Science.gov

Sample records for oxide solid-state electrolyte

  1. Solid state electrolyte systems

    SciTech Connect

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R.

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  2. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J.

    Direct current reactive sputtering deposition of ruthenium oxide thin films (bottom and top electrodes) at 400°C are performed to produce a solid-state thin-film supercapacitor (TFSC). The supercapacitor has a cell structure of RuO 2/Li 2.94PO 2.37N 0.75 (Lipon)/RuO 2/Pt. Radio frequency, reactive sputtering deposition of an Li 2.94PO 2.37N 0.75 electrolyte film is performed on the bottom RuO 2 film at room temperature to separate the bottom and top RuO 2 electrodes electrically. The stoichiometry of the RuO 2 thin film is investigated by Rutherford back-scattering spectrometry (RBS). X-ray diffraction (XRD) shows that the as-deposited RuO 2 thin film is an amorphous phase. Scanning electron microscopy (SEM) measurements reveal that the RuO 2/Lipon/RuO 2 hetero-interfaces have no inter-diffusion problems. Charge-discharge measurements with constant current at room temperature clearly reveal typical supercapacitor behaviour for a RuO 2/Lipon/RuO 2/Pt cell structure. Since the electrolyte thin film has low ionic mobility, the capacity and cycle performance are inferior to those of a bulk type of supercapacitor. These results indicate that a high performance, TFSC can be fabricated by a solid electrolyte thin film with high ionic conductivity.

  3. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery

    NASA Astrophysics Data System (ADS)

    Ohta, Shingo; Seki, Juntaro; Yagi, Yusuke; Kihira, Yuki; Tani, Takao; Asaoka, Takahiko

    2014-11-01

    We investigated the development of a novel lithium garnet-type oxide electrolyte, which is co-sinterable with a metal oxide cathode, for practical all-solid-state lithium ion batteries using metal oxide electrolytes. The sintering temperature of Li6.8(La2.95,Ca0.05)(Zr1.75,Nb0.25)O12 was found to significantly lower to 790 °C by addition of Li3BO3 and Al2O3, due to simultaneous interdiffusion of Al and Ca elements between garnet-type oxide and additives. The sintered electrolyte exhibited high lithium ion conductivity of 0.36 mS cm-1 at 25 °C despite of the low sintering temperature. An all-solid-state lithium ion battery was successfully prepared by co-sintering of the electrolyte and LiCoO2 (cathode), followed by coating of Li metal (anode), and confirmed to function well as a secondary battery with charge and discharge capacities of 98 and 78 mAh g-1, respectively. These results opened the potential for fabrication of all-solid-state lithium ion batteries by a simple and well-established co-sintering process.

  4. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  5. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yanran; Wu, Chuan; Peng, Gang; Chen, Xiaotian; Yao, Xiayin; Bai, Ying; Wu, Feng; Chen, Shaojie; Xu, Xiaoxiong

    2016-01-01

    Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes. The lithium ion conductivities of as-prepared composite membranes are evaluated, and the optimal composite membrane exhibits a maximum ionic conductivity of 1.21 × 10-3 S cm-1 at 80 °C and an electrochemical window of 0-5.7 V. The phase transition behaviors for electrolytes are characterized by DSC, and the possible reasons for their enhanced ionic conductivities are discussed. The LGPS microparticles, acting as active fillers incorporation into the PEO matrix, have a positive effect on the ionic conductivity, lithium ion transference number and electrochemical stabilities. In addition, two kinds of all-solid-state lithium batteries (LiFeO4/SPE/Li and LiCoO2/SPE/Li) are fabricated to demonstrate the good compatibility between this new SPE membrane and different electrodes. And the LiFePO4/Li battery exhibits fascinating electrochemical performance with high capacity retention (92.5% after 50 cycles at 60 °C) and attractive capacities of 158, 148, 138 and 99 mAh g-1 at current rates of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C, respectively. It is demonstrated that this new composite SPE should be a promising electrolyte applied in solid state batteries based on lithium metal electrode.

  6. Solid State Electrolytes Prepared from PEO (360) Silanated Silica

    NASA Technical Reports Server (NTRS)

    Maitra, P.; Ding, J.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Chua, D.; Salomon, M.

    2002-01-01

    All solid state composite electrolytes were prepared using fumed silica (SiO2) silanated with an oligomeric polyethylene oxide (PEO) silane containing 6-9 ethylene oxide repeat units, a PEO matrix and LiClO4 (8/1 O/Li). The PEO-silane covalently attached to the silica was amorphous, with a T(sub g) that increased from -90 C to -53 C after attachment. The conductivity of films prepared using the PEO-silanated silica increased to approx. 6 x 10(exp -5) S/cm at RT compared with approx. 1 x 10(-5) S/cm for films prepared with unsilanated SiO2.

  7. Lithium-ion transport in inorganic solid state electrolyte

    NASA Astrophysics Data System (ADS)

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  8. A zwitterionic gel electrolyte for efficient solid-state supercapacitors.

    PubMed

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm(-3) at 0.8 A cm(-3) with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm(-3), representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  9. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    PubMed Central

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  10. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-05-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm-3 at 0.8 A cm-3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm-3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors.

  11. Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lue, Shingjiang Jessie; Wu, Yun-Ling; Tung, Yung-Liang; Shih, Chao-Ming; Wang, Yi-Chun; Li, Jun-Ruei

    2015-01-01

    This research investigates the design of a quasi-solid-state electrolyte for improving the photovoltaic efficiency and long-term performance stability of dye-sensitized solar cells (DSSCs). In this study, agarose gel and titanium oxide (TiO2) nano-particles are incorporated into an iodine/iodide electrolyte solution in a 1-methyl-2-pyrrolidinone (NMP)/3-methoxypropionitrile (MPN) solvent mixture to fabricate quasi-solid-state electrolytes for 2.0-cm2 DSSCs. The electrolyte also contains an ionic liquid, 1-methyl-3-propylimidazolium iodide, and a co-additive, 1-methylbenzimidazole. The negatively charged TiO2 nano-particles exhibit an anatase crystal structure. Without agarose and TiO2, the control cell's photovoltaic efficiency drops by more than 50% over 2400 h of aging due to a significant decrease in the short-circuit current. Incorporating 1% agarose into the electrolyte not only enhances the retention of the solvent but also maintains the short-circuit current. Furthermore, adding 0.5% TiO2 to 1% agarose electrolyte provides sufficient ion and electron transfer routes and improves the fill factor of the corresponding DSSC. The photoconversion efficiency of the agarose/TiO2-containing DSSC monotonically increases from an initial value of 5.08% to 6.48% within 2400 h. The improved cell efficiency is correlated to the longer electron lifetime in the DSSC, higher ion diffusivity, and the smaller electrical resistance of the electrolyte.

  12. Oxygen production using solid-state zirconia electrolyte technology

    NASA Technical Reports Server (NTRS)

    Suitor, Jerry W.; Clark, Douglas J.

    1991-01-01

    High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.

  13. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  14. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  15. Copper sulfide solid-state electrolytic memory devices

    NASA Astrophysics Data System (ADS)

    You, Liang

    Copper sulfide thin films with electrical switching and memory effect were grown using a chemical vapor reaction apparatus. The formation of copper sulfide film undergoes a process which includes nucleation, growth of nucleation, coalescence into continuous film, and film thickening. The initial phase of the sulfide growth was reaction limited followed by a diffusion limited phase involving out-diffusion of copper. The thin film tends to nucleate and grow at energy favorable sites such as twinning boundary. Sulfidation of polycrystalline copper results in formation of voids at the interface between the copper and its sulfide. (111) copper has the highest sulfidation rate followed by (100) and (110) copper planes. Moreover, the sulfidation rate near the microfabricated plug edge was found to be faster than the rate at the center of the plug. A mechanism based on competing sulfidation sites due to the geometry difference between the plugs' center and their edge is presented to explain this phenomenon. We show for the first time that field-assisted solid-electrolyte copper sulfide thin film device can function as a switch by reversing the voltage polarity between copper and inert metal electrodes through a copper-sulfide layer in planar and vertical structures. The copper oxide at the top of copper sulfide greatly increased the turn-on voltage. The turn-on voltage depends linearly on the film thickness. Copper sulfide devices in micrometer dimension were microfabricated using IC compatible techniques and characterized showing the same switching effect. Electrode contact area effect on switching performance was investigated in term of turn-on voltage, turn-off voltage, on-state resistance and off-state resistance. Four-point resistance measurement unit, Hall Effect and transfer length measurement were also fabricated together with copper sulfide switching devices and they were studied in order to determine the CuxS carrier type, carrier concentration, film resistivity

  16. Highly mobile segments in crystalline poly(ethylene oxide)8:NaPF6 electrolytes studied by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Huan; Liang, Xinmiao; Wang, Liying; Zheng, Anmin; Liu, Chaoyang; Feng, Jiwen

    2014-02-01

    Two types of high-crystallinity poly(ethylene oxide)/NaPF6 electrolytes with ethylene oxide (EO)/Na molar ratios of 8:1 and 6:1, termed as PEO8:NaPF6 and PEO6:NaPF6 with Mw = 6000 g mol-1 were prepared, and their ionic conductivity, structure, and segmental motions were investigated and compared. PEO8:NaPF6 polymer electrolyte exhibits the room-temperature ionic conductivity 7.7 × 10-7 S cm-1 which is about five times higher than the PEO6:NaPF6. By variable-temperature measurements of static powder spectra and 1H spin-lattice relaxation time in rotation frame (1H T1ρ), we demonstrate that crystalline segments are more highly mobile in the crystalline PEO8:NaPF6 with higher ionic conductivity than in the PEO6:NaPF6 with lower ionic conductivity. The large-angle reorientation motion of polymer segments in the PEO8:NaPF6 onsets at lower temperature (˜233 K) with a low activation energy 0.31 eV that is comparable with that of the pure PEO crystal. Whereas, the large-angle reorientation motion of polymer segments in the PEO6:NaPF6 starts around 313 K with a high activation energy of 0.91 eV. As a result of the temperature-enhanced large-angle reorientations, the 13C static powder lineshape changes markedly from a low-temperature wide pattern with apparent principal values of chemical shift δ33 < δ22 < δ11 to a high-temperature narrow pattern of uniaxial chemical shift anisotropy δ33 > δ22 (δ11). It is suggested that the segmental motion in crystalline PEO-salt complex promotes ionic conductivity.

  17. Optimized performance of quasi-solid-state DSSC with PEO-bismaleimide polymer blend electrolytes filled with a novel procedure.

    PubMed

    Lee, Dong Ha; Sun, Kyung Chul; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2014-12-01

    Dye-sensitized solar cell (DSSC) is an attractive renewable energy technology currently under intense investigation. Electrolyte plays an important role in the photovoltaic performance of the DSSCs and many efforts have been contributed to study different kinds of electrolytes with various characteristics such as liquid electrolytes, polymer electrolytes and so on. In this study, DSSC is developed by using quasi-solid electrolyte and a novel procedure is adopted for filling this electrolyte. The quasi-solid-state electrolyte was prepared by mixing Poly ethylene oxide (PEO) and bismaleimide together and constitution was taken as PEO (15 wt%) at various bismaleimide concentrations (1, 3, 5 wt%). The novel procedure of filling electrolyte consists of three major steps (first step: filling liquid electrolyte, second step: vaporization of liquid electrolyte, third step: refilling quasi-solid-state electrolyte). The electrochemical and photovoltaic performances of DSSCs with these electrolytes were also investigated. The electrochemical impedance spectroscopy (EIS) indicated that TiO2/Dye/electrolyte impedance is reduced and electron lifetime is increased, and consequently efficiency of cell has been improved after using this novel procedure. The photovoltaic power conversion efficiency of 6.39% has been achieved under AM 1.5 simulated sunlight (100 W/cm2) through this novel procedure and by using specified blend of polymers. PMID:25971069

  18. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.

    PubMed

    Lago, Nerea; Garcia-Calvo, Oihane; Lopez del Amo, Juan Miguel; Rojo, Teofilo; Armand, Michel

    2015-09-21

    Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current collector. All-solid-state batteries utilize solid polymer electrolytes (SPEs) to overcome the safety issues of liquid electrolytes. We demonstrate an all-solid-state lithium-ion battery by using plasticized poly(ethylene oxide)-based SPEs comprising anions grafted or co-grafted onto ceramic nanoparticles. This new approach using grafted ceramic nanoparticles enables the development of a new generation of nanohybrid polymer electrolytes with high ionic conductivity as well as high electrochemical and mechanical stability, enabling Li-ion batteries with long cycle life. PMID:26373359

  19. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    SciTech Connect

    Ma, Y. |

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  20. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    PubMed Central

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R.

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  1. Solid-state graft copolymer electrolytes for lithium battery applications.

    PubMed

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  2. All-solid-state proton battery using gel polymer electrolyte

    SciTech Connect

    Mishra, Kuldeep; Pundir, S. S.; Rai, D. K.

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  3. Graphene quantum dots as the electrolyte for solid state supercapacitors

    PubMed Central

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  4. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    NASA Astrophysics Data System (ADS)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  5. Investigation of solid state electrolyte silver-zinc battery

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Study of the solid electrolyte ZnCl2-2NH3 rechargeable silver zinc electrochemical cell by X-ray diffraction analysis of the reaction products led to the conclusion that some water is consumed when the cell is discharged. Replacement of ZnCl2-2NH3 by ZnCl2-4Zn(OH)2 gave cells with high internal resistance and limited capacity. The salt formed by exposing a fibrous membrane saturated with ZnCl2 solution to fumes from ammonium carbonate in a dry desiccator comprised ZnCl2-4Zn(OH)2, ZnCl2,3NH4Cl and a third unidentified component. The temperature coefficient of open circuit EMF was nearly zero over the range from -25 C to 50 C. The internal resistance and polarization increased substantially below -25 C. There is some indication that exposure to 50 C for 29 hours causes some deterioration.

  6. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  7. A hybrid gel-solid-state polymer electrolyte for long-life lithium oxygen batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Kang, Yong-Mook; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-05-14

    A hybrid gel-solid-state polymer electrolyte has been used as the separator and an electrolyte for lithium oxygen batteries. It can not only avoid electrolyte evaporation but also protect the lithium metal anode during reactions over long-term cycling. Due to its high ionic conductivity and low activation energy, excellent cycling performance is demonstrated, in which the terminal voltage is higher than 2.2 V after 140 cycles at 0.4 mA cm(-2), with a capacity of 1000 mA h g(composite)(-1). PMID:25874974

  8. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    NASA Technical Reports Server (NTRS)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  9. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science

    NASA Astrophysics Data System (ADS)

    Xiayin, Yao; Bingxin, Huang; Jingyun, Yin; Gang, Peng; Zhen, Huang; Chao, Gao; Deng, Liu; Xiaoxiong, Xu

    2016-01-01

    The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050906), the National Natural Science Foundation of China (Grant Nos. 51172250 and 51202265), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010201), and Zhejiang Province Key Science and Technology Innovation Team, China (Grant No. 2013PT16).

  10. 'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film

    SciTech Connect

    Parthasarathy, Meera; Pillai, Vijayamohanan K. Mulla, Imtiaz S.; Shabab, Mohammed; Khan, M.I.

    2007-12-07

    Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped protein is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.

  11. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.

    PubMed

    Bachman, John Christopher; Muy, Sokseiha; Grimaud, Alexis; Chang, Hao-Hsun; Pour, Nir; Lux, Simon F; Paschos, Odysseas; Maglia, Filippo; Lupart, Saskia; Lamp, Peter; Giordano, Livia; Shao-Horn, Yang

    2016-01-13

    This Review is focused on ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy-storage systems. Properties of the migrating species significantly affecting diffusion, including the valency and ionic radius, are discussed. The natures of the ligand and metal composing the skeleton of the host framework are analyzed and shown to have large impacts on the performance of solid-state electrolytes. A comprehensive identification of the candidate migrating species and structures is carried out. Not only the bulk properties of the conductors are explored, but the concept of tuning the conductivity through interfacial effects-specifically controlling grain boundaries and strain at the interfaces-is introduced. High-frequency dielectric constants and frequencies of low-energy optical phonons are shown as examples of properties that correlate with activation energy across many classes of ionic conductors. Experimental studies and theoretical results are discussed in parallel to give a pathway for further improvement of solid-state electrolytes. Through this discussion, the present Review aims to provide insight into the physical parameters affecting the diffusion process, to allow for more efficient and target-oriented research on improving solid-state ion conductors. PMID:26713396

  12. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    NASA Astrophysics Data System (ADS)

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; Han, Lili; Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina; Meng, Ying Shirley

    2016-08-01

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte - electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.

  13. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    NASA Astrophysics Data System (ADS)

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; Han, Lili; Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina; Meng, Ying Shirley

    2016-08-01

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte - electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.

  14. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lü, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B

    2016-08-16

    A fluorine-doped antiperovskite Li-ion conductor Li2 (OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all-solid-state Li-ion rechargeable battery. Substitution of F(-) for OH(-) transforms orthorhombic Li2 OHCl to a room-temperature cubic phase, which shows electrochemical stability to 9 V versus Li(+) /Li and two orders of magnitude higher Li-ion conductivity than that of orthorhombic Li2 OHCl. An all-solid-state Li/LiFePO4 with F-doped Li2 OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles. PMID:27356953

  15. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  16. In-situ, non-destructive acoustic characterization of solid state electrolyte cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert D.; Sakamoto, Jeffrey

    2016-08-01

    Solid-state electrolytes such as cubic Li6.25Al0.25La3Zr2O12 (LLZO) can enable solid-state batteries, metallic lithium anodes and higher voltage cathodes. However, the stability of cubic LLZO is affected by current density. In beta alumina solid electrolyte, microstructural failure was caused by Na dendrite penetration, and was shown to be a function of the fracture toughness, KIC. The relationship between dendrite penetration and KIC indicates electronic failure is related to creation of microstructural damage, and the microstructural damage may be used as an indicator of imminent electronic failure. To monitor microstructural damage during cycling, we developed a non-invasive, in-situ cell monitoring apparatus to help to correlate mechanical stability with Li-ion current density in LLZO. A pulse-echo transducer was integrated into all solid-state Li-LLZO-Li cells. The capability enables the characterization of microscopic inhomogeneities through the careful measurement of changes to the elastic moduli. The elastic moduli and fracture toughness have been previously reported for dense (>99%) specimens, but monitoring of the relative change in moduli during cycling has not been explored. In this study, an acoustic monitoring method is presented to monitor LLZO specimens during cycling.

  17. Effect of Poly(Ether Urethane) Introduction on the Performance of Polymer Electrolyte for All-Solid-State Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Fang; Xiang, Wan-Chun; Fang, Shi-Bi; Chen, Shen; Zhou, Xiao-Wen; Zhang, Jing-Bo; Lin, Yuan

    2009-12-01

    The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I-3 diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage Voc by shifting the band edge of TiO2 to a negative value. Scanning electron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.

  18. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  19. Communication: Conductivity enhancement in plastic-crystalline solid-state electrolytes

    NASA Astrophysics Data System (ADS)

    Geirhos, K.; Lunkenheimer, P.; Michl, M.; Reuter, D.; Loidl, A.

    2015-08-01

    Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called plastic crystals (PCs) have been shown to be good candidates combining high conductivity and favorable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. In the present work, we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimized "revolving door" mechanism, open a new path towards the development of better solid-state electrolytes.

  20. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.

    PubMed

    Yi, Jin; Zhou, Haoshen

    2016-09-01

    In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application. PMID:27487523

  1. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Du, Fuming; Zhao, Ning; Li, Yiqiu; Chen, Cheng; Liu, Ziwei; Guo, Xiangxin

    2015-12-01

    All solid-state lithium batteries are constructed by using highly conducting Ta-doped Li7La3Zr2O12 (LLZTO) as the solid electrolytes as well as the supports, coated with composite cathodes consisting of poly(vinylidene fluoride) (PVdF):LiTFSI, Ketjen Black, and carbon-coated LiFePO4 on one side and attached with Li anode on the other side. At 60 °C, the batteries show the first discharge capacity of 150 mAh g-1 at 0.05 C and 93% capacity retention after 100 cycles. As the current density increases from 0.05 C to 1 C, the specific capacity decreases from 150 mAh g-1 to 100 mAh g-1. Further elevated temperature up to 100 °C leads to further improved performance, i.e. 126 mAh g-1 at 1 C and 99% capacity retention after 100 cycles. This good performance can be attributed to the highly conducting ceramic electrolytes, the optimum electronic and ionic conducting networks in the composite cathodes, and closely contacted cathode/LLZTO interface. These results indicate that the present strategy is promising for development of high-performance solid-state Li-ion batteries operated at medium temperature.

  2. All Solid-State Lithium Metal Batteries Using Cross-linked Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Pan, Qiwei; Li, Christopher; Soft Materials Team

    Nowadays, to prepare all solid-state lithium metal batteries with high rate capability and stability using solid polymer electrolytes (SPEs) is still a grand challenge because of the interfaces between the SPE and the electrodes. In this presentation, we report a series of hybrid SPEs with controlled network structures by using POSS as cross-linker. These hybrid network SPEs show promising ionic conductivity, mechanical properties, and lithium dendrite growth resistance. All solid-state LiFePO4/Li batteries were also prepared using these SPEs as the electrolytes to study the effect of conductivity and mechanical properties of the SPEs on the performance of the batteries. At 90 °C, the prepared cells show high rate capability and stability. Capacity up to 160 mAh/g can be obtained at a C/2 rate during the galvanostatic cycling. Capacity retention of the cells is higher than 80% after 250 cycles. Battery performance at 60 °C and decay mechanism of the batteries will also be discussed.

  3. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I., Jr.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  4. Self-Assembled in-Plane-Gate Thin-Film Transistors Gated by WOx Solid-State Electrolytes

    NASA Astrophysics Data System (ADS)

    Zhu, De-Ming; Men, Chuan-Ling; Wan, Xiang; Deng, Chuang; Li, Zhen-Peng

    2013-08-01

    Low-voltage WOx gated indium-zinc-oxide thin-film transistors (TFTs) with in-plane-gate structures are fabricated by using an extremely simplified one-shadow mask method at room temperature. The proton conductive WOx solid-state electrolyte is demonstrated to form an electric-double-layer (EDL) effect associated with a huge capacitance of 0.51 μF/cm2. The special EDL capacitance of the WOx electrolyte is also extended to novel in-plane-gate structure TFTs as the gate dielectric, reducing the operating voltage to 1.8 V. Such TFTs operate at n-type depletion mode with a threshold voltage of -0.5 V, saturation electron mobility of 13.2 cm2/V·s, ON/OFF ratio of 1.7 × 106, subthreshold swing of 110 mV/dec, and low leakage current less than 7 nA. The hysteresis window of the transfer curves is also explained by an unique reaction within the WOx electrolyte.

  5. First-principles material modeling of solid-state electrolytes with the spinel structure.

    PubMed

    Mees, Maarten J; Pourtois, Geoffrey; Rosciano, Fabio; Put, Brecht; Vereecken, Philippe M; Stesmans, André

    2014-03-21

    Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2…0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0…1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected. PMID:24503944

  6. Superionic solid-state polymer electrolyte membrane for high temperature applications

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  7. Ceramic distribution members for solid state electrolyte cells and method of producing

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)

    1993-01-01

    A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes. The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.

  8. Method of producing ceramic distribution members for solid state electrolyte cells

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J. (Inventor); Galica, Leo M. (Inventor); Losey, Robert W. (Inventor); Suitor, Jerry W. (Inventor)

    1995-01-01

    A solid state electrolyte cells apparatus and method of producing is disclosed. The apparatus can be used for separating oxygen from an oxygen-containing feedstock or as a fuel cell for reacting fluids. Cells can be stacked so that fluids can be introduced and removed from the apparatus through ceramic distribution members having ports designed for distributing the fluids in parallel flow to and from each cell. The distribution members can also serve as electrodes to membranes or as membrane members between electrodes, The distribution member design does not contain any horizontal internal ports which allows the member to be thin. A method of tape casting in combination with an embossing method allows intricate radial ribs and bosses to be formed on each distribution member. The bosses serve as seals for the ports and allow the distribution members to be made without any horizontal internal ports.

  9. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    NASA Astrophysics Data System (ADS)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  10. Bubble Growth and Dynamics in a Strongly Superheated Electrolyte within a Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Levine, Edlyn; Nagashima, Gaku; Burns, Michael; Golovchenko, Jene

    2015-03-01

    Extreme localized superheating and homogeneous vapor bubble nucleation have recently been demonstrated in a single nanopore in thin, solid state membranes. Aqueous electrolytic solution within the pore is superheated to well above its boiling point by Joule heating from ionic current driven through the pore. Continued heating of the metastable liquid leads to nucleation of a vapor bubble in the pore followed by explosive growth. Here we report on the growth dynamics of the vapor bubble after nucleation in the strongly superheated liquid. The process is modeled by numerically solving the Rayleigh-Plesset equation coupled with energy conservation and a Stefan boundary condition. The initial temperature distribution, peaked at the pore center, is taken to be radially symmetric. Energy conservation includes a Joule heating source term dependent on the bubble radius, which grows to constrict ionic current through the nanopore. Temperature-dependent properties of the electrolyte and the vapor are incorporated in the calculation. Comparison of the model to experimental results shows an initial bubble growth velocity of 50m/s and total bubble lifetime of 16ns. This work was supported by NIH Grant #5R01HG003703 to J.A. Golovchenko.

  11. Indium tin oxide for solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Weijtens, Christianus Hermanus L.

    Solid State Image Sensors (SSIS) which convert light into an electrical signal are introduced and transparent conductive materials and their deposition methods are reviewed as a solution to imager problems. The development of basic tools to enable replacement of poly-Si by Indium Tin Oxide (ITO) in SSIS is addressed. The installation and optimization of deposition equipment, the development of deposition and process technology of ITO, and the implementation and application of ITO in an image sensor are studied. Deposition rate and homogeneity and morphology and parameters like gas composition, power, pressure and substrate temperature are considered. Scope is limited to a first generation frame transfer imager with only one ITO layer although some concepts of an all ITO imager are discussed. The sensor used is a redesign of the accordion imager. All requirements imposed on ITO were met and the usefulness of the developed technology was demonstrated by implementing ITO in an imager. The characteristics of a constructed frame-transfer image sensor in which half the gates in the light sensitive part were replaced by ITO gates are discussed.

  12. Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex.

    PubMed

    Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2015-01-01

    The development of high energy-density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860

  13. Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex

    PubMed Central

    Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2015-01-01

    The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860

  14. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    PubMed

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-01

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material. PMID:23753038

  15. Lithium phosphorus oxynitride solid-state thin-film electrolyte deposited and modified by bias sputtering and low temperature annealing

    SciTech Connect

    Chiu, K.-F.; Chen, C. C.; Lin, K. M.; Lo, C. C.; Lin, H. C.; Ho, W.-H.; Jiang, C. S.

    2010-07-15

    Amorphous lithium phosphorus oxynitride (LiPON) solid-state thin-film electrolyte has been deposited and characterized. The thin films were prepared by rf magnetron sputtering under various substrate biases. By fabricating under different substrate biases and applying low temperature annealing (473 K), the properties of the LiPON thin-film electrolytes and the electrolyte/cathode interfaces were modified. The ionic conductivity as high as 9.4x10{sup -4} S m{sup -1} can be obtained by depositing at optimal bias. The performances of the consequently fabricated SnO{sub 2}/LiPON/LiMn{sub 2}O{sub 4} all-solid-state lithium ion thin-film batteries were improved using the bias sputtering technique, due to the enhanced the ionic conductivity and uniform interface.

  16. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    NASA Astrophysics Data System (ADS)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  17. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  18. Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Duan, Jialong; Tang, Qunwei; Li, Ru; He, Benlin; Yu, Liangmin; Yang, Peizhi

    2015-06-01

    Pursuit of a high efficiency and stability has been a persistent objective for quantum dot-sensitized solar cells (QDSCs). Here we launch a strategy of synthesizing graphene implanted polyacrylamide (PAAm-G) conducting gel electrolytes for quasi-solid-state QDSCs. With an aim of elevating the dosage of S2-/Sx2- redox couples and therefore charge-transfer ability, both osmotic press across the PAAm-G and capillary force within the three-dimensional micropores are utilized as driving forces. A promising power conversion efficiency of 2.34% is recorded for the QDSCs by optimizing graphene dosage in the conducting gel electrolyte. The enhanced conversion efficiency of solar cell is attributed to the expanded catalytic area from counter electrolyte/electrolyte interface to both interface and the conducting gel electrolyte.

  19. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries.

    PubMed

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-01-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm(-1) at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface. PMID:27146645

  20. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-05-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm‑1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface.

  1. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

    PubMed Central

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-01-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm−1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface. PMID:27146645

  2. Ionic conductivity measurement in magnesium aluminate spinel and solid state galvanic cell with magnesium aluminate electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Myongjai

    This thesis work is about the experimental measurement of electronic and ionic conductivities in the MgAl2O4 spinel at 500˜600°C range and exploring the fundamental origin of solid-state galvanic cell behavior in the cell of Al|MgAl2O4|Mg, Al|MgAl2O 4|C, and Mg|MgAl2O4|C, in which at least one metal electrode in common with the composition of the electrolyte. For the electronic conductivity measurement, we have used the ion-blocking Gold and Carbon electrodes which are inert with both Mg and Al ions to suppress the ionic conduction from the total conduction. DC polarization method was used to measure the conduction through Au|MgAl2O4|Au and C|MgAl2O4|C specimens. The measured electrical conductivity using Au|MgAl2O4|Au and C|MgAl2O4|C specimens showed 10-9.3 ˜ 10-8.4 (O·cm) -1 at 600˜720°C range following the Arrhenius-type relation. These conductivity data are in agreement with reported data obtained from Pt and Ag ion-blocking electrodes deposited on MgAl2O4 specimens. For the ionic conductivity measurement, we have used the non-blocking Al and Mg electrodes for Al and Mg ionic conductivities, respectively. Ionic conductivity measurement of Al and Mg in separate manner has not been reported yet. In both Al|MgAl2O4|Al and Mg|MgAl2O 4|Mg specimens, gradual increase of conduction was observed once at the initial period before it reaches the steady state conduction. By DC method on the range of 580˜650°C, steady state Al ionic conductivity was measured from Al|MgAl2O4|Al specimen showing 10 -7.7 ˜ 10-6.8 (O·cm)-1 with the activation energy of 1.9eV in sigma = sigma0 exp-QRT formula. There was no difference in the conductivity by the change of the atmosphere from 5%H2 + 95%N2 mixed gas to pure Ar gas. So it was confirmed that the oxygen defect chemistry did not play a role. For Mg ionic conductivity Mg|MgAl2O4|Mg specimen was used and the measured conductivity shows 10-6.7 ˜ 10-4.4 (O·cm)-1 at 400˜550°C with the activation energy of 1.44eV at Ar gas

  3. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect

    Unemoto, Atsushi Ikeshoji, Tamio; Yasaku, Syun; Matsuo, Motoaki; Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu; Orimo, Shin-ichi

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  4. Solid state cell with alkali metal halo-alkali thiocyanate electrolyte

    SciTech Connect

    Rao, B. M.; Silbernagel, B. G.

    1980-02-26

    A novel electrochemical cell is disclosed utilizing: (A) an anode which contains an alkali metal as an anode-active material; (B) a cathode and (C) an electrolyte comprising an electrolytically effective amount of one or more compounds having the formula: (Ax)ma'scn wherein a is an alkali metal, X is a halogen, a' is an alkali metal and 0.1 < or = N < or = 10. Preferred systems include lithium-containing anodes, lithium-containing electrolytes and cathodes which contain cathode-active material selected from the group consisting of cathode-active sulfurs, halogens, halides, chromates, phosphates, oxides and chalcogenides, especially those chalcogenides of the empirical formula mzm wherein M is one or more metals selected from the group consisting of iron, titanium, zirconium, hafnium, niobium, tantalum and vanadium, Z is one or more chalcogens selected from the group consisting of oxygen, sulfur, selenium and tellurium, and M is a numerical value between about 1.8 and about 3.2.

  5. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  6. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    NASA Astrophysics Data System (ADS)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  7. Conducting gel electrolytes with microporous structures for efficient quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Yu, Liangmin

    2015-01-01

    Conducting gel electrolytes from poly(acrylic acid)-cetyltrimethylammonium bromide/polyaniline (PAA-CTAB/PANi) and poly(acrylic acid)-cetyltrimethylammonium bromide/polypyrrole (PAA-CTAB/PPy) are synthesized under driving forces of both osmotic pressure and capillary force within microporous PAA-CTAB matrix. The as-synthesized PAA-CTAB/PANi or PAA-CTAB/PPy can extend the reduction reaction of triiodides from gel electrolyte/Pt counter electrode interface to both interface and three-dimensional framework of conducting gel electrolyte due to the electrical conduction of PANi or PPy toward reflux electrons (electrons from external circuit to Pt counter electrode). The enhanced kinetics for triiodides → iodide conversion is promising in elevating photovoltaic performances of quasi-solid-state dye-sensitized solar cells (DSSCs). Driving forces by both osmotic pressure across PAA-CTAB matrix and capillary force presenting in micropores can elevate the loading of PANi or PPy incorporated liquid electrolyte in per unit volume, leading to further enhancement in charge transfer and electrocatalytic activity. The total power conversion efficiencies of 7.11% and 6.39% are recorded in the solar cells with PAA-CTAB/PANi and PAA-CTAB/PPy electrolytes under one sun irradiation, respectively, whereas it is 6.07% for the cell device with pure PAA-CTAB gel electrolyte. Electrical and electrochemical characterizations reveal that the electrical conduction and electrocatalytic performances have been significantly enhanced by incorporating electrical conducting PANi or PPy into microporous PAA-CTAB matrix. The concept opens a new approach of fabricating efficient polymer gel electrolytes for robust quasi-solid-state DSSC applications.

  8. Stable, High-Efficiency Pyrrolidinium-Based Electrolyte for Solid-State Dye-Sensitized Solar Cells.

    PubMed

    He, Tong; Wang, Ye Feng; Zeng, Jing Hui

    2015-09-30

    We synthesized a series of pyrrolidinium based dicationic ionic crystals with high melting point and good thermal stability. Research on the crystal structure shows that there are ordered three-dimensional ionic channels in these crystals which is favorable for the ionic conductor to achieve high conductivity and diffusion coefficient. These ionic crystals are applied to electrolyte as matrix in dye sensitized solar cells, and the influence of crystal structure (including the alkylene chain separating two pyrrolidinium rings and anion) versus the device performances are studied by steady-state voltammography, current-voltage trace, and electrochemical impedance spectroscopy. As the solid state electrolyte, an optimized efficiency of 6.02% have achieved under full sunlight irradiation using ionic crystal [C6BEP][TFSI]2. And the device based on this solid electrolyte shows the excellent long-term stability, maintaining 92% of the initial efficiency after 960 h. This study elucidates fundamental the structure of dicationic crystal and provide useful clues for further improvement of solid-state electrolytes in DSSC. PMID:26336080

  9. Electrolytic oxide reduction system

    SciTech Connect

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  10. Solid State, Surface and Catalytic Studies of Oxides

    SciTech Connect

    Kung, H. H.

    2004-11-23

    This project investigates the catalytic properties of oxides for the selective oxidative dehydrogenation of light alkanes and for hydrocarbon reduction of NO{sub x}. Various vanadium oxide based catalysts were investigated to elucidate the relationship between the chemical and structural properties of the catalysts and their selectivity for the formation of alkenes. It was found that vanadium oxide units that are less reducible give higher selectivities. For hydrocarbon reduction of NO{sub x}, it was found that alumina-based catalysts can be effective at higher temperatures than the corresponding zeolite-based catalysts. On some catalysts, such as SnO{sub 2}/Al{sub 2}O{sub 3}. Ag/Al{sub 2}O{sub 3}, the alumina participates directly in the reaction, making the catalyst bifunctional. These results are useful in research to improve the performance of this stress of catalysts.

  11. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

    PubMed

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar

    2016-01-20

    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc. PMID:26697922

  12. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  13. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  14. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    PubMed

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices. PMID:25625769

  15. First Principles Study of Electrochemical and Chemical Stability of the Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    All-solid-state Li-ion battery is a promising next-generation energy-storage technology. Using novel ceramic solid electrolyte materials, all-solid-state battery has advantages of intrinsic safety and high energy density compared to current Li-ion batteries based on organic liquid electrolyte. However, the power density achieved in all-solid-state battery is still unsatisfactory. The high interfacial resistance at electrode-electrolyte interface is one of the major limiting factors. Here we demonstrated a computational approach based on first principles calculation to systematically investigate the chemical and electrochemical stability of solid electrolyte materials, and provide insightful understanding of the degradation and passivation mechanisms at the interface. Our calculation revealed that the intrinsic stability of solid electrolyte materials and solid electrolyte-electrode interfaces is limited and the formation of interphase layers are thermodynamically favorable. Our study demonstrated a computational scheme to evaluate the electrochemical and chemical stability of the solid interfaces. Our newly gained understanding provided principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries. This work was supported by Office of Energy Efficiency and Renewable Energy (DE-EE0006860).

  16. Theory of the electronic and structural properties of solid state oxides

    SciTech Connect

    Chelikowsky, J.R.

    1990-01-01

    Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)

  17. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  18. Effect of Molecular Weight on Mechanical and Electrochemical Performance of All Solid-State Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein

    2015-03-01

    Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.

  19. A Novel Small-Molecule Compound of Lithium Iodine and 3-Hydroxypropionitride as a Solid-State Electrolyte for Lithium-Air Batteries.

    PubMed

    Liu, Fang-Chao; Shadike, Zulipiya; Wang, Xiao-Fang; Shi, Si-Qi; Zhou, Yong-Ning; Chen, Guo-Ying; Yang, Xiao-Qing; Weng, Lin-Hong; Zhao, Jing-Tai; Fu, Zheng-Wen

    2016-07-01

    A novel small-molecule compound of lithium iodine and 3-hydroxypropionitrile (HPN) has been successfully synthesized. Our combined experimental and theoretical studies indicated that LiIHPN is a Li-ion conductor, which is utterly different from the I(-)-anion conductor of LiI(HPN)2 reported previously. Solid-state lithium-air batteries based on LiIHPN as the electrolyte exhibit a reversible discharge capacity of more than 2100 mAh g(-1) with a cyclic performance over 10 cycles. Our findings provide a new way to design solid-state electrolytes toward high-performance lithium-air batteries. PMID:27308962

  20. Eco-friendly wood-based solid-state flexible supercapacitors from wood transverse section slice and reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Lv, Shaoyi; Fu, Feng; Wang, Siqun; Huang, Jingda; Hu, La

    2015-07-01

    An interesting wood-based all-solid-state supercapacitor is produced using reduced graphene oxide (RGO) coated on wood transverse section slice (WTSS) as electrode material by means of a low-cost, eco-friendly, and simple method for the first time. The RGO-coated WTSS electrode has a porous 3D honeycomb framework due to the hierarchical cellular structure of the WTSS substrate and can function as an electrolyte reservoir. This special construction endows this novel electrode with good areal capacitance (102 mF cm-2) and excellent cyclic stability (capacitance retention of 98.9% after 5000 cycles). In addition, the supercapacitors exhibit good mechanical flexibility and preserve almost constant capacitive behavior under different bending conditions. Our study introduces a new and eco-friendly material design for electrodes in future flexible energy storage devices that closely resemble natural materials. [Figure not available: see fulltext.

  1. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  2. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.

    PubMed

    Kang, Yu Jin; Yoo, Yongju; Kim, Woong

    2016-06-01

    State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics. PMID:27167760

  3. POSS-Based Electrolyte for Efficient Solid-State Dye-Sensitized Solar Cells at Sub-Zero Temperatures.

    PubMed

    Lv, Kai; Zhang, Wei; Zhang, Lu; Wang, Zhong-Sheng

    2016-03-01

    To expand the application of solid-state dye-sensitized solar cells (ssDSSCs) to low temperatures, it is necessary to develop new solid electrolytes with low glass transition temperature (Tg). The Tg is regulated by varying the length of alkyl chain that is connected with the nitrogen atom in the imidazolium ring linked to the polyhedral oligomeric silsesquioxane (POSS). The Tg as low as -8.8 °C is achieved with the POSS grafted with methyl-substituted imidazolium. The effect of alkyl group on the conductivity, Tg, and photovoltaic performance has also been investigated. The conductivity and power conversion efficiency increase with the alkyl length, while the Tg first increases and then decreases with the alkyl length. Among the synthesized POSS-based ionic conductors, the POSS grafted with the methyl-substituted imidazolium yields the highest power conversion efficiency of 6.98% at RT due to its highest conductivity, and the efficiency (6.52%) is still good at -4 °C, as its Tg (-8.8 °C) is lower than the working temperature (-4 °C). This finding suggests that the POSS-based solid electrolyte is promising for subzero-temperature applications of ssDSSCs. PMID:26860035

  4. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    NASA Astrophysics Data System (ADS)

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-02-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o.

  5. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers.

    PubMed

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-01-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°). PMID:26846891

  6. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    PubMed Central

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-01-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o. PMID:26846891

  7. Nanoporous zeolite and solid-state electrochemical devices for nitrogen-oxide sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jiun-Chan

    Solid-state electrochemical gas sensing devices composed of stabilized-zirconia electrolyte have used extensively in the automobile and chemical industry. Two types of electrochemical devices, potentiometric and amperometric, were developed in this thesis for total NOx (NO + NO2) detection in harsh environments. In potentiometric devices, Pt covered with Pt containing zeolite Y (PtY) and WO3 were examined as the two electrode materials. Significant reactivity differences toward NOx between PtY and WO 3 led to the difference in non-electrochemical reactions and resulted in a electrode potential. With gases passing through a PtY filter, it was possible to remove interferences from 2000 ppm CO, 800 ppm propane, 10 ppm NH3, as well as to minimize effects of 1˜13% O2, CO2, and H2O. Total NOx concentration was measured by maintaining a temperature difference between the filter and the sensor. The sensitivity was significantly improved by connecting sensors in series. Amperometic devices were also developed to detect NOx passing through the PtY filter. By applying a low anodic potential of 80 mV, NO in the NOx equilibrated mixture can be oxidized at a Pt working electrode on the YSZ electrolyte at 500°C. The PtY can be held separate from the YSZ or coated onto the YSZ as a film. This design was demonstrated to exhibit total-NOx detection capability, a low NOx detection limit (< 1 ppm), high NOx selectivity relative to CO and oxygen, and linear dependence on NOx concentration. The non-electrochemical reactions around the triple-phase boundary were studied to understand the origin of the superior performance of WO3 on potentiometric NOx sensing. From TPD, DRIFTS, XRD, Raman, and catalytic activity measurements, the interfacial reactions between WO 3 and YSZ were found to dramatically reduce the NOx catalytic activity of YSZ. WO3 reacted with surface Y2O3 on YSZ and formed less catalytically active yttrium tungsten oxides and monoclinic ZrO2, which suppressed the non

  8. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  9. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    NASA Astrophysics Data System (ADS)

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis

    2016-09-01

    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  10. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery.

    PubMed

    Unemoto, Atsushi; Chen, ChunLin; Wang, Zhongchang; Matsuo, Motoaki; Ikeshoji, Tamio; Orimo, Shin-Ichi

    2015-01-26

    The ionic conduction and electrochemical and thermal stabilities of the LiBH4-LiCl solid-state electrolyte were investigated for use in bulk-type all-solid-state lithium-sulfur batteries. The LiBH4-LiCl solid-state electrolyte exhibiting a lithium ionic conductivity of [Formula: see text] at 373 K, forms a reversible interface with a lithium metal electrode and has a wide electrochemical potential window up to 5 V. By means of the high-energy mechanical ball-milling technique, we prepared a composite powder consisting of elemental sulfur and mixed conductive additive, i.e., Ketjen black and Maxsorb. In that composite powder, homogeneous dispersion of the materials is achieved on a nanometer scale, and thereby a high concentration of the interface among them is induced. Such nanometer-scale dispersals of both elemental sulfur and carbon materials play an important role in enhancing the electrochemical reaction of elemental sulfur. The highly deformable LiBH4-LiCl electrolyte assists in the formation of a high concentration of tight interfaces with the sulfur-carbon composite powder. The LiBH4-LiCl electrolyte also allows the formation of the interface between the positive electrode and the electrolyte layers, and thus the Li-ion transport paths are established at that interface. As a result, our battery exhibits high discharge capacities of 1377, 856, and 636 mAh g(-1) for the 1st, 2nd, and 5th discharges, respectively, at 373 K. These results imply that complex hydride-based solid-state electrolytes that contain Cl-ions in the crystal would be integrated into rechargeable batteries. PMID:26041380

  11. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Unemoto, Atsushi; Chen, ChunLin; Wang, Zhongchang; Matsuo, Motoaki; Ikeshoji, Tamio; Orimo, Shin-ichi

    2015-06-01

    The ionic conduction and electrochemical and thermal stabilities of the LiBH4-LiCl solid-state electrolyte were investigated for use in bulk-type all-solid-state lithium-sulfur batteries. The LiBH4-LiCl solid-state electrolyte exhibiting a lithium ionic conductivity of log ≤ft( σ /S c{{m}-1} \\right)=-3.3 at 373 K, forms a reversible interface with a lithium metal electrode and has a wide electrochemical potential window up to 5 V. By means of the high-energy mechanical ball-milling technique, we prepared a composite powder consisting of elemental sulfur and mixed conductive additive, i.e., Ketjen black and Maxsorb. In that composite powder, homogeneous dispersion of the materials is achieved on a nanometer scale, and thereby a high concentration of the interface among them is induced. Such nanometer-scale dispersals of both elemental sulfur and carbon materials play an important role in enhancing the electrochemical reaction of elemental sulfur. The highly deformable LiBH4-LiCl electrolyte assists in the formation of a high concentration of tight interfaces with the sulfur-carbon composite powder. The LiBH4-LiCl electrolyte also allows the formation of the interface between the positive electrode and the electrolyte layers, and thus the Li-ion transport paths are established at that interface. As a result, our battery exhibits high discharge capacities of 1377, 856, and 636 mAh g-1 for the 1st, 2nd, and 5th discharges, respectively, at 373 K. These results imply that complex hydride-based solid-state electrolytes that contain Cl-ions in the crystal would be integrated into rechargeable batteries.

  12. Low Temperature Synthesis of Cubic-phase Fast-ionic Conducting Bi-doped Garnet Solid State Electrolytes

    NASA Astrophysics Data System (ADS)

    Schwanz, Derek K.; Marinero, Ernesto

    We report on the synthesis of cubic-phase fast ionic conducting garnet solid state electrolytes based on LiLaZrO (LLZO) at unprecedented low synthesis temperatures. Ionic conductivities around 1.2 x 10-4 S/cm are readily achieved. Bismuth aliovalent substitution into LLZO utilizing the Pechini processing method is successfully employed to synthesize LiLaZrBiO compounds. Cubic phase LiLaZrBiO powders are generated in the temperature range 650C to 900C in air. In contrast, in the absence of Bi and under identical synthesis conditions, the cubic phase of LiLaZrO is not formed below 750C and a transformation to the poor ionically conducting tetragonal phase is observed at 800C for the undoped compound. The critical role of Bi in lowering the formation temperature of the garnet cubic phase and the improvements in ionic conductivity are elucidated in this work through microstructural and electrochemical studies.

  13. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state. PMID:26609912

  14. All-solid-state electrochemical capacitors using MnO2 electrode/SiO2-Nafion electrolyte composite prepared by the sol-gel process

    NASA Astrophysics Data System (ADS)

    Shimamoto, Kazushi; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2014-02-01

    Electrode-electrolyte composites of MnO2 active material, acetylene black (AB), and SiO2-Nafion solid electrolyte were prepared using the sol-gel process to form good solid-solid interfaces. The composites were obtained by the addition of MnO2 and AB into a sol of hydrolyzed tetraethoxysilane with Nafion, and successive solidification of the precursor sol. Scanning electron microscope and energy dispersive X-ray spectroscopy measurements show that good solid-solid interface is formed between electrodes and solid electrolytes in the composites. All-solid-state hybrid capacitors were fabricated using the composites or the hand-grinding mixture of MnO2, AB and SiO2-Nafion powder as positive electrodes, activated carbon powder as a negative electrode, and phosphosilicate gel as a solid electrolyte. The all-solid-state hybrid capacitors using the composites exhibit larger capacitances and better rate performance than the capacitors using the electrode prepared by hand-mixing of powders. Specific discharge capacitances of the capacitor with the composite are 85 F g-1 for the one with the composite electrode and 48 F g-1 for the one with the hand-mixed electrode, at 1 mA cm-2. Moreover, the all-solid-state capacitors using the composite electrode can be operated at temperatures between -30 °C and 60 °C.

  15. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life.

    PubMed

    Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil

    2016-03-01

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li(+)-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices. PMID:26862941

  16. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte.

    PubMed

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm(-3), which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L(-1) and 549 W L(-1), based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices. PMID:27241801

  17. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    NASA Astrophysics Data System (ADS)

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-01

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (EG). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus EG are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above -4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy -4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/-) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state.

  18. Solid-state proton conductors

    SciTech Connect

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  19. Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications.

    PubMed

    Kim, Hyunjin; Kim, Tae Young; Roev, Victor; Lee, Heung Chan; Kwon, Hyuk Jae; Lee, Hyunpyo; Kwon, Soonchul; Im, Dongmin

    2016-01-20

    A stable electrolyte is required for use in the open-packing environment of a Li-O2 battery system. Herein, a gelled quasi-solid-state electrolyte containing SiO2 nanoparticles was designed, in order to obtain a solidified electrolyte with a high discharge capacity and long cyclability. We successfully fabricated an organic-inorganic hybrid matrix with a gelled structure, which exhibited high ionic conductivity, thereby enhancing the discharge capacity of the Li-O2 battery. In particular, the improved electrochemical stability of the gelled cathode led to long-term cyclability. The organic-inorganic hybrid matrix with the gelled structure played a beneficial role in improving the ionic conductivity and long-term cyclability and diminished electrolyte evaporation. The experimental and theoretical findings both suggest that the preferential binding between amorphous SiO2 and polyethylene glycol dimethyl ether (PEGDME) solvent led to the formation of the solidified gelled electrolyte and improved electrochemical stability during cycling, while enhancing the stability of the quasi-solid state Li-O2 battery. PMID:26698560

  20. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries

    DOE PAGESBeta

    Wang, Hui; Hood, Zachary D.; Xia, Younan; Liang, Chengdu

    2016-04-25

    All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li3PS4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreased to achievemore » ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li3PS4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.« less

  1. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  2. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  3. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  4. Solid state electrochromic light modulator

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1990-07-03

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  5. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  6. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1990-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  7. Resistivity control by solid-state reaction of perovskite-type oxides

    SciTech Connect

    Nagamoto, H.; Tanaka, H.; Koya, T.

    1995-10-01

    Resistivity control has been conducted by solid-state reaction of two different perovskite-type oxides. One is La{sub 0.5}Ba{sub 0.5}CoO{sub 3{minus}{delta}} (LBC) which showed metallic conduction, and its resistivity, {rho} was 10{sup {minus}3} {Omega} {center_dot} cm at 20 C. The other is Ba{sub 0.998}Sb{sub 0.002}TiO{sub 3} (BT) which showed positive temperature coefficient of resistivity (PTCR) effect. The sintered body of the mixture of the two oxides did not show PTCR effect. The logarithm of the resistivity of the sintered body, log {rho}{sub mix} was expressed using the resistivity of LBC, {rho}{sub LBC}, the molar ratio of BT, x, and temperature dependent constant, {alpha}(T) as log {rho}{sub mix} = (1 {minus} x) log {rho}{sub LBC} + x{alpha}(T), which holds for 0 {le} x {le} 0.8 at the temperature ranging from 20 to 240 C. {rho}{sub mix} changed by about 8 orders of magnitude at room temperature. X-ray diffraction analysis suggested that metal ions at the A-site move from one perovskite-type oxide to another and that the sintered body consisted of two perovskite-type oxides different from starting ones.

  8. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  9. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles

    SciTech Connect

    Bystrzejewski, M.

    2011-06-15

    The encapsulation of iron nanoparticles in protective carbon cages leads to unique hybrid core-shell nanomaterials. Recent literature reports suggest that such nanocomposites can be obtained in a relatively simple process involving the solid state carbothermal reduction of iron oxide nanoparticles. This approach is very attractive because it does not require advanced equipment and consumes less energy in comparison to widely used plasma methods. The presented more-in-depth study shows that the carbothermal approach is sensitive to temperature and the process yield strongly depends on the morphology and crystallinity of the carbon material used as a reductant. - Graphical abstract: Reduction of iron oxide nanoparticles by carbon black at 1200 deg. C yields well crystallized carbon-encapsulated iron nanoparticles. Highlights: > Carbon-encapsulated iron nanoparticles were synthesized by carbothermal reduction of iron oxide nanoparticles. > The process has the highest selectivity at 1200 C. > Lower temperatures result in iron oxide nanoparticles wrapped in carbon matrix. > The encapsulation rate of Fe at 1200 deg. C was found to be 15%.

  10. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    NASA Astrophysics Data System (ADS)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  11. Solid-oxide fuel cell electrolyte

    DOEpatents

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  12. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite

    NASA Astrophysics Data System (ADS)

    Pu, Juan; Wang, Xiaohong; Zhang, Tianyi; Li, Siwei; Liu, Jinghe; Komvopoulos, Kyriakos

    2016-01-01

    Novel all-solid-state microsupercapacitors (MSCs) with three-dimensional (3D) electrodes consisting of active materials (i.e., graphene or activated carbon (AC) particles) and polymer electrolyte (PE) designed for high-energy-density storage applications were fabricated and tested in this work. The incorporation of PE in the electrode material enhances the accessibility of electrolyte ions to the surface of active materials and decreases the ion diffusion path during electrochemical charge/discharge. For a scan rate of 5 mV s-1, the MSCs with graphene/PE and AC/PE composite electrodes demonstrate a very high areal capacitance of 95 and 134 mF cm-2, respectively, comparable to that of 3D MSCs with liquid electrolyte. In addition, the graphene/PE MSCs show a ˜70% increase in specific capacitance after 10 000 charge/discharge cycles, attributed to an electro-activation process resulting from ion intercalation between the graphene nanosheets. The AC/PE MSCs also demonstrate excellent stability. The results of this study illustrate the potential of the present 3D MSCs for various high-density solid-state energy storage applications.

  13. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  14. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  15. Plasma electrolytic oxidation of AMCs

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  16. Ionic gel electrolytes composite with SiO2 nanoparticles for quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Liguo; Liu, Taiyang; Wang, Chao

    2016-06-01

    Composite ionic gel electrolytes were facilely prepared by mixing ionic gel electrolytes with SiO2 nanoparticles. The dye-sensitized solar cells (DSSCs) assembled with the composite ionic gel electrolytes exhibit the higher photovoltaic performance and better durability compared to the original DSSCs based on pure ionic gel electrolytes. In particular, the DSSC assembled with the electrolytes containing 0.15 g of SiO2 shows superior J SC (14.4 mA cm-2), V OC (0.67 V), fill factor (0.69) and power conversion efficiency (6.71 %) (measured at AM 1.5, light intensity of 100 mW/cm2). The electrochemical impedance spectra, SEM and conductivity were used to characterize the composite ionic gel electrolytes.

  17. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  18. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    NASA Astrophysics Data System (ADS)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  19. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR.

    PubMed

    Vacchi, Isabella A; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-14

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO. PMID:27411370

  20. Synthesis and spectroscopic analysis of polydiphenylamine via oxidation with bentonite clay in the solid state.

    PubMed

    Kubota, Mayara Masae; Sacco, Bruno Luis; Bento, Danielly Cristina; de Santana, Henrique

    2015-12-01

    In this study, solids of polydiphenylamine (PDPA) synthesized mechanochemically by reaction with bentonite (PDPAOB) were studied using Raman spectroscopy. It was possible to identify the chemical species in the PDPA-bentonite compound. The spectra obtained were compared to the spectra of PDPA prepared chemically by oxidation of DPA with K2S2O8 in the solid state, and PDPA produced electrochemically, with the aim of studying the characteristic frequencies of the aromatic segments (DPB), radical cation (DPB(+)) and dication (DPB(2+)) of N,N-diphenylbenzidine (DPB) in the polymer structure of the PDPA. To analyze the segments present, the band characteristic of CC asymmetric stretching of the aromatic ring in the Raman spectra was deconvoluted because of the widening of the band and shifts observed by irradiation at wavelengths of 532 and 785 nm. This procedure showed that there are three distinct contributions in the spectra which facilitate the monitoring of changes in the contributions of the segments in the materials doped with HCl (PDPAOBD) and de-doped with NH4OH, (PDPAOBR). PMID:26125986

  1. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    PubMed

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. PMID:26421754

  2. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  3. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  4. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

    PubMed

    Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun

    2015-09-23

    This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes. PMID:26325385

  5. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Rawlence, Michael; Garbayo, Inigo; Buecheler, Stephan; Rupp, J. L. M.

    2016-08-01

    Garnet-based Al-doped Li7La3Zr2O12 has the potential to be used as a solid state electrolyte for future lithium microbattery architectures, due to its relatively high Li+ conductivity and stability against Li. Through this work, a model experiment is presented in which the effect of post-lithiation on phase formation and chemical stability is studied for pulsed laser deposited Al-doped Li7La3Zr2O12 thin films on MgO substrates. We report the implications of the newly suggested post-lithiation route for films with thicknesses between 90 and 380 nm. The phase changes from cubic, to a mix of cubic and tetragonal Li7La3Zr2O12, to a cubic Li7La3Zr2O12 and La2Zr2O7 containing film is accompanied by a reduction in the degree of de-wetting as the thickness increases. This study reveals that the thicker, dense, and continuous films remain predominantly in a mixed phase containing cubic Li7La3Zr2O12 and the lithium free La2Zr2O7 phase whereas the thinner, de-wetted films exhibit improved lithium incorporation resulting in the absence of the lithium free phase. For tuning the electrical conductivity and effective use of these structures in future batteries, understanding this material system is of great importance as the chemical stability of the cubic Li7La3Zr2O12 phase in the thin film system will control its effective use. We report a conductivity of 1.2 × 10-3 S cm-1 at 325 °C for a 380 nm thick solid state electrolyte film on MgO for potential operation in future all solid state battery assemblies.Garnet-based Al-doped Li7La3Zr2O12 has the potential to be used as a solid state electrolyte for future lithium microbattery architectures, due to its relatively high Li+ conductivity and stability against Li. Through this work, a model experiment is presented in which the effect of post-lithiation on phase formation and chemical stability is studied for pulsed laser deposited Al-doped Li7La3Zr2O12 thin films on MgO substrates. We report the implications of the newly

  6. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films.

    PubMed

    Rawlence, Michael; Garbayo, Inigo; Buecheler, Stephan; Rupp, J L M

    2016-08-21

    Garnet-based Al-doped Li7La3Zr2O12 has the potential to be used as a solid state electrolyte for future lithium microbattery architectures, due to its relatively high Li(+) conductivity and stability against Li. Through this work, a model experiment is presented in which the effect of post-lithiation on phase formation and chemical stability is studied for pulsed laser deposited Al-doped Li7La3Zr2O12 thin films on MgO substrates. We report the implications of the newly suggested post-lithiation route for films with thicknesses between 90 and 380 nm. The phase changes from cubic, to a mix of cubic and tetragonal Li7La3Zr2O12, to a cubic Li7La3Zr2O12 and La2Zr2O7 containing film is accompanied by a reduction in the degree of de-wetting as the thickness increases. This study reveals that the thicker, dense, and continuous films remain predominantly in a mixed phase containing cubic Li7La3Zr2O12 and the lithium free La2Zr2O7 phase whereas the thinner, de-wetted films exhibit improved lithium incorporation resulting in the absence of the lithium free phase. For tuning the electrical conductivity and effective use of these structures in future batteries, understanding this material system is of great importance as the chemical stability of the cubic Li7La3Zr2O12 phase in the thin film system will control its effective use. We report a conductivity of 1.2 × 10(-3) S cm(-1) at 325 °C for a 380 nm thick solid state electrolyte film on MgO for potential operation in future all solid state battery assemblies. PMID:27455404

  7. Low molecular mass organogelator based gel electrolyte gelated by a quaternary ammonium halide salt for quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huo, Zhipeng; Zhang, Changneng; Fang, Xiaqin; Cai, Molang; Dai, Songyuan; Wang, Kongjia

    Quasi-solid-state dye-sensitized solar cells (DSC) are fabricated using tetradodecylammonium bromide as a low molecular mass organogelator (LMOG) to form gel electrolyte with a high solution-to-gel transition temperature (T SG) of 75 °C to hinder flow and volatilization of the liquid. The steady-state voltammograms reveal that the diffusion of the I 3 - and I - in the gel electrolyte is hindered by the self-assembled network of the gel. An increased interfacial exchange current density (j 0) of 4.95 × 10 -8 A cm -2 and a decreased electron recombination lifetime (τ) of 117 ms reveal an increased electron recombination at the dyed TiO 2 photoelectrode/electrolyte interface in the DSC after gelation. The results of the accelerated aging tests show that the gel electrolyte based dye-sensitized solar cell can retain over 93% of its initial photoelectric conversion efficiency value after successive heating at 60 °C for 1000 h, and device degradation is negligible after one sun light soaking with UV cutoff filter for 1000 h.

  8. Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart.

    PubMed

    Anothumakkool, Bihag; Torris A T, Arun; Bhange, Siddheshwar N; Badiger, Manohar V; Kurungot, Sreekumar

    2014-06-01

    We report the design of an all-solid-state supercapacitor, which has charge storage characteristics closely matching that of its liquid-state counterpart even under extreme temperature and humidity conditions. The prototype is made by electro-depositing polyethylenedioxythiophene (PEDOT) onto the individual carbon fibers of a porous carbon substrate followed by intercalating the matrix with polyvinyl alcohol-sulphuric acid (PVA-H2SO4) gel electrolyte. The electrodeposited layer of PEDOT maintained a flower-like growth pattern along the threads of each carbon fiber. This morphology and the alignment of PEDOT led to an enhanced surface area and electrical conductivity, and the pores in the system enabled effective intercalation of the polymer-gel electrolyte. Thus, the established electrode-electrolyte interface nearly mimics that of its counterpart based on the liquid electrolyte. Consequently, the solid device attained very low internal resistance (1.1 Ω cm(-2)) and a high specific capacitance (181 F g(-1)) for PEDOT at a discharge current density of 0.5 A g(-1). Even with a high areal capacitance of 836 mF cm(-2) and volumetric capacitance of 28 F cm(-3), the solid device retained a mass-specific capacitance of 111 F g(-1) for PEDOT. This is in close agreement with the value displayed by the corresponding liquid-state system (112 F g(-1)), which was fabricated by replacing the gel electrolyte with 0.5 M H2SO4. The device also showed excellent charge-discharge stability for 12 000 cycles at 5 A g(-1). The performance of the device was consistent even under wide-ranging humidity (30-80%) and temperature (-10 to 80 °C) conditions. Finally, a device fabricated by increasing the electrode area four times was used to light an LED, which validated the scalability of the process. PMID:24764081

  9. Synthesis and characterization of perovskite-type (Li,Sr)(Zr,Nb)O3 quaternary solid electrolyte for all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Yu, Ran; Du, Qing-Xia; Zou, Bang-Kun; Wen, Zhao-Yin; Chen, Chun-Hua

    2016-02-01

    Stable solid electrolytes with high lithium ionic conductivity are crucial for all-solid-state lithium ion batteries. The compatibility with electrodes require a sintering temperature around 1000 °C. A perovskite-type (Li,Sr)(Zr,Nb)O3 system with A-site vacancy is designed and synthesized by a solid-state reaction route. Four compositions with different concentrations of A-site vacancy and several sintering temperatures between 1100 and 1300 °C are selected to find an optimal composition. X-ray diffraction and scanning electron microscope are employed to analyze the crystalline phases and the microstructure of the sintered samples. The ionic conductivities of the materials are measured by AC impedance spectroscopy. For the sample with the optimal composition Li3/8Sr7/16Zr1/4Nb3/4O3 and sintered at 1200 °C, its total ionic conductivity is 2.00×10-5 and 1.65×10-4 Scm-1 at 30 and 100 °C, respectively. Its activation energy for lithium ion conduction is 0.26 eV.

  10. An Integrated Approach for Structural Characterization of Complex Solid State Electrolytes: The Case of Lithium Lanthanum Titanate

    SciTech Connect

    Cheng, Yongqiang; Bi,; Huq, Ashfia; Feygenson, Mikhail; Bridges, Craig A; Paranthaman, Mariappan Parans; Sumpter, Bobby G

    2014-01-01

    Neutron scattering and first principles simulation are integrated to reveal the atomic-level to nanoscale structure of lithium lanthanum titanate (LLTO), a representative solid electrolyte material with applications in Li-ion batteries. The integrated approach solves the hierarchical local structure of LLTO in detail, including the coupled chemical order and topological distortion, as well as their correlation length scale and the spatial modulation with coherent boundaries. Ab initio molecular dynamics simulations are used to map out the distribution of the mobile ions and identify the migration pathway. Overall, this integrated approach provides a powerful means for detailed study of materials with complex local chemical and topological environment.

  11. Solid-state voltammetry and polymer electrolyte plasticization as a basis for an electrochemical gas chromatographic detector

    SciTech Connect

    Parcher, J.F.; Barbour, C.J.; Murray, R.W. )

    1989-03-15

    A new type of electrochemical gas chromatographic (ECGC) detector is described. The detector consists of a film of polymer electrolyte, PEO{sub 16}/LiCF{sub 3}SO{sub 3}, coating a microelectrode-based electrochemical cell and in contact with the effluent stream of a gas chromatograph. The PEO{sub 16}/LiCF{sub 3}SO{sub 3} polymer acts as an ionically conducting but physically rigid medium. Currents passed at the microelectrode/polymer interface depend on reactions of electroactive solutes dissolved in and diffusing through the polymer phase. These currents respond to the presence of sample components in the gas phase through their sorption into, and plasticization of, the PEO polymer phase. The polymer plasticization results in larger diffusion coefficients for the electroactive solutes and, consequently, larger microelectrode currents. Several forms of electrochemical potential control are examined as are the effects of chosen electroactive probe, probe concentration, polymer film thickness, and gaseous sample concentration and sorption. Faster detector responses are obtained with thin PEO{sub 16}/LiCF{sub 3}SO{sub 3} films and faster diffusing electroactive probes. The detector responds linearly to small quantities of sample but exponentially to large sample concentrations. The detector is unusual in that it is most sensitive to later-eluting components of a sample mixture; this effect results from the connection between the degree of sample component sorption or partition into the polymer electrolyte and the resulting degree of polymer plasticization and transport rate enhancement.

  12. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries.

    PubMed

    Porcarelli, Luca; Shaplov, Alexander S; Salsamendi, Maitane; Nair, Jijeesh R; Vygodskii, Yakov S; Mecerreyes, David; Gerbaldi, Claudio

    2016-04-27

    Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate. PMID:27043201

  13. Forming-free, bi-directional polarity conductive-bridge memory devices with Ge2Sb2Te5 solid-state electrolyte and Ag active electrode

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Hsien; Chen, Hsuan-An; Wu, Hsin-Han; Hsieh, Tsung-Eong

    2015-01-01

    Preparation and characteristics of conductive-bridge random access memory devices containing Ge2Sb2Te5 (GST) chalcogenide as the solid-state electrolyte, Ag as the active electrode, and W-Ti as the counter electrode are presented. As revealed by the electrical measurement, only the samples containing crystalline GST exhibited the resistive switching behaviors. With an insertion of ZnS-SiO2 dielectric layer at the Ag/GST interface and a postannealing at 100 °C for 1 min, the sample exhibited the best electrical performance with satisfactory cycleability and retention properties. Moreover, the forming-free and bi-directional polarity features were observed in such a sample type. Microstructure and composition analyses found the finely dispersed nano-scale Ag clusters in GST and, when electrical bias is applied, the migrating Ag ions may build up the connections in between neighboring Ag clusters. Moreover, grain boundaries in polycrystalline GST might be the main paths for Ag migration. The thread-like conduction channels in GST hence form, leading to the low resistance state of sample. On the contrary, the depletion of Ag in GST broke the connections in between Ag clusters when the electrical bias is reversed. This led to the rupture of conduction channels and, hence, the high resistance state of sample. The low operational voltage, forming-free, and bi-directional polarity features observed in (AZGW)T sample might also originated from the fine dispersion of Ag clusters in GST electrolyte.

  14. High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte.

    PubMed

    Chang, Chun-Hui; Hsia, Ben; Alper, John P; Wang, Shuang; Luna, Lunet E; Carraro, Carlo; Lu, Shih-Yuan; Maboudian, Roya

    2015-12-01

    We demonstrate a symmetric supercapacitor by using yttria-stabilized zirconia (YSZ) as the electrolyte and silicon carbide nanowires (SiC NWs) as the electrode. The stacked symmetric SiC NWs/YSZ/SiC NWs supercapacitors exhibit excellent thermal stability and high areal capacitance at temperatures above 300 °C. The supercapacitor functions well at a record high temperature of 450 °C, yielding an areal capacitance of 92 μF cm(-2) at a voltage scan rate of 100 mV s(-1). At this temperature, it is also capable of withstanding current densities up to 50 μA cm(-2), yielding a maximum areal power density of 100 μW cm(-2). Good cycling stability is demonstrated with a capacitance retention of over 60% after 10,000 cycles at the operation temperature of 450 °C and a scan rate of 200 mV s(-1). PMID:26569457

  15. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    NASA Astrophysics Data System (ADS)

    Yamaura, Kazunari

    2016-04-01

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO3, LiOsO3, and Na2OsO4, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal-insulator transition in NaOsO3, a ferroelectric-like transition in LiOsO3, and high-temperature ferrimagnetism driven by a local structural distortion in Ca2FeOsO6 may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices.

  16. Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing.

    PubMed

    Prabhakaran, Venkateshkumar; Mehdi, B Layla; Ditto, Jeffrey J; Engelhard, Mark H; Wang, Bingbing; Gunaratne, K Don D; Johnson, David C; Browning, Nigel D; Johnson, Grant E; Laskin, Julia

    2016-01-01

    The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ∼0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (∼0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage. PMID:27097686

  17. Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-04-01

    The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ~0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (~0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.

  18. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    PubMed Central

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-01-01

    The rational design of improved electrode–electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ∼0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (∼0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage. PMID:27097686

  19. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability

    NASA Astrophysics Data System (ADS)

    Wang, Wan Lin; Oh, Byeong-Yun; Park, Ju-Young; Ki, Hangil; Jang, Jaewon; Lee, Gab-Yong; Gu, Hal-Bon; Ham, Moon-Ho

    2015-12-01

    Owing to their multiple redox couples, titanium-niobium-based oxides are still considered promising candidates for use as anodes for safe, rechargeable lithium ion batteries with high energy and power densities. Titanium-niobium-based oxide electrodes have, however, exhibited relatively poor cycling performance as a result of pulverization. In this study, we report on a simple two-step solid-state reaction route for producing hybrid composites of Ti2Nb10O29 (TNO) anchored on reduced graphene oxide (RGO), and the electrochemical performance of the resulting TNO/RGO composites. Solid-state reactions enable both the formation of TNO and the uniform distribution of RGO in the TNO/RGO composites. The TNO/RGO composites exhibited discharge and charge capacities of 261 and 256 mAh g-1, respectively, with much better cycling performance (182 mAh g-1 after the 50th cycles) and rate capability (165 mAh g-1 at a current density of 500 mA g-1) compared to the pure TNO.

  20. Preparation and characterization of lithium thio-germanate thin film electrolytes grown by RF sputtering for solid state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Seo, Inseok

    In this study, lithium thio-germanate thin amorphous films were prepared as electrolytes for lithium rechargeable batteries by RF sputtering deposition in Ar atmosphere. The targets for RF sputtering were prepared by milling the appropriate amounts of the starting materials in the nLi2S+GeS 2(n = 1, 2, and 3), Li2GeS3, Li4GeS 4 and Li6GeS5, binary system. The ~1 mum thin film electrolytes were grown onto a variety of substrates using 50 W power and 25 mtorr gas pressure. Films were sputtered in inactive Ar atmospheres. IR, Raman spectroscopy and XRD were used to characterize the chemical bonding and the local structures in the films. XPS spectroscopy was used to further characterize the composition and electronic structures of the films. Ionic conductivity measurements of the electrolyte film using impedance spectroscopy were used to examine the Li2S dependence of the conductivity. The conductivities of the thin films at 25 °C is 1.7 x 10-3 (S/cm). This ionic conductivities of the thin films are two order magnitude higher than oxide thin films (LiPON) which are commercial thin film electrolytes. Therefore, lithium thio-germanate thin film electrolytes are very promising materials for use Li-ion batteries.

  1. Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart

    NASA Astrophysics Data System (ADS)

    Anothumakkool, Bihag; Torris A. T, Arun; Bhange, Siddheshwar N.; Badiger, Manohar V.; Kurungot, Sreekumar

    2014-05-01

    We report the design of an all-solid-state supercapacitor, which has charge storage characteristics closely matching that of its liquid-state counterpart even under extreme temperature and humidity conditions. The prototype is made by electro-depositing polyethylenedioxythiophene (PEDOT) onto the individual carbon fibers of a porous carbon substrate followed by intercalating the matrix with polyvinyl alcohol-sulphuric acid (PVA-H2SO4) gel electrolyte. The electrodeposited layer of PEDOT maintained a flower-like growth pattern along the threads of each carbon fiber. This morphology and the alignment of PEDOT led to an enhanced surface area and electrical conductivity, and the pores in the system enabled effective intercalation of the polymer-gel electrolyte. Thus, the established electrode-electrolyte interface nearly mimics that of its counterpart based on the liquid electrolyte. Consequently, the solid device attained very low internal resistance (1.1 Ω cm-2) and a high specific capacitance (181 F g-1) for PEDOT at a discharge current density of 0.5 A g-1. Even with a high areal capacitance of 836 mF cm-2 and volumetric capacitance of 28 F cm-3, the solid device retained a mass-specific capacitance of 111 F g-1 for PEDOT. This is in close agreement with the value displayed by the corresponding liquid-state system (112 F g-1), which was fabricated by replacing the gel electrolyte with 0.5 M H2SO4. The device also showed excellent charge-discharge stability for 12 000 cycles at 5 A g-1. The performance of the device was consistent even under wide-ranging humidity (30-80%) and temperature (-10 to 80 °C) conditions. Finally, a device fabricated by increasing the electrode area four times was used to light an LED, which validated the scalability of the process.We report the design of an all-solid-state supercapacitor, which has charge storage characteristics closely matching that of its liquid-state counterpart even under extreme temperature and humidity conditions

  2. Solid-state 23Na and 7Li NMR investigations of sodium- and lithium-reduced mesoporous titanium oxides.

    PubMed

    Lo, Andy Y H; Schurko, Robert W; Vettraino, Melissa; Skadtchenko, Boris O; Trudeau, Michel; Antonelli, David M

    2006-02-20

    Mesoporous titanium oxide synthesized using a dodecylamine template was treated with 0.2, 0.6, and 1.0 equiv of Li- or Na-naphthalene. The composite materials were characterized by nitrogen adsorption, powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, and solid-state 23Na and 7Li NMR spectroscopy. In all cases the wormhole mesoporosity was retained as evidenced by BET surface areas from 400 to 700 m(2)/g, Horvath-Kawazoe pore sizes in the 20 Angstroms range, and a lack of hysteresis in the nitrogen adsorption isotherms. Variable-temperature conductivity studies show that the Li-reduced materials are semiconductors, with conductivity values 3 orders of magnitude higher than those of the Na-reduced materials. Electrochemical measurements demonstrate reversible intercalation/deintercalation of Li+ ions into pristine mesoporous Ti oxides with good cycling capacity. Solid-state 23Na NMR reveals two distinct Na environments: one corresponding to sodium ions in the mesoporous channels and the other corresponding to sodium ions intercalated into the metal framework. 23Na NMR spectra also indicate that the relative population of the framework site increases with increased reduction levels. Solid-state 7Li NMR spectra display a single broad resonance, which increases in breadth with increased reduction levels, though individual resonances inferring the presence of channel and framework Li species are not resolved. Comparisons of the lithium chemical shifts with published values suggests an "anatase-like structure" with no long-range order in the least-reduced samples but a "lithium titanate-like structure" with no long-range order in the higher reduced materials. PMID:16472000

  3. Low-temperature solid-state microwave reduction of graphene oxide for transparent electrically conductive coatings on flexible polydimethylsiloxane (PDMS).

    PubMed

    Liang, Qizhen; Hsie, Sinsar Alec; Wong, Ching Ping

    2012-11-12

    Microwaves (MWs) are applied to initialize deoxygenation of graphene oxide (GO) in the solid state and at low temperatures (∼165 °C). The Fourier-transform infrared (FTIR) spectra of MW-reduced graphene oxide (rGO) show a significantly reduced concentration of oxygen-containing functional groups, such as carboxyl, hydroxyl and carbonyl. X-ray photoelectron spectra confirm that microwaves can promote deoxygenation of GO at relatively low temperatures. Raman spectra and TGA measurements indicate that the defect level of GO significantly decreases during the isothermal solid-state MW-reduction process at low temperatures, corresponding to an efficient recovery of the fine graphene lattice structure. Based on both deoxygenation and defect-level reduction, the resurgence of interconnected graphene-like domains contributes to a low sheet resistance (∼7.9×10(4) Ω per square) of the MW-reduced GO on SiO(2) -coated Si substrates with an optical transparency of 92.7 % at ∼547 nm after MW reduction, indicating the ultrahigh efficiency of MW in GO reduction. Moreover, the low-temperature solid-state MW reduction is also applied in preparing flexible transparent conductive coatings on polydimethylsiloxane (PDMS) substrates. UV/Vis measurements indicate that the transparency of the thus-prepared MW-reduced GO coatings on PDMS substrates ranges from 34 to 96 %. Correspondingly, the sheet resistance of the coating ranges from 10(5) to 10(9) Ω per square, indicating that MW reduction of GO is promising for the convenient low-temperature preparation of transparent conductors on flexible polymeric substrates. PMID:22930478

  4. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  5. Preparation of Li3BO3-Li2SO4 glass-ceramic electrolytes for all-oxide lithium batteries

    NASA Astrophysics Data System (ADS)

    Tatsumisago, Masahiro; Takano, Ryohei; Tadanaga, Kiyoharu; Hayashi, Akitoshi

    2014-12-01

    Newly designed oxide glass-ceramic electrolyte of Li2.9B0.9S0.1O3.1 with high Li+ ion conductivity and low melting property was prepared by mechanical milling and subsequent heat treatment at 290 °C. This material showed 1.4 × 10-5 S cm-1 at room temperature and excellent deformation properties to obtain powder-compressed pellets with low interfacial resistance like in the case of sulfide solid electrolytes. The glass-ceramic exhibited favorable mechanical properties to form favorable solid-solid contacts in solid-state batteries by pressing without high temperature heat treatments. All-solid-state In/LiCoO2 cells using these oxide glass-ceramic electrolytes operated as secondary batteries at room temperature.

  6. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results. PMID:23662298

  7. Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Huang, Bingxin; Yao, Xiayin; Huang, Zhen; Guan, Yibiao; Jin, Yi; Xu, Xiaoxiong

    2015-06-01

    70Li2S·(30-x)P2S5·xLi3PO4 (mol%) amorphous powders are prepared by a high-energy ball milling technique, and the glass-ceramics are obtained by the crystallization of as-prepared amorphous samples. The XRD patterns show that a crystalline phase with a Li7P3S11 structure is obtained for x ≤ 3, while a structure change is observed for x = 5. The Li+-ion conductivity is enhanced by the substitution of Li3PO4 for P2S5, and the 70Li2S·29P2S5·1Li3PO4 glass-ceramics exhibit the highest total conductivity of 1.87 × 10-3 S cm-1 at 25 °C and the lowest activation energy of 18 kJ mol-1. The LiCoO2 in the all-solid-state cell of In-Li/70Li2S·29P2S5·1Li3PO4/LiCoO2 exhibits a discharge capacity of 108 mAh g-1, which is 20% higher than that in the In-Li/70Li2S·30P2S5/LiCoO2 cell. The higher discharge capacity of the LiCoO2 electrode is attributed to the higher Li+-ion conductivity of the solid electrolyte and lower interface resistance of electrode-electrolyte.

  8. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  9. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  10. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.

    PubMed

    Kurtz, Steven M; Mazzucco, Dan; Rimnac, Clare M; Schroeder, Dave

    2006-01-01

    Solid-state deformation processing is a promising technique for modifying the physical and mechanical properties of highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) beyond simple thermal treatment cycles that have been employed previously. This study evaluates anisotropy and oxidative resistance in a novel, radiation crosslinked (50 kGy) UHMWPE material (ArComXL: Biomet, Inc., Warsaw, IN), incorporating solid-state, deformation processing by extrusion below the melt transition for application in total hip arthroplasty. Tensile, compression, and small punch tests were conducted to evaluate the material properties in the three principal axes of the resulting material. Furthermore, short-term oxidative resistance was evaluated using Fourier transform infrared spectroscopy and the small punch test in conjunction with accelerated shelf aging protocols. The results of this testing indicate that the material is anisotropic, with significantly enhanced strength oriented along the long axis of the rod. For certain other properties, the magnitude of the anisotropy was relatively slight, especially in the elastic regime, in which only a 20% difference was noted between the long axis of the rod and the orthogonal, radial direction. The highly crosslinked material contains detectable free radicals, at a concentration that is 90% less than control, gamma inert sterilized UHMWPE. An unexpected finding of this study was evidence of oxidative stability of the deformation-processed material, even after 4 weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003), which resulted in macroscopic embrittlement of the control material. The oxidative stability observed in ArComXL suggests that the deformation-processed material may be suitable for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPE. PMID:16085308

  11. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    PubMed

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. PMID:25043555

  12. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  13. Discharge performance of solid-state oxygen shuttle metal-air battery using Ca-stabilized ZrO2 electrolyte.

    PubMed

    Inoishi, Atsushi; Kim, Hack-Ho; Sakai, Takaaki; Ju, Young-Wan; Ida, Shintaro; Ishihara, Tatsumi

    2015-04-13

    The effects of metal choice on the electrochemical performance of oxygen-shuttle metal-air batteries with Ca-stabilized ZrO2 (CSZ) as the electrolyte and various metals as the anodes were studied at 1073 K. The equilibrium oxygen partial pressure (P O 2) in the anode chamber was governed by the metal used in the anode chamber. A lower-P O 2 environment in the anode decreased the polarization resistance of the anode. The oxidation of oxide ions to oxygen in the anode is drastically enhanced by the n-type conduction generated in the CSZ electrolyte when it is exposed to a reducing atmosphere. A high discharge potential and high capacity can be achieved in an oxygen-shuttle battery with a Li or Mg anode because of the fast anode reaction compared to that of cells with a Zn, Fe, or Sn anode. However, only the mildly reducing metals (Zn, Si, Fe, and Sn) can potentially be used in rechargeable metal-air batteries because the transport number of the CSZ electrolyte must be unity during charge and discharge. Oxygen shuttle rechargeable batteries with Fe, and Sn electrodes are demonstrated. PMID:25727525

  14. Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror

    NASA Astrophysics Data System (ADS)

    Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K.

    2008-03-01

    Our developed all-solid-state switchable mirror as a smart window is consisted in multi-layer of Mg4Ni/Pd/Ta2O5/WO3/ITO/glass and can switch reversibly from the reflective state to the transparent one. The development of high performance solid electrolyte thin film of Ta2O5 is important for fast speed switching and high durability of the device. In this work, we have investigated the electrochemical property of Ta2O5 thin film deposited by reactive DC magnetron sputtering. The effect of thickness on electrochemical and proton conductivities of Ta2O5 thin film was investigated. The Ta2O5 thin film with a thickness of 400 nm had better proton conductivity of 1.5×10-9 S/cm measured by AC impedance method. The transmittance at wavelength of 670 nm of the device with 400 nm thick Ta2O5 thin film was changed from 0.1% (reflective state) to 51% (transparent state) within 10 s by applying voltage of 5 V. The device showed high durability up to two-thousand switching cycles.

  15. Structural and optical properties of zinc oxide doped by V2O5 synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Abaira, R.; Dammak, T.; Matoussi, A.; Younes, A.

    2016-03-01

    Vanadium doped zinc oxide with different vanadium concentration were synthesized by conventional solid state reaction. The structural and optical properties of ZnO: V2O5 pellets were studied by using a panalytic diffraktometer (X'pert) with Cu-K radiation, the UV-visible spectrophotometer and photoluminescence (PL). X-ray diffraction (XRD) show that all the samples have a wurtzite structure and grow mainly in the (101) orientation, we show also the presence of dominated phase Zn3 (VO4)2, Optical studied indicate a decrease in optical band gap energy, and photoluminescence (PL) spectra showed a strong visible emission band, energy position and intensity of this emission depends on the temperature measurement. The activate energy Ea has been fitted and studied using Arunis equation.

  16. Density Functional Theory Studies of the Electronic Structure of Solid State Actinide Oxides

    SciTech Connect

    Wen, Xiaodong; Martin, Richard L.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2013-02-13

    The actinide oxides have been extensively studied in the context of the nuclear fuel cycle. They are also of fundamental interest as members of a class of strongly correlated materials, the Mott insulators. Their complex physical and chemical properties make them challenging systems to characterize, both experimentally and theoretically. Chiefly, this is because actinide oxides can exhibit both electronic localization and electronic delocalization and have partially occupied f orbitals, which can lead to multiple possibilities for ground states. Of particular concern for theoretical work is that the large number of competing states display strong correlations which are dffcult to capture with computationally tractable methods.

  17. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; Mao, Yiwu; Wang, Wei; He, Weidong

    2016-05-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  18. Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors.

    PubMed

    Chen, Yuyun; Han, Min; Tang, Yujia; Bao, Jianchun; Li, Shunli; Lan, Yaqian; Dai, Zhihui

    2015-08-11

    Novel polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids (TNHs) are synthesized via a one-pot redox relay strategy. The TNHs exhibit high areal specific capacitance (2.61 mF cm(-2)), and the fabricated solid device also exhibits good rate capability, excellent flexibility and mechanical stability. PMID:26140676

  19. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  20. Theory of the electronic and structural properties of solid state oxides. Annual technical report 1993

    SciTech Connect

    Chelikowsky, J.R.

    1993-06-01

    Emphasis has been on the electronic materials: silica, titania, and ruthenia. Fundamental interest centered on nature of microstructure of these solids in the amorphous state, or mixed oxide state. New theoretical techniques have been implemented to examine such issues, based on ab initio pseudopotential methods and interatomic potentials. Some areas examined under this project are: (1) Nature of the amorphization transformation of quartz under pressure. Specific focus is on the microscopic nature of the amorphous material and the driving forces for amorphization. (2) Equation of states of crystalline silica polymorphs. (3) Elastic anomalies in silica. In particular, the existence of a ``negative`` Poisson ratio in high temperature, low density forms of crystalline silica. (4) Optical and structural properties of titania and mixed oxides such as Ru{sub x}Ti{sub 1-x}O{sub 2}.

  1. Terahertz spectroscopy and solid-state density functional theory simulations of the improvised explosive oxidizers potassium nitrate and ammonium nitrate.

    PubMed

    Witko, Ewelina M; Buchanan, William D; Korter, Timothy M

    2011-11-10

    Terahertz spectroscopy provides a noninvasive and nondestructive method for detecting and identifying concealed explosives. In this work, the room-temperature and cryogenic terahertz spectra of two common improvised explosive oxidizers, namely, potassium nitrate (KN) and ammonium nitrate (AN), are presented, along with detailed solid-state density functional theory (DFT) analyses of the crystalline structures and spectral features. At both 294 and 78 K, KN exhibits two terahertz absorption features below 100 cm(-1) that have been assigned through DFT simulations to arise from hindered nitrate rotations in the KN-II crystalline polymorph. The terahertz spectrum of AN exhibits a pronounced temperature dependence. The 294 K spectrum is free of any absorptions, whereas the 78 K spectrum consists of several narrow and intense peaks. The origin of this large difference is the polymorphic transition that occurs during cooling of AN, where room-temperature AN-IV is converted to AN-V at 255 K. The 78 K terahertz spectrum of AN is assigned here to various ion rotations and translations in the AN-V polymorph lattice. The analysis of the room-temperature AN-IV terahertz spectrum proved to be more complicated. The solid-state DFT simulations predicted that the room-temperature crystal structure of AN is not very well described using the standard Pmmn space-group symmetry as previously believed. The AN-IV polymorph actually belongs to the Pmn2(1) space group, and the perceived Pmmn symmetry results from vibrational averaging through nitrate rotations. This newly observed Pmn2(1) crystal symmetry for room-temperature AN is the reason for the absence of absorption features in the 294 K terahertz spectrum of AN and provides new insight into the polymorphic transitions of this ionic solid. PMID:22007790

  2. Novel Process for Solid State Reduction of Metal Oxides and Hydroxides

    NASA Astrophysics Data System (ADS)

    Luhrs, Claudia; Kane, Margaret; Leseman, Zayd; Phillips, Jonathan

    2013-02-01

    Recently the reductive expansion synthesis (RES) method was introduced as a means to create nano- and sub-micron metal particles and alloys by rapid heating of physical mixtures of urea with a metal nitrate. In the present work the generality of the RES method was demonstrated by creating metal micron and sub-micron particles from oxide and hydroxide precursors, and outlining the impact of temperature, precursor ratio, and gas flow rate on the product. For example, precursor selection impacted the temperature required for complete reduction, the amount of carbon present, and the size of the metal particles. For complete NiO reduction to micron scale particles, high urea content and a high temperature [ ca. 1073 K (800 °C)] were required. In contrast, Ni(OH)2 was reduced to metal at far lower temperatures. Moreover, the Ni particles formed from NiOH were sub-micron ( ca. 200 nm) in size and carbon encapsulated. Other parameter variations had a similarly significant impact. Indeed, the reciprocal relationship between inert gas flow rate and the extent of reduction supports the supposition that the primary mechanism of reduced metal particle formation is the reduction of metal oxide particles by gases produced by urea decomposition. Collectively these and other findings indicate the RES method can be manipulated to create a range of micron and sub-micron reduced metal particle architectures appropriate for different applications.

  3. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  4. Identification of different oxygen species in oxide nanostructures with (17)O solid-state NMR spectroscopy.

    PubMed

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P; Peng, Luming

    2015-02-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H2 (17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  5. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  6. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  7. A novel solid-state thermal rectifier based on reduced graphene oxide.

    PubMed

    Tian, He; Xie, Dan; Yang, Yi; Ren, Tian-Ling; Zhang, Gang; Wang, Yu-Feng; Zhou, Chang-Jian; Peng, Ping-Gang; Wang, Li-Gang; Liu, Li-Tian

    2012-01-01

    Recently, manipulating heat transport by phononic devices has received significant attention, in which phonon--a heat pulse through lattice, is used to carry energy. In addition to heat control, the thermal devices might also have broad applications in the renewable energy engineering, such as thermoelectric energy harvesting. Elementary phononic devices such as diode, transistor and logic devices have been theoretically proposed. In this work, we experimentally create a macroscopic scale thermal rectifier based on reduced graphene oxide. Obvious thermal rectification ratio up to 1.21 under 12 K temperature bias has been observed. Moreover, this ratio can be enhanced further by increasing the asymmetric ratio. Collectively, our results raise the exciting prospect that the realization of macroscopic phononic device with large-area graphene based materials is technologically feasible, which may open up important applications in thermal circuits and thermal management. PMID:22826801

  8. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Marceau, Hugues; Kim, Chi-Su; Paolella, Andrea; Ladouceur, Sébastien; Lagacé, Marin; Chaker, Mohamed; Vijh, Ashok; Guerfi, Abdelbast; Julien, Christian M.; Mauger, Alain; Armand, Michel; Hovington, Pierre; Zaghib, Karim

    2016-07-01

    Lithium/solid polymer electrolyte (SPE)/sulfur cells were studied in operando by two techniques: Scanning Electron Microscope (SEM) and ultraviolet-visible absorption spectroscopy (UV-vis). During the operation of the cell, extensive polysulfide dissolution in the solid polymer electrolyte (cross-linked polyethylene oxide) leads to the formation of a catholyte. A clear micrograph of the thick passivation layer on the sulfur-rich anode and the decreased SPE thickness by cycling confirmed the failure mechanism; the capacity decays by reducing the amount of active material, and by contributing to a charge inhibiting mechanism called polysulfide shuttle. The formation of elemental sulfur is clearly visible in real time during the charge process beyond 2.3 V. The non-destructive in operando UV-vis study also shows the presence of characteristic absorption peaks evolving with cycling, demonstrating the accumulation of various polysulfide species, and the predominant formation of S42- and of S62- during discharge and charge, respectively. This finding implies that the charge and discharge reactions are not completely reversible and proceed along different pathways.

  9. Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes.

    PubMed

    Tartaj, Pedro; Amarilla, Jose M; Morales, Enrique; Vazquez-Santos, Maria B

    2016-01-27

    Advances in Li metal anode stabilization, solid-state electrolytes, and capabilities to insert a variety of active ions (Li(+), Na(+), Mg(2+), and Al(3+)) have renewed the interest in layered vanadium oxides. Here we show that crystal characteristics such as size and crystallinity are fundamental variables that control the dissimilar electrochemical capabilities of 1D vanadium oxides immersed in different electrolytes (organic carbonates and safe electrolytes containing 80% of ionic liquid). We show that this opposite behavior can be understood in terms of a subtle interplay between crystal characteristics (size and crystallinity), electrolyte degradability, and the ionic conductivity of the electrolyte. Thus, through this control we are able to obtain pure 1D vanadium oxides that show reversibility in carbonate electrolytes at a cutoff voltage of 1.5 V (voltage region where insertion of more than two lithium ions is possible). Furthermore, these materials are able to uptake ca. 1.0 mol of Li at a rate of 20C (1C = 295 mAh/g) and retain excellent capabilities (Coulombic efficiency of 98% after 200 cycles at a rate of 5C). Finally, what, to our knowledge, is really remarkable is that this optimization allows building vanadium oxide electrodes with an excellent electrochemical response in a safe electrolyte composition (80% of ionic liquid). Specifically, we reach uptakes also at a cutoff voltage of 1.5 V of ca. 1.0 mol of Li after 200 cycles at 5C (charge/discharge) with Coulombic efficiencies higher than 99.5%. PMID:26743032

  10. Transport in proton conducting perovskite oxides and solid-state electrochemical devices

    NASA Astrophysics Data System (ADS)

    Wang, Wensheng

    The objective of this dissertation is to investigate the transport of H2O in perovskite type proton conducting oxides and their electrical conductivies due to protons, oxygen ions, and electron holes. In Chapter 2, polycrystalline samples in the system BaO-ZrO2-Y 2O3 (YO1.5), predominantly containing Y-doped BaZrO3, and yttria-stabilized zirconia (YSZ), were fabricated. The as-sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemically analyzed by electron probe microanalysis (EPMA). A tentative phase diagram (isothermal section at 1600°C) of the BaO-ZrO2-YO1.5 system was established. In Chapter 3, H2O incorporation was investigated by means of electrical conductivity relaxation measurement using a 4 probe dc method. Several models were used to fit the experimental traces of conductivity vs. time, and to estimate the chemical diffusion coefficient of H 2O, D˜H2O , and the surface exchange constant, kexc, over a range of temperatures from 400°C to 900°C. In Chapter 4 and 5, the partial electrical conductivities in Ba 3Ca1.18Nb1.82O(9-delta) (BCN18) due to protons, oxygen ions, and electron holes were calculated and measured as functions of pO2,pH2 O , and temperature. Electrical conduction domains and the activation energies associated with the electrical conduction by oxygen ions and electron holes were determined. In Chapter 6, the change in electrical conductivity in response to the change of pH2O was investigated on BCN18 of both dense and porous samples at various pH2O . The empirical relationships between the change in electrical conductivity and pH2O were determined. Also, the response rate was characterized and analyzed as functions of sample porosity and temperature.

  11. Strongly coupled metal oxide nanorod arrays with graphene nanoribbons and nanosheets enable novel solid-state hybrid cells

    NASA Astrophysics Data System (ADS)

    Xiao, Junwu; Xi, Jiangbo; Xu, Yangyang; Yang, Shihe; Jin, Yunxia; Xiao, Fei; Wang, Shuai

    2015-06-01

    Electrochemical capacitors and rechargeable batteries are still limited in applications by the low energy and power densities they can deliver, respectively, holding back their deployment in electric vehicles. Here we develop a type of solid-state hybrid cells (SHCs) composed of graphene nanoribbons and nanosheets-coated metal oxide nanorod arrays ((MOx/GNR)@GNS). GNR and GNS are deposited on the surface of MOx nanorod arrays to improve the electron transport characteristic, and thus enhance the energy storage performance. The (MOx/GNR)@GNS-based SHCs can achieve a maximum volumetric energy density of 0.9 mWh cm-3, and still retain 0.4 mWh cm-3 even at 0.1 W cm-3. The energy storage performance is much better than the electrochemical capacitors reported previously, and can even rival the commercial Li thin-film battery but with a significantly higher power density, lower cost and higher safety. Also demonstrated is the good long-term cycle life with only ∼17% loss after 2500 cycles. These salient features make the (MOx/GNR)@GNS composites-based SHCs a strong contender for electrochemical energy storage.

  12. Novel solid-state route to nanostructured tin, zinc and cerium oxides as potential materials for sensors.

    PubMed

    Diaz, C; Platoni, S; Molina, A; Valenzuela, M L; Geaney, H; O'Dwyer, C

    2014-09-01

    Solid-state sensor nanostructured materials (SnO2, ZnO and CeO2) have been prepared by pyrolysis of macromolecular complexes: PSP-co-4-PVP x (SnCl2)n, PSP-co-4-PVP x (ZnCl2)n and PSP-co-4-PVP x (Ce(NO3)3)n in several molar ratios under air at 800 degrees C. The as-prepared nanostructured SnO2 exhibits morphologies and particle sizes which are dependent upon the molar ratio of the SnCl2:PSP-co-4-PVP. When a larger weight fraction of the inorganic salt in the precursor mixture is used (1:10 > 1:5 > 1.1) larger crystalline crystals are found for each oxide. For ZnO and CeO2 agglomerates of morphologies from the respective hexagonal and cubic structures were observed with typical sizes of 30-50 nm in both cases for a precursor mixture ratio of 1:1. PMID:25924326

  13. Comparison between superficial and solid-state cultures of Isaria fumosorosea: conidial yields, quality and sensitivity to oxidant conditions.

    PubMed

    Muñiz-Paredes, Facundo; Garza-López, Paul Misael; Viniegra-González, Gustavo; Loera, Octavio

    2016-07-01

    Conidia production and quality from mycoinsecticides in solid-state cultures (SSC) are frequently inferred from superficial culture (SC) results. Both parameters were evaluated for two Isaria fumosorosea strains (ARSEF 3302 and CNRCB1), in SC and SSC, using culture media with the same chemical composition. For both strains, conidia production was higher in SC than SSC in terms of conidia per gram of dry substrate. Germination in both strains did not show significant differences between SC and SSC (>90 %). Similarly, conidia viability in ARSEF 3302 strain did not show differences at early stages between SC and SSC, but was higher in SC compared to SSC in the late stage of culture; in contrast, conidia from CNRCB1 strain did not differ between both culture systems. Some infectivity parameters improved in conidia from SSC, compared to SC at the early stages, but these differences disappeared at the final stage, independently of the strain. Both strains showed decreased conidia production when 26 % O2 pulses were applied; nevertheless, conidiation in SSC was two orders of magnitude more sensitive to oxidant pulses. In SC with 26 % O2 pulses, conidia viability for both strains at early stages, was higher than in normal atmospheric conditions. Infectivity towards Galleria mellonella larvae was similar between conidia from normal atmosphere and oxidant conditions; notably, for the strain ARSEF 3302 infectivity decreased at the final stage. This study shows the intrinsic differences between SC and SSC, which should be considered when using SC as a model to design production processes in SSC. PMID:27263006

  14. Experimental aspects of solid-state voltammetry

    SciTech Connect

    Wooster, T.T.; Longmire, M.L.; Zhang, H.

    1992-05-15

    This paper describes the properties of poly(ether) polymer electrolytes as solvent media for solid-state voltammetry. Experimental requirements for microelectrode voltammetry and results for the dependency of diffusive transport of electroactive solutes on polymer solvent molecular weight, structure, and temperature (and related phase state) are described for eight poly(ether)s: linear poly(ethylene oxides) MW = 400, 1000, 2000, and 600 000 (Me{sub 2}PEG-400, Me{sub 2}PEG-1000, Me{sub 2}PEG-2000, PEO-600 000), linear poly(propylene oxide) MW = 4000 (PPO-4000), the comb polymer poly(bis[(methoxyethoxy)ethoxy]phosphazine) (MEEP), the block copolymer poly(ether)-poly(urethane urea)(PEUU), and the cross-linked poly(ether) network PEO. 28 refs., 10 figs., 1 tab.

  15. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  16. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Ren, Yaoyu; Shen, Yang; Zhao, Shi-Xi; Lin, Yuanhua; Nan, Ce-Wen

    2016-08-01

    A bulk-type all-solid-state lithium ion battery based on Ta-doped Li6.75La3Zr1.75Ta0.25O12 (LLZ-Ta) is prepared by a simple solid state process with high capacity of 279.0 μAh cm-2 at 80 °C. However, severe polarization is discovered during charging/discharging cycles at room temperature (RT) for battery with a higher active cathode loading. Large interfacial resistance due to the poor contact at the interfaces between cathode and LLZ-Ta solid electrolyte and at the interfaces within the composite cathode layer is proven to be the main reason for the poor electrochemical performance of the battery at RT. The polarization could be suppressed at elevated temperature, which is attributed to the decreased interfacial resistance as indicated by the results of impedance measurements and gives rise to much enhanced performance of the all-solid-state battery.

  17. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity. PMID:26829967

  18. Tungsten oxide-Prussian blue electrochromic system based on a proton-conducting polymer electrolyte

    SciTech Connect

    Ho, K.C.; Rukavina, T.G.; Greenberg, C.B. . Glass Technology Center)

    1994-08-01

    A new solid-state electrochromic system is presented. It is transparent and is comprised of a tungsten oxide and Prussian blue (PB) thin film couple in combination with a proton-conducting, solid polymer electrolyte. This electrochromic system exhibits rapid and deep optical switching; characteristics of a complementary configuration, both electrochromic films color and bleach in phase. Complementary electrochromic cells with the tungsten oxide-PB couple have previously been based on Li[sup +] or K[sup +]-conducting electrolytes. A repetitively cycling cell has not previously been reported with a proton-conducting solid polymer electrolyte. The devices were operated at low applied voltages, +1.2 V to darken and [minus]0.6 V to bleach. Repeated reduction and oxidation of the current system over 20,000 cycles has been demonstrated, indicating a large number of switchings without great degradation or irreversible side reactions. The sustained, high overall coloration efficiency of the devices suggests the insertion/extraction of protons into and out of both WO[sub 3] and PB films. The effects of cell size and operating temperature on the switching response are discussed.

  19. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors.

    PubMed

    Yang, MinHo; Lee, Kyoung G; Lee, Seok Jae; Lee, Sang Bok; Han, Young-Kyu; Choi, Bong Gill

    2015-10-14

    Carbon-based electrochemical double-layer capacitors and pseudocapacitors, consisting of a symmetric configuration of electrodes, can deliver much higher power densities than batteries, but they suffer from low energy densities. Herein, we report the development of high energy and power density supercapacitors using an asymmetric configuration of Fe2O3 and MnO2 nanoparticles incorporated into 3D macroporous graphene film electrodes that can be operated in a safe and low-cost aqueous electrolyte. The gap in working potential windows of Fe2O3 and MnO2 enables the stable expansion of the cell voltage up to 1.8 V, which is responsible for the high energy density (41.7 Wh kg(-1)). We employ a household microwave oven to simultaneously create conductivity, porosity, and the deposition of metal oxides on graphene films toward 3D hybrid architectures, which lead to a high power density (13.5 kW kg(-1)). Such high energy and power densities are maintained for over 5000 cycles, even during cycling at a high current density of 16.9 A g(-1). PMID:26387450

  20. Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes - Electrolyte stability

    NASA Astrophysics Data System (ADS)

    Virkar, Anil V.

    1991-05-01

    Theoretical analysis of solid oxide fuel cells (SOFCs) using two-layer, composite electrolytes consisting of a solid electrolyte of a significantly higher conductivity compared to zirconia (such as ceria or bismuth oxide) with a thin layer of zirconia or thoria on the fuel side is presented. Electrochemical transport in the two-layer composite electrolytes is examined by taking both ionic and electronic fluxes into account. Similar to most electrochemical transport phenomena, it is assumed that local equilibrium prevails. An equivalent circuit approach is used to estimate the partial pressure of oxygen at the interface. It is shown that thermodynamic stability of the electrolyte (ceria or bismuth oxide) depends upon the transport characteristics of the composite electrolyte, in particular the electronic conductivity of the air-side part of the electrolyte. The analysis shows that it would be advantageous to use composite electrolytes instead of all-zirconia electrolytes, thus making low-temperature (about 600-800 C) SOFCs feasible. Implications of the analysis from the standpoint of the desired characteristics of SOFC components are discussed.

  1. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  2. Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study.

    PubMed

    Peng, Yung-Kang; Ye, Lin; Qu, Jin; Zhang, Li; Fu, Yingyi; Teixeira, Ivo F; McPherson, Ian James; He, Heyong; Tsang, Shik Chi Edman

    2016-02-24

    Nano metal oxides are becoming widely used in industrial, commercial and personal products (semiconductors, optics, solar cells, catalysts, paints, cosmetics, sun-cream lotions, etc.). However, the relationship of surface features (exposed planes, defects and chemical functionalities) with physiochemical properties is not well studied primarily due to lack of a simple technique for their characterization. In this study, solid state (31)P MAS NMR is used to map surfaces on various ZnO samples with the assistance of trimethylphosphine (TMP) as a chemical probe. As similar to XRD giving structural information on a crystal, it is demonstrated that this new surface-fingerprint technique not only provides qualitative (chemical shift) but also quantitative (peak intensity) information on the concentration and distribution of cations and anions, oxygen vacancies and hydroxyl groups on various facets from a single deconvoluted (31)P NMR spectrum. On the basis of this technique, a new mechanism for photocatalytic •OH radical generation from direct surface-OH oxidation is revealed, which has important implications regarding the safety of using nano oxides in personal care products. PMID:26812527

  3. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  4. Carbon dioxide sensing mechanisms of an electrocatalytic sensor/cell based on a tungsten stabilized bismuth oxide solid electrolyte

    NASA Astrophysics Data System (ADS)

    Shoemaker, Erika Leigh

    This work describes the specific O2/CO2 sensing mechanisms of a solid-state, thick-film, electrocatalytic cermet (ceramic/metallic) gas sensor based on a tungsten stabilized bismuth oxide (WBO) solid electrolyte. The sensors embody the same configuration of classical planar oxygen sensors with two catalytic electrodes sandwiching an oxygen ion conducting solid electrolyte and a buried metal oxide reference. The technique of cyclic voltammetry is used where a cyclic voltage is ramped across the electrodes to promote electrochemical reactions on the surface of the sensor. These reactions alter the ionic current flow through the solid electrolyte, generating voltage-current related responses (voltammograms) which are gas specific. The WBO sensors have the identical configuration of previously investigated sensors of this type based on a yttria stabilized zirconia (YSZ) solid electrolyte which show good response to O 2 but do not respond to CO2 to any degree. This dissertation examines the specific function of each solid electrolyte layer and relates them to both the WBO sensors ability to respond uniquely to CO2 and the YSZ sensors incapability to respond to CO2. The research suggests that the tungsten component of the WBO electrolyte along with the porosity of the WBO layer together are responsible for the unique CO 2 response of this sensor.

  5. Comparison of subthreshold swing in SrTiO3-based all-solid-state electric-double-layer transistors with Li4SiO4 or Y-stabilized-ZrO2 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Ochi, Masanori; Higuchi, Tohru; Terabe, Kazuya

    2016-06-01

    SrTiO3 (STO)-based all-solid-state electric-double-layer transistors (EDLTs) with a Li4SiO4 (LSO) lithium ion conductor (i.e., electrolyte) or Y-stabilized-ZrO2 (YSZ) proton conductor were fabricated. While the LSO device showed significant drain current enhancement at room temperature, the YSZ device needed high temperature to achieve comparable drain current enhancement due to the difference in ionic conductivity between the two electrolytes. Subthreshold swing (S), which is a parameter used to evaluate the steepness of drain current enhancement in field-effect transistors (FETs), was calculated to be 66 and 227 mV/dec, respectively, for LSO and YSZ EDLTs. The 66 mV/dec is very close to the theoretical limit (60 mV/dec) for conventional FETs, indicating that LSO is more suitable for STO-based EDLTs and that the type of solid electrolyte used greatly affects EDLT switching characteristics.

  6. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  7. Solid-State Water Electrolysis with an Alkaline Membrane

    SciTech Connect

    Leng, YJ; Chen, G; Mendoza, AJ; Tighe, TB; Hickner, MA; Wang, CY

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cell with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.

  8. Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S-P2S5 solid electrolytes

    NASA Astrophysics Data System (ADS)

    Otoyama, Misae; Ito, Yusuke; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2016-01-01

    A composite positive electrode in an all-solid-state battery is prepared by mixing LiCoO2 particles and Li2S-P2S5 solid electrolytes. Raman spectroscopy is conducted for the composite positive electrodes before and after the initial charging process. Raman spectral changes are observed, which corresponds to structural changes of LiCoO2 particles during the charge test. However, some spectra indicate that several LiCoO2 particles show no structural changes although the cell is fully charged. A local state-of-charge (SOC) distribution map of the composite electrode is obtained by Raman mapping. The mapping image after the charge test shows that distributions of reactions exist in the composite positive electrode.

  9. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  10. Solid-state configurations

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.

    1980-01-01

    Two prototype solid-state phased array systems concepts developed for the solar power satellite (SPS) are described. In both concepts, the beam was centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed are results of solid state studies.

  11. Lithiated cobaltates for lithium-ion batteries. Structure, morphology and electrochemistry of oxides grown by solid-state reaction, wet chemistry and film deposition

    NASA Astrophysics Data System (ADS)

    Julien, C.; Gastro-Garcia, S.

    We present the structural (XRD and Raman) and electrochemical properties of various oxides of the cobaltate family (with the α-NaFeO 2-type structure) grown by solid-state reaction, wet chemistry and film deposition techniques. It is shown that synthesis greatly affects the electrochemistry and cycle life characteristics of these layer structured cathode materials. HT-LiCoO 2, LT-LiCoO 2, doped LiCo 1- yAl yO 2 and LiCoO 2 films are investigated.

  12. Study of hydrogen in coals, polymers, oxides, and muscle water by nuclear magnetic resonance; extension of solid-state high-resolution techniques. [Hydrogen molybdenum bronze

    SciTech Connect

    Ryan, L.M.

    1981-10-01

    Nuclear magnetic resonance (NMR) spectroscopy has been an important analytical and physical research tool for several decades. One area of NMR which has undergone considerable development in recent years is high resolution NMR of solids. In particular, high resolution solid state /sup 13/C NMR spectra exhibiting features similar to those observed in liquids are currently achievable using sophisticated pulse techniques. The work described in this thesis develops analogous methods for high resolution /sup 1/H NMR of rigid solids. Applications include characterization of hydrogen aromaticities in fossil fuels, and studies of hydrogen in oxides and bound water in muscle.

  13. Modeling for CVD of Solid Oxide Electrolyte

    SciTech Connect

    Starr, T.L.

    2002-09-18

    Because of its low thermal conductivity, high thermal expansion and high oxygen ion conductivity yttria-stabilized zirconia (YSZ) is the material of choice for high temperature electrolyte applications. Current coating fabrication methods have their drawbacks, however. Air plasma spray (APS) is a relatively low-cost process and is suitable for large and relatively complex shapes. it is difficult to produce uniform, relatively thin coatings with this process, however, and the coatings do not exhibit the columnar microstructure that is needed for reliable, long-term performance. The electron-beam physical vapor deposition (EB-PVD) process does produce the desirable microstructure, however, the capital cost of these systems is very high and the line-of-sight nature of the process limits coating uniformity and the ability to coat large and complex shapes. The chemical vapor deposition (CVD) process also produces the desirable columnar microstructure and--under proper conditions--can produce uniform coatings over complex shapes. CVD has been used for many materials but is relatively undeveloped for oxides, in general, and for zirconia, in particular. The overall goal of this project--a joint effort of the University of Louisville and Oak Ridge National Laboratory (ORNL)--is to develop the YSZ CVD process for high temperature electrolyte applications. This report describes the modeling effort at the University of Louisville, which supports the experimental work at ORNL. Early work on CVD of zirconia and yttria used metal chlorides, which react with water vapor to form solid oxide. Because of this rapid gas-phase reaction the water generally is formed in-situ using the reverse water-gas-shift reaction or a microwave plasma. Even with these arrangements gas-phase nucleation and powder formation are problems when using these precursors. Recent efforts on CVD of zirconia and YSZ have focused on use of metal-organic precursors (MOCVD). These are more stable in the gas

  14. Flexible solid-state photoelectrochromic windows

    SciTech Connect

    Pichot, F.; Ferrere, S.; Pitts, R.J.; Gregg, B.A.

    1999-11-01

    Photoelectrochromic smart window technology is extended to include the use of flexible substrates and solid-state electrolytes. This should facilitate their application as retrofit modifications of office windows, where, by blocking incoming solar irradiation, they could substantially lower air-conditioning costs. These devices are based on a dye-sensitized TiO{sub 2} electrode coupled with a 500 nm thick WO{sub 3} electrochromic counter electrode, separated by a cross-linked polymer electrolyte containing LiI. A novel method for preparing conducting nanoporous TiO{sub 2} films is described that allows for the construction of these devices on flexible organic substrates. Colloidal solutions of TiO{sub 2} free of surfactants were spin-coated onto indium-tin oxide coated polyester substrates, resulting in highly transparent films ranging from 100 nm to 1 {micro}m in thickness. Upon annealing at 100 C, these films were strongly adherent and displayed excellent photoconductivity as shown by their current-voltage characteristics. The devices typically transmit 75% of visible light in the bleached state. After a few minutes of exposure to white light (75 mW/cm{sup 2}), the windows turn dark blue, transmitting only 30% of visible light. They spontaneously bleach back to their initial noncolored state upon removal of the light source.

  15. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  16. Solid-state high-throughput screening for color tuning of electrochromic polymers.

    PubMed

    Alamer, Fahad Alhashmi; Otley, Michael T; Ding, Yujie; Sotzing, Gregory A

    2013-11-20

    Diffusion of two monomers and their oxidative copolymerization inside a solid-state gel electrolyte is utilized as a method to match the monomer feed ratio to a color resulting from a conjugated copolymer having a single absorption in the visible region. Here, a combination of two monomers is used to generate a solid-state electrochromic device of any color, except black and green, in the colored state with all other colors going to transmissive sky blue in the bleached state. PMID:24038503

  17. Solid-state membrane module

    DOEpatents

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  18. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte

    NASA Astrophysics Data System (ADS)

    Kang, Joonhee; Chung, Habin; Doh, Chilhoon; Kang, Byoungwoo; Han, Byungchan

    2015-10-01

    Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)3 (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)3 (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)3, LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte.

  19. Solid-state membrane module

    SciTech Connect

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  20. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  1. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  2. Low temperature electrolytes for lithium/silver vanadium oxide cells

    NASA Technical Reports Server (NTRS)

    Tuhovak, Denise R.; Takeuchi, Esther S.

    1991-01-01

    Combinations of methyl formate (MF) and propylene carbonate (PC) using salt concentrations of 0.6 to 2.4 M, with lithium hexafluoroarsenate and lithium tetrafluoroborate in a five to one molar ratio, were investigated as electrolytes in lithium/silver vanadium oxide batteries. The composition of the electrolyte affected cell performance at low temperature, self-discharge and abuse resistance as characterized by short circuit and crush testing. The electrolyte that provided the best combination of good low temperature performance, low cell self-discharge and abuse resistance was 0.6 M salt in 10:90 PC/MF.

  3. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.

    2010-01-01

    Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP

  4. High temperature solid state storage cell

    SciTech Connect

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  5. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  6. Solid-state voltammetry and self-diffusion dynamics of a linear monotagged redox polymer:. omega. -ferrocenecarboxamido-. alpha. -methoxypoly(ethylene oxide)

    SciTech Connect

    Pinkerton, M.J.; Le Mest, Y.; Zhang, H.; Watanabe, M.; Murray, R.W. )

    1990-05-09

    The synthesized title labeled polymer, Fc-MePEG, MW = 2,590, analytically characterized as free of unlabeled PEO and of ferrocene monomer, dissolves LiClO{sub 4} electrolyte and in dry undiluted form is both a polymer electrolyte and an electroactive phase. The microelectrode solid-state voltammetrically measured, center-of-mass self-diffusion coefficient for Fc-MePEG in its polymer let, 1.3 {times} 10{sup {minus}8} cm{sup 2}/s at 62{degree}C, is 3.4 times smaller than that for ferrocene monomer dissolved in unlabeled (MW = 2,380) Me{sub 2}PEG. Electron hopping is estimated to contribute less than 10% to the diffusion rates of Fc-MePEG and of monomer dissolved at 40-50 mM concentrations in unlabeled Me{sub 2}PEG. At room temperature, where Fc-MePEG and Me{sub 2}PEG are waxy solids, D{sub Fc-MePEG} is 3.9 {times} 10{sup {minus}12} cm{sup 2}/s, 12 times smaller than that of monomer ferrocene, in Me{sub 2}PEG, and which corresponds to a diffusion pathlength of ca. 110-200 nm during the electrochemical experiment. Dissolved in CH{sub 3}CN or CH{sub 2}Cl{sub 2}, Fe-MePEG diffuses 8-10 times more slowly than ferrocene monomer which is consistent with transport as a random coiled sphere.

  7. Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Serikawa, Roberto M.

    Wet electrolytic oxidation (WEO) is electrochemical oxidation conducted at subcritical water temperature and pressure. Under these conditions, the electrolytic reaction of water is very different from the reaction usually seen in water electrolysis. Electrolysis of an aqueous NaCl solution at 250°C proceeds without the evolution of any oxygen, chlorine or even hydrogen. Rapid oxidation of organics to CO2 occurs in WEO with the production of hydrogen. Further addition of an oxidizer enhances the electrochemical oxidation of organics with the suppression of hydrogen evolution. AOX compounds found in usual electrooxidation are not formed in WEO treatment. When WEO is applied to sludge treatment, colors are drastically reduced and there is an increase in the yield of organic acids. The biodegradability increases by up to 50% and the treated water shows higher methane yields during anaerobic fermentation.

  8. Porous, one-dimensional and high aspect ratio nanofibric network of cobalt manganese oxide as a high performance material for aqueous and solid-state supercapacitor (2 V)

    NASA Astrophysics Data System (ADS)

    Bhagwan, Jai; Sivasankaran, V.; Yadav, K. L.; Sharma, Yogesh

    2016-09-01

    Porous nanofibric network of spinel CoMn2O4 (CMO) are fabricated by facile electrospinning process and characterized by XRD, BET, TGA, FTIR, FESEM, TEM, XPS techniques. CMO nanofibers are employed as supercapacitor electrode for first time which exhibits high specific capacitance (Cs) of 320(±5) F g-1 and 270(±5) F g-1 at 1 A g-1 and 5 A g-1, respectively in 1 M H2SO4. CMO nanofibers exhibit excellent cyclability (till 10,000 cycles @ 5 A g-1). To examine practical performance, solid-state symmetric supercapacitor (SSSC) is also fabricated using PVA-H2SO4 as gel electrolyte. The SSSC evinces high energy density of 75 W h kg-1 (comparable to Pb-acid and Ni-MH battery) along with high power density of 2 kW kg-1. Furthermore, a red colored LED (1.8 V @ current 20 mA) was lit for 5 min using single SSSC device supporting its output voltage of 2 V. This high performance of CMO in both aqueous and SSSC is attributed to one dimensional nanofibers consisting of voids/gaps with minimum inter-particle resistance that facilitates smoother transportation of electrons/ions. These voids/gaps in CMO (structural as well as morphological) act as intercalation/de-intercalation sites for extra storage performance, and also works as buffering space to accommodate stress/strain produced while long term cyclings.

  9. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  10. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    PubMed

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-01

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. PMID:25694387

  11. Solid-state reaction kinetics of LaCrO{sub 3} from the oxides and determination of La{sup 3+} diffusion coefficient

    SciTech Connect

    Akashi, Takaya; Nanko, Makoto; Maruyama, Toshio; Shiraishi, Yuzo; Tanabe, Jun

    1998-06-01

    LaCrO{sub 3} is a p-type semiconductor, and it is stable in both oxidizing and reducing atmospheres at elevated temperatures. LaCrO{sub 3} doped with Ca or Sr exhibits high electrical conductivity. Due to these properties, alkaline earth-doped LaCrO{sub 3} is used as an interconnector for solid oxide fuel cells (SOFC), which are attractive because of their high energy conversion efficiency and clean exhaust gas. Since the interconnector is used at elevated temperatures with a large difference of oxygen pressure between anode and cathode, it is extremely important to clarify its transport properties to understand demixing and creep. In several oxides with the perovskite structure, oxide ion diffusivity has been reported. On the other hand, cation diffusivity, which probably governs the demixing and creep processes, has been scarcely reported. The parabolic rate constant for the solid-state reaction of 1/2La{sub 2}O{sub 3} + 1/2Cr{sub 2}O{sub 3} = LaCrO{sub 3} was measured at temperatures between 1,483 and 1,688 /K in air and at 1695 K in oxygen pressures between 2.1 {times} 10{sup 4} and 1.5 {times} 10{sup {minus}5} Pa.

  12. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    NASA Astrophysics Data System (ADS)

    Herz, A.; Franz, A.; Theska, F.; Hentschel, M.; Kups, Th.; Wang, D.; Schaaf, P.

    2016-03-01

    Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO2 evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO3) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO3 is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO3 nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  13. Microstructures and Abrasive Properties of the Oxide Coatings on Al6061 Alloys Prepared by Plasma Electrolytic Oxidation in Different Electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Byun, Sangsik; Lee, Chan Gyu; Koo, Bon Heun; Wang, Yi Qi; Song, Jung Il

    Al2O3 coatings were prepared on T6-tempered Al6061 alloys substrate under a hybrid voltage (AC 200 V-60 Hz and DC 260 V value) by plasma electrolytic oxidation (PEO) in 30 min. The effects of different electrolytes on the abrasive behaviors of the coatings were studied by conducting dry ball-on-disk wear tests. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the coating microstructure. XRD analysis results show that the coatings mainly consist of α- and γ-Al2O3, and some mullite and AlPO4 phase in Na2SiO3 and Na3PO4 containing electrolytes, respectively. The wear test results show that the coatings which were PEO-treated in Na3PO4 containing electrolyte presented the most excellent abrasive resistance property.

  14. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  15. Solid State Lighting

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  16. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  17. Water electrolyte promoted oxidation of functional thiol groups.

    PubMed

    Lauwers, K; Breynaert, E; Rombouts, I; Delcour, J A; Kirschhock, C E A

    2016-04-15

    The formation of disulfide bonds is of the utmost importance for a wide range of food products with gluten or globular proteins as functional agents. Here, the impact of mineral electrolyte composition of aqueous solutions on thiol oxidation kinetics was studied, using glutathione (GSH) and cysteine (CYS) as model systems. Interestingly, the oxidation rate of both compounds into their corresponding disulfides was significantly higher in common tap water than in ultrapure water. The systematic study of different electrolyte components showed that especially CaCl2 improved the oxidation rate of GSH. However, this effect was not observed for CYS, which indicated a strong impact of the local chemical environment on thiol oxidation kinetics. PMID:26675862

  18. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte.

    PubMed

    Kim, Sangryun; Hirayama, Masaaki; Taminato, Sou; Kanno, Ryoji

    2013-09-28

    Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) and (111) films were 2.5 × 10(-6) and 1.0 × 10(-5) S cm(-1) at 298 K, respectively, which were lower than those of polycrystalline LLZO of over 10(-4) S cm(-1). X-ray reflectometry and inductively coupled plasma mass spectrometry revealed a large amount of Al(3+) of over 0.6 moles substituted for Li(+). These results indicate that the Al(3+) substitution in the LLZO lattice decreases the number of movable lithium ions and blocks the three-dimensional lithium migration pathway. The lattice mismatch between the film and the substrate induced the lattice distortion of the LLZO, resulting in different conductivities between the (001) and (111) films. The epitaxial-film model system directly clarified a substantial impact of the Al substitution and the lattice distortion on the lithium ion conductivity in the LLZO. PMID:23877300

  19. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants

  20. Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide.

    PubMed

    Kim, Dong-Min; Cho, Seong Je; Cho, Chul-Ho; Kim, Kwang Bok; Kim, Min-Yeong; Shim, Yoon-Bo

    2016-05-15

    Poly(terthiophene benzoic acid) (pTBA) layered-AuZn alloy oxide (AuZnOx) deposited on the screen printed carbon electrode (pTBA/AuZnOx/SPCE) was prepared to create a disposable all-solid-state pH sensor at first. Further, FAD-glucose oxidase (GOx) was immobilized onto the pTBA/AuZnOx/SPCE to fabricate a glucose sensor. The characterizations of the sensor probe reveal that AuZnOx forms a homogeneous hierarchical structure, and that the polymerized pTBA layer on the alloy oxide surface captures GOx covalently. The benzoic acid group of pTBA coated on the probe layer synergetically improved the pH response of the alloy oxide and provide chemical binding sites to enzyme, which resulted in a Nernstian behavior (59.2 ± 0.5 mV/pH) in the pH range of 2-13. The experimental parameters affecting the glucose analysis were studied in terms of pH, temperature, humidity, and interferences. The sensor exhibited a fast response time <1s and a dynamic range between 30 and 500 mg/dL glucose with a detection limit of 17.23 ± 0.32 mg/dL. The reliabilities of the disposable pH and glucose sensors were examined for biological samples. PMID:26703994

  1. Interfacial solid-state reaction at thermally oxidized In1 - xGaxAsyP1 - y alloys

    NASA Astrophysics Data System (ADS)

    Kubo, Minoru; Sasai, Yoichi; Ogura, Mototsugu; Kohiki, Shigemi

    1988-07-01

    The interfacial reaction between thermally oxidized In1-xGaxAsyP1-y and an In1-xGaxAsyP1-y epilayer was studied using Raman and x-ray photoelectron spectroscopy (XPS) analyses. In Raman spectra, it was found that the appearance of the phonon modes, i.e., the first-order longitudinal (LO) and transverse-optical (TO) modes for crystalline arsenic, was due to the In1-xGaxAsyP1-y -oxide interfacial reaction. The XPS analyses showed that this reaction corresponded to the GaAs-oxide interfacial reaction, i.e., As2O3+2GaAs→Ga2O3+4As. Furthermore, the reaction depends on the composition y of In1-xGaxAsyP1-y, which may be due to the enhancement in the initial transient reaction by thermal damage of In1-xGaxAsyP1-y occurring at the interface.

  2. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  3. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  4. Solid state lithium-iodine primary battery

    SciTech Connect

    Sekido, S.; Ninomiya, Y.; Sotomura, T.

    1984-01-10

    A solid-state primary cell comprising a lithium anode, an iodine cathode containing a charge transfer complex and a solid lithium iodide electrolyte doped with a 1-normal-alkyl-pyridinium iodide. The anode surface can be coated with LiOH or Li/sub 3/N. The iodine cathode comprises a complex of iodine and 1-normal-alkyl-pyridinium iodide and preferably contains titanium dioxide powder, alumina gel powder or silica gel powder admixed with the complex.

  5. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  6. Solid State Research

    NASA Technical Reports Server (NTRS)

    Shaver, David C.

    1996-01-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May - 31 July 1996. The topics covered are Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and Analog Device Technology. Funding is provided primarily by the Air Force, with additional Support provided by the Army, DARPA, Navy, BMDO, NASA, and NIST.

  7. Solid State Research

    NASA Technical Reports Server (NTRS)

    Shaver, David C.

    1995-01-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May-31 July 1995. The topics covered are: Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and analog device technology. Funding is provided primarily by the Air Force, with additional Support provided by the Army, ARPA, Navy, BMDO, NASA and NIST.

  8. Solid state research

    NASA Astrophysics Data System (ADS)

    McWhorter, Alan L.

    1995-02-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May through 31 July 1994. The topics covered are Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and Analog Device Technology. Funding is provided primarily by the Air Force, with additional support provided by the Army, ARPA, Navy, BMDO, NASA, and NIST.

  9. Solid state research

    NASA Astrophysics Data System (ADS)

    Shaver, David C.

    1994-11-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 August through 31 October 1994. The topics covered are Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and Analog Device Technology. Funding is provided primarily by the Air Force, with additional support provided by the Army, ARPA, Navy, BMDO, NASA, and NIST.

  10. Passivation-free solid state battery

    DOEpatents

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  11. Passivation-free solid state battery

    DOEpatents

    Abraham, K.M.; Peramunage, D.

    1998-06-16

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

  12. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Petrov, Valentin

    2015-07-01

    The development of parametric devices down-converting the laser frequency to the mid-infrared (3-30 μm) based on non-oxide nonlinear optical crystals is reviewed. Such devices, pumped by solid-state laser systems operating in the near-infrared, fill in this spectral gap where no such lasers exist, on practically all time scales, from continuous-wave to femtosecond regime. All important results obtained so far with difference-frequency generation, optical parametric oscillation, generation and amplification are presented in a comparative manner, illustrating examples of recent achievements are given in more detail, and some special issues such as continuum and frequency comb generation or pulse shaping are also discussed. The vital element in any frequency-conversion process is the nonlinear optical crystal and this represents one of the major limitations for achieving high energies and average powers in the mid-infrared although the broad spectral tunability seems not to be a problem. Hence, an overview of the available non-oxide nonlinear optical materials, emphasizing new developments such as wide band-gap, engineered (mixed), and quasi-phase-matched crystals, is also included.

  13. Systems R-Fe-O (R=Ho, Er): Thermodynamic properties of ternary oxides using differential scanning calorimetry and solid-state electrochemical cells

    SciTech Connect

    Parida, S.C. . E-mail: sureshp@apsara.barc.ernet.in; Rakshit, S.K.; Dash, S.; Singh, Ziley; Sen, B.K.; Venugopal, V.

    2006-07-15

    The thermodynamic properties of three different types of ternary oxides RFeO{sub 3}(s), R{sub 3}Fe{sub 5}O{sub 12}(s) and RFe{sub 2}O{sub 4}(s) (where R=Ho and Er) have been determined by calorimetric and solid-state galvanic cell methods. Heat capacities of RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) have been determined by differential scanning calorimetry from 130 to 860K. Heat capacity measurements from 130 to 860K revealed {lambda}-type anomalies for RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) compounds which are assigned due to magnetic order-disorder transitions. The oxygen chemical potentials corresponding to the three-phase equilibria involving these ternary oxides have been determined by using solid-state electrochemical cells. The standard molar Gibbs energies of formation of RFeO{sub 3}(s), R{sub 3}Fe{sub 5}O{sub 12}(s) and RFe{sub 2}O{sub 4}(s) have been computed from the oxygen potential data. Based on the thermodynamic information, oxygen potential diagrams have been computed for the systems R-Fe-O (R=Ho and Er) at two different temperatures: T=1250 and 1450K. Thermodynamic functions like C{sub p,m}{sup o}, S{sub m}{sup o}, H{sup o}, G{sup o}, (H{sub T}{sup o}-H{sub 0}{sup o}), (H{sub T}{sup o}-H{sub 298.15K}{sup o}), -(G{sub T}{sup o}-H{sub 298.15K}{sup o})/T, {delta}{sub f}H{sub m}{sup o}, and {delta}{sub f}G{sub m}{sup o} have been generated for the compounds RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) based on the experimental data obtained in this study and the available data in the literature.

  14. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K. PMID:23374070

  15. Solid state optical microscope

    DOEpatents

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  16. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  17. Solid state thermal engine

    SciTech Connect

    Wayman, C.M.

    1981-01-27

    An improved solid state thermal engine utilizes as a drive member a braided belt fabricated from a memory alloy such as nickel-titanium and nickel-titanium ternary alloys, copper-zinc and copper-zinc ternary alloys, and the like. The braided belt is mounted on a set of pulleys to provide passage through a hot zone where the belt contracts and develops tension, and through a cold zone where it relaxes and stretches. Since more energy is delivered by contraction than is required for relaxation, positive work output results with an efficiency of between onefifth and one-third of the carnot cycle.

  18. Solid state devices

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  19. Strength of an electrolyte supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-11-01

    For the proper function of solid oxide fuel cells (SOFC) their structural integrity must be maintained during their whole lifetime. Any cell fracture would cause leakage and partial oxidization of the anode, leading to a reduced performance, if not catastrophic failure of the whole stack. In this study, the mechanical strength of a state of the art SOFC, developed and produced by Hexis AG/Switzerland, was investigated with respect to the influence of temperature and ageing, whilst for the anode side of the cell the strength was measured under reducing and oxidizing atmospheres. Ball-on-3-Ball bending strength tests and fractography conducted on anode and cathode half-cells revealed the underlying mechanisms, which lead to cell fracture. They were found to be different for the cathode and the anode side and that they change with temperature and ageing. Both anode and cathode sides exhibit the lowest strength at T = 850 °C, which is greatly reduced to the initial strength of the bare electrolyte. This reduction is the consequence of the formation of cracks in the electrode layer which either directly penetrate into the electrolyte (anode side) or locally increase the stress intensity level of pre-existing flaws of the electrolytes at the interface (cathode side).

  20. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    PubMed

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life. PMID:27494271

  1. Solid state heat engine

    SciTech Connect

    Cory, J.S.

    1981-12-15

    A compact solid state turbine heat engine can be devised by pairing the nitinol elements. Each element is characterized by being in thermal contact with at least one hot water and one cold water bath and mechanically coupled to at least one driven pulley and driver pulley. A second nitinol element is similarly configured with a driver pulley, driven pulley, hot and cold water bath. The driver pulley associated with the first nitinol element is mechanically coupled to the driven pulley of the second nitinol element. Similarly, the driver pulley of the second nitinol element is mechanically coupled to the driven pulley of the first nitinol element. The paired nitinol elements form a compound solid state turbine engine wherein each nitinol element lies in a single plane and wherein the engine may be combined with a plurality of such pairs for increased power output. The nitinol elements may also incorporate a snubber to limit the strain on the element and the engine may further incorporate a variable radius pulley to increase the efficiency of mechanical conversion.

  2. Preparation and properties of fully solid state electrochromic display thin film from a sol-gel process

    NASA Astrophysics Data System (ADS)

    Nishio, Keishi; Sei, Tadanori; Tsuchiya, Toshio

    1997-10-01

    Fully solid state electrochromic displays (ECD) have been prepared several times. But, they all needed more than 1 minute to complete coloring or breaching. Electrochromism of amorphous material is expected to be faster than that of crystalline one by its faster diffusion coefficients of ions due to the open structure. In this study, electrochromic films and a gel electrolyte were made by a sol-gel process using metal salts and alkoxide as raw materials. Tungsten oxide, iridium oxide films and a gel electrolyte were used to fabricate a fully solid state ECD (electrode/tungsten oxide/gel electrolyte/iridium oxide/electrode) and it electrochromic properties were investigated. Crystalline and amorphous tungsten oxide and iridium oxide films were prepared on soda lime silica glass substrates sputter-coated with indium tin oxide (ITO). Electrochromic properties of amorphous WO3 film were more significant than that of crystalline one. On the other hand, electrochromic properties of amorphous iridium oxide film were less than crystalline one. The ECD showed reversible transmittance modulation of 35% (at 800 nm, film thickness: tungsten oxide 400 nm, iridium oxide 200 nm) under alternative voltage apply of plus or minus 3 V for 0.2 sec. The ECD kept the same transmittance modulation during 200 color-breach cycles.

  3. Solid State Ionics 4. Proceedings of Materials Research Society Symposium, volume 369

    NASA Astrophysics Data System (ADS)

    Nazri, Gholam-Abbas; Tarascon, Jean-Marie; Schreiber, Martha

    The proceeding of the 4th Solid State Ionics symposium is presented. This first part of the proceeding deals with the chemistry and physics of insertion materials, mostly from the viewpoint of applications as cathode materials for rechargeable lithium batteries, Ni/Cd, and Ni/metal hydride systems. Crystal chemistry and electrochemistry properties of potential oxides cathodes are discussed. The second part of the proceeding deals with sol-gel process for preparation of cathode materials for lithium batteries and other applications. Novel synthetic methods of preparation of high surface area transition metal oxides are presented. The third part deals with theory of ion conduction in solids, as well as mechanisms of ion conduction in glassy and polymeric materials. Part four deals with defect chemistry in solid electrolytes and the role of defect on ionic conductivity of ceramic electrolytes. The fifth part of the proceedings deals with polymer electrolytes and electrodes. Synthesis, characterization and performance of various polymer electrolytes and electrodes are discussed. The last part of the proceedings deals with characteristics and materials aspect of ionic devices. this includes advance solid state batteries, sensors, electrochromic devices, fuel cells, and the dynamic of ion exchange in high T(c) superconductors.

  4. Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings

    NASA Astrophysics Data System (ADS)

    Hussein, Riyad Omran

    In this study, aluminum oxide was deposited on a pure aluminum substrate to produce hard ceramic coatings using a Plasma Electrolytic Oxidation (PEO) process. The process utilized DC, unipolar pulsed DC in the frequency range (0.2 KHz -- 20 KHz) and bipolar pulsed DC current modes. The effects of process parameters (i.e., electrolyte concentration, current density and treatment time) on the plasma discharge behavior during the PEO treatment were investigated using optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm -- 900 nm). The emission spectra were recorded and plasma temperature profile versus processing time was constructed using the line intensity ratios method. Scanning Electron Microscopy (SEM) with energy dispersive x-ray analysis (EDS) was used to study the coating microstructure. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings. The main effect came from the strongest discharges which were initiated at the interface between the substrate and the coating. Through manipulation of process parameters to control or reduce the strongest discharge, the density and quality of the coating layers could be modified. This work demonstrated that by adjusting the ratio of the positive to negative pulse currents as well as their timing in order to eliminate the strongest discharges, the quality of the coatings was considerably improved.

  5. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  6. Failure analysis of electrolyte-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  7. Improved solid oxide fuel cell performance with nanostructured electrolytes.

    PubMed

    Chao, Cheng-Chieh; Hsu, Ching-Mei; Cui, Yi; Prinz, Fritz B

    2011-07-26

    Considerable attention has been focused on solid oxide fuel cells (SOFCs) due to their potential for providing clean and reliable electric power. However, the high operating temperatures of current SOFCs limit their adoption in mobile applications. To lower the SOFC operating temperature, we fabricated a corrugated thin-film electrolyte membrane by nanosphere lithography and atomic layer deposition to reduce the polarization and ohmic losses at low temperatures. The resulting micro-SOFC electrolyte membrane showed a hexagonal-pyramid array nanostructure and achieved a power density of 1.34 W/cm(2) at 500 °C. In the future, arrays of micro-SOFCs with high power density may enable a range of mobile and portable power applications. PMID:21657222

  8. Solid state television camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.

  9. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  10. Solid state rapid thermocycling

    SciTech Connect

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.