Science.gov

Sample records for oxide inhibits capacitative

  1. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling

    PubMed Central

    Thyagarajan, Baskaran; Malli, Roland; Schmidt, Kurt; Graier, Wolfgang F; Groschner, Klaus

    2002-01-01

    Nitric oxide (NO) is a key modulator of cellular Ca2+ signalling and a determinant of mitochondrial function. Here, we demonstrate that NO governs capacitative Ca2+ entry (CCE) into HEK293 cells by impairment of mitochondrial Ca2+ handling. Authentic NO as well as the NO donors 1-[2-(carboxylato)pyrrolidin-1-yl]diazem-1-ium-1,2-diolate (ProliNO) and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) suppressed CCE activated by thapsigargin (TG)-induced store depletion. Threshold concentrations for inhibition of CCE by ProliNO and DEANO were 0.3 and 1 μM, respectively. NO-induced inhibition of CCE was not mimicked by peroxynitrite (100 μM), the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1, 100 μM) or 8-bromoguanosine 3′,5′-cyclic monophosphate (8-BrcGMP, 1 mM). In addition, the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a] quinoxalin-1-one (ODQ, 30 μM) failed to antagonize the inhibitory action of NO on CCE. DEANO (1–10 μM) suppressed mitochondrial respiration as evident from inhibition of cellular oxygen consumption. Experiments using fluorescent dyes to monitor mitochondrial membrane potential and mitochondrial Ca2+ levels, respectively, indicated that DEANO (10 μM) depolarized mitochondria and suppressed mitochondrial Ca2+ sequestration. The inhibitory effect of DEANO on Ca2+ uptake into mitochondria was confirmed by recording mitochondrial Ca2+ during agonist stimulation in HEK293 cells expressing ratiometric-pericam in mitochondria. DEANO (10 μM) failed to inhibit Ba2+ entry into TG-stimulated cells when extracellular Ca2+ was buffered below 1 μM, while clear inhibition of Ba2+ entry into store depleted cells was observed when extracellular Ca2+ levels were above 10 μM. Moreover, buffering of intracellular Ca2+ by use of N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl

  2. Capacitive behavior of highly-oxidized graphite

    NASA Astrophysics Data System (ADS)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  3. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins.

    PubMed

    Shrivastava, Vibha; Marmor, Hannah; Chernyak, Sholom; Goldstein, Marc; Feliciano, Miriam; Vigodner, Margarita

    2014-01-01

    Sperm are highly dependent on posttranslational modifications of proteins. Massive phosphorylation on tyrosine residue is required for sperm capacitation. Sumoylation has also been recently implicated in spermatogenesis and sperm functions. Cigarette smoke is known to cause oxidative stress in different tissues, and several studies suggest that it causes oxidative stress in sperm. Whether tobacco affects posttranslational modifications in human sperm is currently unknown. In this study, we show that a short exposure of human sperm to physiological concentrations of cigarette smoke extract (CSE) causes the partial de-sumoylation of many sperm proteins. Furthermore, the presence of a low concentration of CSE in the human tubal fluid during an induction of in vitro capacitation inhibits the capacitation-associated increase in protein phosphorylation. Collectively, changes in posttranslational modifications may be one of the mechanisms through which exposure to tobacco can negatively affect sperm functions and cause fertility problems. PMID:24345728

  4. Nitric oxide inhibition strategies

    PubMed Central

    Wong, Vivian (Wai Chong); Lerner, Ethan

    2015-01-01

    Nitric oxide is involved in many physiologic processes. There are efforts, described elsewhere in this volume, to deliver nitric oxide to tissues as a therapy. Nitric oxide also contributes to pathophysiologic processes. Inhibiting nitric oxide or its production can thus also be of therapeutic benefit. This article addresses such inhibitory strategies. PMID:26634146

  5. Seminal plasma proteins inhibit in vitro- and cooling-induced capacitation in boar spermatozoa.

    PubMed

    Vadnais, Melissa L; Roberts, Kenneth P

    2010-01-01

    Dilute boar seminal plasma (SP) has been shown to inhibit in vitro capacitation and cooling-induced capacitation-like changes in boar spermatozoa, as assessed by the ability of the spermatozoa to undergo an ionophore-induced acrosome reaction. We hypothesised that the protein component of SP is responsible for this effect. To test this hypothesis, varying concentrations of total SP protein or SP proteins fractionated by heparin binding were assayed for their ability to inhibit in vitro capacitation, as well as cooling- and cryopreservation-induced capacitation-like changes. In vitro capacitation and cooling-induced capacitation-like changes were prevented by 10% whole SP, as well as by total proteins extracted from SP at concentrations greater than 500 microg mL(-1). No amount of SP protein was able to prevent cryopreservation-induced capacitation-like changes. Total SP proteins were fractionated based on their heparin-binding properties and the heparin-binding fraction was shown to possess capacitation inhibitory activity at concentrations as low as 250 microg mL(-1). The proteins in the heparin-binding fraction were subjected to mass spectrometry and identified. The predominant proteins were three members of the spermadhesin families, namely AQN-3, AQN-1 and AWN, and SP protein pB1. We conclude that one or more of these heparin-binding SP proteins is able to inhibit in vitro capacitation and cooling-induced capacitation-like changes, but not cryopreservation-induced capacitation-like changes, in boar spermatozoa. PMID:20591323

  6. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress?

    PubMed Central

    Aitken, Robert J; Baker, Mark A; Nixon, Brett

    2015-01-01

    This chapter explores the possibility that capacitation and apoptosis are linked processes joined by their common dependence on the continued generation of reactive oxygen species (ROS). According to this model capacitation is initiated in spematozoa following their release into the female reproductive tract as a consequence of intracellular ROS generation, which stimulates intracellular cAMP generation, inhibits tyrosine phosphatase activity and enhances the formation of oxysterols prior to their removal from the sperm surface by albumin. The continued generation of ROS by capacitating populations of spermatozoa eventually overwhelms the limited capacity of these cells to protect themselves from oxidative stress. As a result the over-capacitation of spermatozoa leads to a state of senescence and the activation of a truncated intrinsic apoptotic cascade characterized by enhanced mitochondrial ROS generation, lipid peroxidation, motility loss, caspase activation and phosphatidylserine externalization. The latter may be particularly important in instructing phagocytic leukocytes that the removal of senescent, moribund spermatozoa should be a silent process unaccompanied by the generation of proinflammatory cytokines. These observations reveal the central role played by redox chemistry in defining the life and death of spermatozoa. A knowledge of these mechanisms may help us to engineer novel solutions to both support and preserve the functionality of these highly specialized cells. PMID:25999358

  7. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    NASA Astrophysics Data System (ADS)

    Han, Kook In; Kim, Seung Du; Yang, Woo Seok; Kim, Hyeong Seok; Shin, Myunghun; Kim, Jong Pil; Lee, In Gyu; Cho, Byung Jin; Hwang, Wan Sik

    2016-03-01

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  8. Aptamer-modified anodized aluminum oxide-based capacitive sensor for the detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Kang, Bongkeun; Kim, Joo Hyoung; Kim, Soyoun; Yoo, Kyung-Hwa

    2011-02-01

    We describe a rapid, sensitive, and low-cost method to detect bisphenol A (BPA) using an anodized aluminum oxide-based capacitive sensor. BPA is detected by measuring the change in capacitance caused by the biospecific binding of BPA with a BPA aptamer that is immobilized on the electrode surface. For a solution containing 100 pM BPA, the capacitance decreased by approximately 3%. In addition, we fabricated a capacitive sensor array and demonstrated that BPA in environmental samples can be measured using our capacitive sensor.

  9. Composite metal-oxide device has voltage sensitive capacitance

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Viola, T. J., Jr.

    1970-01-01

    Device with step function variation of the capacitance is useful for voltage-controlled oscillator circuits and as a voltage-sensitive switch. Simplicity of construction makes the device suitable for large-scale integration, microelectronic circuits.

  10. on the two-state inversion capacitance at varied frequencies of metal-oxide-semiconductor capacitor

    NASA Astrophysics Data System (ADS)

    Chen, Tzu-Yu; Hwu, Jenn-Gwo

    2014-09-01

    Two-state inversion capacitances of a metal-oxide-semiconductor capacitor (MOSCAP) at varied AC frequencies after negative/positive constant voltage stress (negative/positive CVS) treatments are investigated. When the device was biased into inversion, a low/high inversion-capacitance state (set state/reset state) was achieved after the negative/positive CVS treatments with/without a few trapped electrons in the ultrathin SiO2 layer. The inversion capacitances of set states were frequency independent, whereas those of reset states increased with the decreasing frequencies. It is different from the general characteristics of an MOSCAP whose inversion capacitances disperse at low frequencies. For this observed finding of the two-state inversion capacitances at varied frequencies, a mechanism of trapped-electrons-induced screening effect on the inversion electrons is proposed. The number of the trapped electrons in the SiO2 layer affects the number of the inversion electrons, and thus dominates the values of the inversion capacitances. Besides, simulation curves of the inversion capacitances of set states are demonstrated. They are fitted well with the experimental data utilizing the mechanism we proposed. This work investigates further into the influence of the trapped electrons in the ultrathin SiO2 layer on the inversion capacitance response.

  11. Manganese oxide micro-supercapacitors with ultra-high areal capacitance.

    PubMed

    Wang, Xu; Myers, Benjamin D; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-21

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm(-2) at a current density of 27.2 μA cm(-2). PMID:23563785

  12. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    DOE PAGESBeta

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; Kolesnikov, Alexander I.; Cheng, Yongqiang; Meyer, III, Harry M.; Cummings, Peter T.; Gogotsi, Yury G.

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less

  13. Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor

    SciTech Connect

    Akbi, Hamdane; Yu, Lei; Wang, Bin; Liu, Qi; Wang, Jun; Liu, Jingyuan; Song, Dalei; Sun, Yanbo; Liu, Lianhe

    2015-01-15

    To determine the best chemical reduction of graphene oxide film with hydriodic acid that gives maximum energy and power density, we studied the effect of two reducing systems, hydriodic acid/water and hydriodic acid/acetic acid, on the morphology and electrochemical features of reduced graphene oxide film. Using acetic acid as solvent results in high electrical conductivity (5195 S m{sup −1}), excellent specific capacitance (384 F g{sup −1}) and good cyclic stability (about 98% of its initial response after 4000 cycles). Using water as a solvent, results in an ideal capacitive behavior and excellent cyclic stability (about 6% increase of its initial response after 2100 cycles). - Graphical abstract: The choice of reducing system determines the morphology and structure of the chemically reduced graphene film and, as a result, affects largely the capacitive behavior. - Highlights: • The structure of the graphene film has a pronounced effect on capacitive behavior. • The use of water/HI as reducing system results in an ideal capacitive behavior. • The use of acetic acid/HI as reducing system results in a high specific capacitance.

  14. Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications.

    PubMed

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2016-04-14

    The majority of supercapacitor research studies on graphene materials today have been based upon developing electrochemical double-layer capacitors (EDLCs) using reduced graphenes. In contrast, graphene oxide (GO) is often neglected as a supercapacitor candidate due to its low electrical conductivity and surface area. Nonetheless, we present herein a fast (1 h) labelling of GO with o-phenylenediamine (PD) to produce PD-GO, exploiting inherent oxygen groups in creating new functionalities that exhibit capacitive enhancement from pseudo-capacitance. A high specific capacitance of 191 F g(-1) was obtained (at 0.2 A g(-1)), comparable to recent binder-free graphene supercapacitors. The large surface-normalized capacitance of up to 628 μF cm(-2) is also many times greater than the intrinsic capacitance of single-layer graphene (21 μF cm(-2)) as a result of additional pseudo-capacitance. A high capacity retention of ∼85% with each 10-fold increase in current density further indicates excellent rate performance. Hence, this approach in enhancing GO pseudo-capacitance may be similarly feasible as graphene EDLCs. Additionally, PD-GO was also found to exhibit a bright green fluorescence with a 540 nm maximum. The strongest fluorescence intensities arose from the smallest PD-GO fragments, and we attribute the origin to localised sp(2) domains and newly formed phenazine edge groups. The dual enhancement of dissimilar properties such as capacitance and fluorescence emphasizes the continued significance of covalent functionalisation towards tuning of properties in graphene-type materials. PMID:26998537

  15. Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides

    NASA Astrophysics Data System (ADS)

    Fang, Wei-Chuan; Huang, Jin-Hua; Chen, Li-Chyong; Su, Yuh-Long Oliver; Chen, Kuei-Hsien

    The structure-property relationships of hydrous ruthenium oxides, fabricated by electro deposition on Ti foil, were investigated with different annealing conditions. The annealing temperature was found to play an important role in affecting the electrochemical performance of the annealed hydrous ruthenium oxides. The results indicate that annealing hydrous ruthenium oxide at its crystallization threshold temperature, ∼200 °C, may help to create suitable nanostructure in the oxide that supports the establishment of interpenetrating percolation paths for balanced electron and proton conduction, thereby improving the capacitive response of the oxide dramatically. This finding is useful for fabrication of electrodes with enhanced electrochemical performance for application in microsupercapacitor.

  16. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    PubMed

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications. PMID:25494204

  17. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  18. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  19. Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Barrett, R. C.; Quate, C. F.

    1991-09-01

    In this paper we describe a variant of the scanning capacitance microscope (SCaM) which is based on the atomic force microscope. Our SCaM involves a cantilever beam that is used to press a conducting tip against a conducting substrate coated with a dielectric film. A capacitance sensor is then used to measure the tip-sample capacitance as a function of lateral position. The deflection of the cantilever can also be used to measure independently the surface topography. This microscope can be used to measure electrical properties of dielectric films and their underlying substrates. We have applied this microscope to the study of the nitride-oxide-silicon (NOS) system. This system has been studied extensively because of its ability to store information by trapping charge in the silicon nitride. Commercial semiconductor nonvolatile memories have been designed using this NOS technology. We have used the SCaM tip to apply a localized bias to the NOS sample, causing charge to tunnel through the oxide layer and to be trapped in the nitride film. This trapped charge induces a depletion region in the silicon substrate, which can be detected by the resulting depletion capacitance between the tip and sample. The stored charge can be interpreted as a digital memory. Bit sizes as small as 750 Å full width at half maximum have been stored using this technique. The stored charge has been observed to be stable over a period of seven days. The stored charge can be removed by applying a reverse bias to the region, and the bit can be subsequently rewritten. By simultaneously measuring capacitance and topography images, we have demonstrated that the stored information is not the result of any topographic change to the surface. Simulations of the potential distributions resulting from this trapped charge have been performed and are compared with the experiments. Finally, a discussion is presented on the ultimate density and speed limits of such a storage technology.

  20. High capacitive performance of nanostructured Mn-Ni-Co oxide composites for supercapacitor

    SciTech Connect

    Luo Jianmin; Gao Bo; Zhang Xiaogang

    2008-05-06

    Nanostructured Mn-Ni-Co oxide composites (MNCO) were prepared by thermal decomposition of the precursor obtained by chemical co-precipitation of Mn, Ni and Co salts. The chemical composition and morphology were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The electrochemical capacitance of MNCO electrode was examined by cyclic voltammetry, impedance and galvanostatic charge-discharge measurements. The results showed that MNCO electrode exhibited the good electrochemical characteristics. A maximum capacitance value of 1260 F g{sup -1} could be obtained within the potential range of -0.1 to 0.4 V versus saturated calomel electrode (SCE) in 6 mol L{sup -1} KOH electrolyte.

  1. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    NASA Astrophysics Data System (ADS)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  2. A model for the frequency dispersion of the high-k metal-oxide-semiconductor capacitance in accumulation

    NASA Astrophysics Data System (ADS)

    Yao, B.; Fang, Z. B.; Zhu, Y. Y.; Ji, T.; He, G.

    2012-05-01

    High-frequency capacitance-voltage measurements have been made on metal-oxide-semiconductor capacitors by using single crystalline Er2O3 high-k gate dielectrics. Based on our analysis, it has been found that frequency dispersion of Er2O3 capacitance in accumulation decreases consistently with the increase of the frequency. A correction model is proposed to explain these frequency dispersion phenomena and the capacitance-frequency equations are obtained from the impedance expression of the equivalent circuit. Based on the simulated capacitance-frequency, it can be concluded that frequency dispersion of Er2O3 capacitance in accumulation originates from the existence of the parasitic resistances, the series resistances, and the formed SiOx interfacial layer.

  3. Inhibiting Wet Oxidation of Ammonia

    NASA Technical Reports Server (NTRS)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  4. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  5. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications.

    PubMed

    Hong, Chan-Hwa; Shin, Jae-Heon; Ju, Byeong-Kwon; Kim, Kyung-Hyun; Park, Nae-Man; Kim, Bo-Sul; Cheong, Woo-Seok

    2013-11-01

    Index-matched indium tin oxide (ITO) electrodes for capacitive touch screen panels have been fabricated to improve optical transmittance and reduce the difference of reflectance (deltaR) between the etched and un-etched regions. 8.5 nm Nb2O5 and 49 nm SiO2 thin films were deposited by magnetron sputtering as index-matching layers between an ITO electrode and a glass substrate. In case of 30 nm ITO electrode, a 4.3% improvement in the optical transmittance and a deltaR of less than 1% were achieved, along with a low sheet resistance of 90 omega/square. PMID:24245328

  6. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  7. Substrate dependant capacitive performance of spray pyrolysed titanium oxide (TiO2) thin films

    NASA Astrophysics Data System (ADS)

    Fugare, B. Y.; Ingole, R. S.; Ambare, R. C.; Lokhande, B. J.

    2016-04-01

    Using 60 ml, 0.06 M aqueous solution of potassium titanium oxalate (pto), thin films of titanium oxide were prepared by using well known spray pyrolysis technique. Depositions of the films carried out at 723° K by maintain the spray rate 12 Cc/min. prepared thin films were characterized structurally, morphologically and electrochemically. Sample shows tetragonal crystal structure with rutile as prominent phase at very low deposition temperature. SEM morphology shows porous, dense, nanorods and nanoplates like morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The specific capacitance values observed from cyclic voltammetery in 1 M NaOH are 2497.19, 29.60, 424.22 F/g. for the electrode deposited on copper, FTO and stainless steel (SS) respectively. Charge discharge behavior was observed for the samples deposited on stainless steel gives specific energy (SE), specific power (SP) and efficiency (η) are 43.25 Wh/kg, 35.25 kW/kg and 98.22 % respectively. Impedance study was carried out in the frequency range 1 mHz to 1 MHz exhibits very less internal resistance 1.066 Ohm for the deposited electrode.

  8. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  9. Pseudo capacitive performance of copper oxide thin films grown by RF sputtering

    SciTech Connect

    Reddy, B. Purusottam; Ganesh, K. Sivajee; Hussain, O. M.

    2015-06-24

    Thin films of Copper Oxide were prepared by radio frequency magnetron sputtering on steel substrates maintained at 250°C under different RF powers ranging from 150W to 250W by keeping the sputtering pressure at 5.7×10{sup −3} mbar and O{sub 2}:Ar ratio of 1:7. The influence of RF power on the pseudo capacitive performance of thin films was studied. The X-ray diffraction studies and Raman studies indicates that all the thin films exhibits CuO phase. The electrochemical studies was done by using three electrode configuration with platinum as reference electrode. From the cyclic voltammetry studies a high rate pseudocapacitance of 227 mFcm{sup −2} at 0.5 mVs{sup −1} and 77% of capacity retention after 1000 cycles was obtained for the CuO thin films prepared at an RF power of 220W.

  10. A novel flexible capacitive touch pad based on graphene oxide film

    NASA Astrophysics Data System (ADS)

    Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai

    2013-01-01

    Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch ``ON'' to ``OFF'' voltage ratio up to ~60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.

  11. A novel flexible capacitive touch pad based on graphene oxide film.

    PubMed

    Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai

    2013-02-01

    Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch "ON" to "OFF" voltage ratio up to ∼60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems. PMID:23247540

  12. Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation

    PubMed Central

    Chen, Yanhui; Zhou, Junfeng; Maguire, Pierce; O’Connell, Robert; Schmitt, Wolfgang; Li, Yonghe; Yan, Zhengguang; Zhang, Yuefei; Zhang, Hongzhou

    2016-01-01

    Cobalt hydrate and doped binary Co0.9M0.1OOH (M = Ni, Mn, Fe) nanorings of 100–300 nm were fabricated in solution through a facile ambient oxidation method. A transformation from Co0.9Ni0.1(OH)2 nanodiscs to hollow Co0.9Ni0.1OOH nanorings was observed with prolonged reaction time. Core-shell nanodiscs have elemental segregation with a Co(OH)2 core and Ni(OH)2 shell. Co0.9Ni0.1OOH nanorings displayed a higher electrochemical capacitance than Mn and Fe doped nanorings materials or materials with disc-like geometries. PMID:26853105

  13. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-01

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system. PMID:25633260

  14. Crystalline ternary rare earth oxide with capacitance equivalent thickness below 1 nm for high-K application

    SciTech Connect

    Laha, Apurba; Bugiel, E.; Osten, H.J.; Fissel, A.

    2006-04-24

    Ternary neodymium-gadolinium oxide (NGO) thin films were grown epitaxially on Si(001) substrates using modified molecular beam epitaxy. The electrical properties of NGO thin films demonstrate that this ternary oxide could be one of the most promising candidates to replace the conventionally used SiO{sub 2} or SiO{sub x}N{sub y} in complementary metal oxide semiconductor devices. The films were characterized with various methods. The capacitance equivalent oxide thickness of 4.5 nm thin films extracted from capacitance-voltage (C-V) characteristics was 0.9 nm. For such films, leakage current density and the density of interface traps were 2.6x10{sup -4} A/cm{sup 2} at vertical bar V{sub g}-V{sub FBV} vertical bar=1 V and 1.4x10{sup 12}/cm{sup 2} eV{sup -1}, respectively.

  15. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a

  16. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representativeNitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway. PMID:26946536

  17. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny Zn

  18. Low-Dimensional Polyoxometalate Molecules/Tantalum Oxide Hybrids for Non-Volatile Capacitive Memories.

    PubMed

    Balliou, Angelika; Papadimitropoulos, Giorgos; Skoulatakis, George; Kennou, Stella; Davazoglou, Dimitrios; Gardelis, Spiros; Glezos, Nikos

    2016-03-23

    Transition-metal-oxide hybrids composed of high surface-to-volume ratio Ta2O5 matrices and a molecular analogue of transition metal oxides, tungsten polyoxometalates ([PW12O40](3-)), are introduced herein as a charge storage medium in molecular nonvolatile capacitive memory cells. The polyoxometalate molecules are electrostatically self-assembled on a low-dimensional Ta2O5 matrix, functionalized with an aminosilane molecule with primary amines as the anchoring moiety. The charge trapping sites are located onto the metal framework of the electron-accepting molecular entities as well as on the molecule/oxide interfaces which can immobilize negatively charged mobile oxygen vacancies. The memory characteristics of this novel nanocomposite were tested using no blocking oxide for extraction of structure-specific characteristics. The film was formed on top of the 3.1 nm-thick SiO2/n-Si(001) substrates and has been found to serve as both SiO2/Si interface states' reducer (i.e., quality enhancer) and electron storage medium. The device with the polyoxometalates sandwiched between two Ta2O5 films results in enhanced internal scattering of carriers. Thanks to this, it exhibits a significantly larger memory window than the one containing the plain hybrid and comparable retention time, resulting in a memory window of 4.0 V for the write state and a retention time around 10(4) s without blocking medium. Differential distance of molecular trapping centers from the cell's gate and electronic coupling to the space charge region of the underlying Si substrate were identified as critical parameters for enhanced electron trapping for the first time in such devices. Implementing a numerical electrostatic model incorporating structural and electronic characteristics of the molecular nodes derived from scanning probe and spectroscopic characterization, we are able to interpret the hybrid's electrical response and gain some insight into the electrostatics of the trapping medium. PMID

  19. Inhibition of Oxidation in Nuclear Graphite

    SciTech Connect

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  20. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

    PubMed Central

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J.; Goddard, William A.; Kang, Jeung Ku

    2015-01-01

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni2+ of the nanocrystal changes during lithiation–delithiation through Ni0 and back to Ni2+. These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles. PMID:26080421

  1. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor †

    PubMed Central

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-01-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product. PMID:26938538

  2. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor.

    PubMed

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-01-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product. PMID:26938538

  3. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water.

    PubMed

    Yin, Huajie; Zhao, Shenlong; Wan, Jiawei; Tang, Hongjie; Chang, Lin; He, Liangcan; Zhao, Huijun; Gao, Yan; Tang, Zhiyong

    2013-11-20

    A novel and general method is proposed to construct three-dimensional graphene/metal oxide nanoparticle hybrids. For the first time, it is demonstrated that this graphene-based composite with open pore structures can be used as the high-performance capacitive deionization (CDI) electrode materials, which outperform currently reported materials. This work will offer a promising way to develop highly effective CDI electrode materials. PMID:23963808

  4. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  5. Current, charge, and capacitance during scanning probe oxidation of silicon. II. Electrostatic and meniscus forces acting on cantilever bending

    NASA Astrophysics Data System (ADS)

    Dagata, J. A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H.

    2004-08-01

    A comprehensive analysis of the electrical current passing through the tip-substrate junction during oxidation of silicon by scanning probe microscopy (SPM) is presented. This analysis identifies the electronic and ionic contributions to the total current, especially at the initial stages of the reaction, determines the effective contact area of the tip-substrate junction, and unifies the roles of space charge and meniscus formation. In this work, we concentrate on noncontact SPM oxidation. We analyze simultaneous force-distance and current-distance curves to demonstrate that total current flow during noncontact oxidation is significantly less for noncontact mode than for contact oxidation, although the resulting oxide volume is nearly identical. Ionization of water layers and mobile charge reorganization prior to and following meniscus formation is also shown to alter the tip-substrate capacitance and, therefore, the bending of the SPM cantilever.

  6. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  7. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793

  8. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  9. Expression of Trp3 determines sensitivity of capacitative Ca2+ entry to nitric oxide and mitochondrial Ca2+ handling: evidence for a role of Trp3 as a subunit of capacitative Ca2+ entry channels.

    PubMed

    Thyagarajan, B; Poteser, M; Romanin, C; Kahr, H; Zhu, M X; Groschner, K

    2001-12-21

    The role of Trp3 in cellular regulation of Ca(2+) entry by NO was studied in human embryonic kidney (HEK) 293 cells. In vector-transfected HEK293 cells (controls), thapsigargin (TG)-induced (capacitative Ca(2+) entry (CCE)-mediated) intracellular Ca(2+) signals and Mn(2+) entry were markedly suppressed by the NO donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt (3 microm) or by authentic NO (100 microm). In cells overexpressing Trp3 (T3-9), TG-induced intracellular Ca(2+) signals exhibited an amplitude similar to that of controls but lacked sensitivity to inhibition by NO. Consistently, NO inhibited TG-induced Mn(2+) entry in controls but not in T3-9 cells. Moreover, CCE-mediated Mn(2+) entry into T3-9 cells exhibited a striking sensitivity to inhibition by extracellular Ca(2+), which was not detectable in controls. Suppression of mitochondrial Ca(2+) handling with the uncouplers carbonyl cyanide m-chlorophenyl hydrazone (300 nm) or antimycin A(1) (-AA(1)) mimicked the inhibitory effect of NO on CCE in controls but barely affected CCE in T3-9 cells. T3-9 cells exhibited enhanced carbachol-stimulated Ca(2+) entry and clearly detectable cation currents through Trp3 cation channels. NO as well as carbonyl cyanide m-chlorophenyl hydrazone slightly promoted carbachol-induced Ca(2+) entry into T3-9 cells. Simultaneous measurement of cytoplasmic Ca(2+) and membrane currents revealed that Trp3 cation currents are inhibited during Ca(2+) entry-induced elevation of cytoplasmic Ca(2+), and that this negative feedback regulation is blunted by NO. Our results demonstrate that overexpression of Trp3 generates phospholipase C-regulated cation channels, which exhibit regulatory properties different from those of endogenous CCE channels. Moreover, we show for the first time that Trp3 expression determines biophysical properties as well as regulation of CCE channels by NO and mitochondrial Ca(2+) handling. Thus, we propose Trp3 as a subunit of CCE channels. PMID:11600493

  10. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures

    PubMed Central

    Yan, Z. B.; Liu, J. -M.

    2013-01-01

    The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467

  11. Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Bobby, A.; Shiwakoti, N.; Verma, S.; Asokan, K.; Antony, B. K.

    2016-05-01

    The Ni/n-GaAs Schottky barrier diode having thin interfacial oxide layer was subjected to 25 MeV C4+ ion irradiation at selected fluences. The in-situ capacitance and dielectric properties were investigated in the 1 KHz to 5 MHz frequency range. The results show a decrease in capacitance with increase in ion fluence at low frequencies. Interestingly, a negative capacitance effect was also observed in this frequency range in all the samples. As a consequence, changes were observed in parameters like series resistance, conductance, dielectric loss, dielectric constant, loss tangent and ac electrical conductivity. At high frequencies, the capacitance reaches the geometric value 'C0'. The results were interpreted in terms of the generation of irradiation induced traps, carrier capture and emission from deep and shallow states and its frequency dependent saturation effects.

  12. The influence of electron energy quantization in a space-charge region on the accumulation capacitance of InAs metal-oxide-semiconductor capacitors

    SciTech Connect

    Kovchavtsev, A. P. Tsarenko, A. V.; Guzev, A. A.; Polovinkin, V. G.; Nastovjak, A. E.; Valisheva, N. A.; Aksenov, M. S.

    2015-09-28

    The influence of electron energy quantization in a space-charge region on the accumulation capacitance of the InAs-based metal-oxide-semiconductor capacitors (MOSCAPs) has been investigated by modeling and comparison with the experimental data from Au/anodic layer(4-20 nm)/n-InAs(111)A MOSCAPs. The accumulation capacitance for MOSCAPs has been calculated by the solution of Poisson equation with different assumptions and the self-consistent solution of Schrödinger and Poisson equations with quantization taken into account. It was shown that the quantization during the MOSCAPs accumulation capacitance calculations should be taken into consideration for the correct interface states density determination by Terman method and the evaluation of gate dielectric thickness from capacitance-voltage measurements.

  13. Low-temperature and solution-processed indium tin oxide films and their applications in flexible transparent capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Chen, Sujie; Wang, Nana; Ye, Zhizhen; Qi, Hang; Guo, Xiaojun; Jin, Yizheng

    2016-04-01

    It is of great interest to fabricate indium tin oxide (ITO) films by solution-based techniques at low temperatures. Here, we combined the use of colloidal ITO nanoflowers synthesized by the strategy of limited ligand protection and oxygen plasma treatment which effectively remove the surface ligands of ITO nanocrystals to meet this goal. These efforts led to high-quality ITO films with resistivity as low as 2.33 × 10-2 Ω cm, which is the best result for solution-processed ITO nanocrystal films deposited at temperatures lower than 200 °C. The annealing-free processing allowed us to deposit ITO nanoflower films onto plastic substrates and apply them in flexible capacitive pressure sensors. The single-pixel device showed decent sensitivity and reproducibility, and the arrayed sensors exhibited good spatial resolution.

  14. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    PubMed

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  15. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine

    PubMed Central

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C.

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  16. RF Micro-Electro-Mechanical Systems Capacitive Switches Using Ultra Thin Hafnium Oxide Dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Onodera, Kazumasa; Maeda, Ryutaro

    2006-01-01

    A π-type RF capacitive switch using about 45-nm-thick HfO2 dielectric layer was fabricated. High isolation performance was obtained in wide-band range when the switch was down-state. The isolation was better than -40 dB at the frequency range of 4-35 GHz. Particularly, the isolation was better than -50 dB in the frequency range of 8-12 GHz, i.e., X band. HfO2 showed excellent process compatibility with conventional microfabrication procedure. The 45-nm-thick HfO2 film was prepared using sputtering at room temperature so that it was feasible to be integrated into RF switch and other microwave circuits. The results of constant bias stressing showed that the ultra thin HfO2 had excellent reliability. The electric breakdown of HfO2 was observed, which had no apparent negative effects on the reliability of the dielectric. HfO2 dielectrics were attractive in the application of RF micro-electro-mechanical systems (MEMS) switch for new generation of low-loss high-linearity microwave circuits.

  17. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Park, Dong-Wook; Zhou, Weidong; Ma, Zhenqiang

    2016-06-01

    Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices using single crystalline Silicon (Si) and Germanium (Ge) nanomembranes (NM) with SiO2, SiO, and Al2O3 dielectric layers are fabricated on a plastic substrate. The relationships between semiconductor nanomembranes and various oxide materials are carefully investigated under tensile/compressive strain. The flatband voltage, threshold voltage, and effective charge density in various MOS combinations revealed that Si NM-SiO2 configuration shows the best interface charge behavior, while Ge NM-Al2O3 shows the worst. This investigation of flexible MOS devices can help us understand the impact of charges in the active region of the flexible TFTs and capacitance changes under the tensile/compressive strains on the change in electrical characteristics in flexible NM based TFTs.

  18. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition

    DOE PAGESBeta

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; Parks, II, James E.; Dai, Sheng

    2015-09-11

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less

  19. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition

    SciTech Connect

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; Parks, II, James E.; Dai, Sheng

    2015-09-11

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.

  20. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition.

    PubMed

    Binder, Andrew J; Toops, Todd J; Unocic, Raymond R; Parks, James E; Dai, Sheng

    2015-11-01

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems. PMID:26360804

  1. Nitric Oxide Inhibits Coxiella burnetii Replication and Parasitophorous Vacuole Maturation

    PubMed Central

    Howe, Dale; Barrows, Lorraine F.; Lindstrom, Nicole M.; Heinzen, Robert A.

    2002-01-01

    Nitric oxide is a recognized cytotoxic effector against facultative and obligate intracellular bacteria. This study examined the effect of nitric oxide produced by inducible nitric oxide synthase (iNOS) up-regulated in response to cytokine stimulation, or by a synthetic nitric oxide donor, on replication of obligately intracellular Coxiella burnetii in murine L-929 cells. Immunoblotting and nitrite assays revealed that C. burnetii infection of L-929 cells augments expression of iNOS up-regulated in response to gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Infection in the absence of cytokine stimulation did not result in demonstrable up-regulation of iNOS expression or in increased nitrite production. Nitrite production by cytokine-treated cells was significantly inhibited by the iNOS inhibitor S-methylisothiourea (SMT). Treatment of infected cells with IFN-γ and TNF-α or the synthetic nitric oxide donor 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA/NONOate) had a bacteriostatic effect on C. burnetii replication. Inhibition of replication was reversed upon addition of SMT to the culture medium of cytokine-treated cells. Microscopic analysis of infected cells revealed that nitric oxide (either cytokine induced or donor derived) inhibited formation of the mature (large) parasitophorous vacuole that is characteristic of C. burnetii infection of host cells. Instead, exposure of infected cells to nitric oxide resulted in the formation of multiple small, acidic vacuoles usually containing one C. burnetii cell. Removal of nitrosative stress resulted in the coalescence of small vacuoles to form a large vacuole harboring multiple C. burnetii cells. These experiments demonstrate that nitric oxide reversibly inhibits replication of C. burnetii and formation of the parasitophorous vacuole. PMID:12183564

  2. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase.

    PubMed

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng; Cui, Jianxiu

    2016-09-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10(-8)~10(-6) mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10(-9) mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  3. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  4. Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants.

    PubMed

    Niki, Etsuo

    2016-05-18

    Unregulated oxidation of biological molecules induced by multiple oxidants has been implicated in the pathogenesis of various diseases. Consequently, the effects of antioxidants contained in foods, beverages and supplements on the maintenance of health and prevention of diseases have attracted much attention of the public as well as scientists. However, recent human studies have shown inconsistent results and failed to demonstrate the beneficial effects of antioxidants. The mechanisms and dynamics of antioxidant action and assessment of antioxidant capacity have been the subject of extensive studies and arguments. In the present article, the antioxidant capacity has been reviewed focusing on two main issues: the capacity of antioxidants to scavenge multiple reactive oxidants and to inhibit plasma lipid oxidation induced by different biological oxidants. It is emphasized that the capacity of antioxidants to scavenge reactive oxidants does not always correlate linearly with the capacity to inhibit lipid oxidation and that it is necessary to specify the oxidant to assess the efficacy of antioxidants, since multiple oxidants contribute to oxidative damage in vivo and the effects of antioxidants depend on the nature of oxidants. A convenient and rapid method using a microplate reader is discussed for assessing the antioxidant capacity against plasma lipid oxidation induced by multiple oxidants including peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen. PMID:27090496

  5. AIF inhibits tumor metastasis by protecting PTEN from oxidation

    PubMed Central

    Shen, Shao-Ming; Guo, Meng; Xiong, Zhong; Yu, Yun; Zhao, Xu-Yun; Zhang, Fei-Fei; Chen, Guo-Qiang

    2015-01-01

    Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis. PMID:26415504

  6. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating.

    PubMed

    Wang, Yilei; El-Deen, Ahmed G; Li, Peng; Oh, Bernice H L; Guo, Zanru; Khin, Mya Mya; Vikhe, Yogesh S; Wang, Jing; Hu, Rebecca G; Boom, Remko M; Kline, Kimberly A; Becker, David L; Duan, Hongwei; Chan-Park, Mary B

    2015-10-27

    Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cationic nanohybrids of graphene oxide-graft-quaternized chitosan (GO-QC). Our GO-QC/AC CDID electrode can achieve at least 99.9999% killing (i.e., 6 log reduction) of Escherichia coli in water flowing continuously through the CDID cell. Without the GO-QC coating, the AC electrode alone cannot kill the bacteria and adsorbs a much smaller fraction (<82.8 ± 1.8%) of E. coli from the same biocontaminated water. Our CDID process consists of alternating cycles of water disinfection followed by electrode regeneration, each a few minutes duration, so that this water disinfection process can be continuous and it only needs a small electrode voltage (2 V). With a typical brackish water biocontamination (with 10(4) CFU mL(-1) bacteria), the GO-QC/AC electrodes can kill 99.99% of the E. coli in water for 5 h. The disinfecting GO-QC is securely attached on the AC electrode surface, so that it is noncontaminating to water, unlike many other chemicals used today. The GO-QC nanohybrids have excellent intrinsic antimicrobial properties in suspension form. Further, the GO component contributes toward the needed surface conductivity of the CDID electrode. This CDID process offers an economical method toward ultrafast, contaminant-free, and continuous killing of bacteria in biocontaminated water. The proposed strategy introduces a green in situ disinfectant approach for water purification. PMID:26389519

  7. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  8. High areal capacitance three-dimensional Ni@Ni(OH)2 foams via in situ oxidizing Ni foams in mild aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Qingfeng; Cui, Mangwei; Tao, Keyu; Yang, Yongzhen; Liu, Xuguang; Kang, Litao

    2016-03-01

    In this work, commercial Ni foams are directly oxidized into Ni@Ni(OH)2 foams in a mild NH4NO3 solution at 80 °C. When used as binder-free electrodes, these Ni@Ni(OH)2 electrodes demonstrate a high areal capacitance of 6.4 F/cm2 at a current density of 2.5 mA/cm2, or 1.62 F/cm2 at a high current density of 30 mA/cm2. Nevertheless, they show a poor cycling ability with 70.4% (or 42%) capacitance retention after 2000 (or 5000) cycles at 30 mA/cm2. This kind of electrodes has a promising application in low-cost, high-performance supercapacitor, if an effective strategy is found to improve their cycling ability.

  9. Fabrication of SiO{sub 2}/4H-SiC (0001) interface with nearly ideal capacitance-voltage characteristics by thermal oxidation

    SciTech Connect

    Kikuchi, Richard Heihachiro; Kita, Koji

    2014-07-21

    We fabricated SiO{sub 2}/4H-SiC (0001) metal-oxide-semiconductor capacitors with nearly ideal capacitance-voltage characteristics, simply by the control of thermal oxidation conditions which were selected based on thermodynamic and kinetic considerations of SiC oxidation. The interface with low interface defect state density <10{sup 11 }cm{sup −2} eV{sup −1} for the energy range of 0.1–0.4 eV below the conduction band of SiC was obtained by thermal oxidation at 1300 °C in a ramp-heating furnace with a short rise/fall time, followed by low temperature O{sub 2} anneal at 800 °C.

  10. Inhibition of arm regeneration by Ophioderma brevispina (Echinodermata, Ophiuroidea) by tributyltin oxide and triphenyltin oxide

    SciTech Connect

    Walsh, G.E.; McLaughlin, L.L.; Louie, M.K.; Deans, C.H.; Lores, E.M.

    1986-08-01

    Effects of water-bourne toxicants on regeneration of arms by the brittle star, Ophioderma brevispina, are described. Regeneration was inhibited by 0.1 micrograms liter-1 bis(tri-n-butyltin)oxide and bis(triphenyltin)oxide. Both substances are known to act upon the nervous system, and it is suggested that inhibition was caused by neurotoxicological action of the tin compounds or by their direct effect upon tissue at the breakage point. The former is most likely because regeneration is mediated by the radial nerves of brittle stars.

  11. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis

    PubMed Central

    Wang, Feng; Yin, Peipei; Lu, Ye; Zhou, Zubin; Jiang, Chaolai; Liu, Yingjie; Yu, Xiaowei

    2015-01-01

    Oxidative stress is known to be involved in impairment of osteogenesis and age-related osteoporosis. Cordycepin is one of the major bioactive components of Cordyceps militaris that has been shown to exert antioxidant and anti-inflammatory activities. However, there are few reports available regarding the effects of cordycepin on osteogenesis and the underlying mechanism. In this study, we investigated the potential osteoprotective effects of cordycepin and its mechanism systematically using both in vitro model as well as in vivo mouse models. We discovered that hydrogen peroxide (H2O2) induced inhibition of osteogenesis which was rescued by cordycepin treatment in human bone marrow mesenchymal stem cells (BM-MSCs). Cordycepin exerted its protective effects partially by increasing or decreasing expression of osteogenic and osteoclastogenesis marker genes. Treatment with cordycepin increased Wnt-related genes' expression whereas supplementation of Wnt pathway inhibitor reversed its protective effects. In addition, administration of cordycepin promoted osteogenic differentiation of BM-MSCs by reducing oxidative stress in both ovariectomized and aged animal models. Taken together, these results support the protective effects of cordycepin on oxidative stress induced inhibition of osteogenesis by activation of Wnt pathway. PMID:26462178

  12. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    PubMed

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control. PMID:27181248

  13. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis.

    PubMed

    Wang, Feng; Yin, Peipei; Lu, Ye; Zhou, Zubin; Jiang, Chaolai; Liu, Yingjie; Yu, Xiaowei

    2015-11-01

    Oxidative stress is known to be involved in impairment of osteogenesis and age-related osteoporosis. Cordycepin is one of the major bioactive components of Cordyceps militaris that has been shown to exert antioxidant and anti-inflammatory activities. However, there are few reports available regarding the effects of cordycepin on osteogenesis and the underlying mechanism. In this study, we investigated the potential osteoprotective effects of cordycepin and its mechanism systematically using both in vitro model as well as in vivo mouse models. We discovered that hydrogen peroxide (H2O2)-induced inhibition of osteogenesis which was rescued by cordycepin treatment in human bone marrow mesenchymal stem cells (BM-MSCs). Cordycepin exerted its protective effects partially by increasing or decreasing expression of osteogenic and osteoclastogenesis marker genes. Treatment with cordycepin increased Wnt-related genes' expression whereas supplementation of Wnt pathway inhibitor reversed its protective effects. In addition, administration of cordycepin promoted osteogenic differentiation of BM-MSCs by reducing oxidative stress in both ovariectomized and aged animal models. Taken together, these results support the protective effects of cordycepin on oxidative stress induced inhibition of osteogenesis by activation of Wnt pathway. PMID:26462178

  14. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  15. Nitric oxide inhibits falcipain, the Plasmodium falciparum trophozoite cysteine protease.

    PubMed

    Venturini, G; Colasanti, M; Salvati, L; Gradoni, L; Ascenzi, P

    2000-01-01

    Nitric oxide (NO) is a pluripotent regulatory molecule possessing, among others, an antiparasitic activity. In the present study, the inhibitory effect of NO on the catalytic activity of falcipain, the papain-like cysteine protease involved in Plasmodium falciparum trophozoite hemoglobin degradation, is reported. In particular, NO donors S-nitrosoglutathione (GSNO), (+/-)-(E)-p6ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenami de (NOR-3), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) inhibit dose-dependently the falcipain activity present in the P. falciparum trophozoite extract, this effect likely attributable to S-nitrosylation of the Cys25 catalytic residue. The results represent a new insight into the modulation mechanism of falcipain activity, thereby being relevant in developing new strategies for inhibition of the P. falciparum life cycle. PMID:10623597

  16. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  17. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  18. Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis.

    PubMed

    Wallace, John L; Viappiani, Serena; Bolla, Manlio

    2009-03-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) remain the most commonly used medications for the treatment of the symptoms of many chronic inflammatory diseases, including osteoarthritis. Unfortunately, the toxicity of NSAIDs substantially limits their long-term use. Some newer NSAIDs, namely selective cyclooxygenase (COX)-2 inhibitors, exhibit greater gastrointestinal safety, and concomitant use of anti-secretory drugs can also reduce NSAID-induced gastropathy. However, NSAIDs also adversely affect the cardiovascular system. A new class of anti-inflammatory drugs, COX-inhibiting nitric oxide donators (CINODs), has been designed to exert similar anti-inflammatory effects as NSAIDs, but with an improved safety profile. CINODs release nitric oxide, providing protective effects in the gastrointestinal tract and attenuating the detrimental effects on blood pressure normally associated with NSAIDs. We provide an outline of the rationale for CINODs and their activity, in addition to an overview of the pre-clinical and clinical profile of the most advanced CINOD, naproxcinod. PMID:19230986

  19. Reduction method of gate-to-drain capacitance by oxide spacer formation in tunnel field-effect transistor with elevated drain

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Park, Euyhwan; Lee, Junil; Park, Taehyung; Lee, Ryoongbin; Kim, Sihyun; Park, Byung-Gook

    2016-06-01

    A novel fabrication method is proposed to reduce large gate-to-drain capacitance (C GD) and to improve AC switching characteristics in tunnel field-effect transistor (TFETs) with elevated drain (TFETED). In the proposed method, gate oxide at drain region (GDOX) is selectively formed through oxide deposition and spacer-etch process. Furthermore, the thicknesses of the GDOX are simply controlled by the amount of the oxide deposition and etch. Mixed-mode device and circuit technology computer aided design (TCAD) simulations are performed to verify the effects of the GDOX thickness on DC and AC switching characteristics of a TFETED inverter. As a result, it is found that AC switching characteristics such as output voltage pre-shoot and falling/rising delay are improved with nearly unchanged DC characteristics by thicker GDOX. This improvement is explained successfully by reduced C GD and positive shifted gate voltage (V G) versus C GD curves with the thicker GDOX.

  20. Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping.

    PubMed

    Kim, Choonsoo; Kim, Seonghwan; Lee, Jaehan; Kim, Jiye; Yoon, Jeyong

    2015-04-15

    Recently, black-colored TiO2 NTA (denoted as black TiO2 NTA) fabricated by self-doping of TiO2 NTA with the amorphous phase led to significant success as a visible-light-active photocatalyst. This enhanced photocatalytic activity is largely attributed to a higher charge carrier density as an effect of electrochemical self-doping resulting in a higher optical absorbance and lower transport resistance. Nevertheless, the potential of black TiO2 NTA for other electrochemical applications, such as a supercapacitor and an oxidant-generating anode, has not been fully investigated. Here, we report the capacitive and oxidant generating properties of black TiO2 NTA. The black TiO2 NTA exhibited significantly a high value for areal capacitance with a good rate capability and novel electrocatalytic activity in generating (•)OHs and Cl2 compared to pristine TiO2 NTA with the anatase phase. This study suggests that the black TiO2 NTA be applied as a supercapacitor and an oxidant generating anode. PMID:25793300

  1. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress.

    PubMed

    Yu, Xiao-Lin; Li, Ya-Nan; Zhang, He; Su, Ya-Jing; Zhou, Wei-Wei; Zhang, Zi-Ping; Wang, Shao-Wei; Xu, Peng-Xin; Wang, Yu-Jiong; Liu, Rui-Tian

    2015-10-01

    Recent evidence showed that amylin deposition is not only found in the pancreas in type 2 diabetes mellitus (T2DM) patients, but also in other peripheral organs, such as kidneys, heart and brain. Circulating amylin oligomers that cross the blood-brain barrier and accumulate in the brain may be an important contributor to diabetic cerebral injury and neurodegeneration. Moreover, increasing epidemiological studies indicate that there is a significant association between T2DM and Alzheimer's disease (AD). Amylin and β-amyloid (Aβ) may share common pathophysiology and show strikingly similar neurotoxicity profiles in the brain. To explore the potential effects of rutin on AD, we here investigated the effect of rutin on amylin aggregation by thioflavin T dyeing, evaluated the effect of rutin on amylin-induced neurocytotoxicity by the MTT assay, and assessed oxidative stress, as well as the generation of nitric oxide (NO) and pro-inflammatory cytokines in neuronal cells. Our results showed that the flavonoid antioxidant rutin inhibited amylin-induced neurocytotoxicity, decreased the production of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), malondialdehyde (MDA) and pro-inflammatory cytokines TNF-α and IL-1β, attenuated mitochondrial damage and increased the GSH/GSSG ratio. These protective effects of rutin may have resulted from its ability to inhibit amylin aggregation, enhance the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduce inducible nitric oxide synthase (iNOS) activity. These in vitro results indicate that rutin is a promising natural product for protecting neuronal cells from amylin-induced neurotoxicity and oxidative stress, and rutin administration could be a feasible therapeutic strategy for preventing AD development and protecting the aging brain or slowing neurodegenerative processes. PMID:26242245

  2. Inhibition of transcription by oxidative DNA damage products

    SciTech Connect

    Byrd, S.; Reines, D.; Doetsch, P.W. )

    1991-03-11

    Thymine glycol is a major oxidative DNA base damage product that can be produced spontaneously in normal cells or by certain chemicals and ionizing radiation. This lesion as well as other oxidatively damaged bases are recognized and removed in eukaryotic cells by the DNA repair enzyme redoxyendonuclease which the authors have identified in a variety of cell types. Transcriptional regulation is a key element in the control of gene expression. Deficiencies in the various steps of transcription of an essential gene may have catastrophic effects for a cell. In terminally differentiated cells, the removal of RNA-polymerase blocking lesions could be viewed as a critical function for DNA repair systems in such cells. Very little information exists on the effects of oxidative base damage products on the process of transcription. The authors show here that thymine glycol containing DNA templates can inhibit transcriptional elongation when these lesions are chemically introduced into a DNA template. A DNA segment containing a region of the human H3.3 histone gene was utilized to determine the effects of oxidative DNA base damage on transcription by pure E. coli core RNA polymerase and rat liver RNA polymerase II. Both eukaryotic and prokaryotic RNA polymerases are blocked by the presence of thymine glycols appearing in certain clusters of thymines in the oxidatively damaged transcription template. To obtain quantitative efficiencies of transcriptional arrest, the authors are engineering a DNA template containing a single defined oxidatively damaged residue. The authors' results support the idea that an important function of DNA repair systems in terminally differentiated cells is to ensure the efficient transcription of genes necessary for normal cellular function.

  3. Cloricromene inhibits the induction of nitric oxide synthase.

    PubMed

    Zingarelli, B; Carnuccio, R; Di Rosa, M

    1993-10-19

    The effect of cloricromene, a coumarin derivative, was investigated on the lipopolysaccharide-stimulated nitric oxide (NO) synthase induction in intact aortas from endotoxin shocked rats and in the murine macrophage cell line J774. Rings of thoracic aortas from lipopolysaccharide (4 mg/kg, i.v.)-shocked rats, contracted with phenylephrine, showed a progressive decrease in tone, that was of a greater magnitude than that of aortas from naive rats. Moreover, a decreased response to the constrictor effect of phenylephrine was observed in aortas from shocked rats. In vivo treatment with cloricromene (2 mg/kg, i.v.) 30 min before lipopolysaccharide administration partially prevented the loss in tone of aortic rings and improved their reactivity to phenylephrine. Murine J774 macrophages activated with lipopolysaccharide (100 ng/ml) produced significant amounts of nitrites (NO2-; 28.2 +/- 3.5 nmol/10(6) cells per 24 h). Cloricromene (2, 20 or 200 microM) added to the cells concomitantly with lipopolysaccharide inhibited NO2- production in a concentration-dependent manner. Maximum inhibition (84.0 +/- 8.0%) was observed when cloricromene (200 microM) was added to the cells 6 h before lipopolysaccharide, whereas it was ineffective when given 6 h after endotoxin. These results demonstrate that cloricromene inhibits the expression but not the activity of the inducible NO synthase. PMID:7506214

  4. Oxidative Tea Polyphenols Greatly Inhibit the Absorption of Atenolol

    PubMed Central

    Shan, Yun; Zhang, Mengmeng; Wang, Tengfei; Huang, Qin; Yin, Dan; Xiang, Zemin; Wang, Xuanjun; Sheng, Jun

    2016-01-01

    Oxidative tea polyphenols (OTPs) is the oxidative polymerization product of epigallocatechin-3-O-gallate (EGCG) forms during the process of Pu-er tea fermentation, and possesses absorption property, which may absorbs on drugs thus impact the drug bioavailability when taking medicines with Pu-er tea. Here we demonstrated that OTP inhibited the absorption of atenolol in the intestine, which was determined by testing atenolol levels of plasma via high performance liquid chromatography (HPLC). After administration of atenolol (50 mg/kg), atenolol was absorbed (Tmax: 1.867 h) with the half-life (t1/2) of 6.663 h in control group; Compared with atenolol group, AUC0-t (h*ng/ml), AUC0-∞(h∗ng/ml), and Cmax of OTP+atenolol group (OTP 500 mg/kg + atenolol 50 mg/kg) reduced 38.7, 27, and 51%, respectively, the atenolol concentration of plasma was reduced by OTP approximately 43, 49, and 55.5% at 30 min, 1 and 2 h, respectively, (P < 0.01). Furthermore, the level of atenolol in feces was higher in the OTP+atenolol group, indicating that the absorption of atenolol in rats was inhibited by OTP. Isothermal titration calorimetry assay identified that EGCG can bind to atenolol and the in vitro results showed that OTP absorbed on atenolol and formed precipitate in acid condition, demonstrating a significant positive relationship between atenolol levels and OTP dosage. Taken together, these results suggested that consuming Pu-er tea with atenolol might inhibit atenolol absorption and possible other drugs. PMID:27445825

  5. Capacitive Extensometer

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P. (Inventor)

    2003-01-01

    The present invention provides for measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a porous specimen, such as plastic, ceramic or porous metal, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by a predetermined angle, such as 120 degrees.

  6. p46Shc Inhibits Thiolase and Lipid Oxidation in Mitochondria.

    PubMed

    Tomilov, Alexey; Tomilova, Natalia; Shan, Yuxi; Hagopian, Kevork; Bettaieb, Ahmed; Kim, Kyoungmi; Pelicci, Pier Giuseppe; Haj, Fawaz; Ramsey, Jon; Cortopassi, Gino

    2016-06-10

    Although the p46Shc isoform has been known to be mitochondrially localized for 11 years, its function in mitochondria has been a mystery. We confirmed p46Shc to be mitochondrially localized and showed that the major mitochondrial partner of p46Shc is the lipid oxidation enzyme 3-ketoacylCoA thiolase ACAA2, to which p46Shc binds directly and with a strong affinity. Increasing p46Shc expression inhibits, and decreasing p46Shc stimulates enzymatic activity of thiolase in vitro Thus, we suggest p46Shc to be a negative mitochondrial thiolase activity regulator, and reduction of p46Shc expression activates thiolase. This is the first demonstration of a protein that directly binds and controls thiolase activity. Thiolase was thought previously only to be regulated by metabolite balance and steady-state flux control. Thiolase is the last enzyme of the mitochondrial fatty acid beta-oxidation spiral, and thus is important for energy metabolism. Mice with reduction of p46Shc are lean, resist obesity, have higher lipid oxidation capacity, and increased thiolase activity. The thiolase-p46Shc connection shown here in vitro and in organello may be an important underlying mechanism explaining the metabolic phenotype of Shc-depleted mice in vivo. PMID:27059956

  7. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak

    2015-09-01

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH3 plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (Rbulk) and the sheath region (Rsheath). Reduction and nitridation of the GO films began as soon as the NH3 plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the Rbulk, NH3 plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the Rsheath, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the Rbulk using capacitively coupled NH3 plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  8. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    SciTech Connect

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  9. Production of high-density capacitively coupled radio-frequency discharge plasma by high-secondary-electron-emission oxide

    SciTech Connect

    Ohtsu, Yasunori; Fujita, Hiroharu

    2004-11-22

    High-density capacitively coupled radio-frequency plasma with electron density n{sub e}>10{sup 10} cm{sup -3} was produced using MgO electrodes with a high secondary-electron-emission coefficient. It was found that in the case of MgO electrodes, both plasma density and optical emission intensity were about one order of magnitude higher than those in the case of Al electrodes.

  10. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.

    PubMed

    Mashock, Michael J; Kappell, Anthony D; Hallaj, Nadia; Hristova, Krassimira R

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used increasingly in industrial applications and consumer products and thus may pose risk to human and environmental health. The interaction of CuO NPs with complex media and the impact on cell metabolism when exposed to sublethal concentrations are largely unknown. In the present study, the short-term effects of 2 different sized manufactured CuO NPs on metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu(2+) during dissolution of NPs in the growth media and the CuO nanostructure were considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the present study have different primary diameter, similar hydrodynamic diameter, and significantly different concentrations of dissolved Cu(2+) ions in the growth media released from the same initial NP mass. Exposures to CuO NPs or the released Cu(2+) fraction, at doses that do not have impact on cell viability, showed significant inhibition on S. cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity of S. cerevisiae growth under respiring conditions was observed. Under the tested conditions the observed metabolic inhibition from the NPs was not explained fully by the released Cu ions from the dissolving NPs. PMID:26178758

  11. Oxidative stress of photodynamic antimicrobial chemotherapy inhibits Candida albicans virulence

    NASA Astrophysics Data System (ADS)

    Kato, Ilka Tiemy; Prates, Renato Araujo; Tegos, George P.; Hamblin, Michael R.; Simões Ribeiro, Martha

    2011-03-01

    Photodynamic antimicrobial chemotherapy (PACT) is based on the principal that microorganisms will be inactivated using a light source combined to a photosensitizing agent in the presence of oxygen. Oxidative damage of cell components occurs by the action of reactive oxygen species leading to cell death for microbial species. It has been demonstrated that PACT is highly efficient in vitro against a wide range of pathogens, however, there is limited information for its in vivo potential. In addition, it has been demonstrated that sublethal photodynamic inactivation may alter the virulence determinants of microorganisms. In this study, we explored the effect of sublethal photodynamic inactivation to the virulence factors of Candida albicans. Methylene Blue (MB) was used as photosensitizer for sublethal photodynamic challenge on C. albicans associated with a diode laser irradiation (λ=660nm). The parameters of irradiation were selected in causing no reduction of viable cells. The potential effects of PACT on virulence determinants of C. albicans cells were investigated by analysis of germ tube formation and in vivo pathogenicity assays. Systemic infection was induced in mice by the injection of fungal suspension in the lateral caudal vein. C. albicans exposed to sublethal photodynamic inactivation formed significantly less germ tube than untreated cells. In addition, mice infected with C. albicans submitted to sublethal PACT survived for a longer period of time than mice infected with untreated cells. The oxidative damage promoted by sublethal photodynamic inactivation inhibited virulence determinants and reduced in vivo pathogenicity of C. albicans.

  12. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    NASA Astrophysics Data System (ADS)

    Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-01

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  13. Total dose dependence of oxide charge, interstrip capacitance and breakdown behavior of sLHC prototype silicon strip detectors and test structures of the SMART collaboration

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Betancourt, C.; Heffern, R.; Henderson, I.; Pixley, J.; Polyakov, A.; Wilder, M.; Boscardin, M.; Piemonte, C.; Pozza, A.; Zorzi, N.; Dalla Betta, G.-F.; Resta, G.; Bruzzi, M.; Macchiolo, A.; Borrello, L.; Messineo, A.; Creanza, D.; Manna, N.

    2007-09-01

    Within the R&D Program for the luminosity upgrade proposed for the Large Hadron Collider (LHC), silicon strip detectors (SSD) and test structures (TS) were manufactured on several high-resistivity substrates: p-type Magnetic Czochralski (MCz) and Float Zone (FZ), and n-type FZ. To test total dose (TID) effects they were irradiated with 60Co gammas and the impact of surface radiation damage on the detector properties was studied. Selected results from the pre-rad and post-rad characterization of detectors and TS are presented, in particular interstrip capacitance and resistance, break-down voltage, flatband voltage and oxide charge. Surface damage effects show saturation after 150 krad and breakdown performance improves considerably after 210 krad. Annealing was performed both at room temperature and at 60 °C, and large effects on the surface parameters observed.

  14. NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: In-situ synthesis and enhanced capacitive performance.

    PubMed

    Li, Zhongchun; Ji, Xuan; Han, Jie; Hu, Yimin; Guo, Rong

    2016-09-01

    A facile hydrothermal process is developed for the synthesis of NiCo2S4/reduced graphene oxide (RGO) hybrid and NiCo2S4 hollow spheres. The morphology and microstructure are characterized by powder X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), and energy dispersive spectrometry (EDS) mapping. NiCo2S4 nanoparticles with the diameter of about 20-30nm were in-situ grown on RGO sheets. NiCo2S4 hollow spheres were obtained with the diameter of about 300-400nm and the width of shell in the range of 30-40nm in the absence of graphene oxide (GO). GO as a substrate material can offer abundant active sites for nucleation of NiCo2S4 and can be reduced to RGO, providing excellent electron transfer path and high conduction, which enable the fast surface redox reaction. Supercapacitor based on NiCo2S4/RGO hybrid shows a high specific capacitance of 1804.7F/g at a current density of 0.5A/g. Due to the high capacitive performance of NiCo2S4/RGO hybrid, the NiCo2S4/RGO//AC asymmetric supercapacitor (ASC) possesses an extended voltage window of 1.5V, high energy density of 24.4Wh/kg at a power density of 750W/kg in 2mol/LKOH electrolyte. NiCo2S4/RGO hybrid can serve as a promising electrode material for high performance supercapacitors. PMID:27240243

  15. INHIBITION OF ARM REGENERATION BY 'OPHIODERMA BREVISPINA' (ECHINODERMATA, OPHIUROIDEA) BY TRIBUTYLIN OXIDE

    EPA Science Inventory

    Tributyltinoxide (TBTO) and triphenyltin oxide (TPTO) inhibited regeneration of arms of the brittle star, Ophioderma brevispina, at low concentrations. Statistically significant inhibition of growth was caused by 0.1 micrograms/l of both compounds, and inhibition was indicated in...

  16. Inhibition of methane oxidation by Methylococcus capsulatus with hydrochlorofluorocarbons and fluorinated methanes

    SciTech Connect

    Matheson, L.J.; Oremland, R.S.; Jahnke, L.L.

    1997-07-01

    Concerns about stratospheric ozone and global warming have focused some inquiries upon the microbial degradation of some atmospheric halocarbons. Little is known about the interaction of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). This study examines possible interactions, including the inhibition of methane oxidation by chlorinated solvents, whether oxidation products formed may have inhibitory effects of their own, and whether other fluorinated methanes inhibit methane oxidation by whole cells. 33 refs., 4 figs., 1 tab.

  17. Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria

    PubMed Central

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C.; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Strous, Marc; Schmidt, Ingo

    2005-01-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed. PMID:15691967

  18. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  19. Inhibiting the photosensitized oxidation of anthracene and tryptophan by means of natural antioxidants

    NASA Astrophysics Data System (ADS)

    Aksenova, N. A.; Vyzhlova, E. N.; Malinovskaya, V. V.; Parfenov, V. V.; Solov'eva, A. B.; Timashev, P. S.

    2013-08-01

    It is shown that model reactions of photosensitized oxidation of anthracene and tryptophan can be used for evaluation and comparison of antioxidant activity of various classes of compounds. Inhibition of the oxidation of substrates in the presence of the familiar antioxidants tocopherol (vitamin E), ascorbic acid (vitamin C), and mixtures of these vitamins with methionine, and in the presence of reputed antioxidants dihydroquercetin and taurine, are considered. It is concluded that all of the above compounds except for taurine have antioxidant properties; i.e., they reduce the rate constants of the photosensitized oxidation of anthracene and tryptophan. It is found that the inhibition of oxidation is associated with the interaction between antioxidants and singlet oxygen. Analysis of the kinetic dependences of the photosensitized oxidation of substrates in the presence of antioxidants reveals that a mixture of vitamins inhibits the process most efficiently, and inhibition occurs at the initial stages due to more active interaction between singlet oxygen and vitamin C

  20. Triazine herbicides inhibit relaxin signaling and disrupt nitric oxide homeostasis.

    PubMed

    Park, Si Eun; Lim, Sa Rang; Choi, Hyung-Kyoon; Bae, Jeehyeon

    2016-09-15

    Triazines are herbicides that are widely used worldwide, and we previously observed that the maternal exposure of mice to simazine (50 or 500μg/kg) resulted in smaller ovaries and uteri of their female offspring. Here, we investigated the underlying mechanism that may account for the reproductive dysfunction induced by simazine. We found that following maternal exposure, simazine is transmitted to the offspring, as evidenced by its presence in the offspring ovaries. Analyses of the simazine-exposed offspring revealed that the expression of the relaxin hormone receptor, relaxin-family peptide receptor 1 (RXFP1), prominently decreased in their ovaries and uteri. In addition, downstream target genes of the relaxin pathway including nitric oxide (NO) synthase 2 (Nos2), Nos3, matrix metallopeptidase 9 (Mmp9), and vascular endothelial growth factor (Vegf) were downregulated in their ovaries. Moreover, AKT and extracellular signal-regulated kinases (ERK) levels and their phosphorylated active forms decreased in simazine-exposed ovaries. In vitro exposure of the human ovarian granulosa cells (KGN) and uterine endometrium cells (Hec-1A) to very low concentrations (0.001 to 1nM) of triazines including atrazine, terbuthylazine, and propazine repressed NO production with a concurrent reduction in RXFP1, NOS2, and NOS3. The inhibitory action of triazines on NO release was dependent on RXFP1, phosphoinositol 3-kinase (PI3K)/AKT, and ERK. Radioligand-binding assay also confirmed that triazines competitively inhibited the binding of relaxin to its receptor. Therefore, the present study suggests that triazine herbicides act as endocrine disrupters by interfering with relaxin hormone signaling. Thus, further evaluation of their impact on human health is imperative. PMID:27431321

  1. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    SciTech Connect

    Münzenrieder, Niko Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-29

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (L{sub OV}) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on L{sub OV}. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  2. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  3. Fabrication of dynamic oxide semiconductor random access memory with 3.9 fF storage capacitance and greater than 1 h retention by using c-axis aligned crystalline oxide semiconductor transistor with L of 60 nm

    NASA Astrophysics Data System (ADS)

    Onuki, Tatsuya; Kato, Kiyoshi; Nomura, Masumi; Yakubo, Yuto; Nagatsuka, Shuhei; Matsuzaki, Takanori; Hondo, Suguru; Hata, Yuki; Okazaki, Yutaka; Nagai, Masaharu; Atsumi, Tomoaki; Sakakura, Masayuki; Okuda, Takashi; Yamamoto, Yoshitaka; Yamazaki, Shunpei

    2015-04-01

    A dynamic oxide semiconductor random access memory (DOSRAM) array that achieves reduction in storage capacitance (Cs) and decrease in refresh rate has been fabricated by using a c-axis aligned crystalline oxide semiconductor (CAAC-OS) transistor (L = 60 nm) with an extremely low off-state current. We have confirmed that this array, composed of cells that include a CAAC-OS transistor with W/L = 40 nm/60 nm using InGaZnO and a 3.9 fF storage capacitor, operates with write and read times of 5 ns. Therefore, DOSRAM can ensure sufficient Cs while maintaining operation speed comparable to that of dynamic random access memory (DRAM). We have found that the read signal voltage of DOSRAM is changed by approximately 30 mV after 1 h at 85 °C. Thus, DOSRAM is a promising replacement for DRAM.

  4. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?

    PubMed

    Rochette, Luc; Lorin, Julie; Zeller, Marianne; Guilland, Jean-Claude; Lorgis, Luc; Cottin, Yves; Vergely, Catherine

    2013-12-01

    Nitric oxide (NO) is synthetized enzymatically from l-arginine (l-Arg) by three NO synthase isoforms, iNOS, eNOS and nNOS. The synthesis of NO is selectively inhibited by guanidino-substituted analogs of l-Arg or methylarginines such as asymmetric dimethylarginine (ADMA), which results from protein degradation in cells. Many disease states, including cardiovascular diseases and diabetes, are associated with increased plasma levels of ADMA. The N-terminal catalytic domain of these NOS isoforms binds the heme prosthetic group as well as the redox cofactor, tetrahydrobiopterin (BH(4)) associated with a regulatory protein, calmodulin (CaM). The enzymatic activity of NOS depends on substrate and cofactor availability. The importance of BH(4) as a critical regulator of eNOS function suggests that BH(4) may be a rational therapeutic target in vascular disease states. BH(4) oxidation appears to be a major contributor to vascular dysfunction associated with hypertension, ischemia/reperfusion injury, diabetes and other cardiovascular diseases as it leads to the increased formation of oxygen-derived radicals due to NOS uncoupling rather than NO. Accordingly, abnormalities in vascular NO production and transport result in endothelial dysfunction leading to various cardiovascular disorders. However, some disorders including a wide range of functions in the neuronal, immune and cardiovascular system were associated with the over-production of NO. Inhibition of the enzyme should be a useful approach to treat these pathologies. Therefore, it appears that both a lack and excess of NO production in diseases can have various important pathological implications. In this context, NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed. PMID:23859953

  5. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  6. Intensification of chemiluminescence in the inhibited oxidation of oils

    SciTech Connect

    Nikolayevskii, A.N.; Filippenko, T.A.; Sergovskaya, T.S.

    1982-01-01

    Chemiluminescence is intensified upon the addition of inhibitors (phloroglucinol, p-phenylenediamine, hydroquinone) to oxidized sunflower oil. The formation of a further source of chemiluminescence is explained by reactions of the oxidized oil and the inhibitors. Oxidation initiated by azoisobutyronitrile of sunflower oil using atmospheric oxygen was performed at 70/sup 0/C in chlorobenzene solution; 9,10-dibromoanthracene was the luminescence activator. 4 figures.

  7. Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition

    PubMed Central

    McQuade, Jennifer L; Vashisht Gopal, Yn

    2015-01-01

    Mitochondrial oxidative phosphorylation (OxPhos) induces resistance to MAPK pathway inhibitors in melanoma. However, therapeutic targeting of mitochondria is challenging. In a recent study, we showed that inhibition of mTOR kinase activity resensitized resistant melanomas by indirectly inhibiting OxPhos via a novel mechanism. Here, we discuss the implications of these findings. PMID:27308473

  8. Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition.

    PubMed

    McQuade, Jennifer L; Vashisht Gopal, Yn

    2015-01-01

    Mitochondrial oxidative phosphorylation (OxPhos) induces resistance to MAPK pathway inhibitors in melanoma. However, therapeutic targeting of mitochondria is challenging. In a recent study, we showed that inhibition of mTOR kinase activity resensitized resistant melanomas by indirectly inhibiting OxPhos via a novel mechanism. Here, we discuss the implications of these findings. PMID:27308473

  9. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed. PMID:16473450

  10. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger.

    PubMed

    Martens-Habbena, Willm; Qin, Wei; Horak, Rachel E A; Urakawa, Hidetoshi; Schauer, Andrew J; Moffett, James W; Armbrust, E Virginia; Ingalls, Anitra E; Devol, Allan H; Stahl, David A

    2015-07-01

    Nitrification is a critical process for the balance of reduced and oxidized nitrogen pools in nature, linking mineralization to the nitrogen loss processes of denitrification and anammox. Recent studies indicate a significant contribution of ammonia-oxidizing archaea (AOA) to nitrification. However, quantification of the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to in situ ammonia oxidation remains challenging. We show here the production of nitric oxide (NO) by Nitrosopumilus maritimus SCM1. Activity of SCM1 was always associated with the release of NO with quasi-steady state concentrations between 0.05 and 0.08 μM. NO production and metabolic activity were inhibited by the nitrogen free radical scavenger 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). Comparison of marine and terrestrial AOB strains with SCM1 and the recently isolated marine AOA strain HCA1 demonstrated a differential sensitivity of AOB and AOA to PTIO and allylthiourea (ATU). Similar to the investigated AOA strains, bulk water column nitrification at coastal and open ocean sites with sub-micromolar ammonia/ammonium concentrations was inhibited by PTIO and insensitive to ATU. These experiments support predictions from kinetic, molecular and biogeochemical studies, indicating that marine nitrification at low ammonia/ammonium concentrations is largely driven by archaea and suggest an important role of NO in the archaeal metabolism. PMID:25420929

  11. Origin and Tunability of Unusually Large Surface Capacitance in Doped Cerium Oxide Studied by Ambient-Pressure X-Ray Photoelectron Spectroscopy.

    PubMed

    Gopal, Chirranjeevi Balaji; Gabaly, Farid El; McDaniel, Anthony H; Chueh, William C

    2016-06-01

    The volumetric redox (chemical) capacitance of the surface of CeO2-δ films is quantified in situ to be 100-fold larger than the bulk values under catalytically relevant conditions. Sm addition slightly lowers the surface oxygen nonstoichiometry, but effects a 10-fold enhancement in surface chemical capacitance by mitigating defect interactions, highlighting the importance of differential nonstoichiometry for catalysis. PMID:27031580

  12. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species. PMID:25897618

  13. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  14. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  15. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.

    PubMed Central

    Patel, R; Hou, C T; Felix, A

    1976-01-01

    Metal-chelating or -binding agents inhibited the oxidation of dimethyl ether and methane, but not methanol, by cell suspensions of Methylococcus capsulatus and Methylosinus trichosporium. Evidence suggests that the involvement of metal-containing enzymatic systems in the initial step of oxidation of dimethyl ether and methane. PMID:4428

  16. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  17. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production

    PubMed Central

    Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  18. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production.

    PubMed

    Mizokami, Sandra S; Hohmann, Miriam S N; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Zarpelon, Ana C; Possebon, Maria I; de Souza, Anderson R; Veneziani, Rodrigo C S; Arakawa, Nilton S; Casagrande, Rubia; Verri, Waldiceu A

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  19. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  20. Proliferation of macrophages due to the inhibition of inducible nitric oxide synthesis by oxidized low-density lipoproteins

    PubMed Central

    Brunner, Monika; Gruber, Miriam; Schmid, Diethart; Baran, Halina; Moeslinger, Thomas

    2015-01-01

    Oxidized low-density lipoprotein (ox-LDL) is assumed to be a major causal agent in hypercholesteraemia-induced atherosclerosis. Because the proliferation of lipid-loaden macrophages within atherosclerotic lesions has been described, we investigated the dependence of macrophage proliferation on the inhibition of inducible nitric oxide synthase (iNOS) by hypochlorite oxidized LDL. Ox-LDL induces a dose dependent inhibition of inducible nitric oxide synthesis in lipopolysaccharide-interferon stimulated mouse macrophages (J774.A1) with concomitant macrophage proliferation as assayed by cell counting, tritiated-thymidine incorporation and measurement of cell protein. Native LDL did not influence macrophage proliferation and inducible nitric oxide synthesis. iNOS protein and mRNA was reduced by HOCl-oxidized LDL (0-40 µg/ml) as revealed by immunoblotting and competitive semiquantitative PCR. Macrophage proliferation was increased by the addition of the iNOS inhibitor L-NAME. The addition of ox-LDL to L-NAME containing incubations induced no further statistically significant increase in cell number. Nitric oxide donors decreased ox-LDL induced macrophage proliferation and nitric oxide scavengers restored macrophage proliferation to the initial values achieved by ox-LDL. The decrease of cytosolic DNA fragments in stimulated macrophages incubated with ox-LDL demonstrates that the proliferative actions of ox-LDL are associated with a decrease of NO-induced apoptosis. Our data show that inhibition of iNOS dependent nitric oxide production caused by hypochlorite oxidized LDL enhances macrophage proliferation. This might be a key event in the pathogenesis of atherosclerotic lesions. PMID:26600745

  1. PPARγ Inhibits VSMC Proliferation and Migration via Attenuating Oxidative Stress through Upregulating UCP2

    PubMed Central

    Zhou, Yi; Zhang, Ming-Jie; Li, Bing-Hu; Chen, Lei; Pi, Yan; Yin, Yan-Wei; Long, Chun-Yan; Wang, Xu; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-01-01

    Increasing evidence showed that abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are common event in the pathophysiology of many vascular diseases, including atherosclerosis and restenosis after angioplasty. Among the underlying mechanisms, oxidative stress is one of the principal contributors to the proliferation and migration of VSMCs. Oxidative stress occurs as a result of persistent production of reactive oxygen species (ROS). Recently, the protective effects of peroxisome proliferator-activated receptor γ (PPARγ) against oxidative stress/ROS in other cell types provide new insights to inhibit the suggests that PPARγ may regulate VSMCs function. However, it remains unclear whether activation of PPARγ can attenuate oxidative stress and further inhibit VSMC proliferation and migration. In this study, we therefore investigated the effect of PPARγ on inhibiting VSMC oxidative stress and the capability of proliferation and migration, and the potential role of mitochondrial uncoupling protein 2 (UCP2) in oxidative stress. It was found that platelet derived growth factor-BB (PDGF-BB) induced VSMC proliferation and migration as well as ROS production; PPARγ inhibited PDGF-BB-induced VSMC proliferation, migration and oxidative stress; PPARγ activation upregulated UCP2 expression in VSMCs; PPARγ inhibited PDGF-BB-induced ROS in VSMCs by upregulating UCP2 expression; PPARγ ameliorated injury-induced oxidative stress and intimal hyperplasia (IH) in UCP2-dependent manner. In conclusion, our study provides evidence that activation of PPARγ can attenuate ROS and VSMC proliferation and migration by upregulating UCP2 expression, and thus inhibit IH following carotid injury. These findings suggest PPARγ may represent a prospective target for the prevention and treatment of IH-associated vascular diseases. PMID:27144886

  2. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway.

    PubMed

    Xue, Hongxia; Gan, Fang; Zhang, Zheqian; Hu, Junfa; Chen, Xingxiang; Huang, Kehe

    2015-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Astragalus polysaccharide (APS), as one kind of biological macromolecule extracted from Astragalus, has antiviral activities. This study was undertaken to explore the effect of APS on PCV2 replication in vitro and the underlying mechanisms. Our results showed that adding APS before PCV2 infection decreased significantly PCV2 DNA copies, the number of infected cells, MDA level, ROS level and NF-κB activation in PK15 cells and increased significantly GSH contents and SOD activity compared to control without APS. Oxidative stress induced by BSO could eliminate the effect of PCV2 replication inhibition by APS. LPS, as a NF-κB activator, could attenuate the effect of PCV2 replication inhibition by APS. BAY 11-7082, as a NF-κB inhibitor, could increase the effect of PCV2 replication inhibition by APS. In conclusion, APS inhibits PCV2 replication by decreasing oxidative stress and the activation of NF-κB signaling pathway, which suggests that APS might be employed for the prevention of PCV2 infection. PMID:26226456

  3. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice.

    PubMed

    Calixto-Campos, Cássia; Carvalho, Thacyana T; Hohmann, Miriam S N; Pinho-Ribeiro, Felipe A; Fattori, Victor; Manchope, Marília F; Zarpelon, Ana C; Baracat, Marcela M; Georgetti, Sandra R; Casagrande, Rubia; Verri, Waldiceu A

    2015-08-28

    Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-β-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production. PMID:26192250

  4. Functionalization of Titanium Alloy Surface by Graphene Nanoplatelets and Metal Oxides: Corrosion Inhibition.

    PubMed

    Mondal, Jayanta; Aarik, Lauri; Kozlova, Jekaterina; Niilisk, Ahti; Mändar, Hugo; Mäeorg, Uno; Simões, Alda; Sammelselg, Väino

    2015-09-01

    Corrosion inhibition of metallic substrates is an important and crucial step for great economical as well as environmental savings. In this paper, we introduce an extra thin effective corrosion inhibitive material having layered structure designed for protection and functionalization of Ti Grade 5 alloy substrates. The coating consists of a first layer made of thin graphene nanoplatelets, on top of which a multilayer Al2O3 and TiO2 films is applied by low-temperature atomic layer deposition. The amorphous structure of the metal oxide films was confirmed by micro-Raman and X-ray diffraction analysis. Corrosion inhibition ability of the prepared coatings was analyzed by open circuit potential, potentiodynamic plot and by voltammetric analysis, in aqueous potassium bromide solution. The open circuit potential of the graphene-metal oxide coated substrate showed much passive nature than bare substrate or graphene coated or only metal oxide coated substrates. The localized corrosion potential of the graphene-metal oxide coated, only metal oxide coated, and bare substrates were found 5.5, 3.0, and 1.1 V, respectively. In addition, corrosion current density values of the graphene-metal oxide and only metal oxide coated substrates showed much more passive nature than the bare and graphene coated substrates. Long immersion test in the salt solution further clarified the effective corrosion inhibition of the graphene-metal oxide coated substrate. The analyzed results reflect that the graphene-metal oxide films can be used to prepare better and effective corrosion inhibition coatings for the Ti Grade 5 alloy to increase their lifetime. PMID:26716209

  5. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

    PubMed Central

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T. G.

    1995-01-01

    Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepatic tumour model, by laser Doppler flowmetry. The response to regionally infused vasopressin and the nitric oxide inhibitor N-nitro-L-arginine methyl ester (L-NAME) were assessed over a 30 min infusion period. The vasopressin-induced vasoconstrictor effect diminished after 15 min despite continued infusion. Vasoconstriction was significantly prolonged when L-NAME was infused in addition to vasopressin. The increase in tumour to normal blood flow ratio was greater over the infusion period when L-NAME was co-administered with vasopressin. Our results suggest that the loss of vasopressin-induced vasoconstriction seen in liver parenchyma after regional infusion is prevented by the nitric oxide synthase inhibitor L-name and may be mediated by nitric oxide. PMID:7734317

  6. A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Self-Transformation.

    PubMed

    Zhang, Yi-Zhou; Cheng, Tao; Wang, Yang; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2016-07-01

    An extremely simple in situ self-transformation methodology is developed to introduce pseudocapacitance into the MOF system resulting in a largely boosted electrochemical performance: a three-fold increase in capacitance as well as improved rate capacity. An all-solid-state hybrid flexible supercapacitor is fabricated based on the obtained MnOx -MHCF composite and activated carbon with an areal capacitance of 175 mF cm(-2) at 0.5 mA cm(-2) . PMID:27145232

  7. Inhibited Ru(bpy)3 2+ electrochemiluminescence related to electrochemical oxidation activity of inhibitors.

    PubMed

    Chi, Yuwu; Dong, Yongqiang; Chen, Guonan

    2007-06-15

    Electrochemiluminescence (ECL) has been accepted by the analytical chemist as a powerful tool for detection of many inorganic and organic compounds. Ru(bpy)3 2+ has been the most popular ECL system, and many investigations have been focused on the application based on the enhancement or inhibition of Ru(bpy)3 2+ ECL system. However, not much attention has been paid to the theoretical investigation of this ECL system, especially to the inhibiting mechanism for the Ru(bpy)3 2+ ECL system. In the present study, many of the inorganic and organic compounds with electrochemical oxidation activity were found to strongly inhibit Ru(bpy)3 2+ ECL. To explain these inhibited ECL phenomena, a new "electrochemical oxidation inhibiting" mechanism has been proposed via the establishment of a corresponding model. The effects of applied potential, uncompensated resistance, and concentration of inhibitor on the inhibited ECL derived from the model have been verified by experiments. The new ECL inhibition mechanism can be commonly used to explain many kinds of inhibited ECL presently observed, and it is envisioned to result in finding of more inhibitors of this type and establishment of new sensitive ECL detection methods for them. PMID:17489558

  8. Nitric oxide inhibits the formation of zinc protoporphyrin IX and protoporphyrin IX.

    PubMed

    Wakamatsu, Jun-ichi; Hayashi, Nobutaka; Nishimura, Takanori; Hattori, Akihito

    2010-01-01

    The aim of this study was to elucidate the mechanism by which curing agents, especially nitrite, inhibit the formation of zinc protoporphyrin IX (ZPP) in dry-cured hams such as Parma ham. The oxidation-reduction potential of model solutions was increased by the addition of nitrite, but it was not clear whether the formation of ZPP is inhibited by the oxidizing property of nitrite. The effect of nitric oxide (NO) produced from nitrite on the formation of ZPP was examined. The amount of ZPP formed was decreased by the addition of NO donors. The amount of protoporphyrin IX (PPIX), which is the precursor of ZPP, was also decreased by the addition of NO donors. It is concluded that NO produced from nitrite inhibited the formation of PPIX and ZPP was therefore not formed in cured meat products with the addition of nitrite or nitrate. PMID:20374763

  9. Inhibition of Methane Oxidation by Methylococcus capsulatus with Hydrochlorofluorocarbons and Fluorinated Methanes.

    PubMed

    Matheson, L J; Jahnke, L L; Oremland, R S

    1997-07-01

    The inhibition of methane oxidation by cell suspensions of Methylococcus capsulatus (Bath) exposed to hydrochlorofluorocarbon 21 (HCFC-21; difluorochloromethane [CHF(inf2)Cl]), HCFC-22 (fluorodichloromethane [CHFCl(inf2)]), and various fluorinated methanes was investigated. HCFC-21 inhibited methane oxidation to a greater extent than HCFC-22, for both the particulate and soluble methane monooxygenases. Among the fluorinated methanes, both methyl fluoride (CH(inf3)F) and difluoromethane (CH(inf2)F(inf2)) were inhibitory while fluoroform (CHF(inf3)) and carbon tetrafluoride (CF(inf4)) were not. The inhibition of methane oxidation by HCFC-21 and HCFC-22 was irreversible, while that by methyl fluoride was reversible. The HCFCs also proved inhibitory to methanol dehydrogenase, which suggests that they disrupt other aspects of C(inf1) catabolism in addition to methane monooxygenase activity. PMID:16535662

  10. Inhibition of Methane Oxidation by Methylococcus capsulatus with Hydrochlorofluorocarbons and Fluorinated Methanes

    PubMed Central

    Matheson, L. J.; Jahnke, L. L.; Oremland, R. S.

    1997-01-01

    The inhibition of methane oxidation by cell suspensions of Methylococcus capsulatus (Bath) exposed to hydrochlorofluorocarbon 21 (HCFC-21; difluorochloromethane [CHF(inf2)Cl]), HCFC-22 (fluorodichloromethane [CHFCl(inf2)]), and various fluorinated methanes was investigated. HCFC-21 inhibited methane oxidation to a greater extent than HCFC-22, for both the particulate and soluble methane monooxygenases. Among the fluorinated methanes, both methyl fluoride (CH(inf3)F) and difluoromethane (CH(inf2)F(inf2)) were inhibitory while fluoroform (CHF(inf3)) and carbon tetrafluoride (CF(inf4)) were not. The inhibition of methane oxidation by HCFC-21 and HCFC-22 was irreversible, while that by methyl fluoride was reversible. The HCFCs also proved inhibitory to methanol dehydrogenase, which suggests that they disrupt other aspects of C(inf1) catabolism in addition to methane monooxygenase activity. PMID:16535662

  11. Inhibition of methane oxidation by Methylococcus capsulatus with hydrochlorofluorocarbons and fluorinated methanes

    USGS Publications Warehouse

    Matheson, L.J.; Jahnke, L.L.; Oremland, R.S.

    1997-01-01

    The inhibition of methane oxidation by cell suspensions of Methylococcus capsulatus (Bath) exposed to hydrochlorofluorocarbon 21 (HCFC-21; difluorochloromethane [CHF2Cl]), HCFC-22 (fluorodichloromethane [CHFCl2]), and various fluorinated methanes was investigated. HCFC-21 inhibited methane oxidation to a greater extent than HCFC-22, for both the particulate and soluble methane monooxygenases. Among the fluorinated methanes, both methyl fluoride (CH3F) and difluoromethane (CH2F2) were inhibitory while fluoroform (CHF3) and carbon tetrafluoride (CF4) were not. The inhibition of methane oxidation by HCFC-21 and HCFC-22 was irreversible, while that by methyl fluoride was reversible. The HCFCs also proved inhibitory to methanol dehydrogenase, which suggests that they disrupt other aspects of C1 catabolism in addition to methane monooxygenase activity.

  12. Peach skin powder inhibits oxidation in cooked turkey meat.

    PubMed

    Zhang, Y; Han, I; Bridges, W C; Dawson, P L

    2016-10-01

    The objective of this study was to measure the antioxidant activity of peach skin and test the antioxidant effect of peach skin powder on cooked ground turkey meat during 12 d of refrigerated storage. Antioxidant activity of 3 cultivars of peaches grown in South Carolina was first evaluated by 3 antioxidant assays. The peach variety O'Henry showed the greatest antioxidant effect and therefore was used for further study. Two levels of peach skin powder (0.5%, 1%) and 0.01% butylated hydroxylanisole (BHA) were applied to ground turkey meat. Oxidation of cooked turkey meat was measured by detection of hexanal using gas chromatography-mass spectrometry. Results indicated that all levels of peach skin powder used in this study had an antioxidant effect on ground turkey with a greater effect at the higher concentration. O'Henry peach skin powder was as effective as BHA in preventing oxidation at the levels tested. PMID:27252372

  13. Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.

    PubMed

    Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep

    2014-07-01

    Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential. PMID:24940607

  14. Nitric oxide synthases activation and inhibition by metallacarborane cluster-based isoform-specific affectors

    PubMed Central

    Kaplánek, Robert; Martásek, Pavel; Grüner, Bohumír; Panda, Satya; Rak, Jakub; Masters, Bettie Sue Siler; Král, Vladimír; Roman, Linda J.

    2012-01-01

    A small library of boron cluster and metallacarborane cluster-based ligands was designed, prepared and tested for isoform-selective activation or inhibition of the three nitric oxide synthase isoforms. Based on the concept of creating a hydrophobic analog of a natural substrate, a stable and non-toxic basic boron cluster system, previously used for boron neutron capture therapy, was modified by the addition of positively charged moieties to its periphery, providing hydrophobic and non-classical hydrogen bonding interactions with the protein. Several of these compounds show efficacy for inhibition of NO synthesis with differential effects on the various nitric oxide synthase isoforms. PMID:23075390

  15. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions

    PubMed Central

    Webb, Michael R.; Min, Kyungmi; Ebeler, Susan E.

    2009-01-01

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study—cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 μM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  16. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions.

    PubMed

    Webb, Michael R; Min, Kyungmi; Ebeler, Susan E

    2008-09-23

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study-cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 muM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  17. Selective inhibition of fatty acid oxidation in colonocytes by ibuprofen: a cause of colitis?

    PubMed Central

    Roediger, W E; Millard, S

    1995-01-01

    Ibuprofen is associated with initiation or exacerbation of ulcerative colitis. As ibuprofen selectively inhibited fatty acid oxidation in the liver or caused mitochondrial damage in intestinal cells, its effect on substrate oxidation by isolated colonocytes of man and rat was examined. Ibuprofen dose dependently (2.0-7.5 mmol/l) and selectively inhibited 14CO2 production from labelled n-butyrate in colonocytes from the proximal and distal human colon (n = 12, p = < 0.001). Glucose oxidation was either unaltered or increased. Because short chain fatty acid oxidation is the main source of acetyl-CoA for long chain fatty acid synthesis, the inhibition of prostaglandin synthesis by ibuprofen in the colonic mucosa could also occur at this level. Because the concentrations of ibuprofen that can be attained in the human colon are not known, conclusions drawn from current dosages are tentative. The inhibition of fatty acid oxidation by ibuprofen may be biochemically implicated in the initiation and exacerbation of ulcerative colitis, manifestation of which would depend on the ibuprofen concentrations reached in the colon. PMID:7890237

  18. Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models

    PubMed Central

    2015-01-01

    Ferrostatin-1 (Fer-1) inhibits ferroptosis, a form of regulated, oxidative, nonapoptotic cell death. We found that Fer-1 inhibited cell death in cellular models of Huntington’s disease (HD), periventricular leukomalacia (PVL), and kidney dysfunction; Fer-1 inhibited lipid peroxidation, but not mitochondrial reactive oxygen species formation or lysosomal membrane permeability. We developed a mechanistic model to explain the activity of Fer-1, which guided the development of ferrostatins with improved properties. These studies suggest numerous therapeutic uses for ferrostatins, and that lipid peroxidation mediates diverse disease phenotypes. PMID:24592866

  19. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    PubMed

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented. PMID:3593337

  20. Oxidative inhibition of red blood cell ATPases by glyceraldehyde.

    PubMed

    Mira, M L; Martinho, F; Azevedo, M S; Manso, C F

    1991-11-01

    Glyceraldehyde and other simple monosaccharides autoxidize under physiological conditions, forming dicarbonyl compounds and hydrogen peroxide via intermediate free radicals. These products may have deleterious effects on cell components. In this paper we study the effect of glyceraldehyde autoxidation on red-cell ATPase activities. The autoxidation of glyceraldehyde in imidazole-glycylglycine buffer, measured by oxygen consumption, depends on the buffer concentration and decreases in the presence of superoxide dismutase and catalase. The addition of DETAPAC inhibits the autoxidation almost completely. When human red-blood-cell membranes are incubated with glyceraldehyde, the red-blood-cell ATPase activities decrease significantly. The addition of DETAPAC, GSH and DTE (dithioerythritol) protects the enzyme from inactivation, but superoxide dismutase and catalase have no effect. Methylglyoxal (a dicarbonyl which is analogous to hydroxypyruvaldehyde derived from glyceraldehyde autoxidation) proved to have a powerful inhibitory action on ATPase activities. The addition of DTE completely protects the enzyme from inactivation, suggesting that the sulphydryl groups of the active site of the enzyme are the critical targets for dicarbonyl compounds. PMID:1836354

  1. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis.

    PubMed

    Zhang, Lei; Cheng, Linfang; Wang, Qiqi; Zhou, Dongchen; Wu, Zhigang; Shen, Ling; Zhang, Li; Zhu, Jianhua

    2015-03-01

    Coronary artery disease (CAD) is a major health problem worldwide. The most severe form of CAD is acute coronary syndrome (ACS). Recent studies have demonstrated the beneficial role of atorvastatin in ACS; however, the mechanisms underlying this effect have not been fully clarified. Growing evidence indicates that activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in oxidative stress-induced cardiomyocyte apoptosis during ACS. In this study, we examined whether atorvastatin inhibits H2O2-induced LOX-1 expression and H9c2 cardiomyocyte apoptosis, and investigated the underlying signaling pathway. Treatment of H9c2 cardiomyocytes with H2O2 resulted in elevated expression of LOX-1 mRNA and protein, as well as increased caspase-3 and -9 protein expression and cell apoptosis. H2O2-induced LOX-1 expression, caspase protein expression, and cardiomyocyte apoptosis were attenuated by pretreatment with atorvastatin. Atorvastatin activated H2O2-inhibited phosphorylation of Akt in a concentration-dependent manner. The Akt inhibitor, LY294002, inhibited the effect of atorvastatin on inducing Akt phosphorylation and on suppressing H2O2-mediated caspase up-regulation and cell apoptosis. These findings indicate that atorvastatin protects cardiomyocyte from oxidative stress via inhibition of LOX-1 expression and apoptosis, and that activation of H2O2-inhibited phosphorylation of Akt may play an important role in the protective function of atorvastatin. PMID:25630653

  2. A Modified Capacitance-Voltage Method Used for Leff Extraction and Process Monitoring in Advanced 0.15 μm Complementary Metal-Oxide-Semiconductor Technology and Beyond

    NASA Astrophysics Data System (ADS)

    Huang, Heng-Sheng; Shiu, Jen-Shiuan; Lin, Shyh-Jye; Chou, Jih-Wen; Lee, Ryan; Chen, Coming; Hong, Gary

    2001-03-01

    In this paper, an alternative approach for the extraction of effective channel length, Leff, using a modified capacitance-voltage (C-V) method [the capacitance-ratio (C-R) method], which considers depletion effect compensation is proposed. In general, we define Leff=Lmask-Δ L, where Δ L is the sum of the polysilicon gate lithography bias and two times the overlap length of the polysilicon gate and source/drain (S/D) extension (Δ L=Lpb+2Lovlap). Using the modified C-V method, more consistent and reasonable Leff data can be extracted as compared to those obtained using the newest current-voltage (I-V) method (shift and ratio method). In using the proposed C-R method, we can electrically measure the exact Lpb and Lovlap numbers that can both be used as process monitor parameters. The within-wafer uniformities of Leff (or Δ L), Lpb and Lovlap have also been checked among devices of various sizes. After the Leff is extracted, a stable S/D resistance Rsd, with Vg independence, is determined and verified using the I-V method. The parasitic capacitance Cgd is another extracted parameter that is as important as Rsd in SPICE modeling for RF complementary metal-oxide-semiconductor (CMOS) applications.

  3. Inhibition of mitochondrial respiration by nitric oxide is independent of membrane fluidity modulation or oxidation of sulfhydryl groups.

    PubMed

    Pérez-Rojas, Jazmin M; Muriel, Pablo

    2005-01-01

    Nitric oxide (NO) modulates the fluidity of a variety of membranes. Thus, the aim of the present work was to study if the inhibitory effect of NO on mitochondrial respiration is associated with its effects on membrane fluidity. Liver mitochondria and an inner mitochondrial membrane fraction (IMMF) were isolated from male Wistar rats by differential centrifugation. Oxygen consumption was measured polarographically and fluidity by the fluorescence polarization method. S-nitroso-N-acetylpenicillamine (SNAP) was used as a NO donor. It was observed that NO decreased IMMF fluidity and oxygen consumption in a concentration dependent fashion. However, SAM a fluidizing agent that prevented the decrement in fluidity produced by SNAP, failed to preserve oxygen consumption. Protection of sulfhydryl groups with dithiotreitol was utilized to evaluate the role of oxidation of these groups on IMMF respiration. Incubation with dithiotreitol did not preserve IMMF oxygen consumption. The data shown herein suggest that NO inhibits the respiratory chain by a mechanism not involving the modulation of membrane fluidity or the oxidation of sulfhydryl groups. Thus, it seems that the mechanism by which NO modulates mitochondrial respiration is by cytochrome oxidase inhibition, because (as reported by others) low concentrations of NO specifically inhibit reversibly cytochrome oxidase in competition with oxygen. PMID:16167323

  4. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    SciTech Connect

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  5. Variable Synthetic Capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1986-01-01

    Feedback amplifier circuit synthesizes electronically variable capacitance. Variable Synthetic Capacitor is amplifier circuit with follower/feedback configuration. Effective input capacitance depends on input set current. If synthetic capacitor is connected across resonant element of oscillator, oscillator frequency controlled via input set current. Circuit especially suitable for fine frequency adjustments of piezoelectric-crystal or inductor/capacitor resonant oscillators.

  6. Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition.

    PubMed

    Ju, Rui; Guo, Lei; Li, Juan; Zhu, Lei; Yu, Xiaoli; Chen, Chen; Chen, Wei; Ye, Caiying; Zhang, Dechang

    2016-01-28

    Targeting cancer cell metabolism is a promising strategy against cancer. Here, we confirmed that the anti-cancer drug carboxyamidotriazole (CAI) inhibited mitochondrial respiration in cancer cells for the first time and found a way to enhance its anti-cancer activity by further disturbing the energy metabolism. CAI promoted glucose uptake and lactate production when incubated with cancer cells. The oxidative phosphorylation (OXPHOS) in cancer cells was inhibited by CAI, and the decrease in the activity of the respiratory chain complex I could be one explanation. The anti-cancer effect of CAI was greatly potentiated when being combined with 2-deoxyglucose (2-DG). The cancer cells treated with the combination of CAI and 2-DG were arrested in G2/M phase. The apoptosis and necrosis rates were also increased. In a mouse xenograft model, this combination was well tolerated and retarded the tumor growth. The impairment of cancer cell survival was associated with significant cellular ATP decrease, suggesting that the combination of CAI and 2-DG could be one of the strategies to cause dual inhibition of energy pathways, which might be an effective therapeutic approach for a broad spectrum of tumors. PMID:26522259

  7. Nitric Oxide Suppresses β-Cell Apoptosis by Inhibiting the DNA Damage Response.

    PubMed

    Oleson, Bryndon J; Broniowska, Katarzyna A; Naatz, Aaron; Hogg, Neil; Tarakanova, Vera L; Corbett, John A

    2016-08-01

    Nitric oxide, produced in pancreatic β cells in response to proinflammatory cytokines, plays a dual role in the regulation of β-cell fate. While nitric oxide induces cellular damage and impairs β-cell function, it also promotes β-cell survival through activation of protective pathways that promote β-cell recovery. In this study, we identify a novel mechanism in which nitric oxide prevents β-cell apoptosis by attenuating the DNA damage response (DDR). Nitric oxide suppresses activation of the DDR (as measured by γH2AX formation and the phosphorylation of KAP1 and p53) in response to multiple genotoxic agents, including camptothecin, H2O2, and nitric oxide itself, despite the presence of DNA damage. While camptothecin and H2O2 both induce DDR activation, nitric oxide suppresses only camptothecin-induced apoptosis and not H2O2-induced necrosis. The ability of nitric oxide to suppress the DDR appears to be selective for pancreatic β cells, as nitric oxide fails to inhibit DDR signaling in macrophages, hepatocytes, and fibroblasts, three additional cell types examined. While originally described as the damaging agent responsible for cytokine-induced β-cell death, these studies identify a novel role for nitric oxide as a protective molecule that promotes β-cell survival by suppressing DDR signaling and attenuating DNA damage-induced apoptosis. PMID:27185882

  8. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  9. Mechanism of inhibition of NiFe hydrogenase by nitric oxide.

    PubMed

    Ceccaldi, Pierre; Etienne, Emilien; Dementin, Sébastien; Guigliarelli, Bruno; Léger, Christophe; Burlat, Bénédicte

    2016-04-01

    Hydrogenases reversibly catalyze the oxidation of molecular hydrogen and are inhibited by several small molecules including O2, CO and NO. In the present work, we investigate the mechanism of inhibition by NO of the oxygen-sensitive NiFe hydrogenase from Desulfovibrio fructosovorans by coupling site-directed mutagenesis, protein film voltammetry (PFV) and EPR spectroscopy. We show that micromolar NO strongly inhibits NiFe hydrogenase and that the mechanism of inhibition is complex, with NO targeting several metallic sites in the protein. NO reacts readily at the NiFe active site according to a two-step mechanism. The first and faster step is the reversible binding of NO to the active site followed by a slower and irreversible transformation at the active site. NO also induces irreversible damage of the iron-sulfur centers chain. We give direct evidence of preferential nitrosylation of the medial [3Fe-4S] to form dinitrosyl-iron complexes. PMID:26827939

  10. Time course of cardiac inflammation during nitric oxide synthase inhibition in SHR: impact of prior transient ACE inhibition.

    PubMed

    Biwer, Lauren A; D'souza, Karen M; Abidali, Ali; Tu, Danni; Siniard, Ashley L; DeBoth, Matthew; Huentelman, Matthew; Hale, Taben M

    2016-01-01

    We have previously demonstrated that angiotensin-converting enzyme (ACE) inhibition with enalapril produces persistent effects that protect against future nitric oxide synthase (NOS) inhibitor (L-arginine methyl ester, L-NAME)-induced cardiac dysfunction and outer wall collagen deposition in spontaneously hypertensive rats (SHR). In the present study, we dissect the cytokine/chemokine release profile during NOS inhibition, its correlation to pathological cardiac remodeling and the impact of transient ACE inhibition on these effects. Adult male SHR were treated with enalapril (E+L) or tap water (C+L) for 2 weeks followed by a 2-week washout period. Rats were then subjected to 0, 3, 7 or 10 days of L-NAME treatment. The temporal response to NOS inhibition was evaluated by measuring arterial pressure, cardiac remodeling and cytokine/chemokine levels. L-NAME equivalently increased blood pressure and myocardial and vascular injury in C+L and E+L rats. However, pulse pressure (PP) was only transiently altered in C+L rats. The levels of several inflammatory mediators were increased during L-NAME treatment. However, interleukin-6 (IL-6) and IL-10 and monocyte chemoattractant protein-1 were uniquely increased in C+L hearts; whereas IL-4 and fractalkine were only elevated in E+L hearts. By days 7 and 10 of L-NAME treatment, there was a significant increase in the cardiac density of macrophages and proliferating cells, respectively only in C+L rats. Although myocardial injury was similar in both treatment groups, PP was not changed and there was a distinct cardiac chemokine/cytokine signature in rats previously treated with enalapril that may be related to the lack of proliferative response and macrophage infiltration in these hearts. PMID:26490086

  11. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.

    PubMed

    Cook, Naomi L; Moeke, Cassidy H; Fantoni, Luca I; Pattison, David I; Davies, Michael J

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN(-)) oxidation by H2O2 to form hypothiocyanous acid (HOSCN), an oxidant that targets Cys residues. Dysregulated phosphorylation and elevated MPO levels have been associated with chronic inflammatory diseases where HOSCN can be generated. Previous studies have shown that HOSCN inhibits isolated PTP1B and induces cellular dysfunction in cultured macrophage-like cells. The present study extends this previous work and shows that physiologically-relevant concentrations of HOSCN alter the activity and structure of other members of the wider PTP family (including leukocyte antigen-related PTP, PTP-LAR; T-cell PTP, TC-PTP; CD45 and Src homology phosphatase-1, Shp-1) by targeting Cys residues. Isolated PTP activity, and activity in lysates of human monocyte-derived macrophages (HMDM) was inhibited by 0-100 µM HOSCN with this being accompanied by reversible oxidation of Cys residues, formation of sulfenic acids or sulfenyl-thiocyanates (detected by Western blotting, and LC-MS as dimedone adducts), and structural changes. LC-MS/MS peptide mass-mapping has provided data on the modified Cys residues in PTP-LAR. This study indicates that inflammation-induced oxidants, and particularly myeloperoxidase-derived species, can modulate the activity of multiple members of the PTP superfamily via oxidation of Cys residues to sulfenic acids. This alteration of the balance of PTP/kinase activity may perturb protein phosphorylation and disrupt cell signaling with subsequent induction of apoptosis at sites of inflammation. PMID:26616646

  12. Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress

    PubMed Central

    Ketola, K; Hilvo, M; Hyötyläinen, T; Vuoristo, A; Ruskeepää, A-L; Orešič, M; Kallioniemi, O; Iljin, K

    2012-01-01

    Background: We have shown that a sodium ionophore monensin inhibits prostate cancer cell growth. A structurally related compound to monensin, salinomycin, was recently identified as a putative cancer stem cell inhibitor. Methods: The growth inhibitory potential of salinomycin was studied in a panel of prostate cells. To get insights into the mechanism of action, a variety of assays such as gene expression and steroid profiling were performed in salinomycin-exposed prostate cancer cells. Results: Salinomycin inhibited the growth of prostate cancer cells, but did not affect non-malignant prostate epithelial cells. Salinomycin impacted on prostate cancer stem cell functions as evidenced by reduced aldehyde dehydrogenase activity and the fraction of CD44+ cells. Moreover, salinomycin reduced the expression of MYC, AR and ERG, induced oxidative stress as well as inhibited nuclear factor-κB activity and cell migration. Furthermore, profiling steroid metabolites revealed increased levels of oxidative stress-inducing steroids 7-ketocholesterol and aldosterone and decreased levels of antioxidative steroids progesterone and pregnenolone in salinomycin-exposed prostate cancer cells. Conclusion: Our results indicate that salinomycin inhibits prostate cancer cell growth and migration by reducing the expression of key prostate cancer oncogenes, inducing oxidative stress, decreasing the antioxidative capacity and cancer stem cell fraction. PMID:22215106

  13. Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles.

    PubMed

    McCracken, Christie; Zane, Andrew; Knight, Deborah A; Hommel, Elizabeth; Dutta, Prabir K; Waldman, W James

    2015-10-01

    Given the increasing use of silver nanoparticles (Ag NP) by the food and food packaging industries, this study investigated potential consequences of Ag NP ingestion in intestinal epithelial C2BBe1 cells. Treatment of proliferating cells (<10,000 cells/cm(2)) with 0.25 μg/cm(2) (1.25 μg/mL) of 23 nm Ag NP for 24 h induced 15% necrotic cell death and an 80% reduction in metabolic activity and decreased the GSH/GSSG ratio, indicating oxidative stress. G2/M phase cell cycle arrest and complete inhibition of cell proliferation was also induced by Ag NP treatment. Simulated in vitro digestion of Ag NP prior to cell exposure required the use of slightly higher doses to induce the same toxicity, likely due to slower Ag dissolution. Treatment of cells with silica, titania, and ZnO NP partially inhibited cell proliferation, but inhibition at low doses was unique to Ag NP. These data suggest that Ag NP induces oxidative stress, cell cycle arrest, and the inhibition of cell proliferation. However, toxicity and induction of oxidative stress were not observed in confluent cells (>100,000 cells/cm(2)) treated with 10 μg/cm(2) (40-50 μg/mL) Ag NP, indicating that these cells are less sensitive to Ag NP. PMID:26196530

  14. Inhibition of phagocytic activity of ARPE-19 cells by free radical mediated oxidative stress.

    PubMed

    Olchawa, Magdalena M; Pilat, Anna K; Szewczyk, Grzegorz M; Sarna, Tadeusz Jan

    2016-08-01

    Oxidative stress is a main factor responsible for key changes leading to the onset of age-related macular degeneration (ARMD) that occur in the retinal pigment epithelium (RPE), which is involved in phagocytosis of photoreceptor outer segments (POS). In this study, hydrogen peroxide (H2O2), H2O2 and iron ions (Fe) or rose Bengal (RB) in the presence of NADH and Fe were used to model free radical mediated oxidative stress to test if free radicals and singlet oxygen have different efficiency to inhibit phagocytosis of ARPE-19 cells. Free radical mediated oxidative stress was confirmed by HPLC-EC(Hg) measurements of cholesterol hydroperoxides in treated cells. Electron paramagnetic resonance (EPR) spin trapping was employed to detect superoxide anion. Cell survival was analyzed by the MTT assay. Specific phagocytosis of fluorescein-5-isothiocyanate-labeled POS and non-specific phagocytosis of fluorescent beads were measured by flow cytometry. HPLC analysis of cells photosensitized with RB in the presence of NADH and Fe indicated substantial increase in formation of free radical-dependent 7α/7β-hydroperoxides. EPR spin trapping confirmed the photogeneration of superoxide anion in samples enriched with RB, NADH and Fe. For all three protocols sub-lethal oxidative stress induced significant inhibition of the specific phagocytosis of POS. In contrast, non-specific phagocytosis was inhibited only by H2O2 or H2O2 and Fe treatment. Inhibition of phagocytosis was transient and recoverable by 24 h. These results suggest that free radicals may exert similar to singlet oxygen efficiency in inhibiting phagocytosis of RPE cells, and that the effect depends on the location where initial reactive species are formed. PMID:27225587

  15. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+.

    PubMed

    Villalobo, A; Lehninger, A L

    1980-03-25

    Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered. PMID:6766937

  16. Field-Scale Inhibition and Recovery of Atmospheric-Methane Oxidation in Soil

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Dax, A.; Genter, F.; Henneberger, R.

    2015-12-01

    Aerobic methane (CH4) oxidation in upland soils is the only known terrestrial sink for atmospheric CH4. It is mediated by methane-oxidizing bacteria (MOB) that possess a high-affinity form of the enzyme methane monooxygenase (MMO), allowing utilization of CH4 at near-atmospheric, low concentrations (≤ 1.9 µL/L). As cultivation attempts for high-affinity MOB have shown little success to date, there remains much speculation regarding their functioning in different environmental systems. For quantification of microbial functions at the field scale, inhibition experiments are often used as a control and to verify that observed substrate turnover is microbially mediated. Targeting MMO, several compounds have been proposed as inhibitors of CH4 oxidation. However, previous inhibition experiments were mostly conducted in systems dominated by low-affinity MOB, which mediate CH4 oxidation at elevated CH4 concentrations. On the contrary, inhibition experiments targeting high-affinity MOB are scare, particularly at the field scale. We present results of field-scale experiments to investigate effectiveness of and recovery from inhibition of atmospheric CH4 oxidation using the competitive inhibitors CH3F and CH2F2, as well as the non-competitive inhibitor C2H2. The latter is of particular interest, because C2H2 irreversibly binds to MMO, requiring de-novo synthesis of MMO for recovery of CH4 oxidation activity. Experiments were conducted during both winter and summer seasons in a sandy soil. Atmospheric CH4 oxidation was quantified in regular intervals at reference and treatment locations using the soil-profile method with concurrent measurements of soil-water contents and -temperature. Whereas C2H2 inhibition was highly effective in both seasons, the time required for recovery to the level of the reference location was much shorter during the summer experiment (~1 mo compared with 4 mo during winter). Our data provide new insights into the physiology of high-affinity MOB.

  17. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans.

    PubMed

    Crombie, Timothy A; Tang, Lanlan; Choe, Keith P; Julian, David

    2016-07-15

    It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared with exposure to each stressor alone, during simultaneous sublethal exposure to heat stress and oxidative stress the normal induction of key oxidative-stress response (OxSR) genes was generally inhibited, whereas the induction of key heat-shock response (HSR) genes was not. Genetically activating the SKN-1-dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, compared with wild-type worms, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone. Taken together, these data suggest that, in C. elegans, the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR. PMID:27207646

  18. Transglutaminase inhibition protects against oxidative stress-induced neuronal death downstream of pathological ERK activation

    PubMed Central

    Basso, Manuela; Berlin, Jill; Li, Xia; Sleiman, Sama F.; Ko, Brendan; Haskew-Layton, Renee; Kim, Eunhee; Antonyak, Marc A.; Cerione, Richard A.; Iismaa, Siiri E.; Willis, Dianna; Cho, Sunghee; Ratan, Rajiv R.

    2012-01-01

    Molecular deletion of transglutaminase 2 (TG2) has been shown to improve function and survival in a host of neurological conditions including stroke, Huntington’s disease, and Parkinson’s disease. However, unifying schemes by which these crosslinking or polyaminating enzymes participate broadly in neuronal death have yet to be presented. Unexpectedly, we found that in addition to TG2, TG1 gene expression level is significantly induced following stroke in vivo or due to oxidative stress in vitro. Forced expression of TG1 or TG2 proteins is sufficient to induce neuronal death in Rattus novergicus cortical neurons in vitro. Accordingly, molecular deletion of TG2 alone is insufficient to protect Mus musculus neurons from oxidative death. By contrast, structurally diverse inhibitors used at concentrations that inhibit TG1 and TG2 simultaneously are neuroprotective. These small molecules inhibit increases in neuronal transamidating activity induced by oxidative stress; they also protect neurons downstream of pathological ERK activation when added well after the onset of the death stimulus. Together, these studies suggest that multiple TG isoforms, not only TG2, participate in oxidative stress-induced cell death signaling; and that isoform non-selective inhibitors of TG will be most efficacious in combating oxidative death in neurological disorders. PMID:22573678

  19. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation.

    PubMed Central

    McCormick, K; Notar-Francesco, V J; Sriwatanakul, K

    1983-01-01

    At micromolar concentrations, acetyl-CoA inhibited hepatic carnitine acyltransferase activity and mitochondrial fatty acid oxidation. The inhibitory effects were not nearly as potent on a molar basis as those of malonyl-CoA; nevertheless, the cytosolic concentrations of acetyl-CoA, as yet unknown, may be sufficient (greater than 30 microM) to curtail appreciably the mitochondrial transfer of long-chain acyl-CoA units and fatty acid oxidation. Hence acetyl-CoA may also partially regulate hepatic ketogenesis. PMID:6661211

  20. [Experience in developing and using capacitive electrodes].

    PubMed

    Grishanovich, A P; Iarmolinskiĭ, V I

    1984-01-01

    A capacitive-type electrode using titanium or tantalum oxide obtained through anodizing is described. Incorporated in the electrode is a source for a buffer amplifier. A shielding cap is used as an indifferent electrode. High performance allows using the electrodes for ECG, EEG, and other signal recording in clinical practice and researches. PMID:6708763

  1. Oxidative Pentose Phosphate Pathway Inhibition Is A Key Determinant of Antimalarial Induced Cancer Cell Death

    PubMed Central

    Salas, Eduardo; Roy, Srirupa; Marsh, Timothy; Rubin, Brian; Debnath, Jayanta

    2015-01-01

    Despite immense interest in employing antimalarials as autophagy inhibitors to treat cancer, it remains unclear if these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592

  2. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death.

    PubMed

    Salas, E; Roy, S; Marsh, T; Rubin, B; Debnath, J

    2016-06-01

    Despite immense interest in using antimalarials as autophagy inhibitors to treat cancer, it remains unclear whether these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592

  3. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein.

    PubMed

    Yang, Jiayi; Xiong, Youling L

    2015-10-14

    This study investigated the role of interfacial myofibrillar protein (MFP) in the oxidative stabilization of meat emulsions. Emulsions with 10% oil were prepared using either 2% (w/v) Tween 20 or 0.25, 0.5, and 1% (w/v) MFP and then subjected to hydroxyl radical oxidation at 4 °C for 0, 2, and 24 h. MFP was more readily oxidized (intrinsic fluorescence quenching, sulfur losses, and carbonyl formation) than oil [conjugated dienes and 2-thiobarbituric acid-reactive substances (TBARS)]. However, oxidized MFP in the continuous phase stimulated lipid oxidation after 24 h, sharply contrasting with interface-adsorbed MFP that inhibited TBARS formation nearly 90% (p < 0.05). Interfacial MFP from 2 h oxidized samples exhibited greater losses of fluorescence and more extensive polymerization of myosin (detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) than MFP present in the continuous phase. Results indicated that, due to the physical localization, interface-adsorbed MFP in general and myosin in particular provided accentuated protection of emulsions against oxidation. PMID:26414649

  4. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes.

    PubMed

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F M; Sorokin, Dimitry Y; Keesman, Karel J; Janssen, Albert J H

    2016-09-15

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S, thiols are commonly present in sour gas streams. We investigated the inhibition mode and the corresponding inhibition constants of six thiols and the corresponding diorgano polysulfanes on the biological oxidation of H2S. A linear relationship was found between the calculated IC50 values and the lipophilicity of the inhibitors. Moreover, a mathematical model was proposed to estimate the biomass activity in the absence and presence of sulfurous inhibitors. The biomass used in the respiration tests originated from a full-scale biodesulfurization reactor. A microbial community analysis of this biomass revealed that two groups of microorganism are abundant, viz. Ectothiorhodospiraceae and Piscirickettsiaceae. PMID:27295619

  5. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  6. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  7. System for Measuring Capacitance

    NASA Technical Reports Server (NTRS)

    McNichol, Randal S. (Inventor)

    2001-01-01

    A system has been developed for detecting the level of a liquid in a tank wherein a capacitor positioned in the tank has spaced plates which are positioned such that the dielectric between the plates will be either air or the liquid, depending on the depth of the liquid in the tank. An oscillator supplies a sine wave current to the capacitor and a coaxial cable connects the capacitor to a measuring circuit outside the tank. If the cable is very long or the capacitance to be measured is low, the capacitance inherent in the coaxial cable will prevent an accurate reading. To avoid this problem, an inductor is connected across the cable to form with the capacitance of the cable a parallel resonant circuit. The impedance of the parallel resonant circuit is infinite, so that attenuation of the measurement signal by the stray cable capacitance is avoided.

  8. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  9. Enhancing the pharmacodynamic profile of a class of selective COX-2 inhibiting nitric oxide donors.

    PubMed

    Biava, Mariangela; Battilocchio, Claudio; Poce, Giovanna; Alfonso, Salvatore; Consalvi, Sara; Di Capua, Angela; Calderone, Vincenzo; Martelli, Alma; Testai, Lara; Sautebin, Lidia; Rossi, Antonietta; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Giordani, Antonio; Persiani, Stefano; Colovic, Milena; Dovizio, Melania; Patrignani, Paola; Anzini, Maurizio

    2014-01-15

    We report herein the development, synthesis, physicochemical and pharmacological characterization of a novel class of pharmacodynamic hybrids that selectively inhibit cyclooxygenase-2 (COX-2) isoform and present suitable nitric oxide releasing properties. The replacement of the ester moiety with the amide group gave access to in vivo more stable and active derivatives that highlighted outstanding pharmacological properties. In particular, the glycine derivative proved to be extremely active in suppressing hyperalgesia and edema. PMID:24373735

  10. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis.

    PubMed

    Chen, Lian-Yun; Chen, Qin; Cheng, Yi-Feng; Jin, Huan-Huan; Kong, De-Song; Zhang, Feng; Wu, Li; Shao, Jiang-Juan; Zheng, Shi-Zhong

    2016-04-01

    Inhibiting the major characteristics of alcoholic fatty liver (AFL) such as lipid accumulation, oxidative stress and apoptosis is a promising strategy of treating AFL. Diallyl trisulfide (DATS) is the major constituent isolated from garlic, which shows promise in the treatment of chronic liver disease. However, the effects of DATS on ethanol-induced liver injury and the related mechanisms remain unclear. The aim of this study was to evaluate the potential protective effects of DATS on AFL and the potential mechanisms. A single intragastric dose of ethanol was given to rats in vivo, while ethanol-stimulated LO2 cells were used as an in vitro model. Our results demonstrated that DATS prevented ethanol-induced injury, as indicated by the reduced activities of aspartate transaminase (AST) and alanine aminotransferase (ALT) in the serum and culture medium, and inhibition of cell apoptosis. Furthermore, DATS reduced hepatic steatosis by up-regulating the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and down-regulating the expression of sterolregulatory element binding protein 1c(SREBP-1c). In addition, DATS alleviated ethanol-induced oxidative stress by enhancing non-enzymatic antioxidant and enzymatic antioxidants contents and by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). These data collectively revealed that DATS protected ethanol-induced liver injury by inhibiting lipid accumulation and oxidative stress. PMID:27044810

  11. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    PubMed

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening. PMID:26179849

  12. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    SciTech Connect

    Ťapajna, M. Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J.; Brunner, F.; Cho, E.-M.; Hashizume, T.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  13. Pulmonary surfactant inhibits LPS-induced nitric oxide production by alveolar macrophages.

    PubMed

    Miles, P R; Bowman, L; Rao, K M; Baatz, J E; Huffman, L

    1999-01-01

    The objectives of this investigation were 1) to report that pulmonary surfactant inhibits lipopolysaccharide (LPS)-induced nitric oxide (. NO) production by rat alveolar macrophages, 2) to study possible mechanisms for this effect, and 3) to determine which surfactant component(s) is responsible. NO produced by the cells in response to LPS is due to an inducible. NO synthase (iNOS). Surfactant inhibits LPS-induced. NO formation in a concentration-dependent manner;. NO production is inhibited by approximately 50 and approximately 75% at surfactant levels of 100 and 200 microg phospholipid/ml, respectively. The inhibition is not due to surfactant interference with the interaction of LPS with the cells or to disruption of the formation of iNOS mRNA. Also, surfactant does not seem to reduce. NO formation by directly affecting iNOS activity or by acting as an antioxidant or radical scavenger. However, in the presence of surfactant, there is an approximately 80% reduction in the amount of LPS-induced iNOS protein in the cells. LPS-induced. NO production is inhibited by Survanta, a surfactant preparation used in replacement therapy, as well as by natural surfactant. NO formation is not affected by the major lipid components of surfactant or by two surfactant-associated proteins, surfactant protein (SP) A or SP-C. However, the hydrophobic SP-B inhibits. NO formation in a concentration-dependent manner;. NO production is inhibited by approximately 50 and approximately 90% at SP-B levels of 1-2 and 10 microgram/ml, respectively. These results show that lung surfactant inhibits LPS-induced. NO production by alveolar macrophages, that the effect is due to a reduction in iNOS protein levels, and that the surfactant component responsible for the reduction is SP-B. PMID:9887071

  14. Beta2-adrenergic receptor stimulation inhibits nitric oxide generation by Mycobacterium avium infected macrophages.

    PubMed

    Boomershine, C S; Lafuse, W P; Zwilling, B S

    1999-11-01

    Catecholamine regulation of nitric oxide (NO) production by IFNgamma-primed macrophages infected with Mycobacterium avium was investigated. Epinephrine treatment of IFNgamma-primed macrophages at the time of M. avium infection inhibited the anti-mycobacterial activity of the cells. The anti-mycobacterial activity of macrophages correlated with NO production. Using specific adrenergic receptor agonists, the abrogation of mycobacterial killing and decreased NO production by catecholamines was shown to be mediated via the beta2-adrenergic receptor. Elevation of intracellular cAMP levels mimicked the catecholamine-mediated inhibition of NO in both M. avium infected and LPS stimulated macrophages. Specific inhibitors of both adenylate cyclase and protein kinase A prevented the beta2-adrenoceptor-mediated inhibition of nitric oxide production. Beta2-adrenoreceptor stimulation at the time of M. avium infection of IFNgamma-primed macrophages also inhibited expression of iNOS mRNA. These observations show that catecholamine hormones can affect the outcome of macrophage-pathogen interactions and suggest that one result of sympathetic nervous system activation is the suppression of the capacity of macrophages to produce anti-microbial effector molecules. PMID:10580815

  15. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions

    PubMed Central

    Pei, Haifeng; Yang, Yi; Cui, Lin; Yang, Jiong; Li, Xiuchuan; Yang, Yongjian; Duan, Haixia

    2016-01-01

    As one main active compound of curcuminoids, Bisdemethoxycurcumin (BDMC) possesses several biological activities, such as anti-inflammation and anti-cancer activities. However, the detailed mechanism of BDMC’s anti-metastasis activity in ovarian cancer has not been clearly elucidated yet. In the present study, cell proliferation, wound healing motility, cell adhesion and invasion with or without BDMC were determined. In addition, western blot was used to examine proteins expressions. The lucigenin-enhanced luminescence was introduced to assess cellular oxidative stress. The luciferase reporter gene assay was introduced to evaluate the transcriptional activity of NF-κB. Finally, BDMC significantly inhibited the adhesion, migration, invasion and metastasis of SKOV-3 cells. Moreover, BDMC inhibited expressions of several degradation-associated proteins, such as matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), CD147, urokinase plasminogen activator (uPA), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), whereas increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), in a dose-dependent manner. In addition, BDMC reduced generation of cellular superoxide in a dose-dependent manner. Furthermore, BDMC inhibited the phosphorylation levels of NF-κB p65 and IκB-α, and consequently reduced NF-κB-driven luciferase expression. Collectively, BDMC serves as a therapeutic medicine to suppress ovarian cancer, perhaps via inhibiting cellular oxidative stress and subsequently inactivating NF-κB pathway. PMID:27349797

  16. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  17. NMI-1182, a gastro-protective cyclo-oxygenase-inhibiting nitric oxide donor.

    PubMed

    Ellis, James L; Augustyniak, Michael E; Cochran, Edward D; Earl, Richard A; Garvey, David S; Gordon, Laura J; Janero, David R; Khanapure, Subhash P; Letts, L Gordon; Melim, Terry L; Murty, Madhavi G; Schwalb, David J; Shumway, Matthew J; Selig, William M; Trocha, A Mark; Young, Delano V; Zemtseva, Irina S

    2005-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and to provide pain relief but suffer from a major liability concerning their propensity to cause gastric damage. As nitric oxide (NO) is known to be gastro-protective we have synthesized a NO-donating prodrug of naproxen named NMI-1182. We evaluated two cyclo-oxygenase (COX)-inhibiting nitric oxide donors (CINODs), NMI-1182 and AZD3582, for their ability to be gastro-protective compared to naproxen and for their anti-inflammatory activity. NMI-1182 and AZD3582 were found to produce similar inhibition of COX activity to that produced by naproxen. Both NMI-1182 and AZD3582 produced significantly less gastric lesions after oral administration than naproxen. All three compounds effectively inhibited paw swelling in the rat carrageenan paw edema model. In the carrageenan air pouch model all three compounds significantly reduced PGE2 levels in the pouch exudate but only NMI-1182 and naproxen inhibited leukocyte influx. These data demonstrate that NMI-1182 has comparable anti-inflammatory activity to naproxen but with a much reduced likelihood to cause gastric damage. PMID:16259719

  18. Inhibition of pyrite oxidation by surface coating: a long-term field study.

    PubMed

    Kang, Chan-Ung; Jeon, Byong-Hun; Park, Seong-Sook; Kang, Jin-Soo; Kim, Kang-Ho; Kim, Dong-Kwan; Choi, Ui-Kyu; Kim, Sun-Joon

    2016-10-01

    Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe(2+), which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5-6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe(2+) and SO4 (2-) release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation. PMID:26493832

  19. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress

    PubMed Central

    Vallelian, F; Deuel, J W; Opitz, L; Schaer, C A; Puglia, M; Lönn, M; Engelsberger, W; Schauer, S; Karnaukhova, E; Spahn, D R; Stocker, R; Buehler, P W; Schaer, D J

    2015-01-01

    Dual control of cellular heme levels by extracellular scavenger proteins and degradation by heme oxygenases is essential in diseases associated with increased heme release. During severe hemolysis or rhabdomyolysis, uncontrolled heme exposure can cause acute kidney injury and endothelial cell damage. The toxicity of heme was primarily attributed to its pro-oxidant effects; however additional mechanisms of heme toxicity have not been studied systematically. In addition to redox reactivity, heme may adversely alter cellular functions by binding to essential proteins and impairing their function. We studied inducible heme oxygenase (Hmox1)-deficient mouse embryo fibroblast cell lines as a model to systematically explore adaptive and disruptive responses that were triggered by intracellular heme levels exceeding the homeostatic range. We extensively characterized the proteome phenotype of the cellular heme stress responses by quantitative mass spectrometry of stable isotope-labeled cells that covered more than 2000 individual proteins. The most significant signals specific to heme toxicity were consistent with oxidative stress and impaired protein degradation by the proteasome. This ultimately led to an activation of the response to unfolded proteins. These observations were explained mechanistically by demonstrating binding of heme to the proteasome that was linked to impaired proteasome function. Oxidative heme reactions and proteasome inhibition could be differentiated as synergistic activities of the porphyrin. Based on the present data a novel model of cellular heme toxicity is proposed, whereby proteasome inhibition by heme sustains a cycle of oxidative stress, protein modification, accumulation of damaged proteins and cell death. PMID:25301065

  20. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  1. Terminalia bellirica Extract Inhibits Low-Density Lipoprotein Oxidation and Macrophage Inflammatory Response in Vitro

    PubMed Central

    Tanaka, Miori; Kishimoto, Yoshimi; Saita, Emi; Suzuki-Sugihara, Norie; Kamiya, Tomoyasu; Taguchi, Chie; Iida, Kaoruko; Kondo, Kazuo

    2016-01-01

    The deciduous tree Terminalia bellirica found in Southeast Asia is extensively used in traditional Indian Ayurvedic medicine for the treatment of hypertension, rheumatism, and diabetes. The anti-atherogenic effect of Terminalia bellirica fruit has not been fully elucidated. Here, we investigated the effect of Terminalia bellirica extract (TBE) on low-density lipoprotein (LDL) oxidation and inflammation in macrophages. TBE showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (EC50: 7.2 ± 1.2 μg/mL) and 15-lipoxygenase inhibitory activity. TBE also significantly inhibited free radical-induced LDL oxidation compared to the solvent control in vitro. In THP-1 macrophages, TBE treatment resulted in significant decreases of the mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and lectin-like oxidized LDL receptor-1 (LOX-1). TBE also reduced matrix metalloproteinase (MMP)-9 secretion and intracellular reactive oxygen species (ROS) production in THP-1 macrophages. These results show that TBE has the inhibitory effects on LDL oxidation and macrophage inflammatory response in vitro, suggesting that its in vivo use might inhibit atherosclerosis plaque progression. PMID:27314393

  2. Terminalia bellirica Extract Inhibits Low-Density Lipoprotein Oxidation and Macrophage Inflammatory Response in Vitro.

    PubMed

    Tanaka, Miori; Kishimoto, Yoshimi; Saita, Emi; Suzuki-Sugihara, Norie; Kamiya, Tomoyasu; Taguchi, Chie; Iida, Kaoruko; Kondo, Kazuo

    2016-01-01

    The deciduous tree Terminalia bellirica found in Southeast Asia is extensively used in traditional Indian Ayurvedic medicine for the treatment of hypertension, rheumatism, and diabetes. The anti-atherogenic effect of Terminalia bellirica fruit has not been fully elucidated. Here, we investigated the effect of Terminalia bellirica extract (TBE) on low-density lipoprotein (LDL) oxidation and inflammation in macrophages. TBE showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (EC50: 7.2 ± 1.2 μg/mL) and 15-lipoxygenase inhibitory activity. TBE also significantly inhibited free radical-induced LDL oxidation compared to the solvent control in vitro. In THP-1 macrophages, TBE treatment resulted in significant decreases of the mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and lectin-like oxidized LDL receptor-1 (LOX-1). TBE also reduced matrix metalloproteinase (MMP)-9 secretion and intracellular reactive oxygen species (ROS) production in THP-1 macrophages. These results show that TBE has the inhibitory effects on LDL oxidation and macrophage inflammatory response in vitro, suggesting that its in vivo use might inhibit atherosclerosis plaque progression. PMID:27314393

  3. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis

    PubMed Central

    Arimoto-Matsuzaki, Kyoko; Saito, Haruo; Takekawa, Mutsuhiro

    2016-01-01

    Cytoplasmic stress granules (SGs) are multimolecular aggregates of stalled translation pre-initiation complexes that prevent the accumulation of misfolded proteins, and that are formed in response to certain types of stress including ER stress. SG formation contributes to cell survival not only by suppressing translation but also by sequestering some apoptosis regulatory factors. Because cells can be exposed to various stresses simultaneously in vivo, the regulation of SG assembly under multiple stress conditions is important but unknown. Here we report that reactive oxygen species (ROS) such as H2O2 oxidize the SG-nucleating protein TIA1, thereby inhibiting SG assembly. Thus, when cells are confronted with a SG-inducing stress such as ER stress caused by protein misfolding, together with ROS-induced oxidative stress, they cannot form SGs, resulting in the promotion of apoptosis. We demonstrate that the suppression of SG formation by oxidative stress may underlie the neuronal cell death seen in neurodegenerative diseases. PMID:26738979

  4. ATF4 deficiency protects hepatocytes from oxidative stress via inhibiting CYP2E1 expression

    PubMed Central

    Wang, Chunxia; Li, Houkai; Meng, Qingshu; Du, Ying; Xiao, Fei; Zhang, Qian; Yu, Junjie; Li, Kai; Chen, Shanghai; Huang, Zhiying; Liu, Bin; Guo, Feifan

    2014-01-01

    Activating transcription factor (ATF) 4 is involved in the regulation of oxidative stress in fibroblasts and neurons. The role of ATF4 in hepatocytes, however, is unknown. The aim of this study was to investigate the role of ATF4 in hepatocytes in oxidative stress under a high-fat diet (HFD). Here, we showed that palmitate-stimulated reactive oxygen species (ROS) production and triglyceride (TG) accumulation is blocked by ATF4 deficiency in primary hepatocytes. Consistently, HFD-induced oxidative stress, TG accumulation and expression of cytochrome P450, family 2, subfamily, polypeptide 1 (CYP2E1) are also blocked by knocking down ATF4 expression in the mouse liver. This suggests that ATF4 might regulate oxidative stress viaCYP2E1 under an HFD. In addition, we observed that expression of CYP2E1 is indirectly regulated by ATF4 in a cAMP-responsive element binding protein (CREB)-dependent manner, which can directly activate the CYP2E1 promoter activity. Notably, ATF4-stimulated ROS production is inhibited in vivo by treatment with diallyl sulphide, a selective CYP2E1 inhibitor. Finally, we showed that ATF4 expression in the liver is responsible for the protective effects against HFD-induced CYP2E1 expression, oxidative stress, and TG accumulation. Taken together, these observations suggest that ATF4 is a novel regulator of oxidative stress as well as accumulation of TG in response to HFD. PMID:24373582

  5. Inhibition of plasmonically enhanced interdot energy transfer in quantum dot solids via photo-oxidation

    SciTech Connect

    Sadeghi, S. M.; Nejat, A.; West, R. G.

    2012-11-15

    We studied the impact of photophysical and photochemical processes on the interdot Forster energy transfer in monodisperse CdSe/ZnS quantum dot solids. For this, we investigated emission spectra of CdSe/ZnS quantum dot solids in the vicinity of gold metallic nanoparticles coated with chromium oxide. The metallic nanoparticles were used to enhance the rate of the energy transfer between the quantum dots, while the chromium oxide coating led to significant increase of their photo-oxidation rates. Our results showed that irradiation of such solids with a laser beam can lead to unique spectral changes, including narrowing and blue shift. We investigate these effects in terms of inhibition of the plasmonically enhanced interdot energy transfer between quantum dots via the chromium-oxide accelerated photo-oxidation process. We demonstrate this considering energy-dependent rate of the interdot energy transfer process, plasmonic effects, and the way photo-oxidation enhances non-radiative decay rates of quantum dots with different sizes.

  6. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  7. Clinical pharmacokinetics of the cyclooxygenase inhibiting nitric oxide donator (CINOD) AZD3582.

    PubMed

    Fagerholm, Urban; Björnsson, Marcus A

    2005-12-01

    The clinical pharmacokinetics of the COX-inhibiting nitric oxide donator (CINOD) AZD3582 and its metabolites, including naproxen, nitric oxide and nitrate, are summarized. AZD3582 has low aqueous solubility, moderate and passive intestinal permeability and is degraded by intestinal esterases. Its oral bioavailability (F) appears to be maximally a few per cent, and increases by several-fold after food intake. Ninety-four per cent or more of an AZD3582 dose is absorbed, of which at least 9-20% appears to be taken up as intact substance. AZD3582 has a predicted plasma protein binding degree of approximately 0.1%, a half-life (t1/2) of 3 to 10 h and does not accumulate after repeated once- and twice-daily dosing. In patients AZD3582 does not provide a significantly better gastrointestinal (GI) side-effect profile than the highly permeable and locally irritating naproxen. Possible reasons for this include considerable GI uptake as naproxen, limited duration and extent of nitric oxide donation in the GI mucosa and the circulation, tolerance development (involving auto-inhibition of nitric oxide catalysing enzymes) and mucosal damage caused by nitric oxide. Blood pressure data suggest that nitric oxide is mainly donated within 3 h. The uptake of naproxen is slightly slower and lower (> or = 94% relative GI uptake and 80-85% relative F) after AZD3582 administration compared with naproxen dosing. The naproxen t1/2 and trough steady-state concentrations after AZD3582 and naproxen dosing are similar. The average systemic nitrate exposure is approximately doubled after dosing of 375 to 750 mg AZD3582 twice daily. PMID:16354398

  8. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium--new insights into eNOS regulation through adaptive cell signaling.

    PubMed

    Boeldt, D S; Yi, F X; Bird, I M

    2011-09-01

    In pregnancy, vascular nitric oxide (NO) production is increased in the systemic and more so in the uterine vasculature, thereby supporting maximal perfusion of the uterus. This high level of functionality is matched in the umbilical vein, and in corresponding disease states such as pre-eclampsia, reduced vascular responses are seen in both uterine artery and umbilical vein. In any endothelial cell, NO actually produced by endothelial NO synthase (eNOS) is determined by the maximum capacity of the cell (eNOS expression levels), eNOS phosphorylation state, and the intracellular [Ca(2+)](i) concentration in response to circulating hormones or physical forces. Herein, we discuss how pregnancy-specific reprogramming of NO output is determined as much by pregnancy adaptation of [Ca(2+)](i) signaling responses as it is by eNOS expression and phosphorylation. By examining the changes in [Ca(2+)](i) signaling responses from human hand vein endothelial cells, uterine artery endothelial cells, and human umbilical vein endothelial cells in (where appropriate) nonpregnant, normal pregnant, and pathological pregnant (pre-eclamptic) state, it is clear that pregnancy adaptation of NO output occurs at the level of sustained phase 'capacitative entry' [Ca(2+)](i) response, and the adapted response is lacking in pre-eclamptic pregnancies. Moreover, gap junction function is an essential permissive regulator of the capacitative response and impairment of NO output results from any inhibitor of gap junction function, or capacitative entry using TRPC channels. Identifying these [Ca(2+)](i) signaling mechanisms underlying normal pregnancy adaptation of NO output not only provides novel targets for future treatment of diseases of pregnancy but may also apply to other common forms of hypertension. PMID:21555345

  9. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress.

    PubMed

    Martini, Claudia N; Gabrielli, Matías; Brandani, Javier N; Vila, María Del C

    2016-08-01

    Glyphosate-based herbicides (GF) are extensively used for weed control. Thus, it is important to investigate their putative toxic effects. We have reported that GF at subagriculture concentrations inhibits proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. In this investigation, we evaluated the effect of GF on genes upregulated during adipogenesis. GF was able to inhibit the induction of PPAR gamma, the master gene in adipogenesis but not C/EBP beta, which precedes PPAR gamma activation. GF also inhibited differentiation and proliferation of another model of preadipocyte: mouse embryonic fibroblasts. In exponentially growing 3T3-L1 cells, GF increased lipid peroxidation and the activity of the antioxidant enzyme, superoxide dismutase. We also found that proliferation was inhibited with lower concentrations of GF when time of exposure was extended. Thus, GF was able to inhibit proliferation and differentiation of preadipocytes and to induce oxidative stress, which is indicative of its ability to alter cellular physiology. PMID:27044015

  10. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene

    SciTech Connect

    Tibelius, K.H.; Knowles, R.

    1984-10-01

    Nitrite, NO, CO, and C/sub 2/H/sub 2/ inhibited O/sub 2/-dependent H/sub 2/ uptake (H/sup 3/H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N/sub 2/O or NO/sub 3//sup -/. The apparent K/sub i/ values for inhibition of O/sub 2/-dependent H/sub 2/ uptake were 20 ..mu..M for NO/sub 2//sup -/, 0.4 ..mu..M for NO, 28 ..mu..M for CO, and 88 ..mu..M for C/sub 2/H/sub 2/. These inhibitors also affected methylene blue-dependent H/sub 2/ uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H/sub 2/ uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N/sub 2/. The C/sub 2/H/sub 2/ inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO/sub 2//sup -/ inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO/sub 2//sup -/ on H/sub 2/-dependent respiration. These results suggest that the low hydrogenase activities observed in NO/sub 3//sup -/-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO produced by NO/sub 3//sup -/ reduction.

  11. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1.

    PubMed

    Innes, Brendan T; Sowole, Modupeola A; Gyenis, Laszlo; Dubinsky, Michelle; Konermann, Lars; Litchfield, David W; Brandl, Christopher J; Shilton, Brian H

    2015-05-01

    Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that plays a critical role in mediating protein conformational changes involved in signaling processes related to cell cycle control. Pin1 has also been implicated as being neuroprotective in aging-related neurodegenerative disorders including Alzheimer's disease where Pin1 activity is diminished. Notably, recent proteomic analysis of brain samples from patients with mild cognitive impairment revealed that Pin1 is oxidized and also displays reduced activity. Since the Pin1 active site contains a functionally critical cysteine residue (Cys113) with a low predicted pK(a), we hypothesized that Cys113 is sensitive to oxidation. Consistent with this hypothesis, we observed that treatment of Pin1 with hydrogen peroxide results in a 32Da mass increase, likely resulting from the oxidation of Cys113 to sulfinic acid (Cys-SO(2)H). This modification results in loss of peptidyl-prolyl isomerase activity. Notably, Pin1 with Cys113 substituted by aspartic acid retains activity and is no longer sensitive to oxidation. Structural studies by X-ray crystallography revealed increased electron density surrounding Cys113 following hydrogen peroxide treatment. At lower concentrations of hydrogen peroxide, oxidative inhibition of Pin1 can be partially reversed by treatment with dithiothreitol, suggesting that oxidation could be a reversible modification with a regulatory role. We conclude that the loss of Pin1 activity upon oxidation results from oxidative modification of the Cys113 sulfhydryl to sulfenic (Cys-SOH) or sulfinic acid (Cys-SO(2)H). Given the involvement of Pin1 in pathological processes related to neurodegenerative diseases and to cancer, these findings could have implications for the prevention or treatment of disease. PMID:25595659

  12. L-arginine inhibits isoproterenol-induced cardiac hypertrophy through nitric oxide and polyamine pathways.

    PubMed

    Lin, Yan; Wang, Li-Na; Xi, Yu-Hui; Li, Hong-Zhu; Xiao, Feng-Gang; Zhao, Ya-Jun; Tian, Ye; Yang, Bao-Feng; Xu, Chang-Qing

    2008-08-01

    Polyamines (putrescine, spermidine and spermine) are essential for cell growth and differentiation. Nitric oxide exhibits antihypertrophic functions and inhibits cardiac remodelling. However, the metabolism of polyamines and the potential interactions with nitric oxide in cardiac hypertrophy remain unclear. We randomly divided Wistar rats into four treatment groups: controls, isoproterenol (ISO), ISO and L-arginine, and L-arginine. Isoproterenol (5 mg/kg/day, subcutaneously) and/or L-arginine (800 mg/kg/day, intraperitoneally) was administered once daily for 7 days. The expression of atrial natriuretic peptide mRNA was determined by reverse transcription-polymerase chain reaction, and fibrogenesis of heart was assessed by Van Gieson staining. Polyamines were measured with high-performance liquid chromatography, and plasma nitric oxide content and lactate dehydrogenase (LDH) activity were determined with a spectrophotometer. The expression levels of ornithine decarboxylase, spermidine/spermine N1-acetyltransferase (SSAT), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) were analysed by Western blot. Heart-to-body weight ratio, left ventricle-to-body weight ratio, atrial natriuretic peptide mRNA expression, collagen fibres and LDH activity were elevated, both ornithine decarboxylase and SSAT proteins were up-regulated, and total polyamines were increased in the group treated with ISO. Additionally, the expression of iNOS was up-regulated, eNOS was down-regulated, and nitric oxide levels were low. Notably, cotreatment with L-arginine reversed most of these changes except for SSAT expression,which was further up-regulated. We propose that increased polyamines and decreased nitric oxide are involved in cardiac hypertrophy induced by ISO and suggest that L-arginine pre-treatment can attenuate cardiac hypertrophy through the regulation of key enzymes of the polyamine and nitric oxide pathways. PMID:18816294

  13. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress

    PubMed Central

    Zhang, Bo; Wang, Bing; Cao, Shuhua

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47phox translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  14. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    PubMed

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  15. Opposing effects of nitric oxide and prostaglandin inhibition on muscle mitochondrial Vo(2) during exercise.

    PubMed

    Boushel, Robert; Fuentes, Teresa; Hellsten, Ylva; Saltin, Bengt

    2012-07-01

    Nitric oxide (NO) and prostaglandins (PG) together play a role in regulating blood flow during exercise. NO also regulates mitochondrial oxygen consumption through competitive binding to cytochrome-c oxidase. Indomethacin uncouples and inhibits the electron transport chain in a concentration-dependent manner, and thus, inhibition of NO and PG synthesis may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG synthesis blockade (L-NMMA and indomethacin, respectively) on mitochondrial respiration in human muscle following knee extension exercise (KEE). Specifically, this study examined the physiological effect of NO, and the pharmacological effect of indomethacin, on muscle mitochondrial function. Consistent with their mechanism of action, we hypothesized that inhibition of nitric oxide synthase (NOS) and PG synthesis would have opposite effects on muscle mitochondrial respiration. Mitochondrial respiration was measured ex vivo by high-resolution respirometry in saponin-permeabilized fibers following 6 min KEE in control (CON; n = 8), arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA; n = 4) and Indo (n = 4) followed by combined inhibition of NOS and PG synthesis (L-NMMA + Indo, n = 8). ADP-stimulated state 3 respiration (OXPHOS) with substrates for complex I (glutamate, malate) was reduced 50% by Indo. State 3 O(2) flux with complex I and II substrates was reduced less with both Indo (20%) and L-NMMA + Indo (15%) compared with CON. The results indicate that indomethacin reduces state 3 mitochondrial respiration primarily at complex I of the respiratory chain, while blockade of NOS by L-NMMA counteracts the inhibition by Indo. This effect on muscle mitochondria, in concert with a reduction of blood flow accounts for in vivo changes in muscle O(2) consumption during combined blockade of NOS and PG synthesis. PMID:22552792

  16. Inhibition of the Fe(III)-catalyzed dopamine oxidation by ATP and its relevance to oxidative stress in Parkinson's disease.

    PubMed

    Jiang, Dianlu; Shi, Shuyun; Zhang, Lin; Liu, Lin; Ding, Bingrong; Zhao, Bingqing; Yagnik, Gargey; Zhou, Feimeng

    2013-09-18

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA-Fe(III)-ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate-Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)-DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity. PMID:23823941

  17. Borna disease virus P protein inhibits nitric oxide synthase gene expression in astrocytes

    SciTech Connect

    Peng Guiqing; Zhang Fengmin; Zhang Qi; Wu Kailang; Zhu Fan; Wu Jianguo

    2007-09-30

    Borna disease virus (BDV) is one of the potential infectious agents involved in the development of central nervous system (CNS) diseases. Neurons and astrocytes are the main targets of BDV infection, but little is known about the roles of BDV infection in the biological effects of astrocytes. Here we reported that BDV inhibits the activation of inducible nitric oxide synthase (iNOS) in murine astrocytes induced by bacterial LPS and PMA. To determine which protein of BDV is responsible for the regulation of iNOS expression, we co-transfected murine astrocytes with reporter plasmid iNOS-luciferase and plasmid expressing individual BDV proteins. Results from analyses of reporter activities revealed that only the phosphoprotein (P) of BDV had an inhibitory effect on the activation of iNOS. In addition, P protein inhibits nitric oxide production through regulating iNOS expression. We also reported that the nuclear factor kappa B (NF-{kappa}B) binding element, AP-1 recognition site, and interferon-stimulated response element (ISRE) on the iNOS promoter were involved in the repression of iNOS gene expression regulated by the P protein. Functional analysis indicated that sequences from amino acids 134 to 174 of the P protein are necessary for the regulation of iNOS. These data suggested that BDV may suppress signal transduction pathways, which resulted in the inhibition of iNOS activation in astrocytes.

  18. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  19. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation.

    PubMed

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-12-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li(+), Na(+), K(+), Ca(2+)) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, (1)H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils. PMID:26058517

  20. Use of Walnut Shell Powder to Inhibit Expression of Fe(2+)-Oxidizing Genes of Acidithiobacillus Ferrooxidans.

    PubMed

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe(2+) or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe(2+) oxidization and H⁺ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe(2+)-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe(2+) oxidation and H⁺ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe(2+)-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  1. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R.; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-06-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li+, Na+, K+, Ca2+) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

  2. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  3. Inhibition of oxidative hemolysis in erythrocytes by mitochondria-targeted antioxidants of SkQ series.

    PubMed

    Omarova, E O; Antonenko, Y N

    2014-02-01

    In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6'-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria. PMID:24794729

  4. Inhibition of pyrite oxidation by surface coating agents: Batch and field studies

    NASA Astrophysics Data System (ADS)

    Choi, Jaeyoung; Do Gee, Eun; Yun, Hyun-Shik; Ram Lee, Woo; Park, Young-Tae

    2013-04-01

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO42-) production in the presence of KMnO4 (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH2PO4 decreased SO42- production from 200 to 13 mg L-1 and it also reduced Cu and Mn from 8 and 3 mg L-1, respectively to <0.05 mg L-1 (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites.

  5. Inhibition of sulfide mineral oxidation by surface coating agents: batch and field studies.

    PubMed

    Ji, Min-Kyu; Gee, Eun-Do; Yun, Hyun-Shik; Lee, Woo-Ram; Park, Young-Tae; Khan, Moonis Ali; Jeon, Byong-Hun; Choi, Jaeyoung

    2012-08-30

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH(2)PO(4), MgO and KMnO(4) as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H(2)O(2) or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO(4)(2-)) production in the presence of KMnO(4) (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO(4)(2-) production was observed in presence of KH(2)PO(4) (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH(2)PO(4) decreased SO(4)(2-) production from 200 to 13 mg L(-1) and it also reduced Cu and Mn from 8 and 3 mg L(-1), respectively to <0.05 mg L(-1) (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites. PMID:22727481

  6. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication.

    PubMed Central

    Croen, K D

    1993-01-01

    Nitric oxide (NO) has antimicrobial activity against a wide spectrum of infectious pathogens, but an antiviral effect has not been reported. The impact of NO, from endogenous and exogenous sources, on herpes simplex virus type 1 (HSV 1) replication was studied in vitro. HSV 1 replication in RAW 264.7 macrophages was reduced 1,806-fold in monolayers induced to make NO by activation with gamma IFN and LPS. A competitive and a noncompetitive inhibitor of nitric oxide synthetase substantially reduced the antiviral effect of activated RAW macrophages. S-nitroso-L-acetyl penicillamine (SNAP) is a donor of NO and was added to the media of infected monolayers to assess the antiviral properties of NO in the absence of gamma IFN and LPS. A single dose of S-nitroso-L-acetyl penicillamine 3 h after infection inhibited HSV 1 replication in Vero, HEp2, and RAW 264.7 cells in a dose-dependent manner. Neither virucidal nor cytocidal effects of NO were observed under conditions that inhibited HSV 1 replication. Nitric oxide had inhibitory effects, comparable to that of gamma IFN/LPS, on protein and DNA synthesis as well as on cell replication. This report demonstrates that, among its diverse properties, NO has an antiviral effect. PMID:8390481

  7. In Vitro Inhibition of 4-Nitroquinoline-1-Oxide Genotoxicity by Probiotic Lactobacillus rhamnosus IMC501.

    PubMed

    Bocci, Alessandro; Sebastiani, Bartolomeo; Trotta, Francesca; Federici, Ermanno; Cenci, Giovanni

    2015-10-28

    Inhibition of 4-nitroquinoline-1-oxide (4-NQO) genotoxicity by a probiotic strain of Lactobacillus rhamnosus (IMC501) was assessed by the prokaryotic short-term bioassay SOSChromotest, using Escherichia coli PQ37 as the target organism. Results showed the ability of strain IMC501 to rapidly and markedly counteract, in vitro, the DNA damage originated by the considered genotoxin. The inhibition was associated with a spectroscopic hypsochromic shift of the original 4-NQO profile and progressive absorbance increase of a new peak. IR-Raman and GC-MS analyses confirmed the disappearance of 4-NQO after contact with the microorganism, showing also the absence of any genotoxic molecule potentially available for metabolic activation (i.e., 4-hydroxyaminoquinoline-1-oxide and 4-nitrosoquinoline-1-oxide). Furthermore, we have shown the presence of the phenyl-quinoline and its isomers as major non-genotoxic conversion products, which led to the hypothesis of a possible pattern of molecular transformation. These findings increase knowledge on lactobacilli physiology and contribute to the further consideration of antigenotoxicity as a nonconventional functional property of particular probiotic strains. PMID:26059518

  8. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway

    SciTech Connect

    Wang, Wei Craig, Zelieann R. Basavarajappa, Mallikarjuna S. Gupta, Rupesh K. Flaws, Jodi A.

    2012-01-15

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31–35 days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1–100 μg/ml) ± N-acetyl cysteine (NAC, an antioxidant at 0.25–1 mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25–1 mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10 μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5 mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1. -- Highlights: ► DEHP inhibits growth and increases reactive oxygen species in ovarian antral follicles in vitro. ► NAC rescues the effects of DEHP on the growth and reactive oxygen species levels in follicles. ► DEHP decreases the expression and activity of Cu/Zn superoxide dismutase, which can be rescued by NAC, in antral

  9. Inhibition of rat platelet aggregation by the diazeniumdiolate nitric oxide donor MAHMA NONOate

    PubMed Central

    Homer, Kerry L; Wanstall, Janet C

    2002-01-01

    Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-1-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), and to investigate the possible role of activation of sarco-endoplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2–10 μg ml−1) and adenosine diphosphate (ADP; 2 μM) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. ODQ (10 μM) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole; 1–100 μM), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3′5′ cyclic monophosphate; 0.1–1 mM), caused minimal inhibition. On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 μM present) were abolished by thapsigargin (200 nM). On ADP-aggregated platelets thapsigargin caused partial inhibition. Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA. PMID:12429580

  10. [Inhibiting effects of three components of Astragalus membranaceus on oxidative stress in Chang Liver cells].

    PubMed

    Li, Jian; Han, Lin; Ma, Yu-fang; Huang, Yi-fan

    2015-01-01

    The main objective of this research is to investigate the effects of astragaloside IV, calycosin separately glucoside, formononetin on oxidative stress in Chang Liver cells induced by H2O2. In the experiments, Chang Liver cells (a kind of normal human hepatocytes) were used as the research object, bifendate which has a clear hepatoprotective effect was used as the positive control drug, then the oxidative damage model of Chang Liver cells were established by H2O2. Cells were divided into six groups: blank control group, oxidative stress group, astragaloside IV group, calycosin separately glucoside group, formononetin group and positive control group. Then endogenous antioxidant system related indexes were detected by micro plate and colorimetric method; intracellular reactive oxygen species (ROS) were detected by DCFH-DA fluorescent probe; and the expressions of CYP2E1 were evaluated by liver microsomes, mRNA, and protein, respectively with spectrophotometry, Real-time PCR method, and Western blot technique. Results showed that H2O2 decreased antioxidant activity, and increased ROS level and expression of CYP2E1. The above oxidative stress status had been changed with protections of the three components of Astragalus membranaceus (compared with oxidative stress group, P < 0.05, P < 0.01), which taken as a whole had equivalent effects as the drug of positive control group( bifendate). Taken together, three Astragalus membranaceus ingredients all had significant or extremely significant inhibiting effects on oxidative damaged Chang Liver cells which were induced by H2O2, and the oxidative damage of Chang Liver cells had been relieved. PMID:26080566

  11. Reversal of Oxidative Stress-Induced Anxiety by Inhibition of Phosphodiesterase-2 in Mice

    PubMed Central

    Masood, Anbrin; Nadeem, Ahmed; Mustafa, S. Jamal; O’Donnell, James M.

    2010-01-01

    The pathogenesis of several neuropsychiatric disorders, including anxiety and depression, has been linked to oxidative stress, in part via alterations in cyclic nucleotide signaling. Phosphodiesterase-2 (PDE2), which regulates cGMP and cAMP signaling, may affect anxiety-related behavior through reduction of oxidative stress. The present study evaluated the effects of oxidative stress on behavior and assessed the anxiolytic effects of the PDE2 inhibitor Bay 60-7550 [(2-(3,4-dimethoxybenzyl)-7-{(1R)-1-[(1R)-1-hydroxyethyl]-4-phenylbutyl}-5-methyl imidazo-[5,1-f][1,2,4]triazin-4(3H)-one)]. Treatment of mice with L-buthionine-(S,R)-sulfoximine (300 mg/kg), an inducer of oxidative stress, caused anxiety-like behavioral effects in elevated plus-maze, open-field, and hole-board tests through the NADPH oxidase pathway; these effects were antagonized by Bay 60-7550 (3 mg/kg) and apocynin (3 mg/kg), an inhibitor of NADPH oxidase. The Bay 60-7550-mediated decrease in oxidative stress (i.e., superoxide anion and reactive oxygen species generation in cultured neurons and total antioxidant capacity and lipid peroxides in amygdala and hypothalamus) and expression of NADPH oxidase subunits (i.e., p47 phox and gp91 phox expression in amygdala, hypothalamus, and cultured neurons) was associated with increased cGMP and phosphorylation of vasodilator-stimulated phosphoprotein at Ser239, suggesting an important role of cGMP-protein kinase G signaling in reduction of anxiety. Overall, the present results indicate that oxidative stress induces anxiety-like behavior in mice and that PDE2 inhibition reverses it through an increase in cGMP signaling. Thus, PDE2 may be a novel pharmacological target for treatment of anxiety in neuropsychiatric and neurodegenerative disorders that involve oxidative stress. PMID:18456873

  12. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice.

    PubMed

    Masood, Anbrin; Nadeem, Ahmed; Mustafa, S Jamal; O'Donnell, James M

    2008-08-01

    The pathogenesis of several neuropsychiatric disorders, including anxiety and depression, has been linked to oxidative stress, in part via alterations in cyclic nucleotide signaling. Phosphodiesterase-2 (PDE2), which regulates cGMP and cAMP signaling, may affect anxiety-related behavior through reduction of oxidative stress. The present study evaluated the effects of oxidative stress on behavior and assessed the anxiolytic effects of the PDE2 inhibitor Bay 60-7550 [(2-(3,4-dimethoxybenzyl)-7-{(1R)-1-[(1R)-1-hydroxyethyl]-4-phenylbutyl}-5-methyl imidazo-[5,1-f][1,2,4]triazin-4(3H)-one)]. Treatment of mice with L-buthionine-(S,R)-sulfoximine (300 mg/kg), an inducer of oxidative stress, caused anxiety-like behavioral effects in elevated plusmaze, open-field, and hole-board tests through the NADPH oxidase pathway; these effects were antagonized by Bay 60-7550 (3 mg/kg) and apocynin (3 mg/kg), an inhibitor of NADPH oxidase. The Bay 60-7550-mediated decrease in oxidative stress (i.e., superoxide anion and reactive oxygen species generation in cultured neurons and total antioxidant capacity and lipid peroxides in amygdala and hypothalamus) and expression of NADPH oxidase subunits (i.e., p47 phox and gp91 phox expression in amygdala, hypothalamus, and cultured neurons) was associated with increased cGMP and phosphorylation of vasodilator-stimulated phosphoprotein at Ser239, suggesting an important role of cGMP-protein kinase G signaling in reduction of anxiety. Overall, the present results indicate that oxidative stress induces anxiety-like behavior in mice and that PDE2 inhibition reverses it through an increase in cGMP signaling. Thus, PDE2 may be a novel pharmacological target for treatment of anxiety in neuropsychiatric and neurodegenerative disorders that involve oxidative stress. PMID:18456873

  13. Ostene, a New Alkylene Oxide Copolymer Bone Hemostatic Material, Does Not Inhibit Bone Healing

    PubMed Central

    Magyar, Clara E.; Aghaloo, Tara L.; Atti, Elisa; Tetradis, Sotirios

    2009-01-01

    OBJECTIVE In this study, we investigate the effects of a soft bone hemostatic wax comprised of water-soluble alkylene oxide copolymers (Ostene; Ceremed, Inc., Los Angeles, CA) on bone healing in a rat calvaria defect model. We compared the effects with a control (no hemostatic agent) and bone wax, an insoluble and nonresorbable material commonly used for bone hemostasis. METHODS Two bilateral 3-mm circular noncritical-sized defects were made in the calvariae of 30 rats. Alkylene oxide copolymer or bone wax was applied or no hemostatic material was used (control). After 3, 6, and 12 weeks, rats were sacrificed and the calvariae excised. Bone healing, expressed as fractional bone volume (± standard error of the mean), was measured by microcomputed tomography. RESULTS Immediate hemostasis was achieved equally with bone wax and alkylene oxide copolymer. Bone wax-filled defects remained unchanged at all time points with negligible healing observed. At 3 weeks, no evidence of alkylene oxide copolymer was observed at the application site, with fractional bone volume significantly greater than bone wax-treated defects (0.20 ± 0.03 versus 0.02 ± 0.01; P = 0.0003). At 6 and 12-weeks, alkylene oxide copolymer-treated defects continued to show significantly greater healing versus bone wax (0.18 ± 0.04 versus 0.05 ± 0.01 and 0.31 ± 0.04 versus 0.06 ± 0.02, respectively). At all time points, alkylene oxide copolymer-treated and control defects showed good healing with no significant difference. CONCLUSION Alkylene oxide copolymer is an effective hemostatic agent that does not inhibit osteogenesis or bone healing. PMID:18981846

  14. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1

    PubMed Central

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L.; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  15. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1.

    PubMed

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  16. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-06-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO. PMID:26554512

  17. Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation

    PubMed Central

    Moon, Kwan-Hoon; Kim, Bong-Jo; Song, Byoung J.

    2005-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is responsible for the metabolism of acetaldehyde and other toxic lipid aldehydes. Despite many reports about the inhibition of ALDH2 by toxic chemicals, it is unknown whether nitric oxide (NO) can alter the ALDH2 activity in intact cells or in vivo animals. The aim of this study was to investigate the effects of NO on ALDH2 activity in H4IIE-C3 rat hepatoma cells. NO donors such as S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine, and 3-morpholinosydnonimine significantly increased the nitrite concentration while they inhibited the ALDH2 activity. Addition of GSH-ethylester (GSH-EE) completely blocked the GSNO-mediated ALDH2 inhibition and increased nitrite concentration. To directly demonstrate the NO-mediated S-nitrosylation and inactivation, ALDH2 was immunopurified from control or GSNO-treated cells and subjected to immunoblot analysis. The anti-nitrosocysteine antibody recognized the immunopurified ALDH2 only from the GSNO-treated samples. All these results indicate that S-nitrosylation of ALDH2 in intact cells leads to reversible inhibition of ALDH2 activity. PMID:16242127

  18. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination

    PubMed Central

    Dwivedi, Sourabh; Wahab, Rizwan; Khan, Farheen; Mishra, Yogendra K.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2014-01-01

    The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods. PMID:25402188

  19. Minimally oxidized LDL inhibits macrophage selective cholesteryl ester uptake and native LDL-induced foam cell formation[S

    PubMed Central

    Meyer, Jason M.; Ji, Ailing; Cai, Lei; van der Westhuyzen, Deneys R.

    2014-01-01

    Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis. PMID:24891335

  20. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction

    PubMed Central

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD. PMID:26619044

  1. Inhibition of the neutrophil oxidative response induced by the oral administration of nimesulide in normal volunteers.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Dallegri, F

    1992-01-01

    The superoxide (O2) production by phagocytes (neutrophils plus monocytes) and the lactoferrin release by neutrophils were measured in normal volunteers before and after the oral administration of the anti-inflammatory drug nimesulide. The chemotactic factor N-formylmethionyl-leucyl-phenylalanine (FMLP) and opsonized zymosan particles (OPZ) were used as activating stimuli. The oral administration of nimesulide lowered the phagocyte ability to generate O2- in response to both FMLP (percent inhibition = 67.62) and OPZ (percent inhibition = 36.75). The lactoferrin release by neutrophils was unaffected, proving that the drug does not affect the exocytosis of specific granules. The results provide direct evidence that the oral administration of nimesulide efficiently reduces the oxidative potential of phagocytes, particularly neutrophils, without interfering with mechanisms related to exocytosis of specific granules and involved in the amplification of the cell responses to inflammatory mediators. PMID:1340506

  2. In-situ metalorganic chemical vapor deposition and capacitance-voltage characterizations of Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Liu, X.; Yeluri, R.; Kim, J.; Lal, S.; Raman, A.; Lund, C.; Wienecke, S.; Lu, J.; Laurent, M.; Keller, S.; Mishra, U. K.

    2013-07-01

    The in-situ metalorganic chemical vapor deposition of Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors (MOSCAPs) is reported. Al2O3 is grown using trimethylaluminum and O2 in the same reactor as GaN without breaking the vacuum. The in-situ MOSCAPs are subjected to a series of capacitance-voltage measurements combined with stress and ultraviolet-assisted techniques, and the results are discussed based on the presence of near-interface states with relatively fast and slow electron emission characteristics. The in-situ MOSCAPs with Al2O3 grown at 900 and 1000 °C exhibit very small hystereses and charge trappings as well as average near-interface state densities on the order of 1012 cm-2eV-1.

  3. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage.

    PubMed

    Ahuja, Nitina; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2015-02-01

    Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery. PMID:25752432

  4. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    PubMed Central

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  5. Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity.

    PubMed

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  6. Glycoxidized HDL, HDL enriched with oxidized phospholipids and HDL from diabetic patients inhibit platelet function

    PubMed Central

    Lê, Quang Huy; El Alaoui, Meddy; Véricel, Evelyne; Ségrestin, Bérénice; Soulère, Laurent; Guichardant, Michel; Lagarde, Michel; Moulin, Philippe; Calzada, Catherine

    2015-01-01

    Context High-density lipoproteins (HDL) possess atheroprotective properties including anti-thrombotic and antioxidant effects. Very few studies relate to the functional effects of oxidized HDL on platelets in type 2 diabetes (T2D). Objective The objective of our study was to investigate the effects of in vitro glycoxidized HDL, and HDL from T2D patients on platelet aggregation and arachidonic acid signaling cascade. At the same time, the contents of hydroxylated fatty acids were assessed in HDL. Results Compared to control HDL, in vitro glycoxidized HDL had decreased proportions of linoleic (LA) and arachidonic (AA) acids in phospholipids and cholesteryl esters, and increased concentrations of hydroxy-octadecadienoic acids (9-HODE and 13-HODE) and 15-hydroxy-eicosatetraenoic acid (15-HETE), derived from LA and AA respectively, especially hydroxy derivatives esterified in phospholipids. Glycoxidized HDL dose-dependently decreased collagen-induced platelet aggregation by binding to SR-BI. Glycoxidized HDL prevented collagen-induced increased phosphorylation of platelet p38 MAPK and cytosolic phospholipase A2, as well as intracellular calcium mobilization. HDL enriched with oxidized phospholipids, namely PC(16:0/13-HODE) dose-dependently inhibited platelet aggregation. Increased concentrations of 9-HODE, 13-HODE and 15-HETE in phospholipids (2.1, 2.1 and 2.4-fold increase respectively) were found in HDL from patients with T2D, and these HDL also inhibited platelet aggregation via SR-BI. Conclusions Altogether, our results indicate that in vitro glycoxidized HDL as well as HDL from T2D patients inhibit platelet aggregation, and suggest that oxidized LA-containing phospholipids may contribute to the anti-aggregatory effects of glycoxidized HDL and HDL from T2D patients. PMID:25794249

  7. Inhibition of the lymphocyte metabolic switch by the oxidative burst of human neutrophils.

    PubMed

    Kramer, Philip A; Prichard, Lynn; Chacko, Balu; Ravi, Saranya; Overton, E Turner; Heath, Sonya L; Darley-Usmar, Victor

    2015-09-01

    Activation of the phagocytic NADPH oxidase-2 (NOX-2) in neutrophils is a critical process in the innate immune system and is associated with elevated local concentrations of superoxide, hydrogen peroxide (H2O2) and hypochlorous acid. Under pathological conditions, NOX-2 activity has been implicated in the development of autoimmunity, indicating a role in modulating lymphocyte effector function. Notably, T-cell clonal expansion and subsequent cytokine production requires a metabolic switch from mitochondrial respiration to aerobic glycolysis. Previous studies demonstrate that H2O2 generated from activated neutrophils suppresses lymphocyte activation but the mechanism is unknown. We hypothesized that activated neutrophils would prevent the metabolic switch and suppress the effector functions of T-cells through a H2O2-dependent mechanism. To test this, we developed a model co-culture system using freshly isolated neutrophils and lymphocytes from healthy human donors. Extracellular flux analysis was used to assess mitochondrial and glycolytic activity and FACS analysis to assess immune function. The neutrophil oxidative burst significantly inhibited the induction of lymphocyte aerobic glycolysis, caused inhibition of oxidative phosphorylation and suppressed lymphocyte activation through a H2O2-dependent mechanism. Hydrogen peroxide and a redox cycling agent, DMNQ, were used to confirm the impact of H2O2 on lymphocyte bioenergetics. In summary, we have shown that the lymphocyte metabolic switch from mitochondrial respiration to glycolysis is prevented by the oxidative burst of neutrophils. This direct inhibition of the metabolic switch is then a likely mechanism underlying the neutrophil-dependent suppression of T-cell effector function. PMID:25951298

  8. Inhibition and deactivation effects in catalytic wet oxidation of high-strength alcohol-distillery liquors

    SciTech Connect

    Belkacemi, K.; Larachi, F.; Hamoudi, S.; Turcotte, G.; Sayari, A.

    1999-06-01

    The removal efficiency of total organic carbon (TOC) from raw high-strength alcohol-distillery waste liquors was evaluated using three different treatments: thermolysis (T), noncatalytic wet oxidation (WO), and solid-catalyzed wet oxidation (CWO). The distillery liquors (TOC = 22,500 mg/l, sugars = 18,000 mg/l, and proteins = 13,500 mg/l) were produced by alcoholic fermentation of enzymatic hydrolyzates from steam-exploded timothy grass. TOC-abatement studies were conducted batchwise in a stirred autoclave to evaluate the influence of the catalyst (7:3, MnO{sub 2}/CeO{sub 2} mixed oxide), oxygen partial pressure (0.5--2.5 MPa), and temperature (453--523 K) on T, WO, and CWO processes. Although CWO outperformed T and WO, TOC conversions did not exceed {approximately}60% at the highest temperature used. Experiments provided prima facie evidence for a gradual fouling of the catalyst and a developing inhibition in the liquors which impaired deep TOC removals. Occurrence of catalyst deactivation by carbonaceous deposits was proven experimentally through quantitative and qualitative experiments such as elemental analysis and X-ray photoelectron spectroscopy. Inhibition toward further degradation of the liquors was ascribed to the occurrence of highly stable antioxidant intermediates via the Maillard reactions between dissolved sugars and proteins. A lumping kinetic model involving both reaction inhibition by dissolved intermediates and catalyst deactivation by carbonaceous deposits was proposed to account for the distribution of carbon in the liquid, solid, and the vapor phases.

  9. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  10. Inhibition of cell-free oxidative bactericidal activity by erythrocytes and hemoglobin.

    PubMed Central

    Hand, W L

    1984-01-01

    Sickle cell anemia and other chronic hemolytic anemias are associated with an increased frequency of bacterial infections. There is evidence to suggest that in hemolytic states massive erythrocyte (RBC) ingestion by macrophages interferes with their antibacterial function, thereby predisposing infection. Stimulated by this possibility, we recently demonstrated that erythrophagocytosis by macrophages markedly inhibited intracellular killing of bacteria, and that zymosan-stimulated superoxide generation and chemiluminescence were also suppressed by RBC ingestion. We examined the effects of RBC components on generation of chemiluminescence, superoxide, and bactericidal activity by cell-free oxidative systems. Generation of chemiluminescence by hypoxanthine-xanthine oxidase was depressed in the presence of human RBC lysate or column-fractionated hemoglobin but not crystallized human hemoglobin (methemoglobin) (peak cpms of 15,522 [P = 0.00024], 28,360 [P = 0.0088], and 50,041 [P = 0.37], respectively, compared with 59,898 for positive controls). Similarly, hypoxanthine-xanthine oxidase production of superoxide was inhibited in the presence of column-fractionated human hemoglobin (43.8 versus 17.4 nmol per tube, P = 0.000001). A cell-free bactericidal system, acetaldehyde and xanthine oxidase with or without myeloperoxidase and Cl-, was markedly inhibited by column-purified hemoglobin. For example, after 2 h of incubation, surviving numbers of Staphylococcus aureus were: control (buffer only), 2.5 X 10(6)/ml; bactericidal system, none; bactericidal system plus hemoglobin, 2.2 X 10(6)/ml (P less than or equal to 0.03, bactericidal system versus other systems). Our studies have documented that interactions between RBC (hemoglobin) and reactive products of oxygen metabolism inhibit oxidative bactericidal mechanisms in cell-free systems as well as in macrophages.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6325349

  11. PARP-1 inhibition influences the oxidative stress response of the human lens

    PubMed Central

    Smith, Andrew J.O.; Ball, Simon S.R.; Bowater, Richard P.; Wormstone, I. Michael

    2016-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is best characterised for its involvement in DNA repair. PARP-1 activity is also linked to cell fate, confounding its roles in maintaining genome integrity. The current study assessed the functional roles of PARP-1 within human lens cells in response to oxidative stress. The human lens epithelial cell line FHL124 and whole human lens cultures were used as experimental systems. Hydrogen peroxide (H2O2) was employed to induce oxidative stress and cell death was assessed by LDH release. The functional influence of PARP-1 was assessed using targeted siRNA and chemical inhibition (by AG14361). Immunocytochemistry and western blotting were used to assess PARP-1 expression and the alkaline comet assay determined the levels of DNA strand breaks. PARP-1 was generally observed in the cell nucleus in both the FHL124 cell line and whole human lenses. PARP-1 inhibition rendered FHL124 cells more susceptible to H2O2-induced DNA strand breaks. Interestingly, reduction of PARP-1 activity significantly inhibited H2O2-induced cell death relative to control cells. Inhibition of PARP-1 in whole human lenses resulted in a reduced level of lens opacity and cell death following exposure to H2O2 relative to matched pair controls. Thus, we show that PARP-1 could play a role in the fate of human lens cells, and these first observations in human lenses suggest that it could impact on lens opacity. Further studies are required to elucidate the regulatory processes that give rise to these effects. PMID:26990173

  12. PARP-1 inhibition influences the oxidative stress response of the human lens.

    PubMed

    Smith, Andrew J O; Ball, Simon S R; Bowater, Richard P; Wormstone, I Michael

    2016-08-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is best characterised for its involvement in DNA repair. PARP-1 activity is also linked to cell fate, confounding its roles in maintaining genome integrity. The current study assessed the functional roles of PARP-1 within human lens cells in response to oxidative stress. The human lens epithelial cell line FHL124 and whole human lens cultures were used as experimental systems. Hydrogen peroxide (H2O2) was employed to induce oxidative stress and cell death was assessed by LDH release. The functional influence of PARP-1 was assessed using targeted siRNA and chemical inhibition (by AG14361). Immunocytochemistry and western blotting were used to assess PARP-1 expression and the alkaline comet assay determined the levels of DNA strand breaks. PARP-1 was generally observed in the cell nucleus in both the FHL124 cell line and whole human lenses. PARP-1 inhibition rendered FHL124 cells more susceptible to H2O2-induced DNA strand breaks. Interestingly, reduction of PARP-1 activity significantly inhibited H2O2-induced cell death relative to control cells. Inhibition of PARP-1 in whole human lenses resulted in a reduced level of lens opacity and cell death following exposure to H2O2 relative to matched pair controls. Thus, we show that PARP-1 could play a role in the fate of human lens cells, and these first observations in human lenses suggest that it could impact on lens opacity. Further studies are required to elucidate the regulatory processes that give rise to these effects. PMID:26990173

  13. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  14. Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage

    NASA Astrophysics Data System (ADS)

    Jing, Mingjun; Wang, Chiwei; Hou, Hongshuai; Wu, Zhibin; Zhu, Yirong; Yang, Yingchang; Jia, Xinnan; Zhang, Yan; Ji, Xiaobo

    2015-12-01

    A green and one-step method of electrochemical alternating voltage has been utilized to form NiO quantum dots/graphene flakes (NiO-dots/Gh) for supercapacitor applications. NiO quantum dots (∼3 nm) are uniformly deposited on few-layer graphene surfaces by oxygen functional groups on graphene surface that is naturally utilized to bridge NiO and graphene through Ni-O-C bands, which exhibits outstanding specific capacitance 1181.1 F g-1 at a current density of 2.1 A g-1 and rate behavior 66.2% at 42 A g-1 as NiO dots can be fleetly wired up to current collector through the underlying graphene two-dimensional layers. The NiO-dots/Gh composite is further undertaken in asymmetric supercapacitors with high energy density (27.3 Wh kg-1 at 1562.6 W kg-1).

  15. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    SciTech Connect

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; O'Roark, Erin M.; Kenyon, Nicholas J.; Last, Jerold A.

    2010-01-01

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2

  16. Arginase Inhibition in Airways from Normal and Nitric Oxide Synthase 2-Knockout Mice Exposed to Ovalbumin

    PubMed Central

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; O’Roark, Erin M.; Kenyon, Nicholas J.; Last, Jerold A.

    2011-01-01

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyper-reactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2−/−) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyper-reactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyper-reactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2−/− mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyper-reactivity in all treatment groups. NOS2−/− mice had a significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2−/− mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyper-reactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be

  17. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin.

    PubMed

    Bratt, Jennifer M; Franzi, Lisa M; Linderholm, Angela L; O'Roark, Erin M; Kenyon, Nicholas J; Last, Jerold A

    2010-01-01

    Arginase1 and nitric oxide synthase2 (NOS2) utilize l-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N(omega)-hydroxy-nor-l-arginine (nor-NOHA) significantly increased total l-arginine content in the airway compartment. We hypothesized that such an increase in l-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that l-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which

  18. Newly synthesized salicylidene-4,4‧-dimorpholine (SDM) assembled on nickel oxide nanoparticles (NiONPs) and its inhibitive effect on mild steel in 2 N hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Wadhwani, Poonam M.; Panchal, Vikram K.; Shah, Nisha K.

    2015-03-01

    Corrosion inhibition of mild steel in hydrochloric acid solution by salicylidene-4,4‧-dimorpholine (SDM) and SDM assembled on nickel oxide nanoparticles (NiONPs) has been studied with gravimetric, electrochemical impedance spectroscopy (EIS) and polarization techniques. Inhibition was found to increase with increasing concentration of the inhibitors. While studying the temperature effect on corrosion behaviour of SDM and SDM assembled on NiONPs, the inhibition efficiency decreases for SDM only but increases for SDM assembled on NiONPs. The adsorption of both the inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The activation energy as well as other thermodynamic parameters (ΔH* and ΔS*) for the inhibition process was calculated. EIS analysis results showed that the capacitive loops for SDM assembled on NiONPs were far away from blank when compared with SDM only. Polarization curve shows that the inhibitors are of mixed type. Further, the protective layer formation was confirmed from atomic force microscopy (AFM) results. Various methods such as EIS-MS, 1H NMR, XRD, FTIR, and DLS were performed for the confirmation of the structure, interaction of SDM with NiONPs and size of NiONPs.

  19. Intermedin ameliorates IgA nephropathy by inhibition of oxidative stress and inflammation.

    PubMed

    Wang, Yanhong; Tian, Jihua; Guo, Haixiu; Mi, Yang; Zhang, Ruijing; Li, Rongshan

    2016-05-01

    IgA nephropathy (IgAN) is the most frequent form of glomerulonephritis worldwide. The role of oxidative stress and inflammation in the pathogenesis of IgAN has been reported. Intermedin (IMD) is a newly discovered peptide that is closely related to adrenomedullin. We have recently reported that IMD can significantly reduce renal ischemia/reperfusion injury by diminishing oxidative stress and suppressing inflammation. The present study was designed to explore whether IMD ameliorates IgAN via oxidative stress- and inflammation-dependent mechanisms. Our results showed that IMD administration resulted in the prevention of albuminuria and ameliorated renal pathomorphological changes. These findings were associated with (1) decreased renal TGF-β1 and collagen IV expression, (2) an increased SOD level and reduced MDA level, (3) the inhibition of the renal activation of NF-κB p65 and (4) the downregulation of the expression of inflammatory factors (TNF-α, MCP-1 and MMP-9) in the kidney. These results indicate that IMD in the kidney protects against IgAN by reducing oxidative stress and suppressing inflammation. PMID:25916508

  20. N-acetylcysteine inhibits in vivo oxidation of native low-density lipoprotein

    PubMed Central

    Cui, Yuqi; Narasimhulu, Chandrakala A.; Liu, Lingjuan; Zhang, Qingbin; Liu, Patrick Z.; Li, Xin; Xiao, Yuan; Zhang, Jia; Hao, Hong; Xie, Xiaoyun; He, Guanglong; Cui, Lianqun; Parthasarathy, Sampath; Liu, Zhenguo

    2015-01-01

    Low-density lipoprotein (LDL) is non-atherogenic, while oxidized LDL (ox-LDL) is critical to atherosclerosis. N-acetylcysteine (NAC) has anti-atherosclerotic effect with largely unknown mechanisms. The present study aimed to determine if NAC could attenuate in vivo LDL oxidation and inhibit atherosclerosis. A single dose of human native LDL was injected intravenously into male C57BL/6 mice with and without NAC treatment. Serum human ox-LDL was detected 30 min after injection, reached the peak in 3 hours, and became undetectable in 12 hours. NAC treatment significantly reduced serum ox-LDL level without detectable serum ox-LDL 6 hours after LDL injection. No difference in ox-LDL clearance was observed in NAC-treated animals. NAC treatment also significantly decreased serum ox-LDL level in patients with coronary artery diseases and hyperlipidemia without effect on LDL level. Intracellular and extracellular reactive oxidative species (ROS) production was significantly increased in the animals treated with native LDL, or ox-LDL and in hyperlipidemic LDL receptor knockout (LDLR−/−) mice that was effectively prevented with NAC treatment. NAC also significantly reduced atherosclerotic plaque formation in hyperlipidemic LDLR−/− mice. NAC attenuated in vivo oxidation of native LDL and ROS formation from ox-LDL associated with decreased atherosclerotic plaque formation in hyperlipidemia. PMID:26536834

  1. Chaga mushroom extract inhibits oxidative DNA damage in lymphocytes of patients with inflammatory bowel disease.

    PubMed

    Najafzadeh, Mojgan; Reynolds, P Dominic; Baumgartner, Adolf; Jerwood, David; Anderson, Diana

    2007-01-01

    Inflammatory Bowel Disease (IBD) is partly caused by oxidative stress from free radicals and reduced antioxidant levels. Using hydrogen peroxide to induce oxidative stress in vitro in peripheral lymphocytes we investigated the induction of DNA damage supplemented with ethanolic extract of Chaga mushroom as a protective antioxidant. Lymphocytes were obtained from 20 IBD patients and 20 healthy volunteers. For treatment, a constant H_{2}O_{2 } dose (50 microg/ml) was used with variable doses of Chaga extract (10-500 microg/ml). DNA damage was evaluated in 50 cells per individual and dose using the Comet assay (making 1000 observations per experimental point ensuring appropriate statistical power). Chaga supplementation resulted in a 54.9% (p < 0.001) reduction of H_{2}O_{2 } induced DNA damage within the patient group and 34.9% (p < 0.001) within the control group. Lymphocytes from Crohn's disease (CD) patients had a greater basic DNA damage than Ulcerative Colitis (UC) patients (p < 0.001). Conclusively, Chaga extract reduces oxidative stress in lymphocytes from IBD patients and also healthy individuals when challenged in vitro. Thus, Chaga extract could be a possible and valuable supplement to inhibit oxidative stress in general. PMID:18997282

  2. Nitric Oxide Loaded Echogenic Liposomes for Nitric Oxide Delivery and Inhibition of Intimal Hyperplasia

    PubMed Central

    Huang, Shao-Ling; Kee, Patrick H.; Kim, Hyunggun; Moody, Melanie R.; Chrzanowski, Stephen M.; MacDonald, Robert C.; McPherson, David D.

    2011-01-01

    Objective To develop a new bioactive gas delivery method using echogenic liposomes (ELIP) as the gas carrier. Background Nitric oxide (NO) is a bioactive gas with potent therapeutic effects. Bioavailability of NO by systemic delivery is low with potential systemic effects. Methods Liposomes containing phospholipids and cholesterol were prepared using a new freezing under pressure method. The encapsulation and release profile of NO from NO containing-ELIP (NO-ELIP) or a mixture of NO/Argon (NO/Ar-ELIP was studied. Uptake of NO from NO-ELIP by cultured vascular smooth muscle cells (VSMC) both in the absence and presence of hemoglobin was determined. The effect of NO-ELIP delivery to attenuate intimal hyperplasia in a balloon-injured artery was determined. Results Coencapsulation of NO with argon (Ar) enabled the adjustment the amount of encapsulated NO. A total of 10 µl of gas can be encapsulated into 1 mg liposomes. The release profile of NO from NO-ELIP demonstrated an initial rapid release followed by a slower release over 8 hours. Sixty-eight percent of cells remained viable when incubated with 80 µg/ml of NO/Ar-ELIP for 4 hours. NO delivery to VSMC using NO/Ar-ELIP was 7-fold higher than unencapsulated NO. NO/Ar-ELIP remained effective NO delivery to VSMC even in the presence of hemoglobin. Local NO-ELIP administration to balloon-injured carotid arteries attenuated the development of intimal hyperplasia and reduced arterial wall thickening by 41±9%. Conclusions Liposomes can protect and deliver a bioactive gas to target tissues with the potential for both visualization of gas delivery and controlled therapeutic gas release. PMID:19660697

  3. Online capacitive densitometer

    DOEpatents

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  4. Steerable Capacitive Proximity Sensor

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  5. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  6. Online capacitive densitometer

    DOEpatents

    Porges, K.G.

    1988-01-21

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.

  7. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation.

    PubMed

    Ho, Yuan-Soon; Lai, Ching-Shu; Liu, Hsin-I; Ho, Sheng-Yow; Tai, Chein; Pan, Min-Hsiung; Wang, Ying-Jan

    2007-06-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several diseases, including hepatic disorder and diabetic polyneuropathy. However, the effects of LA or its reduced form, dihydrolipoic acid (DHLA), on cancer chemoprevention has never been reported. In the present study, we examined the effects of DHLA/LA on the production of nitric oxide (NO) by inducible NO synthase (iNOS) and the formation of prostaglandin E2 (PGE(2)) by cyclooxygenase-2 (COX-2), two important mediators associated with inflammation. DHLA/LA significantly inhibited lipopolysaccharide (LPS)-induced NO and PGE(2) formation in RAW 264.7 cells. Meanwhile, treatment with DHLA/LA suppressed the expression of iNOS protein but, unexpectedly, did not affect or increase the expression of COX-2 protein. The in vivo anti-inflammatory and antitumor-promoting activities were evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin with measurement of edema formation, epidermal thickness and hydrogen peroxide production. DHLA significantly inhibited the priming and activation stages of skin inflammation induced by a double TPA application, by decreasing the inflammatory parameters. Furthermore, DHLA inhibited DMBA (0.3 micromol)/TPA (2.0 nmol)-induced skin tumor formation by reducing the tumor incidence and tumor multiplicity. When applied topically onto the shaven backs of mice prior to TPA, DHLA markedly inhibited the expression of iNOS protein. DHLA also strongly and directly inhibited COX-2 activity. These results suggest that DHLA can be a possible chemopreventive agent in inflammation-associated tumorigenesis. PMID:17403519

  8. Phenylarsine oxide and vanadate: apparent paradox of inhibition of protein phosphotyrosine phosphatases in rat adipocytes.

    PubMed

    Li, J; Elberg, G; Shechter, Y

    1996-07-24

    Vanadate mimics, whereas phenylarsine oxide (PAO) antagonizes, the effects of insulin in rat adipocytes. Both vanadate and PAO are documented inhibitors of protein-phosphotyrosine phosphatases. The relationship between the inhibition of 'inhibitory' PTPase and 'stimulatory' PTPase has been studied here in primary rat adipocytes. Low concentrations of PAO (IC50 = 0.6-2.0 microM) blocked the stimulating effects of insulin, vanadate and pervanadate on hexose uptake and glucose metabolism. Inhibition of isoproterenol-mediating lipolysis by vanadate and insulin was not blocked by PAO. The activating effects of okadaic acid on hexose uptake and glucose metabolism, which occur at points downstream to tyrosine phosphorylation, were also not blocked by PAO. Subsequent studies suggested that the PAO-sensitive PTPase comprises a minute fraction of the total adipocytic PTPase activity. To identify its location we applied procedures involving fractionations and activation of non-receptor adipocytic protein tyrosine kinase by PAO and vanadate in cell free assays. We found that the 'inhibitory' PTPase is exclusively associated with the membrane fraction whereas the 'stimulatory' PTPases are present in both the cytosolic and plasma membrane compartments. We next searched for markers, possibly associated with PAO-dependent desensitization and found that several proteins became phosphorylated on tyrosine moieties in the supernatant of PAO but not in vanadate pretreated adipocytes. In summary, we propose the presence of a minute, plasma membrane associated PTPase in primary rat adipocytes, inhibition of which arrests the activation of glucose metabolism. In contrast, inhibition of all the other cellular adipose PTPases, ultimately activates rather than inhibits these same bioeffects. PMID:8703991

  9. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers.

    PubMed

    Li, Jiang; Liu, Yunguo; Zhang, Pingyang; Zeng, Guangming; Cai, Xiaoxi; Liu, Shaobo; Yin, Yicheng; Hu, Xinjiang; Hu, Xi; Tan, Xiaofei

    2016-05-01

    Aquatic macrophytes are considered to be promising in controlling harmful cyanobacterial blooms. In this research, an aqueous extract of Sagittaria trifolia tubers was prepared to study its inhibitory effect on Microcystis aeruginosa in the laboratory. Several physiological indices of M. aeruginosa, in response to the environmental stress, were analyzed. Results showed that S. trifolia tuber aqueous extract significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The highest inhibition rate reached 90% after 6 day treatment. The Chlorophyll-a concentration of M. aeruginosa cells decreased from 343.1 to 314.2μg/L in the treatment group. The activities of superoxide dismutase and peroxidase and the content of reduced glutathione in M. aeruginosa cells initially increased as a response to the oxidative stress posed by S. trifolia tuber aqueous extract, but then decreased as time prolonged. The lipid peroxidation damage of the cyanobacterial cell membranes was reflected by the malondialdehyde level, which was notably higher in the treatment group compared with the controls. It was concluded that the oxidative damage of M. aeruginosa induced by S. trifolia tuber aqueous extract might be one of the mechanisms for the inhibitory effects. PMID:27155407

  10. Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia.

    PubMed

    Wang, Y; Mathews, W R; Guido, D M; Farhood, A; Jaeschke, H

    1995-10-01

    The potential role of nitric oxide (NO) was investigated in the pathophysiology of liver injury after priming with 20 min hepatic ischemia-reperfusion and administration of .5 mg/kg Salmonella enteritidis endotoxin. Liver injury during the early reperfusion phase of 4 h was characterized by severe vascular oxidant stress, lipid peroxidation (LPO), neutrophil infiltration, and a 33% reduction of the microvascular blood flow in the liver. Inhibition of NO synthesis with N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) aggravated liver injury by 90%, reduced LPO, and did not affect liver neutrophils but further impaired microvascular blood flow. Treatment with the NO-donor spermine-NONOate or L-arginine did not affect these parameters in postischemic animals, however, treatment did restore all values of L-NAME-treated animals back to disease control levels. These data suggest that endogenous NO formation is sufficient to limit ischemic liver injury during reperfusion but inhibition of NO synthesis will result in additional ischemic damage. NO may also be involved in scavenging of superoxide in the vasculature and in inducing LPO. PMID:8564557

  11. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    PubMed

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. PMID:26515755

  12. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene. PMID:17995901

  13. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase.

    PubMed Central

    Kasten, T P; Collin-Osdoby, P; Patel, N; Osdoby, P; Krukowski, M; Misko, T P; Settle, S L; Currie, M G; Nickols, G A

    1994-01-01

    We have examined the effects of modulating nitric oxide (NO) levels on osteoclast-mediated bone resorption in vitro and the effects of nitric oxide synthase (NOS) inhibitors on bone mineral density in vivo. Diaphorase-based histochemical staining for NOS activity of bone sections or highly enriched osteoclast cultures suggested that osteoclasts exhibit substantial NOS activity that may account for basal NO production. Chicken osteoclasts were cultured for 36 hr on bovine bone slices in the presence or absence of the NO-generating agent sodium nitroprusside or the NOS inhibitors N-nitro-L-arginine methyl ester and aminoguanidine. Nitroprusside markedly decreased the number of bone pits and the average pit area in comparison with control cultures. On the other hand, NOS inhibition by N-nitro-L-arginine methyl ester or aminoguanidine dramatically increased the number of bone pits and the average resorption area per pit. In a model of osteoporosis, aminoguanidine potentiated the loss of bone mineral density in ovariectomized rats. Aminoguanidine also caused a loss of bone mineral density in the sham-operated rats. Inhibition of NOS activity in vitro and in vivo resulted in an apparent potentiation of osteoclast activity. These findings suggest that endogenous NO production in osteoclast cultures may regulate resorption activity. The modulation of NOS and NO levels by cells within the bone microenvironment may be a sensitive mechanism for local control of osteoclast bone resorption. Images PMID:7513424

  14. Nitric oxide synthase inhibition attenuates cutaneous vasodilation during the post-menopausal hot flash

    PubMed Central

    Hubing, Kimberly A.; Wingo, Jonathan E.; Brothers, R. Matthew; Coso, Juan Del; Low, David A.; Crandall, Craig G.

    2010-01-01

    Objective The purpose of this study was to test the hypothesis that local inhibition of nitric oxide and prostaglandin synthesis attenuates cutaneous vasodilator responses during post-menopausal hot flashes. Methods Four microdialysis membranes were inserted into forearm skin (dorsal surface) of 8 post-menopausal women (mean ± SD, 51±7 y). Ringers solution (control), 10mM Ketorolac (Keto) to inhibit prostaglandin synthesis, 10mM NG-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase, and a combination of 10mM Keto + 10mM L-NAME were each infused at the separate sites. Skin blood flow at each site was indexed using laser-Doppler flowmetry. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial blood pressure and was expressed as a percentage of the maximal calculated CVC (CVCmax) obtained following infusion of 50mM sodium nitropruside at all sites at the end of the study. Data from 13 hot flashes were analyzed. Results At the control site, the mean ± SD peak increase in CVC was 15.5±6% CVCmax units. This value was not different relative to the peak increase in CVC at the Keto site (13.0±5 % CVCmax units, P = 0.09). However, the peak increase in CVC during the flash was attenuated at the L-NAME and L-NAME + Keto sites (7.4±4 % CVCmax units and 8.7±7 % CVCmax units, respectively) relative to both the control and the Keto sites (P<0.05 for both comparisons). There were no significant differences in the peak increases in sweat rate between any of the sites (P = 0.24). Conclusions These data demonstrate that cutaneous vasodilation during a hot flash has a nitric oxide component. Increases in CVC despite the inhibition of prostaglandin synthesis suggest prostaglandins do not contribute to cutaneous vasodilation during a hot flash. PMID:20505548

  15. Inhibition of ROMK channels by low extracellular K+ and oxidative stress.

    PubMed

    Frindt, Gustavo; Li, Hui; Sackin, Henry; Palmer, Lawrence G

    2013-07-15

    We tested the hypothesis that low luminal K⁺ inhibits the activity of ROMK channels in the rat cortical collecting duct. Whole-cell voltage-clamp measurements of the component of outward K⁺ current inhibited by the bee toxin Tertiapin-Q (ISK) showed that reducing the bath concentration ([K⁺]o) to 1 mM resulted in a decline of current over 2 min compared with that observed at 10 mM [K⁺]o. However, maintaining tubules in 1 mM [K⁺]o without establishing whole-cell clamp conditions did not affect ISK. The [K⁺]o-dependent decline was not prevented by increasing cytoplasmic-side pH or by inhibition of phosphatase activity. It was, however, abolished by the inclusion of 0.5 mM DTT in the pipette solution to prevent oxidation of the intracellular environment. Conversely, treatment of intact tubules with the oxidant H₂O₂ (100 μM) decreased ISK in a [K⁺]o-dependent manner. Treatment of the tubules with the phospholipase C inhibitor U73122 prevented the effect of low [K⁺]o, suggesting the involvement of this enzyme in the process. We examined these effects further using Xenopus oocytes expressing ROMK2 channels. A 50-min exposure to the permeant oxidizing agent tert-butyl hydroperoxide (t-BHP; 500 μM) did not affect outward K⁺ currents with [K⁺]o = 10 mM but reduced currents by 50% with [K⁺]o = 1 mM and by 75% with [K⁺]o = 0.1 mM. Pretreatment of the oocytes with U73122 prevented the effects of t-BHP. Under conditions of low dietary K intake, K⁺ secretion by distal nephron segments may be suppressed by a combination of low luminal [K⁺]o and oxidative stress. PMID:23678039

  16. Wnt5a inhibits K(+) currents in hippocampal synapses through nitric oxide production.

    PubMed

    Parodi, Jorge; Montecinos-Oliva, Carla; Varas, Rodrigo; Alfaro, Iván E; Serrano, Felipe G; Varas-Godoy, Manuel; Muñoz, Francisco J; Cerpa, Waldo; Godoy, Juan A; Inestrosa, Nibaldo C

    2015-09-01

    Hippocampal synapses play a key role in memory and learning processes by inducing long-term potentiation and depression. Wnt signaling is essential in the development and maintenance of synapses via several mechanisms. We have previously found that Wnt5a induces the production of nitric oxide (NO), which modulates NMDA receptor expression in the postsynaptic regions of hippocampal neurons. Here, we report that Wnt5a selectively inhibits a voltage-gated K(+) current (Kv current) and increases synaptic activity in hippocampal slices. Further supporting a specific role for Wnt5a, the soluble Frizzled receptor protein (sFRP-2; a functional Wnt antagonist) fully inhibits the effects of Wnt5a. We additionally show that these responses to Wnt5a are mediated by activation of a ROR2 receptor and increased NO production because they are suppressed by the shRNA-mediated knockdown of ROR2 and by 7-nitroindazole, a specific inhibitor of neuronal NOS. Together, our results show that Wnt5a increases NO production by acting on ROR2 receptors, which in turn inhibit Kv currents. These results reveal a novel mechanism by which Wnt5a may regulate the excitability of hippocampal neurons. PMID:26311509

  17. Glucocorticoids enhance concanavalin A-induced mitogenic response through the inhibition of nitric oxide production.

    PubMed Central

    Ramírez, F; Silva, A

    1997-01-01

    Glucocorticoids (GC) are known to inhibit mitogen-induced proliferation of T cells. In this study we show two experimental situations where the addition of GC increases lymphocyte proliferation. It has been reported by different authors that rat spleen (SPL) cells proliferate poorly after concanavalin A (Con A) activation. These poor responses have been related to the suppressor activity of macrophages. Similarly, it is known that T-cell proliferation is depressed in the presence of an excess of macrophages in the culture. Here we show that in both experimental situations, the inclusion of dexamethasone (DEX), a synthetic glucocorticoid, in the culture medium enhances the Con A-stimulated proliferation. We provide evidence that this effect is a consequence of the inhibition of nitric oxide (NO) synthesis by the hormone. Furthermore, we also demonstrate that rat SPL cells are inefficient antigen-presenting cells (APC) because of their spontaneous high production of NO. Taken together our results suggest that the effects of GC on T-cell activation may be to promote or inhibit proliferation depending on the level of endogenous NO synthesis. The possible significance of these results is briefly discussed. Images Figure 2 Figure 4 Figure 5 PMID:9038714

  18. Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation

    PubMed Central

    De Palma, C; Falcone, S; Pisoni, S; Cipolat, S; Panzeri, C; Pambianco, S; Pisconti, A; Allevi, R; Bassi, MT; Cossu, G; Pozzan, T; Moncada, S; Scorrano, L; Brunelli, S; Clementi, E

    2011-01-01

    During myogenic differentiation the short mitochondria of myoblasts change into the extensively elongated network observed in myotubes. The functional relevance and the molecular mechanisms driving the formation of this mitochondrial network are unknown. We now show that mitochondrial elongation is required for myogenesis to occur and that this event depends on the cellular generation of nitric oxide (NO). Inhibition of NO synthesis in myogenic precursor cells leads to inhibition of mitochondrial elongation and of myogenic differentiation. This is due to the enhanced activity, translocation and docking of the pro-fission GTPase dynamin-related protein-1 (Drp1) to mitochondria, leading also to a latent mitochondrial dysfunction that increased sensitivity to apoptotic stimuli. These effects of NO inhibition were not observed in myogenic precursor cells containing a dominant-negative form of Drp1. Both NO-dependent repression of Drp1 action and maintenance of mitochondrial integrity and function were mediated through the soluble guanylate cyclase. These data uncover a novel level of regulation of differentiation linking mitochondrial morphology and function to myogenic differentiation. PMID:20467441

  19. Inhibition of Setaria cervi protein tyrosine phosphatases by Phenylarsine oxide: A proteomic and biochemical study.

    PubMed

    Singh, Neetu; Wadhawan, Mohit; Tiwari, Savitri; Kumar, Ranjeet; Rathaur, Sushma

    2016-07-01

    Phenylarsine oxide (PAO), a specific protein tyrosine phosphatase (PTP) inhibitor significantly decreased the motility and viability of Setaria cervi ultimately leading to its death. The PTP activity present in the cytosolic and detergent soluble fractions as well as on surface of these parasites was significantly inhibited by PAO. A marked alteration in protein spots abundance after proteomic analysis showed 14 down-regulated and 9 upregulated spots in the treated parasites as compared to the control. The PTP inhibition led to increase in the cytosolic and mitochondrial calpain activity in these parasites. PAO also blocked the ATP generation in the parasite depicted by reduced activity of phosphoglycerate kinase and expression of enolase. An increased ROS level, induced lipid peroxidation/protein carbonyl formation and decreased activity of different antioxidant enzymes like thioredoxin reductase, glutathione reductase and glutathione transferases was also observed in the PAO treated parasites. PAO, thus disturbs the overall homeostasis of the filarial parasite by inhibiting PTPs. Thereby suggesting that these molecules could be used as a good chemotherapeutic target for lymphatic filariasis. PMID:26965172

  20. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. PMID:26003124

  1. 4-Methylcoumarin Derivatives Inhibit Human Neutrophil Oxidative Metabolism and Elastase Activity

    PubMed Central

    Fuzissaki, Carolina N.; Andrade, Micássio F.; Azzolini, Ana Elisa C.S.; Taleb-Contini, Silvia H.; Vermelho, Roberta B.; Lopes, João Luis C.; Lucisano-Valim, Yara Maria

    2013-01-01

    Abstract Increased neutrophil activation significantly contributes to the tissue damage in inflammatory illnesses; this phenomenon has motivated the search for new compounds to modulate their effector functions. Coumarins are natural products that are widely consumed in the human diet. We have evaluated the antioxidant and immunomodulator potential of five 4-methylcoumarin derivatives. We found that the 4-methylcoumarin derivatives inhibited the generation of reactive oxygen species by human neutrophils triggered by serum-opsonized zymosan or phorbol-12-myristate-13-acetate; this inhibition occurred in a concentration-dependent manner, as revealed by lucigenin- and luminol-enhanced chemiluminescence assays. Cytotoxicity did not mediate this inhibitory effect. The 7,8-dihydroxy-4-methylcoumarin suppressed the neutrophil oxidative metabolism more effectively than the 6,7- and 5,7-dihydroxy-4-methylcoumarins, but the 5,7- and 7,8-diacetoxy-4-methylcoumarins were less effective than their hydroxylated counterparts. An analysis of the biochemical pathways suggested that the 6,7- and 7,8-dihydroxy-4-methylcoumarins inhibit the protein kinase C-mediated signaling pathway, but 5,7-dihydroxy-4-methylcoumarin, as well as 5,7- and 7,8-diacetoxy-4-methylcoumarins do not significantly interfere in this pathway of the activation of the human neutrophil oxidative metabolism. The 4-methylcoumarin derivatives bearing the catechol group suppressed the elastase and myeloperoxidase activity and reduced the 1,1-diphenyl-2-picrylhydrazyl free radical the most strongly. Interestingly, the 5,7-dihydroxy-4-methylcoumarin scavenged hypochlorous acid more effectively than the o-dihydroxy-substituted 4-methylcoumarin derivatives, and the diacetoxylated 4-methylcoumarin derivatives scavenged hypochlorous acid as effectively as the 7,8-dihydroxy-4-methylcoumarin. The significant influence of small structural modifications in the inhibitory potential of 4-methylcoumarin derivatives on the

  2. Glycine inhibits ethanol-induced oxidative stress, neuroinflammation and apoptotic neurodegeneration in postnatal rat brain.

    PubMed

    Amin, Faiz Ul; Shah, Shahid Ali; Kim, Myeong Ok

    2016-06-01

    Here we investigated for the first time the inhibitory potential of Glycine (Gly) against ethanol-induced oxidative stress, neuroinflammation and apoptotic neurodegeneration in human neuroblastoma SH-SY5Y cells and in the developing rat brain. The Gly co-treatment significantly increased the cell viability, inhibited the expression of phospho-Nuclear Factor kappa B (p-NF-kB) and caspase-3 and reduced the oxidative stress in ethanol-treated SH-SY5Y cells in a PI3K-dependent manner. Seven days old male rat pups were injected with ethanol (5 g/kg subcutaneously, prepared in a 20% saline solution) and Gly (1 g/kg). Gly co-treatment stimulated the PI3K/Akt signaling pathway to limit the ethanol induced reactive oxygen species (ROS) production in the developing rat brain. It lowered the ethanol-elevated levels of phospho-c Jun N terminal kinase (p-JNK) and its various downstream apoptotic markers, including Bax, cytochrome C, caspase-3 and PARP-1. Additionally, the Gly treatment upregulated antiapoptotic Bcl-2 proteins and prevented ethanol-induced neurodegeneration as assessed by Fluoro-Jade-B (FJB) and Nissl staining. Furthermore, the Gly administration caused significant reduction in the ethanol-induced neuroinflammation by inhibiting the expression of inflammatory markers such as p-NF-kB, cyclooxygenase 2 (COX2) and tumor necrosis factor-α (TNF-α) and reversed the ethanol-induced synaptic protein markers expression. The results suggest that acute Gly treatment reduces ethanol-induced oxidative stress and neuronal cell loss in SH-SY5Y cells and in the developing rat brain. Therefore, Gly may be considered as potential treatment in ethanol-intoxicated newborns and infants. PMID:27058626

  3. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Liu, Tao; Li, Li; Zhang, Fanhua; Wang, Yuejin

    2015-10-01

    Phosphine (PH3) is a toxic substance to pest insects and is therefore commonly used in pest control. The oxidative damage induced by PH3 is considered to be one of the primary mechanisms of its toxicity in pest insects; however, the precise mode of PH3 action in this process is still unclear. In this study, we evaluated the responses of several oxidative biomarkers and two of the main antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), after fumigation treatment with PH3 in Drosophila melanogaster as a model system. The results showed that larvae exposed to sub-lethal levels of PH3 (0.028 mg/L) exhibited lower aerobic respiration rates and higher levels of hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, unlike SOD, the activity and expression of CAT and its encoding gene were downregulated by PH3 in a time- and dose-dependent manner. Finally, the responses of six potential transcription factors of PH3 were determined by real-time polymerase chain reaction to explore the regulation mechanism of DmCAT by PH3. There were no significant effects of PH3 on three nuclear factor-kappa B homologs (DORSAL, DIF, and RELISH) or two activator protein-1 genes (JUN and FOS), while dramatic inhibition of DNA replication-related element factor (DREF) expression was observed after fumigation with PH3, suggesting that PH3 could inhibit the expression of DmCAT via the DRE/DREF system. These results confirmed that PH3 induces oxidative stress and targets CAT by downregulating its encoding gene in Drosophila. Our results provide new insight into the signal transduction mechanism between PH3 and its target genes. PMID:26453223

  4. Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer’s disease

    PubMed Central

    Chen, Chun-Hau; Li, Wenzong; Sultana, Rukhsana; You, Mi-Hyeon; Kondo, Asami; Shahpasand, Kooroch; Kim, Byeong Mo; Luo, ManLi; Nechama, Morris; Lin, Yu-Min; Yao, Yandan; Lee, Tae Ho; Zhou, Xiao Zhen; Swomley, Aaron M.; Butterfield, D. Allan; Zhang, Yan; Lu, Kun Ping

    2015-01-01

    The unique proline isomerase Pin1 is pivotal for protecting against age-dependent neurodegeneration in Alzheimer’s disease (AD), with its inhibition providing a molecular link between tangle and plaque pathologies. Pin1 is oxidatively modified in human AD brains, but little is known about its regulatory mechanisms and pathological significance of such Pin1 modification. In this paper, our determination of crystal structures of oxidized Pin1 reveals a series of Pin1 oxidative modifications on Cys113 in a sequential fashion. Cys113 oxidization is further confirmed by generating antibodies specifically recognizing oxidized Cys113 of Pin1. Furthermore, Pin1 oxidation on Cys113 inactivates its catalytic activity in vitro, and Ala point substitution of Cys113 inactivates the ability of Pin1 to isomerize tau as well as to promote protein turnover of tau and APP. Moreover, redox regulation affects Pin1 subcellular localization and Pin1-mediated neuronal survival in response to hypoxia treatment. Importantly, Cys113-oxidized Pin1 is significantly increased in human AD brain comparing to age-matched controls. These results not only identify a novel Pin1 oxidation site to be the critical catalytic residue Cys113, but also provide a novel oxidative regulation mechanism for inhibiting Pin1 activity in AD. These results suggest that preventing Pin1 oxidization might help to reduce the risk of AD. PMID:25576397

  5. Stem bark and flower extracts of Vismia cauliflora: modulation of oxidative burst in human neutrophils' and inhibition of oxidative damage in human erythrocytes.

    PubMed

    Ribeiro, Alessandra Braga; Berto, Alessandra; Ribeiro, Daniela; Freitas, Marisa; Chisté, Renan Campos; Visentainer, Jesuí Vergílio; Fernandes, Eduarda

    2014-10-01

    Vismia cauliflora is an Amazonian plant traditionally used to treat dermatosis and inflammatory processes of the skin by indigenous population. Our research group showed that stem bark and flower extracts of V. cauliflora are efficient in vitro scavengers of reactive oxygen and nitrogen species. In this study, we determined the activity of stem bark and flower extracts of V. cauliflora plant on the modulation of in vitro oxidative burst in human neutrophils and their potential to inhibit the oxidative damage in human erythrocytes. The oxidative burst in activated neutrophils were monitored by specific probes to detect the oxidizing effect of superoxide anion radical (MCLA), hydrogen peroxide (amplex red) and hypochlorous acid (APF), and both extracts were efficient to neutralize the oxidative burst (IC50 from 3 to 15µg/mL). These same extracts were also effective against oxidative damage in erythrocytes by inhibiting hemoglobin oxidation (IC50=18µg/mL) and lipid peroxidation (IC50=2.7 and 7.5µg/mL, flower and stem bark, respectively). In addition, stem bark extract (100µg/mL) inhibited the depletion of glutathione by 13%. These extracts have similar phenolic composition, but flower presents quercetin (14%) in its composition. Therefore, these results reinforce the potential therapeutic of stem bark and flower extracts of V. cauliflora to heal topical skin disease and requires further research targeted effectively to develop phytopharmaceutical drug based on this plant. PMID:26461382

  6. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use

    NASA Technical Reports Server (NTRS)

    Pizza, F. X.; Hernandez, I. J.; Tidball, J. G.

    1998-01-01

    The objective of this study was to determine the role of nitric oxide in muscle inflammation, fiber necrosis, and apoptosis of inflammatory cells in vivo. The effects of nitric oxide synthase (NOS) inhibition on the concentrations of neutrophils, ED1+ and ED2+ macrophages, apoptotic inflammatory cells, and necrotic muscle fibers in rats subjected to 10 days of hindlimb unloading and 2 days of reloading were determined. Administration of NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the concentrations of neutrophils, ED1+ and ED2+ macrophages, and necrotic fibers in soleus muscle relative to water-treated controls. The concentration of apoptotic inflammatory cells was also significantly lower for L-NAME-treated animals compared with water-treated controls. However, the proportion of the inflammatory cell population that was apoptotic did not differ between L-NAME-treated and control animals, suggesting that L-NAME treatment did not decrease inflammatory cell populations by increasing the frequency of apoptosis. Thus, nitric oxide or one of its intermediates promotes muscle inflammation and fiber necrosis during modified muscle use and plays no more than a minor role in the resolution of muscle inflammation by inducing apoptosis of inflammatory cells.

  7. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity.

    PubMed

    Yamauchi, Mika; Tsuruma, Kazuhiro; Imai, Shunsuke; Nakanishi, Tomohiro; Umigai, Naofumi; Shimazawa, Masamitsu; Hara, Hideaki

    2011-01-10

    Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage. PMID:20951131

  8. Inhibition of nitric oxide synthesis in vascular smooth muscle by retinoids.

    PubMed Central

    Hirokawa, K; O'Shaughnessy, K M; Ramrakha, P; Wilkins, M R

    1994-01-01

    1. These studies examine the effect of retinoids on interleukin 1 beta (IL-1 beta)-induced nitric oxide synthase (NOS) activity in cultured rat aortic vascular smooth muscle (VSM) cells and isolated rat aortic rings. 2. All-trans-retinoic acid (all-trans-RA, 0.1-10 microM) and its active analogues produced concentration-dependent inhibition of IL-1 beta (0.1-10 ng ml-1)-induced nitrite production in cultured VSM cells. In contrast, the inactive retinoid, Ro 14-6113 (0.1-10 microM), had no effect on IL-1 beta-induced nitrite production. 3. Since some of the actions of retinoids are mediated by induction of transforming growth factor beta (TGF-beta), its effect on inducible NOS activity in VSM cells was examined. TGF-beta produced concentration-dependent (0.1-10 ng ml-1) inhibition of IL-1 beta-induced nitrite production and the maximum effect (approximately 90% inhibition) was significantly greater than that seen with all-trans-RA (approximately 70% with 10 microM). However, an anti-TGF-beta antibody (50 micrograms ml-1) which blocked the effect of exogenous TGF-beta (5 ng ml-1) did not significantly reverse the inhibitory action of all-trans-RA (10 microM). 4. In addition to inhibiting IL-1 beta-induced nitrite production, all-trans-RA (10 microM) reduced substantially inducible NOS mRNA and protein levels in IL-1 beta-induced VSM cells (P < 0.01). 5. Incubation of isolated rat aortic rings with IL-1 beta (10 ng ml-1) caused a progressive resistance of the rings to the vasoconstrictor action of phenylephrine (10 nM to 10 microM).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 3 Figure 4 PMID:7534188

  9. Myocardial microcirculation stereological changes in rats subjected to nitric oxide synthesis inhibition.

    PubMed

    Pereira, L M; Mandarim-De-Lacerda, C A

    1999-01-01

    This work aims to study stereological changes in intramyocardial blood vessels in rats submitted to nitric oxide (NO) synthesis inhibition within different periods. NO synthesis inhibition was achieved by administration of L-NAME (50 mg/kg/day); control and L-NAME rats were sacrificed 25 and 40 days after experimentation. Light microscopy and stereology [according to references 7, 13 and 14] were used for analyzing the myocardium. Arterial blood pressure and cardiac weight increased by 74.5% and 57.8% after 25 days and by 90.2% and 34.6% after 40 days, respectively. Comparing the L-NAME rats with corresponding controls revealed that the volume density of the vessels decreased by 31.3% after 40 days, and the length density by 53.5% after 25 days and by 25.7% after 40 days. The mean cross-sectional area of the vessels increased by 154.6% after 25 days. In this study on intramyocardial vessels, we observed an important decrease of the length density in L-NAME animals. Likewise, the volume density also decreased significantly in L-NAME animals. The mean cross sectional area of the vessels, which normally increases during cardiac growth between 25 and 40 days, was precociously increased in L-NAME animals at 25 days, suggesting that these animals suffer from a precocious increase of the heart (including blood vessels) due to pressure overload. Stereology of cardiac microvessels revealed remodeling of these vessels in rats under NO synthesis inhibition. Although these changes may be caused by NO inhibition and not by arterial hypertension, further comparative studies on different models of arterial hypertension are needed to confirm this hypothesis. PMID:10220798

  10. Capacitive deionization of seawater

    SciTech Connect

    Farmer, J.C.; Fix, D.V.; Mack, G.V.

    1995-10-01

    Capacitive deionization with carbon aerogel electrodes is an efficient and economical new process for removing salt and impurities from water. Carbon aerogel is a material that enables the successful purification of water because of its high surface area, optimum pore size, and low electrical resistivity. The electrodes are maintained at a potential difference of about one volt; ions are removed from the water by the imposed electrostatic field and retained on the electrode surface until the polarity is reversed. The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated. The overall process offers advantages when compared to conventional water-purification methods, requiring neither pumps, membranes, distillation columns, nor thermal heaters. Consequently, the overall process is both robust and energy efficient. The current state of technology development, commercialization, and potential applications of this process are reviewed.

  11. Capacitive skin characterization

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert; Manzo, Michael

    1992-01-01

    NASA is currently involved in research that utilizes a capacitive sensor that is used for proximity detection of objects. This sensor is sensitive to conductive and dielectric materials including metal objects and humans. The range of the sensor has been found to be about twelve inches. It is the goal of this research project to further characterize the sensor so that it can be tailored to specific requirements. The characterization of the sensor should be with respect to shield size, sensor size, object size, and object distance. The method of finite elements to calculate the capacitance of the sensor while varying different parameters was used. Each of the parameters was varied in turn, often by selecting data points from different runs. The plotted results are shown and an apparent functionality developed for each.

  12. Electrical capacitance clearanceometer

    NASA Technical Reports Server (NTRS)

    Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)

    1992-01-01

    A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.

  13. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    SciTech Connect

    Chen, Jing-Hsien; Tsai, Chia-Wen; Wang, Chi-Ping; Lin, Hui-Hsuan

    2013-10-15

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.

  14. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    SciTech Connect

    Aslan, Mutay; Basaranlar, Goksun; Unal, Mustafa; Ciftcioglu, Akif; Derin, Narin; Mutus, Bulent

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  15. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  16. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. PMID:25620714

  17. Nitric oxide controls tuberculosis immunopathology by inhibiting NLRP3 inflammasome-dependent IL-1β processing

    PubMed Central

    Mishra, Bibhuti B.; Rathinam, Vijay A. K.; Martens, Gregory W.; Martinot, Amanda J.; Kornfeld, Hardy; Fitzgerald, Katherine A.; Sassetti, Christopher M.

    2013-01-01

    Interleukin-1 (IL-1) is an important mediator of innate immunity, but can also promote inflammatory tissue damage. During chronic infections, such as tuberculosis, the beneficial antimicrobial role of IL-1 must be balanced with the need to prevent immunopathology. By exogenously controlling the replication of Mycobacterium tuberculosis in vivo, we obviated the requirement for antimicrobial immunity and discovered that both IL-1 production and infection-induced immunopathology were suppressed by lymphocyte-derived interferon-γ (IFN-γ). This effect was mediated by nitric oxide (NO), which we found to specifically inhibit the assembly of the NLRP3 inflammasome via thiol nitrosylation. These data suggest that the NO produced as a result of adaptive immunity is indispensable in modulating the destructive innate inflammatory responses that are elicited during persistent infections. PMID:23160153

  18. Competitive inhibition of nitric oxide synthase by p-aminobenzamidine, a serine proteinase inhibitor.

    PubMed

    Venturini, G; Menegatti, E; Ascenzi, P

    1997-03-01

    p-Aminobenzamidine competitively inhibits bovine trypsin, human and bovine thrombin, and human plasmin, all of which act on substrates containing preferentially the L-arginyl side chain at their P1 position. Considering the structural and functional similarity between p-aminobenzamidine and the L-arginyl side chain in trypsin-like serine proteinases, we investigated the interaction of p-aminobenzamidine with mouse brain nitric oxide synthase (NOS), which uses L-arginine as the substrate for generating NO and L-citrulline. p-Aminobenzamidine is a competitive NOS inhibitor (Ki = 1.2 x 10(-4) M, at pH 7.5 and 37.0 degrees C), but not an NO precursor. Therefore, p-aminobenzamidine affects the NO production and the trypsin-like serine proteinase action. PMID:9125158

  19. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    SciTech Connect

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  20. Diallyl trisulfide inhibits naphthalene-induced oxidative injury and the production of inflammatory responses in A549 cells and mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Zhu, Xiaosong; Lin, Guimei; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2015-12-01

    Diallyl trisulfide (DATS) is a garlic organosulfide that may have a therapeutic potential in the treatment of some diseases. We sought to determine whether DATS could inhibit naphthalene-induced oxidative injury and the production of inflammatory responses in vitro and in vivo. A549 cells were either pre-treated (PreTx, prevention) or concurrently treated (CoTx, treatment) with 20μM naphthalene and either 5 or 10μM DATS. PreTx and CoTx showed the prevention and the treatment potential of DATS to inhibit the generation of naphthalene-induced reactive oxygen species (ROS) in the A549 cells. DATS showed antioxidative activity by elevating the SOD activities in the low dose groups. The mechanistic study showed that the DATS-mediated inhibition of naphthalene-induced oxidative injury and the production of inflammatory responses (i.e., TNF-α, IL-6, and IL-8) were attributed to inhibiting the activity of nuclear factor-kappa B (NF-κB). In addition, DATS inhibited the production of serum nitric oxide NO and myeloperoxidase (MPO) in the lungs of Kunming mice. The histological analysis results indicate that DATS inhibited the naphthalene-induced lung damage, which is consistent with the in vitro study results. The in vivo and in vitro results suggest that DATS may be an effective attenuator of naphthalene-induced lung damage. PMID:26548347

  1. Nitric Oxide Synthase Inhibitors Prevent the Growth-inhibiting Effects of Quinpirole

    PubMed Central

    Nickla, Debora L.; Lee, Laimeng; Totonelly, Kristen

    2014-01-01

    Purpose Both dopamine and nitric oxide (NO) have been implicated in the signal cascade mediating ocular growth inhibition. If both are part of the same pathway, which precedes the other? We tested the hypothesis that dopamine acts upstream of NO, by using two NOS inhibitors in combination with the dopamine agonist quinpirole, and measuring the effects on ocular growth rate. Methods Chicks wore −10 D lenses or diffusers (FD) for 4d starting at age 13d. Experimental eyes received daily 20 μl injections of the following: Quinpirole: lens: n=12; FD: n=20; n-ω-propyl-L-arginine (n-PLA): lens: n=6; FD: n=4; quinpirole + n-PLA: lens: n=17; FD: n=19; quinpirole + L-NIO: lens: n=12; FD: n=12. Saline injections were done as controls. High frequency ultrasonography was done at the start, and on day 5, prior to injections and 3 hours later. Refractions were measured on day5. Results As expected, quinpirole prevented the development of axial myopia in both paradigms. When quinpirole was combined with either NOS inhibitor, however, eyes became myopic compared to quinpirole (FD: n-PLA: −5.9D vs −3.4D; L-NIO: −5.8D vs −3.4D; LENS: n-PLA: −3.5D vs −0.4D; p<0.05 for all; L-NIO was not significant). This was the result of a dis-inhibition of vitreous chamber growth vs quinpirole (FD: n-PLA: 401 vs 275 μm/4d; L-NIO: 440 vs 275 μm/4d; LENS: n-PLA: 407 vs 253/4d; L-NIO: 403 vs 253 μm/4d; p<0.05). Only n-PLA prevented the quinpirole-induced choroidal thickening in lens-wearing eyes (0 vs 31 μm/3hr; p<0.05). Choroidal thickening was not inhibited by either drug in FD eyes. Conclusions Dopamine acts upstream of NO and the choroidal response in the signal cascade mediating ocular growth inhibition in both form deprivation and negative lens wear. That neither NOS inhibitor inhibits choroidal thickening in FD eyes suggests that the choroidal mechanisms differ in the two paradigms. PMID:24061155

  2. Multivalency in the Inhibition of Oxidative Protein Folding by Arsenic(III) Species

    PubMed Central

    2015-01-01

    The renewed use of arsenicals as chemotherapeutics has rekindled interest in the biochemistry of As(III) species. In this work, simple bis- and tris-arsenical derivatives were synthesized with the aim of exploiting the chelate effect in the inhibition of thiol-disulfide oxidoreductases (here, Quiescin sulfhydryl oxidase, QSOX, and protein disulfide isomerase, PDI) that utilize two or more CxxC motifs in the catalysis of oxidative protein folding. Coupling 4-aminophenylarsenoxide (APAO) to acid chloride or anhydride derivatives yielded two bis-arsenical prototypes, BA-1 and BA-2, and a tris-arsenical, TA-1. Unlike the monoarsenical, APAO, these new reagents proved to be strong inhibitors of oxidative protein folding in the presence of a realistic intracellular concentration of competing monothiol (here, 5 mM reduced glutathione, GSH). However, this inhibition does not reflect direct inactivation of QSOX or PDI, but avid binding of MVAs to the reduced unfolded protein substrates themselves. Titrations of reduced riboflavin-binding protein with MVAs show that all 18 protein −SH groups can be captured by these arsenicals. With reduced RNase, addition of substoichiometric levels of MVAs is accompanied by the formation of Congo Red- and Thioflavin T-positive fibrillar aggregates. Even with Kd values of ∼50 nM, MVAs are ineffective inhibitors of PDI in the presence of millimolar levels of competing GSH. These results underscore the difficulties of designing effective and specific arsenical inhibitors for folded enzymes and proteins. Some of the cellular effects of arsenicals likely reflect their propensity to associate very tightly and nonspecifically to conformationally mobile cysteine-rich regions of proteins, thereby interfering with folding and/or function. PMID:25506675

  3. Cytotoxic and Nitric Oxide Inhibition Activities of Propolis Extract along with Microencapsulation by Complex Coacervation.

    PubMed

    Onbas, Rabia; Kazan, Aslihan; Nalbantsoy, Ayse; Yesil-Celiktas, Ozlem

    2016-09-01

    In this study, cytotoxicity of ethanol extract of propolis (EEP) originating from Sivas, Turkey was screened against several cancer cell lines, namely PC-3, U87MG, A-549, mPANC96, CaCo-2, MCF-7, HeLa, MDA-MB-231 and a non-tumor cell line HEK293 by MTT assay. The inhibition levels of inducible nitric oxide synthase (iNOS) were also determined by using RAW 264.7 macrophage cells following lipopolysaccharide (LPS) treatment. EEP exhibited significant cytotoxic nitric oxide inhibition activities with an IC50 value of 0.1 ± 0.1 μg/ml indicating a high potential as an anti-inflammatory agent. In spite of these promising results and the fact that propolis is a highly nutritive substance, its low solubility and bitter taste limit the applications as a natural supplement. Encapsulation might serve as a good strategy in order to overcome these problems. Complex coacervation was applied where the main focus was on surfactant type, polymer ratio (alginate:gelatin), stirring rate and concentration of core material. The mean particle size of unloaded microparticles were 22.62 μm obtained with gelatin:alginate ratio of 1:1 at a stirring rate of 1400 rpm with 2 ml of 1 % (w/v) sodium carboxymethyl cellulose (Na-CMC), whereas addition of EEP at a concentration of 100 mg/ml increased the mean particle size to 36.44 μm and yielded an encapsulation efficiency of 98.77 %. The cytotoxicities of EEP loaded microparticles were also assessed both on MCF-7 and MDA-MB-231 where similar results were achieved as free EEP which can enhance the possible use of propolis extract in the industry as a natural supplement. PMID:27380456

  4. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    PubMed

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells. PMID:26392813

  5. Regional intestinal blood flow and nitric oxide synthase inhibition during sepsis in the rat.

    PubMed Central

    Klemm, K; Moody, F G

    1998-01-01

    OBJECTIVE: Regional circulatory changes in intestinal mucosa were evaluated after the onset of septic shock and the effect of nitric oxide (NO) inhibition on mucosal blood flow was investigated at different locations along the intestine. SUMMARY BACKGROUND DATA: The response of intestinal blood flow to different physiologic and pharmacologic stimuli is known to vary along the intestine, but limited data are available on regional alterations in intestinal blood flow during septic shock. These regional variations in intestinal blood flow could become important because NO inhibition might restore the circulation of one segment of the gut or exacerbate ischemia that may be occurring concomitantly in another segment of the intestine. METHODS: Mucosal blood flow was studied with fluorescent microspheres in conscious unrestrained rats before and 2, 4, and 6 hours after lipopolysaccharide (LPS, 20 mg/kg intraperitoneally) induced sepsis in the presence and absence of the nitric oxide synthase inhibitor N(G)-nitro-L-argininemethylester (L-NAME, 5 mg/kg subcutaneously). RESULTS: Control mucosal blood flow was significantly higher in the ileum than in the duodenum, jejunum, or colon. During LPS-induced sepsis, mucosal blood flow to the ileum decreased and perfusion to the remaining gut was preserved. This was accompanied by hypotension throughout the experiment. L-NAME administration during sepsis prevented hypotension and decreased mucosal blood flow to all segments of small intestine at 2 hours. In this group, mucosal blood flow to the proximal small intestine but not to the ileum returned to baseline levels at 4 and 6 hours. L-NAME alone decreased mucosal blood flow to the small intestine throughout the experiment. CONCLUSIONS: This study indicates that mucosal blood flow alterations during septic shock vary along the intestine, with a significant change only in the ileum, suggesting that perfusion in the small intestine is dependent on physiologic NO production. PMID

  6. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage.

    PubMed

    Wang, Ying-Jan; Yang, Ming-Chen; Pan, Ming-Hsiung

    2008-12-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several diseases, including hepatic disorder and diabetic polyneuropathy. However, the effects of LA or its reduced form, dihydrolipoic acid (DHLA), on cancer chemoprevention has seldom been studied. Tetrachlorohydroquinone (TCHQ) is a toxic metabolite of pentachlorophenol (PCP) that was proven to be a tumor promoter in our previous study. We recently reported that DHLA can inhibit DMBA/TPA-induced skin tumor formation through its anti-inflammatory and anti-oxidizing functions. In the present study, we further examined the effects of DHLA on DMBA/TCHQ-induced skin tumor formation and the possible mechanisms. We found that DHLA significantly inhibited tumor incidence and tumor multiplicity in DMBA/TCHQ-induced skin tumor formation. Administration of DHLA prevented ROS generation, cytotoxicity, genotoxicity and apoptotic cell death in cells treated with TCHQ. In addition, activation of JNK and p38 MAPK may be involved in TCHQ-mediated apoptosis. Nonetheless, the detailed mechanisms of DHLA in attenuating TCHQ-induced skin tumor promotion are still unclear and need to be further investigated. We conclude that DHLA may be a useful protective agent against TCHQ-induced toxicity in epithelial cells, and for reversing TCHQ-induced damage in mouse skin. PMID:18951944

  7. Nitric oxide inhibits cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi.

    PubMed

    Venturini, G; Salvati, L; Muolo, M; Colasanti, M; Gradoni, L; Ascenzi, P

    2000-04-13

    Nitric oxide (NO) is a pluripotent regulatory molecule showing, among others, an antiparasitic activity. Moreover, NO inhibits cysteine proteinase action by nitrosylating the Cys catalytic residue. In the present study, the inhibitory effect of the substrate N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methyl coumarin) and of NO on the catalytic activity of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi (the hemoflagellate protozoan parasite which causes the American trypanosomiasis), is reported. In particular, NO-donors S-nitroso-glutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), 3-morpholinosydnonimine (SIN-1), S-nitroso-acetyl-penicillamine (SNAP), and sodium nitroprusside (SNP) dose-dependently inhibited cruzipain, this effect being likely attributable to the S-nitrosylation of the Cys25 catalytic residue. These results were analyzed in parallel with those concerning the inhibitory effect of the substrate and of NO on the catalytic activity of falcipain, the cruzipain-homologous cysteine proteinase from Plasmodium falciparum. The modulation of the cruzipain and falcipain activity by NO may be relevant in developing new strategies against T. cruzi and P. falciparum in human host. As a whole, the NO-mediated S-nitrosylation of pathogenic viral, bacterial, fungal, and parasitic cysteine proteinases may represent a general mechanism of antimicrobial and antiparasitic host defences. PMID:10753643

  8. Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis

    PubMed Central

    Zheng, Jian; Piao, Mei Jing; Keum, Young Sam; Kim, Hye Sun; Hyun, Jin Won

    2013-01-01

    Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofl uorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxideinduced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosispromoting mediators (i.e., B-cell lymphoma-2-associated x protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis. PMID:24244811

  9. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation.

    PubMed

    Zhang, Min; Zhang, Bao Hui; Chen, Li; An, Wei

    2002-06-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation. PMID:12118938

  10. Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases.

    PubMed Central

    Zech, Birgit; Köhl, Roman; von Knethen, Andreas; Brüne, Bernhard

    2003-01-01

    Caspases are critical for the initiation and execution of apoptosis. Nitric oxide (NO) or derived species can prevent programmed cell death in several cell types, reportedly through S-nitrosation and inactivation of active caspases. Although we find that S-nitrosation of caspases can occur in vitro, our study questions whether this post-translational modification is solely responsible for NO-mediated inhibition of apoptosis. Indeed, using Jurkat cells as a model system, we demonstrate that NO donors block Fas- and etoposide-induced caspase activation and apoptosis (downstream of mitochondrial membrane depolarization) and cytochrome c release. However, caspase activity was not restored by the strong reducing agent dithiothreitol, as predicted for S-nitrosation reactions, thereby excluding active-site-thiol modification of caspases as the only anti-apoptotic mechanism of NO donors in cells. Rather, we observed that processing of procaspases-9, -3 and -8 was decreased due to ineffective formation of the Apaf-1/caspase-9 apoptosome. Gel-filtration and in vitro binding assays indicated that NO donors inhibit correct assembly of Apaf-1 into an active approx. 700 kDa apoptosome complex, and markedly attenuate caspase-recruitment domain (CARD)-CARD interactions between Apaf-1 and procaspase-9. Therefore we suggest that NO or a metabolite acts directly at the level of the apoptosome and inhibits the sequential activation of caspases-9, -3 and -8, which are required for both stress- and receptor-induced death in cells that use the mitochondrial subroute of cell demise. PMID:12605597

  11. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis. PMID:27151496

  12. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans

    NASA Technical Reports Server (NTRS)

    Sander, M.; Chavoshan, B.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    In experimental animals, systemic administration of nitric oxide synthase (NOS) inhibitors causes large increases in blood pressure that are in part sympathetically mediated. The aim of this study was to determine the extent to which these conclusions can be extrapolated to humans. In healthy normotensive humans, we measured blood pressure in response to two NOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), the latter of which recently became available for use in humans. The major new findings are 3-fold. First, L-NAME produced robust increases in blood pressure that were more than 2 times larger than those previously reported in humans with L-NMMA and approximated those seen in experimental animals. L-NAME (4 mg/kg) raised mean arterial pressure by 24+/-2 mm Hg (n=27, P<0.001), whereas in subjects who received both inhibitors, a 12-fold higher dose of L-NMMA (50 mg/kg) raised mean arterial pressure by 15+/-2 mm Hg (n=4, P<0.05 vs L-NAME). Second, the L-NAME-induced increases in blood pressure were caused specifically by NOS inhibition because they were reversed by L-arginine (200 mg/kg, n=12) but not D-arginine (200 mg/kg, n=6) and because NG-nitro-D-arginine methyl ester (4 mg/kg, n=5) had no effect on blood pressure. Third, in humans, there is an important sympathetic component to the blood pressure-raising effect of NOS inhibition. alpha-Adrenergic blockade with phentolamine (0.2 mg/kg, n=9) attenuated the L-NAME-induced increase in blood pressure by 40% (P<0.05). From these data, we conclude that pharmacological inhibition of NOS causes large increases in blood pressure that are in part sympathetically mediated in humans as well as experimental animals.

  13. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    PubMed Central

    Boushel, Robert; Langberg, Henning; Gemmer, Carsten; Olesen, Jens; Crameri, Regina; Scheede, Celena; Sander, Michael; Kjær, Michael

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by l-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release of PG. Compared to control, combined blockade resulted in a 5- to 10-fold lower muscle interstitial PG level. During control incremental knee extension exercise, mean blood flow in the quadriceps muscles rose from 10 ± 0.8 ml (100 ml tissue)−1 min−1 at rest to 124 ± 19, 245 ± 24, 329 ± 24 and 312 ± 25 ml (100 ml tissue)−1 min−1 at 15, 30, 45 and 60 W, respectively. During inhibition of NOS and PG, blood flow was reduced to 8 ± 0.5 ml (100 ml tissue)−1 min−1 at rest, and 100 ± 13, 163 ± 21, 217 ± 23 and 256 ± 28 ml (100 ml tissue)−1 min−1 at 15, 30, 45 and 60 W, respectively (P < 0.05 vs. control). In conclusion, combined inhibition of NOS and PG reduced muscle blood flow during dynamic exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction. PMID:12205200

  14. Simplified 2-Aminoquinoline-Based Scaffold for Potent and Selective Neuronal Nitric Oxide Synthase Inhibition

    PubMed Central

    2015-01-01

    Since high levels of nitric oxide (NO) are implicated in neurodegenerative disorders, inhibition of the neuronal isoform of nitric oxide synthase (nNOS) and reduction of NO levels are therapeutically desirable. Nonetheless, many nNOS inhibitors mimic l-arginine and are poorly bioavailable. 2-Aminoquinoline-based scaffolds were designed with the hope that they could (a) mimic aminopyridines as potent, isoform-selective arginine isosteres and (b) possess chemical properties more conducive to oral bioavailability and CNS penetration. A series of these compounds was synthesized and assayed against purified nNOS enzymes, endothelial NOS (eNOS), and inducible NOS (iNOS). Several compounds built on a 7-substituted 2-aminoquinoline core are potent and isoform-selective; X-ray crystallography indicates that aminoquinolines exert inhibitory effects by mimicking substrate interactions with the conserved active site glutamate residue. The most potent and selective compounds, 7 and 15, were tested in a Caco-2 assay and showed good permeability and low efflux, suggesting high potential for oral bioavailability. PMID:24472039

  15. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  16. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    PubMed

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. PMID:26511841

  17. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    PubMed

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  18. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria

    PubMed Central

    Wang, Y; Yang, F; Zhang, H-X; Zi, X-Y; Pan, X-H; Chen, F; Luo, W-D; Li, J-X; Zhu, H-Y; Hu, Y-P

    2013-01-01

    Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers. PMID:23990023

  19. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity.

    PubMed

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Liu, Kun; Li, Mu; Yin, Daqiang

    2014-12-01

    Over the past few decades, human activities have accelerated the rates and extents of water eutrophication and global warming through increasing delivery of biologically available nitrogen such as nitrate and large emissions of anthropogenic greenhouse gases. In particular, nitrous oxide (N2O) is one of the most important greenhouse gases, because it has a 300-fold higher global warming potential than carbon dioxide. Microbial denitrification is a major pathway responsible for nitrate removal, and also a dominant source of N2O emissions from terrestrial or aquatic environments. However, whether the release of zinc oxide nanoparticles (ZnO NPs) into the environment affects microbial denitrification is largely unknown. Here we show that the presence of ZnO NPs lead to great increases in nitrate delivery (9.8-fold higher) and N2O emissions (350- and 174-fold higher in the gas and liquid phases, respectively). Our data further reveal that ZnO NPs significantly change the transcriptional regulations of glycolysis and polyhydroxybutyrate synthesis, which causes the decrease in reducing powers available for the reduction of nitrate and N2O. Moreover, ZnO NPs substantially inhibit the gene expressions and catalytic activities of key denitrifying enzymes. These negative effects of ZnO NPs on microbial denitrification finally cause lower nitrate removal and higher N2O emissions, which is likely to exacerbate water eutrophication and global warming. PMID:25384038

  20. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer.

    PubMed

    Roh, Jong-Lyel; Park, Jin Young; Kim, Eun Hye; Jang, Hye Jin; Kwon, Minsu

    2016-02-01

    Dichloroacetate (DCA), an orphan drug that promotes a shift from glycolysis to oxidative phosphorylation, has been repurposed for cancer therapy. The present study investigated whether DCA may overcome cisplatin resistance in head and neck cancer (HNC). Two cisplatin-resistant HNC cell lines (AMC-HN4R and -HN9R), their parental lines, and other human HNC lines were used. The effect of DCA, alone and in combination with cisplatin, was assessed by measuring cell cycle, viability, death, reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and protein expression in preclinical mouse tumor xenograft models. Increased glycolysis correlated with decreased sensitivity to cisplatin and was reduced by DCA. Cisplatin-resistant cells overexpressed pyruvate dehydrogenase kinase 2 (PDK2). DCA induced HNC cell death by decreasing ΔΨm and promoting mitochondrial ROS production. This effect was decreased by the antioxidant N-acetyl-l-cysteine or by inhibition of caspase-mediated apoptosis. Activation of mitochondrial glucose oxidation by DCA eventually activated downstream mitochondrial apoptotic signaling, leading to the death of chemoresistant cancer cells. Therefore, DCA significantly sensitized resistant HNC cells to cisplatin in vitro and in vivo. High glycolysis and PDK2 overexpression are closely linked to cisplatin resistance in HNC cells; the latter can be overcome by DCA. PMID:26607904

  1. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress.

    PubMed

    Zheng, Jing; Inoguchi, Toyoshi; Sasaki, Shuji; Maeda, Yasutaka; McCarty, Mark F; Fujii, Masakazu; Ikeda, Noriko; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-01-15

    We and other investigators have reported that bilirubin and its precursor biliverdin may have beneficial effects on diabetic vascular complications, including nephropathy, via its antioxidant effects. Here, we investigated whether phycocyanin derived from Spirulina platensis, a blue-green algae, and its chromophore phycocyanobilin, which has a chemical structure similar to that of biliverdin, protect against oxidative stress and renal dysfunction in db/db mice, a rodent model for Type 2 diabetes. Oral administration of phycocyanin (300 mg/kg) for 10 wk protected against albuminuria and renal mesangial expansion in db/db mice, and normalized tumor growth factor-β and fibronectin expression. Phycocyanin also normalized urinary and renal oxidative stress markers and the expression of NAD(P)H oxidase components. Similar antioxidant effects were observed following oral administration of phycocyanobilin (15 mg/kg) for 2 wk. Phycocyanobilin, bilirubin, and biliverdin also inhibited NADPH dependent superoxide production in cultured renal mesangial cells. In conclusion, oral administration of phycocyanin and phycocyanobilin may offer a novel and feasible therapeutic approach for preventing diabetic nephropathy. PMID:23115122

  2. Phosphodiesterase 5 Inhibition Limits Doxorubicin-induced Heart Failure by Attenuating Protein Kinase G Iα Oxidation.

    PubMed

    Prysyazhna, Oleksandra; Burgoyne, Joseph Robert; Scotcher, Jenna; Grover, Steven; Kass, David; Eaton, Philip

    2016-08-12

    Phosphodiesterase 5 (PDE5) inhibitors limit myocardial injury caused by stresses, including doxorubicin chemotherapy. cGMP binding to PKG Iα attenuates oxidant-induced disulfide formation. Because PDE5 inhibition elevates cGMP and protects from doxorubicin-induced injury, we reasoned that this may be because it limits PKG Iα disulfide formation. To investigate the role of PKG Iα disulfide dimerization in the development of apoptosis, doxorubicin-induced cardiomyopathy was compared in male wild type (WT) or disulfide-resistant C42S PKG Iα knock-in (KI) mice. Echocardiography showed that doxorubicin treatment caused loss of myocardial tissue and depressed left ventricular function in WT mice. Doxorubicin also reduced pro-survival signaling and increased apoptosis in WT hearts. In contrast, KI mice were markedly resistant to the dysfunction induced by doxorubicin in WTs. In follow-on experiments the influence of the PDE5 inhibitor tadalafil on the development of doxorubicin-induced cardiomyopathy in WT and KI mice was investigated. In WT mice, co-administration of tadalafil with doxorubicin reduced PKG Iα oxidation caused by doxorubicin and also protected against cardiac injury and loss of function. KI mice were again innately resistant to doxorubicin-induced cardiotoxicity, and therefore tadalafil afforded no additional protection. Doxorubicin decreased phosphorylation of RhoA (Ser-188), stimulating its GTPase activity to activate Rho-associated protein kinase (ROCK) in WTs. These pro-apoptotic events were absent in KI mice and were attenuated in WTs co-administered tadalafil. PKG Iα disulfide formation triggers cardiac injury, and this initiation of maladaptive signaling can be blocked by pharmacological therapies that elevate cGMP, which binds kinase to limit its oxidation. PMID:27342776

  3. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae.

    PubMed

    Eijkelkamp, Bart A; Morey, Jacqueline R; Ween, Miranda P; Ong, Cheryl-lynn Y; McEwan, Alastair G; Paton, James C; McDevitt, Christopher A

    2014-01-01

    Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a 'toxic' effect on bacterial pathogens, such as S. pneumoniae. PMID:24558498

  4. Nitric Oxide Synthase Inhibition Attenuates Cardiac Response to Hemodilution with Viscogenic Plasma Expander

    PubMed Central

    Cabrales, Pedro

    2014-01-01

    Background and Objectives Increased vascular wall shear stress by elevated plasma viscosity significantly enhances the endothelial nitric oxide synthase (eNOS) activity during an acute isovolemic hemodilution. Also the modulation of plasma viscosity has effects on the cardiac function that were revealed if a left ventricular (LV) pressure-volume (PV) measurement was used. The aim of this study was to assess cardiac function responses to nitric oxide synthase (NOS) inhibitors with the presence of an elevated plasma viscosity but a low hematocrit level. Furthermore, systemic parameters were monitored in a murine model. Materials and Methods As test group five anesthetized hamsters were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), NOS inhibitor, whereas five other hamsters were used as control group without L-NAME infusion. The dosage of L-NAME was 10 mg/kg. An isovolemic hemodilution was performed by 40% of estimated blood volume with 6% w/v dextran 2000 kDa, high viscosity plasma expanders (PEs) with viscosity 6.34 cP. LV function was measured and assessed using a 1.4 Fr PV conductance catheter. Results The study results demonstrated that NOS inhibition prevented the normal cardiac adaptive response after hemodilution. The endsystolic pressure increased 14% after L-NAME infusion and maintained higher than at the baseline after hemodilution, whereas it gradually decreased in the animals without L-NAME infusion. The admission of L-NAME significantly decreased the maximum rate of ventricular pressure rise (+dP/dtmax), stroke volume and cardiac output after hemodilution if compared to the control group (p<0.05). Conclusion This finding supports the presumption that nitric oxide induced by an increased plasma viscosity with the use of a high viscosity PE plays a major role in the cardiac function during an acute isovolemic hemodilution. PMID:24653740

  5. Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae

    PubMed Central

    Eijkelkamp, Bart A.; Morey, Jacqueline R.; Ween, Miranda P.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Paton, James C.; McDevitt, Christopher A.

    2014-01-01

    Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a ‘toxic’ effect on bacterial pathogens, such as S. pneumoniae. PMID:24558498

  6. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress.

    PubMed

    Miranda-Rottmann, Soledad; Aspillaga, Augusto A; Pérez, Druso D; Vasquez, Luis; Martinez, Alvaro L F; Leighton, Federico

    2002-12-18

    Oxidative modification of low-density lipoprotein (LDL) particles is a key event in the development of atherosclerosis. Oxidized LDL induces oxidative stress and modifies gene expression in endothelial cells. Berries constitute a rich dietary source of phenolic antioxidants. We found that the endemic Chilean berry Aristotelia chilensis (ach) has higher phenol content and scores better for total radical-trapping potential and total antioxidant reactivity in in vitro antioxidant capacity tests, when compared to different commercial berries. The juice of ach is also effective in inhibiting copper-induced LDL oxidation. In human endothelial cell cultures, the addition of ach juice significantly protects from hydrogen peroxide-induced intracellular oxidative stress and is dose-dependent. The aqueous, anthocyanin-rich fraction of ach juice accounts for most of ach's antioxidant properties. These results show that ach is a rich source of phenolics with high antioxidant capacity and suggest that it may have antiatherogenic properties. PMID:12475268

  7. Compact Two-Liquid Microfluidic Hyperelastic Capacitive Strain Sensors

    NASA Astrophysics Data System (ADS)

    Liu, Shanliangzi; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Applications of liquid metal microfluidic devices include flexible electronics, biomedical devices, and soft robotics. In addition to single channel resistive strain sensors, two channel capacitive sensors have also been developed. However, these capacitive strain sensors have low capacitance with a footprint of about a square centimeter, making strain-output correlation quite complex. To address this issue, we developed a compact two liquid single straight channel capacitive strain sensor with a dielectric liquid sandwiched between two liquid metal electrodes. Formation of the capacitor with a liquid dielectric instead of PDMS enables capacitance increase through selection of high permittivity liquid. Using a custom experimental setup, we show that use of water and glycerol instead of silicone oil in-between the liquid metal electrodes can increase the device capacitance by fivefold. We discuss the effect of channel diameter, dielectric spacing, interfacial meniscus shape, and the liquid flow on device capacitance as well as response to strain. In addition, we discuss the effect of gallium oxide shell formation at the dielectric-liquid metal interface. KR acknowledges startup funding from ASU.

  8. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1983-07-15

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  9. Capacitive label reader

    DOEpatents

    Arlowe, H. Duane

    1985-01-01

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  10. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1985-11-12

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.

  11. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  12. An Adenosine Triphosphate-Phosphate Exchange Catalyzed by a Soluble Enzyme Couple Inhibited by Uncouplers of Oxidative Phosphorylation

    PubMed Central

    Allison, William S.; Benitez, Lita V.

    1972-01-01

    The sulfenic acid form of glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), which is an acyl phosphatase, will catalyze an acetyl phosphate-Pi exchange reaction. This exchange reaction is reversibly inhibited by the uncouplers of oxidative phosphorylation, 2,4-dinitrophenol, m-Cl carbonylcyanide-phenylhydrazone, pentachlorophenol, and 5-chloro-3-tert-butyl-2′-chloro-4′-nitrosalicylanalide, and is irreversibly inhibited by cyanide and dicumarol. An ATP-Pi exchange reaction similar to that catalyzed by mitochondria can be simulated by a system composed of oxidized glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase (EC 2.7.1.28), 3-phosphoglycerate, ATP, 32Pi, and appropriate cofactors. The ATP-Pi exchange is inhibited by uncouplers of oxidative phosphorylation. Higher concentrations of uncouplers will also inhibit the ATPase reaction catalyzed by the coupled enzyme system. The exchange reactions catalyzed by the sulfenic acid form of glyceraldehyde-3-phosphate are consistent with a sulfenyl carboxylate intermediate. On the basis of these observations, a reaction scheme has been postulated for covalent coupling in oxidative phosphorylation that includes a sulfenyl carboxylate as a nonphosphorylated, high energy intermediate and an acyl phosphate as a phosphorylated, high energy intermediate. PMID:4507619

  13. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  14. Direct measurement and characterization of n+ superhalo implants in a 120 nm gate-length Si metal-oxide-semiconductor field-effect transistor using cross-sectional scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Rosenthal, P. A.; Taur, Y.; Yu, E. T.

    2002-11-01

    We have directly measured nanoscale electronic features associated with a 120 nm physical gate length p-channel silicon metal-oxide-semiconductor field-effect transistor device structure including n+ superhalo implants using cross-sectional scanning capacitance microscopy (SCM). A dc bias-dependent voltage series of SCM images representing nine bias conditions from 2 to -2 V in 0.5 V steps was obtained. The SCM contrast observed varies with the ac and dc bias applied to the sample and allows delineation of the device features, including the p+ source and drain contacts, p+ source and drain extensions, p+ polycrystalline silicon gate, electrical p-n junction, n-well, and n+ superhalo implants. It is demonstrated that the superhalo implant features are imaged only under specific SCM bias conditions. Detailed analysis of the resulting SCM contrast indicates an apparent channel length of 73±11 nm, and reveals clear asymmetry in the individual lobes of the n+ superhalo implant features.

  15. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis.

    PubMed

    Sun, Xiao; Chen, Rong-chang; Yang, Zhi-hong; Sun, Gui-bo; Wang, Min; Ma, Xiao-jun; Yang, Li-juan; Sun, Xiao-bo

    2014-01-01

    Diabetic cardiomyopathy has been increasingly recognized as an important cause of heart failure in diabetic patients. Excessive oxidative stress has been suggested to play a critical role in the development of diabetic cardiomyopathy. The objective of this study was to investigate the potential protective effects and mechanisms of taxifolin on cardiac function of streptozotocin-induced diabetic mice and on hyperglycemia-induced apoptosis of H9c2 cardiac myoblasts. In vivo study revealed that taxifolin improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and enhanced endogenous antioxidant enzymes activities. Interestingly, taxifolin reduced angiotensin II level in myocardium, inhibited NADPH oxidase activity, and increased JAK/STAT3 activation. In vitro investigation demonstrated that taxifolin inhibited 33 mM glucoseinduced H9c2 cells apoptosis by decreasing intracellular ROS level. It also inhibited caspase-3 and caspase-9 activation, restored mitochondrial membrane potential, and regulated the expression of proteins related to the intrinsic pathway of apoptosis, thus inhibiting the release of cytochrome c from mitochondria into the cytoplasm. In conclusion, taxifolin exerted cardioprotective effects against diabetic cardiomyopathy by inhibiting oxidative stress and cardiac myocyte apoptosis and might be a potential agent in the treatment of diabetic cardiomyopathy. PMID:24269735

  16. Bilirubin scavenges chloramines and inhibits myeloperoxidase-induced protein/lipid oxidation in physiologically relevant hyperbilirubinemic serum.

    PubMed

    Boon, A C; Hawkins, C L; Coombes, J S; Wagner, K H; Bulmer, A C

    2015-09-01

    Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl(-) oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl(-) to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl(-)-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9-125µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl. PMID:26057938

  17. Mechanistic study of TRPM2-Ca(2+)-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition.

    PubMed

    Wang, Qian; Guo, Wenjing; Hao, Baixia; Shi, Xianli; Lu, Yingying; Wong, Connie W M; Ma, Victor W S; Yip, Timothy T C; Au, Joseph S K; Hao, Quan; Cheung, King-Ho; Wu, Wutian; Li, Gui-Rong; Yue, Jianbo

    2016-08-01

    Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca(2+) influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca(2+) influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca(2+) influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca(2+) influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca(2+)-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca(2+)-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition. PMID:27245989

  18. α2A-adrenoceptors, but not nitric oxide, mediate the peripheral cardiac sympatho-inhibition of moxonidine.

    PubMed

    Cobos-Puc, Luis E; Aguayo-Morales, Hilda; Silva-Belmares, Yesenia; González-Zavala, Maria A; Centurión, David

    2016-07-01

    Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10μg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300μg/kg, α2A), imiloxan, (3000μg/kg, α2B), and JP-1302, (300μg/kg, α2C), in animals pretreated with AGN 192403 (3000μg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340μg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10μg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340μg/kgmin) given alone; (2) partially antagonized by the combination of 340 μg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide. PMID:27112661

  19. The inhibiting activity of areca inflorescence extracts on human low density lipoprotein oxidation induced by cupric ion.

    PubMed

    Chen, Weijun; Zhang, Chunmei; Huang, Yulin; Cheng, Fangfang; Shen, Yan; Wang, Rencai; Tang, Minmin; Zheng, Yajun; Zhao, Songlin

    2012-03-01

    The oxidative modification of human low density lipoprotein (LDL) plays a significant role in atherosclerosis. In this study, the inhibiting activity of areca inflorescence extracts (AIEs) on LDL oxidation was investigated by an in vitro study with Trolox as the standard antioxidant. The kinetics of LDL oxidation, thiobarbituric acid reactive substances assay, ferric-reducing antioxidant power assay and copper chelation assay were also evaluated to assess the antioxidant activities of AIEs, and the results revealed that AIEs could delay the lag time and inhibit the formation of malondialdehyde in the process of LDL peroxidation induced by Cu(2+). The boiled water extract displayed the highest antioxidant activity compared with the ambient water extract and ethanol extract. The total phenolic contents and phenolic components of AIEs were also measured by high performance liquid chromatography method. Epicatechin, gallic acid and coumalic acid were the primary phenolic acids in AIEs. PMID:21942744

  20. Packed Red Blood Cells Are an Abundant and Proximate Potential Source of Nitric Oxide Synthase Inhibition

    PubMed Central

    Zwemer, Charles F.; Davenport, Robertson D.; Gomez-Espina, Juan; Blanco-Gonzalez, Elisa; Whitesall, Steven E.; D'Alecy, Louis G.

    2015-01-01

    Objective We determined, for packed red blood cells (PRBC) and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS) inhibitors asymmetric dimethylarginine (ADMA) and monomethylarginine (LNMMA). Background ADMA and LNMMA are near equipotent NOS inhibitors forming blood’s total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined. Methods We measured total (free and protein incorporated) ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis. Results In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM) and LNMMA (58.9 ± 28.9 μM) that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma. Conclusion The compelling physiological ramifications are that regardless of storage age, 1) PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2) PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate

  1. Normalization of Supine Blood Pressure After Nitric Oxide Synthase Inhibition in Persons With Tetraplegia

    PubMed Central

    Wecht, Jill M; Weir, Joseph P; Krothe, AnnMarie H; Spungen, Ann M; Bauman, William A

    2007-01-01

    Background/Objective: Orthostatic hypotension is a well-defined clinical consequence of spinal cord injury (SCI), particularly in those with tetraplegia. The etiology of orthostatic hypotension is thought to be loss of sympathetic vasomotor control, although other factors may play a role. There is evidence of up-regulation of nitric oxide synthase (NOS) activity after hind-limb suspension in rats, a condition of antigravity that may have similar vascular effects as shown in persons with tetraplegia caused by paralysis. The study objective was to determine the effect of a NOS inhibitor (nitro-L-arginine methyl ester [L-NAME]) on supine mean arterial pressure in persons with chronic tetraplegia compared with non-SCI controls. Methods: Fourteen individuals participated (7 with tetraplegia and 7 controls). Subjects visited the laboratory twice for placebo on day 1 and L-NAME (1 mg/kg) on day 2; both were infused intravenously over 60 minutes. Blood pressure was monitored for 3 hours after infusion at the brachial artery using a standard manual cuff. Results: Mean arterial pressure (MAP) was lower at baseline (P < 0.05) and after placebo administration (P < 0.0001) in the tetraplegia group compared with the control group. L-NAME increased MAP in both groups; however, the relative increase was greater in the tetraplegia group compared with the control group, such that group differences for MAP were eliminated. Supine MAP was normalized with L-NAME, and there was an increased sensitivity to NOS inhibition in the group with tetraplegia. Conclusions: These findings indicate that blood pressure dysregulation in persons with tetraplegia may reflect increased vascular NO and suggest a novel treatment of hypotension using NOS inhibition in this population. PMID:17385265

  2. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice

    PubMed Central

    Stanishevsky, Andrei; Bulger, Arlene; Halloran, Brian; Steele, Chad; Vohra, Yogesh; Matalon, Sadis

    2013-01-01

    Nanoparticles are used in an increasing number of biomedical, industrial, and food applications, but their safety profiles in developing organisms, including the human fetus and infant, have not been evaluated. Titanium oxide (TiO2) nanoparticles, which are commonly used in cosmetics, sunscreens, paints, and food, have been shown to induce emphysema and lung inflammation in adult mice. We hypothesized that exposure of newborn mice to TiO2 would induce lung inflammation and inhibit lung development. C57BL/6 mice were exposed to TiO2 (anatase; 8–10 nm) nanoparticles by intranasal instillation as a single dose on postnatal day 4 (P4) or as three doses on postnatal days 4, 7, and 10 (each dose = 1 μg/g body wt). Measurements of lung function (compliance and resistance), development (morphometry), inflammation (histology; multiplex analysis of bronchoalveolar lavage fluid for cytokines; PCR array and multiplex analysis of lung homogenates for cytokines) was performed on postnatal day 14. It was observed that a single dose of TiO2 nanoparticles led to inflammatory cell influx, and multiple doses led to increased inflammation and inhibition of lung development without significant effects on lung function. Macrophages were noted to take up the TiO2 nanoparticles, followed by polymorphonuclear infiltrate. Multiple cytokines and matrix metalloproteinase-9 were increased in lung homogenates, and VEGF was reduced. These results suggest that exposure of the developing lung to nanoparticles may lead to ineffective clearance by macrophages and persistent inflammation with resulting effects on lung development and may possibly impact the risk of respiratory disorders in later life. PMID:23220372

  3. Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells

    PubMed Central

    Bartesaghi, Stefano; Graziano, Vincenzo; Galavotti, Sara; Henriquez, Nick V.; Betts, Joanne; Saxena, Jayeta; Minieri, Valentina; A, Deli; Karlsson, Anna; Martins, L. Miguel; Capasso, Melania; Nicotera, Pierluigi; Brandner, Sebastian; De Laurenzi, Vincenzo; Salomoni, Paolo

    2015-01-01

    Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis. PMID:25583481

  4. Lysozyme and Penicillin Inhibit the Growth of Anaerobic Ammonium-Oxidizing Planctomycetes

    PubMed Central

    Hu, Ziye; van Alen, Theo; Jetten, Mike S. M.

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) planctomycetes oxidize ammonium in the absence of molecular oxygen with nitrite as the electron acceptor. Although planctomycetes are generally assumed to lack peptidoglycan in their cell walls, recent genome data imply that the anammox bacteria have the genes necessary to synthesize peptidoglycan-like cell wall structures. In this study, we investigated the effects of two antibacterial agents that target the integrity and synthesis of peptidoglycan (lysozyme and penicillin G) on the anammox bacterium Kuenenia stuttgartiensis. The effects of these compounds were determined in both short-term batch incubations and long-term (continuous-cultivation) growth experiments in membrane bioreactors. Lysozyme at 1 g/liter (20 mM EDTA) lysed anammox cells in less than 60 min, whereas penicillin G did not have any observable short-term effects on anammox activity. Penicillin G (0.5, 1, and 5 g/liter) reversibly inhibited the growth of anammox bacteria in continuous-culture experiments. Furthermore, transcriptome analyses of the penicillin G-treated reactor and the control reactor revealed that penicillin G treatment resulted in a 10-fold decrease in the ribosome levels of the cells. One of the cell division proteins (Kustd1438) was downregulated 25-fold. Our results suggested that anammox bacteria contain peptidoglycan-like components in their cell wall that can be targeted by lysozyme and penicillin G-sensitive proteins were involved in their synthesis. Finally, we showed that a continuous membrane reactor system with free-living planktonic cells was a very powerful tool to study the physiology of slow-growing microorganisms under physiological conditions. PMID:24096424

  5. Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2014-09-01

    Plant responses to abiotic stress significantly affect the development of cells, tissues and organs. However, no studies correlating Pb-induced mitotic inhibition and DNA damage and the alterations in redox homeostasis during root division per se were found in the literature. Therefore, an experiment was conducted to evaluate the impact of Pb on mitotic activity and the associated changes in the oxidative metabolism in onion roots. The cytotoxic effect of Pb on cell division was assessed in the root meristems of Allium cepa (onion). The mitotic index (MI) was calculated and chromosomal abnormalities were sought. Pb-treatment induced a dose-dependent decrease in MI in the onion root tips and caused mitotic abnormalities such as distorted metaphase, fragments, sticky chromosomes, laggards, vagrant chromosomes and bridges. Single Cell Gel Electrophoresis was also performed to evaluate Pb induced genotoxicity. It was accompanied by altered oxidative metabolism in the onion root tips suggesting the interference of Pb with the redox homeostasis during cell division. There was a higher accumulation of malondialdehyde, conjugated dienes and hydrogen peroxide, and a significant increase in the activities of superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases in Pb-treated onion roots, whereas catalases activity exhibited a decreasing pattern upon Pb exposure. The study concludes that Pb-induced cytotoxicity and genotoxicity in the onion roots is mediated through ROS and is also tightly linked to the cell cycle. The exposure to higher concentrations arrested cell cycle leading to cell death, whereas different repair responses are generated at lower concentrations, thereby allowing the cell to complete the cell cycle. PMID:25023386

  6. p90 RSK-1 associates with and inhibits neuronal nitric oxide synthase

    PubMed Central

    Song, Tao; Sugimoto, Katsuyoshi; Ihara, Hideshi; Mizutani, Akihiro; Hatano, Naoya; Kume, Kodai; Kambe, Toshie; Yamaguchi, Fuminori; Tokuda, Masaaki; Watanabe, Yasuo

    2006-01-01

    Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS–RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain. PMID:16984226

  7. Nitric oxide therapies for local inhibition of platelets' activitation on blood-contacting surfaces

    NASA Astrophysics Data System (ADS)

    Amoako, Kagya Agyeman

    Blood-contacting devices interact with blood during their function much like the endothelium that modulates hemostasis. The surfaces of these devices however, lack endothelial-like properties, and consequently, upon blood contact, activate clotting factors to form clots. Systemic heparinization for inhibiting clot formation can cause bleeding and surface coatings show insignificant benefits. This research investigated nitric oxide (NO) production mimicry of the endothehum on artificial lungs (ALs) and pediatric catheters. Their surfaces were functionalized either by (1) entrapping NO donors inside their bulk, (2) incorporating catalysts to generate NO from NO-donors or (3) supplementing NO into sweep gas of artificial lungs. Pediatric catheters functionalized with NO-donor thin coats using method 1 is limited by short NO release duration. Method 2 has not been applied to large surface-area, low-flow devices like the AL. In this work NO-generating silicone membranes were synthesized and characterized to determine the relationship between surface properties, NO flux, and blood clotting time. These outcomes helped develop and optimize NO-generating gas-exchange silicone fibers that represent the majority of ALs surface area. The first NO-generating AL prototypes, using those fibers, were manufactured, incorporated into NO-generating circuits and tested for their non-thrombogenicity. To test for NO-release duration and non-thrombogenicity, catheters were fabricated to incorporate NO-donors inside their walls, characterized for NO flux and release duration by chemilumincscence, and tested for patency using a thrombogenicity model in rabbits. Methods 1-2 involve material modification using complicated and expensive chemical formulations and/or manufacturing. Method 3 however, functionalizes ALs by only adding NO into sweep gas. Decade-long anti-clotting testing using a wide range of NO concentrations has been conducted without knowledge of what concentration yields

  8. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPAR alpha.

    PubMed

    Sethi, Sanjeev; Ziouzenkova, Ouliana; Ni, Heyu; Wagner, Denisa D; Plutzky, Jorge; Mayadas, Tanya N

    2002-08-15

    Omega-3 fatty acids, which are abundant in fish oil, improve the prognosis of several chronic inflammatory diseases although the mechanism for such effects remains unclear. These fatty acids, such as eicosapentaenoic acid (EPA), are highly polyunsaturated and readily undergo oxidation. We show that oxidized, but not native unoxidized, EPA significantly inhibited human neutrophil and monocyte adhesion to endothelial cells in vitro by inhibiting endothelial adhesion receptor expression. In transcriptional coactivation assays, oxidized EPA potently activated the peroxisome proliferator-activated receptor alpha (PPAR alpha), a member of the nuclear receptor family. In vivo, oxidized, but not native, EPA markedly reduced leukocyte rolling and adhesion to venular endothelium of lipopolysaccharide (LPS)-treated mice. This occurred via a PPAR alpha-dependent mechanism because oxidized EPA had no such effect in LPS-treated PPAR alpha-deficient mice. Therefore, the beneficial effects of omega-3 fatty acids may be explained by a PPAR alpha-mediated anti-inflammatory effect of oxidized EPA. PMID:12149216

  9. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats.

    PubMed

    Qiao, Yu-Feng; Guo, Wen-Juan; Li, Lu; Shao, Shan; Qiao, Xi; Shao, Jin-Jin; Zhang, Qiong; Li, Rong-Shan; Wang, Li-Hua

    2016-01-01

    The aim of the present study was to investigate the protective effects of melatonin (MLT) on hypertension-induced renal injury and identify its mechanism of action. Twenty-four healthy male Wistar rats were divided into a sham control group (n=8), which was subjected to sham operation and received vehicle treatment (physiological saline intraperitoneally at 0.1 ml/100 g), a vehicle group (n=8), which was subjected to occlusion of the left renal artery and vehicle treatment, and the MLT group (n=8), which was subjected to occlusion of the left renal artery and treated with MLT (10 mg/kg/day). Pathological features of the renal tissues were determined using hematoxylin and eosin staining and Masson staining. Urine protein, serum creatinine (Scr), superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical analysis was performed to determine the expression of heme oxygenase‑1 (HO‑1), intercellular adhesion molecule‑1 (ICAM‑1), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). Furthermore, reverse transcription polymerase chain reaction was conducted to determine the mRNA expression of HO‑1, ICAM‑1, eNOS and iNOS. A marked decrease in blood pressure was noticed in the MLT group at week 4 compared with that of the vehicle group (P<0.01). Furthermore, MLT treatment attenuated the infiltration of inflammatory cells and oedema/atrophy of renal tubules. MLT attenuated hypertension-induced increases in urine protein excretion, serum creatinine and MDA as well as decreases in SOD activity in renal tissues. Furthermore, MLT attenuated hypertension-induced increases in iNOS and ICAM‑1 as well as decreases in eNOS and HO‑1 expression at the mRNA and protein level. In conclusion, the results of the present study indicated that MLT had protective roles in hypertension‑induced renal injury. Its mechanism of action is, at least in part, associated with the inhibition of oxidative stress. PMID:26531807

  10. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats

    PubMed Central

    QIAO, YU-FENG; GUO, WEN-JUAN; LI, LU; SHAO, SHAN; QIAO, XI; SHAO, JIN-JIN; ZHANG, QIONG; LI, RONG-SHAN; WANG, LI-HUA

    2016-01-01

    The aim of the present study was to investigate the protective effects of melatonin (MLT) on hypertension-induced renal injury and identify its mechanism of action. Twenty-four healthy male Wistar rats were divided into a sham control group (n=8), which was subjected to sham operation and received vehicle treatment (physiological saline intraperitoneally at 0.1 ml/100 g), a vehicle group (n=8), which was subjected to occlusion of the left renal artery and vehicle treatment, and the MLT group (n=8), which was subjected to occlusion of the left renal artery and treated with MLT (10 mg/kg/day). Pathological features of the renal tissues were determined using hematoxylin and eosin staining and Masson staining. Urine protein, serum creatinine (Scr), superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical analysis was performed to determine the expression of heme oxygenase-1 (HO-1), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). Furthermore, reverse transcription polymerase chain reaction was conducted to determine the mRNA expression of HO-1, ICAM-1, eNOS and iNOS. A marked decrease in blood pressure was noticed in the MLT group at week 4 compared with that of the vehicle group (P<0.01). Furthermore, MLT treatment attenuated the infiltration of inflammatory cells and oedema/atrophy of renal tubules. MLT attenuated hypertension-induced increases in urine protein excretion, serum creatinine and MDA as well as decreases in SOD activity in renal tissues. Furthermore, MLT attenuated hypertension-induced increases in iNOS and ICAM-1 as well as decreases in eNOS and HO-1 expression at the mRNA and protein level. In conclusion, the results of the present study indicated that MLT had protective roles in hypertension-induced renal injury. Its mechanism of action is, at least in part, associated with the inhibition of oxidative stress. PMID:26531807

  11. Paeoniflorin ameliorates acute myocardial infarction of rats by inhibiting inflammation and inducible nitric oxide synthase signaling pathways.

    PubMed

    Chen, Chang; Du, Ping; Wang, Junjie

    2015-09-01

    Paeoniflorin (PF) is the main active component of the commonly used Traditional Chinese Medicine peony, Paeonia Suffruticosa. PF has diverse biological functions and exhibits anti‑oxidative, anti‑inflammatory and anti‑apoptotic activity. Inducible nitric oxide synthase (iNOS) is a catalyzing enzyme that is involved in the synthesis of nitric oxide (NO). NO has an important regulatory role in the cardiovascular, immune and nervous systems. PF has previously been demonstrated to inhibit the gene expression of iNOS. The present study aimed to identify a potentially novel cytoprotective function of PF, and to elucidate its effects against myocardial ischemic damage in a rat model of acute myocardial infarction (AMI). PF was able to significantly decrease the myocardial infarct size as well as the activities of creatine kinase (CK), the MB isoenzyme of CK, lactate dehydrogenase and cardiac troponin T. In addition, in the PF‑treated groups, the expression levels of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and nuclear factor‑κB were markedly inhibited. Furthermore, treatment with PF inhibited the activities and protein expression levels of iNOS. Decreased caspase‑3 and caspase‑9 activities were also observed in the AMI rat model treated with various doses of PF. The results of the present study indicated that the cardioprotective effects of PF may be associated with the inhibition of inflammation and iNOS signaling pathways. PMID:26035555

  12. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity.

    PubMed

    Bal-Price, A; Brown, G C

    2001-09-01

    Glia undergo inflammatory activation in most CNS pathologies and are capable of killing cocultured neurons. We investigated the mechanisms of this inflammatory neurodegeneration using a mixed culture of neurons, microglia, and astrocytes, either when the astrocytes were activated directly with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) or LPS/IFN-gamma-activated microglia were added to mixed neuronal cultures. In either case, activated glia caused 75-100% necrotic cell death within 48 hr, which was completely prevented by inhibitors of inducible nitric oxide synthase (iNOS) (aminoguanidine or 1400W). Activated astrocytes or microglia produced nitric oxide (NO) (steady-state level approximately 0.5 microm), which immediately inhibited the cellular respiration of cocultured neurons, as did authentic NO. NO donors also decreased ATP levels and stimulated lactate production by neurons, consistent with NO-induced respiratory inhibition. NO donors or a specific respiratory inhibitor caused rapid (<1 min) release of glutamate from neuronal and neuronal-astrocytic cultures and subsequent neuronal death that was blocked by an antagonist of NMDA receptor (MK-801). MK-801 also blocked neuronal death induced by activated glia. High oxygen also prevented NO-induced neuronal death, consistent with death being induced by NO inhibition of cytochrome c oxidation in competition with oxygen. Thus activated glia kill neurons via NO from iNOS, which inhibits neuronal respiration resulting in glutamate release and subsequent excitotoxicity. This may contribute to neuronal cell death in inflammatory, infectious, ischemic, and neurodegenerative diseases. PMID:11517237

  13. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    PubMed

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration. PMID:24599102

  14. Inhibition of potassium-stimulated dopamine release by the nitric oxide generator isosorbide dinitrate.

    PubMed

    Sun, P; Kanthasamy, A; Yim, G K; Isom, G E

    1995-02-01

    In PC12 cells, isosorbide dinitrate (ISDN) and S-nitrosol-acetyl-penicillamine (SNAP), both nitric oxide (NO) generators, attenuated K+ (56 mM)-stimulated release of dopamine. The attenuation was not observed with isosorbide, an ISDN analog lacking NO generating capacity. In this model, A23187 (Ca2+ ionophore), Bay K8644 (Ca2+ slow channel agonist) and veratridine (Na+ channel agonist) stimulated dopamine release. Treatment with ISDN enhanced Bay K8644 and veratridine-evoked dopamine release, while ISDN had no significant effect on the A23187 response. Incubation with 8-bromo-cGMP (membrane permeable cGMP analog) had no effect on basal or stimulated dopamine release in these cells, suggesting NO's response was not mediated by cGMP. In additional studies, K+ (56 mM), Bay K8644 and veratridine elevated cytosolic free calcium levels ([Ca2+]i). ISDN reduced K(+)-stimulated increase in [Ca2+]i, but enhanced the increases of [Ca2+]i induced by Bay K8644 or veratridine. These results suggest NO interacts with K(+)-induced membrane depolarization (possibly by inhibiting membrane conductance to K+) to attenuate Ca2+ influx and Ca(2+)-mediated dopamine secretion stimulated by K+. PMID:7542370

  15. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression

    PubMed Central

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15. PMID:27486320

  16. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    PubMed Central

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  17. Inhibition of Mycobacterium tuberculosis AhpD, an Element of the Peroxiredoxin Defense against Oxidative Stress

    PubMed Central

    Koshkin, Aleksey; Zhou, Xiao-ti; Kraus, Carl N.; Brenner, Jason M.; Bandyopadhyay, Pradipta; Kuntz, Irwin D.; Barry, Clifton E.; Ortiz de Montellano, Paul R.

    2004-01-01

    The resistance of Mycobacterium tuberculosis to isoniazid (INH) is largely linked to suppression of a catalase-peroxidase enzyme (KatG) that activates INH. In the absence of KatG, antioxidant protection is provided by enhanced expression of the peroxiredoxin AhpC, which is itself reduced by AhpD, a protein with low alkylhydroperoxidase activity of its own. Inhibition of AhpD might therefore impair the antioxidant protection afforded by AhpC and make KatG-negative strains more sensitive to oxidative stress. We report here that the 3(E),17-dioxime of testosterone is a potent competitive AhpD inhibitor, with a Ki of 50 ± 2 nM. The inhibitor is stereospecific, in that the 3(E) but not 3(Z) isomer is active. Computational studies provide support for a proposed AhpD substrate binding site. However, the inhibitor does not completely suppress the in vitro activity of AhpC/AhpD, because a low titer of AhpD suffices to maintain AhpC activity. This finding, and the low solubility of the inhibitor, explains its inability to suppress the growth of INH-resistant M. tuberculosis in infected mouse lungs. PMID:15215090

  18. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    PubMed Central

    Forkink, Marleen; Basit, Farhan; Teixeira, José; Swarts, Herman G.; Koopman, Werner J.H.; Willems, Peter H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24 h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY581/591 and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling. PMID:26516986

  19. Effect of Astaxanthin on Human Sperm Capacitation

    PubMed Central

    Donà, Gabriella; Kožuh, Ivana; Brunati, Anna Maria; Andrisani, Alessandra; Ambrosini, Guido; Bonanni, Guglielmo; Ragazzi, Eugenio; Armanini, Decio; Clari, Giulio; Bordin, Luciana

    2013-01-01

    In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS) plays a key role in causing cells to undergo a massive acrosome reaction (AR). Astaxanthin (Asta), a photo-protective red pigment belonging to the carotenoid family, is recognized as having anti-oxidant, anti-cancer, anti-diabetic and anti-inflammatory properties and is present in many dietary supplements. This study evaluates the effect of Asta in a capacitating buffer which induces low ROS production and low percentages of acrosome-reacted cells (ARC). Sperm cells were incubated in the presence or absence of increasing concentrations of Asta or diamide (Diam) and analyzed for their ROS production, Tyr-phosphorylation (Tyr-P) pattern and percentages of ARC and non-viable cells (NVC). Results show that Asta ameliorated both sperm head Tyr-P and ARC values without affecting the ROS generation curve, whereas Diam succeeded in enhancing the Tyr-P level but only of the flagellum without increasing ARC values. It is suggested that Asta can be inserted in the membrane and therefore create capacitation-like membrane alteration which allow Tyr-P of the head. Once this has occurred, AR can take place and involves a higher numbers of cells. PMID:23736766

  20. Effect of astaxanthin on human sperm capacitation.

    PubMed

    Donà, Gabriella; Kožuh, Ivana; Brunati, Anna Maria; Andrisani, Alessandra; Ambrosini, Guido; Bonanni, Guglielmo; Ragazzi, Eugenio; Armanini, Decio; Clari, Giulio; Bordin, Luciana

    2013-06-01

    In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS) plays a key role in causing cells to undergo a massive acrosome reaction (AR). Astaxanthin (Asta), a photo-protective red pigment belonging to the carotenoid family, is recognized as having anti-oxidant, anti-cancer, anti-diabetic and anti-inflammatory properties and is present in many dietary supplements. This study evaluates the effect of Asta in a capacitating buffer which induces low ROS production and low percentages of acrosome-reacted cells (ARC). Sperm cells were incubated in the presence or absence of increasing concentrations of Asta or diamide (Diam) and analyzed for their ROS production, Tyr-phosphorylation (Tyr-P) pattern and percentages of ARC and non-viable cells (NVC). Results show that Asta ameliorated both sperm head Tyr-P and ARC values without affecting the ROS generation curve, whereas Diam succeeded in enhancing the Tyr-P level but only of the flagellum without increasing ARC values. It is suggested that Asta can be inserted in the membrane and therefore create capacitation-like membrane alteration which allow Tyr-P of the head. Once this has occurred, AR can take place and involves a higher numbers of cells. PMID:23736766

  1. Selective Inhibition of MAPK Phosphatases by Zinc Accounts for ERK1/2-dependent Oxidative Neuronal Cell Death

    PubMed Central

    Ho, Yeung; Samarasinghe, Ranmal; Knoch, Megan E.; Lewis, Marcia; Aizenman, Elias; DeFranco, Donald B.

    2008-01-01

    Oxidative stress induced by glutathione depletion in the mouse HT22 neuroblastoma cell line and embryonic rat immature cortical neurons causes a delayed, sustained activation of extracellular signal-regulated kinases-1/2 (ERK1/2), which is required for cell death. This sustained activation of ERK1/2 is mediated primarily by a selective inhibition of distinct ERK1/2-directed phosphatases either by enhanced degradation (i.e. for Mitogen activated protein kinase [MAPK] Phosphatase-1) or as shown here by reductions in enzymatic activity (i.e. for Protein Phosphatase type 2A [PP-2A]). The inhibition of ERK1/2 phosphatases in HT22 cells and immature neurons subjected to glutathione depletion results from oxidative stress as phosphatase activity is restored in cells treated with the antioxidant butylated hydroxyanisole (BHA). This leads to reduced ERK1/2 activation and neuroprotection. Furthermore, an increase in free intracellular zinc that accompanies glutathione-induced oxidative stress in HT22 cells and immature neurons contributes to selective inhibition of ERK1/2 phosphatase activity and cell death. Finally, ERK1/2 also functions to maintain elevated levels of zinc. Thus the elevation of intracellular zinc within neurons subjected to oxidative stress can trigger a robust positive feedback loop operating through activated ERK1/2 that rapidly sets into motion a zinc-dependent pathway of cell death. PMID:18635668

  2. Inhibition of mitochondrial permeability transition by low pH is associated with less extensive membrane protein thiol oxidation.

    PubMed

    Teixeira, B M; Kowaltowski, A J; Castilho, R F; Vercesi, A E

    1999-12-01

    Ca2+ and inorganic phosphate-induced mitochondrial swelling and membrane protein thiol oxidation, which are associated with mitochondrial permeability transition, are inhibited by progressively decreasing the incubation medium pH between 7.2 and 6.0. Nevertheless, the detection of mitochondrial H2O2 production under these conditions is increased. Permeability transition induced by phenylarsine oxide, which promotes membrane protein thiol cross-linkage in a process independent of Ca2+ or reactive oxygen species, is also strongly inhibited in acidic incubation media. In addition, we observed that the decreased protein thiol reactivity with phenylarsine oxide or phenylarsine oxide-induced swelling at pH 6.0 is reversed by diethyl pyrocarbonate, in a hydroxylamine-sensitive manner. These results provide evidence that the inhibition of mitrochondrial permeability transition observed at lower incubation medium pH is mediated by a decrease in membrane protein thiol reactivity, related to the protonation of protein histidyl residues. PMID:10841269

  3. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    PubMed

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  4. Selective inhibition of ammonium oxidation and nitrification-linked N2O formation by methyl fluoride and dimethyl ether

    USGS Publications Warehouse

    Miller, L.G.; Coutlakis, M.D.; Oremland, R.S.; Ward, B.B.

    1993-01-01

    Methyl fluoride (CH3F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH3F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO2- and N2O production from NH4+ in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH2OH) by N. europaea and oxidation of NO2- by a Nitrobacter sp. were unaffected by CH3F or DME. In nitrifying soils, CH3F and DME inhibited N2O production. In field experiments with surface flux chambers and intact cores, CH3F reduced the release of N2O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH3F also resulted in decreased NO3- + NO2- levels and increased NH4+ levels in soils. CH3F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate- respiring bacterium, nor did it affect N2O metabolism in denitrifying soils. CH3F and DME will be useful in discriminating N2O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO2- and NO3- production.

  5. Nanocomposite of p-type conductive polymer/functionalized graphene oxide nanosheets as novel and hybrid electrodes for highly capacitive pseudocapacitors.

    PubMed

    Ehsani, A; Mohammad Shiri, H; Kowsari, E; Safari, R; Torabian, J; Kazemi, S

    2016-09-15

    An effective approach for increasing the life cycle of poly ortho aminophenol (POAP) as a p-type conductive polymers is combining conventional conductive polymers and nanomaterials to fabricate hybrid electrodes. In this paper, functionalized graphene oxide (FGO) has first been synthesized using a chemical approach. Hybrid POAP/FGO films have then been fabricated by POAP electropolymerization in the presence of FGO nanoparticles as active electrodes for electrochemical supercapacitors. Based on the atomic scale study results, it seems that H3PO4(-) oxygen atoms and terminal pyridine ring nitrogen atoms play a crucial role in the intramolecular charge and energy transfer in the FGO molecular systems. Theoretical studies, surface and electrochemical analyses have been used for characterization of POAP/FGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. This work introduces new nanocomposite materials for electrochemical redox capacitors with such advantages as the ease of synthesis, high active surface area and stability in an aqueous electrolyte. PMID:27295320

  6. Negative capacitance for ultra-low power computing

    NASA Astrophysics Data System (ADS)

    Khan, Asif Islam

    Owing to the fundamental physics of the Boltzmann distribution, the ever-increasing power dissipation in nanoscale transistors threatens an end to the almost-four-decade-old cadence of continued performance improvement in complementary metal-oxide-semiconductor (CMOS) technology. It is now agreed that the introduction of new physics into the operation of field-effect transistors---in other words, "reinventing the transistor'"--- is required to avert such a bottleneck. In this dissertation, we present the experimental demonstration of a novel physical phenomenon, called the negative capacitance effect in ferroelectric oxides, which could dramatically reduce power dissipation in nanoscale transistors. It was theoretically proposed in 2008 that by introducing a ferroelectric negative capacitance material into the gate oxide of a metal-oxide-semiconductor field-effect transistor (MOSFET), the subthreshold slope could be reduced below the fundamental Boltzmann limit of 60 mV/dec, which, in turn, could arbitrarily lower the power supply voltage and the power dissipation. The research presented in this dissertation establishes the theoretical concept of ferroelectric negative capacitance as an experimentally verified fact. The main results presented in this dissertation are threefold. To start, we present the first direct measurement of negative capacitance in isolated, single crystalline, epitaxially grown thin film capacitors of ferroelectric Pb(Zr0.2Ti0.8)O3. By constructing a simple resistor-ferroelectric capacitor series circuit, we show that, during ferroelectric switching, the ferroelectric voltage decreases, while the stored charge in it increases, which directly shows a negative slope in the charge-voltage characteristics of a ferroelectric capacitor. Such a situation is completely opposite to what would be observed in a regular resistor-positive capacitor series circuit. This measurement could serve as a canonical test for negative capacitance in any novel

  7. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic.

    PubMed

    Fuhrman, B; Volkova, N; Rosenblat, M; Aviram, M

    2000-01-01

    Several lines of evidence suggest that oxidatively modified low-density lipoprotein (LDL) is atherogenic, and that atherosclerosis can be attenuated by natural antioxidants, which inhibit LDL oxidation. This study was conducted to determine the effect of tomato lycopene alone, or in combination with other natural antioxidants, on LDL oxidation. LDL (100 microg of protein/ml) was incubated with increasing concentrations of lycopene or of tomato oleoresin (lipid extract of tomatoes containing 6% lycopene, 0.1% beta-carotene, 1% vitamin E, and polyphenols), after which it was oxidized by the addition of 5 micromol/liter of CuSO4. Tomato oleoresin exhibited superior capacity to inhibit LDL oxidation in comparison to pure lycopene, by up to five-fold [97% vs. 22% inhibition of thiobarbituric acid reactive substances (TBARS) formation, and 93% vs. 27% inhibition of lipid peroxides formation, respectively]. Because tomato oleoresin also contains, in addition to lycopene, vitamin E, flavonoids, and phenolics, a possible cooperative interaction between lycopene and such natural antioxidants was studied. A combination of lycopene (5 micromol/liter) with vitamin E (alpha-tocopherol) in the concentration range of 1-10 micromol/liter resulted in an inhibition of copper ion-induced LDL oxidation that was significantly greater than the expected additive individual inhibitions. The synergistic antioxidative effect of lycopene with vitamin E was not shared by gamma-to-cotrienol. The polyphenols glabridin (derived from licorice), rosmarinic acid or carnosic acid (derived from rosemary), as well as garlic (which contains a mixture of natural antioxidants) inhibited LDL oxidation in a dose-dependent manner. When lycopene (5 micromol/liter) was added to LDL in combination with glabridin, rosmarinic acid, carnosic acid, or garlic, synergistic antioxidative effects were obtained against LDL oxidation induced either by copper ions or by the radical generator AAPH. Similar interactive

  8. Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress

    PubMed Central

    2014-01-01

    Background The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC). Methods Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2. Results PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2. Conclusions Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent. PMID:24575839

  9. NTBC treatment of the pyomelanogenic Pseudomonas aeruginosa clinical isolate PA1111 inhibits pigment production and increases sensitivity to oxidative stress.

    PubMed

    Ketelboeter, Laura M; M Ketelboeter, Laura; Potharla, Vishwakanth Y; Y Potharla, Vishwakanth; Bardy, Sonia L; L Bardy, Sonia

    2014-09-01

    Pyomelanin is a brown/black extracellular pigment with antioxidant and iron acquisition properties that is produced by a number of different bacteria. Production of pyomelanin in Pseudomonas aeruginosa contributes to increased resistance to oxidative stress and persistence in chronic infections. We demonstrate that pyomelanin production can be inhibited by 2-[2-nitro-4-(trifluoromethyl) benzoyl]-1,3-cyclohexanedione (NTBC). This treatment increases sensitivity of pyomelanogenic P. aeruginosa strains to oxidative stress, without altering the growth rate or resistance to aminoglycosides. As such, NTBC has potential to function as an anti-virulence factor in treating pyomelanogenic bacterial infections. PMID:24801336

  10. Dual inhibition of nitric oxide and prostaglandin E2 production by polysubstituted 2-aminopyrimidines.

    PubMed

    Zídek, Zdeněk; Kverka, Miloslav; Dusilová, Adéla; Kmoníčková, Eva; Jansa, Petr

    2016-07-01

    The present in vitro experiments demonstrate inhibitory effects of polysubstituted 2-aminopyrimidines on high output production of nitric oxide (NO) and prostaglandin E2 (PGE2) stimulated by interferon-γ and lipopolysaccharide (LPS) in peritoneal macrophages of mouse and rat origin. PGE2 production was inhibited also in LPS-activated human peripheral blood mononuclear cells. A tight dependence of the suppressive activities on chemical structure of pyrimidines was observed. Derivatives containing hydroxyl groups at the C-4 and C-6 positions of pyrimidine ring were devoid of any influence on NO and PGE2. Remarkable inhibitory potential was acquired by the replacement of hydroxyl groups with chlorine, the 4,6-dichloro derivatives being more effective than the monochloro analogues. The effects were further intensified by modification of the amino group at the C-2 position, changing it to the (N,N-dimethylamino)methyleneamino or the formamido ones. There was no substantial difference in the expression of NO-inhibitory effects among derivatives containing distinct types of substituents at the C-5 position (hydrogen, methyl, ethyl, propyl, butyl, phenyl, and benzyl). In contrast to NO, larger substituents then methyl were required to inhibit PGE2 production. Overall, no significant correlation between the extent of NO and PGE2 suppression was observed. The IC50s of derivatives with the strongest effects on both NO and PGE2 were within the range of 2-10 μM. Their NO-inhibitory potential of pyrimidines was stronger than that of non-steroidal anti-inflammatory drugs (NSAIDs) aspirin and indomethacin. The PGE2-inhibitory effectiveness of pyrimidines was about the same as that of aspirin, but weaker as compared to indomethacin. The NO- and PGE2-inhibitory activity of tested pyrimidines has been found associated with decreased expression of iNOS mRNA and COX-2 mRNA, respectively, and with post-translation interactions. Selected NO-/PGE2-inhibitory derivatives decreased

  11. Seminal vesicle proteins SVS3 and SVS4 facilitate SVS2 effect on sperm capacitation.

    PubMed

    Araki, Naoya; Kawano, Natsuko; Kang, Woojin; Miyado, Kenji; Yoshida, Kaoru; Yoshida, Manabu

    2016-10-01

    Mammalian spermatozoa acquire their fertilizing ability in the female reproductive tract (sperm capacitation). On the other hand, seminal vesicle secretion, which is a major component of seminal plasma, inhibits the initiation of sperm capacitation (capacitation inhibition) and reduces the fertility of the capacitated spermatozoa (decapacitation). There are seven major proteins involved in murine seminal vesicle secretion (SVS1-7), and we have previously shown that SVS2 acts as both a capacitation inhibitor and a decapacitation factor, and is indispensable for in vivo fertilization. However, the effects of SVSs other than SVS2 on the sperm have not been elucidated. Since mouse Svs2-Svs6 genes evolved by gene duplication belong to the same gene family, it is possible that SVSs other than SVS2 also have some effects on sperm capacitation. In this study, we examined the effects of SVS3 and SVS4 on sperm capacitation. Our results showed that both SVS3 and SVS4 are able to bind to spermatozoa, but SVS3 alone showed no effects on sperm capacitation. On the other hand, SVS4 acted as a capacitation inhibitor, although it did not show decapacitation abilities. Interestingly, SVS3 showed an affinity for SVS2 and it facilitated the effects of SVS2. Interaction of SVS2 and spermatozoa is mediated by the ganglioside GM1 in the sperm membrane; however, both SVS3 and SVS4 had weaker affinities for GM1 than SVS2. Therefore, we suggest that separate processes may cause capacitation inhibition and decapacitation, and SVS3 and SVS4 act on sperm capacitation cooperatively with SVS2. PMID:27486266

  12. Capacitively-coupled inductive sensor

    DOEpatents

    Ekdahl, Carl A.

    1984-01-01

    A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.

  13. Inhibition of bacterial transport by uncouplers of oxidative phosphorylation. Effects of pentachlorophenol and analogues in Bacillus subtilis.

    PubMed Central

    Nicholas, R A; Ordal, G W

    1978-01-01

    Analogues of the potent uncoupler of oxidative phosphorylation pentachlorophenol were tested as inhibitors of proline and glycine transport by Bacillus subtilis. These analogues included less highly substituted chlorophenols and pentachlorothiophenol. Like pentachlorophenol, they are non-competitive inhibitors of proline transport and uncompetitive inhibitors of glycine transport. However, the less highly substituted chlorophenols are weaker acids than pentachlorophenol and also weaker inhibitors. Analysis indicated that the anionic form of the uncouplers is the inhibiting species. Pentachlorothiophenol, a water-insoluble anion, is also a potent inhibitor. These results support previous studies that concluded that uncouplers of oxidative phosphorylation inhibit amino acid transport by binding at specific sites on proteins, the free energy of interaction stabilizing 'unproductive' conformations. Such specific interactions of uncoupler with protein are probably commonplace. PMID:106840

  14. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle

    PubMed Central

    Fang, Yong-Hu; Piao, Lin; Hong, Zhigang; Toth, Peter T.; Marsboom, Glenn; Bache-Wiig, Peter; Rehman, Jalees

    2011-01-01

    Right ventricular hypertrophy (RVH) and RV failure are major determinants of prognosis in pulmonary hypertension and congenital heart disease. In RVH, there is a metabolic shift from glucose oxidation (GO) to glycolysis. Directly increasing GO improves RV function, demonstrating the susceptibility of RVH to metabolic intervention. However, the effects of RVH on fatty acid oxidation (FAO), the main energy source in adult myocardium, are unknown. We hypothesized that partial inhibitors of FAO (pFOXi) would indirectly increase GO and improve RV function by exploiting the reciprocal relationship between FAO and GO (Randle’s cycle). RVH was induced in adult Sprague-Dawley rats by pulmonary artery banding (PAB). pFOXi were administered orally to prevent (trimetazidine, 0.7 g/L for 8 weeks) or regress (ranolazine 20 mg/day or trimetazidine for 1 week, beginning 3 weeks post-PAB) RVH. Metabolic, hemodynamic, molecular, electrophysiologic, and functional comparisons with sham rats were performed 4 or 8 weeks post-PAB. Metabolism was quantified in RV working hearts, using a dual-isotope technique, and in isolated RV myocytes, using a Seahorse Analyzer. PAB-induced RVH did not cause death but reduced cardiac output and treadmill walking distance and elevated plasma epinephrine levels. Increased RV FAO in PAB was accompanied by increased carnitine palmitoyl-transferase expression; conversely, GO and pyruvate dehydrogenase (PDH) activity were decreased. pFOXi decreased FAO and restored PDH activity and GO in PAB, thereby increasing ATP levels. pFOXi reduced the elevated RV glycogen levels in RVH. Trimetazidine and ranolazine increased cardiac output and exercise capacity and attenuated exertional lactic acidemia in PAB. RV monophasic action potential duration and QTc interval prolongation in RVH normalized with trimetazidine. pFOXi also decreased the mild RV fibrosis seen in PAB. Maladaptive increases in FAO reduce RV function in PAB-induced RVH. pFOXi inhibit FAO, which

  15. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression

    NASA Astrophysics Data System (ADS)

    Song, Hongyuan; Wang, Wenbo; Zhao, Ping; Qi, Zhongtian; Zhao, Shihong

    2014-02-01

    Angiogenesis is a process that forms new blood capillaries from existing vessels, which is of great physiological and pathological significance. Although recent studies provide evidence that cuprous oxide nanoparticles (CO-NPs) may have biomedical potential, the mechanisms of CO-NPs in angiogenesis have not been investigated to date. We have studied the anti-angiogenic properties of CO-NPs on primary human umbilical vein endothelial cells (HUVECs). We found that CO-NPs were able to induce cell morphology changes and suppress cell proliferation, migration and tube formation in vitro and in vivo dose dependently. Furthermore, CO-NPs could induce cell apoptosis both at the early and late apoptotic stage and induce cell cycle arrest at S phase in a dose dependent manner. As signalling via the vascular endothelial growth factor receptor-2 (VEGFR2) is critical for angiogenic responses, we further explored the expression of VEGFR2 after the treatment of CO-NPs. They were found to inhibit VEGFR2 expression dose and time dependently both at the protein and mRNA level while had no effect on VEGF and VEGFR1 expression. Together, we report for the first time that CO-NPs can act as an anti-angiogenic agent by suppressing VEGFR2 expression, which may be a potential nanomedicine for angiogenesis therapy.Angiogenesis is a process that forms new blood capillaries from existing vessels, which is of great physiological and pathological significance. Although recent studies provide evidence that cuprous oxide nanoparticles (CO-NPs) may have biomedical potential, the mechanisms of CO-NPs in angiogenesis have not been investigated to date. We have studied the anti-angiogenic properties of CO-NPs on primary human umbilical vein endothelial cells (HUVECs). We found that CO-NPs were able to induce cell morphology changes and suppress cell proliferation, migration and tube formation in vitro and in vivo dose dependently. Furthermore, CO-NPs could induce cell apoptosis both at the early and

  16. Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine.

    PubMed

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-08-01

    Lipid oxidation has been implicated in the pathogenesis of many diseases. Lipids are oxidized in vivo by several different oxidants to give diverse products, in general lipid hydroperoxides as the major primary product. In the present study, the production of lipid hydroperoxides in the oxidation of mouse plasma induced by multiple oxidants was measured using diphenyl-1-pyrenylphosphine (DPPP) as a probe. DPPP itself is not fluorescent, but it reacts with lipid hydroperoxides stochiometrically to give highly fluorescent DPPP oxide and lipid hydroxides. The production of lipid hydroperoxides could be followed continuously in the oxidation of plasma induced by peroxynitrite, hypochlorite, 15-lipoxygenase, and peroxyl radicals with a microplate reader. A clear lag phase was observed in the plasma oxidation mediated by aqueous peroxyl radicals and peroxynitrite, but not in the oxidation induced by hypochlorite and lipoxygenase. The effects of several antioxidants against lipid oxidation induced by the above oxidants were assessed. The efficacy of antioxidants was dependent markedly on the type of oxidants. α-Tocopherol exerted potent antioxidant effects against peroxyl radical-mediated lipid peroxidation, but it did not inhibit lipid oxidation induced by peroxynitrite, hypochlorite, and 15-lipoxygenase efficiently, suggesting that multiple antioxidants with different selectivities are required for the inhibition of plasma lipid oxidation in vivo. This is a novel, simple and most high throughput method to follow plasma lipid oxidation induced by different oxidants and also to assess the antioxidant effects in biologically relevant settings. PMID:26774081

  17. Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine

    PubMed Central

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-01-01

    Lipid oxidation has been implicated in the pathogenesis of many diseases. Lipids are oxidized in vivo by several different oxidants to give diverse products, in general lipid hydroperoxides as the major primary product. In the present study, the production of lipid hydroperoxides in the oxidation of mouse plasma induced by multiple oxidants was measured using diphenyl-1-pyrenylphosphine (DPPP) as a probe. DPPP itself is not fluorescent, but it reacts with lipid hydroperoxides stochiometrically to give highly fluorescent DPPP oxide and lipid hydroxides. The production of lipid hydroperoxides could be followed continuously in the oxidation of plasma induced by peroxynitrite, hypochlorite, 15-lipoxygenase, and peroxyl radicals with a microplate reader. A clear lag phase was observed in the plasma oxidation mediated by aqueous peroxyl radicals and peroxynitrite, but not in the oxidation induced by hypochlorite and lipoxygenase. The effects of several antioxidants against lipid oxidation induced by the above oxidants were assessed. The efficacy of antioxidants was dependent markedly on the type of oxidants. α-Tocopherol exerted potent antioxidant effects against peroxyl radical-mediated lipid peroxidation, but it did not inhibit lipid oxidation induced by peroxynitrite, hypochlorite, and 15-lipoxygenase efficiently, suggesting that multiple antioxidants with different selectivities are required for the inhibition of plasma lipid oxidation in vivo. This is a novel, simple and most high throughput method to follow plasma lipid oxidation induced by different oxidants and also to assess the antioxidant effects in biologically relevant settings. PMID:26774081

  18. Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage.

    PubMed

    Ding, Wei; Liu, Wenlan; Cooper, Karen L; Qin, Xu-Jun; de Souza Bergo, Patrícia L; Hudson, Laurie G; Liu, Ke Jian

    2009-03-13

    Arsenic enhances skin tumor formation when combined with other carcinogens, including UV radiation (UVR). In this study we report that low micromolar concentrations of arsenite synergistically increases UVR-induced oxidative DNA damage in human keratinocytes as detected by 8-hydroxyl-2'-deoxyguanine (8-OHdG) formation. Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in base excision repair, a process that repairs 8-OHdG lesions. Arsenite suppresses UVR-induced PARP-1 activation in a concentration-dependent manner. Inhibition of PARP-1 activity by 3-aminobenzamide or small interfering RNA silencing of PARP-1 expression significantly increases UVR-induced 8-OHdG formation, suggesting that inhibition of PARP-1 activity by arsenite contributes to oxidative DNA damage. PARP-1 is a zinc finger protein, and mass spectrometry analysis reveals that arsenite can occupy a synthetic apopeptide representing the first zinc finger of PARP-1 (PARPzf). When the PARPzf peptide is preincubated with Zn(II) followed by incubation with increasing concentrations of arsenite, the ZnPARPzf signal is decreased while the AsPARPzf signal intensity is increased as a function of arsenite dose, suggesting a competition between zinc and arsenite for the same binding site. Addition of Zn(II) abolished arsenite enhancement of UVR-stimulated 8-OHdG generation and restored PARP-1 activity. Our findings demonstrate that arsenite inhibits oxidative DNA damage repair and suggest that interaction of arsenite with the PARP-1 zinc finger domain contributes to the inhibition of PARP-1 activity by arsenite. Arsenite inhibition of poly(ADP-ribosyl)ation is one likely mechanism for the reported co-carcinogenic activities of arsenic in UVR-induced skin carcinogenesis. PMID:19056730

  19. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    PubMed

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia. PMID:18276135

  20. Cyclo(dehydrohistidyl-l-tryptophyl) inhibits nitric oxide production by preventing the dimerization of inducible nitric oxide synthase.

    PubMed

    Sohn, Mi-Jin; Hur, Gang-Min; Byun, Hee-Sun; Kim, Won-Gon

    2008-02-15

    Dimerization of inducible NOS has been known to be a potential therapeutic target for iNOS-mediated pathologies. Cyclic dipeptides are among the simplest peptides commonly found as by-products of food processing or metabolites of microorganisms. In this study, we found that cyclo(dehydrohistidyl-l-tryptophyl) (CDHT), a cyclic dipeptide from an unidentified fungal strain Fb956, prevents iNOS dimerization in activated microglial BV-2 cells. CDHT inhibited NO production with an IC50 of 6.5 microM in LPS-treated BV-2 cells. Western blot analysis and iNOS activity measurement of fractions from size-exclusion chromatography of cell lysates indicated that CDHT inhibits dimerization of iNOS, while it has no effect on iNOS expression or enzyme activity. The CDHT inhibition of iNOS dimerization was confirmed by partially denaturing SDS-PAGE analysis. In contrast, CDHT did not affect cGMP production in endothelial HUVEC cells, which indicates no inhibition of endothelial NOS activity. These results reveal that CDHT, one of the simplest and cyclic dipeptides, selectively inhibits NO production by inhibiting iNOS dimerization, and could be a useful therapeutic agent for inflammation-mediated diseases. PMID:18061143

  1. Short-term nitric oxide inhibition induces progressive nephropathy after regression of initial renal injury.

    PubMed

    Fujihara, Clarice K; Sena, Claudia R; Malheiros, Denise M A C; Mattar, Ana L; Zatz, Roberto

    2006-03-01

    Chronic nitric oxide (NO) inhibition and salt overload (HS) promote severe hypertension and renal injury, which regress quickly, although not completely, on treatment withdrawal. We investigated whether renal function and structure remain stable 6 mo after cessation of these treatments. Adult male Munich-Wistar rats were distributed among three groups: HS, receiving 3.1% Na diet; HS+N, receiving HS and the NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 30 mg.kg(-1).day(-1) orally); and HS+N+L, receiving HS+N and the ANG II blocker losartan (L; 50 mg.kg(-1).day(-1) orally). In studies performed after 20 days of treatment (protocol 1), HS+N rats exhibited severe glomerular and systemic hypertension, massive albuminuria, glomerular and interstitial injury, and infiltration by macrophages and cells expressing ANG II. These abnormalities were largely prevented in the HS+N+L group. A second cohort (protocol 2) received HS+N for 20 days, followed by a conventional (0.5% Na) diet and no l-NAME treatment during the subsequent 30 days. At this time, systemic and glomerular pressure, along with parameters of renal injury and inflammation, were still higher than in HS or HS+N+L rats, although differences were much smaller than in protocol 1. Six months after 20-day l-NAME/salt overload treatment was ceased (protocol 3), severe albuminuria, hypertension, and renal injury developed in HS+N rats. Again, losartan prevented most of these changes. We conclude 1) short-term HS+N treatment triggers the autonomous development of progressive glomerulosclerosis; 2) this process may involve activation of the AT(1) receptor; and 3) temporary HS+N treatment may represent a new model of slowly progressive chronic nephropathy. PMID:16204410

  2. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis

    PubMed Central

    Romano, B; Borrelli, F; Fasolino, I; Capasso, R; Piscitelli, F; Cascio, MG; Pertwee, RG; Coppola, D; Vassallo, L; Orlando, P; Di Marzo, V; Izzo, AA

    2013-01-01

    Background and Purpose The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis. Experimental Approach Murine peritoneal macrophages were activated in vitro by LPS. Nitrite levels were measured using a fluorescent assay; inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2) and cannabinoid (CB1 and CB2) receptors were analysed by RT-PCR (and/or Western blot analysis); colitis was induced by dinitrobenzene sulphonic acid (DNBS). Endocannabinoid (anandamide and 2-arachidonoylglycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry. Colonic inflammation was assessed by evaluating the myeloperoxidase activity as well as by histology and immunohistochemistry. Key Results LPS caused a significant production of nitrites, associated to up-regulation of anandamide, iNOS, COX-2, CB1 receptors and down-regulation of CB2 receptors mRNA expression. Cannabichromene significantly reduced LPS-stimulated nitrite levels, and its effect was mimicked by cannabinoid receptor and TRPA1 agonists (carvacrol and cinnamaldehyde) and enhanced by CB1 receptor antagonists. LPS-induced anandamide, iNOS, COX-2 and cannabinoid receptor changes were not significantly modified by cannabichromene, which, however, increased oleoylethanolamide levels. In vivo, cannabichromene ameliorated DNBS-induced colonic inflammation, as revealed by histology, immunohistochemistry and myeloperoxidase activity. Conclusion and Implications Cannabichromene exerts anti-inflammatory actions in activated macrophages – with tonic CB1 cannabinoid signalling being negatively coupled to this effect – and ameliorates experimental murine colitis. PMID:23373571

  3. ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress

    PubMed Central

    Gao, Yawen; Xu, Yan; Hua, Songwen; Zhou, Shenghua; Wang, Kangkai

    2015-01-01

    The anthracycline chemotherapy drug doxorubicin (DOX) is cardiotoxic. This study aimed to explore the effect of acetaldehyde dehydrogenase 2 (ALDH2), a detoxifying protein, on DOX-induced cardiotoxicity and unveil the underlying mechanisms. BALB/c mice were randomly divided in four groups: control group (no treatment), DOX group (DOX administration for myocardial damage induction), DOX + Daidzin group (DOX administration + Daidzin, an ALDH2 antagonist) and DOX + Alda-1 group (DOX administration + Alda-1, an ALDH2 agonist). Then, survival, haemodynamic parameters, expression of pro- and anti-apoptosis markers, reactive oxygen species (ROS) and 4-Hydroxynonenal (4-HNE) levels, expression and localization of NADPH oxidase 2 (NOX2) and its cytoplasmic subunit p47PHOX, and ALDH2 expression and activity were assessed. Mortality rates of 0, 35, 5, and 70% were obtained in the control, DOX, DOX + Alda-1, and DOX + Daidzin groups, respectively, at the ninth weekend. Compared with control animals, DOX treatment resulted in significantly reduced left ventricular systolic pressure (LVSP) and ± dp/dt, and overtly increased left ventricular end-diastolic pressure (LVEDP); increased Bax expression and caspase-3/7 activity, and reduced Bcl-2 expression in the myocardium; increased ROS (about 2 fold) and 4-HNE adduct (3 fold) levels in the myocardium; increased NOX2 protein expression and membrane translocation of P47PHOX. These effects were aggravated in the DOX + Daidzin group, DOX + Alda-1 treated animals showed partial or complete alleviation. Finally, Daidzin further reduced the DOX-repressed ALDH2 activity, which was partially rescued by Alda-1. These results indicated that ALDH2 attenuates DOX-induced cardiotoxicity by inhibiting oxidative stress, NOX2 expression and activity, and reducing myocardial apoptosis. PMID:26221217

  4. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  5. Miniature electrometer preamplifier effectively compensates for input capacitance

    NASA Technical Reports Server (NTRS)

    Burrous, C. N.; Deboo, G. J.

    1966-01-01

    Negative capacitance preamplifier using a dual MOS /Metal Oxide Silicon/ transistor in conjunction with bipolar transistors is used with intracellular microelectrodes in recording bioelectric potentials. Applications would include use as a pickup plate video amplifier in storage tube tests and for pH and ionization chamber measurements.

  6. Hindlimb unweighting does not alter vasoconstrictor responsiveness and nitric oxide-mediated inhibition of sympathetic vasoconstriction

    PubMed Central

    Just, Timothy P; Jendzjowsky, Nicholas G; DeLorey, Darren S

    2015-01-01

    Abstract We tested the hypothesis that physical inactivity would increase sympathetic vasoconstrictor responsiveness and diminish NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague–Dawley rats (n = 33) were randomly assigned to sedentary time control (S) or hindlimb unweighted (HU) groups for 21 days. Following the intervention, rats were anaesthetized and instrumented for measurement of arterial blood pressure and femoral artery blood flow and stimulation of the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulation delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after NO synthase blockade with l-NAME (5 mg kg i.v.). Sympathetic vasoconstrictor responsiveness was not different (P > 0.05) in S and HU rats at rest (S, 2 Hz, −26 ± 8% and 5 Hz, −46 ± 12%; and HU, 2 Hz, −29 ± 9% and 5 Hz, −51 ± 10%) and during contraction (S, 2 Hz, −10 ± 7% and 5 Hz, −23 ± 11%; and HU, 2 Hz, −9 ± 5% and 5 Hz, −22 ± 7%). Nitric oxide synthase blockade caused a similar increase (P > 0.05) in sympathetic vasoconstrictor responsiveness in HU and S rats at rest (S, 2 Hz, −41 ± 7% and 5 Hz, −58 ± 8%; and HU, 2 Hz, −43 ± 6% and 5 Hz, −63 ± 8%) and during muscle contraction (S, 2 Hz, −15 ± 6% and 5 Hz, −31 ± 11%; and HU, 2 Hz, −12 ± 5% and 5 Hz, −29 ± 8%). Skeletal muscle NO synthase expression and ACh-mediated vasodilatation were also not different between HU and S rats. These data suggest that HU does not alter sympathetic vasoconstrictor responsiveness and NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Key points Physical inactivity increases the risk of cardiovascular disease and may alter sympathetic nervous system control of vascular

  7. Capacitive deionization system

    SciTech Connect

    Richardson, J. H., LLNL

    1996-10-01

    The new capacitive deionization system (CDI) removes ions, contaminants impurities from water and other aqueous process streams, and further selectively places the removed ions back into solution during regeneration. It provides a separation process that does not utilize chemical regeneration processes, and thus significantly reduces or completely eliminates secondary wastes associated with the operation of ion exchange resins. In the CDI, electrolyte flows in open channels formed between adjacent electrodes, and consequently the pressure drop is much lower than conventional separation processes. The fluid flow can be gravity fed through these open channels, and does not require membranes. This feature represents a significant advantage over the conventional reverse osmosis systems which include water permeable cellulose acetate membranes, and over the electrodialysis systems which require expensive and exotic ion exchange membranes. The CDI is adaptable for use in a wide variety of commercial applications, including domestic water softening, industrial water softening, waste water purification, sea water desalination, treatment of nuclear and aqueous wastes, treatment of boiler water in nuclear and fossil power plants, production of high-purity water for semiconductor processing, and removal of salt from water for agricultural irrigation. CDI accomplishes this removal of impurities by a variety of mechanisms, but predominantly by electrostatic removal of organic and inorganic ions from water or any other dielectric solvent.

  8. Shielded capacitive electrode

    SciTech Connect

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  9. Pyrrolidine dithiocarbamate inhibits UVB-induced skin inflammation and oxidative stress in hairless mice and exhibits antioxidant activity in vitro.

    PubMed

    Ivan, Ana L M; Campanini, Marcela Z; Martinez, Renata M; Ferreira, Vitor S; Steffen, Vinicius S; Vicentini, Fabiana T M C; Vilela, Fernanda M P; Martins, Frederico S; Zarpelon, Ana C; Cunha, Thiago M; Fonseca, Maria J V; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rúbia

    2014-09-01

    Ultraviolet B (UVB) irradiation may cause oxidative stress- and inflammation-dependent skin cancer and premature aging. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and inhibits nuclear factor-κB (NF-κB) activation. In the present study, the mechanisms of PDTC were investigated in cell free oxidant/antioxidant assays, in vivo UVB irradiation in hairless mice and UVB-induced NFκB activation in keratinocytes. PDTC presented the ability to scavenge 2,2'-azinobis-(3-ethyl benzothiazoline-6-sulfonic acid) radical (ABTS), 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) and hydroxyl radical (OH); and also efficiently inhibited iron-dependent and -independent lipid peroxidation as well as chelated iron. In vivo, PDTC treatment significantly decreased UVB-induced skin edema, myeloperoxidase (MPO) activity, production of the proinflammatory cytokine interleukin-1β (IL-1β), matrix metalloproteinase-9 (MMP-9), increase of reduced glutathione (GSH) levels and antioxidant capacity of the skin tested by the ferric reducing antioxidant power (FRAP) and ABTS assays. PDTC also reduced UVB-induced IκB degradation in keratinocytes. These results demonstrate that PDTC presents antioxidant and anti-inflammatory effects in vitro, which line up well with the PDTC inhibition of UVB irradiation-induced skin inflammation and oxidative stress in mice. These data suggest that treatment with PDTC may be a promising approach to reduce UVB irradiation-induced skin damages and merits further pre-clinical and clinical studies. PMID:24927233

  10. Acetaminophen inhibits NF-kappaB activation by interfering with the oxidant signal in murine Hepa 1-6 cells.

    PubMed

    Boulares, A H; Giardina, C; Inan, M S; Khairallah, E A; Cohen, S D

    2000-06-01

    A toxic dose of acetaminophen (APAP) reduces the activity of NF-kappaB in mouse liver. NF-kappaB inactivation may be important for APAP toxicity, as this transcription factor can play a central role in maintaining hepatic viability. We recently reported that APAP likewise inhibits serum growth factor activation of NF-kappaB in a mouse hepatoma cell line (Hepa 1-6 cells). Here we present evidence that APAP's antioxidant activity may be involved in this NF-kappaB inhibition in Hepa 1-6 cells. Like the antioxidants N-acetylcysteine (NAC) and pyrrolidinedithiocarbamate (PDTC), APAP was found to suppress the H(2)O(2)-induced oxidation of an intracellular reactive oxygen species probe (dihydrodichlorofluorescein) in Hepa 1-6 cells. Treatment of Hepa 1-6 cells with H(2)O(2) was sufficient for NF-kappaB activation and IkappaBalpha degradation, and APAP was able to block both of these events. The APAP inhibition of NF-kappaB activation by serum growth factors may also be due to APAP's antioxidant activity, as the antioxidants NAC and PDTC likewise inhibit this activation. The potential role of NF-kappaB and oxidant-based growth factor signal transduction in APAP toxicity is discussed. PMID:10828269

  11. Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase.

    PubMed

    Huang, Chien-Chang; Chen, Kuo-Li; Cheung, Chun Hei Antonio; Chang, Jang-Yang

    2013-12-01

    Cathepsin S plays multiple roles in MHC class II antigen presentation, extracellular matrix degradation, angiogenesis, and tumorogenesis. Our previous study revealed that targeting cathepsin S could induce cellular cytotoxicity and reduce cell viability. For the current study, we further investigated the molecular mechanism responsible for targeting cathepsin S-induced cell death and its association with autophagy. Distinct from regulation of the classic autophagy pathway by reactive oxygen species (ROS), we demonstrated that autophagy is the genuine regulator of early ROS production. The molecular silencing of autophagy-dependent ATG genes (ATG5, ATG7, and LC3) and the pharmacologic inhibition of autophagy with 3-MA and wortmannin reduced ROS production significantly. In addition, xanthine oxidase (XO), which is upregulated by autophagy, is required for early ROS production, oxidative DNA damage, and consequent cell death. Autophagy inhibition suppresses the upregulation of XO, which is induced by cathepsin S inhibition, resulting in reduced ROS generation, DNA damage, and cell death. Collectively, our study reveals a noncanonical molecular pathway in which, after the inhibition of cathepsin S, autophagy induces early ROS production for oxidative DNA damage and cell death through XO. PMID:23892358

  12. Oscillation of Capacitance inside Nanopores

    SciTech Connect

    Jiang, De-en; Jin, Zhehui; Wu, Jianzhong

    2011-10-26

    Porous carbons of high surface area are promising as cost-effective electrode materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agrees well with the experiment when the pore size is less than twice the ionic diameter. Confirmation of the entire oscillatory spectrum invites future experiments with a precise control of the pore size from micro- to mesoscales.

  13. Oscillation of Capacitance inside Nanopores

    SciTech Connect

    Jiang, Deen; Wu, Jianzhong; Jin, Zhehui

    2011-01-01

    materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agreeswell with the experiment when the pore size is less than twice the ionic diameter.Confirmation of the entire oscillatory spectruminvites future experiments with a precise control of the pore size from micro- to mesoscales.

  14. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20)

    PubMed Central

    Burrows, Natalie; Cane, Gaelle; Robson, Mathew; Gaude, Edoardo; J. Howat, William; Szlosarek, Peter W.; Pedley, R. Barbara; Frezza, Christian; Ashcroft, Margaret; Maxwell, Patrick H.

    2016-01-01

    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours. PMID:26972697

  15. Capacitive Position Sensor For Accelerometer

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  16. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide*

    PubMed Central

    Heine, Christian L.; Schmidt, Renate; Geckl, Kerstin; Schrammel, Astrid; Gesslbauer, Bernd; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C. F.

    2015-01-01

    Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation. PMID:26296888

  17. Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors.

    PubMed Central

    Dornand, J; Gerber, M

    1989-01-01

    We have previously established that oxidative phenomena are involved in human T-cell activation (Sekkat, Dornand & Gerber, 1988). In the present work we have studied the effect of different anti-oxidants (scavengers of O2-, .OH and lipo-oxygenase inhibitors) on the stimulation of murine T cells. We report here that all the anti-oxidants used suppressed T-lymphocyte proliferation and IL-2 synthesis, the former effect resulting very likely from the latter. This inhibition was concomitant with the triggering of activation. We also demonstrate that the various anti-oxidants have different biochemical targets. Unlike the other compounds, the phenolic drugs nordihydroguaiaretic acid (NDGA) and butylated hydroxyanisole (BHA), which block lipid peroxidation, affect both signals triggered by the binding of lectin to its receptors: they suppress the rise of intracellular free calcium concentration and inhibit some of the events, depending on the sole protein kinase C activation, namely IL-2 receptor expression and phorbol myristate acetate (PMA)-induced pH change. Our results are discussed within the framework of a possible involvement of reactive oxygen species and of arachidonic acid derivative(s) in T-cell activation and IL-2 production. PMID:2512249

  18. Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors.

    PubMed

    Dornand, J; Gerber, M

    1989-11-01

    We have previously established that oxidative phenomena are involved in human T-cell activation (Sekkat, Dornand & Gerber, 1988). In the present work we have studied the effect of different anti-oxidants (scavengers of O2-, .OH and lipo-oxygenase inhibitors) on the stimulation of murine T cells. We report here that all the anti-oxidants used suppressed T-lymphocyte proliferation and IL-2 synthesis, the former effect resulting very likely from the latter. This inhibition was concomitant with the triggering of activation. We also demonstrate that the various anti-oxidants have different biochemical targets. Unlike the other compounds, the phenolic drugs nordihydroguaiaretic acid (NDGA) and butylated hydroxyanisole (BHA), which block lipid peroxidation, affect both signals triggered by the binding of lectin to its receptors: they suppress the rise of intracellular free calcium concentration and inhibit some of the events, depending on the sole protein kinase C activation, namely IL-2 receptor expression and phorbol myristate acetate (PMA)-induced pH change. Our results are discussed within the framework of a possible involvement of reactive oxygen species and of arachidonic acid derivative(s) in T-cell activation and IL-2 production. PMID:2512249

  19. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays.

    PubMed

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+) and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  20. Antagonist of nitric oxide synthesis inhibits nerve-mediated relaxation of isolated strips of rumen and reticulum.

    PubMed

    Schneider, D A; Eades, S C

    1998-10-01

    The present study investigated the possibility that nitric oxide is a nonadrenergic, noncholinergic neurotransmitter of nerves that are intrinsic to the forestomach. Tunica muscularis, myenteric plexus preparations of bovine reticulum and rumen were maintained in vitro in a physiological solution of buffer that contained scopolamine. Trains of electric field stimulation transiently reduced (relaxed) the tone induced by BaCl2. NG-Nitro-L-arginine methyl ester, a nitric oxide synthase competitive antagonist, inhibited relaxation of the rumen and reticulum preparations that had been induced by the electrical field. The actions of NG-nitro-L-arginine methyl ester were partially reversed by L-arginine. These data suggest that nitric oxide, or a related substance, is an inhibitory neurotransmitter of nerves that are intrinsic to tunica muscularis, myenteric plexus preparations of the bovine forestomach. PMID:9812264

  1. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    PubMed Central

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  2. Strategies for dynamic soft-landing in capacitive microelectromechanical switches

    NASA Astrophysics Data System (ADS)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad A.

    2011-06-01

    Electromechanical dielectric degradation associated with the hard landing of movable electrode is a technology-inhibiting reliability concern for capacitive RF-MEMS switches. In this letter, we propose two schemes for dynamic soft-landing that obviate the need for external feedback circuitry. Instead, the proposed resistive and capacitive braking schemes can reduce impact velocity significantly without compromising other performance characteristics like pull-in voltage and pull-in time. Resistive braking is achieved by inserting a resistance in series with the voltage source whereas capacitive braking requires patterning of the electrode or the dielectric. Our results have important implications to the design and optimization of reliability aware electrostatically actuated MEMS switches.

  3. Sialidases on Mammalian Sperm Mediate Deciduous Sialylation during Capacitation*

    PubMed Central

    Ma, Fang; Wu, Diana; Deng, Liwen; Secrest, Patrick; Zhao, June; Varki, Nissi; Lindheim, Steven; Gagneux, Pascal

    2012-01-01

    Sialic acids (Sias) mediate many biological functions, including molecular recognition during development, immune response, and fertilization. A Sia-rich glycocalyx coats the surface of sperm, allowing them to survive as allogeneic cells in the female reproductive tract despite female immunity. During capacitation, sperm lose a fraction of their Sias. We quantified shed Sia monosaccharides released from capacitated sperm and measured sperm sialidase activity. We report the presence of two sialidases (neuraminidases Neu1 and Neu3) on mammalian sperm. These are themselves shed from sperm during capacitation. Inhibiting sialidase activity interferes with sperm binding to the zona pellucida of the ovum. A survey of human sperm samples for the presence of sialidases NEU1 and NEU3 identified a lack of one or both sialidases in sperm of some male idiopathic infertility cases. The results contribute new insights into the dynamic remodeling of the sperm glycocalyx prior to fertilization. PMID:22989879

  4. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa.

    PubMed

    Luconi, M; Barni, T; Vannelli, G B; Krausz, C; Marra, F; Benedetti, P A; Evangelista, V; Francavilla, S; Properzi, G; Forti, G; Baldi, E

    1998-06-01

    Recent evidence indicates the presence of p21 Ras and of a protein with characteristics similar to mitogen-activated protein kinases (MAPKs), also known as extracellular signal-regulated kinases (ERKs), in mammalian spermatozoa, suggesting the occurrence of the Ras/ERK cascade in these cells. In the present study we investigated the subcellular localization of ERKs and their biological functions in human spermatozoa. Immunohistochemistry, immunofluorescence, confocal microscopy, and immunoelectron microscopy demonstrated localization of ERKs in the postacrosomal region of spermatozoa. After stimulation of acrosome reaction with the calcium ionophore A23187 and progesterone, ERKs were mostly localized at the level of the equatorial region, indicating redistribution of these proteins in acrosome-reacted spermatozoa. Two proteins of 42 and 44 kDa that are tyrosine phosphorylated in a time-dependent manner during in vitro capacitation were identified as p42 (ERK-2) and p44 (ERK-1) by means of specific antibodies. The increase in tyrosine phosphorylation of these proteins during capacitation was accompanied by increased kinase activity, as determined by the ability of ERK-1 and ERK-2 to phosphorylate the substrate myelin basic protein. The role of this activity in the occurrence of sperm capacitation was also investigated by using PD098059, an inhibitor of the MAPK cascade. The presence of this compound during in vitro capacitation inhibits ERK activation and significantly reduces the ability of spermatozoa to undergo the acrosome reaction in response to progesterone. Since only capacitated spermatozoa are able to respond to progesterone, these data strongly indicate that ERKs are involved in the regulation of capacitation. In summary, our data demonstrate the presence of functional ERKs in human spermatozoa and indicate that these enzymes are involved in activation of these cells during capacitation, providing new insight in clarifying the molecular mechanisms and the

  5. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice

    SciTech Connect

    Fromenty, B.; Fisch, C.; Labbe, G.; Degott, C.; Deschamps, D.; Berson, A.; Letteron, P.; Pessayre, D. )

    1990-12-01

    Amiodarone has been shown to produce microvesicular steatosis of the liver in some recipients. We have determined the effects of amiodarone on the mitochondrial oxidation of fatty acids in mice. In vitro, the formation of 14C-acid-soluble beta-oxidation products from (U-14C)palmitic acid by mouse liver mitochondria was decreased by 92% in the presence of 125 microM amiodarone and by 94% in the presence of 125 microM N-desethylamiodarone. Inhibition due to 100 or 150 microM amiodarone persisted in the presence of 5 mM acetoacetate, whereas acetoacetate totally relieved inhibition due to 15 microM rotenone. In vivo, exhalation of (14C)CO2 from (U-14C)palmitic acid was decreased by 31, 40, 58 and 78%, respectively, in mice receiving 19, 25, 50 and 100 mg.kg-1 of amiodarone hydrochloride 1 hr before the administration of (U-14C)palmitic acid. One hour after 100 mg.kg-1, the exhalation of (14C)CO2 from (1-14C)palmitic acid, (1-14C)octanoic acid or (1-14C)butyric acid was decreased by 78, 72 and 53%, respectively. Exhalation of (14C)CO2 from (1-14C)palmitic acid was normal between 6 and 9 hr after administration of 100 mg.kg-1 of amiodarone hydrochloride, but was still inhibited by 71 and 37%, 24 and 48 hr after 600 mg.kg-1. Twenty four hours after the latter dose of amiodarone, hepatic triglycerides were increased by 150%, and there was microvesicular steatosis of the liver. We conclude that amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice.

  6. Role of nitric oxide synthase inhibition in the acute hypertensive response to intracerebroventricular cadmium

    PubMed Central

    Demontis, Maria Piera; Varoni, Maria Vittoria; Volpe, Anna Rita; Emanueli, Costanza; Madeddu, Paolo

    1998-01-01

    In the rat, intracerebroventricular (i.c.v.) injection of cadmium, a pollutant with long biological half-life, causes a sustained increase in blood pressure at doses that are ineffective by peripheral route. Since cadmium inhibits calcium-calmodulin constitutive nitric oxide (NO) synthase in cytosolic preparations of rat brain, this mechanism may be responsible for the acute pressor action of this heavy metal.To test this possibility, we evaluated the effect of i.c.v. injection of 88 nmol cadmium in normotensive unanaesthetized Wistar rats, which were i.c.v. pre-treated with: (1) saline (control), (2) L-arginine (L-Arg), to increase the availability of substrate for NO biosynthesis, (3) D-arginine (D-Arg), (4) 3-[4-morpholinyl]-sydnonimine-hydrochloride (SIN-1), an NO donor, or (5) CaCl2, a cofactor of brain calcium-calmodulin-dependent cNOSI. In additional experiments, the levels of L-citrulline (the stable equimolar product derived from enzymatic cleavage of L-Arg by NO synthase) were determined in the brain of vehicle- or cadmium-treated rats.The pressor response to cadmium reached its nadir at 5 min (43±4 mmHg) and lasted over 20 min in controls. L-Citrulline/protein content was reduced from 35 up to 50% in the cerebral cortex, pons, hippocampus, striatus, hypothalamus (P<0.01) of cadmium-treated rats compared with controls. Central injection of NG nitro-L-arginine-methylester (L-NAME) also reduced the levels of L-citrulline in the brain.Both the magnitude and duration of the response were attenuated by 1.21 and 2.42 μmol SIN-1 (32±3 and 15±4 mmHg, P<0.05), or 1 μmol CaCl2 (6±4 mmHg, P<0.05). Selectivity of action exerted by SIN-1 was confirmed by the use of another NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). Both L-Arg and D-Arg caused a mild but significant attenuation in the main phase of the pressor response evoked by cadmium. However, only L-Arg reduced the magnitude of the delayed, pressor response. Despite their similarity in

  7. Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures.

    PubMed

    Ishihara, Yasuhiro; Kawami, Tomohito; Ishida, Atsuhiko; Yamazaki, Takeshi

    2012-06-01

    Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT. PMID:22449404

  8. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.

    PubMed

    He, Jun-Min; Bai, Xiao-Ling; Wang, Rui-Bin; Cao, Bing; She, Xiao-Ping

    2007-10-01

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m(-2) UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor N(G)-nitro-l-Arg-methyl eater (l-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks. PMID:18251898

  9. Ethanol attenuates vasorelaxation via inhibition of inducible nitric oxide synthase in rat artery exposed to interleukin-1β.

    PubMed

    Yuui, K; Kudo, R; Kasuda, S; Hatake, K

    2016-09-01

    Nitric oxide produced by inducible nitric oxide synthase (iNOS) regulates sepsis-induced hypotension. During septic shock, interleukin (IL)-1β is synthesized in endothelial cells and smooth muscle cells by endotoxin. Ethanol (EtOH) suppresses endotoxin-induced hypotension. The present study aimed to elucidate the effect of EtOH on gradual relaxation and iNOS expression induced by IL-1β in isolated rat superior mesenteric arteries (SMAs). Exposure to IL-1β-induced contraction in SMA rings, followed by a gradual relaxation of phenylephrine precontracted tone. Contraction was abolished by indomethacin (IM), cycloheximide (Chx), and endothelium denudation. In contrast, the gradual relaxation was abolished by NOS inhibitors, Chx, endothelium denudation, and inhibited by EtOH (50 and 100 mM). However, IM had no effect on relaxation. Western blot analysis demonstrated that iNOS expression was induced by IL-1β and was inhibited by EtOH and endothelium denudation. Furthermore, messenger RNA expression of iNOS, but not endothelial NOS, was inhibited by EtOH. These data suggest that IL-1β-induced contraction is mediated by thromboxane A2, whereas IL-1β-induced relaxation occurs via NO derived from iNOS. The endothelium plays an important role in vasorelaxation. Taken together, EtOH inhibits IL-1β-mediated vasorelaxation by suppressing endothelium iNOS expression. This study provides the first evidence of EtOH -induced inhibition of IL-1β-mediated vasorelaxation. PMID:26500219

  10. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4.

    PubMed

    Tsai, Yung-Fong; Yu, Huang-Ping; Chung, Pei-Jen; Leu, Yann-Lii; Kuo, Liang-Mou; Chen, Chun-Yu; Hwang, Tsong-Long

    2015-12-01

    Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions. PMID:26432981

  11. Selective inhibition of human inducible nitric oxide synthase by S-alkyl-L-isothiocitrulline-containing dipeptides.

    PubMed

    Park, J M; Higuchi, T; Kikuchi, K; Urano, Y; Hori, H; Nishino, T; Aoki, J; Inoue, K; Nagano, T

    2001-04-01

    The aim of this study was to investigate the structure-activity relationship of S-alkyl-L-isothiocitrulline-containing dipeptides towards three partially purified recombinant human nitric oxide synthase (NOS) isozymes, as well as the effects of these compounds on cytokine-induced NO production by human DLD-1 cells. In an in vitro assay, S-methyl-L-isothiocitrulline (L-MIT) was slightly selective for human neuronal NOS (nNOS) over the inducible (iNOS) or endothelial (eNOS) isozyme, but the combination of a hydrophobic L-amino acid (L-Phe, L-Leu or L-Trp) with L-MIT dramatically altered the inhibition pattern to give selective iNOS inhibitors. Introduction of a hydroxy, nitro, amino or methoxy group at the para position of the aromatic ring of L-MIT-L-Phe (MILF) decreased the selectivity and inhibitory potency. A longer or larger S-alkyl group also decreased the selectivity and potency. Dixon analysis showed that all of the dipeptides were competitive inhibitors of the three isoforms of human NOS. The enzymatic time course curves indicated that MILF was a slow binding inhibitor of human iNOS. These results suggest that the human NOS isozymes have different-sized cavities in the binding site near the position to which the C-terminal of L-arginine binds, and the cavity of iNOS is hydrophobic. Interestingly, L-MIT-D-Phe (MIDF) showed little inhibitory activity or selectivity, suggesting that the cavity of human iNOS is located in a well-defined direction from the alpha carbon atom. NO production in cytokine-stimulated human DLD-1 cells was measured with a fluorescent indicator, DAF-FM. MILF, L-MIT-L-Trp(-CHO) (MILW) and L-MIT-L-Tyr (MILY) showed more potent activity than L-MIT in this whole-cell assay. Thus, S-alkyl-L-isothiocitrulline-containing dipeptides are selective inhibitors of human iNOS, and work efficiently in cell-based assay. PMID:11309260

  12. Selective inhibition of human inducible nitric oxide synthase by S-alkyl-L-isothiocitrulline-containing dipeptides

    PubMed Central

    Park, Jung-Min; Higuchi, Tsunehiko; Kikuchi, Kazuya; Urano, Yasuteru; Hori, Hiroyuki; Nishino, Takeshi; Aoki, Junken; Inoue, Keizo; Nagano, Tetsuo

    2001-01-01

    The aim of this study was to investigate the structure-activity relationship of S-alkyl-L-isothiocitrulline-containing dipeptides towards three partially purified recombinant human nitric oxide synthase (NOS) isozymes, as well as the effects of these compounds on cytokine-induced NO production by human DLD-1 cells.In an in vitro assay, S-methyl-L-isothiocitrulline (L-MIT) was slightly selective for human neuronal NOS (nNOS) over the inducible (iNOS) or endothelial (eNOS) isozyme, but the combination of a hydrophobic L-amino acid (L-Phe, L-Leu or L-Trp) with L-MIT dramatically altered the inhibition pattern to give selective iNOS inhibitors. Introduction of a hydroxy, nitro, amino or methoxy group at the para position of the aromatic ring of L-MIT-L-Phe (MILF) decreased the selectivity and inhibitory potency. A longer or larger S-alkyl group also decreased the selectivity and potency. Dixon analysis showed that all of the dipeptides were competitive inhibitors of the three isoforms of human NOS. The enzymatic time course curves indicated that MILF was a slow binding inhibitor of human iNOS.These results suggest that the human NOS isozymes have different-sized cavities in the binding site near the position to which the C-terminal of L-arginine binds, and the cavity of iNOS is hydrophobic. Interestingly, L-MIT-D-Phe (MIDF) showed little inhibitory activity or selectivity, suggesting that the cavity of human iNOS is located in a well-defined direction from the α carbon atom.NO production in cytokine-stimulated human DLD-1 cells was measured with a fluorescent indicator, DAF-FM. MILF, L-MIT-L-Trp(-CHO) (MILW) and L-MIT-L-Tyr (MILY) showed more potent activity than L-MIT in this whole-cell assay.Thus, S-alkyl-L-isothiocitrulline-containing dipeptides are selective inhibitors of human iNOS, and work efficiently in cell-based assay. PMID:11309260

  13. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability.

    PubMed

    Li, Kai; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2016-06-01

    Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress. PMID:27091042

  14. Nitric Oxide Synthase Inhibition by NG-Nitro-l-Arginine Methyl Ester Inhibits Tumor-Induced Angiogenesis in Mammary Tumors

    PubMed Central

    Jadeski, Lorraine C.; Lala, Peeyush K.

    1999-01-01

    Using a murine breast cancer model, we earlier found a positive correlation between the expression of nitric oxide synthase (NOS) and tumor progression; treatment with inhibitors of NOS, NG-methyl-l-arginine (NMMA) and NG-nitro-l-arginine methyl ester (L-NAME), had antitumor and antimetastatic effects that were partly attributed to reduced tumor cell invasiveness. In the present study, we used a novel in vivo model of tumor angiogenesis using subcutaneous implants of tumor cells suspended in growth factor-reduced Matrigel to examine the angiogenic role of NO in a highly metastatic murine mammary adenocarcinoma cell line. This cell line, C3L5, expresses endothelial (e) NOS in vitro and in vivo, and inducible (i) NOS in vitro on stimulation with lipopolysaccharide and interferon-γ. Female C3H/HeJ mice received subcutaneous implants of growth factor-reduced Matrigel inclusive of C3L5 cells on one side, and on the contralateral side, Matrigel alone; L-NAME and D-NAME (inactive enantiomer) were subsequently administered for 14 days using osmotic minipumps. Immediately after sacrifice, implants were removed and processed for immunolocalization of eNOS and iNOS proteins, and measurement of angiogenesis. Neovascularization was quantified in sections stained with Masson’s trichrome or immunostained for the endothelial cell specific CD31 antigen. While most tumor cells and endothelial cells expressed immunoreactive eNOS protein, iNOS was localized in endothelial cells and some macrophages within the tumor-inclusive implants. Measurable angiogenesis occurred only in implants containing tumor cells. Irrespective of the method of quantification used, tumor-induced neovascularization was significantly reduced in L-NAME-treated mice relative to those treated with D-NAME. The quantity of stromal tissue was lower, but the quantity of necrotic tissue higher in L-NAME relative to D-NAME-treated animals. The total mass of viable tissue (ie, stroma and tumor cells) was lower in L

  15. A Novel Mechanism of Formaldehyde Neurotoxicity: Inhibition of Hydrogen Sulfide Generation by Promoting Overproduction of Nitric Oxide

    PubMed Central

    Zhou, Cheng-Fang; Zhuang, Yuan-Yuan; Zhang, Ping; Gu, Hong-Feng; Hu, Bi

    2013-01-01

    Background Formaldehyde (FA) induces neurotoxicity by overproduction of intracellular reactive oxygen species (ROS). Increasing studies have shown that hydrogen sulfide (H2S), an endogenous gastransmitter, protects nerve cells against oxidative stress by its antioxidant effect. It has been shown that overproduction of nitric oxide (NO) inhibits the activity of cystathionine-beta-synthase (CBS), the predominant H2S-generating enzyme in the central nervous system. Objective We hypothesize that FA-caused neurotoxicity involves the deficiency of this endogenous protective antioxidant gas, which results from excessive generation of NO. The aim of this study is to evaluate whether FA disturbs H2S synthesis in PC12 cells, and whether this disturbance is associated with overproduction of NO. Principal Findings We showed that exposure of PC12 cells to FA causes reduction of viability, inhibition of CBS expression, decrease of endogenous H2S production, and NO production. CBS silencing deteriorates FA-induced decreases in endogenous H2S generation, neurotoxicity, and intracellular ROS accumulation in PC12 cells; while ADMA, a specific inhibitor of NOS significantly attenuates FA-induced decreases in endogenous H2S generation, neurotoxicity, and intracellular ROS accumulation in PC12 cells. Conclusion/Significance Our data indicate that FA induces neurotoxicity by inhibiting the generation of H2S through excess of NO and suggest that strategies to manipulate endogenous H2S could open a suitable novel therapeutic avenue for FA-induced neurotoxicity. PMID:23359814

  16. Antioxidant inhibition of skin inflammation induced by reactive oxidants: evaluation of the redox couple dihydrolipoate/lipoate.

    PubMed

    Fuchs, J; Milbradt, R

    1994-01-01

    Reactive oxygen species play an important role in mediating skin inflammation, and antioxidants may provide protection. We investigated the anti-inflammatory activity of natural antioxidants, such as superoxide dismutase, catalase, trolox (a water-soluble tocopherol analog) and the redox couple dihydrolipoate/lipoate in skin. Furthermore we compared the anti-inflammatory potency of natural R and racemic dihydrolipoate, as well as R and S lipoate. Skin inflammation in hairless mice was induced by intradermal injection of the hydrogen peroxide producing enzyme glucose oxidase (GOD) or by topical application of the prooxidant drug anthralin. Intradermal injection of the antioxidants inhibited skin inflammation caused by GOD (catalase, dihydrolipoate) and anthralin (trolox, superoxide dismutase, dihydrolipoate). There was no statistically significant difference between the anti-inflammatory activity of the natural R and racemic dihydrolipoate. R or S lipoate did not inhibit skin inflammation when injected intradermally. In feeding experiments, however, R lipoate significantly inhibited GOD-mediated skin inflammation, while S lipoate was only marginally protective. We conclude that (1) several natural antioxidants such as catalase, superoxide dismutase and dihydrolipoate have anti-inflammatory properties in dermatitis induced by reactive oxidants, (2) lipoate (oxidized dihydrolipoate) has skin anti-inflammatory activity when administered orally and (3) naturally occurring R lipoate is a more potent anti-inflammatory agent than the non-physiological S lipoate. PMID:8054210

  17. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress.

    PubMed

    Qiang, Xiaoyan; Xu, Lulu; Zhang, Miao; Zhang, Pengcheng; Wang, Yinhang; Wang, Yongchen; Zhao, Zheng; Chen, Huan; Liu, Xie; Zhang, Yubin

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) has reached an epidemic level globally, which is recognized to form non-alcoholic steatohepatitis (NASH) by the "two-hit" model, including oxidative stress and inflammation. AMP-activated protein kinase (AMPK) has long been regarded as a key regulator of energy metabolism, which is recognized as a critical target for NAFLD treatment. Here we introduce a natural product, demethyleneberberine (DMB), which potentially ameliorated NAFLD by activating AMPK pathways. Our study showed that the intraperitoneal injection of DMB (20 or 40 mg/kg body weight) decreased hepatic lipid accumulation in methionine and choline deficient (MCD) high-fat diet feeding mice and db/db mice. The further investigation demonstrated that DMB activated AMPK by increasing its phosphorylation in vitro and in vivo. Accompanied with AMPK activation, the expression of lipogenic genes were significantly reduced while genes responsible for the fatty acid β-oxidation were restored in DMB-treated NAFLD mice. In addition, the remarkable oxidative damage and inflammation induced by NAFLD were both attenuated by DMB treatment, which is reflected by decreased lipid oxidative product, malonaldehyde (MDA) and inflammatory factors, tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). Based on all above, DMB could serve as a novel AMPK activator for treating NAFLD and preventing the pathologic progression from NAFLD to NASH by inhibiting the oxidative stress and inflammation. PMID:26970305

  18. Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling

    PubMed Central

    Polhemus, David J.; Gao, Juan; Scarborough, Amy L.; Trivedi, Rishi; McDonough, Kathleen H.; Goodchild, Traci T.; Smart, Frank

    2016-01-01

    Rationale: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure. Objective: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion injury via direct effects on the myocardium. Methods and Results: Spontaneously hypertensive rats received either bilateral RF-RDN or sham-RDN. At 4 weeks after RF-RDN (n=14) or sham-RDN (n=14) treatment, spontaneously hypertensive rats were subjected to 30 minutes of transient coronary artery occlusion and 24 hours –7 days reperfusion. Four weeks after RF-RDN, myocardial oxidative stress was markedly attenuated, and transcription and translation of antioxidants, superoxide dismutase 1 and glutathione peroxidase-1, were significantly upregulated compared with sham-RDN spontaneously hypertensive rats. RF-RDN also inhibited myocardial G protein–coupled receptor kinase 2 pathological signaling and enhanced myocardial endothelial nitric oxide synthase function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area at risk compared with sham-RDN (26.8 versus 43.9%; P<0.01) at 24 hours postreperfusion and significantly improved left ventricular function at 7 days after myocardial ischemia/reperfusion. Conclusions: RF-RDN reduced oxidative stress, inhibited G protein–coupled receptor kinase 2 signaling, increased nitric oxide bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic

  19. A new diffusion-inhibited oxidation-resistant coating for superalloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Glasgow, T. K.; Levine, S. R.

    1981-01-01

    A concept for enhanced protection of superalloys consists of adding an oxidation- and diffusion-resistant cermet layer between the superalloy and the outer oxidation-resistant metallic alloy coating. Such a duplex coating was compared with a physical-vapor-deposited (PVD) NiCrAlY coating in cyclic oxidation at 1150 C. The substrate alloy was MA 754 - an oxide-dispersion-strengthened superalloy that is difficult to coat. The duplex coating, applied by plasma spraying, outperformed the PVD coating on the basis of weight change and both macroscopic and metallographic observations.

  20. A cocaine-regulated and amphetamine-regulated transcript inhibits oxidative stress in neurons deprived of oxygen and glucose.

    PubMed

    Sha, Dujuan; Wang, Zhongyuan; Qian, Lai; Han, Yong; Zhang, Jun; Gu, Shuangshuang; Wang, Luna; Li, Jie; Chen, Cong; Xu, Yun

    2013-09-11

    Stroke, of which about 87% is ischemic stroke, constitutes one of the main causes of morbidity, disability, and mortality worldwide. Ischemic brain injury has complex pathological mechanisms. Considerable evidence has been collected over the last few years suggesting that oxidative stress associated with excessive production of reactive oxygen species is a fundamental mechanism of brain damage in stroke and reperfusion after stroke. Oxidative stress is an important trigger of neuronal apoptosis in ischemic stroke. In this current study, it was found that cocaine-regulated and amphetamine-regulated transcript 55-102 (CART55-102) inhibited oxygen-induced and glucose deprivation (OGD)-induced neurotoxicity in a dose-dependent manner. The peak dose of CART55-102 was 0.4 nmol/l. In addition, the level of intracellular reactive oxygen species was decreased in OGD-treated neurons in the presence of 0.4 nmol/l CART55-102. Mitochondrial membrane potential (ΔΨm) and mtDNA mRNA expressions were increased in OGD-treated neurons in the presence of 0.4 nmol/l CART55-102. The current study suggests that CART55-102, by inhibiting oxidative stress, may be developed into therapeutic agents for ischemic stroke. PMID:23884173

  1. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells. PMID:22802136

  2. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture.

    PubMed

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies. PMID:24116165

  3. Inhibition of Phenylpropanoid Biosynthesis in Artemisia annua L.: A Novel Approach to Reduce Oxidative Browning in Plant Tissue Culture

    PubMed Central

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies. PMID:24116165

  4. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity.

    PubMed

    Qian, Yuanyuan; Zhang, Yali; Zhong, Peng; Peng, Kesong; Xu, Zheng; Chen, Xuemei; Lu, Kongqin; Chen, Gaozhi; Li, Xiaokun; Liang, Guang

    2016-08-01

    Inflammation and oxidative stress plays an important role in the development of obesity-related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti-inflammatory, antioxidant and anti-cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti-inflammatory activity in lipopolysaccharide-stimulated macrophages. However, its ability to alleviate obesity-induced heart injury via its anti-inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high-fat diet rat model. We observed that palmitic acid treatment in cardiac-derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high-fat diet-induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti-inflammatory and anti-oxidative actions of X22 were associated with Nrf2 activation and nuclear factor-kappaB (NF-κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF-κB may be important therapeutic targets for obesity-related complications. PMID:27019072

  5. Realization of Negative Capacitance with Topological Insulator Based MOS Capacitor

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhang, Kai; Zhu, Hao; Li, Haitao; Ioannou, Dimitris; Baumgart, Helmut; Richter, Curt; Li, Qiliang; ECE, George Mason University Team; Semiconductor and Dimensional Metrology Division of NIST Team; ECE, Old Dominion University Team

    2013-03-01

    Negative capacitance is one of way to achieve steep subthreshold slope exceeding its thermal limit in metal-oxide-semiconductor field effect transistor (MOSFET). The common materials under study for negative capacitance are ferroelectric thin films. However, the integration of regular ferroelectric materials (e.g., PZT) into semiconductor based devices is usually difficult due to the high temperature required for crystallization and precise control of oxygen percentage in ferroelectric materials. In this work, we found that negative capacitance can be achieved by introducing a topological insulator interlayer into a conventional MOS capacitor. Three-dimensional topological insulators inherently contain a insulator/semiconductor bulk and a gapless conducting surface. When an electric field is added to topological insulator interlayer, imbalanced charge carriers (electrons and holes) would be generated and then accumulate on either surface of the film, resulting in a temporary residual polarization. As a result, a ferroelectric-like hysteresis and negative capacitance are achieved. We believe this approach will be very attractive to achieve steep subthreshold using negative capacitance. Supported by NSF Career grant 0846649.

  6. Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition

    PubMed Central

    2013-01-01

    Background The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition. Results The recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the kcat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the Km of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased Km values by up to two orders of magnitude while also increasing kcat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition. Conclusions This study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be

  7. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways.

    PubMed

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-05-01

    Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  8. Metabolic Substrates Exhibit Differential Effects on Functional Parameters of Mouse Sperm Capacitation1

    PubMed Central

    Goodson, Summer G.; Qiu, Yunping; Sutton, Keith A.; Xie, Guoxiang; Jia, Wei; O'Brien, Deborah A.

    2012-01-01

    ABSTRACT Although substantial evidence exists that sperm ATP production via glycolysis is required for mammalian sperm function and male fertility, conflicting reports involving multiple species have appeared regarding the ability of individual glycolytic or mitochondrial substrates to support the physiological changes that occur during capacitation. Several mouse models with defects in the signaling pathways required for capacitation exhibit reductions in sperm ATP levels, suggesting regulatory interactions between sperm metabolism and signal transduction cascades. To better understand these interactions, we conducted quantitative studies of mouse sperm throughout a 2-h in vitro capacitation period and compared the effects of single substrates assayed under identical conditions. Multiple glycolytic and nonglycolytic substrates maintained sperm ATP levels and comparable percentages of motility, but only glucose and mannose supported hyperactivation. These monosaccharides and fructose supported the full pattern of tyrosine phosphorylation, whereas nonglycolytic substrates supported at least partial tyrosine phosphorylation. Inhibition of glycolysis impaired motility in the presence of glucose, fructose, or pyruvate but not in the presence of hydroxybutyrate. Addition of an uncoupler of oxidative phosphorylation reduced motility with pyruvate or hydroxybutyrate as substrates but unexpectedly stimulated hyperactivation with fructose. Investigating differences between glucose and fructose in more detail, we demonstrated that hyperactivation results from the active metabolism of glucose. Differences between glucose and fructose appeared to be downstream of changes in intracellular pH, which rose to comparable levels during incubation with either substrate. Sperm redox pathways were differentially affected, with higher levels of associated metabolites and reactive oxygen species generated during incubations with fructose than during incubations with glucose. PMID

  9. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    NASA Astrophysics Data System (ADS)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  10. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production. PMID:23963715

  11. Nitric oxide inhibits specific enzymes in the Krebs cycle and the respiratory chain of rat hepatocyte mitochondria

    SciTech Connect

    Stadler, J.; Billiar, T.R.; Curran, R.D.; Kim, R.; Simmons, R.L. )

    1990-02-26

    Nitric oxide (NO) is a highly-reactive molecule produced from L-arginine as recently described. In macrophages and tumor cells, NO inhibits specific mitochondrial enzymes presumably by attacking their intrinsic 4Fe-4S centers. The susceptible enzymes include aconitase of the Krebs cycle and oxidoreductase (complex II) of the electron transport chain. The authors have recently demonstrated that hepatocytes (HC) produce NO in large amounts in response to endotoxin and inflammatory cytokines. To determine whether HC suffer a similar enzyme inhibition, the authors exposed rat HC to increasing concentrations of NO solutions for 5 minutes. The activity of aconitase, complex 1, complex 2, and complex 4 (cytochrome oxidase) was determined by measuring O{sub 2} consumption after addition of enzyme-specific substrates. An NO concentration-dependent inhibition of aconitase, complex 1, and complex 2 was measured. After exposure to 0.6 mM solution, the activity of aconitase was blocked to non-measurable values while complex 1 was reduced to 11 + 8%, and complex 2 to 36 + 2% of the activity of control HC. Complex 4 of the respiratory chain remained intact at 100 + 8%. These data indicate that HC, like other cell types, are susceptible to inhibition of important steps of energy production by NO. As NO is produced in response to septic stimuli, this mechanism may play a role in the metabolic dysfunction of HC in sepsis.

  12. Inhibition, Inactivation, and Recovery of Ammonia-Oxidizing Activity in Cometabolism of Trichloroethylene by Nitrosomonas europaea

    PubMed Central

    Hyman, M. R.; Russell, S. A.; Ely, R. L.; Williamson, K. J.; Arp, D. J.

    1995-01-01

    The kinetics of the cometabolism of trichloroethylene (TCE) by the ammonia-oxidizing soil bacterium Nitrosomonas europaea in short-term (<10-min) incubations were investigated. Three individual effects of TCE cometabolism on this bacterium were characterized. First, we observed that TCE is a potent competitive inhibitor of ammonia oxidation by N. europaea. The K(infi) value for TCE (30 (mu)M) is similar to the K(infm) for ammonia (40 (mu)M). Second, we examined the toxicity associated with TCE cometabolism by N. europaea. Stationary-phase cells of N. europaea oxidized approximately 60 nmol of TCE per mg of protein before ammonia-oxidizing activity was completely inactivated by reactive intermediates generated during TCE oxidation. At the TCE concentrations used in these experiments, ammonia did not provide significant protection against inactivation. Third, we have determined the ability of cells to recover ammonia-oxidizing activity after exposure to TCE. Cells recovering from TCE inactivation were compared with cells recovering from the specific inactivation of ammonia-oxidizing activity by light. The recovery kinetics were indistinguishable when 40% or less of the activity was inactivated. However, at increased levels of inactivation, TCE-inactivated cells did not recover as rapidly as light-inactivated cells. The kinetics of recovery appear to be dependent on both the extent of inactivation of ammonia-oxidizing activity and the degree of specificity of the inactivating treatment. PMID:16534997

  13. Cholesteryl-ester transfer protein enhances the ability of high-density lipoprotein to inhibit low-density lipoprotein oxidation.

    PubMed

    Hine, David; Mackness, Bharti; Mackness, Mike

    2011-09-01

    Therapeutic strategies to increase high-density lipoprotein (HDL) to treat or prevent vascular disease include the use of cholesteryl-ester transfer protein (CETP) inhibitors. Here, we show, to the best of our knowledge for the first time, that addition of CETP to HDL enhances the ability of HDL to inhibit low-density lipoprotein oxidation by ∼ 30% for total HDL and HDL(2) (both P < 0.05) and 75% for HDL(3) (P < 0.01). Therefore, CETP inhibition may be detrimental to the antiatherosclerotic properties of HDL, and these findings may partly explain the failure of the CETP inhibitor, torcetrapib, treatment to retard vascular disease despite large increases in HDL, in addition to its "off target" toxicity, a property which appears not to be shared by other members of this class of CETP inhibitor currently under clinical trial. Further, detailed studies are urgently required. PMID:21815241

  14. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  15. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    SciTech Connect

    Yoon, Jeongyeon; Ryoo, Sungwoo

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  16. Impact of Added Encapsulated Phosphate Level on Lipid Oxidation Inhibition during the Storage of Cooked Ground Meat.

    PubMed

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Bilecen, D

    2016-02-01

    The effect of levels (0.1%, 0.2%, 0.3%, 0.4%, 0.5%) of added encapsulated (e) phosphate (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation inhibition during storage (0, 1, and 7 d) of ground meat (chicken, beef) was evaluated. The use of eSTP and eSPP resulted in lower and higher cooking loss (CL) compared to eHMP, respectively (P < 0.05). Increasing encapsulated phosphate level (PL) enhanced the impact of phosphates on CL in both chicken and beef samples (P < 0.05). Encapsulated STP increased pH, whereas eSPP decreased pH (P < 0.05). pH was not affected by PL. The highest orthophosphate (OP) was obtained with eSTP, followed by eSPP and eHMP (P < 0.05). The level of OP determined in both chicken and beef samples increased (P < 0.05) during storage. Increasing PL caused an increase in OP (P < 0.05). The highest reduction rate in the formation of thiobarbituric acid reactive substances (TBARS) and LPO for both meat species were obtained with eSPP, followed by eSTP and eHMP (P < 0.05). Increasing PL resulted in lower TBARS and LPO (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for the meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by increasing PL. PMID:26753985

  17. Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary transvascular flux during acute endotoxemia.

    PubMed

    Arkovitz, M S; Wispé, J R; Garcia, V F; Szabó, C

    1996-08-01

    The inducible isoform of nitric oxide synthase (iNOS) is expressed in various organs, including the lung, during systemic endotoxemia. Overproduction of nitric oxide (NO) by iNOS contributes significantly to the vascular failure and end-organ damage in endotoxemia. Using selective pharmacological inhibitors of iNOS, the purpose of this study was to define the role of iNOS in a rat model of endotoxin-induced pulmonary transvascular flux (TVF). Lung TVF was assessed by a method of Evans Blue permeability index (PI). Bacterial lipopolysaccharide (LPS) (15 mg/kg intraperitoneally [IP]) significantly increased pulmonary iNOS activity and serum levels of nitrite/nitrate (NO2/NO3). This was accompanied by a significant elevation of the PI 5 hours after injection. Selective iNOS inhibition with either S-methyl isothiourea (SMT; 5 mg/kg IP) or aminoguanidine (AG; 20 mg/kg IP), administered 2 hours after LPS injection, significantly prevented the increase in PI associated with LPS injection. Similarly, inhibition of the induction of iNOS with dexamethasone (10 mg/kg IP), given 3 hours before LPS, also inhibited the increase in PI. All three treatments significantly prevented the increase in both lung iNOS activity and serum NO2/NO3 associated with endotoxemia. In conclusion, the overproduction of NO generated by iNOS during systemic endotoxemia causes a vascular leak in the lung. Thus, it is speculated that selective inhibition of iNOS may be beneficial in preventing the development of acute respiratory failure in sepsis. PMID:8863222

  18. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle

    PubMed Central

    2013-01-01

    Background The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood. Methods The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA). Results Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions. Conclusion In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle. PMID:23773265

  19. Label free redox capacitive biosensing.

    PubMed

    Fernandes, Flávio C Bedatty; Góes, Márcio S; Davis, Jason J; Bueno, Paulo R

    2013-12-15

    A surface confined redox group contributes to an interfacial charging (quantifiable by redox capacitance) that can be sensitively probed by impedance derived capacitance spectroscopy. In generating mixed molecular films comprising such redox groups, together with specific recognition elements (here antibodies), this charging signal is able to sensitively transduce the recognition and binding of specific analytes. This novel transduction method, exemplified here with C-reactive protein, an important biomarker of cardiac status and general trauma, is equally applicable to any suitably prepared interfacial combination of redox reporter and receptor. The assays are label free, ultrasensitive, highly specific and accompanied by a good linear range. PMID:23896524

  20. Overproduction of nitric oxide inhibits vascular reactivity in portal hypertensive rats

    PubMed Central

    Li, Xi-Ru; Wu, Jin-Sheng; He, Ze-Sheng; Ma, Qing-Jiu; Gao, De-Ming

    1997-01-01

    AIM: To evaluate the relationship between nitric oxide (NO) and hyperdynamic circulatory status in portal hypertension. METHODS: Twenty male Sprague Dawley rats (weighing 200 ± 20 g) were randomized into two groups: portal hypertension group (n = 12) and sham-operated control group (n = 8). The portal hypertensive model was established by means of graded constriction of the portal vein. The concentrations of nitrite (NO2-) in the portal vein and peripheral blood were measured by fluorometric assay to reflect NO levels. The reactivity of isolated abdominal aortic rings from rats with partial portal vein constriction and controls was determined by assessing response to administration of potassium chloride (KCl) (10–80 mmol/L) and phenylephrine (10-9-10-4 mol/L) with or without preincubation with NO synthase inhibitor Nω-nitro-L-arginine (L-NNA). RESULTS: Serum concentrations of NO2- in the portal vein blood (0.766 ± 0.097 μmol/L) and peripheral blood (0.687 ± 0.092 μmol/L) were elevated in portal hypertensive rats, as compared with the concentrations in controls (0.613 ± 0.084 μmol/L and 0.591 ± 0.045 μmol/L respectively, both P < 0.01). In addition, the rates of NO2- in portal vein blood were markedly higher than those in peripheral blood (P < 0.05) in the portal hypertensive rats. Abdominal aortic rings from rats with portal vein constriction exhibited significantly impaired contractility to phenylephrine and KCl, as compared with the control rats. The EC50 values of KCl were markedly higher in the portal hypertensive rings (26.5 ± 0.9 mmol/L) than in the control rings (22.3 ± 1.7 mmol/L, P < 0.01), as were the EC50 values of phenylephrine (37.2 ± 0.4 nmol/L vs control rings: 28.1 ± 0.2 nmol/L, P < 0.01). After preincubation of rings with L-NNA, the difference in EC50 values between portal hypertensive and control rings was no longer statistically significant for either KCl (20.18 ± 0.8 mmol/L vs 19.4 ± 1.2 mmol/L, P > 0.05) or phenylephrine (22

  1. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling

    PubMed Central

    2014-01-01

    Background Eotaxin proteins are a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Since inflammation is often associated with an increased generation of reactive oxygen species (ROS), oxidative stress is a mechanistically imperative factor in asthma. Astragalin (kaempferol-3-O-glucoside) is a flavonoid with anti-inflammatory activity and newly found in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited endotoxin-induced oxidative stress leading to eosinophilia and epithelial apoptosis in airways. Methods Airway epithelial BEAS-2B cells were exposed to lipopolysaccharide (LPS) in the absence and presence of 1–20 μM astragalin. Western blot and immunocytochemical analyses were conducted to determine induction of target proteins. Cell and nuclear staining was also performed for ROS production and epithelial apoptosis. Results When airway epithelial cells were exposed to 2 μg/ml LPS, astragalin nontoxic at ≤20 μM suppressed cellular induction of Toll-like receptor 4 (TLR4) and ROS production enhanced by LPS. Both LPS and H2O2 induced epithelial eotaxin-1 expression, which was blocked by astragalin. LPS activated and induced PLCγ1, PKCβ2, and NADPH oxidase subunits of p22phox and p47phox in epithelial cells and such activation and induction were demoted by astragalin or TLR4 inhibition antagonizing eotaxin-1 induction. H2O2-upregulated phosphorylation of JNK and p38 MAPK was dampened by adding astragalin to epithelial cells, while this compound enhanced epithelial activation of Akt and ERK. H2O2 and LPS promoted epithelial apoptosis concomitant with nuclear condensation or caspase-3 activation, which was blunted by astragalin. Conclusions Astragalin ameliorated oxidative stress-associated epithelial eosinophilia and apoptosis through disturbing TLR4-PKCβ2-NADPH oxidase-responsive signaling. Therefore, astragalin may be a potent agent antagonizing endotoxin

  2. Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia.

    PubMed

    Udayabanu, M; Kumaran, D; Nair, R Unnikrishnan; Srinivas, P; Bhagat, Neeta; Aneja, R; Katyal, Anju

    2008-09-16

    The mechanisms responsible for cholinergic dysfunction associated learning and memory impairment during hypoxia are not well-understood. However it is known that inflammatory mediators like inducible nitric oxide synthase (iNOS) hamper the functions of cholinergic neurons. In this present experiment we made an effort to study the iNOS expression mediated retrograde and anterograde memory impairment in Balb/c mice following acute hypobaric hypoxia (at an altitude of 23,000ft for 6h) using elevated plus maze and passive avoidance step-through tasks. Our results demonstrated that hypoxia transiently impairs the retrograde memory without affecting the anterograde memory functions, accompanied with a substantial rise in iNOS expression and nitric oxide levels in cerebral cortex on days 2 and 3 post hypoxia. Treatment with aminoguanidine (iNOS inhibitor ), resulted in down-regulation of the iNOS expression, attenuation of the surge of nitric oxide (NO) in cerebral cortex and reversal of retrograde memory impairment due to hypoxia. Moreover the reduced AChE activity and elevated lipid peroxidation in cerebral cortex were evident during post hypoxia re-oxygenation period, which was not observed in the hippocampus. Additionally, NO donor spermine NONOate could inhibit the AChE activity in brain homogenates in a concentration-dependent manner, which further substantiate that nitric oxide produced during post hypoxia re-oxygenation, primarily contributes to the observed inhibition of cortical AChE activity. Based on these experiments we hypothesize that the NO burst as a result of iNOS upregulation during hypoxia interrupts the memory consolidation by altering the cholinergic functions. PMID:18639532

  3. Selenium Inhibits Renal Oxidation and Inflammation But Not Acute Kidney Injury in an Animal Model of Rhabdomyolysis

    PubMed Central

    Shanu, Anu; Groebler, Ludwig; Kim, Hyun Bo; Wood, Sarah; Weekley, Claire M.; Aitken, Jade B.; Harris, Hugh H.

    2013-01-01

    Abstract Acute kidney injury (AKI) is a manifestation of rhabdomyolysis (RM). Extracellular myoglobin accumulating in the kidney after RM promotes oxidative damage, which is implicated in AKI. Aim: To test whether selenium (Se) supplementation diminishes AKI and improves renal function. Results: Dietary selenite increased Se in the renal cortex, as demonstrated by X-ray fluorescence microscopy. Experimental RM-stimulated AKI as judged by increased urinary protein/creatinine, clusterin, and kidney injury molecule-1 (KIM-1), decreased creatinine clearance (CCr), increased plasma urea, and damage to renal tubules. Concentrations of cholesterylester (hydro)peroxides and F2-isoprostanes increased in plasma and renal tissues after RM, while aortic and renal cyclic guanidine monophosphate (cGMP; marker of nitric oxide (NO) bioavailability) decreased. Renal superoxide dismutase-1, phospho-P65, TNFα gene, MCP-1 protein, and the 3-chloro-tyrosine/tyrosine ratio (Cl-Tyr/Tyr; marker of neutrophil activation) all increased after RM. Dietary Se significantly decreased renal lipid oxidation, phospho-P65, TNFα gene expression, MCP-1 and Cl-Tyr/Tyr, improved NO bioavailability in aorta but not in the renal microvasculature, and inhibited proteinuria. However, CCr, plasma urea and creatinine, urinary clusterin, and histopathological assessment of AKI remained unchanged. Except for the Se++ group, renal angiotensin-receptor-1/2 gene/protein expression increased after RM with parallel increases in MEK1/2 inhibitor-sensitive MAPkinase (ERK) activity. Innovation: We employed synchrotron radiation to identify Se distribution in kidneys, in addition to assessing reno-protection after RM. Conclusion: Se treatment has some potential as a therapeutic for AKI as it inhibits oxidative damage and inflammation and decreases proteinuria, albeit histopathological changes to the kidney and some plasma and urinary markers of AKI remain unaffected after RM. Antioxid Redox Signal. 18, 756–769

  4. Specific inhibition of nitric oxide synthases at different time points in a murine model of pulmonary sepsis.

    PubMed

    Lange, Matthias; Hamahata, Atsumori; Traber, Daniel L; Nakano, Yoshimitsu; Traber, Lillian D; Enkhbaatar, Perenlei

    2011-01-21

    Excessive production of nitric oxide (NO) by NO synthase (NOS) and a subsequent oxidative stress reaction are thought to be critically involved in the pathophysiology of sepsis. Previous studies suggested that NO production by neuronal NOS (nNOS) and inducible NOS (iNOS) is implemented in the disease process at different time points after the injury. Here we tested the roles of selective pharmacological inhibition of nNOS and iNOS at different time points in a murine model of pulmonary sepsis. The injury was induced by intranasal administration of live Pseudomonas aeruginosa (3.2×10(7) colony-forming units) in C57BL/6 wild-type mice. The animals received no treatment (control) or treatment with a specific nNOS inhibitor (4 or 8h), iNOS inhibitor (4 or 8h), or non-specific NOS inhibitor (4 or 8h). In controls, the injury was associated with excessive releases of pro-inflammatory cytokines in the plasma, enhanced tissue lipid peroxidation, and decreased survival. Non-specific NOS inhibition at either time point did not influence survival and was not further investigated. While nNOS inhibition at 4h was associated with a trend toward improved survival and significantly reduced contents of lung nitrite/nitrate (NO(x)) and liver malondialdehyde, the blockade of nNOS at 8h had no effect on these parameters. In contrast, early iNOS inhibition was associated with a trend toward decreased survival and no effects on lung NO(x) and liver malondialdehyde contents, whereas later iNOS blockade was associated with decreased malondialdehyde content in liver homogenates. In conclusion, pulmonary sepsis in mice may be beneficially influenced by specific pharmacological nNOS inhibition at an earlier time point and iNOS inhibition at a later time points post-injury. Future investigations should identify the time changes of the expression and activation of NOS isoforms. PMID:21184738

  5. Knockdown of IRF6 Attenuates Hydrogen Dioxide-Induced Oxidative Stress via Inhibiting Mitochondrial Dysfunction in HT22 Cells.

    PubMed

    Guo, Xiao-Min; Chen, Bo; Lv, Jian-Meng; Lei, Qi; Pan, Ya-Juan; Yang, Qian

    2016-10-01

    Oxidative stress-induced cell damage is involved in many neurological diseases. Interferon regulatory factor 6 (IRF6), a member of the IRF family of transcription factors, is required for the differentiation of skin, breast epithelium, and oral epithelium. However, the regulation and function of IRF6 in central nervous system remain unknown. This study aimed to investigate the role of IRF6 in hydrogen peroxide (H2O2)-induced oxidative neuronal injury in HT22 mouse hippocampal cells. Treatment with H2O2 significantly increased the expression of IRF6 at both mRNA and protein levels, and knockdown of IRF6 using specific small interfering RNA reduced H2O2-induced cytotoxicity, as evidenced by increased cell viability and decreased apoptosis. Knockdown of IRF6 attenuated intracellular reactive oxygen species (ROS) generation and lipid peroxidation, and also preserved endogenous antioxidant enzyme activities. The inhibitory effect of IRF6 knockdown on mitochondrial dysfunction was demonstrated by reduced mitochondrial oxidative level, preserved mitochondrial membrane potential (MMP) and ATP generation, as well as attenuated mitochondrial swelling. In addition, down-regulation of IRF6 inhibited the activation of mitochondrial apoptotic factors, whereas IRF6 knockdown together with caspase inhibitors had no extra effect on cell viability and LDH release. These results suggest that knockdown of IRF6 has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on preservation of mitochondrial function. PMID:26620051

  6. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages.

    PubMed

    Korhonen, Riku; Lahti, Aleksi; Hämäläinen, Mari; Kankaanranta, Hannu; Moilanen, Eeva

    2002-09-01

    Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway is increased in inflammatory diseases and leads to cellular injury. Anti-inflammatory steroids inhibit the expression of various inflammatory genes, including iNOS. In the present study, we investigated the mechanism how dexamethasone decreased NO production in murine J774 macrophages. Dexamethasone (0.1-10 microM) inhibited the production of NO and iNOS protein in a dose-dependent manner in cells stimulated with lipopolysaccharides (LPS). In contrast, in cells treated with a combination of LPS and interferon-gamma (IFN-gamma), dexamethasone did not reduce iNOS expression and NO formation. Dissociated glucocorticoid RU24858 inhibited iNOS expression and NO production to levels comparable with that of dexamethasone, suggesting that the reduced iNOS expression by dexamethasone is not a GRE-mediated event. In further studies, the effect of dexamethasone on iNOS mRNA levels was tested by actinomycin assay. The half-life of iNOS mRNA after LPS treatment was 5 h 40 min, and dexamethasone reduced it to 3 h. The increased degradation of iNOS mRNA was reversed by a protein synthesis inhibitor cycloheximide. iNOS mRNA was more stabile in cells treated with a combination of LPS plus IFN-gamma (half-life = 8 h 20 min), and dexamethasone had a minor effect in these conditions. In conclusion, dexamethasone decreases iNOS-dependent NO production by destabilizing iNOS mRNA in LPS-treated cells by a mechanism that requires de novo protein synthesis. Also, decreased iNOS mRNA and protein expression and NO formation by dexamethasone was not found in cells treated with a combination of LPS plus IFN-gamma, suggesting that the effect of dexamethasone is stimulus-dependent. PMID:12181447

  7. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    SciTech Connect

    Rajah, T.; Chow, S.C.

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.

  8. Inhibition of the Fe(III)-Catalyzed Dopamine Oxidation by ATP and Its Relevance to Oxidative Stress in Parkinson’s Disease

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA–Fe(III)–ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate–Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)–DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP+) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity. PMID:23823941

  9. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  10. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.

    PubMed

    Marín-Hernández, Alvaro; Gallardo-Pérez, Juan Carlos; López-Ramírez, Sayra Y; García-García, Jorge Donato; Rodríguez-Zavala, José Salud; Ruiz-Ramírez, Lena; Gracia-Mora, Isabel; Zentella-Dehesa, Alejandro; Sosa-Garrocho, Marcela; Macías-Silva, Marina; Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara

    2012-05-01

    The copper-based drug Casiopeina II-gly (CasII-gly) shows potent antineoplastic effect and diminishes mitochondrial metabolism on several human and rodent malignant tumors. To elucidate whether CasII-gly also affects glycolysis, (a) the flux through the complete pathway and the initial segment and (b) the activities of several glycolytic enzymes of AS-30D hepatocarcinoma cells were determined. CasII-gly (IC₅₀ = 0.74-6.7 μM) was more effective to inhibit 24-72 h growth of several human carcinomas than 3-bromopyruvate (3BrPyr) (IC₅₀ = 45-100 μM) with no apparent effect on normal human-proliferating lymphocytes and HUVECs. In short-term 60-min experiments, CasII-gly increased tumor cell lactate production and glycogen breakdown. CasII-gly was 1.3-21 times more potent than 3BrPyr and cisplatin to inhibit tumor HK. As CasII-gly inhibited the soluble and mitochondrial HK activities and the flux through the HK-TPI glycolytic segment, whereas PFK-1, GAPDH, PGK, PYK activities and HPI-TPI segment flux were not affected, the data suggested glycogenolysis activation induced by HK inhibition. Accordingly, glycogen-depleted as well as oligomycin-treated cancer cells became more sensitive to CasII-gly. The inhibition time-course of HK by CasII-gly was slower than that of OxPhos in AS-30D cells, indicating that glycolytic toxicity was secondary to mitochondria, the primary CasII-gly target. In long-term 24-h experiments with HeLa cells, 5 μM CasII-gly inhibited OxPhos (80%), glycolysis (40%), and HK (42%). The present data indicated that CasII-gly is an effective multisite anticancer drug simultaneously targeting mitochondria and glycolysis. PMID:22349057

  11. Driven shielding capacitive proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  12. Defect Location Using Capacitative Imaging

    NASA Astrophysics Data System (ADS)

    Diamond, G. G.; Hutchins, D. A.; Gan, T. H.

    2008-02-01

    Further details of a novel capacitance sensing technique are presented, which is capable of imaging defects within a range of materials, including insulators, conductors and fibre reinforced composites. Representative results from each of these separate classes of material are presented here as are the results of real-life field trials in the inspection of civil structures.

  13. Oxidised low density lipoprotein causes human macrophage cell death through oxidant generation and inhibition of key catabolic enzymes.

    PubMed

    Katouah, Hanadi; Chen, Alpha; Othman, Izani; Gieseg, Steven P

    2015-10-01

    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death. PMID:26255116

  14. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

  15. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress.

    PubMed

    Charkoudian, Louise K; Pham, David M; Kwon, Ashley M; Vangeloff, Abbey D; Franz, Katherine J

    2007-11-21

    Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interaction with copper(II), zinc(II) and nickel(II). Hydrogen peroxide oxidizes the aryl boronate to phenol, thus converting the pro-chelators to tridentate ligands with high affinity metal binding properties. An X-ray crystal structure of a bis-ligated iron(III) complex, [Fe(SBH(m-OMe)(3))(2)]NO(3), confirms the meridonal binding mode of these ligands. Modifications of the aroyl ring of the chelators tune their iron affinity, whereas modifications on the boron-containing ring of the pro-chelators attenuate their reaction rates with hydrogen peroxide. Thus, the methoxy derivative pro-chelator (p-OMe)BASIH reacts with hydrogen peroxide nearly 5 times faster than the chloro derivative (m-Cl)BASIH. Both the rate of pro-chelator to chelator conversion as well as the metal binding affinity of the chelator influence the overall ability of these molecules to inhibit hydroxyl radical formation catalyzed by iron or copper in the presence of hydrogen peroxide and ascorbic acid. This pro-chelator strategy has the potential to improve the efficacy of medicinal chelators for inhibiting metal-promoted oxidative stress. PMID:17992288

  16. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress. PMID:26649137

  17. Oxidized derivative of docosahexaenoic acid preferentially inhibit cell proliferation in triple negative over luminal breast cancer cells

    PubMed Central

    El-Bayoumy, Karam; Amin, Shantu; Gowda, Krishne; de Cicco, Ricardo López; Barton, Maria; Su, Yanrong; Russo, Irma H.; Himmelberger, Julie A.; Slifker, Michael; Manni, Andrea; Russo, Jose

    2016-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exert an anticancer effect by affecting multiple cellular mechanisms leading to inhibition of proliferation and induction of apoptosis. It is well known that breast cancer comprises distinct molecular subtypes which differ in their responsiveness to therapeutic and preventive agents. We tested the hypothesis that n-3FA may preferentially affect triple-negative breast cancer cells for which no targeted intervention is presently available. The in vitro antiproliferative effects of n-3 PUFA docosahexaenoic acid (DHA) and its metabolite, 4-OH-DHA as well as its putative metabolite 4-OXO-DHA, were tested in five triple-negative human basal breast cell lines at different stages of transformation (MCF-10F, trMCF, bsMCF, MDA-MB-231, and BT-549) and three luminal breast cancer cell lines (MCF-7, T-47D, and SK-BR-3). Cell proliferation was measured with the tetrazolium MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay. DHA and its oxidized derivatives significantly inhibited cell proliferation (20–90% reduction) of both basal and luminal breast cancer cell lines. The inhibitory effect was more pronounced on triple-negative basal breast cancer cell lines as compared to luminal breast cancer cell lines after 4-OXO-DHA treatment. Our data provide novel information regarding the preferential antitumor effect of oxidized derivatives of DHA on basal type breast cancer. PMID:25413005

  18. Capacitive Proximity Sensor Has Longer Range

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Capacitive proximity sensor on robot arm detects nearby object via capacitive effect of object on frequency of oscillator. Sensing element part of oscillator circuit operating at about 20 kHz. Total capacitance between sensing element and ground constitutes tuning capacitance of oscillator. Sensor circuit includes shield driven by replica of alternating voltage applied to sensing element. Driven shield concentrates sensing electrostatic field in exterior region to enhance sensitivity to object. Sensitivity and dynamic range has corresponding 12-to-1 improvement.

  19. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

    PubMed Central

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Krishna Priya, Mani; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

    2014-01-01

    Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the

  20. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats.

    PubMed

    Jendzjowsky, Nicholas G; DeLorey, Darren S

    2013-07-01

    Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction. Sprague-Dawley rats (n = 13) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and lumbar sympathetic chain stimulating electrodes. Triceps surae muscles were stimulated to contract rhythmically at 60% of maximal contractile force. In series 1 (n = 9), the percent change in femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction before and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg/kg iv) and subsequent nonselective NOS blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME, 5 mg/kg iv). In series 2 (n = 4), l-NAME was injected first, and then SMTC was injected to determine if the effect of l-NAME on constrictor responses was influenced by selective nNOS inhibition. Sympathetic stimulation decreased FVC at rest (-25 ± 7 and -44 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (-7 ± 3 and -19 ± 5%FVC at 2 and 5 Hz, respectively). The decrease in FVC in response to sympathetic stimulation was greater in the presence of SMTC at rest (-32 ± 6 and -49 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (-21 ± 4 and -28 ± 4%FVC at 2 and 5 Hz, respectively). l-NAME further increased (P < 0.05) the sympathetic vasoconstrictor

  1. The intracellular proton gradient enables anaerobic ammonia oxidizing (anammox) bacteria to tolerate NO2 - inhibition.

    PubMed

    Carvajal-Arroyo, José M; Puyol, Daniel; Li, Guangbin; Sierra-Álvarez, Reyes; Field, Jim A

    2014-12-20

    Anammox bacteria are inhibited by nitrite, which is one of their substrates. By utilizing 2,4 dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone, two uncouplers of respiration, we demonstrate that nitrite tolerance of anammox cells is strongly dependent on their ability to maintain a proton gradient, which may be the driving force for active nitrite transport system. PMID:25449017

  2. Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibitory effect of a heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by a HT (43 degrees C) for 10, 20 o...

  3. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant

  4. Oviduct fluid and heparin induce similar surface changes in bovine sperm during capacitation: a flow cytometric study using lectins.

    PubMed

    Mahmoud, A I; Parrish, J J

    1996-04-01

    Eight different lectins conjugated to fluorescein isothiocyanate (FITC) were used to screen for sperm plasma membrane changes during in vitro capacitation of bovine sperm. Analysis of lectin binding to sperm was done using flow cytometry. Of the eight lectins, only Triticum vulgaris (wheat germ agglutinin, WGA) binding to sperm was altered with capacitation. Capacitation of bovine sperm by heparin was found to decrease WGA binding to sperm by 78% (P < 0.05). The effect of capacitation by oviduct fluid was next compared with capacitation by heparin for changes in WGA binding to sperm. The effect of inhibiting capacitation with glucose on WGA binding was also determined. WGA-bound sperm were detected by flow cytometry as being present in two fluorescence peaks defined as low fluorescence (A) or high fluorescence (B) intensity. The percentage of sperm in peak A was greater for heparin and oviduct fluid-treated sperm compared to sperm incubated under noncapacitating conditions in only culture medium (P < 0.001). Capacitation with either heparin or oviduct fluid was inhibited by glucose as assessed by the ability of lysophosphatidylcholine (100 micrograms/ml) to induce acrosome reactions. Glucose also reduced the percentage of sperm in peak A for both heparin- and oviduct fluid-treated sperm (P < 0.01). We conclude that heparin or oviduct fluid induced changes on the sperm plasma membrane during capacitation. Binding sites for WGA on sperm were either structurally altered or lost during capacitation. PMID:9052948

  5. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  6. Nitric oxide production inhibition and mechanism of phenanthrene analogs in lipopolysaccharide-stimulated RAW264.7 macrophages.

    PubMed

    Chen, Lian-Qi; Shen, Xiao-Fei; Hu, Bo-Yang; Lin, Yuan; Igbe, Ighodaro; Zhang, Cheng-Gang; Zhang, Guo-Lin; Yuan, Xiao-Hong; Wang, Fei

    2016-05-15

    Natural phenanthrene derivatives are considered to be important resource for the anti-inflammatory therapeutics, but their structure-activity relationship and mechanisms are still unknown. In this study we evaluated 20 synthesized phenanthrene analogs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Compounds 10, 11 and 17 were found to inhibit the production of nitric oxide (NO) with IC50 values of 37.26μM, 5.05μM and 20.31μM, respectively. Compound 11 decreased LPS-induced expression of inducible NO synthase (iNOS), inhibited phosphorylation of p38 mitogen-activated protein kinase (MAPK) and serine/threonine kinase Akt. It also suppressed the phosphorylation and degradation of inhibitory kappa B-α (IκBα). Data obtained suggest that compound 11 exerts anti-inflammatory effects by inhibiting p38 MAPK and nuclear factor κB (NF-κB) pathways, which warrants further investigation as a new anti-inflammatory pharmaceutical tool. PMID:27038497

  7. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells.

    PubMed

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  8. Cytotoxicity and inhibition of nitric oxide in lipopolysaccharide induced mammalian cell lines by aqueous extracts of brown seaweed.

    PubMed

    Jaswir, Irwandi; Monsur, Hammed Ademola; Simsek, Senay; Amid, Azura; Alam, Zahangir; bin Salleh, Mohammad Noor; Tawakalit, Asiyanbi-Hammed; Octavianti, Fitri

    2014-01-01

    Aqueous extracts obtained from five Malaysian brown seaweeds, Sargassum duplicatum, Sargassum binderi, Sargassum fulvellum, Padina australis, and Turbinaria turbinata, were investigated for their abilities to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophage RAW 264.7 cell lines as well as to determine their chemical composition. The percentage yield of extracts varied among species, with P. australis having the lowest yield and T. turbinata having the highest yield. The chemical compositions of the extracts showed that the percentage of sulfate ions as well as uronic acid and total sugar content varied significantly. All extracts contained high fucose and inhibited NO secretion in a dose-dependent manner. Extracts of P. australis and T. turbinata dosed at 200 μg/mL were able to inhibit NO secretion by > 75%. Furthermore, cytotoxicity assays revealed that some extracts were moderately toxic, while others were not. Based on these results, brown seaweed of Malaysian origin should be investigated for the production of additional anti-inflammatory compounds. PMID:25007746

  9. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells.

    PubMed

    Hermanova, I; Arruabarrena-Aristorena, A; Valis, K; Nuskova, H; Alberich-Jorda, M; Fiser, K; Fernandez-Ruiz, S; Kavan, D; Pecinova, A; Niso-Santano, M; Zaliova, M; Novak, P; Houstek, J; Mracek, T; Kroemer, G; Carracedo, A; Trka, J; Starkova, J

    2016-01-01

    l-asparaginase (ASNase), a key component in the treatment of childhood acute lymphoblastic leukemia (ALL), hydrolyzes plasma asparagine and glutamine and thereby disturbs metabolic homeostasis of leukemic cells. The efficacy of such therapeutic strategy will depend on the capacity of cancer cells to adapt to the metabolic challenge, which could relate to the activation of compensatory metabolic routes. Therefore, we studied the impact of ASNase on the main metabolic pathways in leukemic cells. Treating leukemic cells with ASNase increased fatty-acid oxidation (FAO) and cell respiration and inhibited glycolysis. FAO, together with the decrease in protein translation and pyrimidine synthesis, was positively regulated through inhibition of the RagB-mTORC1 pathway, whereas the effect on glycolysis was RagB-mTORC1 independent. As FAO has been suggested to have a pro-survival function in leukemic cells, we tested its contribution to cell survival following ASNase treatment. Pharmacological inhibition of FAO significantly increased the sensitivity of ALL cells to ASNase. Moreover, constitutive activation of the mammalian target of rapamycin pathway increased apoptosis in leukemic cells treated with ASNase, but did not increase FAO. Our study uncovers a novel therapeutic option based on the combination of ASNase and FAO inhibitors. PMID:26239197

  10. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  11. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus.

    PubMed

    Sun, Qi; Shang, Bo; Wang, Ling; Lu, Zhisong; Liu, Yang

    2016-02-01

    Cinnamaldehyde (CIN) is a promising natural preservative and generally recognized as safe for commodities as well as consumers. In this work, the antifungal effects of CIN on Aspergillus flavus were evaluated both in solid and in liquid culture conditions. Our results indicated that CIN effectively inhibited radial growth, spore production, mycelium formation, and aflatoxin B1 biosynthesis by A. flavus in a dose-dependent manner. At the concentration of 104 mg L(-1), CIN exposure was able to completely inhibit fungal growth as well as aflatoxin B1 production. Furthermore, the inhibitory activities of CIN were closely connected with the treatment period and the tested fungal species. Compared with the control strains, CIN dose dependently changed the morphology and ultrastructure of mycelium in different degree. Especially, the reduction of hydrogen peroxide was considered to follow the destruction of mitochondrial. Meanwhile, CIN significantly cut the levels of lipid peroxidation and reduced glutathione. The activity of total superoxide dismutase was significantly inhibited after CIN treatment at the end of incubation, whereas the activities of catalase and glutathione peroxidase were opposite. These results indicated that the inhibitory effect of CIN could attribute to oxidative stress alleviation possibly induced by modifications of cellular structure as well as redox status. PMID:26585445

  12. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron

    PubMed Central

    D'Autréaux, Benoît; Touati, Danièle; Bersch, Beate; Latour, Jean-Marc; Michaud-Soret, Isabelle

    2002-01-01

    Ferric uptake regulation protein (Fur) is a bacterial global regulator that uses iron as a cofactor to bind to specific DNA sequences. The function of Fur is not limited to iron homeostasis. A wide variety of genes involved in various mechanisms such as oxidative and acid stresses are under Fur control. Flavohemoglobin (Hmp) is an NO-detoxifying enzyme induced by NO and nitrosothiol compounds. Fur recently was found to regulate hmp in Salmonella typhimurium, and in Escherichia coli, the iron-chelating agent 2,2′-dipyridyl induces hmp expression. We now establish direct inhibition of E. coli Fur activity by NO. By using chromosomal Fur-regulated lacZ reporter fusion in E. coli, Fur activity is switched off by NO at micromolar concentration. In vitro Fur DNA-binding activity, as measured by protection of restriction site in aerobactin promoter, is directly sensitive to NO. NO reacts with FeII in purified FeFur protein to form a S = 1/2 low-spin FeFur–NO complex with a g = 2.03 EPR signal. Appearance of the same EPR signal in NO-treated cells links nitrosylation of the iron with Fur inhibition. The nitrosylated Fur protein is still a dimer and is stable in anaerobiosis but slowly decays in air. This inhibition probably arises from a conformational switch, leading to an inactive dimeric protein. These data establish a link between control of iron metabolism and the response to NO effects. PMID:12475930

  13. Phenolic Extract from Moringa oleifera Leaves Inhibits Key Enzymes Linked to Erectile Dysfunction and Oxidative Stress in Rats' Penile Tissues

    PubMed Central

    Oboh, Ganiyu; Ademiluyi, Adedayo O.; Ademosun, Ayokunle O.; Olasehinde, Tosin A.; Oyeleye, Sunday I.; Boligon, Aline A.; Athayde, Margareth L.

    2015-01-01

    This study was designed to determine the antioxidant properties and inhibitory effects of extract from Moringa oleifera leaves on angiotensin-I-converting enzyme (ACE) and arginase activities in vitro. The extract was prepared and phenolic (total phenols and flavonoid) contents, radical (nitric oxide (NO), hydroxyl (OH)) scavenging abilities, and Fe2+-chelating ability were assessed. Characterization of the phenolic constituents was done via high performance liquid chromatography-diode array detection (HPLC-DAD) analysis. Furthermore, the effects of the extract on Fe2+-induced MDA production in rats' penile tissue homogenate as well as its action on ACE and arginase activities were also determined. The extract scavenged NO∗, OH∗, chelated Fe2+, and inhibited MDA production in a dose-dependent pattern with IC50 values of 1.36, 0.52, and 0.38 mg/mL and 194.23 µg/mL, respectively. Gallic acid, chlorogenic acid, quercetin, and kaempferol were the most abundant phenolic compounds identified in the leaf extract. The extract also inhibited ACE and arginase activities in a dose-dependent pattern and their IC50 values were 303.03 and 159.59 µg/mL, respectively. The phenolic contents, inhibition of ACE, arginase, and Fe2+-induced MDA production, and radical (OH∗, NO∗) scavenging and Fe2+-chelating abilities could be some of the possible mechanisms by which M. oleifera leaves could be used in the treatment and/or management of erectile dysfunction. PMID:26557995

  14. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    PubMed

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene. PMID:26837748

  15. Subthreshold nitric oxide synthase inhibition improves synergistic effects of subthreshold MMP-2/MLCK-mediated cardiomyocyte protection from hypoxic injury.

    PubMed

    Bil-Lula, Iwona; Lin, Han-Bin; Biały, Dariusz; Wawrzyńska, Magdalena; Diebel, Lucas; Sawicka, Jolanta; Woźniak, Mieczyslaw; Sawicki, Grzegorz

    2016-06-01

    Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase-2 (MMP-2). It has been shown that simultaneous inhibition of MMP-2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML-7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co-administration of nitric oxide synthase (NOS) inhibitor (1400W or L-NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia-reoxygenation (H-R)-induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP-2 by Doxy (25-100 μM), MLCK by ML-7 (0.5-5 μM) and NOS by L-NAME (25-100 μM) or 1400W (25-100 μM) protected myocyte contractility after H-R in a concentration-dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H-R at the level of highest single-drug concentration. The combination of subthreshold concentrations of NOS, MMP-2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP-2. The observed protection with addition of L-NAME or 1400W was better than previously reported combination of ML-7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility. PMID:26992120

  16. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells.

    PubMed

    Ishita, Ishrat Jahan; Nurul Islam, Md; Kim, Yeong Shik; Choi, Ran Joo; Sohn, Hee Sook; Jung, Hyun Ah; Choi, Jae Sue

    2016-01-01

    Angelica decursiva has long been used in Korean traditional medicine as an antitussive, analgesic, antipyretic, and cough remedy. In this study, the anti-inflammatory activity of 9 coumarin derivatives isolated from a 90 % methanol fraction was evaluated via inhibition of production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among the tested compounds, edulisin II (1) exhibited the most potent NO production inhibitory activity, followed by decursidin (2), Pd-C-III (3), 4-hydroxy Pd-C-III (4), Pd-C-I (5), and Pd-C-II (6). In contrast, (+)-trans-decursidinol (7) did not exhibit NO suppressive effects on LPS-stimulated RAW 264.7 cells. Structure-activity relationships revealed that esterification of the hydroxyl at C-3' or C-4' of 7 with an angeloyl/senecioyl/acetyl group is essential for its inhibitory activity against NO production, while the number of angeloyl or senecioyl groups, and their positions greatly affect the potency of these coumarins. Coumarins 1-6 also inhibited TNF-α production and iNOS protein expression, while compounds 1-4 inhibited COX-2 protein expression in LPS-stimulated RAW 264.7 cells. These results suggest that coumarins isolated from A. decursiva might be used as potential leads for the development of therapeutic agents for inflammation-associated disorders. PMID:26474585

  17. Cordyceps sinensis oral liquid prolongs the lifespan of the fruit fly, Drosophila melanogaster, by inhibiting oxidative stress.

    PubMed

    Zou, Yingxin; Liu, Yuxiang; Ruan, Minghua; Feng, Xu; Wang, Jiachun; Chu, Zhiyong; Zhang, Zesheng

    2015-10-01

    This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process. PMID:26239097

  18. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications.

    PubMed

    Gorelik, Shlomit; Lapidot, Tair; Shaham, Inbal; Granit, Rina; Ligumsky, Moshe; Kohen, Ron; Kanner, Joseph

    2005-05-01

    The Western diet contains large quantities of oxidized lipids, because a large proportion of the food in the diet is consumed in a fried, heated, processed, or stored form. We investigated the reaction that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and cooxidation of dietary vitamins. To estimate the oxygen content in the stomach after food consumption, oxygen released from masticated bread (20 g) into deoxygenated water (100 mL) was measured. Under these conditions, the oxygen concentration rose by 250 microM and reached a full oxygen saturation. The present study demonstrated that heated red meat homogenized in human gastric fluid, at pH 3.0, generated hydroperoxides and malondialdehyde. The cross-reaction between free radicals produced during this reaction cooxidized vitamin E, beta-carotene, and vitamin C. Both lipid peroxidation and cooxidation of vitamin E and beta-carotene were inhibited at pH 3.0 by red wine polyphenols. Ascorbic acid (44 mg) at a concentration that represented the amount that could be ingested during a meal inhibited lipid peroxidation only slightly. Red wine polyphenols failed to prevent ascorbic acid oxidation significantly but, in conjunction with ascorbic acid, did inhibit lipid peroxidation. In the presence of catechin, a well-known polyphenol found in red wine, ascorbic acid at pH 3.0 works in a synergistic manner preventing lipid peroxidation and beta-carotene cooxidation. The present data may explain the major benefits to our health and the crucial role of consuming food products rich in dietary antioxidants such as fruits, vegetables, red wines, or green tea during the meal. PMID:15853378

  19. Cordyceps sinensis oral liquid prolongs the lifespan of the fruit fly, Drosophila melanogaster, by inhibiting oxidative stress

    PubMed Central

    ZOU, YINGXIN; LIU, YUXIANG; RUAN, MINGHUA; FENG, XU; WANG, JIACHUN; CHU, ZHIYONG; ZHANG, ZESHENG

    2015-01-01

    This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process. PMID:26239097

  20. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein.

    PubMed Central

    Watson, A D; Berliner, J A; Hama, S Y; La Du, B N; Faull, K F; Fogelman, A M; Navab, M

    1995-01-01

    Our group has previously demonstrated that oxidized phospholipids in mildly oxidized LDL (MM-LDL) produced by oxidation with lipoxygenase, iron, or cocultures of artery wall cells increase monocyte-endothelial interactions and this sequence of events is blocked by HDL. To obtain further insight into the mechanism by which HDL abolishes the activity of MM-LDL we investigated the effect of the HDL-associated ester hydrolase paraoxonase (PON). Treatment of MM-LDL with purified PON significantly reduced the ability of MM-LDL to induce monocyte-endothelial interactions. Inactivation of PON by pretreating HDL with heat or EDTA reduced the ability of HDL to inhibit LDL modification. HPLC analysis of phospholipids isolated from MM-LDL before and after treatment with purified PON showed that the 270 nm absorbance of phospholipids was decreased, while no effect was observed on 235 nm absorbance. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC) and specific fractions of Ox-PAPC isolated by HPLC induced the same monocyte-endothelial interactions as did MM-LDL. Biologically active and inactive HPLC fractions of Ox-PAPC were compared by fast atom bombardment-mass spectrometry which revealed that active fractions possessed ions with a mass to charge [correction of change] ratio greater than native PAPC by multiples of 16 D suggesting the addition of 3 and 4 oxygen atoms to PAPC. Comparison of Ox-PAPC by fast atom bombardment-mass spectrometry before and after PON treatment showed that PON destroyed these multi-oxygenated molecules found in biologically active fractions of Ox-PAPC. These results suggest that PON in HDL may protect against the induction of inflammatory responses in artery wall cells by destroying biologically active lipids in mildly oxidized LDL. Images PMID:8675659

  1. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition

    PubMed Central

    Liu, Yang; Liu, Yu; Liu, Xun; Chen, Jie; Zhang, Kun; Huang, Feifei; Wang, Jing-Feng; Tang, Wanchun; Huang, Hui

    2015-01-01

    Background Type 4 cardiorenal syndrome (CRS) refers to the cardiac injury induced by chronic kidney disease. We aimed to assess oxidative stress and cardiac injury in patients with type 4 CRS, determine whether the antioxidant apocynin attenuated cardiac injury in rats with type 4 CRS, and explore potential mechanisms. Methods and Results A cross-sectional study was conducted among patients with type 4 CRS (n=17) and controls (n=16). Compared with controls, patients with type 4 CRS showed elevated oxidative stress, which was significantly correlated with cardiac hypertrophy and decreased ejection fraction. In vivo study, male Sprague-Dawley rats underwent 5/6 subtotal nephrectomy and sham surgery, followed with apocynin or vehicle treatment for 8 weeks. Eight weeks after surgery, the 5/6 subtotal nephrectomy rats mimicked type 4 CRS, showing increased serum creatinine, cardiac hypertrophy and fibrosis, and decreased ejection fraction compared with sham-operated animals. Cardiac malondialdehyde, NADPH oxidase activity, fibroblast growth factor-2, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation increased significantly in the 5/6 subtotal nephrectomy rats. These changes were significantly attenuated by apocynin. In vitro study showed that apocynin reduced angiotensin II–induced NADPH oxidase–dependent oxidative stress, upregulation of fibroblast growth factor-2 and fibrosis biomarkers, and ERK1/2 phosphorylation in cardiac fibroblasts. Importantly, the ERK1/2 inhibitor U0126 reduced the upregulation of fibroblast growth factor-2 and fibrosis biomarkers in angiotensin II–treated fibroblasts. Conclusions Oxidative stress is a candidate mediator for type 4 CRS. Apocynin attenuated cardiac injury in type 4 CRS rats via inhibiting NADPH oxidase–dependent oxidative stress-activated ERK1/2 pathway and subsequent fibroblast growth factor-2 upregulation. Our study added evidence to the beneficial effect of apocynin in type 4 CRS. PMID:26109504

  2. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin

    PubMed Central

    Cai, He; Grunwald, Eric W; Park, Sungyong; Lei, Benfang; Richards, Mark P.

    2013-01-01

    The recombinant Streptococcal protein apoShp can be used as a probe for hemoglobin (Hb) reactivity in fish muscle due to its specific affinity for hemin that is released from Hb at post mortem pH values. Hemin affinity measurements indicated that apoShp binds hemin released from Hb but not myoglobin (Mb). Hemin affinity of holoShp was higher at pH 5.7 compared to pH 8.0. This may be attributed to enhanced electrostatic interaction of His58 with the heme-7-propionate at lower pH. ApoShp readily acquired hemin that was released from trout IV metHb in the presence of washed cod muscle during 2°C storage at pH 6.3. This was based on increases in redness in the washed cod matrix which occurs when apoShp binds hemin that is released from metHb. ApoShp prevented Hb-mediated lipid oxidation in washed cod muscle during 2°C storage. The prevention of Hb-mediated lipid oxidation by apoShp was likely due to bis-methionyl coordination of hemin that dissociated from metHb. This hexa-coordination of hemin appears to prevent peroxide-mediated redox reactions and there is no component in the matrix capable of dissociating hemin from Shp. ApoShp was also added to minced muscle from Rainbow trout (Oncorhynchus mykiss) to examine the degree to which Hb contributes to lipid oxidation in trout muscle. Addition of apoShp inhibited approximately 90% of the lipid oxidation that occurred in minced trout muscle during 9 days of 2°C storage based on lipid peroxide, hexanal, and thiobarituric acid reactive substances (TBARS) values. These results strongly suggest that Hb is the primary promoter of lipid oxidation in trout muscle. PMID:23570608

  3. Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions.

    PubMed

    Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-05-27

    Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations. PMID:25985711

  4. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols.

    PubMed

    Borutaite, V; Budriunaite, A; Brown, G C

    2000-08-15

    Nitric oxide (NO) and its derivatives peroxynitrite and S-nitrosothiols inhibit mitochondrial respiration by various means, but the mechanisms and/or the reversibility of such inhibitions are not clear. We find that the NO-induced inhibition of respiration in isolated mitochondria due to inhibition of cytochrome oxidase is acutely reversible by light. Light also acutely reversed the inhibition of respiration within iNOS-expressing macrophages, and this reversal was partly due to light-induced breakdown of NO, and partly due to reversal of the NO-induced inhibition of cytochrome oxidase. NO did not cause inhibition of complex I activity within isolated mitochondria, but 0.34 mM peroxynitrite, 1 mM S-nitroso-N-acetylpenicillamine or 1 mM S-nitrosoglutathione did cause substantial inhibition of complex I activity. Inhibition by these reagents was reversed by light, dithiothreitol or glutathione-ethyl ester, either partially or completely, depending on the reagent used. The rapid inhibition of complex I activity by S-nitroso-N-acetylpenicillamine also occurred in conditions where there was little or no release of free NO, suggesting that the inhibition was due to transnitrosylation of the complex. These findings have implications for the physiological and pathological regulation of respiration by NO and its derivatives. PMID:11004457

  5. Inducible nitric oxide synthase inhibition attenuates physical stress-induced lung hyper-responsiveness and oxidative stress in animals with lung inflammation.

    PubMed

    Marques, Ricardo Henrique; Reis, Fabiana G; Starling, Claudia M; Cabido, Claudia; de Almeida-Reis, Rafael; Dohlnikoff, Marisa; Prado, Carla M; Leick, Edna A; Martins, Mílton A; Tibério, Iolanda F L C

    2012-01-01

    Mechanisms involved in stress-induced asthmatic alterations have been poorly characterised. We assessed whether inducible nitric oxide synthase (iNOS) inhibition modulates the stress-amplified lung parenchyma responsiveness, oxidative stress and extracellular matrix remodelling that was previously increased by chronic lung inflammation. Guinea pigs were subjected to 7 exposures to ovalbumin (1-5 mg/ml) or saline (OVA and SAL groups) over 4 weeks. To induce behavioural stress, animals were subjected to a forced swimming protocol (5 times/week, over 2 weeks; SAL-Stress and OVA-Stress groups) 24 h after the 4th inhalation. 1400W (iNOS-specific inhibitor) was administered intraperitoneally in the last 4 days of the protocol (SAL-1400W, OVA-1400W, SAL-Stress+1400W and OVA-Stress+1400W groups). Seventy-two hours after the last inhalation, animals were anaesthetised and exsanguinated, and adrenal glands were removed. Lung tissue resistance and elastance were evaluated by oscillatory mechanics and submitted for histopathological evaluation. Stressed animals had higher adrenal weights compared to non-stressed groups, which were reduced by 1400W treatment. Behavioural stress in sensitised animals amplified the resistance and elastance responses after antigen challenge, numbers of eosinophils and iNOS+ cells, actin content and 8-iso-PGF2α density in the distal lung compared to the OVA group. 1400W treatment in ovalbumin-exposed and stressed animals reduced lung mechanics, iNOS+ cell numbers and 8-iso-PGF2α density compared to sensitised and stressed animals that received vehicle treatment. We concluded that stress amplifies the distal lung constriction, eosinophilic inflammation, iNOS expression, actin content and oxidative stress previously induced by chronic lung inflammation. iNOS-derived NO contributes to stress-augmented lung tissue functional alterations in this animal model and is at least partially due to activation of the oxidative stress pathway. PMID:22262048