Science.gov

Sample records for oxide metabolites induced

  1. The role of nitric oxide on DNA damage induced by benzene metabolites

    PubMed Central

    MELIKIAN, ASSIEH A.; CHEN, KUN-MING; LI, HEYI; SODUM, RAMA; FIALA, EMERICH; EL-BAYOUMY, KARAM

    2013-01-01

    Benzene, a tobacco constituent, is a leukemogen in humans and a carcinogen in rodents. Several benzene metabolites generate superoxide anion (O2•−) and induce nitric oxide synthase in the bone marrow of mice. We hypothesized that the reaction of nitric oxide (•NO) with O2•− leads to the formation of peroxynitrite as an intermediate during benzene metabolism. This hypothesis was supported by demonstrating that the exposure of mice to benzene produced nitrated metabolites and enhanced the levels of protein-bound 3-nitrotyrosine in the bone marrow of mice in vivo. In the current study, we investigated the influence of nitric oxide, generated from sodium 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, on DNA strand breaks induced by each single or binary benzene metabolite at different doses and compared the levels of the DNA damage induced by each benzene metabolite in the presence of nitric oxide with the levels of DNA strand breaks induced by peroxynitrite at similar doses in vitro. We found that among benzene metabolites only 1,2,4-trihydroxybenzene (BT) can induce significant DNA damage in the absence of nitric oxide. While 1,4-dihydroxybenzene (HQ), 1,4-benzo-quinone (BQ) and 1,2-dihydroxybenzene (CAT) require •NO to induce DNA strand breaks, hydroquinone was the most potent DNA-damaging benzene metabolite in the presence of •NO. The order of DNA breaks by benzene metabolites in the presence of •NO is: Peroxynitrite = HQ > BT > BQ > CAT. The •NO and O2•− scavengers inhibited DNA damage induced by [HQ+•NO]. Benzene, trans,trans-muconaldehyde, and phenol, do not induce DNA strand breaks either in the absence or presence of •NO. However, adding phenol to [HQ+•NO] leads to greater DNA damage than [HQ+•NO] alone. Collectively, these results suggest that nitric oxide is an important factor in DNA damage induced by certain benzene metabolites, probably via the formation of the peroxynitrite intermediate. Phenol, the major benzene metabolite

  2. Nitric oxide metabolites in patients with asthma: induced sputum versus blood.

    PubMed

    Jang, A S; Choi, I S

    1999-12-01

    Nitric oxide (NO) plays an important role in physiological regulation of the airways. The monitoring of airway inflammation has being observed in bronchial asthma directly, by sputum examination, and indirectly, by measurements in peripheral blood. To investigate the diagnostic value of these two methods, we compared NO metabolites in induced sputum and serum obtained in patients with asthma and control subjects. Hypertonic saline induced sputum and serum were obtained in 13 patients with asthma and 10 control subjects. NO metabolite level was assayed by using modified Griess reaction. Eosinophil cationic protein (ECP) was measured by fluoroimmunoassay, and detected interleukin (IL)-5 by a sandwich ELISA. The accuracy of the tests was measured by plotting the data in receiver operating characteristic (ROC) curves and comparing the area under the curve for NO metabolites. Asthmatic patients, compared with control subjects, had significantly higher NO metabolites in induced sputum (1252.5+/-203.3 mol l(-1) vs. 557.2+/-101.5 mol l(-1), P<0.01) but not in serum. IL-5 in induced sputum was detected more frequently in patients with asthma than in control subjects [11/13 (84.6%) vs. 1/10 (10%), P<0.01]. Asthmatic patients, compared with control subjects, had significantly higher ECP concentration in induced sputum (1270.0+/-197.9 g l vs. 154.6+/-47.4 g l(-1), P<0.01). There were significant positive correlations between NO metabolites in induced sputum and eosinophils, ECP in induced sputum (r=0.58 P<0.05; r=0.64, P<0.01) in patients with asthma but not in serum. The area under the ROC curve showed that NO metabolites in induced sputum (0.78) are more accurate marker than NO metabolites in serum (0.53) (P<0.05). These findings suggest that NO metabolites in induced sputum is a more valuable indicator to monitor asthmatic airway inflammation than those in serum. PMID:10653055

  3. Oxidative DNA damage induced by a metabolite of 2-naphthylamine, a smoking-related bladder carcinogen.

    PubMed

    Ohnishi, Shiho; Murata, Mariko; Kawanishi, Shosuke

    2002-07-01

    2-Naphthylamine (2-NA), a bladder carcinogen, is contained in cigarette smoke. DNA adduct formation is thought to be a major cause of DNA damage by carcinogenic aromatic amines. We have investigated whether a metabolite of 2-NA, 2-nitroso-1-naphthol (NO-naphthol) causes oxidative DNA damage, using (32)P-labeled DNA fragments. We compared the mechanism of DNA damage induced by NO-naphthol with that by N-hydroxy-4-aminobiphenyl (4-ABP(NHOH)), a metabolite of 4-aminobiphenyl, another smoking-related bladder carcinogen. NO-naphthol caused Cu(II)-mediated DNA damage at T > C > G residues, with non-enzymatic reduction by NADH. Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited the DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). Some free. OH scavengers also attenuated NO-naphthol-induced DNA damage, while free. OH scavengers had no effect on the DNA damage induced by 4-ABP(NHOH). This difference suggests that the reactive species formed by NO-naphthol has more free. OH-character than that by 4-ABP(NHOH). A high-pressure liquid chromatograph equipped with an electrochemical detector showed that NO-naphthol induced 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in the presence of NADH and Cu(II). The oxidative DNA damage by these amino-aromatic compounds may participate in smoking-related bladder cancer, in addition to DNA adduct formation. PMID:12149138

  4. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells.

    PubMed

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-05-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  5. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells

    PubMed Central

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-01-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  6. Automated analysis of oxidative metabolites

    NASA Technical Reports Server (NTRS)

    Furner, R. L. (Inventor)

    1974-01-01

    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.

  7. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol).

    PubMed

    Uhlenhut, Klaus; Högger, Petra

    2012-07-15

    Many natural products exhibit anti-inflammatory activity by suppressing excessive nitric oxide (NO) production by inducible NO synthase (iNOS). The maritime pine bark extract Pycnogenol has been formerly shown to decrease nitrite generation, taken as an index for NO, but so far it was not clear which constituent of the complex flavonoid mixture mediated this effect. The purpose of this study was to elucidate whether the in vivo generated Pycnogenol metabolite M1 (δ-(3,4-dihydroxyphenyl)-γ-valerolactone) displayed any activity in the context of induction of iNOS expression and excessive NO production. For the first time we show that M1 inhibited nitrite production (IC(50) 1.3 μg/ml, 95% CI 0.96-1.70) and iNOS expression (IC(50) 3.8 μg/ml, 95% CI 0.99-14.35) in a concentration-dependent fashion. This exemplifies bioactivation by metabolism because the M1 precursor molecule catechin is only weakly active. However, these effects required application of M1 in the low-micromolar range, which was not consistent with concentrations previously detected in human plasma samples after ingestion of maritime pine bark extract. Thus, we investigated a possible accumulation of M1 in cells and indeed observed high-capacity binding of this flavonoid metabolite to macrophages, monocytes, and endothelial cells. This binding was distinctly decreased in the presence of the influx inhibitor phloretin, suggesting the contribution of a facilitated M1 transport into cells. In fact, intracellular accumulation of M1 could explain why in vivo bioactivity can be observed with nanomolar plasma concentrations that typically fail to exhibit measurable activity in vitro. PMID:22569413

  8. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly

    SciTech Connect

    Evans, M.V. Chiu, W.A.; Okino, M.S.; Caldwell, J.C.

    2009-05-01

    Trichloroethylene (TCE) is a lipophilic solvent rapidly absorbed and metabolized via oxidation and conjugation to a variety of metabolites that cause toxicity to several internal targets. Increases in liver weight (hepatomegaly) have been reported to occur quickly in rodents after TCE exposure, with liver tumor induction reported in mice after long-term exposure. An integrated dataset for gavage and inhalation TCE exposure and oral data for exposure to two of its oxidative metabolites (TCA and DCA) was used, in combination with an updated and more accurate physiologically-based pharmacokinetic (PBPK) model, to examine the question as to whether the presence of TCA in the liver is responsible for TCE-induced hepatomegaly in mice. The updated PBPK model was used to help discern the quantitative contribution of metabolites to this effect. The update of the model was based on a detailed evaluation of predictions from previously published models and additional preliminary analyses based on gas uptake inhalation data in mice. The parameters of the updated model were calibrated using Bayesian methods with an expanded pharmacokinetic database consisting of oral, inhalation, and iv studies of TCE administration as well as studies of TCE metabolites in mice. The dose-response relationships for hepatomegaly derived from the multi-study database showed that the proportionality of dose to response for TCE- and DCA-induced hepatomegaly is not observed for administered doses of TCA in the studied range. The updated PBPK model was used to make a quantitative comparison of internal dose of metabolized and administered TCA. While the internal dose of TCA predicted by modeling of TCE exposure (i.e., mg TCA/kg-d) showed a linear relationship with hepatomegaly, the slope of the relationship was much greater than that for directly administered TCA. Thus, the degree of hepatomegaly induced per unit of TCA produced through TCE oxidation is greater than that expected per unit of TCA

  9. Relationship between oxidative metabolites of hydrazine and hydrazine-induced mutagenicity.

    PubMed

    Noda, A; Ishizawa, M; Ohno, K; Sendo, T; Noda, H

    1986-05-01

    Hydrazine (Hz) mutagenicity was observed in a test using Escherichia coli B/r strain, WP2 uvrA and was enhanced by the addition of rat liver microsomal fraction containing a generating system, while the enhanced mutagenicity was diminished by the addition of metyrapone to the microsome-free levels. On the other hand, an NADPH-dependent difference spectrum of the metabolic intermediate of Hz-complex, characterized by a maximum level of 448 nm, was also inhibited by metyrapone. The results show that the oxidative intermediates, which are diimide and its precursor, hydrazine free radical [Biochem. Biophys. Res. Commun., 133 (1986) 1086], are responsible not only for hepatotoxicity but also for the enhancement of genotoxicity or mutagenicity. PMID:3520960

  10. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine.

    PubMed

    Xuan, Yinghua; Yan, Gen; Wu, Renhua; Huang, Qingjun; Li, Xinmin; Xu, Haiyun

    2015-11-01

    Cuprizone is a copper-chelating agent and able to induce oligodendrocyte loss and demyelination in C57BL/6 mouse brain. Recent studies have used the cuprizone-fed mouse as an animal model of schizophrenia to examine putative roles of altered oligodendrocytes in this mental disorder. The present study reported the effects of cuprizone on the brain metabolites and oxidative parameters with the aim of providing neurochemical evidence for the application of the cuprizone mouse as an animal model of schizophrenia. In addition, we examined effects of quetiapine on the cuprizone-induced changes in brain metabolites and oxidative parameters; this atypical antipsychotic was shown to ameliorate the cuprizone-induced demyelination and behavioral changes in previous studies. C57BL/6 mice were fed a standard rodent chow without or with cuprizone (0.2% w/w) for four weeks during which period they were given sterilized saline or quetiapine in saline. The results of the proton magnetic resonance spectroscopy (1H-MRS) showed that cuprizone-feeding decreased (1)H-MRS signals of N-acetyl-l-aspartate (NAA), total NAA (NAA + NAAG), and choline-containing compounds (phosphorylcholine and glycerophosphorylcholine), suggestive of mitochondrial dysfunction in brain neurons. Biochemical analyses showed lower activities of catalase and glutathione peroxidase, but higher levels of malondialdehyde and H2O2 in the brain tissue of cuprizone-fed mice, indicative of an oxidative stress. These cuprizone-induced changes were effectively relieved in the mice co-administered with cuprizone and quetiapine, although the antipsychotic alone showed no effect. These findings suggest the toxic effects of cuprizone on mitochondria and an antioxidant capacity of quetiapine, by which this antipsychotic relieves the cuprizone-induced mitochondrial dysfunction in brain cells. PMID:26340869

  11. Influence of Pistachios on Performance and Exercise-Induced Inflammation, Oxidative Stress, Immune Dysfunction, and Metabolite Shifts in Cyclists: A Randomized, Crossover Trial

    PubMed Central

    Nieman, David C.; Scherr, Johannes; Luo, Beibei; Meaney, Mary Pat; Dréau, Didier; Sha, Wei; Dew, Dustin A.; Henson, Dru A.; Pappan, Kirk L.

    2014-01-01

    Objectives Pistachio nut ingestion (3 oz./d, two weeks) was tested for effects on exercise performance and 21-h post-exercise recovery from inflammation, oxidative stress, immune dysfunction, and metabolite shifts. Methods Using a randomized, crossover approach, cyclists (N = 19) engaged in two 75-km time trials after 2-weeks pistachio or no pistachio supplementation, with a 2-week washout period. Subjects came to the lab in an overnight fasted state, and ingested water only or 3 oz. pistachios with water before and during exercise. Blood samples were collected 45 min pre-exercise, and immediately post-, 1.5-h post-, and 21-h post-exercise, and analyzed for plasma cytokines, C-reactive protein (CRP), F2-isoprostanes (F2-IsoP), granulocyte phagocytosis (GPHAG) and oxidative burst activity (GOBA), and shifts in metabolites. Results Performance time for the 75-km time trial was 4.8% slower under pistachio conditions (2.84±0.11 and 2.71±0.07 h, respectively, P = 0.034). Significant time effects were shown for plasma cytokines, CRP, F2-IsoP, GPHAG, and GOBA, with few group differences. Metabolomics analysis revealed 423 detectable compounds of known identity, with significant interaction effects for 19 metabolites, especially raffinose, (12Z)-9,10-Dihydroxyoctadec-12-enoate (9,10-DiHOME), and sucrose. Dietary intake of raffinose was 2.19±0.15 and 0.35±0.08 mg/d during the pistachio and no pistachio periods, and metabolomics revealed that colon raffinose and sucrose translocated to the circulation during exercise due to increased gut permeability. The post-exercise increase in plasma raffinose correlated significantly with 9,10-DiHOME and other oxidative stress metabolites. Conclusions In summary, 2-weeks pistachio nut ingestion was associated with reduced 75-km cycling time trial performance and increased post-exercise plasma levels of raffinose, sucrose, and metabolites related to leukotoxic effects and oxidative stress. Trial Registration Clinical

  12. Cysteine-Conjugated Metabolites of Ginger Components, Shogaols, Induce Apoptosis through Oxidative Stress-Mediated p53 Pathway in Human Colon Cancer Cells

    PubMed Central

    2015-01-01

    Shogaols, the major constituents of thermally processed ginger, have been proven to be highly effective anticancer agents. Our group has identified cysteine-conjugated shogaols (M2, M2′, and M2″) as the major metabolites of [6]-, [8]-, and [10]-shogaol in human and found that M2 is a carrier of its parent molecule [6]-shogaol in cancer cells and in mice, while being less toxic to normal colon fibroblast cells. The objectives of this study are to determine whether M2′ and M2″ behave in a similar manner to M2, in both metabolism and efficacy as anticancer agents, and to further explore the biological pro-apoptotic mechanisms of the cysteine-conjugated shogaols against human colon cancer cells HCT-116 and HT-29. Our results show that [8]- and [10]-shogaol have similar metabolic profiles to [6]-shogaol and exhibit similar toxicity toward human colon cancer cells. M2′ and M2″ both show low toxicity against normal colon cells but retain potency against colon cancer cells, suggesting that they have similar activity to M2. We further demonstrate that the cysteine-conjugated shogaols can cause cancer cell death through the activation of the mitochondrial apoptotic pathway. Our results show that oxidative stress activates a p53 pathway that ultimately leads to p53 up-regulated modulator of apoptosis (PUMA) induction and down-regulation of B-cell lymphoma 2 (Bcl-2), followed by cytochrome c release, perturbation of inhibitory interactions of X-linked inhibitor of apoptosis protein (XIAP) with caspases, and finally caspase 9 and 3 activation and cleavage. A brief screen of the markers attenuated by the proapoptotic activity of M2 revealed similar results for [8]- and [10]-shogaol and their respective cysteine-conjugated metabolites M2′ and M2″. This study highlights the cysteine-conjugated metabolites of shogaols as novel dietary colon cancer preventive agents. PMID:24786146

  13. Cysteine-conjugated metabolites of ginger components, shogaols, induce apoptosis through oxidative stress-mediated p53 pathway in human colon cancer cells.

    PubMed

    Fu, Junsheng; Chen, Huadong; Soroka, Dominique N; Warin, Renaud F; Sang, Shengmin

    2014-05-21

    Shogaols, the major constituents of thermally processed ginger, have been proven to be highly effective anticancer agents. Our group has identified cysteine-conjugated shogaols (M2, M2', and M2″) as the major metabolites of [6]-, [8]-, and [10]-shogaol in human and found that M2 is a carrier of its parent molecule [6]-shogaol in cancer cells and in mice, while being less toxic to normal colon fibroblast cells. The objectives of this study are to determine whether M2' and M2″ behave in a similar manner to M2, in both metabolism and efficacy as anticancer agents, and to further explore the biological pro-apoptotic mechanisms of the cysteine-conjugated shogaols against human colon cancer cells HCT-116 and HT-29. Our results show that [8]- and [10]-shogaol have similar metabolic profiles to [6]-shogaol and exhibit similar toxicity toward human colon cancer cells. M2' and M2″ both show low toxicity against normal colon cells but retain potency against colon cancer cells, suggesting that they have similar activity to M2. We further demonstrate that the cysteine-conjugated shogaols can cause cancer cell death through the activation of the mitochondrial apoptotic pathway. Our results show that oxidative stress activates a p53 pathway that ultimately leads to p53 up-regulated modulator of apoptosis (PUMA) induction and down-regulation of B-cell lymphoma 2 (Bcl-2), followed by cytochrome c release, perturbation of inhibitory interactions of X-linked inhibitor of apoptosis protein (XIAP) with caspases, and finally caspase 9 and 3 activation and cleavage. A brief screen of the markers attenuated by the proapoptotic activity of M2 revealed similar results for [8]- and [10]-shogaol and their respective cysteine-conjugated metabolites M2' and M2″. This study highlights the cysteine-conjugated metabolites of shogaols as novel dietary colon cancer preventive agents. PMID:24786146

  14. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  15. Production of pesticide metabolites by oxidative reactions.

    PubMed

    Hodgson, E

    1982-08-01

    The cytochrome P-450-dependent monooxygenase system catalyzes a wide variety of oxidations of pesticide chemicals and related compounds. These reactions include epoxidation and aromatic hydroxylation, aliphatic hydroxylation, O-, N- and S-dealkylation, N-oxidation, oxidative deamination, S-oxidation, P-oxidation, desulfuration and ester cleavage and may result in either detoxication or activation of the pesticide. The current status of such reactions, relative to the production, in vivo, of biologically active intermediates in pesticide metabolism is summarized. More recently we have shown that the FAD-containing monooxygenase of mammalian liver (E.C.1.14.13.8), a xenobiotic metabolizing enzyme of broad specificity formerly known as an amine oxidase, is involved in a variety of pesticide oxidations. These include sulfoxidation of organophosphorus insecticides such as phorate and disulfoton, oxidative desulfuration of phosphonate insecticides such as fonofos and oxidation at the phosphorus atom in such compounds as the cotton defoliant, folex. The relative importance of the FAD-containing monooxygenase vis-a-vis the cytochrome P-450-dependent monooxygenase system is discussed, based on in vitro studies on purified enzymes. PMID:7161848

  16. Oxidative metabolites of lycopene and their biological functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the beneficial biological activities of lycopene on cancer prevention, a greater knowledge of the metabolism of lycopene is needed. In particular, the identification of lycopene metabolites and oxidation products in vivo; the importance of tissue specific lycopene c...

  17. Urinary Phthalate Metabolites in Relation to Biomarkers of Inflammation and Oxidative Stress: NHANES 1999-2006

    PubMed Central

    Ferguson, Kelly K.; Loch-Caruso, Rita; Meeker, John D.

    2011-01-01

    Phthalate esters are a class of compounds utilized extensively in widely-distributed consumer goods, and have been associated with various adverse health outcomes in previous epidemiologic research. Some of these health outcomes may be the result of phthalate-induced increases in oxidative stress or inflammation, which has been demonstrated in animal studies. The aim of this study was to explore the relationship between urinary phthalate metabolite concentrations and serum markers of inflammation and oxidative stress (C-reactive protein (CRP) and gamma glutamyltransferase (GGT), respectively). Subjects were participants in the National Health and Nutrition Examination Survey (NHANES) between the years 1999 and 2006. In multivariable linear regression models, we observed significant positive associations between CRP and mono-benzyl phthalate (MBzP) and mono-isobutyl phthalate (MiBP). There were CRP elevations of 6.0% (95% confidence interval (CI) 1.7% to 10.8%) and 8.3% (95% CI 2.9% to 14.0%) in relation to interquartile range (IQR) increases in urinary MBzP and MiBP, respectively. GGT was positively associated with mono(2-ethylhexyl) phthalate (MEHP) and an MEHP% variable calculated from the proportion of MEHP in comparison to other di(2-ethylhexyl) phthalate (DEHP) metabolites. IQR increases in MEHP and MEHP% were associated with 2.5% (95%CI 0.2% to 4.8%) and 3.7% (95%CI 1.7% to 5.7%) increases in GGT, respectively. CRP and GGT were also inversely related to several phthalate metabolites, primarily oxidized metabolites. In conclusion, several phthalate monoester metabolites that are detected in a high proportion of urine samples from the US general population are associated with increased serum markers of inflammation and oxidative stress. On the other hand, several oxidized phthalate metabolites were inversely associated with these markers. These relationships deserve further exploration in both experimental and observational studies. PMID:21349512

  18. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus

    PubMed Central

    Zheng, He; Kim, Jaekuk; Liew, Mathew; Yan, John K.; Herrera, Oscar; Bok, JinWoo; Kelleher, Neil L.; Keller, Nancy P.; Wang, Yun

    2014-01-01

    Summary Background Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. Results Here we report that these “toxins” can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in co-culture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans, and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome including the thioredoxin, glutathione and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. Conclusions This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi. PMID:25532893

  19. Metabolite

    MedlinePlus

    A metabolite is any substance produced during metabolism (digestion or other bodily chemical processes). The term metabolite may also refer to the product that remains after a drug is broken down (metabolized) by the body.

  20. Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes

    PubMed Central

    Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix

    2012-01-01

    BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960

  1. NMDA Receptors and Oxidative Stress Induced by the Major Metabolites Accumulating in HMG Lyase Deficiency Mediate Hypophosphorylation of Cytoskeletal Proteins in Brain From Adolescent Rats: Potential Mechanisms Contributing to the Neuropathology of This Disease.

    PubMed

    Fernandes, Carolina Gonçalves; Pierozan, Paula; Soares, Gilberto Machado; Ferreira, Fernanda; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Borges, Clarissa Günther; Wajner, Moacir; Pessoa-Pureur, Regina

    2015-10-01

    Neurological symptoms and cerebral abnormalities are commonly observed in patients with 3-hydroxy-3-methylglutaryl-CoA lyase (HMG lyase) deficiency, which is biochemically characterized by predominant tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), 3-methylglutaric (MGA), and 3-methylglutaconic (MGT) acids. Since the pathogenesis of this disease is poorly known, the present study evaluated the effects of these compounds on the cytoskeleton phosphorylating system in rat brain. HMG, MGA, and MGT caused hypophosphorylation of glial fibrillary acidic protein (GFAP) and of the neurofilament subunits NFL, NFM, and NFH. HMG-induced hypophosphorylation was mediated by inhibiting the cAMP-dependent protein kinase (PKA) on Ser55 residue of NFL and c-Jun kinase (JNK) by acting on KSP repeats of NFM and NFH subunits. We also evidenced that the subunit NR2B of NMDA receptor and Ca(2+) was involved in HMG-elicited hypophosphorylation of cytoskeletal proteins. Furthermore, the antioxidants L-NAME and TROLOX fully prevented both the hypophosphorylation and the inhibition of PKA and JNK caused by HMG, suggesting that oxidative damage may underlie these effects. These findings indicate that the main metabolites accumulating in HMG lyase deficiency provoke hypophosphorylation of cytoskeleton neural proteins with the involvement of NMDA receptors, Ca(2+), and reactive species. It is presumed that these alterations may contribute to the neuropathology of this disease. PMID:26174040

  2. Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes

    SciTech Connect

    Lim, M.S.; Lim, Priscilla L.K.; Gupta, Rashi; Boelsterli, Urs A. . E-mail: phcbua@nus.edu.sg

    2006-12-15

    Diclofenac is a widely used nonsteroidal anti-inflammatory drug that has been associated with rare but serious hepatotoxicity. Experimental evidence indicates that diclofenac targets mitochondria and induces the permeability transition (mPT) which leads to apoptotic cell death in hepatocytes. While the downstream effector mechanisms have been well characterized, the more proximal pathways leading to the mPT are not known. The purpose of this study was to explore the role of free cytosolic calcium (Ca{sup 2+} {sub c}) in diclofenac-induced cell injury in immortalized human hepatocytes. We show that exposure to diclofenac caused time- and concentration-dependent cell injury, which was prevented by the specific mPT inhibitor cyclosporin A (CsA, 5 {mu}M). At 8 h, diclofenac caused increases in [Ca{sup 2+}]{sub c} (Fluo-4 fluorescence), which was unaffected by CsA. Combined exposure to diclofenac/BAPTA (Ca{sup 2+} chelator) inhibited cell injury, indicating that Ca{sup 2+} plays a critical role in precipitating mPT. Diclofenac decreased the mitochondrial membrane potential, {delta}{psi}{sub m} (JC-1 fluorescence), even in the presence of CsA or BAPTA, indicating that mitochondrial depolarization was not a consequence of the mPT or elevated [Ca{sup 2+}]{sub c}. The CYP2C9 inhibitor sulphaphenazole (10 {mu}M) protected from diclofenac-induced cell injury and prevented increases in [Ca{sup 2+}]{sub c}, while it had no effect on the dissipation of the {delta}{psi}{sub m}. Finally, diclofenac exposure greatly increased the mitochondria-selective superoxide levels secondary to the increases in [Ca{sup 2+}]{sub c}. In conclusion, these data demonstrate that diclofenac has direct depolarizing effects on mitochondria which does not lead to cell injury, while CYP2C9-mediated bioactivation causes increases in [Ca{sup 2+}]{sub c}, triggering the mPT and precipitating cell death.

  3. Metabolites of Lactobacillus plantarum 2142 prevent oxidative stress-induced overexpression of proinflammatory cytokines in IPEC-J2 cell line.

    PubMed

    Paszti-Gere, Erzsebet; Szeker, Krisztina; Csibrik-Nemeth, Edina; Csizinszky, Rita; Marosi, Andras; Palocz, Orsolya; Farkas, Orsolya; Galfi, Peter

    2012-08-01

    Probiotics have already proven beneficial effects in the treatment of several intestinal infections, but the underlying mechanisms how the probiotics can affect responses of porcine IPEC-J2 enterocytes to oxidative stress remained to be elucidated. The immunomodulatory effect of five bacterial strains (Lactobacillus plantarum 2142, Lactobacillus casei Shirota, Bifidobacterium animalis subsp. lactis BB-12, Bacillus amyloliquefaciens CECT 5940 and Enterococcus faecium CECT 4515) on 1 mM peroxide-triggered upregulation of interleukin (IL)-8 and tumor necrosis factor alpha (TNF-α) level was screened by q RT-PCR. Our data revealed that spent culture supernatant (SCS) of L. plantarum 2142 had significant lowering effect on IL-8 and TNF-α level with concomitant promoting activity on protective Hsp70 gene expression. According to our results, lactic acid (racemic, D: - and L: -lactic acid) and acetic acid produced by lactobacilli had no protective effect in quenching upregulation of proinflammatory cytokines. Furthermore, L. plantarum 2142-specific supernatant peptides were detected by gel electrophoresis and capillary zone electrophoresis. PMID:22476971

  4. Evaluation of Δ9-tetrahydrocannabinol metabolites and oxidative stress in type 2 diabetic rats

    PubMed Central

    Coskun, Zeynep Mine; Bolkent, Sema

    2016-01-01

    Objective(s): The object of the study is to examine the effects of Δ9-tetrahydrocannabinol (THC) against oxidative stress in the blood and excretion of THC metabolites in urine of type 2 diabetic rats. Materials and Methods: The control (n=8), THC control (n=6), diabetes (n=8) and diabetes + THC (n=7) groups were created. Type 2 diabetes was induced by nicotinamide (NA, 85 mg/kg) + streptozotocin (STZ, 65 mg/kg). THC was administered intraperitoneally for seven days. The glutathione (GSH) level in erythrocytes and malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) enzyme activities in plasma were measured. THC metabolites were analyzed in urine. Results: The results showed that the erythrocyte GSH levels were significantly increased (P<0.05), but plasma MDA levels were non-significantly decreased in diabetes group treated with THC when compared with the diabetes group. The CAT activity was non-significantly reduced and SOD was significantly increased (P<0.01) in the plasma of diabetes induced by THC in comparison with the diabetic group. The excretion of THC metabolites was higher in the urine of diabetes + THC rats as compared to the THC control rats. Conclusion: These findings highlight that THC treatment may attenuate slightly the oxidative stress in diabetic rats. The excretion rate of THC may vary in the type 2 diabetes mellitus status. PMID:27081459

  5. The metabolites of nitric oxide in sickle-cell disease.

    PubMed

    Rees, D C; Cervi, P; Grimwade, D; O'Driscoll, A; Hamilton, M; Parker, N E; Porter, J B

    1995-12-01

    Plasma NOx concentrations were raised in 22 acute painful crises in SCD. We have measured blood concentrations of nitric oxide metabolites (NOx) in sickle-cell disease (SCD), and shown that they are increased compared with healthy controls (P = 0.002), and haemoglobin E/beta-thalassaemic controls (P = 0.05). Concentrations in steady-state SCD were also higher than in healthy controls (P = 0.04) but not significantly different from the concentrations at the beginning of painful crises (P = 0.34). Importantly, in 12 regularly exchanged sicklers, the mean pre-transfusion NOx concentration did not differ significantly from the control population (P = 0.52), suggesting that the changes in NO metabolism can be reversed. It is unlikely that the increased concentrations of NOx in SCD result from anaemia or haemolysis as the untransfused haemoglobin E/beta-thalassaemics did not show increased levels. PMID:8547126

  6. Role of aniline metabolites in aniline-induced hemolytic anemia.

    PubMed

    Harrison, J H; Jollow, D J

    1986-09-01

    Hemolytic anemia after aniline and aniline-related drugs such as dapsone and primaquine is thought to be mediated by active/reactive metabolite(s) formed during the hepatic clearance of the parent compounds. To determine whether any of the known metabolites of aniline contribute to the hemolytic response seen in rats given aniline, rats were infused with isologous 51Cr-labeled erythrocytes 24 hr before administration of aniline or aniline metabolites. The time course of blood radioactivity was followed in individual rats by serial sampling from the orbital sinus and the time required for blood radioactivity to fall by 50% (T50Cr) was used as a measure of in vivo erythrocyte survival. Aniline HCl produced a dose-dependent reduction in the T50Cr. Acetanilide also reduced the T50Cr, but was less potent than aniline. Aminophenols (2-, 3- and 4-) in similar doses did not significantly alter the T50Cr. In contrast, phenylhydroxylamine produced a dose-dependent decrease in the T50Cr with approximately 10 times the potency of aniline. The T50Cr was also decreased in a concentration-dependent manner for labeled erythrocytes incubated in vitro with phenylhydroxylamine, then readministered to rats, indicating a direct toxic effect of phenylhydroxylamine on erythrocytes. In addition, the area under the blood time course curve for phenylhydroxylamine plus nitrosobenzene was equivalent in rats administered equitoxic doses of aniline or phenylhydroxylamine, indicating that sufficient phenylhydroxylamine is formed in vivo during aniline clearance to account for aniline's toxicity. These results suggest that phenylhydroxylamine is the active metabolite that mediates aniline-induced hemolytic anemia. PMID:3746658

  7. Evaluation of aspirin metabolites as inhibitors of hypoxia-inducible factor hydroxylases.

    PubMed

    Lienard, Benoit M; Conejo-García, Ana; Stolze, Ineke; Loenarz, Christoph; Oldham, Neil J; Ratcliffe, Peter J; Schofield, Christopher J

    2008-12-21

    Known and potential aspirin metabolites were evaluated as inhibitors of oxygen-sensing hypoxia-inducible transcription factor (HIF) hydroxylases; some of the metabolites were found to stabilise HIF-alpha in cells. PMID:19048166

  8. Skin nitric oxide and its metabolites are increased in nonburned skin after thermal injuries.

    PubMed

    Oliveira, Gisele V; Shimoda, Katsumi; Enkhbaatar, Perenlei; Jodoin, Jeff; Burke, A S; Chinkes, D L; Hawkins, Hal K; Herndon, David N; Traber, Lillian; Traber, Daniel; Murakami, Kazunori

    2004-09-01

    Local and systemic inflammation can lead to progression of burn wounds, converting second- to third-degree wounds or extending the burn to adjacent areas. Previous studies have suggested that the skin is an important site of production of nitric oxide (NO), synthesized by inducible nitric oxide synthase (iNOS) activation after injury. NO increases in burned wounds, but its formation in noninjured skin has not been investigated. We hypothesized that after severe burns, NO and cytotoxic peroxynitrite would increase in noninjured skin. We also tested the hypothesis that BBS-2, a specific inhibitor of iNOS, would impair NO formation after burn. Thirteen female sheep were randomized into burn injury and smoke inhalation (n = 5, group 1), burn and smoke treated with BBS-2 (n = 3, group 2), and sham (saline treatment, no injury) (n = 5, group 3). All the animals, including the sham-injury group, were mechanically ventilated for 48 h. Samples of nonburned skin and plasma were collected from each animal, and levels of NO and its metabolites were evaluated using a NO chemiluminescent detector. Nitrotyrosine and iNOS expression were determined in the skin by Immunoperoxidase staining, and scoring of masked slides (epidermis, hair follicles, vessels, glands, and stroma) was performed. Skin NO and metabolites significantly increased in the burn and smoke injury group, and this was inhibited by BBS-2. Nitrotyrosine expression also increased significantly in the skin of burned animals. BBS-2 prevented the increase of NOx but not the increase of nitrotyrosine expression in skin. Plasma levels of NO increased in burned animals when compared with sham, but this increase was not significant. The increase of NO and its metabolites after burn in noninjured skin is followed by a significant increase in peroxynitrite, a potent cytotoxic mediator. PMID:15316399

  9. A Carbonyl Capture Approach for Profiling Oxidized Metabolites in Cell Extracts

    PubMed Central

    Mattingly, Stephanie J.; Xu, Tao; Nantz, Michael H.; Higashi, Richard M.; Fan, Teresa W.-M.

    2012-01-01

    Fourier-transform ion-cyclotron resonance mass spectrometry (FT-ICR-MS) detection of oxidized cellular metabolites is described using isotopologic, carbonyl-selective derivatizing agents that integrate aminooxy functionality for carbonyl capture, quaternary nitrogen for electrospray enhancement, and a hydrophobic domain for sample cleanup. These modular structural features enable rapid, sensitive analysis of complex mixtures of metabolite-derivatives by FT-ICR-MS via continuous nanoelectrospray infusion. Specifically, this approach can be used to globally assess levels of low abundance and labile aldehyde and ketone metabolites quantitatively and in high throughput manner. These metabolites are often key and unique indicators of various biochemical pathways and their perturbations. Analysis of lung adenocarcinoma A549 cells established a profile of carbonyl metabolites spanning multiple structural classes. We also demonstrate a procedure for metabolite quantification using pyruvate as a model analyte. PMID:23175637

  10. In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: a potential pathophysiological mechanism of striatal damage in this disorder.

    PubMed

    Fernandes, Carolina Gonçalves; da Rosa, Mateus Struecker; Seminotti, Bianca; Pierozan, Paula; Martell, Rafael Wolter; Lagranha, Valeska Lizzi; Busanello, Estela Natacha Brandt; Leipnitz, Guilhian; Wajner, Moacir

    2013-06-01

    3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a genetic disorder biochemically characterized by predominant accumulation of 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA) acids in tissues and biological fluids of affected individuals. Clinically, the patients present neurological symptoms and basal ganglia injury, whose pathomechanisms are partially understood. In the present study, we investigated the ex vivo effects of intrastriatal administration of HMG and MGA on important parameters of oxidative stress in striatum of developing rats. Our results demonstrate that HMG and MGA induce lipid and protein oxidative damage. HMG and MGA also increased 2',7'-dichlorofluorescein oxidation, whereas only HMG elicited nitric oxide production, indicating a role for reactive oxygen (HMG and MGA) and nitrogen (HMG) species in these effects. Regarding the enzymatic antioxidant defenses, both organic acids decreased reduced glutathione concentrations and the activities of superoxide dismutase and glutathione reductase and increased glutathione peroxidase activity. HMG also provoked an increase of catalase activity and a diminution of glucose-6-phosphate dehydrogenase activity. We finally observed that antioxidants fully prevented or attenuated HMG-induced alterations of the oxidative stress parameters, further indicating the participation of reactive species in these effects. We also observed that MK-801, a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, prevented some of these effects, indicating the involvement of the NMDA receptor in HMG effects. The present data provide solid evidence that oxidative stress is induced in vivo by HMG and MGA in rat striatum and it is presumed that this pathomechanism may explain, at least in part, the cerebral alterations observed in HL deficiency. PMID:23611578

  11. Plasma kallikrein-bradykinin pathway promotes circulatory nitric oxide metabolite availability during hypoxia.

    PubMed

    Padhy, Gayatri; Gangwar, Anamika; Sharma, Manish; Himashree, Gidugu; Singh, Krishan; Bhaumik, Gopinath; Bhargava, Kalpana; Sethy, Niroj Kumar

    2016-05-01

    Nitric oxide (NO) is an indispensible signalling molecule under hypoxic environment for both ethnic high altitude natives as well as lowland residents at high altitude. Several studies have reported higher levels of NO and bioactive NO products for both high altitude natives as well as healthy high altitude sojourners. But the metabolic pathways regulating the formation of NO and associated metabolites during hypoxia still remain elusive. In the present study, we profiled plasma proteomes of Ladakhi natives (3520 m) and lowland residents (post 1, 4 and 7 days stay) at the same altitude. This has resulted in the identification of 208 hypoxia responsive proteins (p < 0.05) and kininogen-plasma kallikrein-bradykinin as a major pathway regulating eNOS activity during hypoxia. In corroboration, we have also observed significant higher levels of plasma biomarkers for NO production (l-citrulline, nitrite, nitrate) for Ladakhi natives as compared to both lowland individuals healthy high altitude sojourners indicating higher NO availability. Since hypoxia-induced free radicals reduce NO availability, we also measured plasma levels of 8-isoprostanes, protein carbonyls and protein oxidation products in both Ladakhi natives and high altitude sojourners. Interestingly Ladakhi natives had significant lower levels of oxidative stress in comparison to high altitude sojourners but higher than lowland controls. These results suggest that plasma kallikrein-bradykinin-eNOS pathway along with moderate oxidative stress contributes to high altitude adaptation of Ladakhi natives. PMID:26952290

  12. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    PubMed Central

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated compared to the anti-oxidant activity of curcumin. PMID:26783957

  13. Reactive metabolites and agranulocytosis.

    PubMed

    Uetrecht, J P

    1996-01-01

    Central to most hypotheses of the mechanism of idiosyncratic drug-induced blood dyscrasias is the involvement of reactive metabolites. In view of the reactive nature of the majority of such metabolites, it is likely that they are formed by, or in close proximity to the blood cells affected. The major oxidative system of neutrophils generates hypochlorous acid. We have demonstrated that the drugs associated with the highest incidence of agranulocytosis are oxidized to reactive metabolites by hypochlorous acid and/or activated neutrophils. There are many mechanisms by which such reactive metabolites could induce agranulocytosis. In the case of aminopyrine-induced agranulocytosis, most cases appear to involve drug-dependent anti-neutrophil antibodies, and these are likely to be induced by cell membrane antigens modified by the reactive metabolite of aminopyrine. The target of agranulocytosis associated with many other drugs is usually neutrophil precursors and may involve cytotoxicity or a cell-mediated immune reaction induced by a reactive metabolite. In the case of aplastic anaemia, there is evidence in some cases for involvement of cytotoxic T cells, which could either be induced by metabolites generated by neutrophils, or more likely, by reactive metabolites generated by stem cells. PMID:8987247

  14. Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities

    PubMed Central

    Shih, Shou-Ping; Lee, Man-Gang; El-Shazly, Mohamed; Juan, Yung-Shun; Wen, Zhi-Hong; Du, Ying-Chi; Su, Jui-Hsin; Sung, Ping-Jyun; Chen, Yu-Cheng; Yang, Juan-Cheng; Wu, Yang-Chang; Lu, Mei-Chin

    2015-01-01

    A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%–70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%–53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities. PMID:26006712

  15. Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities.

    PubMed

    Shih, Shou-Ping; Lee, Man-Gang; El-Shazly, Mohamed; Juan, Yung-Shun; Wen, Zhi-Hong; Du, Ying-Chi; Su, Jui-Hsin; Sung, Ping-Jyun; Chen, Yu-Cheng; Yang, Juan-Cheng; Wu, Yang-Chang; Lu, Mei-Chin

    2015-05-01

    A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%-70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%-53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities. PMID:26006712

  16. Beetroot juice increase nitric oxide metabolites in both men and women regardless of body mass.

    PubMed

    Baião, Diego dos Santos; Conte-Junior, Carlos Adam; Paschoalin, Vânia Margaret Flosi; Alvares, Thiago Silveira

    2016-01-01

    The nitrate (NO3(-)) present in beetroot juice (BJ) has been studied for its effect on the cardiovascular system by converting to nitric oxide (NO). In the present study, we evaluated the effect of BJ on the excretion of NO metabolites and its relationship with body mass in both men and women. NO metabolites - urinary NO3(-), nitrite (NO2(-)) and NOx were analyzed by using a high-performance liquid chromatography system. There were significant increases in urinary NO3(-), NO2(-) and NOx in BJ as compared to PLA (BJ without NO3(-)). No significant difference between men and women was observed in NO metabolites after BJ at any time point. There were no significant relationships between urinary NO3(-), NO2(-) and NOx and body mass in BJ intervention for both men and women. In conclusion, urinary NO metabolites after BJ consumption increases in similar manner between sexes regardless of body mass. PMID:26653541

  17. Urinary Phthalate Metabolite Associations with Biomarkers of Inflammation and Oxidative Stress Across Pregnancy in Puerto Rico

    PubMed Central

    2015-01-01

    Phthalate exposure during pregnancy has been linked to adverse birth outcomes such as preterm birth, and inflammation and oxidative stress may mediate these relationships. In a prospective cohort study of pregnant women recruited early in gestation in Northern Puerto Rico, we investigated the associations between urinary phthalate metabolites and biomarkers of inflammation, including C-reactive protein, IL-1β, IL-6, IL-10, and TNF-α, and oxidative stress, including 8-hydroxydeoxyguanosine (OHdG) and 8-isoprostane. Inflammation biomarkers were measured in plasma twice during pregnancy (N = 215 measurements, N = 120 subjects), and oxidative stress biomarkers in urine were measured three times (N = 148 measurements, N = 54 subjects) per woman. In adjusted linear mixed models, metabolites of di-2-ethylhexyl phthalate (DEHP) were associated with increased IL-6 and IL-10 but relationships were generally not statistically significant. All phthalates were associated with increases in oxidative stress markers. Relationships with OHdG were significant for DEHP metabolites as well as mono-n-butyl phthalate (MBP) and monoiso-butyl phthalate (MiBP). For 8-isoprostane, associations with nearly all phthalates were statistically significant and the largest effect estimates were observed for MBP and MiBP (49–50% increase in 8-isoprostane with an interquartile range increase in metabolite concentration). These relationships suggest a possible mechanism for phthalate action that may be relevant to a number of adverse health outcomes. PMID:24845688

  18. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry

    PubMed Central

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-01-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions.

  19. Novel oxidative in vitro metabolites of the mycotoxins alternariol and alternariol methyl ether.

    PubMed

    Pfeiffer, Erika; Schebb, Nils H; Podlech, Joachim; Metzler, Manfred

    2007-03-01

    The Alternaria toxins alternariol (AOH; 3,7,9-trihydroxy-1-methyl-6H-benzo[c]chromen-6-one) and alternariol methyl ether (AME, 3,7-dihydroxy-9-methoxy-1-methyl-6H-benzo[c]chromen-6-one) are common contaminants of food and feed, but their oxidative metabolism in mammals is as yet unknown. We have therefore incubated AME and AOH with microsomes from rat, human, and porcine liver and analyzed the microsomal metabolites with HPLC and GC-MS/MS. Seven oxidative metabolites of AME and five of AOH were detected. Their chemical structures were derived from their mass spectra using deuterated trimethylsilyl (TMS) derivatives, and from the information obtained from enzymatic methylation. Several of the metabolites were identified by comparison with synthetic reference compounds. AME as well as AOH were monohydroxylated at each of the four possible aromatic carbon atoms and also at the methyl group. In addition, AME was demethylated to AOH and dihydroxylated to a small extent. As the four metabolites arising through aromatic hydroxylation of AME and AOH are either catechols or hydroquinones, the oxidative metabolism of these mycotoxins may be of toxicological significance. PMID:17340575

  20. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  1. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting.

    PubMed

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter "D" obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  2. Oxidative metabolites of lycopene and γ-carotene in gac (Momordica cochinchinensis).

    PubMed

    Maoka, Takashi; Yamano, Yumiko; Wada, Akimori; Etho, Tetsuji; Terada, Yukimasa; Tokuda, Harukuni; Nishino, Hoyoku

    2015-02-11

    Three new oxidative metabolites of lycopenes, (erythro)-lycopene-5,6-diol, (threo)-lycopene-5,6-diol, and 1,16-dehydro-2,6-cyclolycopene-5-ol B, and four new oxidative metabolites of γ-carotenes, 2',6'-cyclo-γ-carotene-1',5'-diol A, 2',6'-cyclo-γ-carotene-1',5'-diol B, (erythro)-γ-carotene-5,6-diol, and (threo)-γ-carotene-5,6-diol, were isolated as minor components from the aril of gac, Momordica cochinchinensis. These structures were determined on the basis of spectroscopic data, and some of them were compared to the structures of synthetic samples. Furthermore, the oxidative metabolic conversion pathways of lycopene and γ-carotene were discussed. PMID:25633727

  3. Lipid Peroxidation, Nitric Oxide Metabolites, and Their Ratio in a Group of Subjects with Metabolic Syndrome

    PubMed Central

    Caimi, Gregorio; Lo Presti, Rosalia; Montana, Maria; Canino, Baldassare; Averna, Maurizio R.

    2014-01-01

    Our aim was to evaluate lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS), nitric oxide metabolites (nitrite + nitrate) expressed as NOx, and TBARS/NOx ratio in a group of subjects with metabolic syndrome (MS). In this regard we enrolled 106 subjects with MS defined according to the IDF criteria, subsequently subdivided into diabetic (DMS) and nondiabetic (NDMS) and also into subjects with a low triglycerides/HDL-cholesterol (TG/HDL-C) index or with a high TG/HDL-C index. In the entire group and in the four subgroups of MS subjects we found an increase in TBARS and NOx levels and a decrease in TBARS/NOx ratio in comparison with normal controls. Regarding all these parameters no statistical difference between DMS and NDMS was evident, but a significant increase in NOx was present in subjects with a high TG/HDL-C index in comparison with those with a low index. In MS subjects we also found a negative correlation between TBARS/NOx ratio and TG/HDL-C index. Considering the hyperactivity of the inducible NO synthase in MS, these data confirm the altered redox and inflammatory status that characterizes the MS and suggest a link between lipid peroxidation, inflammation, and insulin resistance, evaluated as TG/HDL-C index. PMID:24987495

  4. New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis.

    PubMed

    Souza, Terezinha; Jennen, Danyel; van Delft, Joost; van Herwijnen, Marcel; Kyrtoupolos, Soterios; Kleinjans, Jos

    2016-06-01

    Benzo(a)pyrene (BaP) is a ubiquitous carcinogen resulting from incomplete combustion of organic compounds and also present at high levels in cigarette smoke. A wide range of biological effects has been attributed to BaP and its genotoxic metabolite BPDE, but the contribution to BaP toxicity of intermediary metabolites generated along the detoxification path remains unknown. Here, we report for the first time how 3-OH-BaP, 9,10-diol and BPDE, three major BaP metabolites, temporally relate to BaP-induced transcriptomic alterations in HepG2 cells. Since BaP is also known to induce AhR activation, we additionally evaluated TCDD to source the expression of non-genotoxic AhR-mediated patterns. 9,10-Diol was shown to activate several transcription factor networks related to BaP metabolism (AhR), oxidative stress (Nrf2) and cell proliferation (HIF-1α, AP-1) in particular at early time points, while BPDE influenced expression of genes involved in cell energetics, DNA repair and apoptotic pathways. Also, in order to grasp the role of BaP and its metabolites in chemical hepatocarcinogenesis, we compared expression patterns from BaP(-metabolites) and TCDD to a signature set of approximately nine thousand gene expressions derived from hepatocellular carcinoma (HCC) patients. While transcriptome modulation by TCDD appeared not significantly related to HCC, BaP and BPDE were shown to deregulate metastatic markers via non-genotoxic and genotoxic mechanisms and activate inflammatory pathways (NF-κβ signaling, cytokine-cytokine receptor interaction). BaP also showed strong repression of genes involved in cholesterol and fatty acid biosynthesis. Altogether, this study provides new insights into BaP-induced toxicity and sheds new light onto its mechanism of action as a hepatocarcinogen. PMID:26238291

  5. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: a randomized controlled trial.

    PubMed

    Gasper, Amy; Hollands, Wendy; Casgrain, Amelie; Saha, Shikha; Teucher, Birgit; Dainty, Jack R; Venema, Dini P; Hollman, Peter C; Rein, Maarit J; Nelson, Rebecca; Williamson, Gary; Kroon, Paul A

    2014-10-01

    We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and 100mg epicatechin (low and high flavanol apple puree, respectively) and aspirin (75 mg) in random order. Measurements were made at baseline, acutely after treatment (2, 6 and 24 h), and after 14 d of treatment. Low flavanol apple puree significantly attenuated ADP and epinephrine-induced integrin-β3 expression 2 h and 6 h after consumption and ADP and epinephrine-induced P-selectin expression within 2h of consumption. High flavanol apple puree attenuated epinephrine and ADP-induced integrin-β3 expression after 2 and 6h. ADP and epinephrine-induced integrin-β3 expression was significantly attenuated 2, 6 and 24 h after consumption of aspirin, whilst 14 d aspirin consumption attenuated collagen-induced P-selectin expression only. The plasma total nitric oxide metabolite conc. was significantly increased 6h after consumption of both low and high flavanol apple purees. In conclusion, consumption of apple purees containing ⩾25 or 100 mg flavanols transiently attenuated ex vivo integrin-β3 and P-selectin expression and increased plasma nitric oxide metabolite conc. in healthy subjects, but the effect was not enhanced for the high flavanol apple puree. PMID:24929184

  6. Relationships among nitric oxide metabolites and pulses of a PGF2α metabolite during and after luteolysis in mares.

    PubMed

    Ginther, O J; Wolf, C A; Baldrighi, J M; Greene, J M

    2015-07-15

    Hourly circulating concentrations of a PGF2α metabolite (PGFM), progesterone (P4), and LH were obtained from a reported project, and concentrations of nitric oxide (NO) metabolites (NOMs; nitrates and nitrites) were determined in eight mares. Unlike the reported project, hormone concentrations were normalized to the peak of the first PGFM pulse of luteolysis (early luteolysis), second PGFM pulse (late luteolysis), and a pulse after luteolysis. The duration of luteolysis was 23.1 ± 1.0 hours, and the peak of the first and second PGFM pulses occurred 6.5 ± 0.9 and 14.8 ± 0.8 hours after the beginning of luteolysis. Concentration of P4 decreased progressively within and between the PGFM pulses Changes were not detected in LH concentration in association with the PGFM pulses. Concentration of NOMs was greater (P < 0.05) at the peak of the PGFM pulse during early luteolysis (88.8 ± 15.0 μg/mL) than during late luteolysis (58.8 ± 9.0 μg/mL). Concentration of NOMs began to decrease (P < 0.05) 4 hours before the peak of the PGFM pulse of early luteolysis. Concentration began to increase (P < 0.05) an hour after the peak of the PGFM pulse of late luteolysis. An NOM decrease and increase was not detected during the PGFM pulse after luteolysis. On a temporal basis, results indicated that NO either is not required for luteolysis in mares or has a role in or responds only during late luteolysis. A caveat is that the relative contribution of the CL versus other body tissues to circulating concentrations of NOMs in mares has not been determined. PMID:25910877

  7. Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells.

    PubMed

    Atzeri, Angela; Lucas, Ricardo; Incani, Alessandra; Peñalver, Pablo; Zafra-Gómez, Alberto; Melis, M Paola; Pizzala, Roberto; Morales, Juan C; Deiana, Monica

    2016-01-01

    The aim of this study was to investigate the ability of the sulfate metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to act as antioxidants counteracting the pro-oxidant effect of oxidized cholesterol in intestinal cells. For this purpose, we synthesized sulfate metabolites of HT and TYR using a chemical methodology and examined their antioxidant activity in Caco-2 monolayers in comparison with the parent compounds. Exposure to oxidized cholesterol led to ROS production, oxidative damage, as indicated by the MDA increase, a decrease of reduced glutathione concentration and an enhancement of glutathione peroxidase activity. All the tested compounds were able to counteract the oxidizing action of oxidized cholesterol; HT and TYR sulfate metabolites showed an efficiency in protecting intestinal cells comparable to that of the parent compounds, strengthening the assumption that the potential beneficial effect of the parent compounds is retained, although extensive metabolisation occurs, the resulting metabolites being able to exert a biological action themselves. PMID:26488801

  8. Structure-activity relationship in the mutagenicity and cytotoxicity of putative metabolites and related analogs of benzene derived from the valence tautomers benzene oxide and oxepin

    SciTech Connect

    Stark, A.A.; Rastetter, W.H.

    1996-12-31

    A series of putative metabolites and related analogs of benzene, derived from the valence tautomers benzene oxide and oxepin, was tested for mutagenicity (reversions to histidine prototrophy and forward mutations to resistance to 8-azaguanine) and for cytotoxicity by the Ames Salmonella mutagenicity test. Benzene was not mutagenic in either assay. The benzene oxide-oxepin system and benzene dihydrodial induced point mutations but not frameshifts. 4,5-sym-Oxepin oxide, which is a putative metabolite of the oxepin valence tautomer; 3,6-diazo-cyclohexane-1,6-3,4-dioxide, a synthetic precursor of sym-oxepin oxide; and transoid-4,11-dioxatricyclo(5.1 0)undeca-1,6-diene, a stable bridgehead diene analog of sym-oxepin oxide, were toxic but not mutagenic in both assays. 4H-Pyran-4-=carboxaldehyde, a stable acid catalyzed rearrangement product of sym-oxepin oxide, was not mutagenic and much less cytotoxic than sym-oxepin oxide. Stable analogs of the valence tautomer benzene oxide, namely syn-indan-3a,7a-oxide and syn-2-hydroxyindan-3a,7a-oxide, were mutagenic and induced point mutations. All compounds were cytotoxic to Salmonella. Firstly, the apparent decay times of these chemicals, especially that of sym-oxepin oxide, were surprisingly longer than expected, as judged by quantitative plate diffusion assays. Secondly, it is concluded that if benzene oxide is further metabolized in its oxepin tautomeric form, toxic but not mutagenic products are formed. Thirdly, the relatively weak mutagenicity of benzene oxide may be mainly due to its instability and corresponding low probability to reach intracellular polynucleotide targets, whereas stable analogs of benzene oxide are relatively more potent mutagens. 48 refs., 4 figs., 3 tabs.

  9. Oxidative metabolites of [2-14C]propylthiouracil in rat thyroid.

    PubMed

    Lindsay, R H; Kelly, K; Hill, J B

    1979-06-01

    The identities and relative amounts of the major metabolites in rat thyroids 6 h after the administration of [14C]propylthiouracil ([14C]PTU) have been investigated. Rat thyroid extracts were chromatographed on columns of Bio-Gel P-2 and DEAE-Sephadex and in various thin layer chromatography systems. The extracts contained protein-bound PTU metabolites; an unknown peak 3; peak 1, which was chromatographically similar to PTU--SO2H; peak 2, which was similar to PTU--SO3H; PTU; and small amounts of 6-n-propyluracil (PU). The major metabolites were isolated and purified by column chromatograpy. On the basis of chromatographic properties identical to cochromatographed standards in seven different systems and the products formed after treatment with various reagents, peak 1 was identified as PTU-SO2H and peak 2 as PTU--SO3H. Peak 3 was seen only on Bio-Gel P-2 columns, was very unstable, and was not similar to any known PTU standard. The properties of this compound suggest that it may be a thiolsulfonic ester (formula:see text), but the data are insufficient for positive identification. Approximately 85% of the radioactivity in the protein peak was bound to thyroglobulin. HCl converted 86.5% of the protein-bound radioactivity to PU, and H2S converted 91% to PTU, indicating that an oxidized S was involved in the linkage to protein. Dithiothreitol released 23.6% of the protein-bound radioactivity as PTU, and mercaptoethanol released 32.5%, indicating that 25-35% of the PTU is bound in disulfide linkage. Approximately 50% of the radioactivity released by mercaptoethanol was S-ethanol PTU, which suggests a PTU-protein bond similar to a thiolsulfonic ester. Quantitation of the metabolites revealed that protein-bound metabolites accounted for 21-29% of the total radioactivity, unknown peak 3 accounted for 7.1%, PTU--SO2H for 48-50%, PTU--SO3H for 8-10%, and PTU for 10.7-16.5%. Only traces of PU were observed. The data demonstrate that PTU--SO2H is the major PTU metabolite in

  10. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates

    PubMed Central

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  11. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates.

    PubMed

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  12. In situ assay of fatty acid β-oxidation by metabolite profiling following permeabilization of cell membranes[S

    PubMed Central

    Ensenauer, Regina; Fingerhut, Ralph; Schriever, Sonja C.; Fink, Barbara; Becker, Marc; Sellerer, Nina C.; Pagel, Philipp; Kirschner, Andreas; Dame, Torsten; Olgemöller, Bernhard; Röschinger, Wulf; Roscher, Adelbert A.

    2012-01-01

    Quantitative analysis of mitochondrial FA β-oxidation (FAO) has drawn increasing interest for defining lipid-induced metabolic dysfunctions, such as in obesity-induced insulin resistance, and evaluating pharmacologic strategies to improve β-oxidation function. The aim was to develop a new assay to quantify β-oxidation function in intact mitochondria and with a low amount of cell material. Cell membranes of primary human fibroblasts were permeabilized with digitonin prior to a load with FFA substrate. Following 120 min of incubation, the various generated acylcarnitines were extracted from both cells and incubation medium by protein precipitation/desalting and subjected to solid-phase extraction. A panel of 30 acylcarnitines per well was quantified by MS/MS and normalized to citrate synthase activity to analyze mitochondrial metabolite flux. Pretreatment with bezafibrate and etomoxir revealed stimulating and inhibiting regulatory effects on β-oxidation function, respectively. In addition to the advantage of a much shorter assay time due to in situ permeabilization compared with whole-cell incubation systems, the method allows the detection of multiple acylcarnitines from an only limited amount of intact cells, particularly relevant to the use of primary cells. This novel approach facilitates highly sensitive, simple, and fast monitoring of pharmacological effects on FAO. PMID:22345709

  13. Oxidation of propylthiouracil to reactive metabolites by activated neutrophils. Implications for agranulocytosis.

    PubMed

    Waldhauser, L; Uetrecht, J

    1991-01-01

    Propylthiouracil (PTU) is associated with idiosyncratic agranulocytosis that may be due to reactive metabolites generated from oxidative metabolism by neutrophils. Therefore, the metabolism of PTU was investigated in activated neutrophils. Three oxidized metabolites were observed on HPLC: PTU-disulfide, propyluracil-2-sulfinate, and propyluracil-2-sulfonate (PTU-SO3-). No metabolism was detected in cells that had not been activated. Metabolism was inhibited by sodium azide and by catalase. The same products were produced by myeloperoxidase (MPO) in an MPO/H2O2/Cl- system. PTU inhibited its own metabolism; however, complete conversion to PTU-SO3- could be achieved with optimal PTU concentrations. MPO/H2O2 without Cl- produced only slight metabolism. The PTU-sulfenyl chloride is a postulated intermediate. In the absence of chloride, oxidation might proceed through propyluracil-2-sulfenic acid. The sulfenyl chloride and PTU-SO3- are both chemically reactive with sulfhydryl compounds such as N-acetylcysteine. Such reactive metabolites, generated by activated neutrophils, may be involved in hypersensitivity reactions associated with PTU, such as agranulocytosis. PMID:1676636

  14. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells

    PubMed Central

    Amin, Hiren P.; Czank, Charles; Raheem, Saki; Zhang, Qingzhi; Botting, Nigel P.; Cassidy, Aedín

    2015-01-01

    Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. PMID:25787755

  15. Children’s Urinary Phthalate Metabolites and Fractional Exhaled Nitric Oxide in an Urban Cohort

    PubMed Central

    Whyatt, Robin M.; Miller, Rachel L.; Rundle, Andrew G.; Chen, Qixuan; Calafat, Antonia M.; Divjan, Adnan; Rosa, Maria J.; Zhang, Hanjie; Perera, Frederica P.; Goldstein, Inge F.; Perzanowski, Matthew S.

    2012-01-01

    Rationale: Phthalates are used widely in consumer products. Exposure to several phthalates has been associated with respiratory symptoms and decreased lung function. Associations between children’s phthalate exposures and fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation, have not been examined. Objectives: We hypothesized that urinary concentrations of four phthalate metabolites would be positively associated with FeNO and that these associations would be stronger among children with seroatopy or wheeze. Methods: In an urban ongoing birth cohort, 244 children had phthalate metabolites determined in urine collected on the same day as FeNO measurement. Repeated sampling gathered 313 observations between ages 4.9 and 9.1 years. Seroatopy was assessed by specific IgE. Wheeze in the past year was assessed by validated questionnaire. Regression models used generalized estimating equations. Measurements and Main Results: Log-unit increases in urinary concentrations of metabolites of diethyl phthalate (DEP) and butylbenzyl phthalate (BBzP) were associated with a 6.6% (95% confidence interval [CI] 0.5–13.1%) and 8.7% (95% CI, 1.9–16.0%) increase in FeNO, respectively, adjusting for other phthalate metabolites and potential covariates/confounders. There was no association between concentrations of metabolites of di(2-ethylhexyl) phthalate or di-n-butyl phthalate and FeNO. There was no significant interaction by seroatopy. The BBzP metabolite association was significantly stronger among children who wheeze (P = 0.016). Conclusions: Independent associations between exposures to DEP and BBzP and FeNO in a cohort of inner-city children were observed. These results suggest that these two ubiquitous phthalates, previously shown to have substantial contributions from inhalation, are positively associated with airway inflammation in children. PMID:22923660

  16. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A

    PubMed Central

    Sakuma, Hiroshi

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2′-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm. PMID:27213030

  17. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A.

    PubMed

    Miyata, Rie; Tanuma, Naoyuki; Sakuma, Hiroshi; Hayashi, Masaharu

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm. PMID:27213030

  18. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites.

    PubMed

    Liu, Qianying; Zhang, Jianwu; Luo, Xun; Ihsan, Awais; Liu, Xianglian; Dai, Menghong; Cheng, Guyue; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-07-01

    Quinoxaline-di-N-oxides (QdNOs) are potential antibacterial agents with a wide range of biological properties. Quinocetone (QCT), carbadox (CBX), olaquindox (OLA), mequindox (MEQ) and cyadox (CYA) are classical QdNOs. Though the genotoxicity of parent drugs has been evaluated, the genotoxicity of their primary N → O reduced metabolites remains unclear. In the present study, a battery of four different short-term tests, mouse lymphoma assay (MLA), Ames test, chromosomal aberration assay in vitro and bone marrow erythrocyte micronucleus assay in vivo was carried out to investigate the genotoxicity of the six primary N → O reduced metabolites. Additionally, the genotoxicity of five parent drugs was evaluated by the MLA. Strong genotoxicity of N1-MEQ, B-MEQ and B-CBX was found in three of the assays but not in the Ames assay, and the rank order was N1-MEQ>B-MEQ>B-CBX that is consistent with prototype QdNOs. Negative results for the five QdNOs were noted in the MLA. We present for the first time a comparison of the genotoxicity of primary N → O reduced metabolites, and evaluate the ability of five QdNOs to cause mutations in the MLA. The present study demonstrates that metabolites are involved in genetic toxicity mediated by QdNOs, and improve the prudent use of QdNOs for public health. PMID:27170491

  19. Nitric oxide metabolite concentrations in maternal plasma decrease during parturition: possible transient down-regulation of nitric oxide synthesis.

    PubMed

    Nanno, H; Sagawa, N; Itoh, H; Matsumoto, T; Terakawa, K; Mori, T; Itoh, H; Nakao, K

    1998-06-01

    To elucidate the possible involvement of nitric oxide (NO) in parturition, we measured the maternal plasma concentrations of the NO metabolites, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and guanosine 3',5'-cyclic phosphate (cGMP) in pregnant women at various gestational ages including those at vaginal and elective Caesarean deliveries. The plasma cGMP and NO metabolite concentrations at vaginal delivery were significantly lower than those of the pregnant women in the third trimester of pregnancy. These concentrations remained low until 4 h after delivery but returned 24 h after delivery to values similar to those of the non-pregnant women. Such suppressions of plasma cGMP and NO metabolite concentrations were not observed in the women who underwent elective Caesarean section before the onset of labour. Moreover, no significant changes were observed in the plasma ANP and BNP concentrations at the time of vaginal and Caesarean deliveries, except that a slight but significant elevation of the plasma ANP concentration was observed 1 h after Caesarean delivery. In conclusion, the plasma concentrations of cGMP and NO metabolites significantly decreased at vaginal delivery but not at Caesarean delivery. These changes were independent of the plasma ANP and BNP concentrations, suggesting the possible down-regulation of maternal NO synthesis during parturition. PMID:9665345

  20. Oxidation of Metabolites Highlights the Microbial Interactions and Role of Acetobacter pasteurianus during Cocoa Bean Fermentation

    PubMed Central

    Moens, Frédéric; Lefeber, Timothy

    2014-01-01

    Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848T oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848T and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation. PMID:24413595

  1. Quercetin and its principal metabolites, but not myricetin, oppose lipopolysaccharide-induced hyporesponsiveness of the porcine isolated coronary artery

    PubMed Central

    Al-Shalmani, Salmin; Suri, Sunita; Hughes, David A; Kroon, Paul A; Needs, Paul W; Taylor, Moira A; Tribolo, Sandra; Wilson, Vincent G

    2011-01-01

    BACKGROUND AND PURPOSE Quercetin is anti-inflammatory in macrophages by inhibiting lipopolysaccharide (LPS)-mediated increases in cytokine and nitric oxide production but there is little information regarding the corresponding effect on the vasculature. We have examined the effect of quercetin, and its principal human metabolites, on inflammatory changes in the porcine isolated coronary artery. EXPERIMENTAL APPROACH Porcine coronary artery segments were incubated overnight at 37°C in modified Krebs-Henseleit solution with or without 1 µg·mL−1 LPS. Some segments were also co-incubated with quercetin-related flavonoids or Bay 11-7082, an inhibitor of NFκB. Changes in isometric tension of segments to vasoconstrictor and vasodilator agents were recorded. Nitrite content of the incubation solution was estimated using the Griess reaction, while inducible nitric oxide synthase was identified immunohistochemically. KEY RESULTS Lipopolysaccharide reduced, by 35–50%, maximal contractions to KCl and U46619, thromboxane A2 receptor agonist, and impaired endothelium-dependent relaxations to substance P. Nitrite content of the incubation medium increased 3- to 10-fold following exposure to LPS and inducible nitric oxide synthase was detected in the adventitia. Quercetin (0.1–10 µM) opposed LPS-induced changes in vascular responses, nitrite production and expression of inducible nitric oxide synthase. Similarly, 10 µM Bay 11-7082, 10 µM quercetin 3′-sulphate and 10 µM quercetin 3-glucuronide prevented LPS-induced changes, while myricetin (10 µM) was inactive. Myricetin (10 µM) prevented quercetin-induced modulation of LPS-mediated nitrite production. CONCLUSION AND IMPLICATIONS Quercetin, quercetin 3′-suphate and quercetin 3-glucuronide, exerted anti-inflammatory effects on the vasculature, possibly through a mechanism involving inhibition of NFκB. Myricetin-induced antagonism of the effect of anti-inflammatory action of quercetin merits further investigation

  2. The Oxidized Linoleic Acid Metabolite-Cytochrome P450 System is Active in Biopsies from Patients with Inflammatory Dental Pain

    PubMed Central

    Ruparel, Shivani; Hargreaves, Kenneth M.; Eskander, Michael; Rowan, Spencer; de Almeida, Jose F.A.; Roman, Linda; Henry, Michael A.

    2013-01-01

    Endogenous TRPV1 agonists such as oxidized linoleic acid metabolites (OLAMs) and the enzymes releasing them [e.g., cytochrome P450 (CYP)], are up-regulated following inflammation in the rat. However, it is not known if such agonists are elevated in human inflammatory pain conditions. Since TRPV1 is expressed in human dental pulp nociceptors, we hypothesized that OLAM-CYP machinery is active in this tissue type and is increased under painful inflammatory conditions such as irreversible pulpitis (IP). The aim of this study was to compare CYP expression and linoleic acid (LA) metabolism in normal versus inflamed human dental pulp. Our data showed that exogenous LA metabolism was significantly increased in IP tissues compared to normal tissues and that pretreatment with a CYP inhibitor, ketoconazole, significantly inhibited LA metabolism. Additionally, extracts obtained from LA-treated inflamed tissues, evoked significant inward currents in TG neurons, and were blocked by pretreatment with the TRPV1 antagonist, IRTX. Moreover, extracts obtained from ketoconazole-pretreated inflamed tissues significantly reduced inward currents in TG neurons. These data suggest that LA metabolites produced in human inflamed tissues act as TRPV1 agonists and that the metabolite production can be targeted by CYP inhibition. In addition, immunohistochemical analysis of two CYP isoforms, CYP2J and CYP3A1, were shown to be predominately expressed in immune cells infiltrating the inflamed dental pulp, emphasizing the paracrine role of CYP enzymes in OLAM regulation. Collectively, our data indicates that the machinery responsible for OLAM production is up-regulated during inflammation and can be targeted to develop potential analgesics for inflammatory-induced dental pain. PMID:23867730

  3. Monogenic control of variations in antipyrine metabolite formation. New polymorphism of hepatic drug oxidation.

    PubMed Central

    Penno, M B; Vesell, E S

    1983-01-01

    To investigate mechanisms that control large variations among normal uninduced subjects in the elimination of the model compound antipyrine (AP) and other drugs, AP was administered to 144 subjects (83 unrelated adults and 61 members of 13 families). Thereafter, at regular intervals for 72 h, the urine of each subject was collected and concentrations of AP and its three main metabolites measured. From these urinary concentrations, rate constants for formation of each AP metabolite were calculated. Trimodal curves were observed when values for each AP rate constant were plotted in 83 unrelated subjects; probit plots of these values showed inflections at the two antimodes of each trimodal distribution. All members of our 13 families were assigned one of three phenotypes determined by where their AP metabolite rate constant placed them in the trimodal distributions derived from the 83 unrelated subjects. In each family, pedigree analysis to identify the mode of transmission of these three phenotypes was consistent with their monogenic control. These results provide evidence for a new polymorphism of drug oxidation in man. PMID:6863539

  4. Surface-Step-Induced Oscillatory Oxide Growth

    NASA Astrophysics Data System (ADS)

    Li, Liang; Luo, Langli; Ciston, Jim; Saidi, Wissam A.; Stach, Eric A.; Yang, Judith C.; Zhou, Guangwen

    2014-09-01

    We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

  5. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis.

    PubMed

    Heijne, Wilbert H M; Lamers, Robert-Jan A N; van Bladeren, Peter J; Groten, John P; van Nesselrooij, Joop H J; van Ommen, Ben

    2005-01-01

    This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in rats that received bromobenzene to induce acute hepatic centrilobular necrosis. Bromobenzene-induced lesions were only observed after treatment with the highest of 3 dose levels. Multivariate statistical analysis showed that metabolite profiles of blood plasma were largely different from controls when the rats were treated with bromobenzene, also at doses that did not elicit histopathological changes. Changes in levels of genes and metabolites were related to the degree of necrosis, providing putative novel markers of hepatotoxicity. Levels of endogenous metabolites like alanine, lactate, tyrosine and dimethylglycine differed in plasma from treated and control rats. The metabolite profiles of urine were found to be reflective of the exposure levels. This integrated analysis of hepatic transcriptomics and plasma metabolomics was able to more sensitively detect changes related to hepatotoxicity and discover novel markers. The relation between gene expression and metabolite levels was explored and additional insight in the role of various biological pathways in bromobenzene-induced hepatic necrosis was obtained, including the involvement of apoptosis and changes in glycolysis and amino acid metabolism. The complete Table 2 is available as a supplemental file online at http://taylorandfrancis.metapress.com/openurlasp?genre=journal&issn=0192-6233. To access the file, click on the issue link for 33(4), then select this article. A download option appears at the bottom of this abstract. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org. PMID:16036859

  6. Lipid peroxidation and nitric oxide metabolites in sedentary subjects and sportsmen before and after a cardiopulmonary test.

    PubMed

    Lo Presti, Rosalia; Canino, Baldassare; Montana, Maria; Caimi, Gregorio

    2013-01-01

    Our aim was to investigate the effects of an exercise test on some indices of oxidative status and endothelial function, in trained and untrained subjects. We examined lipid peroxidation, nitric oxide metabolites (NOx) and their ratio before and after a cardiopulmonary test, using a cycloergometer. We enrolled 60 male subjects who practiced sport unprofessionally, subdivided in two groups (A and B) according to the values of VO2max. Group A included sportsmen with poor or fair aerobic fitness (VO2max <39 ml/Kg/min), group B sportsmen with average to excellent aerobic fitness (VO2max >39 ml/Kg/min). The control group included 19 male sedentary subjects. Lipid peroxidation was evaluated by detection of the thiobarbituric acid-reactive substances (TBARS); the NOx were evaluated employing the Griess reagent. At rest, in comparison with sedentary controls, an increase in TBARS, NOx and TBARS/NOx ratio was found in all sportsmen and partially in the two groups. After the cardiopulmonary test, the increase of TBARS and TBARS/NOx ratio was significantly more evident in sedentary controls than in sportsmen. No variation was observed for NOx in any group. These data suggest that sportsmen are protected against the acute oxidative stress induced by an exercise test, and that protection is not strictly dependent on the aerobic fitness. PMID:22710809

  7. Biosynthesis and identification of an N-oxide/N-glucuronide metabolite and first synthesis of an N-O-glucuronide metabolite of Lu AA21004.

    PubMed

    Uldam, Henriette Kold; Juhl, Martin; Pedersen, Henrik; Dalgaard, Lars

    2011-12-01

    This article describes the biosynthesis and identification of a new class of metabolites, a piperazine N-oxide/N-glucuronide metabolite 4-[2-(2,4-dimethyl-phenylsulfanyl)-phenyl]-1-β-D-glucuronic acid-piperazine 1-oxide (4). The metabolite was found in urine and plasma from humans and animals dosed with 1-[2-(2,4-dimethyl-phenylsulfanyl)-phenyl]-piperazine hydrobromide (Lu AA21004, 1), as a novel multimodal antidepressant under development for treatment of depression. Human liver microsomes in combination with uridine 5'-diphosphoglucuronic acid were used as an in vitro system to generate enough material of 4 to perform one- and two-dimensional (1)H and (13)C NMR experiments for structure elucidation. Based on rotating frame Overhauser enhancement spectroscopy NMR experiments, the distance correlation between a piperazine proton and the anomeric proton of the glucuronic acid moiety is of a magnitude similar to that of the H-3' and H-5' protons and can only be explained by proximity in space and the postulated structure (4). The structural analog, the N-O-glucuronic acid conjugate 6-{4-[2-(2,4-dimethyl-phenylsulfanyl)-phenyl]-piperazin-1-yloxy}-1-β-D-glucuronic acid (3) was also observed in biological samples from humans and animals and the first organic synthesis and structural identification of this metabolite is also reported. Treatment of the glucuronide metabolites 3 and 4 with β-glucuronidase gave mainly the expected hydrolysis product, the hydroxyl amine 4-[2-(2,4-dimethyl-phenylsulfanyl)-phenyl]-piperazin-1-ol (2). PMID:21896789

  8. Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells in vitro.

    PubMed

    Wang, Xu; Wan, Dan; Ihsan, Awais; Liu, Qianying; Cheng, Guyue; Li, Juan; Liu, Zhenli; Yuan, Zonghui

    2015-10-01

    Quinocetone (QCT) is a new feeding antibacterial agent in the QdNOs family. The mechanism of its adrenal toxicity is far from clear. This study was conducted to estimate the adrenal cell damage induced by QCT and its bidesoxy-quinocetone (B-QCT) metabolite and to further investigate their mechanisms. Following doses of QCT increasing from 5 to 50 μM, cell apoptosis and necrosis, mitochondrial dysfunction and redox imbalance were observed in porcine adrenocortical cells. The mRNA levels of the six components of intermediary enzymes and the adrenal renin-angiotensin-aldosterone system (RAAS) displayed a dysregulation induced by QCT, indicating that QCT might influence aldosterone secretion not only through the upstream of the production but also through the downstream of the adrenal RAAS pathway. In contrast, B-QCT had few toxic effects on the cell apoptosis, mitochondrial dysfunction and redox imbalance. Moreover, LCMS-IT-TOF analysis showed that no desoxy metabolites of QCT were found in either cell lysate or supernatant samples. In conclusion, we reported on the cytotoxicity in porcine adrenocortical cells exposed to QCT via oxidative stress, which raised awareness that its toxic effects resulted from N→O groups, and its toxic mechanism might involve the interference of the steroid hormone biosynthesis pathway. PMID:26296292

  9. Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress

    PubMed Central

    Leirós, Marta; Sánchez, Jon A.; Alonso, Eva; Rateb, Mostafa E.; Houssen, Wael E.; Ebel, Rainer; Jaspars, Marcel; Alfonso, Amparo; Botana, Luis M.

    2014-01-01

    The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases. PMID:24473170

  10. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation

    PubMed Central

    Vozza, Angelo; Parisi, Giovanni; De Leonardis, Francesco; Lasorsa, Francesco M.; Castegna, Alessandra; Amorese, Daniela; Marmo, Raffaele; Calcagnile, Valeria M.; Palmieri, Luigi; Ricquier, Daniel; Paradies, Eleonora; Scarcia, Pasquale; Palmieri, Ferdinando; Bouillaud, Frédéric; Fiermonte, Giuseppe

    2014-01-01

    Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA–producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties. PMID:24395786

  11. Secondary Metabolites from Endophytic Fungus Penicillium pinophilum Induce ROS-Mediated Apoptosis through Mitochondrial Pathway in Pancreatic Cancer Cells.

    PubMed

    Koul, Mytre; Meena, Samdarshi; Kumar, Ashok; Sharma, Parduman Raj; Singamaneni, Venugopal; Riyaz-Ul-Hassan, Syed; Hamid, Abid; Chaubey, Asha; Prabhakar, Anil; Gupta, Prasoon; Singh, Shashank

    2016-03-01

    The endophytic fungus strain MRCJ-326, isolated from Allium schoenoprasum, which is also known as Snow Mountain Garlic or Kashmiri garlic, was identified as Penicillium pinophilum on the basis of morphological characteristics and internal transcribed spacer region nucleotide sequence analysis. The endophytic fungus extract was subjected to 2D-SEPBOX bioactivity-guided fractionation and purification. The anthraquinone class of the bioactive secondary metabolites were isolated and characterized as oxyskyrin (1), skyrin (2), dicatenarin (3), and 1,6,8-trihydroxy-3-hydroxy methylanthraquinone (4) by spectral analysis. Dicatenarin and skyrin showed marked growth inhibition against the NCI60/ATCC panel of human cancer cell lines with least IC50 values of 12 µg/mL and 27 µg/mL, respectively, against the human pancreatic cancer (MIA PaCa-2) cell line. The phenolic hydroxyl group in anthraquinones plays a crucial role in the oxidative process and bioactivity. Mechanistically, these compounds, i.e., dicatenarin and skyrin, significantly induce apoptosis and transmit the apoptotic signal via intracellular reactive oxygen species generation, thereby inducing a change in the mitochondrial transmembrane potential and induction of the mitochondrial-mediated apoptotic pathway. Our data indicated that dicatenarin and skyrin induce reactive oxygen species-mediated mitochondrial permeability transition and resulted in an increased induction of caspase-3 apoptotic proteins in human pancreatic cancer (MIA PaCa-2) cells. Dicatenarin showed a more pronounced cytotoxic/proapopotic effect than skyrin due to the presence of an additional phenolic hydroxyl group at C-4, which increases oxidative reactive oxygen species generation. This is the first report from P. pinophilum secreating these cytotoxic/proapoptotic secondary metabolites. PMID:26848704

  12. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  13. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    SciTech Connect

    Madden, Jill A.; Hoyer, Patricia B.; Devine, Patrick J.; Keating, Aileen F.

    2014-05-15

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.

  14. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling.

    PubMed

    Abdelrahman, Mostafa; Abdel-Motaal, Fatma; El-Sayed, Magdi; Jogaiah, Sudisha; Shigyo, Masayoshi; Ito, Shin-ichi; Tran, Lam-Son Phan

    2016-05-01

    Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC. PMID:26993243

  15. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    PubMed

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions. PMID:27542476

  16. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    SciTech Connect

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada; Quaroni, Andrea; Autore, Giuseppina; Severino, Lorella; Marzocco, Stefania

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  17. Oxidative Stress Mediated Cytotoxicity of Glycated Albumin: Comparative Analysis of Glycation by Glucose Metabolites.

    PubMed

    Khan, Mohd Shahnawaz; Tabrez, Shams; Rabbani, Nayyar; Shah, Aaliya

    2015-11-01

    The non-enzymatic reaction between reducing sugars and proteins has received increased attention in nutritional and medical research recently. In the current manuscript, effect of glycation in structural changes of human serum albumin (HSA) by the metabolites of glucose such as glyoxal, methylglyoxal and glyceraldehyde was studied using different spectroscopy techniques. Glycation of HSA was monitored by following advanced glycation end-products (AGEs) fluorescence changes, HSA intrinsic fluorescence measurement, extrinsic fluorescence using 8-analino 1-nephthlene sulfonic acid (ANS) dye, and circular dichroism (CD) studies. AGEs were formed within 7 days of incubation with glyoxal, methylglyoxal and glyceraldehyde. However, methylglyoxal induced significant structural changes in HSA compared with glyoxal and glyceraldehydes. Moreover, ANS binding to native and glycated-HSA showed difference in binding pattern of these metabolites to HSA. The CD spectrum revealed changes in the secondary structure of HSA upon glycation when compared to native HSA. Furthermore, the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay established the cytotoxicity of the glycated- HSA towards human liver carcinoma (HepG2) cell lines via the production of reactive oxygen species. PMID:26410776

  18. Use of radiolabeled acetate to evaluate the rate of clearance of cerebral oxidative metabolites

    SciTech Connect

    Lear, J.L.; Kasliwal, R.; Duryea, R.A.

    1994-05-01

    Radiolabel derived from glucose (GLC) has been shown to have different cerebral retention kinetics than radiolabel derived from deoxyglucose (DG). In particular, activated structures with high metabolic rates have more rapid loss of GLC-derived radiolabel than DG-derived radiolabel. Because GLC-derived radiolabel can be lost from the brain glycolytically through lactate or oxidatively through CO{sub 2}, the cause of the difference between GLC and FDG is uncertain. We investigated the isolated oxidative pathway using radiolabeled acetate, which is only metabolized through the Krebs cycle. Male albino rats were anesthetized with halothane and femoral vein and artery catheters were placed. The rats were allowed to awaken for two hours prior to the studies. 100 uCi of {sup 14}C-acetate was administered as a 30 second IV infusion to each rat. Arterial samples were obtained at regular intervals. Groups of rats were killed at 5, 10, 15, 30, and 60 minutes. Brains were rapidly removed, sectioned, and used to produce autoradiograms. The extracted and retained radiolabel was calculated as the brain concentration at time of death divided by the integral of the arterial tracer concentration. No detectable loss of radiolabel was found over the initial 10 minutes. Thereafter the rate of loss gradually increased reaching a maximum of 1.2% per minute by 60 minutes. This corresponds to a k4 rate constant of 0.012 min{sup -1}. The rate of loss of oxidative metabolites from rat brain was found to be very slow. This probably results from exchange of radiolabel with amino acid pools as the tracer is metabolized through the Krebs cycle. Therefore in conditions were glycolysis is increased out of proportion to oxidation and cerebral lactate concentration rises, radiolabel loss through lactate efflux can be a substantial fraction of overall loss.

  19. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol.

    PubMed

    Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent

    2016-08-01

    The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices. PMID:27161374

  20. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers.

    PubMed

    Li, Zhaoping; Henning, Susanne M; Lee, Ru-Po; Lu, Qing-Yi; Summanen, Paula H; Thames, Gail; Corbett, Karen; Downes, Julia; Tseng, Chi-Hong; Finegold, Sydney M; Heber, David

    2015-08-01

    The health benefits of pomegranate (POM) consumption are attributed to ellagitannins and their metabolites, formed and absorbed in the intestine by the microbiota. In this study twenty healthy participants consumed 1000 mg of POM extract daily for four weeks. Based on urinary and fecal content of the POM metabolite urolithin A (UA), we observed three distinct groups: (1) individuals with no baseline UA presence but induction of UA formation by POM extract consumption (n = 9); (2) baseline UA formation which was enhanced by POM extract consumption (N = 5) and (3) no baseline UA production, which was not inducible (N = 6). Compared to baseline the phylum Actinobacteria was increased and Firmicutes decreased significantly in individuals forming UA (producers). Verrucomicrobia (Akkermansia muciniphila) was 33 and 47-fold higher in stool samples of UA producers compared to non-producers at baseline and after 4 weeks, respectively. In UA producers, the genera Butyrivibrio, Enterobacter, Escherichia, Lactobacillus, Prevotella, Serratia and Veillonella were increased and Collinsella decreased significantly at week 4 compared to baseline. The consumption of pomegranate resulted in the formation of its metabolites in some but not all participants. POM extract consumption may induce health benefits secondary to changes in the microbiota. PMID:26189645

  1. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    SciTech Connect

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei Tsai, F.-J.

    2009-01-23

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI{sub 50}) concentration of 2.35 {mu}M. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  2. Suppression of store overload-induced calcium release by hydroxylated metabolites of carvedilol.

    PubMed

    Malig, Thomas; Xiao, Zhichao; Chen, S R Wayne; Back, Thomas G

    2016-01-01

    Carvedilol is a drug widely used in the treatment of heart failure and associated cardiac arrhythmias. A unique action of carvedilol is its suppression of store overload-induced calcium release (SOICR) through the cardiac ryanodine receptor (RyR2), which can trigger ventricular arrhythmias. Since the effects of carvedilol metabolites on SOICR have not yet been investigated, three carvedilol metabolites hydroxylated at the 3-, 4' and 5'-positions were synthesized and assayed for SOICR inhibition in mutant HEK 293 cells expressing the RyR2 mutant R4496C. This cell line is especially prone to SOICR and calcium release through the defective RyR2 channel was measured with a calcium-sensitive fluorescent dye. These results revealed that the 3- and 4'-hydroxy derivatives are slightly more effective than carvedilol in suppressing SOICR, while the 5'-analog proved slightly less active. Metabolic deactivation of carvedilol via these hydroxylation pathways is therefore insignificant. PMID:26584883

  3. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    PubMed

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist. PMID:26675874

  4. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    PubMed Central

    Madden, Jill A.; Hoyer, Patricia B.; Devine, Patrick J.; Keating, Aileen F.

    2014-01-01

    The finite ovarian follicle reserve can be negatively impacted by chemical exposures including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. PMID:24642057

  5. Inducible nitric oxide synthase and inflammation.

    PubMed

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  6. Oxidative DNA damage by an N-hydroxy metabolite of the mutagenic compound formed from norharman and aniline.

    PubMed

    Ohnishi, S; Murata, M; Oikawa, S; Totsuka, Y; Takamura, T; Wakabayashi, K; Kawanishi, S

    2001-07-25

    Norharman (9H-pyrido[3,4-b]indole), which is a heterocyclic amine included in cigarette smoke or cooked foodstuffs, is not mutagenic itself. However, norharman reacts with non-mutagenic aniline to form mutagenic aminophenylnorharman (APNH), of which DNA adducts formation and hepatocarcinogenic potential are pointed out. We investigated whether N-OH-APNH, an N-hydroxy metabolite of APNH, can cause oxidative DNA damage or not, using 32P-labeled DNA fragments. N-OH-APNH caused Cu(II)-mediated DNA damage. When an endogenous reductant, beta-nicotinamide adenine dinucleotide (NADH) was added, the DNA damage was greatly enhanced. Catalase and a Cu(I)-specific chelator inhibited DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). Typical -*OH scavenger did not inhibit DNA damage. These results suggest that the main reactive species are probably copper-hydroperoxo complexes with DNA. We also measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation by N-OH-APNH in the presence of Cu(II), using an electrochemical detector coupled to a high-pressure liquid chromatograph. Addition of NADH greatly enhanced 8-oxodG formation. UV-VIS spectra and mass spectra suggested that N-OH-APNH was autoxidized to nitrosophenylnorharman (NO-PNH). We speculated that NO-PNH was reduced by NADH. Cu(II) facilitated the redox cycle. In the presence of NADH and Cu(II), very low concentrations of N-OH-APNH could induce DNA damage via redox reactions. We conclude that oxidative DNA damage, in addition to DNA adduct formation, may play an important role in the expression of genotoxicity of APNH. PMID:11423346

  7. An integrated approach for profiling oxidative metabolites and glutathione adducts using liquid chromatography coupled with ultraviolet detection and triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Chen, Guiying; Cheng, Zhongzhe; Zhang, Kerong; Jiang, Hongliang; Zhu, Mingshe

    2016-09-10

    The use of liquid chromatography (LC) coupled with triple quadrupole linear ion trap (Qtrap) mass spectrometry (MS) for both quantitative and qualitative analysis in drug metabolism and pharmacokinetic studies is of great interest. Here, a new Qtrap-based analytical methodology for simultaneous detection, structural characterization and semi-quantitation of in vitro oxidative metabolites and glutathione trapped reactive metabolites was reported. In the current study, combined multiple ion monitoring and multiple reaction monitoring were served as surveying scans to trigger product ion spectral acquisition of oxidative metabolites and glutathione adduct, respectively. Then, detection of metabolites and recovery of their MS/MS spectra were accomplished using multiple data mining approaches. Additionally, on-line ultraviolet (UV) detection was employed to determine relative concentrations of major metabolites. Analyses of metabolites of clozapine and nomifensine in rat liver microsomes not only revealed multiple oxidative metabolites and glutathione adducts, but also identified their major oxidative metabolism and bioactivation pathways. The results demonstrated that the LC/UV/MS method enabled Qtrap to perform the comprehensive profiling of oxidative metabolites and glutathione adducts in vitro. PMID:27497649

  8. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  9. Bacterial metabolism of alpha-pinene: pathway from alpha-pinene oxide to acyclic metabolites in Nocardia sp. strain P18.3.

    PubMed Central

    Griffiths, E T; Bociek, S M; Harries, P C; Jeffcoat, R; Sissons, D J; Trudgill, P W

    1987-01-01

    Over 20 gram-positive bacteria were isolated by elective culture with (+/-)-alpha-pinene as the sole carbon source. One of these strains, Nocardia sp. strain P18.3, was selected for detailed study. alpha-Pinene-grown cells oxidized, without lag, alpha-pinene, alpha-pinene oxide (epoxide), and the cis and trans isomers of 2-methyl-5-isopropylhexa-2,5-dienal. No other tested terpene was oxidized at a significant rate. alpha-Pinene was not metabolized by cell extracts in the presence or absence of NADH or NADPH. Cell extracts catalyzed a rapid decyclization of alpha-pinene oxide, in the absence of added cofactors, with the formation of cis-2-methyl-5-isopropylhexa-2,5-dienal. Further oxidation of the aldehyde to the corresponding acid occurred in the presence of NAD. Both activities were induced by growth with alpha-pinene. A rapid, nonenzymic transformation of the cis aldehyde into the trans isomer occurred in glycine buffer. The trans isomer was also a substrate for the NAD-linked aldehyde dehydrogenase. The distribution of the alpha-pinene oxide lyase in alpha-pinene-utilizing Pseudomonas spp. was also investigated and was compatible with the two alternative ring-cleavage sequences that have been proposed on the basis of accumulated metabolites. PMID:3667521

  10. Oxidative stress/reactive metabolite gene expression signature in rat liver detects idiosyncratic hepatotoxicants.

    PubMed

    Leone, Angelique; Nie, Alex; Brandon Parker, J; Sawant, Sharmilee; Piechta, Leigh-Anne; Kelley, Michael F; Mark Kao, L; Jim Proctor, S; Verheyen, Geert; Johnson, Mark D; Lord, Peter G; McMillian, Michael K

    2014-03-15

    Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit to the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds-chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates. PMID:24486436

  11. Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133.

    PubMed

    Hadibarata, Tony; Tachibana, Sanro; Askari, Muhamad

    2011-03-01

    Phenanthrene degradation by Polyporus sp. S133, a new phenanthrene-degrading strain, was investigated in this work. The analysis of degradation was performed by calculation of the remaining phenanthrene by gas chromatography-mass spectrometry. When cells were grown in phenanthrene culture after 92 h, all but 200 and 250 mg/l of the phenanthrene had been degraded. New metabolic pathways of phenanthrene and a better understanding of the phenoloxidases and dioxygenase mechanism involved in degradation of phenanthrene were explored in this research. The mechanism of degradation was determined through identification of the several metabolites; 9,10-phenanthrenequinone, 2,2'-diphenic acid, salicylic acid, and catechol. 9,10-Oxidation and ring cleavage to give 9,10-phenanthrenequinone is the major fate of phenanthrene in ligninolytic Polyporus sp. S133. The identification of 2,2'-diphenic acid in culture extracts indicates that phenanthrene was initially attacked through dioxigenation at C9 and C10 to give cis-9,10-dihydrodiol. Dehydrogenation of phenanthrene-cis-9,10-dihydrodiol to produce the corresponding diol, followed by ortho-cleavage of the oxygenated ring, produced 2,2'-diphenic acid. Several enzymes (manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase) produced by Polyporus sp. S133 was detected during the incubation. The highest level of activity was shown at 92 h of culture. PMID:21464602

  12. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence.

    PubMed

    Rajniak, Jakub; Barco, Brenden; Clay, Nicole K; Sattely, Elizabeth S

    2015-09-17

    Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence. PMID:26352477

  13. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells.

    PubMed

    Maeda, Hayato; Kanno, Shogo; Kodate, Mei; Hosokawa, Masashi; Miyashita, Kazuo

    2015-08-01

    Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group.  In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells. PMID:26248075

  14. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells

    PubMed Central

    Maeda, Hayato; Kanno, Shogo; Kodate, Mei; Hosokawa, Masashi; Miyashita, Kazuo

    2015-01-01

    Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group. In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells. PMID:26248075

  15. Role of arachidonic acid lipoxygenase metabolites in acetylcholine-induced relaxations of mouse arteries.

    PubMed

    Gauthier, Kathryn M; Goldman, Daniel H; Aggarwal, Nitin T; Chawengsub, Yuttana; Falck, J R; Campbell, William B

    2011-03-01

    Arachidonic acid (AA) metabolites function as EDHFs in arteries of many species. They mediate cyclooxygenase (COX)- and nitric oxide (NO)-independent relaxations to acetylcholine (ACh). However, the role of AA metabolites as relaxing factors in mouse arteries remains incompletely defined. ACh caused concentration-dependent relaxations of the mouse thoracic and abdominal aorta and carotid, femoral, and mesentery arteries (maximal relaxation: 57 ± 4%, 72 ± 4%, 82 ± 3%, 80 ± 3%, and 85 ± 3%, respectively). The NO synthase inhibitor nitro-L-arginine (L-NA; 30 μM) blocked relaxations in the thoracic aorta, and L-NA plus the COX inhibitor indomethacin (10 μM) inhibited relaxations in the abdominal aorta and carotid, femoral, and mesenteric arteries (maximal relaxation: 31 ± 10%, 33 ± 5%, 41 ± 8%, and 73 ± 3%, respectively). In mesenteric arteries, NO- and COX-independent relaxations to ACh were inhibited by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 10 μM) and BW-755C (200 μM), the K(+) channel inhibitor apamin (1 μM), and 60 mM KCl and eliminated by endothelium removal. They were not altered by the cytochrome P-450 inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (20 μM) or the epoxyeicosatrienoic acid antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 μM). AA relaxations were attenuated by NDGA or apamin and eliminated by 60 mM KCl. Reverse-phase HPLC analysis revealed arterial [(14)C]AA metabolites that comigrated with prostaglandins, trihydroxyeicosatrienoic acids (THETAs), hydroxyepoxyeicosatrienoic acids (HEETAs), and hydroxyeicosatetraenoic acids (HETEs). Epoxyeicosatrienoic acids were not observed. Mass spectrometry confirmed the identity of 6-keto-PGF(1α), PGE(2), 12-HETE, 15-HETE, HEETAs, 11,12,15-THETA, and 11,14,15-THETA. AA metabolism was blocked by NDGA and endothelium removal. 11(R),12(S),15(S)-THETA relaxations (maximal relaxation: 73 ± 3%) were endothelium independent and blocked by 60 mM KCl. Western

  16. Skin Metabolite, Farnesyl Pyrophosphate, Regulates Epidermal Response to Inflammation, Oxidative Stress, and Migration.

    PubMed

    Pastar, Irena; Stojadinovic, Olivera; Sawaya, Andrew P; Stone, Rivka C; Lindley, Linsey E; Ojeh, Nkemcho; Vukelic, Sasa; Samuels, Herbert H; Tomic-Canic, Marjana

    2016-11-01

    Skin produces cholesterol and a wide array of sterols and non-sterol mevalonate metabolites, including isoprenoid derivative farnesyl pyrophosphate (FPP). To characterize FPP action in epidermis, we generated transcriptional profiles of primary human keratinocytes treated with zaragozic acid (ZGA), a squalene synthase inhibitor that blocks conversion of FPP to squalene resulting in endogenous accumulation of FPP. The elevated levels of intracellular FPP resulted in regulation of epidermal differentiation and adherens junction signaling, insulin growth factor (IGF) signaling, oxidative stress response and interferon (IFN) signaling. Immunosuppressive properties of FPP were evidenced by STAT-1 downregulation and prominent suppression of its nuclear translocation by IFNγ. Furthermore, FPP profoundly downregulated genes involved in epidermal differentiation of keratinocytes in vitro and in human skin ex vivo. Elevated levels of FPP resulted in induction of cytoprotective transcriptional factor Nrf2 and its target genes. We have previously shown that FPP functions as ligand for the glucocorticoid receptor (GR), one of the major regulator of epidermal homeostasis. Comparative microarray analyses show significant but not complete overlap between FPP and glucocorticoid regulated genes, suggesting that FPP may have wider transcriptional impact. This was further supported by co-transfection and chromatin immunoprecipitation experiments where we show that upon binding to GR, FPP recruits β-catenin and, unlike glucocorticoids, recruits co-repressor GRIP1 to suppress keratin 6 gene. These findings have many clinical implications related to epidermal lipid metabolism, response to glucocorticoid therapy as well as pleiotropic effects of cholesterol lowering therapeutics, statins. J. Cell. Physiol. 231: 2452-2463, 2016. © 2016 Wiley Periodicals, Inc. PMID:26916741

  17. Oxidative stress/reactive metabolite gene expression signature in rat liver detects idiosyncratic hepatotoxicants

    SciTech Connect

    Leone, Angelique; Nie, Alex; Brandon Parker, J.; Sawant, Sharmilee; Piechta, Leigh-Anne; Kelley, Michael F. Mark Kao, L.; Jim Proctor, S.; Verheyen, Geert; Johnson, Mark D.; Lord, Peter G.; McMillian, Michael K.

    2014-03-15

    Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit to the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds—chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates. - Highlights: • 28 of 97 drugs gave a positive OS/RM gene expression signature in rat liver. • The specificity of the signature for human idiosyncratic hepatotoxicants was 98%. • The sensitivity of the signature for human idiosyncratic hepatotoxicants was 75%. • The signature can help eliminate hepatotoxicants from drug development.

  18. The benzene metabolite para-benzoquinone is genotoxic in human, phorbol-12-acetate-13-myristate induced, peripheral blood mononuclear cells at low concentrations.

    PubMed

    Westphal, Götz Alexander; Bünger, Jürgen; Lichey, Nadine; Taeger, Dirk; Mönnich, Angelika; Hallier, Ernst

    2009-07-01

    Benzene is one of the most prominent occupational and environmental pollutants. The substance is a proven human carcinogen that induces hematologic malignancies in humans, probably at even low doses. Yet knowledge of the mechanisms leading to benzene-induced carcinogenesis is still incomplete. Benzene itself is not genotoxic. The generation of carcinogenic metabolites involves the production of oxidized intermediates such as catechol, hydroquinone and para-benzoquinone (p-BQ) in the liver. Further activation to the ultimate carcinogenic intermediates is most probably catalyzed by myeloperoxidase (MPO). Yet the products of the MPO pathway have not been identified. If an oxidized benzene metabolite such as p-BQ was actually the precursor for the ultimate carcinogenic benzene metabolite and further activation proceeds via MPO mediated reactions, it should be possible to activate p-BQ to a genotoxic compound in vitro. We tested this hypothesis with phorbol-12-acetate-13-myristate (PMA) activated peripheral blood cells exposed to p-BQ, using the cytokinesis-block micronucleus test. Addition of 20-28 ng/ml PMA caused a significant increase of micronuclei at low and non-cytotoxic p-BQ concentrations between 0.04 and 0.2 microg/ml (0.37-1.85 microM). Thus with PMA or p-BQ alone no reproducible elevation of micronuclei was seen up to toxic concentrations. PMA and p-BQ induce micronuclei when administered jointly. Our results add further support to the hypothesis that MPO is a key enzyme in the activation of benzene. PMID:19212761

  19. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  20. Mass Spectrometry-Based Metabolomics Identifies Longitudinal Urinary Metabolite Profiles Predictive of Radiation-Induced Cancer.

    PubMed

    Cook, John A; Chandramouli, Gadisetti V R; Anver, Miriam R; Sowers, Anastasia L; Thetford, Angela; Krausz, Kristopher W; Gonzalez, Frank J; Mitchell, James B; Patterson, Andrew D

    2016-03-15

    Nonlethal exposure to ionizing radiation (IR) is a public concern due to its known carcinogenic effects. Although latency periods for IR-induced neoplasms are relatively long, the ability to detect cancer as early as possible is highly advantageous for effective therapeutic intervention. Therefore, we hypothesized that metabolites in the urine from mice exposed to total body radiation (TBI) would predict for the presence of cancer before a palpable mass was detected. In this study, we exposed mice to 0 or 5.4 Gy TBI, collected urine samples periodically over 1 year, and assayed urine metabolites by using mass spectrometry. Longitudinal data analysis within the first year post-TBI revealed that cancers, including hematopoietic, solid, and benign neoplasms, could be distinguished by unique urinary signatures as early as 3 months post-TBI. Furthermore, a distinction among different types of malignancies could be clearly delineated as early as 3 months post-TBI for hematopoietic neoplasms, 6 months for solid neoplasms, and by 1 year for benign neoplasms. Moreover, the feature profile for radiation-exposed mice 6 months post-TBI was found to be similar to nonirradiated control mice at 18 months, suggesting that TBI accelerates aging. These results demonstrate that urine feature profiles following TBI can identify cancers in mice prior to macroscopic detection, with important implications for the early diagnosis and treatment. PMID:26880804

  1. Methotrexate-induced myelopathy responsive to substitution of multiple folate metabolites.

    PubMed

    Ackermann, R; Semmler, A; Maurer, G D; Hattingen, E; Fornoff, F; Steinbach, J P; Linnebank, M

    2010-05-01

    Methotrexate (MTX)-associated myelopathy is a rare but serious subacute complication of MTX-based chemotherapy. We report the case of a woman with breast cancer and meningeal carcinomatosis who developed severe progressive myelopathy after four cycles of intrathecal MTX administration. We substituted high doses of the key metabolites of the methyl-transfer pathway: S-adenosylmethionine (SAM), 200 mg three times daily i.v.; folinate, 20 mg four times daily i.v.; cyanocobalamin, 100 microg once daily i.v.; and methionine, 5 g daily p.o. The patient's paraparesis improved rapidly thereafter, and magnetic resonance (MR) imaging showed resolution of the intramedullary lesions. Genetic analyses revealed homozygosity for the A allele of methylenetetrahydrofolate reductase (MTHFR) c.1298A>C (p.E429A), whereas other genetic variants of folate/methionine metabolism associated with MTX neurotoxicity were not present. Substitution with multiple folate metabolites may be a promising strategy for the treatment of MTX-induced neurotoxicity. PMID:19821069

  2. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice

    PubMed Central

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-01-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes. PMID:26632783

  3. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice.

    PubMed

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-11-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes. PMID:26632783

  4. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    EPA Science Inventory

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  5. The monophenolic metabolites of the herbicide 2,6-dichlorobenzonitrile in animals as uncouplers of oxidative phosphorylation

    PubMed Central

    Wit, J. G.; Van Genderen, H.

    1966-01-01

    1. Both monophenolic metabolites of 2,6-dichlorobenzonitrile (2,6-dichloro-3-hydroxybenzonitrile and its 4-hydroxy analogue) added to starved yeast cells incubated with a limited quantity of glucose cause a significant rise in oxygen consumption of the cells. 2. The same compounds induce adenosine-triphosphatase activity in isolated intact rat-liver mitochondria. 3. The possible role of the hydroxylation of 2,6-dichlorobenzonitrile in mammals in relation to hepatic injury is discussed. PMID:16742448

  6. An Unusual Stress Metabolite from a Hydrothermal Vent Fungus Aspergillus sp. WU 243 Induced by Cobalt.

    PubMed

    Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin

    2016-01-01

    A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao hydrothermal vents off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from hydrothermal vent fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the hydrothermal vent environment. PMID:26805789

  7. An Unusual Stress Metabolite from a Hydrothermal Vent Fungus Aspergillus sp. WU 243 Induced by Cobalt.

    PubMed

    Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin

    2016-01-01

    A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao hydrothermal vents off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from hydrothermal vent fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the hydrothermal vent environment. PMID:26784166

  8. The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction?

    PubMed

    Hammad, Noureddine; Rosas-Lemus, Monica; Uribe-Carvajal, Salvador; Rigoulet, Michel; Devin, Anne

    2016-08-01

    The Crabtree and Warburg effects are two well-known deviations of cell energy metabolism that will be described herein. A number of hypotheses have been formulated regarding the molecular mechanisms leading to these cellular energy metabolism deviations. In this review, we will focus on the emerging notion that metabolite-induced regulations participate in the induction of these effects. All throughout this review, it should be kept in mind that no regulatory mechanism is exclusive and that it may vary in cancer cells owing to different cell types or oncogenic background. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27066942

  9. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.

    PubMed

    Bennett, Brian J; de Aguiar Vallim, Thomas Q; Wang, Zeneng; Shih, Diana M; Meng, Yonghong; Gregory, Jill; Allayee, Hooman; Lee, Richard; Graham, Mark; Crooke, Rosanne; Edwards, Peter A; Hazen, Stanley L; Lusis, Aldons J

    2013-01-01

    Circulating trimethylamine-N-oxide (TMAO) levels are strongly associated with atherosclerosis. We now examine genetic, dietary, and hormonal factors regulating TMAO levels. We demonstrate that two flavin mono-oxygenase family members, FMO1 and FMO3, oxidize trimethylamine (TMA), derived from gut flora metabolism of choline, to TMAO. Further, we show that FMO3 exhibits 10-fold higher specific activity than FMO1. FMO3 overexpression in mice significantly increases plasma TMAO levels while silencing FMO3 decreases TMAO levels. In both humans and mice, hepatic FMO3 expression is reduced in males compared to females. In mice, this reduction in FMO3 expression is due primarily to downregulation by androgens. FMO3 expression is induced by dietary bile acids by a mechanism that involves the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor. Analysis of natural genetic variation among inbred strains of mice indicates that FMO3 and TMAO are significantly correlated, and TMAO levels explain 11% of the variation in atherosclerosis. PMID:23312283

  10. 5-Hydroxyquinoline-2-Carboxylic Acid, a Dead-End Metabolite from the Bacterial Oxidation of 5-Aminonaphthalene-2-Sulfonic Acid

    PubMed Central

    Nörtemann, Bernd; Glässer, Andrea; Machinek, Reinhard; Remberg, Gerd; Knackmuss, Hans-Joachim

    1993-01-01

    5-Aminonaphthalene-2-sulfonate (5A2NS) is converted by strain BN6 into 5-hydroxyquinoline-2-carboxylate (5H2QC). The authenticity of this new compound is confirmed by nuclear magnetic resonance and mass spectrometry. Its formation is explained by a spontaneous cyclization of the hypothetical metabolite 6′-amino-2′-hydroxybenzalpyruvate. The formation of 5H2QC as a dead-end product of 5A2NS prevents NADH regeneration so that 5A2NS oxidation is limited by the internal NADH pool. PMID:16348967

  11. Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites.

    PubMed

    Durmus, Naside Gozde; Taylor, Erik N; Kummer, Kim M; Webster, Thomas J

    2013-10-25

    Antibiotic resistance and the lack of new antibacterial agents cause major challenges for the treatment of infections. Here, we describe a simple, broad-spectrum, and low-cost dual-sided approach which uses superparamagnetic iron oxide particles (SPION) in combination with fructose metabolites as an alternative to existing antibacterial strategies. This strategy offers further improved efficacy of SPION against persistent gram-positive and gram-negative bacteria infections by manipulating the biofilm metabolic microenvironment and outperforms vancomycin (the antibiotic of last resort), creating a new nanotechnology-driven approach. PMID:23963848

  12. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  13. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  14. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-03-01

    The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes

  15. Asymmetric dimethylarginine (ADMA), nitric oxide metabolite, and estradiol levels in serum and peritoneal fluid in women with endometriosis

    PubMed Central

    Kianpour, Maryam; Nematbakhsh, Mehdi; Ahmadi, Sayad Mehdi

    2015-01-01

    Background: Increase in nitric oxide (NO) concentration accompanied by alteration in peritoneal immune defense reactions is involved in the pathogenesis of endometriosis. Asymmetric dimethylarginine is an endogenous competitive inhibitor of NO synthase. This study was designed to compare NO metabolite (nitrite), asymmetric dimethylarginine, and estradiol concentrations in serum and peritoneal fluid (PF) of patients with and without endometriosis. Materials and Methods: Subjects were assigned to two groups based on their laparoscopic results. The groups consisted of women with and without endometriosis (90 and 89 participants, respectively). The serum and peritoneal levels of nitrite (stable NO metabolite), asymmetric dimethylarginine, and estradiol were measured using enzyme-linked immunosorbent assay (ELISA) kits. These parameters were analyzed and compared between the groups statistically using SPSS software version 16. Results: Both nitrite and asymmetric dimethylarginine levels were significantly higher in the serum of the participants from both groups than those in the PF group (P < 0.05). However, no significant difference in the asymmetric dimethylarginine level was detected between the two groups. In addition, the PF level of nitrite increased significantly in patients with endometriosis when compared with non-endometriosis subjects (P < 0.05). The PF levels of estradiol in both groups were significantly higher than the serum levels of estradiol (P < 0.05). Conclusions: The NO metabolite level of PF implies the possible role of NO in the pathogenesis of endometriosis. PMID:26257805

  16. Online Monitoring Oxidative Products and Metabolites of Nicotine by Free Radicals Generation with Fenton Reaction in Tandem Mass Spectrometry

    PubMed Central

    Liang, Shih-Shin; Shiue, Yow-Ling; Kuo, Chao-Jen; Liao, Wei-Ting; Tsai, Eing-Mei

    2013-01-01

    In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3′-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe2+) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3′-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N′-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner. PMID:23983622

  17. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2.

    PubMed

    Xue, Huiting; Xie, Wenyan; Jiang, Zhihui; Wang, Meng; Wang, Jian; Zhao, Hongqiong; Zhang, Xiaoying

    2016-10-01

    1. Acetaminophen (APAP) overdose leads to severe hepatotoxicity. 3,4-dihydroxyphenylacetic acid (DOPAC) is a scarcely studied microbiota-derived metabolite of quercetin. The aim of this study was to determine the protective effect of DOPAC against APAP-induced liver injury. 2. Mice were treated intragastrically with DOPAC (10, 20 or 50 mg/kg) for 3 days before APAP (300 mg/kg) injection. APAP alone caused increase in serum aminotransferase levels and changes in hepatic histopathology. APAP also promoted oxidative stress by increasing lipid peroxidation and decreasing anti-oxidant enzyme activities. These events led to hepatocellular necrosis and reduced liver function. DOPAC increased nuclear factor erythroid 2-related factor 2 (Nrf-2) translocation to the nucleus and enhanced the expression of phase II enzymes and anti-oxidant enzymes, and thereby reduced APAP hepatotoxicity and enhanced anti-oxidant ability. 3. Our data provide evidence that DOPAC protected the liver against APAP-induced injury, which is involved in Nrf-2 activation, implying that DOPAC can be considered as a potential natural hepatoprotective agent. PMID:26931552

  18. Nitric oxide-induced calcium release

    PubMed Central

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1. PMID:23247505

  19. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study.

    PubMed

    Awasthi, Bhanu Priya; Kathuria, Manoj; Pant, Garima; Kumari, Neema; Mitra, Kalyan

    2016-08-01

    Naphthoquinones are known to exhibit a broad range of biological activities against microbes, cancer and parasitic diseases and have been widely used in Indian traditional medicine. Plumbagin is a plant-derived naphthoquinone metabolite (5-hydroxy-2-methyl-1,4-naphthoquinone) reported to inhibit trypanothione reductase, the principal enzyme and a validated drug target involved in detoxification of oxidative stress in Leishmania. Here, we report the mechanistic aspects of cell death induced by plumbagin including physiological effects in the promastigote form and ultrastructural alterations in both promastigote and amastigote forms of Leishmania donovani which till now remained largely unknown. Our observations show that oxidative stress induced by plumbagin resulted in depolarization of the mitochondrial membrane, depletion in ATP levels, elevation of cytosolic calcium, increase in caspase 3/7-like protease activity and lipid peroxidation in promastigotes. Apoptosis-like cell death induction post plumbagin treatment was confirmed by biochemical assays like Annexin V/FITC staining, TUNEL as well as morphological and ultrastructural studies. These findings collectively highlight the mode of action and importance of oxidative stress inducing agents in effectively killing both forms of the Leishmania parasite and opens up the possibility of exploring plumbagin and its derivatives as promising candidates in the chemotherapy of Leishmaniasis. PMID:27315817

  20. CYP epoxygenase metabolites of docosahexaenoic acid protect HL-1 cardiac cells against LPS-induced cytotoxicity through SIRT1

    PubMed Central

    Samokhvalov, V; Jamieson, K L; Vriend, J; Quan, S; Seubert, J M

    2015-01-01

    Bacterial LPS is an environmental toxin capable of promoting various cardiac complications. Current evidence suggests that LPS-induced myocardial dysfunction emerges as a consequence of compromised quality of cardiac mitochondria. Docosahexaenoic acid (DHA, 22:6n3) is an n-3 polyunsaturated fatty acid (PUFA), which produces a broad spectrum of intrinsic physiological effects including regulation of cell survival and death mechanisms. Although, numerous studies revealed fundamentally beneficial effects of DHA on cardiovascular system, it remains unknown whether these effects were produced by DHA or one of its possibly more potent metabolites. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), produce more potent biological activity compared to its precursor DHA. In this study, we investigated whether DHA and its metabolite 19,20-EDP could protect HL-1 cardiac cells against LPS-induced cytotoxicity. We provide evidence that exogenously added or DHA-derived EDPs promote mitochondrial biogenesis and function in HL-1 cardiac cells. Our results illustrate the CYP epoxygenase metabolite of DHA, 19,20-EDP, confers extensive protection to HL-1 cardiac cells against LPS-induced cytotoxicity via activation of SIRT1. PMID:27182450

  1. Drought-Induced Responses of Physiology, Metabolites, and PR Proteins in Triticum aestivum.

    PubMed

    Gregorová, Zuzana; Kováčik, Jozef; Klejdus, Bořivoj; Maglovski, Marína; Kuna, Roman; Hauptvogel, Pavol; Matušíková, Ildikó

    2015-09-23

    The impact of severe drought stress (13% soil moisture) on the physiological responses, metabolic profile, and pathogenesis-related (PR) proteins in wheat above- and below-ground biomass after 20 days of treatment was studied. Drought depleted growth, assimilation pigments, and majority of free amino acids in the shoots (but proline increased considerably, +160%). On the contrary, root growth parameters were elevated, and free amino acids did not decrease, indicating investment of metabolites into the growth of roots under water deficiency. Mineral nutrients were only slightly influenced. Profiling of pathogenesis-related (PR) proteins revealed that chitinases (EC 3.2.1.14) and glucanases (EC 3.2.1.39) were activated in wheat by drought. Individual isoforms and their activity were rather stimulated under drought, especially in shoots. The expression of selected genes is in agreement with enzymatic data and suggests an organ (tissue) specific- and opposing behavior of these two types of defense components in drought-stressed wheat. Metabolic analyses at the level of phenolics showed an increase in the free and bound fraction of phenolic acids almost exclusively in the shoots and flavonoid isoorientin increased considerably: protective action against oxidative stress and dehydration of the leaves seems to be the main reason for this finding. The role of PR proteins and phenolics in drought-stressed tissue is discussed. PMID:26330002

  2. Effects of trimetazidine in ethanol- and acetic acid-induced colitis: oxidant/anti-oxidant status.

    PubMed

    Girgin; Karaoglu; Tüzün; Erkus; Ozütemiz; Dinçer; Batur; Tanyalçin

    1999-11-01

    There is overwhelming evidence in favour of a significant role of reactive oxygen metabolites (ROM) in the pathophysiology of inflammatory bowel disease (IBD) in man and in experimental animal models. This study was undertaken to investigate the possible protective effects of pretreatment with trimetazidine (TMZ) on the oxidant-anti-oxidant balance in ethanol- and acetic acid-induced colonic damage in rats. TMZ was chosen because of its various cytoprotective features (preserving cellular ATP levels, limiting intracellular acidosis and limiting inorganic phosphate, Na(+) and Ca(2+) accumulation) and anti-oxy characteristics which were previously reported. A total of 80 rats were randomized into eight major groups each consisting of 10 animals. Animals in groups 1, 2 and 3 served as models of ethanol-induced colitis (0.25 ml of 30% (v/v) ethanol), while group 4 served as their control. Animals in groups 5, 6 and 7 served as models of acetic acid-induced colitis (1 ml of 4% (v/v) acetic acid), while group 8 served as their control. TMZ was administered 5 mg/kg by intrarectal (i.r.) and intraperitoneal (i.p.) routes to groups 1, 2, 5 and 6. Intraperitoneal administration of TMZ was used in order to evaluate its systemic effect while i.r. administration was used to determine its local effect. After decapitation, colon mucosa samples were obtained and evaluated macroscopically and microscopically. Myeloperoxidase (MPO) activities as markers for inflammation, malondialdehyde (MDA) levels as markers for oxidant stress and reduced glutathione (GSH) and oxidized glutathione (GSSG) levels as markers for anti-oxidant status were determined. Acute colitis was observed in macroscopic and microscopic evaluation in ethanol- and acetic acid-administered groups compared with controls (P = 0.000). The macroscopic and microscopic scores in colitis groups were correlated with MPO activities (r = 0.5365, P = 0.000 and r = 0.5499, P = 0.000, respectively). MDA

  3. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    PubMed

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  4. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    PubMed Central

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials. PMID:26818784

  5. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  6. In vitro glucuronidation of the antibacterial triclocarban and its oxidative metabolites.

    PubMed

    Schebb, N H; Franze, B; Maul, R; Ranganathan, A; Hammock, B D

    2012-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is widely used as an antibacterial in bar soaps. During use of these soaps, a significant portion of TCC is absorbed by humans. For the elimination from the body, glucuronidation plays a key role in both biliary and renal clearance. To investigate this metabolic pathway, we performed microsomal incubations of TCC and its hydroxylated metabolites 2'-OH-TCC, 3'-OH-TCC, and 6-OH-TCC. Using a new liquid chromatography-UV-mass spectrometry method, we could show a rapid glucuronidation for all OH-TCCs by the uridine-5'-diphosphate-glucuronosyltransferases (UGT) present in liver microsomes of humans (HLM), cynomolgus monkeys (CLM), rats (RLM), and mice (MLM). Among the tested human UGT isoforms, UGT1A7, UGT1A8, and UGT1A9 showed the highest activity for the conjugation of hydroxylated TCC metabolites followed by UGT1A1, UGT1A3, and UGT1A10. Due to this broad pattern of active UGTs, OH-TCCs can be efficiently glucuronidated in various tissues, as shown for microsomes from human kidney (HKM) and intestine (HIM). The major renal metabolites in humans, TCC-N-glucuronide and TCC-N'-glucuronide, were formed at very low conversion rates (<1%) by microsomal incubations. Low amounts of N-glucuronides were generated by HLM, HIM, and HKM, as well as by MLM and CLM, but not by RLM, according to the observed species specificity of this metabolic pathway. Among the human UGT isoforms, only UGT1A9 had activity for the N-glucuronidation of TCC. These results present an anomaly where in vivo the predominant urinary metabolites of TCC are N and N'-glucuronides, but these compounds are slowly produced in vitro. PMID:21953915

  7. In Vitro Glucuronidation of the Antibacterial Triclocarban and Its Oxidative MetabolitesS⃞

    PubMed Central

    Schebb, N. H.; Franze, B.; Maul, R.; Ranganathan, A.

    2012-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is widely used as an antibacterial in bar soaps. During use of these soaps, a significant portion of TCC is absorbed by humans. For the elimination from the body, glucuronidation plays a key role in both biliary and renal clearance. To investigate this metabolic pathway, we performed microsomal incubations of TCC and its hydroxylated metabolites 2′-OH-TCC, 3′-OH-TCC, and 6-OH-TCC. Using a new liquid chromatography-UV-mass spectrometry method, we could show a rapid glucuronidation for all OH-TCCs by the uridine-5′-diphosphate-glucuronosyltransferases (UGT) present in liver microsomes of humans (HLM), cynomolgus monkeys (CLM), rats (RLM), and mice (MLM). Among the tested human UGT isoforms, UGT1A7, UGT1A8, and UGT1A9 showed the highest activity for the conjugation of hydroxylated TCC metabolites followed by UGT1A1, UGT1A3, and UGT1A10. Due to this broad pattern of active UGTs, OH-TCCs can be efficiently glucuronidated in various tissues, as shown for microsomes from human kidney (HKM) and intestine (HIM). The major renal metabolites in humans, TCC-N-glucuronide and TCC-N′-glucuronide, were formed at very low conversion rates (<1%) by microsomal incubations. Low amounts of N-glucuronides were generated by HLM, HIM, and HKM, as well as by MLM and CLM, but not by RLM, according to the observed species specificity of this metabolic pathway. Among the human UGT isoforms, only UGT1A9 had activity for the N-glucuronidation of TCC. These results present an anomaly where in vivo the predominant urinary metabolites of TCC are N and N′-glucuronides, but these compounds are slowly produced in vitro. PMID:21953915

  8. ROLE OF H2O2-ACTIVATED TRPM2 CALCIUM CHANNEL IN OXIDANT-INDUCED ENDOTHELIAL INJURY

    PubMed Central

    Hecquet, Claudie M.; Malik, Asrar B.

    2013-01-01

    The transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated nonselective cation channel, that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen metabolites including H2O2, stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca2+ entry and the subsequent specific Ca2+-dependent cellular reactions such as endothelial hyper-permeability and apoptosis. This review summarizes recent findings on the mechanism by which oxidants induce TRPM2 activation, the role of these channels in the signaling vascular endothelial dysfunctions, and the modulation of oxidant-induced TRPM2 activation by PKCα and phospho-tyrosine phosphates L1. PMID:19350103

  9. Tissue oxidative stress induced by patulin and protective effect of crocin.

    PubMed

    Boussabbeh, Manel; Ben Salem, Intidhar; Belguesmi, Faicel; Bacha, Hassen; Abid-Essefi, Salwa

    2016-03-01

    Patulin (PAT) is a secondary toxic metabolite produced principally by Penicillium expansum. This mycotoxin is known to be teratogenic, mutagenic, immunotoxic and neurotoxic, and it has been shown to cause damage in several organs in laboratory animals. This study focuses on the prevention of experimental murine PAT-induced nephrotoxicity and hepatotoxicity. We investigate the ability of a natural product, crocin (CRO), to counteract the toxic effects of PAT. Pre-treatment of mice with CRO prevented PAT-induced oxidative damage in both liver and kidney. CRO reduced lipid peroxidation, protein oxidation and restored redox status by regulating the endogenous antioxidant enzymatic system. These data corroborate and extend findings in PAT-induced nephrotoxicity and hepatotoxicity, and further suggest that preventive effect of CRO towards other forms of PAT toxicity, including neurotoxicity, may be warranted. PMID:26584762

  10. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  11. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain

    PubMed Central

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-01-01

    Abstract The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress. PMID:26445572

  12. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    SciTech Connect

    Tetz, Lauren M.; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D.; Loch-Caruso, Rita

    2013-04-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  13. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defense

    PubMed Central

    Rajniak, Jakub; Barco, Brenden; Clay, Nicole K.; Sattely, Elizabeth S.

    2015-01-01

    SUMMARY Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, suggesting that there are numerous molecules contributing to plant fitness that have not yet been discovered1,2. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens3,4. Starting with a single pathogen-induced P4505, CYP82C2, we used a combination of untargeted metabolomics and co-expression analysis to uncover the complete biosynthetic pathway to a previously unknown Arabidopsis metabolite, 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), which harbors cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature6,7. The aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis8,9 in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defense. Arabidopsis has been the preeminent model system10,11 for studying the role of small molecules in plant innate immunity12; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defense response.13 These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defense. PMID:26352477

  14. Arachidonic acid metabolites do not mediate toluene diisocyanate-induced airway hyperresponsiveness in guinea pigs

    SciTech Connect

    Gordon, T.; Thompson, J.E.; Sheppard, D.

    1988-05-01

    Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.

  15. A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans

    PubMed Central

    Martinez, B A; Kim, H; Ray, A; Caldwell, G A; Caldwell, K A

    2015-01-01

    Gene-by-environment interactions are thought to underlie the majority of idiopathic cases of neurodegenerative disease. Recently, we reported that an environmental metabolite extracted from Streptomyces venezuelae increases ROS and damages mitochondria, leading to eventual neurodegeneration of C. elegans dopaminergic neurons. Here we link those data to idiopathic disease models that predict loss of protein handling as a component of disorder progression. We demonstrate that the bacterial metabolite leads to proteostatic disruption in multiple protein-misfolding models and has the potential to synergistically enhance the toxicity of aggregate-prone proteins. Genetically, this metabolite is epistatically regulated by loss-of-function to pink-1, the C. elegans PARK6 homolog responsible for mitochondrial maintenance and autophagy in other animal systems. In addition, the metabolite works through a genetic pathway analogous to loss-of-function in the ubiquitin proteasome system (UPS), which we find is also epistatically regulated by loss of PINK-1 homeostasis. To determine remitting counter agents, we investigated several established antioxidants and found that glutathione (GSH) can significantly protect against metabolite-induced proteostasis disruption. In addition, GSH protects against the toxicity of MG132 and can compensate for the combined loss of both pink-1 and the E3 ligase pdr-1, a Parkin homolog. In assessing the impact of this metabolite on mitochondrial maintenance, we observe that it causes fragmentation of mitochondria that is attenuated by GSH and an initial surge in PINK-1-dependent autophagy. These studies mechanistically advance our understanding of a putative environmental contributor to neurodegeneration and factors influencing in vivo neurotoxicity. PMID:26469957

  16. Unraveling oxidation-induced modifications in proteins by proteomics.

    PubMed

    Panis, Carolina

    2014-01-01

    Oxidative stress-driven modifications can occur in lipids, proteins, and DNA and form the basis of several chronic pathologies. The metabolites generated during oxidative responses consist of very reactive substances that result in oxidative damage and modulation of redox signaling as the main outcomes. Oxidative modifications occurring in proteins are poorly understood; among the several methods employed to study such modifications, the most promising strategies are based on proteomics approaches. Proteomics has emerged as one of the most powerful and sensitive analytical tools for mapping the oxidative changes present in proteins in a wide range of sample types and disease models. This chapter addresses the main aspects of redox processes, including an overview of oxidative stress and its biological consequences on proteins. Moreover, major proteomic strategies that can be employed as powerful tools for understanding protein oxidative modifications detected in chronic pathologies are discussed, highlighting cancer research as a model. PMID:24629184

  17. In vitro metabolism of α7 neuronal nicotinic receptor agonist AZD0328 and enzyme identification for its N-oxide metabolite.

    PubMed

    Zhou, Diansong; Zhang, Minli; Ye, Xiaomei; Gu, Chungang; Piser, Timothy M; Lanoue, Bernard A; Schock, Sara A; Cheng, Yi-Fang; Grimm, Scott W

    2011-03-01

    1. AZD0328 was pharmacologically characterized as a α7 neuronal nicotinic receptor agonist intended for treatment of Alzheimer's disease. In vitro AZD0328 cross species metabolite profile and enzyme identification for its N-oxide metabolite were evaluated in this study. 2. AZD0328 was very stable in the human hepatocyte incubation, whereas extensively metabolized in rat, dog and guinea pig hepatocyte incubations. The N-oxidation metabolite (M6) was the only metabolite detected in human hepatocyte incubations, and it also appeared to be the major in vitro metabolic pathway in a number of preclinical species. In addition, N-glucuronide metabolite of AZD0328 was observed in human liver microsomes. 3. Other metabolic pathways in the preclinical species include hydroxylation in azabicyclo octane or furopyridine part of the molecule. Pyridine N-methylation of AZD0328 (M2) was identified as a dog specific metabolite, not observed in human or other preclinical species. 4. Multiple enzymes including CYP2D6, CYP3A4/5, FMO1 and FMO3 catalyzed AZD0328 metabolism. The potential for AZD0328 to be inhibited clinically by co-administered drugs or genetic polymorphism is relative low. PMID:21226652

  18. Short-term hypoxic vasodilation in vivo is mediated by bioactive nitric oxide metabolites, rather than free nitric oxide derived from haemoglobin-mediated nitrite reduction

    PubMed Central

    Umbrello, Michele; Dyson, Alex; Pinto, Bernardo Bollen; Fernandez, Bernadette O; Simon, Verena; Feelisch, Martin; Singer, Mervyn

    2014-01-01

    Local increases in blood flow – ‘hypoxic vasodilation’ – confer cellular protection in the face of reduced oxygen delivery. The physiological relevance of this response is well established, yet ongoing controversy surrounds its underlying mechanisms. We sought to confirm that early hypoxic vasodilation is a nitric oxide (NO)-mediated phenomenon and to study putative pathways for increased levels of NO, namely production from NO synthases, intravascular nitrite reduction, release from preformed stores and reduced deactivation by cytochrome c oxidase. Experiments were performed on spontaneously breathing, anaesthetized, male Wistar rats undergoing short-term systemic hypoxaemia, who received pharmacological inhibitors and activators of the various NO pathways. Arterial blood pressure, cardiac output, tissue oxygen tension and the circulating pool of NO metabolites (oxidation, nitrosation and nitrosylation products) were measured in plasma and erythrocytes. Hypoxaemia caused a rapid and sustained vasodilation, which was only partially reversed by non-selective NO synthase inhibition. This was associated with significantly lower plasma nitrite, and marginally elevated nitrate levels, suggestive of nitrite bioinactivation. Administration of sodium nitrite had little effect in normoxia, but produced significant vasodilation and increased nitrosylation during hypoxaemia that could not be reversed by NO scavenging. Methodological issues prevented assessment of the contribution, if any, of reduced deactivation of NO by cytochrome c oxidase. In conclusion, acute hypoxic vasodilation is an adaptive NO-mediated response conferred through bioactive metabolites rather than free NO from haemoglobin-mediated reduction of nitrite. PMID:24396056

  19. Morphine-6beta-glucuronide modulates the expression of inducible nitric oxide synthase.

    PubMed

    Lysle, D T; Carrigan, K A

    2001-08-01

    The immunomodulatory effects of morphine are well established; however, suprisingly little is known about the immunomodulatory properties of the major metabolites of morphine. The present study tests the hypothesis that expression of inducible nitric oxide synthase (iNOS) is modulated by the administration of the morphine metabolite, morphine-6beta-glucuronide. The initial study using rats shows that morphine-6beta-glucuronide administration (0, 1.0, 3.163, 10 mg/kg s.c.) results in a pronounced reduction in lipopolysaccharide (LPS)-induced expression of iNOS (inducible nitricoxide synthease) in spleen, lung, and liver tissue as measured by western blotting. Morphine-6beta-glucuronide also produces a reduction in the level of plasma nitrite/nitrate, the more stable end-product of nitric oxide degradation. In a subsequent study, administration of the opioid receptor antagonist, naltrexone (0.1 mg/kg) prior to the injection of morphine-6beta-glucuronide (10 mg/kg) blocks the morphine-6beta-glucuronide induced reduction of iNOS expression and plasma nitrite/nitrite levels indicating that the effect is mediated via the opioid-receptor. This study provides the first evidence that morphine-6beta-glucuronide alters the expression of iNOS. PMID:11580103

  20. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  1. Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells.

    PubMed

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (-)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  2. Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line.

    PubMed

    Kawakami, Shinpei; Kinoshita, Yosuke; Maruki-Uchida, Hiroko; Yanae, Koji; Sai, Masahiko; Ito, Tatsuhiko

    2014-11-01

    Piceatannol is a phytochemical that is present in large amounts in passion fruit (Passiflora edulis) seeds, and is an analog of resveratrol. Recently, the absorption and metabolism of piceatannol were investigated in rats, and isorhapontigenin, O-methyl piceatannol, was detected as a piceatannol metabolite in rat plasma. To elucidate the function of piceatannol and its metabolites, we investigated the expression of sirtuin 1 (SIRT1) in THP-1 monocytic cells after treatment with piceatannol and its metabolites, and compared their effects with those of resveratrol and its metabolites. Piceatannol and resveratrol upregulated the expression levels of SIRT1 mRNA and SIRT1 protein. An extract of passion fruit seeds, which contained high levels of piceatannol, also upregulated SIRT1 mRNA expression. As for the metabolites, isorhapontigenin upregulated SIRT1 mRNA expression, whereas resveratrol glucuronides and sulfate did not affect SIRT1 expression. These findings indicate that after intake of piceatannol, not only piceatannol itself, but also its metabolite, isorhapontigenin, contributed to the upregulation of SIRT1 expression. PMID:25360511

  3. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice.

    PubMed

    Pingili, Ajeeth K; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David D; Katsurada, Akemi; Majid, Dewan S A; Navar, L Gabriel; Gonzalez, Frank J; Malik, Kafait U

    2016-05-01

    6β-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in maleCyp1b1(+/+)andCyp1b1(-/-)mice. Castration ofCyp1b1(+/+)mice orCyp1b1(-/-)gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality inCyp1b1(+/+)mice, but restored these effects of angiotensin II inCyp1b1(-/-)or castratedCyp1b1(+/+)mice.Cyp1b1gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6β-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme inCyp1b1(+/+)mice. However, inCyp1b1(-/-)or castratedCyp1b1(+/+)mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice. PMID:26928804

  4. High-resolution MS and MS(n) investigation of ozone oxidation products from phenazone-type pharmaceuticals and metabolites.

    PubMed

    Favier, Maxime; Dewil, Raf; Van Eyck, Kwinten; Van Schepdael, Ann; Cabooter, Deirdre

    2015-10-01

    Phenazone-type pharmaceuticals, such as aminopyrine, metamizole, phenazone and propyphenazone, are widely used analgesics that have been detected in wastewater treatment plant effluents in μg L(-1) concentrations. Acetamido antipyrine (AAA) and formyl aminoantipyrine (FAA) - the main metabolites of aminopyrine and metamizole - have also been detected in sub μg L(-1) concentrations in environmental water bodies and in resources used to produce drinking water, suggesting their highly persistent character. In this study phenazone, propyphenazone, AAA and FAA were treated with ozone under laboratory conditions and 17 degradation products were identified by an elucidation approach based on high-resolution mass spectrometry (LTQ Orbitrap). Typical oxidation of carbon-carbon double bonds by ozone was observed among other mechanisms of ring opening. It was demonstrated that reactivity of these compounds with ozone is high (rate constants kO3 ranging from 6.5×10(4) to 2.4×10(6) M(-1) s(-1)). The toxicity of the degradation products from ozonation was estimated by quantitative structure-activity relationships (QSAR). It was shown that, when the carbon-carbon double bond is partially oxidized to an epoxy, the toxicity towards fish and daphnids is higher than that of the parent compound. By further oxidizing the molecules, a common degradation product - 1-acetyl-1-methyl-2-phenylhydrazide (AMPH) - was also found to be more toxic than its parent compounds, which is of concern since this compound has previously been reported in environmental waters. PMID:25935697

  5. Cardioprotective Effect of High Intensity Interval Training and Nitric Oxide Metabolites (NO2−, NO3−)

    PubMed Central

    FALLAHI, Aliasghar; GAEINI, Abbasali; SHEKARFROUSH, Shahnaz; KHOSHBATEN, Ali

    2015-01-01

    Background: The aim of this study was to investigate the effects of High-Intensity Interval Training (HIIT) on nitric oxide metabolites (NO2−, NO3−) and myocardial infarct size after Ischemia/Reperfusion (I/R) injury in healthy male rats. Methods: A total of 44 Wistar rats were randomly divided into 4 groups including HIIT (n=8), HIIT + IR protocol (n=14), control (n=8), and control + IR (n=14). Each training session of HIIT consisted of 1 hour of exercise in three stages: 6-minute running at 50–60% VO2max for warm-up; 7 intervals of 7-minute running on treadmill with a slope of 5° to 20° (4 minutes with an intensity of 80–100% VO2max and 3 minutes at 50–60% VO2max); and 5-minute running at 50–60% VO2max for cool-down. The control group did not participate in any exercise program. Nitric Oxide (NO) and its metabolites were measured by using Griess reaction test. Results: The results showed that eight weeks of exercise training exerted a significantly increasing effect on nitrite (8.55 μmol per liter, equivalent to 34.79%), nitrate (62.02 μmol per liter, equivalent to 149.48%), and NOx (66 μmol per liter, equivalent to 98.11%) in the HIIT group compared with the control group. The results showed myocardial infract size (IS) was significantly smaller (23.2%, P<0.001) in the exercise training group compared with the control group. Conclusion: Incremental changes in NO-NO3−, NO2− axis are one of mechanisms through which HIIT program can protect the heart from I/R injury and decrease myocardial infarction. PMID:26587502

  6. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways.

    PubMed

    Doi, Kunio; Uetsuka, Koji

    2011-01-01

    Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B(1) (FB(1)) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB(1) induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways. PMID:21954354

  7. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  8. Radiation-induced charge trapping in bipolar base oxides

    SciTech Connect

    Fleetwood, D.M.; Riewe, L.C.; Witczak, Schrimpf, R.D.

    1996-03-01

    Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields.

  9. The pentachlorophenol metabolite tetrachlorohydroquinone induces massive ROS and prolonged p-ERK expression in splenocytes, leading to inhibition of apoptosis and necrotic cell death.

    PubMed

    Chen, Hsiu-Min; Zhu, Ben-Zhan; Chen, Rong-Jane; Wang, Bour-Jr; Wang, Ying-Jan

    2014-01-01

    Pentachlorophenol (PCP) has been used extensively as a biocide and a wood preservative and has been reported to be immunosuppressive in rodents and humans. Tetrachlorohydroquinone (TCHQ) is a major metabolite of PCP. TCHQ has been identified as the main cause of PCP-induced genotoxicity due to reactive oxidant stress (ROS). However, the precise mechanisms associated with the immunotoxic effects of PCP and TCHQ remain unclear. The aim of this study was to examine the effects of PCP and TCHQ on the induction of ROS and injury to primary mouse splenocytes. Our results shown that TCHQ was more toxic than PCP and that a high dose of TCHQ led to necrotic cell death of the splenocytes through induction of massive and sudden ROS and prolonged ROS-triggered ERK activation. Inhibition of ROS production by N-acetyl-cysteine (NAC) partially restored the mitochondrial membrane potential, inhibited ERK activity, elevated caspase-3 activity and PARP cleavage, and, eventually, switched the TCHQ-induced necrosis to apoptosis. We suggest that prolonged ERK activation is essential for TCHQ-induced necrosis, and that ROS play a pivotal role in the different TCHQ-induced cell death mechanisms. PMID:24586814

  10. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites.

    PubMed

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María Del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024

  11. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    PubMed Central

    Sharma, Arun; Raghavendra, Kamaraju; Adak, Tridibesh; Dash, Aditya P

    2008-01-01

    Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO2-) and nitrate (NO3-) are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of An. culicifacies, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO2- and NO3- from mosquito mid-guts and haemolymph. Results This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO2- and NO3- in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 nM and 1 mM. Recoveries of NO2- and NO3- from spiked samples (1–100 μM) and from the extracted standards (1–100 μM) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO2- and NO3- in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO2- and NO3- in midguts and haemolymph of An. culicifacies sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology. Conclusion HPLC is a sensitive and accurate technique

  12. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    PubMed Central

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024

  13. Pyometra in Bitches Induces Elevated Plasma Endotoxin and Prostaglandin F2α Metabolite Levels

    PubMed Central

    Hagman, R; Kindahl, H; Lagerstedt, A-S

    2006-01-01

    Endotoxemia in bitches with pyometra can cause severe systemic effects directly or via the release of inflammatory mediators. Plasma endotoxin concentrations were measured in ten bitches suffering from pyometra with moderately to severely deteriorated general condition, and in nine bitches admitted to surgery for non-infectious reasons. Endotoxin samples were taken on five occasions before, during and after surgery. In addition, urine and uterine bacteriology was performed and hematological, blood biochemical parameters, prostaglandin F2α metabolite 15-ketodihydro-PGF2α (PG-metabolite), progesterone and oestradiol (E2-17β) levels were analysed. The results confirm significantly increased plasma levels of endotoxin in bitches with pyometra and support previous reports of endotoxin involvement in the pathogenesis of the disease. Plasma concentrations of PG-metabolite were elevated in pyometra bitches and provide a good indicator of endotoxin release since the concentrations were significantly correlated to the endotoxin levels and many other hematological and chemistry parameters. The γ-globulin serum protein electrophoresis fraction and analysis of PG-metabolite can be valuable in the diagnosis of endotoxin involvement if a reliable, rapid and cost-effective test for PG-metabolite analysis becomes readily available in the future. Treatment inhibiting prostaglandin biosynthesis and related compounds could be beneficial for bitches suffering from pyometra. PMID:16722306

  14. Vitamin D-metabolites from human plasma and mass spectrometric analysis by fast heavy ion induced desorption

    NASA Astrophysics Data System (ADS)

    Fohlman, J.; Peterson, P. A.; Kamensky, I.; Håkansson, P.; Sundqvist, B.

    1982-07-01

    D-vitamin metabolites have been isolated from human serum employing chromatographic techniques. The serum carrier protein for vitamin D (DBP) was first isolated by immunosorbent chromatography. Lipid ligands associated with DBP were then extracted with hexane and separated by high pressure liquid chromatography (HPLC). Detection of vitamin D metabolites by their absorbance of ultraviolet light is not sufficiently sensitive to monitor all vitamin D derivatives from a few millilitres of serum. Therefore, further analyses are necessary to quantitate these compounds. We have begun to develop a mass spectrometric method to achieve a reliable, quantitative procedure. As a first step towards this goal a number of pure samples of vitamin D compounds have been studied in a time-of-flight mass spectrometer based on fast heavy ion induced desorption. All vitamin D compounds examined could be detected and identified by their molecular ion and fragment spectra.

  15. Nitric Oxide is a Central Common Metabolite in Vascular Dysfunction Associated with Diseases of Human Pregnancy.

    PubMed

    Leiva, Andrea; Fuenzalida, Bárbara; Barros, Eric; Sobrevia, Bastián; Salsoso, Rocío; Sáez, Tamara; Villalobos, Roberto; Silva, Luis; Chiarello, Indira; Toledo, Fernando; Gutiérrez, Jaime; Sanhueza, Carlos; Pardo, Fabián; Sobrevia, Luis

    2016-01-01

    Preeclampsia (PE), gestational diabetes mellitus (GDM), and maternal supraphysiological hypercholesterolaemia (MSPH) are pregnancy-related conditions that cause metabolic disruptions leading to alterations of the mother, fetus and neonate health. These syndromes result in fetoplacental vascular dysfunction, where nitric oxide (NO) plays a crucial role. PE characterizes by abnormal increase in the placental blood pressure and a negative correlation between NO level and fetal weight, suggesting that increased NO level and oxidative stress could be involved. GDM courses with macrosomia along with altered function of the fetal cardiovascular system and fetoplacental vasculature. Even when NO synthesis in the fetoplacental vasculature is increased, NO bioavailability is reduced due to the higher oxidative stress seen in this disease. In MSPH, there is an early development of atherosclerotic lesions in fetal and newborn arteries, altered function of the fetoplacental vasculature, and higher markers of oxidative stress in fetal blood and placenta, thus, vascular alterations related with NO metabolism occur as a consequence of this syndrome. Potential mechanisms of altered NO synthesis and bioavailability result from transcriptional and post-translational NO synthases (NOS) modulation, including phosphorylation/dephosphorylation cycles, coupling/uncoupling of NOS, tetrahydrobiopterin bioavailability, calcium/calmodulin-NOS and caveolin-1-NOS interaction. Additionally, oxidative stress also plays a role in the reduced NO bioavailability. This review summarizes the available information regarding lower NO bioavailability in these pregnancy pathologies. A common NO-dependent mechanism in PE, GDM and MSPH contributing to fetoplacental endothelial dysfunction is described. PMID:26899560

  16. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors. PMID:16302199

  17. Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise.

    PubMed

    Radák, Z; Asano, K; Inoue, M; Kizaki, T; Oh-Ishi, S; Suzuki, K; Taniguchi, N; Ohno, H

    1996-01-01

    To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TBARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TBARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney. PMID:8820884

  18. Urinary acetylated metabolites and N-acetyltransferase-2 genotype in human subjects treated with a para-phenylenediamine-containing oxidative hair dye.

    PubMed

    Nohynek, Gerhard J; Skare, Julie A; Meuling, Wim J A; Hein, David W; De Bie, Albert Th H J; Toutain, Herve

    2004-11-01

    In the organism of mammals, important detoxification pathways of arylamines are catalysed by N-acetyltransferase 2 (NAT2). A recent case-control epidemiology study suggested that human NAT2 slow acetylators exposed to oxidative hair dyes may be at greater risk to develop bladder cancer. We therefore profiled urinary [(14)C]-metabolites and NAT2 genotype in eight human subjects following treatment with a dark-shade oxidative hair dye containing [(14)C]-para-phenylenediamine (PPD). Genotyping identified three subjects as slow, and five subjects as intermediate NAT2 acetylators. Within 24 h after treatment, the study subjects excreted a mean total of 0.43+/-0.24% of the applied [(14)C] in the urine, where five different metabolites were found. The major urinary metabolites were concluded to be N-mono-acetylated and N,N'-diacetylated PPD. They were present in all urine samples and amounted to 80-95% of the total urinary [(14)C]. Another metabolite, possibly a glucuronic acid conjugate, was found in 6/8 urine samples at 5-13% of the total urinary [(14)C]. All metabolites appeared to be related to PPD, no evidence of the presence of high-molecular weight dye-intermediates or corresponding metabolites was found. The metabolite profile in the study subjects showed no significant differences between the NAT2 intermediate and NAT2 slow acetylator subgroups. Urine of NAT2 slow acetylators contained N-mono-acetylated-PPD at 42.2+/-10.2% and N,N'-di-acetylated-PPD at 54.1+/-7.6% of total urinary radioactivity, while the corresponding values of intermediate acetylators were 46.0+/-8.9% and 45.7+/-9.9%, respectively. Overall, our results suggest that the human acetylation rate of PPD after topical application is independent of the NAT2 genotype status, most likely due to metabolism by epidermal NAT1 prior to systemic absorption. PMID:15350687

  19. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation.

    PubMed

    Wang, Qian Qian; Zhou, Xin Yi; Zhang, Yan Fang; Bu, Na; Zhou, Jin; Cao, Feng Lin; Naranmandura, Hua

    2015-09-22

    Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARα oncoprotein by As2O3, which results in initiation of PML-RARα degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAs(III)) and its intermediate metabolites (i.e., MMA(III)/DMA(III)) in NB4 cells. Inorganic iAs(III) predominantly showed induction of cell differentiation, while MMA(III) and DMA(III) specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAs(III), MMA(III) showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARα fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation. PMID:26213848

  20. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation

    PubMed Central

    Zhang, Yan Fang; Bu, Na; Zhou, Jin; Cao, Feng Lin; Naranmandura, Hua

    2015-01-01

    Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARα oncoprotein by As2O3, which results in initiation of PML-RARa degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAsIII) and its intermediate metabolites (i.e., MMAIII/DMAIII) in NB4 cells. Inorganic iAsIII predominantly showed induction of cell differentiation, while MMAIII and DMAIII specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAsIII, MMAIII showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARa fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation. PMID:26213848

  1. New prenyllipid metabolites identified in Arabidopsis during photo-oxidative stress.

    PubMed

    Dłużewska, Jolanta; Zieliński, Kamil; Nowicka, Beatrycze; Szymańska, Renata; Kruk, Jerzy

    2015-12-01

    In the present study, we have identified new prenyllipid metabolites formed during high light stress in Arabidopsis thaliana, whose origin and function remained unknown so far. It was found that plastoquinone-C accumulates mainly in the reduced form under high light conditions, as well as during short-term excess light illumination both in the wild-type and tocopherol biosynthetic vte1 mutant, suggesting that plastoquinone-C, a singlet oxygen-derived prenyllipid, is reduced in chloroplasts by photosystem II or enzymatically, outside thylakoids. Plastoquinone-B, a fatty acid ester of plastoquinone-C, was identified for the first time in Arabidopsis in high light grown wild-type plants and during short-time, excess light illumination of the wild-type plants and the vte1 mutant. The gene expression analysis showed that vte2 gene is most pronouncedly up-regulated among the prenyllipid biosynthetic genes under high light and induction of its expression is mainly caused by an increased level of singlet oxygen, as was demonstrated in experiments with D2 O-treated plants under excess light conditions. PMID:26013323

  2. Mitochondrial Thioredoxin in Regulation of Oxidant-Induced Cell Death

    PubMed Central

    Chen, Yan; Cai, Jiyang; Jones, Dean P

    2006-01-01

    Mitochondrial thioredoxin (mtTrx) can be oxidized in response to inducers of oxidative stress; yet the functional consequences of the oxidation have not been determined. This study evaluated the redox status of mtTrx and its association to oxidant-induced apoptosis. Results showed that mtTrx was oxidized after exposure to peroxides and diamide. Overexpression of mtTrx protected against diamide-induced oxidation and cytotoxicity. Oxidation of mtTrx was also achieved by knocking down its reductase; and lead to increased susceptibility to cell death. The data indicate that the redox status of mtTrx is a regulatory mechanism underlying the vulnerability of mitochondria to oxidative injury. PMID:17113580

  3. Mono-2-Ethylhexyl Phthalate Induces Oxidative Stress Responses in Human Placental Cells In Vitro

    PubMed Central

    Tetz, Lauren M; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D; Loch-Caruso, Rita

    2013-01-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. PMID:23360888

  4. The Pesticide Metabolites Paraoxon and Malaoxon Induce Cellular Death by Different Mechanisms in Cultured Human Pulmonary Cells.

    PubMed

    Angelini, Daniel J; Moyer, Robert A; Cole, Stephanie; Willis, Kristen L; Oyler, Jonathan; Dorsey, Russell M; Salem, Harry

    2015-01-01

    Organophosphorus (OP) pesticides are known to induce pulmonary toxicity in both humans and experimental animals. To elucidate the mechanism of OP-induced cytotoxicity, we examined the effects of parathion and malathion and their respective metabolites, paraoxon and malaoxon, on primary cultured human large and small airway cells. Exposure to paraoxon and malaoxon produced a dose-dependent increase in cytotoxicity following a 24-hour exposure, while treatment with parathion or malathion produced no effects at clinically relevant concentrations. Exposure to paraoxon-induced caspase activation, but malaoxon failed to induce this response. Since caspases have a major role in the regulation of apoptosis and cell death, we evaluated OP-induced cell death in the presence of a caspase inhibitor. Pharmacological caspase inhibition protected against paraoxon-induced cell death but not malaoxon-induced cell death. These data suggest that caspase activation is a key signaling element in paraoxon-induced cell death, but not malaoxon-induced cellular death in the pulmonary epithelium. PMID:26173615

  5. Circulating nitric oxide metabolites and cardiovascular changes in the turtle Trachemys scripta during normoxia, anoxia and reoxygenation.

    PubMed

    Jacobsen, Søren B; Hansen, Marie N; Jensen, Frank B; Skovgaard, Nini; Wang, Tobias; Fago, Angela

    2012-08-01

    Turtles of the genus Trachemys show a remarkable ability to survive prolonged anoxia. This is achieved by a strong metabolic depression, redistribution of blood flow and high levels of antioxidant defence. To understand whether nitric oxide (NO), a major regulator of vasodilatation and oxygen consumption, may be involved in the adaptive response of Trachemys to anoxia, we measured NO metabolites (nitrite, S-nitroso, Fe-nitrosyl and N-nitroso compounds) in the plasma and red blood cells of venous and arterial blood of Trachemys scripta turtles during normoxia and after anoxia (3 h) and reoxygenation (30 min) at 21°C, while monitoring blood oxygen content and circulatory parameters. Anoxia caused complete blood oxygen depletion, decrease in heart rate and arterial pressure, and increase in venous pressure, which may enhance heart filling and improve cardiac contractility. Nitrite was present at high, micromolar levels in normoxic blood, as in some other anoxia-tolerant species, without significant arterial-venous differences. Normoxic levels of erythrocyte S-nitroso compounds were within the range found for other vertebrates, despite very high measured thiol content. Fe-nitrosyl and N-nitroso compounds were present at high micromolar levels under normoxia and increased further after anoxia and reoxygenation, suggesting NO generation from nitrite catalysed by deoxygenated haemoglobin, which in turtle had a higher nitrite reductase activity than in hypoxia-intolerant species. Taken together, these data indicate constitutively high circulating levels of NO metabolites and significant increases in blood NO after anoxia and reoxygenation that may contribute to the complex physiological response in the extreme anoxia tolerance of Trachemys turtles. PMID:22786632

  6. Enhanced metabolite generation

    DOEpatents

    Chidambaram, Devicharan

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  7. Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-11-01

    Evaluation of potential health effects from high energy charged particle radiation exposure during long duration space travel is important for the future of manned missions. Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. The present study reports on the protective effects of N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), a melatonin metabolite, against high energy charged particle radiation-induced oxidative damage to the brain. We observed that radiation exposure (2.0 Gy of 500 MeV/nucleon (56)Fe beams, a ground-based model of space radiation) impaired the spatial memory of mice at later intervals without affecting the motor activities. AFMK pretreatment significantly ameliorated these neurobehavioral ailments. Radiation-induced changes in the population of immature and proliferating neurons in the dentate gyrus were localized using anti-doublecortin (Dcx) and anti-Ki-67 expression. AFMK pretreatment significantly inhibited the loss of Dcx and Ki-67 positive cells. Moreover, AFMK pretreatment ameliorated the radiation-induced augmentation of protein carbonyls and 4-hydroxyalkenal + malondialdehyde (MDA + HAE) in the brain and maintained the total antioxidant capacity of plasma and nonprotein sulfhydryl contents in brain. PMID:18631288

  8. Biosynthesis and Defensive Function of Nδ-Acetylornithine, a Jasmonate-Induced Arabidopsis Metabolite[C][W

    PubMed Central

    Adio, Adewale M.; Casteel, Clare L.; De Vos, Martin; Kim, Jae Hak; Joshi, Vijay; Li, Baohua; Juéry, Caroline; Daron, Josquin; Kliebenstein, Daniel J.; Jander, Georg

    2011-01-01

    Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid Nδ-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce Nδ-acetylornithine. MeJA-induced Nδ-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and Nδ-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of Nδ-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by Nδ-acetylornithine addition. PMID:21917546

  9. The effect of experimentally-induced renal failure on accumulation of bupropion and its major basic metabolites in plasma and brain of guinea pigs.

    PubMed

    DeVane, C L; Laizure, S C; Cameron, D F

    1986-01-01

    Dosage regimen adjustments because of poor renal function are often assumed to be unnecessary for extensively metabolized antidepressants. This assumption is being increasingly questioned in recognition of the role of active drug metabolites. The purpose of this study was to assess the steady-state accumulation of the new antidepressant bupropion and its three major basic metabolites in guinea pigs, with and without experimentally-induced renal failure. Two groups of guinea pigs were treated by intraperitoneal (IP) implantation of mini-osmotic pumps containing bupropion hydrochloride. Immediately after surgery, one group of animals received an injection of uranyl nitrate. After 4 days, all animals were sacrificed by decapitation following blood removal by cardiac puncture. Analysis of plasma and brain samples by high performance liquid chromatography (HPLC) for concentrations of bupropion (BUP) and its major basic metabolites, the erythro-amino alcohol (EB), the threo-amino alcohol (TB) and the hydroxy metabolite (HB) revealed greater accumulation of BUP, TB, and HB in plasma and brain of the animals with renal failure compared to controls. No difference was found between groups in the concentrations of the EB metabolite. As the guinea pig shows a BUP and metabolite plasma concentration profile similar to that seen in human studies, these results suggest that further studies of bupropion and its major metabolites are warranted in patients with impaired renal function to assess possible excessive drug and metabolite accumulation. PMID:3092270

  10. A New Player in Environmentally Induced Oxidative Stress: Polychlorinated Biphenyl Congener, 3,3′-Dichlorobiphenyl (PCB11)

    PubMed Central

    Aykin-Burns, Nukhet

    2013-01-01

    Recent analysis of air samples from Chicago and Lake Michigan areas observed a ubiquitous airborne polychlorinated biphenyl (PCB) congener, 3,3′-dichlorobiphenyl (PCB11). Our analysis of serum samples also revealed the existence of hydroxylated metabolites of PCB11 in human blood. Because PCBs and PCB metabolites have been suggested to induce oxidative stress, this study sought to determine whether environmental exposure to PCB11 and its 4-hydroxyl metabolite could induce alterations in steady-state levels of reactive oxygen species (ROS) and cytotoxicity in immortalized human prostate epithelial cells (RWPE-1). This study also examines if antioxidants could protect the cells from PCB11-induced cytotoxicity. Exponentially growing RWPE-1 cells were exposed to PCB11 and its metabolite, 3,3′-dichlorobiphenyl-4-ol (4-OH-PCB11), as well as an airborne PCB mixture resembling the Chicago ambient air congener profile, every day for 5 days. Results showed that 4-OH-PCB11 could significantly induce cell growth suppression and decrease the viability and plating efficiency of RWPE-1 cells. 4-OH-PCB11 also significantly increased steady-state levels of intracellular superoxide, O2 •−, as well as hydroperoxides. Finally, treatment with the combination of polyethylene glycol–conjugated CuZn superoxide dismutase and catalase added 1h after 4-OH-PCB11 exposures, significantly protected RWPE-1 cells from PCB toxicity. The results strongly support the hypothesis that exposure to a hydroxylated metabolite of PCB11 can inhibit cell proliferation and cause cytotoxicity by increasing steady-state levels of ROS. Furthermore, antioxidant treatments following PCBs exposure could significantly mitigate the PCB-induced cytotoxicity in exponentially growing human prostate epithelial cells. PMID:23997111

  11. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25/sup 0/C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the ..cap alpha..-pinene and ..beta..-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the ..cap alpha..-pinene oxide and ..beta..-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer.

  12. Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites.

    PubMed

    Yu, Tian; Campbell, Sarah C; Stockmann, Chris; Tak, Casey; Schoen, Katherine; Clark, Erin A S; Varner, Michael W; Spigarelli, Michael G; Sherwin, Catherine M T

    2016-05-01

    This study sought to assess the pharmacokinetic (PK) changes of caffeine and its CYP1A2 metabolites across the 3 trimesters of pregnancy. A prospective, multicenter PK study was conducted among 59 pregnant women (93.2% white) who were studied once during a trimester. One beverage with 30-95 mg caffeine was consumed, and a blood/urine sample was collected within 1 hour postingestion. Concentrations of caffeine and its primary metabolites were quantified from serum and urine by LC-MS/MS. There was a significant increase in dose-normalized caffeine serum and urine concentrations between the first and third trimesters (P < .05 and P < .01, respectively). Normalized theophylline concentrations also increased significantly in the third trimester in serum (P < .001) and in urine (P < .05). The caffeine urine/serum concentration ratio also increased in the last trimester (P < .05). No significant difference was found in normalized paraxanthine or theobromine concentrations. This study identified decreased caffeine metabolism and an increase in the active metabolite theophylline concentrations during pregnancy, especially in the third trimester, revealing evidence of the large role that pregnancy plays in influencing caffeine metabolism. PMID:26358647

  13. Differential metabolite levels in response to spawning-induced inappetence in Atlantic salmon Salmo salar.

    PubMed

    Cipriano, Rocco C; Smith, McKenzie L; Vermeersch, Kathleen A; Dove, Alistair D M; Styczynski, Mark P

    2015-03-01

    Atlantic salmon Salmo salar undergo months-long inappetence during spawning, but it is not known whether this inappetence is a pathological state or one for which the fish are adapted. Recent work has shown that inappetent whale sharks can exhibit circulating metabolite profiles similar to ketosis known to occur in humans during starvation. In this work, metabolite profiling was used to explore differences in analyte profiles between a cohort of inappetent spawning run Atlantic salmon and captively reared animals that were fed up to and through the time of sampling. The two classes of animals were easily distinguished by their metabolite profiles. The sea-run fish had elevated ɷ-9 fatty acids relative to the domestic feeding animals, while other fatty acid concentrations were reduced. Sugar alcohols were generally elevated in inappetent animals, suggesting potentially novel metabolic responses or pathways in fish that feature these compounds. Compounds expected to indicate a pathological catabolic state were not more abundant in the sea-run fish, suggesting that the animals, while inappetent, were not stressed in an unnatural way. These findings demonstrate the power of discovery-based metabolomics for exploring biochemistry in poorly understood animal models. PMID:25668602

  14. Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain

    PubMed Central

    Kim, Hyun-Pyo

    2014-01-01

    Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT). PMID:24466326

  15. Phimosis in male dromedary camels: Clinical findings and changes in the hemogram, nitric oxide metabolites, and testosterone concentrations.

    PubMed

    Ali, Ahmed; Derar, Derar; Al-Sobyil, Fahd A; Zeitoun, Moustafa M; Hassanein, Khaled M A; Al-Howas, Abdella

    2016-06-01

    The objectives of this study were to elucidate the clinical findings in male dromedary camels with phimosis (PHI, n = 43) and to investigate the association of this syndrome with the hemogram, nitric oxide metabolites (NOMs), and testosterone concentrations. History and signalment were obtained, and a breeding soundness examination was performed. The penis was exteriorized after administration of a pudendal nerve block. Abnormal masses obtained from the prepuce and penis were prepared for histopathology. Blood samples for hemogram assessment were taken from the diseased animals and from 10 healthy control males. Total nitrates/nitrites were determined in sera using the Griess assay. Testosterone was estimated in sera using ELISA. Phimosis associated with detectable pathologic lesions, mainly including ulcerative posthitis and lacerated glans penis, was present in 34 (79.1%) of the 43 cases (PHI-P), whereas the remaining nine (20.9%) of the 43 cases had no noticeable lesions (PHI-N). The PHI-P group showed higher leukocyte counts (P = 0.001), especially neutrophils (P = 0.0001), and greater NOM concentrations (P = 0.002) than the PHI-N and control groups. However, testosterone concentrations did not differ among groups. In conclusion, PHI in the male dromedary camels was mainly associated with ulcerative posthitis and laceration of the glans penis. The presence of pathologic lesions in cases with PHI was associated with leukocytosis, neutrophilia, and high NOM concentrations. PMID:26879996

  16. Identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of Polyporus sp. S133.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2012-11-30

    The biodegradation of benzo[a]pyrene (BaP) by using Polyporus sp. S133, a white-rot fungus isolated from oil-contaminated soil was investigated. Approximately 73% of the initial concentration of BaP was degraded within 30 d of incubation. The isolation and characterization of 3 metabolites by thin layer chromatography, column chromatography, and UV-vis spectrophotometry in combination with gas chromatography-mass spectrometry, indicated that Polyporus sp. S133 transformed BaP to BaP-1,6-quinone. This quinone was further degraded in 2 ways. First, BaP-1,6-quinone was decarboxylated and oxidized to form coumarin, which was then hydroxylated to hydroxycoumarin, and finally to hydroxyphenyl acetic acid by addition of an epoxide group. Second, Polyporus sp. S133 converted BaP-1,6-quinone into a major product, 1-hydroxy-2-naphthoic acid. During degradation, free extracellular laccase was detected with reduced activity of lignin peroxidase, manganese-dependent peroxidase and 2,3-dioxygenase, suggesting that laccase and 1,2-dioxygenase might play an important role in the transformation of PAHs compounds. PMID:22835655

  17. Ocotillol, a Majonoside R2 Metabolite, Ameliorates 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice by Restoring the Balance of Th17/Treg Cells.

    PubMed

    Lee, Sang-Yun; Jeong, Jin-Ju; Le, Thi Hong Van; Eun, Su-Hyeon; Nguyen, Minh Duc; Park, Jeong Hill; Kim, Dong-Hyun

    2015-08-12

    In a preliminary experiment, majonoside R2 (MR2), isolated from Vietnamese ginseng (Panax vietnamensis Ha et Grushv.), inhibited differentiation to Th17 cells and was metabolized to ocotillol via pseudoginsenoside RT4 (PRT4) by gut microbiota. Therefore, we examined the inhibitory effects of MR2 and its metabolites PRT4 and ocotillol against Th17 cell differentiation. These ginsenosides significantly suppressed interleukin (IL)-6/tumor growth factor beta-induced differentiation of splenic CD4(+) T cells into Th17 cells and expression of IL-17 in vitro. Among these ginsenosides, ocotillol showed the highest inhibitory effect. We also examined the anti-inflammatory effect of ocotillol in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Oral administration of ocotillol significantly suppressed TNBS-induced colon shortening, macroscopic score, myeloperoxidase activity, and production of nitric oxide and prostaglandin E2. Ocotillol treatment increased TNBS-suppressed expression of tight junction proteins ZO-1, occludin, and claudin-1 in the colon. Treatment with ocotillol inhibited TNBS-induced expression of tumor necrosis factor (TNF)-α and IL-1β, as well as activation of NF-κB and MAPKs. Moreover, treatment with ocotillol inhibited TNBS- induced differentiation to Th17 cells in the lamina propria of colon, as well as expression of T-bet, RORγt, IL-17, and IL-23. Ocotillol treatment also increased Treg cell differentiation and Foxp3 and IL-10 expression. These findings suggest that orally administered MR2 may be metabolized to ocotillol in the intestine by gut microbiota and the transformed ocotillol may ameliorate inflammatory diseases such as colitis by restoring the balance of Th17/Treg cells. PMID:26194345

  18. Electrochemical assay for the determination of nitric oxide metabolites using copper(II) chlorophyllin modified screen printed electrodes.

    PubMed

    Balamurugan, Murugesan; Madasamy, Thangamuthu; Pandiaraj, Manickam; Bhargava, Kalpana; Sethy, Niroj Kumar; Karunakaran, Chandran

    2015-06-01

    This work presents a novel electrochemical assay for the collective measurement of nitric oxide (NO) and its metabolites nitrite (NO2(-)) and nitrate (NO3(-)) in volume miniaturized sample at low cost using copper(II) chlorophyllin (CuCP) modified sensor electrode. Zinc oxide (ZnO) incorporated screen printed carbon electrode (SPCE) was used as a host matrix for the immobilization of CuCP. The morphological changes of the ZnO and CuCP modified electrodes were investigated using scanning electron microscopy. The electrochemical characterization of CuCP-ZnO-SPCE exhibited the characteristic quasi-reversible redox peaks at the potential +0.06 V versus Ag/AgCl. This biosensor electrode showed a wide linear range of response over NO concentrations from 200 nM to 500 μM with a detection limit of 100 nM and sensitivity of 85.4 nA μM(-1). Furthermore, NO2(-) measurement showed linearity of 100 nM to 1mM with a detection limit of 100 nM for NO2(-) and sensitivity of 96.4 nA μM(-1). Then, the concentration of NO3(-) was measured after its enzymatic conversion into NO2(-). Using this assay, the concentrations of NO, NO2(-), and NO3(-) present in human plasma samples before and after beetroot supplement were estimated using suitable membrane coated CuCP-ZnO-SPCE and validated with the standard Griess method. PMID:25700865

  19. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance

    PubMed Central

    Bekele, Raie T.; Venkatraman, Ganesh; Liu, Rong-Zong; Tang, Xiaoyun; Mi, Si; Benesch, Matthew G. K.; Mackey, John R.; Godbout, Roseline; Curtis, Jonathan M.; McMullen, Todd P. W.; Brindley, David N.

    2016-01-01

    Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer. PMID:26883574

  20. The Nicotiana attenuata GLA1 lipase controls the accumulation of Phytophthora parasitica-induced oxylipins and defensive secondary metabolites

    PubMed Central

    Schuck, Stefan; Kallenbach, Mario; Baldwin, Ian T.; Bonaventure, Gustavo

    2014-01-01

    Nicotiana attenuata plants silenced in the expression of GLYCEROLIPASE A1 (ir-gla1 plants) are compromised in the herbivore- and wound-induced accumulation of jasmonic acid (JA). However, these plants accumulate wild-type (WT) levels of JA and divinyl-ethers (DVE) during Phytophthora parasitica infection (Bonaventure et al., 2011). By profiling oxylipin-enriched fractions with targeted and untargeted LC-QTOF approaches, we demonstrate that the accumulation of 9-hydroxy-10E,12Z-octadecadienoic acid (9-OH-18:2) and additional C18 and C19 oxylipins is reduced by ca. 20-fold in P. parasitica infected ir-gla1 leaves compared to WT. This reduced accumulation of oxylipins was accompanied by a reduced accumulation of unsaturated free fatty acids and specific lysolipid species. Untargeted metabolic profiling of total leaf extracts showed that 87 metabolites accumulated differentially in leaves of P. parasitica-infected ir-gla1 plants with glycerolipids, hydroxylated-diterpene glycosides and phenylpropanoid derivatives accounting together for ca. 20% of these 87 metabolites. Thus, P. parasitica-induced oxylipins may participate in the regulation of metabolic changes during infection. Together, the results demonstrate that GLA1 plays a distinct role in the production of oxylipins during biotic stress responses, supplying substrates for 9-OH-18:2 and additional C18 and C19 oxylipin formation during P. parasitica infection whereas supplying substrates for the biogenesis of JA during herbivory and mechanical wounding. PMID:24450863

  1. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793

  2. Oxidative stress is important in the pathogenesis of liver injury induced by sulindac and lipopolysaccharide cotreatment

    PubMed Central

    Zou, Wei; Roth, Robert A.; Younis, Husam S.; Burgoon, Lyle D.; Ganey, Patricia E.

    2010-01-01

    Among all the nonsteroidal anti-inflammatory drugs, sulindac (SLD) is associated with the greatest incidence of idiosyncratic hepatotoxicity in humans. Previously, an animal model of SLD-induced idiosyncratic hepatotoxicity was developed by cotreating rats with a nonhepatotoxic dose of LPS. Tumor necrosis factor-alpha (TNF) was found to be critically important to the pathogenesis. In this study, the mechanism of liver injury induced by SLD/LPS cotreatment was further explored. Protein carbonyls, products of oxidative stress, were elevated in liver mitochondria of SLD/LPS-cotreated rats. The results of analyzing gene expression in livers of rats before the onset of liver injury indicated that genes associated with oxidative stress were selectively regulated by SLD/LPS cotreatment. Antioxidant treatment with either ebselen or dimethyl sulfoxide attenuated SLD/LPS-induced liver injury. The role of oxidative stress was further investigated in vitro. SLD sulfide, the toxic metabolite of SLD, enhanced TNF-induced cytotoxicity and caspase 3/7 activity in HepG2 cells. SLD sulfide also increased dichlorofluorescein fluorescence, suggesting generation of reactive oxygen species (ROS). Hydrogen peroxide and TNF cotreatment of HepG2 cells caused greater cytotoxicity than either treatment alone. Either antioxidant tempol or a pancaspase inhibitor Z-VAD-FMK decreased cell death as well as caspase 3/7 activity induced by SLD sulfide/TNF coexposure. These results indicate that SLD/LPS treatment causes oxidative stress in livers of rats and suggest that ROS are important in SLD/LPS-induced liver injury in vivo. Furthermore, ROS contribute to the cytotoxic interaction of SLD and TNF by activating caspase 3/7. PMID:20371263

  3. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  4. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  5. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    PubMed

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  6. Simultaneous Determination of 6-Mercaptopurine and its Oxidative Metabolites in Synthetic Solutions and Human Plasma using Spectrophotometric Multivariate Calibration Methods

    PubMed Central

    Sorouraddin, Mohammad-Hossein; Khani, Mohammad-Yaser; Amini, Kaveh; Naseri, Abdolhossein; Asgari, Davoud; Rashidi, Mohammad-Reza

    2011-01-01

    Introduction 6-Mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). It is catabolized to 6-thiouric acid (6TUA) through 8-hydroxo-6-mercaptopurine (8OH6MP) or 6-thioxanthine (6TX) intermediates. Methods High-performance liquid chromatography (HPLC) is usually used to determine the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples. In the present study, the multivariate calibration methods, partial least squares (PLS-1) and principle component regression (PCR) have been developed and validated for the simultaneous determination of 6MP and its oxidative metabolites (6TUA, 8OH6MP and 6TX) without analyte separation in spiked human plasma. Mixtures of 6MP, 8-8OH6MP, 6TX and 6TUA have been resolved by PLS-1 and PCR to their UV spectra. Results Recoveries (%) obtained for 6MP, 8-8OH6MP, 6TX and 6TUA were 94.5-97.5, 96.6-103.3, 95.1-96.9 and 93.4-95.8, respectively, using PLS-1 and 96.7-101.3, 96.2-98.8, 95.8-103.3 and 94.3-106.1, respectively, using PCR. The NAS (Net analyte signal) concept was used to calculate multivariate analytical figures of merit such as limit of detection (LOD), selectivity and sensitivity. The limit of detections for 6MP, 8-8OH6MP, 6TX and 6TUA were calculated to be 0.734, 0.439, 0.797 and 0.482 μmol L-1, respectively, using PLS and 0.724, 0.418, 0783 and 0.535 μmol L-1, respectively, using PCR. HPLC was also applied as a validation method for simultaneous determination of these thiopurines in the synthetic solutions and human plasma. Conclusion Combination of spectroscopic techniques and chemometric methods (PLS and PCR) has provided a simple but powerful method for simultaneous analysis of multicomponent mixtures PMID:23678408

  7. Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants.

    PubMed

    Niki, Etsuo

    2016-05-18

    Unregulated oxidation of biological molecules induced by multiple oxidants has been implicated in the pathogenesis of various diseases. Consequently, the effects of antioxidants contained in foods, beverages and supplements on the maintenance of health and prevention of diseases have attracted much attention of the public as well as scientists. However, recent human studies have shown inconsistent results and failed to demonstrate the beneficial effects of antioxidants. The mechanisms and dynamics of antioxidant action and assessment of antioxidant capacity have been the subject of extensive studies and arguments. In the present article, the antioxidant capacity has been reviewed focusing on two main issues: the capacity of antioxidants to scavenge multiple reactive oxidants and to inhibit plasma lipid oxidation induced by different biological oxidants. It is emphasized that the capacity of antioxidants to scavenge reactive oxidants does not always correlate linearly with the capacity to inhibit lipid oxidation and that it is necessary to specify the oxidant to assess the efficacy of antioxidants, since multiple oxidants contribute to oxidative damage in vivo and the effects of antioxidants depend on the nature of oxidants. A convenient and rapid method using a microplate reader is discussed for assessing the antioxidant capacity against plasma lipid oxidation induced by multiple oxidants including peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen. PMID:27090496

  8. Apo-10'-lycopenoic acid, an enzymatic metabolite of lycopene, induces Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemopreventive effects of lycopene against certain types of cancers have been proposed to be mediated by its oxidative products/metabolites. Lycopene can be cleaved by carotene 9',10'-oxygenase at its 9',10' double bond to form apo-10'-lycopenoids, including apo-10'-lycopenal, -lycopenol and -...

  9. Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra

    PubMed Central

    Praet, Jelle; Orije, Jasmien; Kara, Firat; Guglielmetti, Caroline; Santermans, Eva; Daans, Jasmijn; Hens, Niel; Verhoye, Marleen; Berneman, Zwi; Ponsaerts, Peter; Van der Linden, Annemie

    2015-01-01

    Conventional MRI is frequently used during the diagnosis of multiple sclerosis but provides only little additional pathological information. Proton MRS (1H-MRS), however, provides biochemical information on the lesion pathology by visualization of a spectrum of metabolites. In this study we aimed to better understand the changes in metabolite concentrations following demyelination of the white matter. Therefore, we used the cuprizone model, a well-established mouse model to mimic type III human multiple sclerosis demyelinating lesions. First, we identified CX3CL1/CX3CR1 signaling as a major regulator of microglial activity in the cuprizone mouse model. Compared with control groups (heterozygous CX3CR1+/− C57BL/6 mice and wild type CX3CR1+/+ C57BL/6 mice), microgliosis, astrogliosis, oligodendrocyte cell death and demyelination were shown to be highly reduced or absent in CX3CR1−/− C57BL/6 mice. Second, we show that 1H-MRS metabolite spectra are different when comparing cuprizone-treated CX3CR1−/− mice showing mild demyelination with cuprizone-treated CX3CR1+/+ mice showing severe demyelination and demyelination-associated inflammation. Following cuprizone treatment, CX3CR1+/+ mice show a decrease in the Glu, tCho and tNAA concentrations as well as an increased Tau concentration. In contrast, following cuprizone treatment CX3CR1−/− mice only showed a decrease in tCho and tNAA concentrations. Therefore, 1H-MRS might possibly allow us to discriminate demyelination from demyelination-associated inflammation via changes in Tau and Glu concentration. In addition, the observed decrease in tCho concentration in cuprizone-induced demyelinating lesions should be further explored as a possible diagnostic tool for the early identification of human MS type III lesions. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25802215

  10. Effect of cotreatment of aspirin metabolites on mitomycin C-induced genotoxicity using the somatic mutation and recombination test in Drosophila melanogaster.

    PubMed

    Niikawa, Miki; Nakamura, Takeshi; Nagase, Hisamitsu

    2006-01-01

    In our previous reports, aspirin, an antipyretic analgesic, suppressed the genotoxicity of mitomycin C (MMC) in a somatic mutation and recombination test (SMART) in Drosophila melanogaster. In order to reveal the mechanism of the anti-genotoxicity of aspirin, we evaluated the suppressing ability of each aspirin metabolite, such as salicylic acid (SA), salicyluric acid (SUA), gentisic acid (GA), gentisuric acid (GUA), and 2,3-dihydroxybenzoic acid (DHBA), in SMART in Drosophila melanogaster using the cotreatment protocol in this report. SUA, GA, GUA, and DHBA reduced the number of the three types of spot induced by MMC without decrease of survival. These aspirin metabolites decreased the genotoxicity frequency of MMC for total spots in a dose-dependent manner. Furthermore, each metabolite decreased the genotoxicity frequency of MMC by approximately 80% at a dose of 40 mg/bottle, respectively. It is suggested that these metabolites are the main substances of anti-genotoxicity in the aspirin metabolic pathway. PMID:16931440

  11. Metabolite-specific (IgG) and drug-specific antibodies (IgG, IgM) in two cases of trimethoprim-sulfamethoxazole-induced immune thrombocytopenia.

    PubMed

    Kiefel, V; Santoso, S; Schmidt, S; Salama, A; Mueller-Eckhardt, C

    1987-01-01

    Two cases of trimethoprim-sulfamethoxazole (TMP-SMX)-induced immune thrombocytopenia are reported in which unusual drug-dependent platelet antibodies were demonstrated by immunofluorescence and enzyme-linked immunosorbent assay. Whereas two distinct sulfamethoxazole-dependent antibodies of the IgG and IgM class were detectable in the serum of one patient, the serum of the other patient contained a platelet antibody exclusively reactive with N-4-acetyl-sulfamethoxazole, a metabolite of sulfamethoxazole. Urine from a healthy volunteer collected after administration of therapeutic doses of TMP-SMX proved to be an appropriate source of ex vivo metabolites for antibody testing. The results of this study stress the role of metabolite-specific antibodies in drug-dependent immune thrombocytopenia and underscore the necessity of including metabolite preparations of drugs in serologic analyses. PMID:3296342

  12. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.

    PubMed

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  13. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    PubMed Central

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  14. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors.

    PubMed

    Cunha, Andréia S; Matheus, Filipe C; Moretti, Morgana; Sampaio, Tuane B; Poli, Anicleto; Santos, Danúbia B; Colle, Dirleise; Cunha, Mauricio P; Blum-Silva, Carlos H; Sandjo, Louis P; Reginatto, Flávio H; Rodrigues, Ana Lúcia S; Farina, Marcelo; Prediger, Rui D

    2016-10-01

    Dyskinesia consists in a series of trunk, limbs and orofacial involuntary movements that can be observed following long-term pharmacological treatment in some psychotic and neurological disorders such as schizophrenia and Parkinson's disease, respectively. Agmatine is an endogenous arginine metabolite that emerges as neuromodulator and a promising agent to manage diverse central nervous system disorders by modulating nitric oxide (NO) pathway, glutamate NMDA receptors and oxidative stress. Herein, we investigated the effects of a single intraperitoneal (i.p.) administration of different agmatine doses (10, 30 or 100mg/kg) against the orofacial dyskinesia induced by reserpine (1mg/kg,s.c.) in mice by measuring the vacuous chewing movements and tongue protusion frequencies, and the duration of facial twitching. The results showed an orofacial antidyskinetic effect of agmatine (30mg/kg, i.p.) or the combined administration of sub-effective doses of agmatine (10mg/kg, i.p.) with the NMDA receptor antagonists amantadine (1mg/kg, i.p.) and MK801 (0.01mg/kg, i.p.) or the neuronal nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI; 0.1mg/kg, i.p.). Reserpine-treated mice displayed locomotor activity deficits in the open field and agmatine had no effect on this response. Reserpine increased nitrite and nitrate levels in cerebral cortex, but agmatine did not reverse it. Remarkably, agmatine reversed the decrease of dopamine and non-protein thiols (NPSH) levels caused by reserpine in the striatum. However, no changes were observed in striatal immunocontent of proteins related to the dopaminergic system including tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter type 2, pDARPP-32[Thr75], dopamine D1 and D2 receptors. These results indicate that the blockade of NO pathway, NMDAR and oxidative stress are possible mechanisms associated with the protective effects of agmatine against the orofacial dyskinesia induced by reserpine in mice. PMID

  15. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells. PMID:25318762

  16. Anticancer drugs and hyperthermia enhance cytotoxicity induced by polyamine enzymatic oxidation products.

    PubMed

    Marra, M; Agostinelli, E; Tempera, G; Lombardi, A; Meo, G; Budillon, A; Abbruzzese, A; Giuberti, G; Caraglia, M

    2007-08-01

    A correlation between regulation of cell proliferation and polyamine metabolism is described. The latter can enter protein synthesis through the modification of eukaryotic initiation factor 5A (eIF5A) and the formation of the peculiar amino acid hypusine. Specific inhibitors of hypusine formation induce apoptosis that can be potentiated by the combination with cytokines such as interferonalpha (IFNalpha) that itself decreases hypusine synthesis. We have also demonstrated that the concomitant treatment of cancer cells with IFNalpha and the protein synthesis inhibitor fusion protein TGFalpha/Pseudomonas Aeruginosa toxin synergize in inducing cancer cell growth inhibition. Another way used by polyamines to induce apoptosis is the generation of intracellular oxidative stress through the interaction with bovine serum amine oxidase (BSAO). This enzyme used simultaneously to spermine induces apoptosis, necrosis, inhibition of cell proliferation and inhibition of DNA and protein synthesis in several cell types. The enzymatic oxidation products of polyamine, H2O2 and aldehyde(s) cause these effects. We have recently found that the cytotoxicity of anti-cancer agents, either etoposide or docetaxel, in cancer cells is potentiated in the presence of BSAO/Spermine. In conclusion, polyamine metabolites could be useful in the design of new therapeutic strategies. PMID:17610128

  17. Dipyrone metabolite 4-MAA induces hypothermia and inhibits PGE2-dependent and -independent fever while 4-AA only blocks PGE2-dependent fever

    PubMed Central

    Malvar, David do C; Aguiar, Fernando A; Vaz, Artur de L L; Assis, Débora C R; de Melo, Miriam C C; Jabor, Valquíria A P; Kalapothakis, Evanguedes; Ferreira, Sérgio H; Clososki, Giuliano C; de Souza, Glória E P

    2014-01-01

    BACKGROUND AND PURPOSE The antipyretic and hypothermic prodrug dipyrone prevents PGE2-dependent and -independent fever induced by LPS from Escherichia coli and Tityus serrulatus venom (Tsv) respectively. We aimed to identify the dipyrone metabolites responsible for the antipyretic and hypothermic effects. EXPERIMENTAL APPROACH Male Wistar rats were treated i.p. with indomethacin (2 mg·kg−1), dipyrone, 4-methylaminoantipyrine (4-MAA), 4-aminoantipyrine (4-AA) (60–360 mg·kg−1), 4-formylaminoantipyrine, 4-acethylaminoantipyrine (120–360 mg·kg−1) or vehicle 30 min before i.p. injection of LPS (50 μg·kg−1), Tsv (150 μg·kg−1) or saline. Rectal temperatures were measured by tele-thermometry and dipyrone metabolite concentrations determined in the plasma, CSF and hypothalamus by LC-MS/MS. PGE2 concentrations were determined in the CSF and hypothalamus by elisa. KEY RESULTS In contrast to LPS, Tsv-induced fever was not followed by increased PGE2 in the CSF or hypothalamus. The antipyretic time-course of 4-MAA and 4-AA on LPS-induced fever overlapped with the period of the highest concentrations of 4-MAA and 4-AA in the hypothalamus, CSF and plasma. These metabolites reduced LPS-induced fever and the PGE2 increase in the plasma, CSF and hypothalamus. Only 4-MAA inhibited Tsv-induced fever. The higher doses of dipyrone and 4-MAA also induced hypothermia. CONCLUSIONS AND IMPLICATIONS The presence of 4-MAA and 4-AA in the CSF and hypothalamus was associated with PGE2 synthesis inhibition and a decrease in LPS-induced fever. 4-MAA was also shown to be an antipyretic metabolite for PGE2-independent fever induced by Tsv suggesting that it is responsible for the additional antipyretic mechanism of dipyrone. Moreover, 4-MAA is the hypothermic metabolite of dipyrone. PMID:24712707

  18. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  19. IRON OXIDE NANOPARTICLE-INDUCED OXIDATIVE STRESS AND INFLAMMATION

    EPA Science Inventory

    1. Nanoparticle Physicochemical Characterizations
    2. We first focused on creating NP systems that could be used to test our hypotheses and assessing their stability in aqueous media. The iron oxide NP systems were not stable in cell culture medium o...

    3. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

      PubMed

      Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

      2014-12-01

      Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  1. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  2. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage.

    PubMed

    Wang, Ying-Jan; Yang, Ming-Chen; Pan, Ming-Hsiung

    2008-12-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several diseases, including hepatic disorder and diabetic polyneuropathy. However, the effects of LA or its reduced form, dihydrolipoic acid (DHLA), on cancer chemoprevention has seldom been studied. Tetrachlorohydroquinone (TCHQ) is a toxic metabolite of pentachlorophenol (PCP) that was proven to be a tumor promoter in our previous study. We recently reported that DHLA can inhibit DMBA/TPA-induced skin tumor formation through its anti-inflammatory and anti-oxidizing functions. In the present study, we further examined the effects of DHLA on DMBA/TCHQ-induced skin tumor formation and the possible mechanisms. We found that DHLA significantly inhibited tumor incidence and tumor multiplicity in DMBA/TCHQ-induced skin tumor formation. Administration of DHLA prevented ROS generation, cytotoxicity, genotoxicity and apoptotic cell death in cells treated with TCHQ. In addition, activation of JNK and p38 MAPK may be involved in TCHQ-mediated apoptosis. Nonetheless, the detailed mechanisms of DHLA in attenuating TCHQ-induced skin tumor promotion are still unclear and need to be further investigated. We conclude that DHLA may be a useful protective agent against TCHQ-induced toxicity in epithelial cells, and for reversing TCHQ-induced damage in mouse skin. PMID:18951944

  3. [Pharmacokinetics of lidocaine and its metabolites in dog. Comparison between normal and CCl4-induced hepatic lesion].

    PubMed

    Yamane, J

    1989-09-01

    Pharmacokinetic analysis of lidocaine (Lid) and its metabolites, monoethylglycinexylidide (MEGX) and glycinexylidide (GX), was performed in a dog bearing carbon tetrachloride (CCl4, 0.75 ml/kg ip)-induced acute hepatitis. Following pentobarbital sodium (25 mg/kg iv) anesthesia, lidocaine hydrochloride (2.5 mg/kg iv) was given and arterial blood was drawn 2, 5, 10, 15, 30, 45, 60, 90, and 120 min after administration. Lid and its metabolites in plasma were extracted with chloroform-hexane-isopropanol (60 : 30 : 10), and organic layer was dried down at 50 degrees C under N2. The residue was dissolved in 50mM phosphoric acid and subjected to HPLC analysis. 4-compartment model was introduced to analyze pharmacokinetic parameters, and which gave the most reasonable fit with actual results. Control experiment was carried out using identical dog with acute hepatitis. The following results were given: 1) Elimination of Lid was slightly depressed, but T1/2 was not altered. Plasma level of Lid was kept higher. 2) As for MEGX, the formation was depressed, and upto 23 min after Lid administration, MEGX concentration in the dog with acute hepatitis was lower than that of control, but after 23 min it was vice versa. 3) As for GX, the formation was depressed, but the elimination was not affected. In the dog with CCl4-induced hepatitis, metabolism of Lid was suppressed, and which resulted in maintaining a relatively higher levels of Lid and MEGX concentration in plasma. These results suggested that care should be taken to avoid acute poisoning with Lid especially in patients with acute hepatitis. PMID:2489793

  4. NaCl-induced accelerated oxidation of chromium

    SciTech Connect

    Shinata, Y.; Nishi, Y.

    1986-10-01

    This paper describes new phenomena about chloride-induced ;accelerated oxidation of chromium. Thermal analysis was adopted to examine the oxidation, which was studied particularly in the case of NaCl. The presence of NaCl remarkably accelerates the oxidation of chromium. The process occurs below the melting point of NaCl, and the main reaction product is Cr/sub 2/O/sub 3/. In the accelerated oxidation NaCl plays a catalytic role because it is not consumed significantly in the process. DTA analysis reveals that the heat of reaction also accelerates the rate of oxidation, especially at an early stage of the reaction. The accelerated oxidation takes place similarly under the presence of chlorides other than NaCl, but the oxidation rate depends on the kind of salt. Therefore the Cl/sup -/ anion plays an important role in the process, while the nature of the cation affects the rate of acceleration.

  5. Characterization of human metabolism and disposition of levo-tetrahydropalmatine: Qualitative and quantitative determination of oxidative and conjugated metabolites.

    PubMed

    Xiao, Weibin; Shen, Guolin; Zhuang, Xiaomei; Ran, Xiaorong; Zhu, Mingshe; Li, Hua

    2016-09-01

    Levo-tetrahydropalmatine (l-THP) is a tetrahydroprotoberberine isoquinoline alkaloid and has been used as an analgesic agent in China for over 50 years. Recent studies revealed that l-THP was effective in the treatment of drug addiction. However, the plasma metabolic profile, mass balance and clearance pathways of l-THP in human remain unknown. In the present study, an analytical strategy was developed for qualitative and quantitative investigation of metabolism and disposition of l-THP in human. Detection and structural characterization of l-THP metabolites were performed using liquid chromatography-quadrupole time-of-flight mass spectrometry. Selected major metabolites in plasma, urine and feces determined by liquid chromatography with UV detection were further quantified using a triple quadruple mass spectrometry and reference standards. A total of 20 metabolites were identified, most of which were formed via demethylation, mono-hydroxylation, and glucuronidation and sulfonation of desmethyl metabolites. Five major metabolites accounted for over 10% of the parent drug concentration in plasma. Major urinary and fecal metabolites and the parent drug that were monitored for 72h accounted for 46.3% of the dose, while only 0.16% of the dose was the unchanged drug. Multiple demethylations followed by glucuronide and sulfate conjugations and renal excretion were the major drug clearance pathways of l-THP in human. PMID:27343900

  6. The anticancer drug metabolites endoxifen and 4-hydroxy-tamoxifen induce toxic effects on Daphnia pulex in a two-generation study.

    PubMed

    Borgatta, Myriam; Decosterd, Laurent-Arthur; Waridel, Patrice; Buclin, Thierry; Chèvre, Nathalie

    2015-07-01

    Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3 μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4 μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome. PMID:25817760

  7. Is 2-propyl-4-pentenoic acid, a hepatotoxic metabolite of valproate, responsible for valproate-induced hyperammonemia?

    PubMed

    Kondo, T; Ishida, M; Kaneko, S; Hirano, T; Otani, K; Fukushima, Y; Muranaka, H; Koide, N; Yokoyama, M; Nakata, S

    1992-01-01

    To investigate the association between valproate metabolism (VPA) and VPA-induced hyperammonemia together with the contribution of VPA hepatotoxicity risk factors such as young age, polypharmacy, and high serum VPA levels to VPA-induced hyperammonemia, plasma ammonia (NH3) levels, serum levels of VPA and its metabolites, and biochemical parameters were determined in 98 patients treated with VPA (53 monopharmacy cases and 45 polypharmacy cases). In monopharmacy patients, plasma NH3 levels did not depend on age, VPA dosage or serum levels. Serum level of 2-propyl-4-pentenoic acid (4-en) showed a negative correlation with plasma NH3 level in the monopharmacy group. In polypharmacy patients, plasma NH3 levels, serum glutamic pyruvic transaminase, and gamma-glutamyl-transpeptidase were significantly higher, while level/dose VPA ratio, 2-en-VPA serum level, and bilirubin were significantly lower than those in monopharmacy patients. These results suggest that young age and relatively high VPA serum levels within the therapeutic range were unlikely to be risk factors for common hyperammonemia associated with VPA therapy and that 4-en was not causally related to this adverse effect. The decreased serum level of 2-en-VPA in polypharmacy patients may be a reflection of a certain mitochondrial dysfunction, which might be a mechanism of the increased NH3 levels. The changes in biochemical parameters in polypharmacy patients were considered results of the enzyme-inducing activity of coadministered antiepileptic drugs (AEDs). PMID:1350534

  8. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    PubMed

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (p<0.05 respectively) and TB (p<0.001) were higher in SCA subjects than in NSCA subjects. [R] and [NOx] were higher in NSCA subjects (p<0.001 and p<0.05 respectively). Supplementation caused greater percent increases in [R], and [NOX] in SCA than in NSCA subjects (p<0.001 in each case). l-Arginine caused greater percent reductions in ALT and AST in SCA subjects but greater percent reduction in ALP in NSCA subjects (p<0.001 in each case). Changes in [MDA] and [TB] in the two groups were similar. Study shows that chronic, oral, low-dose supplementation with l-arginine improved liver function, oxidative stress, plasma arginine concentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects. PMID:27156372

  9. Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization MS.

    PubMed

    López de Laorden, Carlos; Beloqui, Ana; Yate, Luis; Calvo, Javier; Puigivila, Maria; Llop, Jordi; Reichardt, Niels-Christian

    2015-01-01

    Due to their electrical conductivity and optical transparency, slides coated with a thin layer of indium tin oxide (ITO) are the standard substrate for protein imaging mass spectrometry on tissue samples by MALDI-TOF MS. We have now studied the rf magnetron sputtering deposition parameters to prepare ITO thin films on glass substrates with the required nanometric surface structure for their use in the matrix-free imaging of metabolites and small-molecule drugs, without affecting the transparency required for classical histology. The custom-made surfaces were characterized by atomic force microscopy, scanning electron microscopy, ellipsometry, UV, and laser desorption ionization MS (LDI-MS) and employed for the LDI-MS-based analysis of glycans and druglike molecules, the quantification of lactose in milk by isotopic dilution, and metabolite imaging on mouse brain tissue samples. PMID:25411795

  10. Nitroxides protect against peroxynitrite-induced nitration and oxidation.

    PubMed

    Sadowska-Bartosz, Izabela; Gajewska, Agnieszka; Skolimowski, Janusz; Szewczyk, Rafał; Bartosz, Grzegorz

    2015-12-01

    Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration. PMID:26546694

  11. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    PubMed Central

    Rebbani, Khadija; Tsukiyama-Kohara, Kyoko

    2016-01-01

    About 150 million people worldwide are chronically infected with hepatitis C virus (HCV). The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24) is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis. PMID:27293514

  12. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers

    PubMed Central

    Papadopoulou, Evangelia S.; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania

    2015-01-01

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. PMID:26590271

  13. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  14. Protective effect of secondary plant metabolites from Ipomoea aquatica Forsk. against carbofuran induced damages.

    PubMed

    Datta, Sanjukta; Sinha, Mahuya; Das, Dipesh; Ghosh, Santinath; Dhar, Pubali

    2013-12-01

    Plausible interactions between food contaminants and natural constituents in vivo and protective effect of polyphenols present in I. aquatica against carbofuran toxicity in Charles Foster rats were evaluated. Determinations based on antioxidant enzyme activities showed significant alterations in glutathione, glutathione peroxidase, superoxide dismutase and catalase in tissues (liver and brain) and plasma of pesticide treated group while polyphenolic extracts from I. aquatica (IAE) attenuated their activities when given alongwith carbofuran. IAE decreased enhanced lipid peroxidation levels in plasma and erythrocyte membrane and cholesterol levels in brain and plasma. IAE also minimized histopathological degenerative changes produced by carbofuran. While single cell gel electrophoresis showed that secondary metabolites in leafy vegetables produced a combinatorial effect with pesticide at cellular level, DNA fragmentation level in bone marrow cells showed a decline in the IAE treated rats. Food safety adversely affected by various chemical contaminants can be retained by plant polyphenols and secondary plant constituents that can be found together in bolus. Therefore, the present study gives an insight into the protective role of naturally found polyphenols against pesticide toxicity. PMID:24579377

  15. Radiation-Induced Growth Retardation and Microstructural and Metabolite Abnormalities in the Hippocampus

    PubMed Central

    Zawaski, Janice A.; Sahnoune, Iman

    2016-01-01

    Cranial radiotherapy (CRT) increases survival in pediatric brain-tumor patients but can cause deleterious effects. This study evaluates the acute and long-term impact of CRT delivered during childhood/adolescence on the brain and body using a rodent model. Rats received CRT, either 4 Gy fractions × 5 d (fractionated) or a cumulative dose of 20 Gy (single dose) at 28 d of age. Animals were euthanized 1 d, 5 d, or 3.5 mo after CRT. The 3.5 mo group was imaged prior to euthanasia. At 3.5 mo, we observed significant growth retardation in irradiated animals, versus controls, and the effects of single dose on brain and body weights were more severe than fractionated. Acutely single dose significantly reduced body weight but increased brain weight, whereas fractionation significantly reduced brain but not body weights, versus controls. CRT suppressed cell proliferation in the hippocampal subgranular zone acutely. Fractional anisotropy (FA) in the fimbria was significantly lower in the single dose versus controls. Hippocampal metabolite levels were significantly altered in the single dose animals, reflecting a heightened state of inflammation that was absent in the fractionated. Our findings indicate that despite the differences in severity between the doses they both demonstrated an effect on cell proliferation and growth retardation, important factors in pediatric CRT. PMID:27242931

  16. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  17. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress

    PubMed Central

    Uetaki, Megumi; Tabata, Sho; Nakasuka, Fumie; Soga, Tomoyoshi; Tomita, Masaru

    2015-01-01

    Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death. PMID:26350063

  18. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress.

    PubMed

    Uetaki, Megumi; Tabata, Sho; Nakasuka, Fumie; Soga, Tomoyoshi; Tomita, Masaru

    2015-01-01

    Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death. PMID:26350063

  19. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide

    PubMed Central

    Wang, Zeneng; Tang, W. H. Wilson; Buffa, Jennifer A.; Fu, Xiaoming; Britt, Earl B.; Koeth, Robert A.; Levison, Bruce S.; Fan, Yiying; Wu, Yuping; Hazen, Stanley L.

    2014-01-01

    Aims Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. Methods and results We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4–6.2)μM, 9.8 (7.9–12.2)μM, and 41.1 (32.5–52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03–1.74), P < 0.05], and betaine levels [1.33 (1.03–1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Conclusion Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO. PMID:24497336

  20. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    PubMed Central

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of

  1. Fish oil rich in eicosapentaenoic acid protects against oxidative stress-related renal dysfunction induced by TCDD in Wistar rats.

    PubMed

    Palaniswamy, Kalai Selvi; Vishwanadha, Vijaya Padma; Ramalingam Singaravelu, Saranya

    2014-05-01

    Humans are systemically exposed to persistent organic pollutants, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has become a major environmental concern. Exposure to TCDD results in a wide variety of adverse health effects which is mediated by oxidative stress through CYP1A1 activation and arachidonic acid metabolites. Eicosapentaenoic acid (EPA) exhibits antioxidant property and competes with arachidonic acid in membrane phospholipids and produces anti-inflammatory EPA derivatives. Since both EPA and its derivatives have been reported to enhance the antioxidant mechanism, the present study aimed at studying whether EPA could offer protection against TCDD-induced oxidative stress and nephrotoxicity in Wistar rats. Estimation of kidney markers (serum urea and creatinine) and histopathological studies revealed that EPA treatment significantly reduced TCDD-induced renal damage. TCDD-induced oxidative damage was reflected in a significant increase in CYP1A1 activity and lipid peroxide levels with a concomitant decline in non-enzymic antioxidant (GSH) and various enzymic antioxidants such catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutathione peroxidase (GPx). In addition, TCDD-induced oxidative stress also resulted in decline in Na(+)-K(+) and Mg(2+)ATPases activities with increase in Ca(2+) ATPases activity. Oral treatment with EPA showed a significant cytoprotection against TCDD-induced renal oxidative stress by decreased CYP1A1 activity and enhanced antioxidant status. TCDD-induced alterations in ATPase enzyme activities were also prevented by EPA treatment. Our results show clear evidence that EPA ameliorates TCDD-induced oxidative stress and kidney damage; thus suggest the potential of EPA as an effective therapeutic agent against toxic effects mediated through redox imbalance. PMID:24114387

  2. Chiral characterization of deprenyl-N-oxide and other deprenyl metabolites by capillary electrophoresis using a dual cyclodextrin system in rat urine.

    PubMed

    Tábi, Tamás; Magyar, Kálmán; Szöko, Eva

    2003-08-01

    A chiral capillary electrophoresis method has been developed for the simultaneous separation of the enantiomers of deprenyl and eight of its metabolites, among them the recently described metabolite deprenyl-N-oxide. Although heptakis-(2,6-di-O-methyl)-beta-cyclodextrin (DIMEB) was suitable for the enantioresolution of deprenyl and its dealkylated derivatives, the enantiomers of deprenyl-N-oxide were just partly resolved. Carboxymethyl-beta-cyclodextrin (CMBCD) in as low as 2 mM concentration was capable of the enantiomer separation of all the nine examined compounds, however co-migration of 1R,2S-(-)-norephedrine and 1R,2R-(-)-pseudoephedrine, as well as 1S,2R-(+)-ephedrine and R-(-)-amphetamine was observed. This problem could be overcome by the use of a dual cyclodextrin system containing 4 mM DIMEB in addition to 2 mM CMBCD; simultaneous separation of all the compounds could be achieved. The optimized method was used for the analysis of rat urine samples after 10 days of treatment of animals with either R-(-)- or S-(+)-deprenyl. The stereospecific biotransformation of both deprenyl enantiomers was confirmed, and the stereoselectivity of N-oxide formation was demonstrated. PMID:12900880

  3. Biotransformation of Daclatasvir In Vitro and in Nonclinical Species: Formation of the Main Metabolite by Pyrrolidine δ-Oxidation and Rearrangement.

    PubMed

    Li, Wenying; Zhao, Weiping; Liu, Xiaohong; Huang, Xiaohua; Lopez, Omar D; Leet, John E; Fancher, R Marcus; Nguyen, Van; Goodrich, Jason; Easter, John; Hong, Yang; Caceres-Cortes, Janet; Chang, Shu Y; Ma, Li; Belema, Makonen; Hamann, Lawrence G; Gao, Min; Zhu, Mingshe; Shu, Yue-Zhong; Humphreys, W Griffith; Johnson, Benjamin M

    2016-06-01

    Daclatasvir is a first-in-class, potent, and selective inhibitor of the hepatitis C virus nonstructural protein 5A replication complex. In support of nonclinical studies during discovery and exploratory development, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance were used in connection with synthetic and radiosynthetic approaches to investigate the biotransformation of daclatasvir in vitro and in cynomolgus monkeys, dogs, mice, and rats. The results of these studies indicated that disposition of daclatasvir was accomplished mainly by the release of unchanged daclatasvir into bile and feces and, secondarily, by oxidative metabolism. Cytochrome P450s were the main enzymes involved in the metabolism of daclatasvir. Oxidative pathways included δ-oxidation of the pyrrolidine moiety, resulting in ring opening to an aminoaldehyde intermediate followed by an intramolecular reaction between the aldehyde and the proximal imidazole nitrogen atom. Despite robust formation of the resulting metabolite in multiple systems, rates of covalent binding to protein associated with metabolism of daclatasvir were modest (55.2-67.8 pmol/mg/h) in nicotinamide adenine dinucleotide phosphate (reduced form)-supplemented liver microsomes (human, monkey, rat), suggesting that intramolecular rearrangement was favored over intermolecular binding in the formation of this metabolite. This biotransformation profile supported the continued development of daclatasvir, which is now marketed for the treatment of chronic hepatitis C virus infection. PMID:27029743

  4. Quantitation of sorafenib and its active metabolite sorafenib N-oxide in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Lie; Zhao, Ming; Navid, Fariba; Pratz, Keith; Smith, B Doug; Rudek, Michelle A; Baker, Sharyn D

    2010-11-01

    A simple and rapid method with high performance liquid chromatography/tandem mass spectrometry is described for the quantitation of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma. A protein precipitation extraction procedure was applied to 50 μL of plasma. Chromatographic separation of the two analytes, and the internal standard [(2)H(3)(13)C]-sorafenib, was achieved on a C(18) analytical column and isocratic flow at 0.3 mL/min for 4 min. Mean within-run and between-run precision for all analytes were <6.9% and accuracy was <5.3%. Calibration curves were linear over the concentration range of 50-10,000 ng/mL for sorafenib and 10-2500 ng/mL for sorafenib N-oxide. This method allows a specific, sensitive, and reliable determination of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma in a single analytical run. PMID:20870468

  5. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  6. Inflammation and Resolution Are Associated with Upregulation of Fatty Acid β-Oxidation in Zymosan-Induced Peritonitis

    PubMed Central

    Fujieda, Yusuke; Manno, Atsushi; Hayashi, Yasuhiro; Rhodes, Nelson; Guo, Lining; Arita, Makoto; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-01-01

    Inflammation is a fundamental defensive response to harmful stimuli. However, it can cause damage if it does not subside. To avoid such damage, organisms have developed a mechanism called resolution of inflammation. Here we applied an untargeted metabolomics approach to a sterile and self-resolving animal model of acute inflammation, namely zymosan-induced peritonitis in mice, to examine the effect of inflammation and resolution on the metabolomic profiles. Significant and time-dependent changes in metabolite profiles after zymosan administration were observed in both peritoneal wash fluid (PWF) and plasma. These metabolomic changes correlated well with inflammatory chemokine or cytokine production. In PWF, most of metabolites that could detected increased in zymosan-treated mice, which is suggestive of inflammation, oxidative stress and increased energy demands. In plasma, most metabolites in the central metabolic pathway (glycolysis and TCA cycle) were significantly downregulated after zymosan administration. The concentration of the ketone body 3-hydroxybutyric acid (3-HB) in plasma and PWF increased in zymosan-injected animals indicating upregulation of fatty acid β-oxidation. Increased 3-HB level was observed in the cells that infiltrated into the peritoneal cavity and these infiltrated cells might contribute, at least in part, to the production of 3-HB in the peritoneal cavity. PMID:23776651

  7. DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals.

    PubMed

    Rin, K; Kawaguchi, K; Yamanaka, K; Tezuka, M; Oku, N; Okada, S

    1995-01-01

    We previously reported that dimethylarsinic acid (DMAA), a major metabolite of inorganic arsenics, induced DNA single-strand breaks (ssb) both in vivo and in cultured alveolar type II (L-132) cells in vitro, possibly via the production of dimethylarsenic peroxyl radicals. Here, the interaction of superoxide anion radicals (O2-) in the induction of ssb in L-132 cells was investigated using paraquat, an O2(-)-producing agent. A significant enhancement of ssb formation was observed in the DMAA-exposed cells when coexposed to paraquat. This enhancement occurred even when post-exposed to DMAA after washing, suggesting that the DMAA exposure caused some modification of DNA such as DNA-adducts, which was recognized by active oxygens to form ssb. An experiment with UV-irradiation, which was likely to induce ssb at the modified region, supported the possibility of DNA modification by DMAA exposure. An ESR study indicated that O2- produced by paraquat in DMAA-exposed cells was more consumed than in non-exposed cells, assumingly through the reaction with the dimethylarsenic-modified region of DNA. The species of active oxygens were estimated by using diethyldithiocarbamate, aminotriazole, diethylmaleate, hydrogen peroxide (H2O2), gamma-irradiation and ethanol. O2- but neither H2O2 nor hydroxyl radicals was very likely to contribute to the ssb-enhancing action of paraquat. PMID:7735248

  8. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling.

    PubMed

    Endo, Jin; Sano, Motoaki; Isobe, Yosuke; Fukuda, Keiichi; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto

    2014-07-28

    N-3 polyunsaturated fatty acids (PUFAs) have potential cardiovascular benefit, although the mechanisms underlying this effect remain poorly understood. Fat-1 transgenic mice expressing Caenorhabditis elegans n-3 fatty acid desaturase, which is capable of producing n-3 PUFAs from n-6 PUFAs, exhibited resistance to pressure overload-induced inflammation and fibrosis, as well as reduced cardiac function. Lipidomic analysis revealed selective enrichment of eicosapentaenoic acid (EPA) in fat-1 transgenic bone marrow (BM) cells and EPA-metabolite 18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 transgenic macrophages. BM transplantation experiments revealed that fat-1 transgenic BM cells, but not fat-1 transgenic cardiac cells, contributed to the antiremodeling effect and that the 18-HEPE-rich milieu in the fat-1 transgenic heart was generated by BM-derived cells, most likely macrophages. 18-HEPE inhibited macrophage-mediated proinflammatory activation of cardiac fibroblasts in culture, and in vivo administration of 18-HEPE reproduced the fat-1 mice phenotype, including resistance to pressure overload-induced maladaptive cardiac remodeling. PMID:25049337

  9. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain.

  10. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis

    PubMed Central

    2014-01-01

    Background Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. Methods Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0–100 μM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. Results Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. Conclusion (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging. PMID:24712558

  11. Insulin Suppresses Endotoxin-Induced Oxidative, Nitrosative, and Inflammatory Stress in Humans

    PubMed Central

    Dandona, Paresh; Ghanim, Husam; Bandyopadhyay, Arindam; Korzeniewski, Kelly; Ling Sia, Chang; Dhindsa, Sandeep; Chaudhuri, Ajay

    2010-01-01

    OBJECTIVE To investigate whether insulin reduces the magnitude of oxidative, nitrosative, and inflammatory stress and tissue damage responses induced by endotoxin (lipopolysaccharide [LPS]). RESEARCH DESIGN AND METHODS Nine normal subjects were injected intravenously with 2 ng/kg LPS prepared from Escherichia coli. Ten others were infused with insulin (2 units/h) for 6 h in addition to the LPS injection along with 100 ml/h of 5% dextrose to maintain normoglycemia. RESULTS LPS injection induced a rapid increase in plasma concentrations of nitric oxide metabolites, nitrite and nitrate (NOM), and thiobarbituric acid–reacting substances (TBARS), an increase in reactive oxygen species (ROS) generation by polymorphonuclear leukocytes (PMNLs), and marked increases in plasma free fatty acids, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibition factor (MIF), C-reactive protein, resistin, visfatin, lipopolysaccharide binding protein (LBP), high mobility group-B1 (HMG-B1), and myoglobin concentrations. The coinfusion of insulin led to a total elimination of the increase in NOM, free fatty acids, and TBARS and a significant reduction in ROS generation by PMNLs and plasma MIF, visfatin, and myoglobin concentrations. Insulin did not affect TNF-α, MCP-1, IL-6, LBP, resistin, and HMG-B1 increases induced by the LPS. CONCLUSIONS Insulin reduces significantly several key mediators of oxidative, nitrosative, and inflammatory stress and tissue damage induced by LPS. These effects of insulin require further investigation for its potential use as anti-inflammatory therapy for endotoxemia. PMID:20699433

  12. Human prostaglandin H synthase (hPHS)-1- and hPHS-2-dependent bioactivation, oxidative macromolecular damage, and cytotoxicity of dopamine, its precursor, and its metabolites.

    PubMed

    Ramkissoon, Annmarie; Wells, Peter G

    2011-01-15

    The dopamine (DA) precursor l-dihydroxyphenylalanine (L-DOPA) and metabolites dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine may serve as substrates for prostaglandin H synthase (PHS)-catalyzed bioactivation to free radical intermediates. We used CHO-K1 cells expressing human (h) PHS-1 or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. hPHS-1- and hPHS-2-expressing cells incubated with DA, L-DOPA, DOPAC, or HVA exhibited increased cytotoxicity compared to untransfected cells, and cytotoxicity was increased further by exogenous arachidonic acid (AA), which increased hPHS activity. Preincubation with catalase, which detoxifies reactive oxygen species, or acetylsalicylic acid, an inhibitor of hPHS-1 and -2, reduced the cytotoxicity caused by DA, L-DOPA, DOPAC, and HVA in hPHS-1 and -2 cells both with and without AA. Protein oxidation was increased in hPHS-1 and -2 cells exposed to DA or L-DOPA and further increased by AA addition. DNA oxidation was enhanced earlier and at lower substrate concentrations than protein oxidation in both hPHS-1 and -2 cells by DA, L-DOPA, DOPAC, and HVA and further enhanced by AA addition. hPHS-2 cells seemed more susceptible than hPHS-1 cells, whereas untransfected CHO-K1 cells were less susceptible. Thus, isozyme-specific, hPHS-dependent oxidative damage and cytotoxicity caused by neurotransmitters, their precursors, and their metabolites may contribute to neurodegeneration associated with aging. PMID:21078384

  13. Oxidative stress induced carbonylation in human plasma.

    PubMed

    Madian, Ashraf G; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E

    2011-10-19

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  14. Oxidative stress induced carbonylation in human plasma

    PubMed Central

    Madian, Ashraf G.; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E.

    2011-01-01

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  15. Phenylpropanoids and their metabolites are the major compounds responsible for blood-cell protection against oxidative stress after administration of Lippia citriodora in rats.

    PubMed

    Quirantes-Piné, R; Herranz-López, M; Funes, L; Borrás-Linares, I; Micol, V; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-09-15

    Lippia citriodora (lemon verbena) has been widely used in folk medicine for its pharmacological properties. Verbascoside, the most abundant compound in this plant, has protective effects associated mostly with its strong antioxidant activity. The purpose of this study was to test the effect of L. citriodora extract intake on the antioxidant response of blood cells and to correlate this response with the phenolic metabolites found in plasma. For this purpose, firstly the L. citriodora extract was characterized and its radical scavenging activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Then, catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GRed) activities were determined in lymphocytes, erythrocytes, and neutrophils isolated from rats after acute intake of L. citriodora. Phenolic metabolites were analyzed in the same plasma samples by HPLC-ESI-TOF-MS. Myeloperoxidase (MPO) activity in neutrophils, which has been proposed as a marker for inflammatory vascular damage, was also determined. After L. citriodora administration, the antioxidant enzymes activities significantly accelerated (p<0.05) while MPO activity subsided, indicating that the extract protects blood cells against oxidative damage and shows potential anti-inflammatory and antiatherogenic activities. The main compounds found in plasma were verbascoside and isoverbascoside at a concentration of 80±10 and 57±4 ng/ml, respectively. Five other metabolites derived from verbascoside and isoverbascoside were also found in plasma, namely hydroxytyrosol, caffeic acid, ferulic acid, ferulic acid glucuronide, and homoprotocatechuic acid, together with another eight phenolic compounds. Therefore, the phenylpropanoids verbascoside and isoverbascoside, as well as their metabolites, seem to be the responsible for the above-mentioned effects, although the post-transcriptional activation mechanism of blood-cell antioxidant enzymes by these compounds needs further investigation

  16. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes. PMID:27251462

  17. Cysteine redox sensor in PKGIa enables oxidant-induced activation.

    PubMed

    Burgoyne, Joseph R; Madhani, Melanie; Cuello, Friederike; Charles, Rebecca L; Brennan, Jonathan P; Schröder, Ewald; Browning, Darren D; Eaton, Philip

    2007-09-01

    Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to exogenous hydrogen peroxide. This oxidation directly activated the kinase in vitro, and in rat cells and tissues. The affinity of the kinase for substrates it phosphorylates was enhanced by disulfide formation. This oxidation-induced activation represents an alternate mechanism for regulation along with the classical activation involving nitric oxide and cGMP. This mechanism underlies cGMP-independent vasorelaxation in response to oxidants in the cardiovascular system and provides a molecular explantion for how hydrogen peroxide can operate as an endothelium-derived hyperpolarizing factor. PMID:17717153

  18. Oxidation induced stress-rupture of fiber bundles

    SciTech Connect

    Lara-Curzio, E.

    1997-03-01

    The effect of oxidation on the stress-rupture behavior of fiber bundles was modeled. It is shown that oxidation-induced fiber strength degradation results in the delayed failure of the associated fiber bundle and that the fiber bundle strength decreases with time as t{sup {minus}1/4}. It is also shown that the temperature dependence of the bundle loss of strength reflects the thermal dependence of the mechanism controlling the oxidation of the fibers. The effect of gauge length on the fiber bundle strength was also analyzed. Numerical examples are presented for the special case of Nicalon{trademark} fibers.

  19. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

    PubMed Central

    Wang, Liying

    2013-01-01

    The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed. PMID:24027766

  20. Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells.

    PubMed

    Wang, Jian Wen; Wu, Jian Yong

    2005-06-01

    Methyl jasmonate (MeJA), a methyl ester of jasmonic acid (JA), is a well-established signal molecule in plant defense responses and an effective inducer of secondary metabolite accumulation in plant cell cultures such as the valuable anticancer diterpenoid taxol (paclitaxel) in Taxus spp. This work examines the involvement of nitric oxide (NO) in MeJA-induced plant defense responses and secondary metabolism in Taxus chinensis cell cultures. Exogenously supplied MeJA at 100 microM induced rapid production of NO in the Taxus cell cultures, reaching a maximum within 6 h of MeJA supply. Several other responses occurred concomitantly, including the production of hydrogen peroxide (H2O2), and the increases in intracellular malondialdehyde (MDA) content, lipoxygenase (LOX) and phenylalanine ammonium-lyase (PAL) activities. The MeJA-induced H2O2 production was suppressed by an NO donor, sodium nitroprusside (SNP), but enhanced by NO inhibitors, N (omega)-nitro-L-arginine (L-NNA) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO). In contrast, the MeJA-induced MDA, LOX and PAL were all enhanced by the NO donor but suppressed by the NO inhibitors. The NO inhibitors also suppressed MeJA-induced taxol accumulation. These results are suggestive of a role for NO as a signal element for activating the MeJA-induced defense responses and secondary metabolism activities of plant cells. PMID:15829512

  1. Effects of 17β-estradiol, and its metabolite, 4-hydroxyestradiol on fertilization, embryo development and oxidative DNA damage in sand dollar (Dendraster excentricus) sperm

    PubMed Central

    Rempel, Mary Ann; Hester, Brian; DeHaro, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel

    2011-01-01

    Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17β-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r2 = 0.44, p ≤ 0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r2 = 0.33, p ≤ 0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects. PMID:19171371

  2. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.

    PubMed

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu; Jensen, Frank B; Thiel, Bonnie; Evans, Alina L; Kindberg, Jonas; Fröbert, Ole; Stuehr, Dennis J; Kevil, Christopher G; Fago, Angela

    2014-08-01

    During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears. PMID:24909614

  3. Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi‐isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi‐isozizaene metabolite

    PubMed Central

    Takamatsu, Satoshi; Lin, Xin; Nara, Ayako; Komatsu, Mamoru; Cane, David E; Ikeda, Haruo

    2011-01-01

    Summary The genome‐sequenced, Gram‐positive bacterium Streptomyces avermitilis harbours an orthologue (SAV_3032) of the previously identified epi‐isozizaene synthase (SCO5222) in Streptomyces coelicolor A3(2). The sav3032 is translationally coupled with the downstream sav3031 gene encoding the cytochrome P450 CYP170A2 analogous to SCO5223 (CYP170A1) of S. coelicolor A3(2), which exhibits a similar translation coupling. Streptomyces avermitilis did not produce epi‐isozizaene or any of its oxidized derivatives, albaflavenols and albaflavenone, under in any culture conditions examined. Nonetheless, recombinant SAV_3032 protein expressed in Escherichia coli catalysed the Mg2+‐dependent cyclization of farnesyl diphosphate to epi‐isozizaene. To effect the production of epi‐isozizaene in S. avermitilis, the sav3032 gene was cloned and placed under control of a copy of the native S. avermitilis promoter rpsJp (sav4925). The derived expression construct was introduced by transformation into a large‐deletion mutant of S. avermitilis SUKA16 and the resulting transformants accumulated epi‐isozizaene. The previously characterized oxidized epi‐isozizaene metabolites (4R)‐ and (4S)‐albaflavenols and albaflavenone, as well as a previously undescribed doubly oxidized epi‐isozizaene derivative were isolated from cultures of S. avermitilis SUKA16 transformants in which sav3032 was coexpressed with the P450‐encoding sav3031. This new metabolite was identified as 4β,5β‐epoxy‐2‐epi‐zizaan‐6β‐ol which is most likely formed by oxidation of (4S)‐albaflavenol. PMID:21342464

  4. Activation of p53 with Ilimaquinone and Ethylsmenoquinone, Marine Sponge Metabolites, Induces Apoptosis and Autophagy in Colon Cancer Cells

    PubMed Central

    Lee, Hyun-Young; Chung, Kyu Jin; Hwang, In Hyun; Gwak, Jungsuk; Park, Seoyoung; Ju, Bong Gun; Yun, Eunju; Kim, Dong-Eun; Chung, Young-Hwa; Na, MinKyun; Song, Gyu-Yong; Oh, Sangtaek

    2015-01-01

    The tumor suppressor, p53, plays an essential role in the cellular response to stress through regulating the expression of genes involved in cell cycle arrest, apoptosis and autophagy. Here, we used a cell-based reporter system for the detection of p53 response transcription to identify the marine sponge metabolites, ilimaquinone and ethylsmenoquinone, as activators of the p53 pathway. We demonstrated that ilimaquinone and ethylsmenoquinone efficiently stabilize the p53 protein through promotion of p53 phosphorylation at Ser15 in both HCT116 and RKO colon cancer cells. Moreover, both compounds upregulate the expression of p21WAF1/CIP1, a p53-dependent gene, and suppress proliferation of colon cancer cells. In addition, ilimaquinone and ethylsmenoquinone induced G2/M cell cycle arrest and increased caspase-3 cleavage and the population of cells that positively stained with Annexin V-FITC, both of which are typical biochemical markers of apoptosis. Furthermore, autophagy was elicited by both compounds, as indicated by microtubule-associated protein 1 light chain 3 (LC3) puncta formations and LC3-II turnover in HCT116 cells. Our findings suggest that ilimaquinone and ethylsmenoquinone exert their anti-cancer activity by activation of the p53 pathway and may have significant potential as chemo-preventive and therapeutic agents for human colon cancer. PMID:25603347

  5. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding. PMID:21140278

  6. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia

    PubMed Central

    Carro, Lorena; Pujic, Petar; Alloisio, Nicole; Fournier, Pascale; Boubakri, Hasna; Hay, Anne E; Poly, Franck; François, Philippe; Hocher, Valerie; Mergaert, Peter; Balmand, Severine; Rey, Marjolaine; Heddi, Abdelaziz; Normand, Philippe

    2015-01-01

    Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family. PMID:25603394

  7. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia.

    PubMed

    Carro, Lorena; Pujic, Petar; Alloisio, Nicole; Fournier, Pascale; Boubakri, Hasna; Hay, Anne E; Poly, Franck; François, Philippe; Hocher, Valerie; Mergaert, Peter; Balmand, Severine; Rey, Marjolaine; Heddi, Abdelaziz; Normand, Philippe

    2015-08-01

    Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family. PMID:25603394

  8. Gene-metabolite expression in blood can discriminate allergen-induced isolated early from dual asthmatic responses.

    PubMed

    Singh, Amrit; Yamamoto, Masatsugu; Kam, Sarah H Y; Ruan, Jian; Gauvreau, Gail M; O'Byrne, Paul M; FitzGerald, J Mark; Schellenberg, Robert; Boulet, Louis-Philippe; Wojewodka, Gabriella; Kanagaratham, Cynthia; De Sanctis, Juan B; Radzioch, Danuta; Tebbutt, Scott J

    2013-01-01

    Some asthmatic individuals undergoing allergen inhalation challenge develop an isolated early response whereas others develop a dual response (early plus late response). In the present study we have used transcriptomics (microarrays) and metabolomics (mass spectrometry) of peripheral blood to identify molecular patterns that can discriminate allergen-induced isolated early from dual asthmatic responses. Peripheral blood was obtained prior to (pre-) and 2 hours post allergen inhalation challenge from 33 study participants. In an initial cohort of 14 participants, complete blood counts indicated significant differences in neutrophil and lymphocyte counts at pre-challenge between early and dual responders. At post-challenge, significant genes (ALOX15, FADS2 and LPCAT2) and metabolites (lysolipids) were enriched in lipid metabolism pathways. Enzymes encoding for these genes are involved in membrane biogenesis and metabolism of fatty acids into pro-inflammatory and anti-inflammatory mediators. Correlation analysis indicated a strong negative correlation between ALOX15, FADS2, and IL5RA expression with 2-arachidonoylglycerophosphocholine levels in dual responders. However, measuring arachidonic acid and docosahexaenoic acid levels in a validation cohort of 19 participants indicated that the free form of DHA (nmoles/µg of protein) was significantly (p = 0.03) different between early and dual responders after allergen challenge. Collectively these results may suggest an imbalance in lipid metabolism which dictates pro- (anti-) inflammatory and pro-resolving mechanisms. Future studies with larger sample sizes may reveal novel mechanisms and therapeutic targets of the late phase asthmatic response. PMID:23844124

  9. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Isaias, Rosy Mary dos Santos

    2015-01-01

    Plant cells respond to abiotic and biotic stimuli, which generate adaptive phenotypes in plant organs. In the case of plant galls, cell phenotypes are adaptive for the gall inducer and assume characteristics mainly linked to its protection and nutrition. Herein, the cytological development and histochemical profile of Nothotrioza cattleiani galls, a sucking insect, on the leaves of Psidium cattleianum are compared with those of other galls, especially N. myrtoidis galls, searching for conserved and divergent alterations in cell fates and cycles. Leaf cell fates are completely changed within galls, except for epidermal cells, but the comparison between Nothotrioza spp. galls shows conserved fates. Nevertheless, cytological development of N. cattleiani galls is different from the standby-redifferentiation of N. myrtoidis galls. Starch and lignins, and reducing sugars form centrifugal and centripetal gradients of accumulation, respectively. Proteins, total phenolics, terpenoids, proanthocyanidins and reactive oxygen species are detected in bidirectional gradients, i.e. weak or undetectable reaction in the median cortical cells that is gradually more intense in the cell layers towards the inner and outer surfaces of the gall. True nutritive cells associated with vascular tissues, together with the bidirectional gradients of metabolite accumulation, are herein reported for the first time in insect galls. The globoid galls of N. cattleiani, though macro-morphologically similar to the galls of N. myrtoidis, are distinct and unique among insect galls, as far as the cellular, subcellular and histochemical traits are concerned. Thus, the traits of the galls on P. cattleianum studied herein represent the extended phenotypes of their inducers. PMID:26209687

  10. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3.

    PubMed

    Benn, Geoffrey; Bjornson, Marta; Ke, Haiyan; De Souza, Amancio; Balmond, Edward I; Shaw, Jared T; Dehesh, Katayoon

    2016-08-01

    The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive