubMed Central

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500) followed by WO3 (1200) and In2O3 (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2) or oxidizing (NO2) gases. PMID:22291557

  18. Preparation and Optical Properties of Zirconium-Titanium-Oxide Thin Films by Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hironaga; Sekine, Masato; Miura, Noboru; Nakano, Ryotaro; Matsumoto, Setsuko

    2005-02-01

    Zirconium-titanium-oxide thin films were prepared by multi-target rf reactive sputtering using metallic targets of zirconium and titanium. The compositional ratio of zirconium to titanium in the thin films was precisely controlled through rf power. Zirconium and titanium in the thin films were found to exist as mixtures of chemically bonded ZrO2 and TiO2 from XPS spectra. The zirconium-titanium-oxide thin films with compositional ratio x<0.42 were identified to have a tetragonal crystal structure, whereas those with x≥q 0.42 were identified to be in the amorphous state. The refractive index of the zirconium-titanium-oxide thin film at a wavelength of 550 nm changed from 2.25 to 2.55 according to compositional ratio x, and the dispersion of the refractive index was analyzed using the Lorentz oscillator model with four oscillators. It was clarified that the estimated oscillator energies E1 (10.5 eV) and E2 (6.5 eV) correspond to zirconium oxide, and that E3 (5.5 eV) and E4 (4.3 eV) correspond to titanium oxide from fundamental absorption spectra and photoconductivity.

  19. Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide.

    PubMed

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO(2)), tungsten oxide (WO(3)) and indium oxide (In(2)O(3)) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H(2)S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of R(air)/R(gas) is given by Cu-SnO(2) films (2500) followed by WO(3) (1200) and In(2)O(3) (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO(2)) or oxidizing (NO(2)) gases. PMID:22291557

  20. Ion beam deposition and surface characterization of thin multi-component oxide films during growth.

    SciTech Connect

    Krauss, A.R.; Im, J.; Smentkowski, V.; Schultz, J.A.; Auciello, O.; Gruen, D.M.; Holocek, J.; Chang, R.P.H.

    1998-01-13

    Ion beam deposition of either elemental targets in a chemically active gas such as oxygen or nitrogen, or of the appropriate oxide or nitride target, usually with an additional amount of ambient oxygen or nitrogen present, is an effective means of depositing high quality oxide and nitride films. However, there are a number of phenomena which can occur, especially during the production of multicomponent films such as the ferroelectric perovskites or high temperature superconducting oxides, which make it desirable to monitor the composition and structure of the growing film in situ. These phenomena include thermodynamic (Gibbsian), and oxidation or nitridation-driven segregation, enhanced oxidation or nitridation through production of a highly reactive gas phase species such as atomic oxygen or ozone via interaction of the ion beam with the target, and changes in the film composition due to preferential sputtering of the substrate via primary ion backscattering and secondary sputtering of the film. Ion beam deposition provides a relatively low background pressure of the sputtering gas, but the ambient oxygen or nitrogen required to produce the desired phase, along with the gas burden produced by the ion source, result in a background pressure which is too high by several orders of magnitude to perform in situ surface analysis by conventional means. Similarly, diamond is normally grown in the presence of a hydrogen atmosphere to inhibit the formation of the graphitic phase.

  1. Synthesis, tailored microstructures and `colossal` magnetoresistance in oxide thin films

    SciTech Connect

    Krishnan, K.M.; Modak, A.R.; Ju, H.; Bandaru, P.

    1996-09-01

    We have grown La{sub 1-x}Sr{sub x}MnO{sub 3} films, using both pulsed laser deposition and a polymeric sol-gel route. These two growth techniques result in different microstructures, but in both cases the texture (epitaxy or polycrystallinity) can be controlled by choice of substrates and growth conditions. The crystallography and microstructure of these films were studied using XRD and high- resolution TEM. The magnetic/magnetotransport properties of these films are discussed in context of their growth and microstructural parameters.

  2. Laser patterning of very thin indium tin oxide thin films on PET substrates

    NASA Astrophysics Data System (ADS)

    McDonnell, C.; Milne, D.; Prieto, C.; Chan, H.; Rostohar, D.; O'Connor, G. M.

    2015-12-01

    This work investigates the film removal properties of 30 nm thick Indium Tin Oxide (ITO) thin films, on flexible polyethylene terephthalate (PET) substrates, using 355, 532 and 1064 nm nanosecond pulses (ns), and 343 and 1064 nm femtosecond pulses. The ablation threshold was found to be dependent on the applied wavelength and pulse duration. The surface topography of the laser induced features were examined using atomic force microscopy across the range of wavelengths and pulse durations. The peak temperature, strain and stress tensors were examined in the film and substrate during laser heating, using finite element computational methods. Selective removal of the thin ITO film from the polymer substrate is possible at all wavelengths except at 266 nm, were damage to substrate is observed. The damage to the substrate results in periodic surface structures (LIPPS) on the exposed PET, with a period of twice the incident wavelength. Fragmented crater edges are observed at all nanosecond pulse durations. Film removal using 1030 nm femtosecond pulses results in clean crater edges, however, minor 5 nm damage to the substrate is also observed. The key results show that film removal for ITO on PET, is through film de-lamination across all wavelengths and pulse durations. Film de-lamination occurs due to thermo-elastic stress at the film substrate interface region, as the polymer substrate expands under heating from direct laser absorption and heat conduction across the film substrate interface.

  3. Surface morphology of ultrathin graphene oxide films obtained by the SAW atomization

    NASA Astrophysics Data System (ADS)

    Balachova, Olga V.; Balashov, Sergey M.; Costa, Carlos A. R.; Pavani Filho, A.

    2015-08-01

    Lately, graphene oxide (GO) thin films have attracted much attention: they can be used as humidity-sensitive coatings in the surface acoustic wave (SAW) sensors; being functionalized, they can be used in optoelectronic or biodevices, etc. In this research we study surface morphology of small-area thin GO films obtained on Si and quartz substrates by deposition of very small amounts of H2O-GO aerosols produced by the SAW atomizer. An important feature of this method is the ability to work with submicrovolumes of liquids during deposition that provides relatively good control over the film thickness and quality, in particular, minimization of the coffee ring effect. The obtained films were examined using AFM and electron microscopy. Image analysis showed that the films consist of GO sheets of different geometry and sizes and may form discrete or continuous coatings at the surface of the substrates with the minimum thickness of 1.0-1.8 nm which corresponds to one or two monolayers of GO. The thickness and quality of the deposited films depend on the parameters of the SAW atomization (number of atomized droplets, a volume of the initial droplet, etc.) and on sample surface preparation (activation in oxygen plasma). We discuss the structure of the obtained films, uniformity and the surface coverage as a function of parameters of the film deposition process and sample preparation. Qualitative analysis of adhesion of GO films is made by rinsing the samples in DI water and subsequent evaluation of morphology of the remained films.

  4. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  5. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    PubMed

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). PMID:25762067

  6. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    PubMed Central

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). PMID:25762067

  7. Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films

    SciTech Connect

    Di, N.; Maroun, F. Allongue, P.; Kubal, J.; Zeng, Z.; Greeley, J.

    2015-03-23

    We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface. Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.

  8. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-01

    Gallium oxide and more particularly β-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  9. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    SciTech Connect

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-15

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  10. The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition

    NASA Astrophysics Data System (ADS)

    Leng, Y. X.; Chen, J. Y.; Yang, P.; Sun, H.; Wang, J.; Huang, N.

    2006-01-01

    The surface modification technique is extensively employed to improve and control biocompatibility for blood and cell attachment. In this paper, tantalum thin films were synthesized by pulsed metal vacuum arc source deposition, the tantalum oxide films were fabricated by tantalum films heated at 700 °C for 1 h in air. The films were characterized using X-ray diffraction (XRD). In vitro investigations of cultured human umbilical vein endothelial cells (HUVEC) on Ta, tantalum oxide films, 316L stainless steel and CP-Ti revealed that the growth and proliferation behavior of endothelial cells on the sample surfaces varied significantly. The adherence, growth, shape and proliferation of endothelial cells on tantalum and tantalum oxide films were much better than 316L stainless steel and CP-Ti. The Ta and tantalum oxide films shown to fulfill the requirements necessary for the application as a blood-contacting device (such as stent) coating.

  11. Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films.

    PubMed

    Costentin, Cyrille; Porter, Thomas R; Savéant, Jean-Michel

    2016-05-01

    Cyclic voltammetry of phosphate cobalt oxide (CoPi) films catalyzing O2-evolution from water oxidation as a function of scan rate, phosphate concentration and film thickness allowed for new insights into the coupling between charge transport and catalysis. At pH = 7 and low buffer concentrations, the film is insulating below 0.8 (V vs SHE) but becomes conductive above 0.9 (V vs SHE). Between 1.0 to 1.3 (V vs SHE), the mesoporous structure of the film gives rise to a large thickness-dependent capacitance. At higher buffer concentrations, two reversible proton-coupled redox couples appear over the capacitive response with 0.94 and 1.19 (V vs SHE) pH = 7 standard potentials. The latter is, at most, very weakly catalytic and not responsible for the large catalytic current observed at higher potentials. CV-response analysis showed that the amount of redox-active cobalt-species in the film is small, less than 10% of total. The catalytic process involves a further proton-coupled-electron-transfer and is so fast that it is controlled by diffusion of phosphate, the catalyst cofactor. CV-analysis with newly derived relationships led to a combination of the catalyst standard potential with the catalytic rate constant and a lower-limit estimation of these parameters. The large currents resulting from the fast catalytic reaction result in significant potential losses related to charge transport through the film. CoPi films appear to combine molecular catalysis with semiconductor-type charge transport. This mode of heterogeneous molecular catalysis is likely to occur in many other catalytic films. PMID:26981886

  12. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  13. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    NASA Astrophysics Data System (ADS)

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-01

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7nm in average size show an ionization potential of 5.01eV, as compared with ˜4.76 and ˜4.64eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  14. Two mechanisms of resistive memories in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Jin, Kui-Juan; Wang, Can; Xu, Zhongtang

    2013-03-01

    Current-voltage hysteresis and switchable rectifying characteristics have been observed in epitaxial multiferroic BiFeO3 thin films. [1,2] It has been clearly demonstrated that ferroelectricity and conductivity coexist in a single phase. The forward direction of the rectifying current can be reversed repeatedly with polarization switching, indicating a switchable diode effect and large ferroelectric resistive switching phenomenon. LaMnO3 (LMO) films are deposited on SrTiO3:Nb (0.8 wt%) substrates under various oxygen pressures for obtaining various concentrations of oxygen vacancies in the LMO films. An aberration-corrected annular-bright-field scanning transmission electron microscopy with atomic resolution and sensitivity for light elements is used, which clearly shows that the number of oxygen vacancies increases with the decrease of oxygen pressures during fabrication. Correspondingly, the resistive switching property becomes more pronounced with more oxygen vacancies contained in LMO films. *E-mail: kjjin@iphy.ac.cn

  15. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation.

    PubMed

    Reichert, Robert; Zambrzycki, Christian; Jusys, Zenonas; Behm, R Jürgen

    2015-11-01

    To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed. PMID:26382643

  16. Positron beam and RBS studies of thermally grown oxide films on stainless steel grade 304

    NASA Astrophysics Data System (ADS)

    Horodek, P.; Siemek, K.; Kobets, A. G.; Kulik, M.; Meshkov, I. N.

    2015-04-01

    The formation of oxide films on surfaces of stainless steel 304 AISI annealed at 800 °C in vacuum, air and in flow N2 atmospheres was studied using variable energy positron beam technique (VEP) and Rutherford backscattering/nuclear reaction (RBS/NR) methods. In frame of these studies, Doppler broadening of annihilation line (DB) measurements were performed. For a sample heated in vacuum the oxide film ca. 8 nm is observed. For specimens oxidized in air and N2 the multi-layered oxide films of about a few hundred nanometers are recognized. The RBS/NR measurements have shown that the sample annealed in vacuum contains a lower quantity of oxygen while for samples heated in the air and N2 non-linear and rather linear time-dependency are observed, respectively. The thicknesses of total oxide films obtained from RBS/NR tests are in good agreement with the VEP results. Time evolution of the oxide growing was studied as well.

  17. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Vesel, Alenka; Mozetic, Miran; Balat-Pichelin, Marianne

    2016-11-01

    Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  18. Nanoscale characterization of oxidized ultrathin Co-films by ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Eng Johnson Goh, Kuan; Wang, Simin; Tan, Siew Ting Melissa; Zhang, Zheng; Kawai, Hiroyo; Troadec, Cedric; Ng, Vivian

    2016-01-01

    In anticipation of devices scaling down further to the few nanometer regime, the ability to characterize material localized within the few nm of a critical device region poses a current challenge, particularly when the material is already buried under other material layers such as under a metal contact. Conventional techniques typically provide indirect information of the nanoscale material quality through a surface or volume averaging perspective. Here we present a study of local (nm range) oxidation in few nanometer thick Co-films using Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/BEES). Co films were grown on n-Si(111) substrates, oxidized in ambient atmosphere before capping with a thin Au film to prevent further oxidation and enable BEEM measurements. In addition to BEES, the temporal progression of Co oxidation was also tracked by X-ray Photoelectron Spectroscopy. At room temperature, we report that the electron injection thresholds are sufficiently different for local regions with Co and oxidized-Co enabling their distinction in BEEM measurements. Our results demonstrate the possibility of using BEEM for nanoscale spatial mapping of the oxidized regions in Co-films, and this can provide critical information toward the successful fabrication of next generation Co-based nano-devices.

  19. Electrochromic properties of tungsten-titanium oxide films.

    PubMed

    Chen, Ya-Chi; Lin, Tai-Nan; Chen, Tien-Lai; Li, Yun-Da; Weng, Ko-Wei

    2012-02-01

    The last decade has seen great in electrochromic (EC) technology for smart windows and displays. In this study, WTiOx films formed from TiO2 and WO3 were deposited onto ITO glass with a sheet resistance of 10 Omega cm and on silicon substrates, by pulsed magnetron sputtering using a W and Ti alloy target. The films were deposited at plasma powers 100, 200, 300, 400 and 500 W using a gaseous Ar (150 sccm)/O2 (50 sccm) mixture; the working pressure was fixed at 5E-2 torr. The film thickness increased with the plasma power. However, increasing the plasma power yielded a more crystalline structure with poorer electrochromic properties. The influence of Ti doping and plasma power on the structural, optical and electrochromic properties of the WTiOx thin films was studied. WTiOx films grown at various plasma powers of under 400 W were amorphous. Deposition of films at 400 W yielded the optimal electrochromic properties, with high optical modulation, high coloration efficiency and the lowest color memory effect at wavelengths 400, 550 and 800 nm. An XPS study indicated that Ti can stabilize the valence state of W6+. The improvements caused by the doping with Ti were tested: an optical density (OD) of close to 0.85 and a maximum delta T (%) at 400 nm of 25.8%, at 550 nm of 52.5% and at 800 nm (in the near-IR region) of 62.4%. PMID:22629942

  20. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    PubMed Central

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  1. Electrochemical and electrochromic properties of niobium oxide thin films fabricated by pulsed laser deposition

    SciTech Connect

    Fu, Z.W.; Kong, J.J.; Qin, Q.Z.

    1999-10-01

    Niobium oxide thin films have been successfully fabricated on the indium-tin oxide coated glasses by pulsed laser deposition in an O{sub 3}/O{sub 2} gas mixture. Films are characterized by X-ray diffraction and Raman spectrometry. Electrochemical and electrochromic properties of Nb{sub 2}O{sub 5} films are examined by cyclic voltammogram and potential step coupled with an in situ charge-coupled device spectrophotometer. The unique characteristics of absorption spectra of Nb{sub 2}O{sub 5} films are observed for the first time, and the optical absorption from the trapped electrons in the surface states plays an important role in the electrochromic phenomenon.

  2. Optical constants of amorphous, transparent titanium-doped tungsten oxide thin films.

    PubMed

    Ramana, C V; Baghmar, Gaurav; Rubio, Ernesto J; Hernandez, Manuel J

    2013-06-12

    We report on the optical constants and their dispersion profiles determined from spectroscopic ellipsometry (SE) analysis of the 20%-titanium (Ti) doped of tungsten oxide (WO3) thin films grown by sputter-deposition. The Ti-doped WO3 films grown in a wide range of temperatures (25-500 °C) are amorphous and optically transparent. SE data indicates that there is no significant interdiffusion at the film-substrate interface for a W-Ti oxide film growth of ~90 nm. The index refraction (n) at λ = 550 nm vary in the range of 2.17-2.31 with a gradual increase in growth temperature. A correlation between the growth conditions and optical constants is discussed. PMID:23682744

  3. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  4. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures.

    PubMed

    Veal, Boyd W; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M; Eastman, Jeffrey A

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  5. Characterization of porous indium tin oxide thin films using effective medium theory

    NASA Astrophysics Data System (ADS)

    Ederth, J.; Niklasson, G. A.; Hultâker, A.; Heszler, P.; Granqvist, C. G.; van Doorn, A. R.; Jongerius, M. J.; Burgard, D.

    2003-01-01

    Effective medium theory was used to model optical properties in the 0.3 - 30 μm wavelength range for films comprised of nanoparticles of a transparent conducting oxide that are connected in a percolating network characterized by a filling factor f. The model is based on charge carrier density ne and resistivity ρ of the particles, and it enables analyses of these microscopic parameters upon posttreatment of the film. The theory was used to interpret data on spin coated layers consisting of nanoparticles of indium tin oxide (i.e., In2O3:Sn) with f close to the percolation limit. It showed that the as-deposited film contained nanoparticles with ne as large as ˜5×1020cm-3 and ρ≈5×10-4 Ω cm. The model also provided important data on f, ne, and ρ after heat treatment of the film.

  6. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-06-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.

  7. Effects of nitrogen flow rate on the properties of indium oxide thin films.

    PubMed

    Cho, Shinho; Kim, Moonhwan

    2013-11-01

    Indium oxide thin films are deposited on glass substrates at nitrogen flow rates of 0-50% by rf reactive magnetron sputtering and are characterized for their structural, morphological, electrical, and optical properties. The experimental results showed that the control of nitrogen flow rate has a significant effect on the properties of the In2O3 thin films. The change in the preferred growth orientation from (222) to (400) planes is observed above a nitrogen flow rate of 10%. The average optical transmittance in the wavelength range of 400-1100 nm is increased from 85.4% at 0% to 86.7% at 50%, where the smallest value of the optical band gap energy is obtained. In addition to the improvement in crystallinity of the films, the nitrogen flow rate plays a crucial role in the fabrication of high-quality indium oxide films and devices. PMID:24245335

  8. Sodium manganese oxide thin films as cathodes for Na-ion batteries

    SciTech Connect

    Baggetto, Loic; Carroll, Kyler J; Unocic, Raymond R; Bridges, Craig A; Meng, Ying Shirley; Veith, Gabriel M

    2014-01-01

    This paper presents the fabrication and characterization of sodium manganese oxide cathode thin films for rechargeable Na-ion batteries. Layered oxide compounds of nominal compositions Na0.6MnO2 and Na1.0MnO2 have been prepared by radio frequency magnetron sputtering and post-annealing at high temperatures under various conditions. The Na0.6MnO2 thin films possess either a hexagonal or orthorhombic structure while the Na1.0MnO2 films crystallize in a monoclinic structure, as shown by X-ray diffraction and X-ray absorption spectroscopy results. The potential profiles of the film cathodes are characterized by features similar to those measured for the powders and exhibit reversible storage capacities in the range of 50-60 Ah cm-2 m-1, which correspond to about 120-140 mAh g-1, and are maintained over 80 cycles.

  9. Structure and Properties of Laser-Fired Sol-Gel Derived Tungsten Oxide Films

    NASA Astrophysics Data System (ADS)

    Taylor, Douglas John

    1995-01-01

    This investigation focuses on the use of laser radiation to fire sol-gel derived oxide films. The main emphasis of this work was to make high quality tungsten oxide films with good electrochromic properties. Laser firing was done with a carbon dioxide laser operated in continuous mode. The laser-fired tungsten oxide films were measured for density, composition, crystallinity and electrochromic behavior. Analytical tools included multi -angle ellipsometry, FTIR, TEM, XRD, spectrophotometry and electrochemistry. The effect of process variables (laser power, spot size and translation speed) on the extent of film densification and microstructural evolution was investigated. Thermal modeling of laser-heated sol-gel films was studied to further understand the laser firing process and to estimate firing temperatures. Temperature calculations were based on laser parameters, sample geometry and target materials. Properties characteristic of firing temperature were used to verify the thermal modeling. For laser-fired films, the properties at the calculated temperatures agreed well with the properties of similar furnace-fired films. The modeling also provided the thermal profiles seen by the laser heated materials. Laser firing was shown to be a feasible technique to make good quality electrochromic films. By precisely controlling the irradiation, the microstructure of tungsten oxide films was tailored to produce the desired electrochromic properties. Transmission electron microscopy showed film microstructures that varied from completely amorphous to fully crystalline. Corresponding optoelectrochemical measurements indicated a decrease in electrochromism with increasing crystallinity. The effects of density/porosity and coating composition are also discussed. It is proposed that laser firing of sol-gel derived films can be used for optics, sensors, graded index materials, and electrochromic windows. The ability to heat localized regions afforded by laser firing is

  10. Performance and stress analysis of metal oxide films for CMOS-integrated gas sensors.

    PubMed

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  11. Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors

    PubMed Central

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250 °C and 550 °C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  12. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  13. Thin film deposition of metal oxides in resistance switching devices: electrode material dependence of resistance switching in manganite films

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshihiro; Homma, Kohei; Tachibana, Kunihide

    2013-02-01

    The electric-pulse-induced resistance switching in layered structures composed of polycrystalline Pr1- x Ca x MnO3 (PCMO) sandwiched between Pt bottom electrode and top electrodes of various metals (metal/PCMO/Pt) was studied by direct current current-voltage ( I- V) measurements and alternating current impedance spectroscopy. The I- V characteristics showed nonlinear, asymmetric, and hysteretic behavior in PCMO-based devices with top electrode of Al, Ni, and Ag, while no hysteretic behavior was observed in Au/PCMO/Pt devices. The PCMO-based devices with hysteretic I- V curves exhibited an electric-pulse-induced resistance switching between high and low resistance states. Impedance spectroscopy was employed to study the origin of the resistance switching. From comparison of the impedance spectra between the high and low resistance states, the resistance switching in the PCMO-based devices was mainly due to the resistance change in the interface between the film and the electrode. The electronic properties of the devices showed stronger correlation with the oxidation Gibbs free energy than with the work function of the electrode metal, which suggests that the interface impedance is due to an interfacial oxide layer of the electrode metal. The interface component observed by impedance spectroscopy in the Al/PCMO/Pt device might be due to Al oxide layer formed by oxidation of Al top electrode. It is considered that the interfacial oxide layer plays a dominant role in the bipolar resistance switching in manganite film-based devices.

  14. Decreased electrochromism in Li-intercalated Ti oxide films containing La, Ce, and Pr

    SciTech Connect

    Kullman, L.; Azens, A.; Granqvist, C.G.

    1997-06-01

    Films of Ti{endash}La oxide, Ti{endash}Ce oxide, and Ti{endash}Pr oxide were produced by reactive dc magnetron sputtering. Their composition was determined by Rutherford backscattering spectrometry. X-ray diffractometry and infrared absorption spectroscopy indicated that the microstructure was heavily disordered and in most cases Ti-oxidelike. Electrochemical Li intercalation/deintercalation was studied by cyclic voltammetry, and ensuing optical data were recorded by spectrophotometry. Ce addition diminished the electrochromism, and films with Ce/Ti atom ratios exceeding 0.3 were almost fully transparent irrespective of their lithiation, pointing at the potential applications of such films as counter electrodes in transparent electrochromic devices. The optical and electrochemical data were discussed in terms of a model based on electron insertion/extraction in 4f states located in the gap between the valence and conduction bands of CeO{sub 2}. {copyright} {ital 1997 American Institute of Physics.}

  15. Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films

    NASA Astrophysics Data System (ADS)

    Fu, Shencheng; Sun, Shiyu; Zhang, Xintong; Zhang, Cen; Zhao, Xiaoning; Liu, Yichun

    2015-12-01

    Different metal-oxide films were fabricated by radio frequency magnetron sputtering. Further, a layer of silver nanoparticles (NPs) was deposited on the surface of the substrate by physical sputtering. Photochromism of the silver/metal-oxide nanocomposite films were investigated in situ under the irradiation of a linearly-polarized green laser beam (532 nm). Silver NPs were found to be easily photo-dissolved on the n-type metal-oxide films. By changing experimental conditions, it was also verified that both oxygen and humidity accelerate the photochromism of silver NPs. The corresponding micro-mechanism on charge separation and Ag+-ions mobility was also discussed. These results provided theoretical basis for the application of silver NPs in biological, chemical and medical areas.

  16. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2016-02-01

    Thermoelectric properties of In2O3-SnO2-based multi-component metal oxide films formed by spray pyrolysis method are studied. It is shown that the introduction of additional components such as gallium and zinc can control the parameters of the deposited layers. At that, the doping with gallium is more effective for optimization of the efficiency of the thermoelectric conversion. The explanation of the observed changes in the electro-physical and thermoelectric properties of the films at the composition change is given. It is found that the main changes in the properties of multicomponent metal oxide films take place at concentrations of dopants which correspond to their limit solubility in the dominant oxide.

  17. Molybdenum as a contact material in zinc tin oxide thin film transistors

    SciTech Connect

    Hu, W.; Peterson, R. L.

    2014-05-12

    Amorphous oxide semiconductors are of increasing interest for a variety of thin film electronics applications. Here, the contact properties of different source/drain electrode materials to solution-processed amorphous zinc tin oxide (ZTO) thin-film transistors are studied using the transmission line method. The width-normalized contact resistance between ZTO and sputtered molybdenum is measured to be 8.7 Ω-cm, which is 10, 20, and 600 times smaller than that of gold/titanium, indium tin oxide, and evaporated molybdenum electrodes, respectively. The superior contact formed using sputtered molybdenum is due to a favorable work function lineup, an insulator-free interface, bombardment of ZTO during molybdenum sputtering, and trap-assisted tunneling. The transfer length of the sputtered molybdenum/ZTO contact is 0.34 μm, opening the door to future radio-frequency sub-micron molybdenum/ZTO thin film transistors.

  18. Decreased electrochromism in Li-intercalated Ti oxide films containing La, Ce, and Pr

    NASA Astrophysics Data System (ADS)

    Kullman, L.; Azens, A.; Granqvist, C. G.

    1997-06-01

    Films of Ti-La oxide, Ti-Ce oxide, and Ti-Pr oxide were produced by reactive dc magnetron sputtering. Their composition was determined by Rutherford backscattering spectrometry. X-ray diffractometry and infrared absorption spectroscopy indicated that the microstructure was heavily disordered and in most cases Ti-oxidelike. Electrochemical Li intercalation/deintercalation was studied by cyclic voltammetry, and ensuing optical data were recorded by spectrophotometry. Ce addition diminished the electrochromism, and films with Ce/Ti atom ratios exceeding 0.3 were almost fully transparent irrespective of their lithiation, pointing at the potential applications of such films as counter electrodes in transparent electrochromic devices. The optical and electrochemical data were discussed in terms of a model based on electron insertion/extraction in 4f states located in the gap between the valence and conduction bands of CeO2.

  19. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    SciTech Connect

    Kim, Dong Soo; Lee, Hee Chul

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni{sup 3+} ions is found to increase with the O{sub 2} ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni{sup 3+} ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  20. Structural and morphological properties of mesoporous carbon coated molybdenum oxide films

    NASA Astrophysics Data System (ADS)

    Dayal, Saurabh; Kumar, C. Sasi

    2016-05-01

    In the present study, we report the structural and morphological properties of mesoporous carbon coated molybdenum oxide films. The deposition of films was carried out in a two-step process, the first step involves deposition of molybdenum and carbon bilayer thin films using DC magnetron sputtering. In the second step the sample was ex-situ annealed in a muffle furnace at different temperatures (400°C to 600°C) and air cooled in the ambient atmosphere. The formation of the meso-porous carbon clusters on molybdenum oxide during the cooling step was investigated using FESEM and AFM techniques. The structural details were explored using XRD. The meso-porous carbon were found growing over molybdenum oxide layer as a result of segregation phenomena.

  1. Fabrication of ion conductive tin oxide-phosphate amorphous thin films by atomic layer deposition

    SciTech Connect

    Park, Suk Won; Jang, Dong Young; Kim, Jun Woo; Shim, Joon Hyung

    2015-07-15

    This work reports the atomic layer deposition (ALD) of tin oxide-phosphate films using tetrakis(dimethylamino)tin and trimethyl phosphate as precursors. The growth rates were 1.23–1.84 Å/cycle depending upon the deposition temperature and precursor combination. The ionic conductivity of the ALD tin oxide-phosphate films was evaluated by cross-plane impedance measurements in the temperature range of 50–300 °C under atmospheric air, with the highest conductivity measured as 1.92 × 10{sup −5} S cm{sup −1} at 300 °C. Furthermore, high-resolution x-ray photoelectron spectroscopy exhibited two O1s peaks that were classified as two subpeaks of hydroxyl ions and oxygen ions, revealing that the quantity of hydroxyl ions in the ALD tin oxide-phosphate films influences their ionic conductivity.

  2. Localized photoelectrochemistry on a tungsten oxide-iron oxide thin film material library.

    PubMed

    Kollender, Jan Philipp; Mardare, Andrei Ionut; Hassel, Achim Walter

    2013-12-01

    A WO3-Fe2O3 thin film combinatorial library was fabricated using a vapor phase co-deposition method followed by a combined thermal annealing and oxidation process. The scanning electron microscopy (SEM) analysis of the library microstructure combined with X-ray diffraction (XRD) investigations suggested that α-Fe2O3 grains preferentially grow from boundaries of domains, containing finer grains of WO3 and Fe2WO6, forming filiform networks on the surface. The surface density of the hematite networks depends on the amount of Fe present in the library. Photocurrents measured at different applied biases using Photo Electrochemical Scanning Droplet Cell Microscopy (PE-SDCM) were analyzed and mapped along the entire compositional spread. A distinctive photocurrent peak was detected at 21.9 atom % Fe, and its appearance was correlated to the higher amount of hematite present in the library at this specific composition together with a specific WO3 crystallographic orientation ((222) orthorhombic or (400) monoclinic). This finding is confirmed by qualitative and quantitative XPS surface analysis at the photocurrent peak position in the material library. Thus the enhancement of the photocurrent cannot be exclusively attributed to certain surface modifications since only hematite was found on the library surface at the peak composition. PMID:24151796

  3. Conductive Perovskite-type Metal Oxide Thin Films Prepared by Chemical Solution Deposition Technique

    NASA Astrophysics Data System (ADS)

    Sasajima, K.; Uchida, H.

    2011-10-01

    Metal oxide electrode have been widely developed for high-performance electric device because they possess some attractive characteristic such as thermal/chemical stabilities and change compensation for oxygen vacancies in interconnected dielectric layers, etc., which is often hardly achieved by convention metal electrodes. As almost all metal oxide electrodes were usually fabricated by some vapour deposition techniques which require large-scale equipments, power, resources and costs, film deposition via solution technique would be worthy for familiarizing the metal oxide electrodes. In this research, thin films of conductive perovskite-type oxides, (La,Sr)CoO3 [LSCO], were fabricated by chemical solution deposition technique. The precursor solution for LSCO was prepared using metal nitrate, acetates, and iso-propoxide and 2-methoxyethanol. The solution was spin-coated on substrates, followed by drying, pyrolysis and RTA-treatment for crystallization at 500-750°C, for 5 min in air. These processes were repeated to obtain desired film thickness. (100)Si and (100)SrTiO3 were used as substrate. XRD analysis indicated that both of LSCO films fabricated on (100)SrTiO3 and (100)Si substrates were crystallized at and above 600°C. The films on (100)SrTiO3 had preferential crystal orientation of (100)LSCO normal to the substrate surface, while random crystal orientation was confirmed for the films on (100)Si. Electrical resistivity of the both films fabricated at 700°C were 6.09 × 10-5 Ω cm and 1.12 × 10-4 Ω cm, respectively, which is almost same as the LSCO films fabricated by conventional vapour deposition technique.

  4. Photon synthesis of iron oxide thin films for thermo-photo-chemical sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.; Petrov, Yu. N.; Gorbachuk, N. T.

    2012-09-01

    Ultraviolet photons of KrF-laser (248 nm) and of photodiode (360 nm) were used for the synthesis of iron oxide thin films with variable thickness, stoichiometry and electrical properties. The reactive pulsed laser deposition (RPLD) method was based on KrF-laser and photon-induced chemical vapor deposition (PCVD) was based on a photodiode. Deposited films demonstrated semiconductor properties with variable band gap (Eg). The film thickness (50-140 nm) and Eg depended on the laser pulse number, oxygen and iron carbonyl vapor pressure in the deposition chamber, and exposure time to the substrate surface with ultraviolet (UV) radiation. Sensing characteristics strongly depended on electrical and structural properties of such thin films. Iron oxide films were deposited on <1 0 0> Si substrate and had large thermo electromotive force (e.m.f.) coefficient (S) and high photosensitivity (F). The largest value of the S coefficient obtained by RPLD was about 1.65 mV/K in the range 270-290 K and by PCVD was about 1.5 mV/K in the range 280-322 K. The largest value F obtained by RPLD and PCVD was about 44 Vc/W and 40 Vc/W, accordingly, for white light at power density (I ≅ 0.006 W/cm2). It was shown that the S coefficient and F strongly depended on Eg. Moreover, these films were tested as chemical sensors: the largest sensitivity of NO molecules was at the level of 3 × 1012 cm-3. Our results showed that RPLD and PCVD were used to synthesize semiconductor iron oxide thin films with different sensing properties. So iron oxide thin films synthesized by UV photons are up-to-date materials for multi-parameter sensors: thermo-photo-chemical sensors operating at moderate temperature.

  5. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect

    Hoffman, D.M.; Atagi, L.M. |; Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang; Rubiano, R.R.; Springer, R.W.; Smith, D.C.

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  6. Conductor Formation Through Phase Transformation in Ti-Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Lin, Y. H.; Wei, Y. S.; Liu, C. Y.

    2012-01-01

    The resistance and transmittance of Ti-oxide thin films sputtered on quartz substrates were studied. The electrical and optical properties can be changed by varying the percentage of O2 introduced during the sputtering. The lowest resistivity for the sputtered Ti-oxide thin film was 2.30 × 10-2 Ω cm for 12.5% O2, which was obtained after annealing at 400°C in ambient oxygen. The results of x-ray photoelectron spectroscopy (XPS) curve-fitting indicate that the Ti-oxide thin film contained both Ti2O3 and TiO2 phases during deposition. The Ti2O3 phase was transformed into the stable TiO2 phase during annealing. The Ti2O3-TiO2 phase transformation initiated the substitution reaction. The substitution of Ti4+ ions in the TiO2 phase for the Ti3+ ions in the Ti2O3 phase created the free electrons. This Ti2O3-TiO2 phase transformation demonstrates the potential mechanism for conduction in the annealed Ti-oxide thin films. The transmittance of the annealed Ti-oxide thin films can be as high as approximately 90% at the 400 nm wavelength with the introduction of 16.5% O2. This result indicates that the annealed Ti-oxide thin films are excellent candidates for use as transparent conducting layers for ultraviolet (UV) or near-UV light-emitting diode (LED) devices.

  7. Negative Magnetoresistance of Indium Tin Oxide Nanoparticle Thin Films Grown by Chemical Thermolysis

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Yoshida, Kota; Higaki, Tomohiro; Kimura, Yuta; Nakamoto, Masami; Kashiwagi, Yukiyasu; Yamamoto, Mari; Saitoh, Masashi; Ohno, Toshinobu; Furuta, Shinya

    2013-02-01

    To clarify the electrical transport properties of nanostructured thin films, tin-doped indium oxide (ITO) nanoparticle (NP) solution-processed films were fabricated. An air-atmosphere, simple chemical thermolysis method was used to grow the ITO NPs, and the structural and electrical properties of spin-coated granular ITO NP films were investigated. X-ray diffraction measurements showed clear observation of the cubic indium oxide (222) diffraction peak, and films with a smaller Sn concentration were shown to have a better crystalline quality. We further explored the physical origin of the sign of the magnetoresistance (MR) in the variable-range hopping (VRH) region. A negative MR under a magnetic field perpendicular to the film surface increases with decreasing Sn concentration, and these results can be explained by the forward interference model in the VRH region. A larger negative MR is attributed to longer localization and hopping lengths, and better crystallinity. Thus, ITO NP thin films produced by this method are attractive candidates for oxide-based diluted magnetic semiconductors and other electronic devices.

  8. Thermal annealing of thin PECVD silicon-oxide films for airgap-based optical filters

    NASA Astrophysics Data System (ADS)

    Ghaderi, M.; de Graaf, G.; Wolffenbuttel, R. F.

    2016-08-01

    This paper investigates the mechanical and optical properties of thin PECVD silicon-oxide layers for optical applications. The different deposition parameters in PECVD provide a promising tool to manipulate and control the film structure. Membranes for use in optical filters typically are of ~λ/4n thickness and should be slightly tensile for remaining flat, thus avoiding scattering. The effect of the thermal budget of the process on the mechanical characteristics of the deposited films was studied. Films with compressive stress ranging from  ‑100 to 0 MPa were deposited. Multiple thermal annealing cycles were applied to wafers and the in situ residual stress and ex situ optical properties were measured. The residual stress in the films was found to be highly temperature dependent. Annealing during the subsequent process steps results in tensile stress from 100 to 300 MPa in sub-micron thick PECVD silicon-oxide films. However, sub-100 nm thick PECVD silicon-oxide layers exhibit a lower dependence on the thermal annealing cycles, resulting in lower stress variations in films after the annealing. It is also shown that the coefficient of thermal expansion, hence the residual stress in layers, varies with the thickness. Finally, several free-standing membranes were fabricated and the results are compared.

  9. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-01

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium-Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo2Ti2Fe8O19/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10-10 s m-1 in SrCo2Ti2Fe8O19 thin films.

  10. Properties of Silver Nanowire/Zinc Oxide Transparent Bilayer Thin Films for Optoelectronic Applications.

    PubMed

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2015-11-01

    We have investigated electrical, optical and structural properties of silver nanowire (AgNW)/zinc oxide (ZnO) transparent conductive bilayer films for optoelectronic applications. The AgNW/ZnO transparent conductive bilayer films were fabricated using spin-coating and facing target sputtering (FTS) method. The spin-coated the AgNW layer has advantages, such as low resistivity and high transmittance in visible range. However, the spin-coated AgNW layers can be oxidized by natural oxygen. Consequently, the conductivity of AgNW layer was strongly decreased. So, an oxidation prevented layer is necessary. The ZnO thin film layer on the Ag NW layer can be prevented oxidation. In addition, the peeling of spin-coated AgNW layer were prevented the deposited ZnO thin film layer. As the results, the sheet resistance and average transmittance in visible range of AgNW/ZnO transparent bilayer thin films exhibited 34.1 ohm/sq. and 83.46%. PMID:26726570

  11. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    NASA Astrophysics Data System (ADS)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  12. Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin.

    PubMed

    Kowalczyk, Dariusz; Kordowska-Wiater, Monika; Nowak, Jakub; Baraniak, Barbara

    2015-01-01

    Minimal inhibitory concentration (MIC) of chitosan lactate (CHL) was tested against bacteria and phytopathogenic fungi. Then, the structural, physicochemical and antimicrobial properties of films based on CHL, oxidized potato starch (OPS), and gelatin (GEL) were investigated. With the exception of Rhizopus nigricans, CHL was effective against the target organisms. Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) were more sensitive to CHL than Gram-negative bacteria (Pectobacterium carotovorum and Escherichia coli). Cryo-SEM images showed total miscibility between the polymers in the blends and the ATR-FTIR spectra revealed that there was an interaction among the polymeric components. Pure CHL films displayed the highest moisture content (25.51%), water vapor permeability (48.78gmmm(-2)d(-1)kPa(-1)), and the lowest tensile and puncture strength (2.00 and 1.45MPa, respectively) among the studied films. CHL50/GEL50 films had lower permeability, higher mechanical strength, and lower elongation compared to CHL50/OPS50 films. Films obtained from CHL and CHL50/GEL50 were completely water-soluble and did not show sorbitol recrystallization. The incorporation of CHL into OPS and GEL films did not affect their transparency and improved UV-blocking capacity. CHL films were the only ones that exhibited antibacterial efficiency. Antifungal activities against Alternaria alternata and Monilinia fructigena were detected for CHL and CHL50/GEL50 films. PMID:25841370

  13. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  14. Bioactivity and osteoblast response of the micro-arc oxidized zirconia films.

    PubMed

    Han, Yong; Yan, Yuanyuan; Lu, Chunguo; Zhang, Yumei; Xu, Kewei

    2009-01-01

    Zirconia films containing Ca and P were prepared by micro-arc oxidation (MAO) of zirconium. The microstructure, in vitro bioactivity, and primary osteoblast response of the films were investigated as a function of the applied voltages in the range of 400-500 V. The results indicate that the MAO-formed zirconia films are porous and nanocrystalline, and predominantly composed of tetragonal zirconia (t-ZrO(2)). The pores and grains sizes and t-ZrO(2) content of the films tend to increase with the applied voltages. The zirconia films formed at higher voltages have higher amount of CaO and phosphate and slightly lower amount of Zr-OH groups. Although, all of the zirconia films can be fully covered by bone-like apatite after immersion in simulated body fluids (SBF) within 10 days, there exists remarkable difference in apatite-induced time. The apatite-forming ability of the films is not only ascribed to Zr-OH groups on the surfaces, but also enhanced by the CaO and phosphate ions incorporated into ZrO(2). Osteoblasts on the films are observed to attach, proliferate, and grow in good state, and have good alkaline phosphatase activity. It is suggested that the MAO-formed ZrO(2) films exhibit favorable bioactivity and biocompatibility. PMID:18260135

  15. Tailoring of absorption edge by thermal annealing in tin oxide thin films

    SciTech Connect

    Thakur, Anup; Gautam, Sanjeev; Kumar, Virender; Chae, K. H.; Lee, Ik-Jae; Shin, Hyun Joon

    2015-05-15

    Tin oxide (SnO{sub 2}) thin films were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates in different oxygen-to-argon gas-flow ratio (O{sub 2}-to-Ar = 0%, 10%, 50%). All films were deposited at room temperature and fixed working pressures, 10 mTorr. The X-ray diffraction (XRD) measurement suggests that all films were crystalline in nature except film deposited in argon environment. Thin films were annealed in air at 200 °C, 400 °C and 600 °C for two hours. All films were highly transparent except the film deposited only in the argon environment. It was also observed that transparency was improved with annealing due to decrease in oxygen vacancies. Atomic force microscopy (AFM), results showed that the surface of all the films were highly flat and smooth. Blue shift was observed in the absorption edge with annealing temperature. It was also observed that there was not big change in the absorption edge with annealing for films deposited in 10% and 50% oxygen-to-argon gas-flow ratio.

  16. In situ TEM Studies of the Initial Oxidation stage of Cu and Cu Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Yang, Judith; Kang, Yihong; Luo, Langli; Ciston, James; Stach, Eric; Zhou, Guangwen

    2012-02-01

    The fundamental understanding of oxidation at the nanoscale is important for the environmental stability of coating materials as well as processing of oxide nanostructures. Our previous studies show the epitaxial growth of Cu2O islands during the initial stages of oxidation of Cu thin films, where surface diffusion and strain impact the oxide development and morphologies. The addition of secondary elements changes the oxidation mechanism. If the secondary element is non-oxidizing, such as Au, it will limit the Cu2O island growth due to the depletion of Cu near the oxide islands. When the secondary element is oxidizing, for example Ni, the alloy will show more complex behaviour, where duplex oxide islands were observed. Nucleation density and growth rate of oxide islands are observed under various temperatures and oxygen partial pressures (pO2) as a function of time by in situ ultra high vacuum (UHV)-transmission electron microscopy (TEM). Our initial results of Cu-Ni(001) oxidation is that the oxide epitaxy and morphologies change as function of Ni concentration. For higher spatial resolution, we are examining the atomic scale oxidation by aberration-corrected ETEM with 1å resolution.

  17. Studies of aluminum oxide thin films deposited by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Płóciennik, P.; Guichaoua, D.; Korcala, A.; Zawadzka, A.

    2016-06-01

    This paper presents the structural and optical investigations of the aluminum oxide nanocrystalline thin films. Investigated films were fabricated by laser ablation technique in high vacuum onto quartz substrates. The films were deposited at two different temperatures of the substrates equal to room temperature and 900 K. X-ray Diffraction spectra proved nanocrystalline character and the corundum phase of the film regardless on the substrate temperature during the deposition process. Values of the refractive indices, extinction and absorption coefficients were calculated by using Transmission and Reflection Spectroscopy in the UV-VIS-NIR range of the wavelength. Coupling Prism Method was used for films thickness estimations. Experimental measurements and theoretical calculations of the Third Harmonic Generation were also reported. Obtained results show that the lattice strain may affect obtained values of the third order nonlinear optical susceptibility.

  18. The solution growth route and characterization of electrochromic tungsten oxide thin films

    SciTech Connect

    Todorovski, Toni; Najdoski, Metodija

    2007-12-04

    Electrochromic tungsten oxide thin films were prepared by using an aqueous solution of Na{sub 2}WO{sub 4}.2H{sub 2}O and dimethyl sulfate. Various techniques were used for the characterization of the films such as X-ray diffraction, cyclic voltammetry, SEM analysis and VIS-spectroscopy. The thin film durability was tested in an aqueous solution of LiClO{sub 4} (0.1 mol/dm{sup 3}) for about 7000 cycles followed by cyclic voltammetry. No significant changes in the cyclic voltammograms were found, thus proving the high durability of the films. The optical transmittance spectra of coloured and bleached states showed significant change in the transmittance, which makes these films favorable for electrochromic devices.

  19. Electromechanical Breakdown of Barrier-Type Anodized Aluminum Oxide Thin Films Under High Electric Field Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Yao, Manwen; Yao, Xi

    2016-02-01

    Barrier-type anodized aluminum oxide (AAO) thin films were formed on a polished aluminum substrate via electrochemical anodization in 0.1 mol/L aqueous solution of ammonium pentaborate. Electromechanical breakdown occurred under high electric field conditions as a result of the accumulation of mechanical stress in the film-substrate system by subjecting it to rapid thermal treatment. Before the breakdown event, the electricity of the films was transported in a highly nonlinear way. Immediately after the breakdown event, dramatic cracking of the films occurred, and the cracks expanded quickly to form a mesh-like dendrite network. The breakdown strength was significantly reduced because of the electromechanical coupling effect, and was only 34% of the self-healing breakdown strength of the AAO film.

  20. Assessment of morphology and property of graphene oxide-hydroxypropylmethylcellulose nanocomposite films.

    PubMed

    Ghosh, Tapas Kumar; Gope, Shirshendu; Mondal, Dibyendu; Bhowmik, Biplab; Mollick, Md Masud Rahaman; Maity, Dipanwita; Roy, Indranil; Sarkar, Gunjan; Sadhukhan, Sourav; Rana, Dipak; Chakraborty, Mukut; Chattopadhyay, Dipankar

    2014-05-01

    Graphene oxide (GO) was synthesized by Hummer's method and characterized by using Fourier transform infrared spectroscopy and Raman spectroscopy. The as synthesized GO was used to make GO/hydroxypropylmethylcellulose (HPMC) nanocomposite films by the solution mixing method using different concentrations of GO. The nanocomposite films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermo-gravimetric analysis. Mechanical properties, water absorption property and water vapor transmission rate were also measured. XRD analysis showed the formation of exfoliated HPMC/GO nanocomposites films. The FESEM results revealed high interfacial adhesion between the GO and HPMC matrix. The tensile strength and Young's modulus of the nanocomposite films containing the highest weight percentage of GO increased sharply. The thermal stability of HPMC/GO nanocomposites was slightly better than pure HPMC. The water absorption and water vapor transmission rate of HPMC film was reduced with the addition of up to 1 wt% GO. PMID:24608024

  1. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  2. Electrical, Optical, and Thermal Behaviors of Transparent Film Heater Made of Reduced Graphene Oxide.

    PubMed

    Kim, Ji Eun; Yoon, Kwan Han; Son, Young Gon; Park, Chul Ho; Lee, Young Sil

    2016-02-01

    The electrical conductivity and the thermal performance of the films made of reduced graphene oxide (rGO) spray-coated on polycarbonate substrate were investigated. The electrical conductivity and the transmittance of 10 times spray coated film made from the solution with 0.08 wt% of rGO, 0.16 wt% of surfactant were 30 komega/sq and 64%, respectively. The steady-state temperature of the films increased from 25 degrees C for 40 komega/sq to 100 degrees C for 490 omega/sq at an applied voltage of 110 V. The heat transfer coefficient of the rGO coated film, a, was obtained as 139 W/m2 K using the model equation based on the thermal balance, which includes Joule heating convectional, and radiative heat transfers. The transmittance of the films decreased continuously from 73% with the increase of surface resistivity. PMID:27433610

  3. A method of producing high quality oxide and related films on surfaces

    SciTech Connect

    Ruckman, M.W.; Strongin, M. ); Gao, Yongli . Dept. of Physics and Astronomy)

    1991-01-01

    Aluminum oxide or aluminum nitride films were deposited on MBE grown GaAs(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid form the desired compound or a precursor than can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE-systems and on going research using the same apparatus suggests than photon or electron irradiation could also be used to promote the reactions needed to give the intended material.

  4. A method of producing high quality oxide and related films on surfaces

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Strongin, Myron; Gao, Yongli

    1991-01-01

    Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.

  5. A method of producing high quality oxide and related films on surfaces

    SciTech Connect

    Ruckman, M.W.; Strongin, M.; Gao, Yongli

    1991-12-31

    Aluminum oxide or aluminum nitride films were deposited on MBE grown GaAs(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid form the desired compound or a precursor than can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE-systems and on going research using the same apparatus suggests than photon or electron irradiation could also be used to promote the reactions needed to give the intended material.

  6. Preparation of vanadium oxide thin films modified with Ag using a hybrid deposition configuration

    NASA Astrophysics Data System (ADS)

    Gonzalez-Zavala, F.; Escobar-Alarcón, L.; Solís-Casados, D. A.; Rivera-Rodríguez, C.; Basurto, R.; Haro-Poniatowski, E.

    2016-04-01

    The application of a hybrid deposition configuration, formed by the interaction of a laser ablation plasma with a flux of atomic vapor, to deposit vanadium oxide thin films modified with different amounts of silver, is reported. The effect of the amount of Ag incorporated in the films on their structural, morphological, compositional and optical properties was studied. The obtained results reveal that films with variable Ag content from 11.7 to 24.6 at.% were obtained. Depending on the silver content, the samples show very different surface morphologies. Optical characterization indicates the presence of nanostructures of Ag. Thin films containing silver exhibit better photocatalytic performances than unmodified V2O5 films. Raman spectra reveal that as the silver content is increased, the signals associated with V2O5 disappear and new modes attributed mainly to silver vanadates appear suggesting the formation of ternary compounds.

  7. Partial reduction of re-oxidation processing of Y-Ba-Cu-O sputtered thin films

    SciTech Connect

    Garzon, F.H.; Beery, J.G.; Wilde, D.K.; Raistrick, I.D.

    1989-01-01

    Thin films of Y--Ba--Cu--O were produced by rf sputtering of YBa{sub 2}Cu{sub 3}O{sub 7-x} ceramic targets, using a variety of plasma compositions, rf power levels, and substrate temperatures. Post annealing of these films in oxygen produced superconducting films with T{sub c} values between 40--60 K, broad transition widths and semiconductor-like electrical behavior above T{sub c}. Subsequent annealing at 850{degree}C in an inert gas with a residual oxygen partial pressure of {le}10 ppM followed by an oxygen anneal produced high quality thin films: T{sub c} > 85 K with narrow transition widths. The structure and morphology of these films during reduction-oxidation processing were monitored using x-ray diffraction and electron microscopy. 8 refs., 4 figs.

  8. Surface measurement of indium tin oxide thin film by wavelength-tuning Fizeau interferometry.

    PubMed

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-08-10

    Indium-tin oxide (ITO) thin films have been widely used in displays such as liquid crystal displays and touch panels because of their favorable electrical conductivity and optical transparency. The surface shape and thickness of ITO thin films must be precisely measured to improve their reliability and performance. Conventional measurement techniques take single point measurements and require expensive systems. In this paper, we measure the surface shape of an ITO thin film on top of a transparent plate using wavelength-tuning Fizeau interferometry. The surface shape was determined by compensating for the phase error introduced by optical interference from the thin film, which was calculated using the phase and amplitude distributions measured by wavelength-tuning. The proposed measurement method achieved noncontact, large-aperture, and precise measurements of transparent thin films. The surface shape of the sample was experimentally measured to an accuracy of 5.13 nm. PMID:26368388

  9. Electrochromism and Electronic Structures of Nitrogen Doped Tungsten Oxide Thin Films Prepared by RF Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Nakagawa, Koichi; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    2008-09-01

    The doping effect of nitrogen on amorphous tungsten trioxide (a-WO3) thin films was investigated with regard to electrochromism and electronic structures. The N-doped thin films exhibit a change in electrochromic coloration from transparent yellow to black, whereas the un-doped thin films exhibit blue coloration. In addition, a new absorption peak related to nitrogen doping is observed at 2.3 eV in photoabsorption spectra during the electrochemical coloration/bleaching process. To explain these experimental results, the electronic structures of N-doped tungsten oxide were calculated by the DV-Xα molecular orbital method.

  10. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  11. Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) has identified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.

  12. Impedance spectroscopy study of anodic growth of zirconium oxide film in NaOH medium

    NASA Astrophysics Data System (ADS)

    Pauporté, T.; Finne, J.; Lincot, D.

    2005-06-01

    The growth of anodic oxide films on zirconium metal has been followed up to 300 V by electrochemical impedance spectroscopy and scanning electron microscopy. The maximum layer thickness is 720 nm, the dielectric constant of the film is measured at 19.5 and the growth constant is 2.4 nm V-1. Above 50 V, the presence of two impedance relaxations between 1 Hz and 200 kHz reveals a bilayered structure. This may be a consequence of a lower resistivity of the outer layer induced by some electrolytic solution infiltration into film defects.

  13. Nonlinear refraction properties of nickel oxide thin films at 800 nm

    NASA Astrophysics Data System (ADS)

    de Melo, Ronaldo P.; da Silva, Blenio J. P.; dos Santos, Francisco Eroni P.; Azevedo, A.; de Araújo, Cid B.

    2009-11-01

    Measurements of the nonlinear refractive index, n2, of nickel oxide films prepared by controlled oxidation of nickel films deposited on substrates of soda-lime glass are reported. The structure and morphology of the samples were characterized by scanning electron microscopy, atomic force microscopy, and x-ray diffractometry. Samples of excellent optical quality were prepared. The nonlinear measurements were performed using the thermally managed eclipse Z-scan technique at 800 nm. A large value of n2≈10-12 cm2/W and negligible nonlinear absorption were obtained.

  14. Controlled oxide films formation by nanosecond laser pulses for color marking.

    PubMed

    Veiko, Vadim; Odintsova, Galina; Ageev, Eduard; Karlagina, Yulia; Loginov, Anatoliy; Skuratova, Alexandra; Gorbunova, Elena

    2014-10-01

    A technology of laser-induced coloration of metals by surface oxidation is demonstrated. Each color of the oxide film corresponds to a technologic chromacity coefficient, which takes into account the temperature of the sample after exposure by sequence of laser pulses with nanosecond duration and effective time of action. The coefficient can be used for the calculation of laser exposure regimes for the development of a specific color on the metal. A correlation between the composition of the films obtained on the surface of stainless steel AISI 304 and commercial titanium Grade 2 and its color and chromacity coordinates is shown. PMID:25322009

  15. Characterization of Tungsten Oxide Thin Films Produced by Spark Ablation for NO2 Gas Sensing.

    PubMed

    Isaac, Nishchay A; Valenti, Marco; Schmidt-Ott, Andreas; Biskos, George

    2016-02-17

    Tungsten oxides (WOx) thin films are currently used in electro-chromic devices, solar-cells and gas sensors as a result of their versatile and unique characteristics. In this study, we produce nanoparticulate WOx films by spark ablation and focused inertial deposition, and demonstrate their application for NO2 sensing. The primary particles in the as-deposited film samples are amorphous with sizes ranging from 10 to 15 nm. To crystallize the samples, the as-deposited films are annealed at 500 °C in air. This also caused the primary particles to grow to 30-50 nm by sintering. The morphologies and crystal structures of the resulting materials are studied using scanning and transmission electron microscopy and X-ray diffraction, whereas information on composition and oxidation states are determined by X-ray photoemission spectroscopy. The observed sensitivity of the resistance of the annealed films is ∼100 when exposed to 1 ppm of NO2 in air at 200 °C, which provides a considerable margin for employing them in gas sensors for measuring even lower concentrations. The films show a stable and repeatable response pattern. Considering the numerous advantages of spark ablation for fabricating nanoparticulate thin films, the results reported here provide a promising first step toward the production of high sensitivity and high accuracy sensors. PMID:26796099

  16. Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film

    NASA Astrophysics Data System (ADS)

    Yi, Mingdong; Cao, Yong; Ling, Haifeng; Du, Zhuzhu; Wang, Laiyuan; Yang, Tao; Fan, Quli; Xie, Linghai; Huang, Wei

    2014-05-01

    We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (˜104), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (˜105) and stable retention characteristics (>103 s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film.

  17. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    SciTech Connect

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-11-15

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.

  18. Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn

    NASA Astrophysics Data System (ADS)

    Bouanane, I.; Kabir, A.; Boulainine, D.; Zerkout, S.; Schmerber, G.; Boudjema, B.

    2016-07-01

    Zinc oxide thin films were prepared by thermal oxidation of zinc films at a temperature of 500°C for 2 h. The Zn films were deposited onto glass substrates by magnetron RF sputtering. The sputtering time varied from 2.5 min to 15 min. The physico-chemical characterization of the ZnO films was carried out depending on the Zn sputtering time. According to x-ray diffraction, ZnO films were polycrystalline and the Zn-ZnO phase transformation was direct. The mean transmittance of the ZnO films was around 80% and the band gap increased from 3.15 eV to 3.35 eV. Photoluminescence spectra show ultraviolet, visible, and infrared emission bands. The increase of the UV emission band was correlated with the improvement of the crystalline quality of the ZnO films. The concentration of native defects was found to decrease with increasing Zn sputtering time. The decrease of the electrical resistivity as a function of Zn sputtering time was linked to extrinsic hydrogen-related defects.

  19. Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn

    NASA Astrophysics Data System (ADS)

    Bouanane, I.; Kabir, A.; Boulainine, D.; Zerkout, S.; Schmerber, G.; Boudjema, B.

    2016-04-01

    Zinc oxide thin films were prepared by thermal oxidation of zinc films at a temperature of 500°C for 2 h. The Zn films were deposited onto glass substrates by magnetron RF sputtering. The sputtering time varied from 2.5 min to 15 min. The physico-chemical characterization of the ZnO films was carried out depending on the Zn sputtering time. According to x-ray diffraction, ZnO films were polycrystalline and the Zn-ZnO phase transformation was direct. The mean transmittance of the ZnO films was around 80% and the band gap increased from 3.15 eV to 3.35 eV. Photoluminescence spectra show ultraviolet, visible, and infrared emission bands. The increase of the UV emission band was correlated with the improvement of the crystalline quality of the ZnO films. The concentration of native defects was found to decrease with increasing Zn sputtering time. The decrease of the electrical resistivity as a function of Zn sputtering time was linked to extrinsic hydrogen-related defects.

  20. Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film.

    PubMed

    Yi, Mingdong; Cao, Yong; Ling, Haifeng; Du, Zhuzhu; Wang, Laiyuan; Yang, Tao; Fan, Quli; Xie, Linghai; Huang, Wei

    2014-05-01

    We reported resistive switching behaviors in the resistive random access memory (RRAM) devices based on the different annealing temperatures of graphene oxide (GO) film as active layers. It was found that the resistive switching characteristics of an indium tin oxide (ITO)/GO/Ag structure have a strong dependence on the annealing temperature of GO film. When the annealing temperature of the GO film was 20 °C, the devices showed typical write-once-read-many-times (WORM) type memory behaviors, which have good memory performance with a higher ON/OFF current ratio (∼10(4)), the higher the high resistance state (HRS)/low resistance state (LRS) ratio (∼10(5)) and stable retention characteristics (>10(3) s) under lower programming voltage (-1 V and -0.5 V). With the increasing annealing temperature of GO film, the resistive switching behavior of RRAM devices gradually weakened and eventually disappeared. This phenomenon could be understood by the different energy level distributions of the charge traps in GO film, and the different charge injection ability from the Ag electrode to GO film, which is caused by the different annealing temperatures of the GO film. PMID:24739543

  1. Oxidation Temperature Dependence of the Structural, Optical and Electrical Properties of SnO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Boulainine, D.; Kabir, A.; Bouanane, I.; Boudjema, B.; Schmerber, G.

    2016-05-01

    In this work, SnO2 thin films were prepared by thermal oxidation of Sn in an oxygen-rich atmosphere. The Sn thin films were deposited onto Si (100) substrates by vacuum evaporation, and the properties of the oxide films were investigated as a function of the oxidation temperature. The x-ray diffraction patterns showed that the obtained films have a polycrystalline structure with a preferential orientation along the (101) plane. The film oxidized at 500°C was not completely oxidized. The grain growth of the films was controlled by the pore mobility process. The UV-Vis reflectance spectra revealed an increase in both the refractive index and density of the films, reflecting the densification of the investigated films. The band gap energy decreased from 3.78 eV to 3.62 eV, caused by an increase in charge carrier density due to increased grain size. The increase in film thickness can be explained by the upward diffusion of tin atoms into the oxide film surface and the downward diffusion of oxygen atoms into the metal. The increase in the O/Sn ratio, determined from Rutherford backscattering spectroscopy, indicated enhanced material stoichiometry. Electrical resistivity decreased from 9.7 × 10-3 Ω cm to 1.7 × 10-4 Ω cm, which was attributed to the increased grain size.

  2. Oxidation Temperature Dependence of the Structural, Optical and Electrical Properties of SnO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Boulainine, D.; Kabir, A.; Bouanane, I.; Boudjema, B.; Schmerber, G.

    2016-08-01

    In this work, SnO2 thin films were prepared by thermal oxidation of Sn in an oxygen-rich atmosphere. The Sn thin films were deposited onto Si (100) substrates by vacuum evaporation, and the properties of the oxide films were investigated as a function of the oxidation temperature. The x-ray diffraction patterns showed that the obtained films have a polycrystalline structure with a preferential orientation along the (101) plane. The film oxidized at 500°C was not completely oxidized. The grain growth of the films was controlled by the pore mobility process. The UV-Vis reflectance spectra revealed an increase in both the refractive index and density of the films, reflecting the densification of the investigated films. The band gap energy decreased from 3.78 eV to 3.62 eV, caused by an increase in charge carrier density due to increased grain size. The increase in film thickness can be explained by the upward diffusion of tin atoms into the oxide film surface and the downward diffusion of oxygen atoms into the metal. The increase in the O/Sn ratio, determined from Rutherford backscattering spectroscopy, indicated enhanced material stoichiometry. Electrical resistivity decreased from 9.7 × 10-3 Ω cm to 1.7 × 10-4 Ω cm, which was attributed to the increased grain size.

  3. Crossover of electron-electron interaction effect in Sn-doped indium oxide films

    SciTech Connect

    Zhang, Yu-Jie; Gao, Kuang-Hong; Li, Zhi-Qing

    2015-03-09

    We systematically study the structures and electrical transport properties of a series of Sn-doped indium oxide (ITO) films with thickness t ranging from ∼5 to ∼53 nm. Scanning electron microscopy and x-ray diffraction results indicate that the t ≲ 16.8 nm films are polycrystalline, while those t ≳ 26.7 nm films are epitaxially grown along [100] direction. For the epitaxial films, the Altshuler and Aronov electron-electron interaction (EEI) effect governs the temperature behaviors of the sheet conductance σ{sub □} at low temperatures, and the ratios of relative change of Hall coefficient ΔR{sub H}/R{sub H} to relative change of sheet resistance ΔR{sub □}/R{sub □} are ≈2, which is quantitatively consistent with Altshuler and Aronov EEI theory and seldom observed in other systems. For those polycrystalline films, both the sheet conductance and Hall coefficient vary linearly with logarithm of temperature below several tens Kelvin, which can be well described by the current EEI theories in granular metals. We extract the intergranular tunneling conductance of each film by comparing the σ{sub □}(T) data with the predication of EEI theories in granular metals. It is found that when the tunneling conductance is less than the conductance of a single indium tin oxide (ITO) grain, the ITO film reveals granular metal characteristics in transport properties; conversely, the film shows transport properties of homogeneous disordered conductors. Our results indicate that electrical transport measurement can not only reveal the underlying charge transport properties of the film but also be a powerful tool to detect the subtle homogeneity of the film.

  4. Residual stress distribution in oxide films formed on Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Sonoda, T.; Furuya, M.; Kitajima, S.; Takano, H.

    2015-11-01

    In order to evaluate residual the stress distribution in oxides formed on zirconium alloys, synchrotron X-ray diffraction (XRD) was performed on the oxides formed on Zircaloy-2 after autoclave treatment at a temperature of 360° C in pure water. The use of a micro-beam XRD and a micro-sized cross-sectional sample achieved the detailed local characterization of the oxides. The oxide microstructure was observed by TEM following the micro-beam XRD measurements. The residual compressive stress increased in the vicinity of the oxide/metal interface of the pre-transition oxide. Highly oriented columnar grains of a monoclinic phase were observed in that region. Furthermore, at the interface of the post-first transition oxide, there was only a small increase in the residual compressive stress and the columnar grains had a more random orientation. The volume fraction of the tetragonal phase increased with the residual compressive stress. The results are discussed in terms of the formation and transition of the protective oxide.

  5. Ion Beam Slicing of Single Crystal Oxide Thin Films

    SciTech Connect

    Thevuthasan, Suntharampillai; Shutthanandan, V; Jiang, Weilin; Weber, William J.; DB Poker, SC Moss, K-H Heinig

    2001-04-25

    Epitaxial thin film liftoff using the ion-slicing method has been applied to SrTiO single crystals. Rutherford backscattering spectrometry along with channeling (RBS/C) has been used to investigate the relative disorder as a function of temperature from the samples that were irradiated by 40 KeV hydrogen ions to a fluence of 5.0x10 16 H/cm. Hydrogen profiles were also measured as a function of annealing temperature to understand the role of hydrogen in the ion slicing process. Film cleavage occurred during or after annealing at 570 K, and cleaved film has been successfully transferred to a silicon substrate using ceramic adhesive.

  6. Sulfidation of electrodeposited microcrystalline/nanocrystalline cuprous oxide thin films for solar energy applications

    NASA Astrophysics Data System (ADS)

    Jayathilaka, K. M. D. C.; Kapaklis, V.; Siripala, W.; Jayanetti, J. K. D. S.

    2012-12-01

    Grain size of polycrystalline semiconductor thin films in solar cells is optimized to enhance the efficiency of solar cells. This paper reports results on an investigation carried out on electrodeposited n-type cuprous oxide (Cu2O) thin films on Ti substrates with small crystallites and sulfidation of them to produce a thin-film solar cell. During electrodeposition of Cu2O films, pH of an aqueous acetate bath was optimized to obtain films of grain size of about 100 nm, that were then used as templates to grow thicker n-type nanocrystalline Cu2O films. XRD and SEM analysis revealed that the films were of single phase and the substrates were well covered by the films. A junction of Cu2O/CuxS was formed by partially sulfiding the Cu2O films using an aqueous sodium sulfide solution. It was observed that the photovoltaic properties of nano Cu2O/CuxS heterojunction structures are better than micro Cu2O/CuxS heterojunction solar cells. Resulting Ti/nano Cu2O/CuxS/Au solar cell structure produced an energy conversion efficiency of 0.54%, Voc = 610 mV and Jsc = 3.4 mA cm-2, under AM 1.5 illumination. This is a significant improvement compared to the use of microcrystalline thin film Cu2O in the solar cell structure where the efficiency of the cell was limited to 0.11%. This improvement is attributed mainly to the increased film surface area associated with nanocrystalline Cu2O films.

  7. Chemical bonding and optoelectrical properties of ruthenium doped yttrium oxide thin films

    SciTech Connect

    Yang, Lei; Han, Jiecai; Zhu, Jiaqi; Zhu, Yuankun; Schlaberg, H.Inaki

    2013-11-15

    Graphical abstract: IR transmittance of various transparent conductive materials (RYO films grown under RT, 400 °C and 600 °C, ITO films [2], Carbon Nano tube films [11], metal/dielectric multilayers [12]). - Highlights: • Y{sub 2}O{sub 3}:Ru (RYO) films were prepared on ZnS substrates by reactive magnetron sputtering. • Ru doping significantly decreases the resistivity and extends the transparent range. • Optical and electrical properties of RYO films can be tuned by substrate temperatures. • The RYO films exhibit excellent far-IR transmittance and electrical property. - Abstract: Highly infrared transparent conductive ruthenium doped yttrium oxide (RYO) films were deposited on zinc sulfide and glass substrates by reactive magnetron sputtering. The structural, optical, and electrical properties of the films as a function of growth temperature were studied. It is shown that the sputtered RYO thin films are amorphous and smooth surface is obtained. The infrared transmittance of the films increases with increasing the growth temperature. RYO films maintain greater than ∼65% transmittance over a wide wavelength range from 2.5 μm to 12 μm and the highest transmittance value reaches 73.3% at ∼10 μm. With increasing growth temperature, the resistivity changed in a wide range and lowest resistivity of about 3.36 × 10{sup −3} Ω cm is obtained at room temperature. The RYO thin films with high conductivity and transparency in IR spectral range would be suitable for infrared optical and electromagnetic shielding devices.

  8. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors.

    PubMed

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  9. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  10. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    PubMed Central

    Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L.; Yoon, Seok-Jin; Jang, Ho Won

    2012-01-01

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319

  11. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    PubMed Central

    Frenzer, Gerald; Frantzen, Andreas; Sanders, Daniel; Simon, Ulrich; Maier, Wilhelm F.

    2006-01-01

    A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene). Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  12. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Kizu, Takio; Mitoma, Nobuhiko; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide; Tsukagoshi, Kazuhito

    2015-09-01

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm2/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  13. Fluorine doped tin oxide film with high haze and transmittance prepared for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Otsuka, Rena; Endo, Takeshi; Takano, Takafumi; Takemura, Shuichiro; Murakami, Ryo; Muramoto, Ryosuke; Madarász, János; Okuya, Masayuki

    2015-08-01

    Fluorine doped tin oxide (FTO) transparent conductive oxide (TCO) film for dye-sensitized solar cell (DSSC) was investigated. Haze of the incident light through TCO film was easily tuned by controlling the surface morphology of FTO deposited on tin doped indium oxide (ITO) nano-particle seed layer pre-coated on a glass substrate, and the light harvest within the cell was effectively enhanced with high haze TCO film. The conversion efficiency of DSSC fabricated with TCO film with the haze of 30.1% reached as high as 7.7%, attributing to the consequence of the effective light harvest with the scattering within the cell.

  14. Measurement of valence band structure in boron-zinc-oxide films by making use of ion beams

    SciTech Connect

    Uhm, Han S.; Kwon, Gi C.; Choi, Eun H.

    2011-12-26

    Measurement of valence band structure in the boron-zinc oxide (BZO) films was developed using the secondary electron emission due to the Auger neutralization of ions. The energy distribution profile of the electrons emitted from boron-zinc-oxide films was measured and rescaled so that Auger self-convolution arose; thus, revealing the detailed structure of the valence band and suggesting that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film.

  15. Correlation between surface morphology and electrical properties of VO2 films grown by direct thermal oxidation method

    NASA Astrophysics Data System (ADS)

    Yoon, Joonseok; Park, Changwoo; Park, Sungkyun; Mun, Bongjin Simon; Ju, Honglyoul

    2015-10-01

    We investigate surface morphology and electrical properties of VO2 films fabricated by direct thermal oxidation method. The VO2 film prepared with oxidation temperature at 580 °C exhibits excellent qualities of VO2 characteristics, e.g. a metal-insulator transition (MIT) near 67 °C, a resistivity ratio of ∼2.3 × 104, and a bandgap of 0.7 eV. The analysis of surface morphology with electrical resistivity of VO2 films reveals that the transport properties of VO2 films are closely related to the grain size and surface roughness that vary with oxidation annealing temperatures.

  16. Study of high-temperature oxidation of ultrathin fe films on Pt(100) by using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nahm, T.-U.

    2016-05-01

    High-temperature oxidation of iron thin films deposited on Pt(100) surfaces was studied by using X-ray photoelectron spectroscopy (XPS). Upon an oxygen exposure of 300 Langmuir onto a 7.5- monolayer (ML) Fe film at 830 K, about 2 monolayers of the Fe film were oxidized as Fe3O4 while the remaining Fe atoms diffused into the substrate. For 1.25-, 2.5-, and 3.75-monolayer Fe films, only about a monolayer of the Fe film was oxidized as FeO, regardless of the number of Fe atoms. The oxide layers on the 7.5-monolayer Fe film were observed to be stable upon post-annealing at 1030 K.

  17. Preparation and Characterization of the Porous (TiO2) Oxide Films of Nanostructure for Biological and Medical Applications

    SciTech Connect

    Fadl-Allah, Sahar A.; El Sherief, Rabab M.; Badawy, Waheed A.

    2007-02-14

    In this paper, galvanostatically and potentiostatically formed surface oxide film on titanium in H2O2 free and H2O2 containing H2SO4 solutions were investigated. Conventional electrochemical techniques and electrochemical impedance spectroscopy (EIS) measurements beside the scanning electron microscope (SEM) were used. In absence of H2O2, the impedance response indicated a stable thin oxide film which depends on the mode of anodization of the metal. However, the introduction of H2O2 into the solution resulted in significant changes in the film characteristics, which were reflected in the EIS results. The film characteristics were found to be affected by the mode of oxide film growth and polarization time. The H2O2 addition to the solution has led to a significant decrease in the corrosion resistance of the passive film. The electrochemical and the use of equivalent circuit models have led to the understanding of the film characteristics under different conditions.

  18. Photoassisted oxidation of oil films on water. Final performance report, January 1, 1990--March 31, 1993

    SciTech Connect

    Heller, A.

    1994-04-19

    The objective of the project has been the development of a technology for cleaning up oil spills on water through their photocatalytic oxidation. The photocatalyst used was titanium dioxide. Nanocrytalline TiO{sub 2}, of anatase or anatase/rutile phase, was bound to hollow ceramic microspheres of sufficiently low density to be buoyant on water. In the presence of these, under sunlight, oil films were photocatalytically oxidized by dissolved oxygen.

  19. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  20. Synthesis of cobalt oxides thin films fractal structures by laser chemical vapor deposition.

    PubMed

    Haniam, P; Kunsombat, C; Chiangga, S; Songsasen, A

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354