Science.gov

Sample records for oxide-silicon-oxynitride stack structures

  1. Stacks in canonical RNA pseudoknot structures.

    PubMed

    Han, Hillary S W; Reidys, Christian M

    2009-05-01

    In this paper we study the distribution of stacks/loops in k-non-crossing, tau-canonical RNA pseudoknot structures (k,tau-structures). Here, an RNA structure is called k-non-crossing if it has no more than k-1 mutually crossing arcs and tau-canonical if each arc is contained in a stack of length at least tau. Based on the ordinary generating function of k,tau-structures [G. Ma, C.M. Reidys, Canonical RNA pseudoknot structures, J. Comput. Biol. 15 (10) (2008) 1257] we derive the bivariate generating function T(k, tau)(x, u) = Sigma(n>or=0)Sigma(0structures having exactly t stacks and study its singularities. We show that for a specific parametrization of the variable u, T(k, tau)(x, u) exhibits a unique, dominant singularity. The particular shift of this singularity parametrized by u implies a central limit theorem for the distribution of stack-numbers. Our results are of importance for understanding the 'language' of minimum-free energy RNA pseudoknot structures, generated by computer folding algorithms. PMID:19402214

  2. A compact accelerating structure for stacked isochronous cyclotrons

    NASA Astrophysics Data System (ADS)

    Meitzler, C. R.; Byeon, J.; McIntyre, P. M.; Rogers, Bob; Sattarov, A.

    2003-03-01

    An accelerator-driven thorium cycle power reactor is being developed, based on a flux-coupled stack of isochronous cyclotrons. (IC) The stack consists of seven independent accelerators (total beam power 15 MW at 1 GeV), stacked on a spacing ˜ 20 cm. The close spacing poses unique problems for the design of the accelerating cavities. We have invented a 4-bar RF dipole structure for the purpose. We have built a cold model and are studying its operating characteristics. The structure will be described. We present measurements of the resonant frequency, parasitic capacitances, and electric and magnetic field distributions in the structure.

  3. Manifold seal structure for fuel cell stack

    DOEpatents

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  4. Free energy contributions and structural characterization of stacking disordered ices.

    PubMed

    Hudait, Arpa; Qiu, Siwei; Lupi, Laura; Molinero, Valeria

    2016-04-14

    Crystallization of ice from deeply supercooled water and amorphous ices - a process of fundamental importance in the atmosphere, interstellar space, and cryobiology - results in stacking disordered ices with a wide range of metastabilities with respect to hexagonal ice. The structural origin of this high variability, however, has not yet been elucidated. Here we use molecular dynamics simulations with the mW water model to characterize the structure of ice freshly grown from supercooled water at temperatures from 210 to 270 K, the thermodynamics of stacking faults, line defects, and interfaces, and to elucidate the interplay between kinetics and thermodynamics in determining the structure of ice. In agreement with experiments, the ice grown in the simulations is stacking disordered with a random distribution of cubic and hexagonal layers, and a cubicity that decreases with growth temperature. The former implies that the cubicity of ice is determined by processes at the ice/liquid interface, without memory of the structure of buried ice layers. The latter indicates that the probability of building a cubic layer at the interface decreases upon approaching the melting point of ice, which we attribute to a more efficient structural equilibration of ice at the liquid interface as the driving force for growth wanes. The free energy cost for creating a pair of cubic layers in ice is 8.0 J mol(-1) in experiments, and 9.7 ± 1.9 J mol(-1) for the mW water model. This not only validates the simulations, but also indicates that dispersion in cubicity is not sufficient to explain the large energetic variability of stacking disordered ices. We compute the free energy cost of stacking disorder, line defects, and interfaces in ice and conclude that a characterization of the density of these defects is required to predict the degree of metastability and vapor pressure of atmospheric ices. PMID:26983558

  5. Electric-field-dependent electronic structure of graphene bilayer: from the Bernal stacking to the unconventional orthorhombic stacking

    NASA Astrophysics Data System (ADS)

    Kim, Gunn; Park, Changwon; Yoon, Mina

    2014-03-01

    In this presentation, we report the electronic properties of bilayer graphene structures with various stackings, which can be formed, for instance, during the structural transition from graphite-to-diamond at high pressure, or at boundaries of stacking domains or at diamond surfaces. We performed ab initio calculations and the Wannier interpolations for accurate two-dimensional band structure with extremely dense (1600 ×1600) k-point grid. Using tight-binding parameters obtained from maximally localized Wanneir function analysis, we also constructed the effective Hamiltonian for the graphene bilayer with various stacking. The overall electronic structures can be described by the relative shift and the coupling of two Dirac cones, depending on their stacking geometry. Our results reveal that external electric field is another parameter to control the electronic properties of the bilayer-graphene. In particular, the external fields significantly enhance the coupling of two Dirac cones, which result in additional or new van Hove singularities near the Fermi level. We compared the electronic structure of the orthorhombic stacking with those of AA and AB stackings. Our study may provide a deeper understanding of sliding effects of multilayer graphene. This work was supported by the Priority Research Center Program (2011-0018395) and the Basic Science Research Program through MEST/NRF (2013R1A1A2009131). This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  6. Periodic barrier structure in AA-stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Redouani, Ilham; Jellal, Ahmed

    2016-06-01

    We study the charge carriers transport in an AA-stacked bilayer graphene modulated by a lateral one-dimensional multibarrier structure. We investigate the band structures of our system, that is made up of two shifted Dirac cones, for finite and zero gap. We use the boundary conditions to explicitly determine the transmission probability of each individual cone (τ =+/- 1) for single, double and finite periodic barrier structure. We find that the Klein tunneling is only possible when the band structure is gapless and can occur at normal incidence as a result of the Dirac nature of the quasiparticles. We observe that the band structure of the barriers can have more than one Dirac points for finite periodic barrier. The resonance peaks appear in the transmission probability, which correspond to the positions of new cones index like associated with τ =+/- 1. Two conductance channels through different cones (τ =+/- 1) are found where the total conductance has been studied and compared to the cases of single layer and AB-stacked bilayer graphene.

  7. Holographic shell model: Stack data structure inside black holes?

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  8. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    NASA Astrophysics Data System (ADS)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  9. A thermal stack structure for measurement of fluid flow

    NASA Astrophysics Data System (ADS)

    Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.

    2003-03-01

    A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.

  10. Structural polarization conversion in integrated optical vertically stacked ring resonators

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Edoardo Campanella, Carlo; Nicola Armenise, Mario

    2013-06-01

    In this paper we report the structural polarization conversion effect occurring in an integrated optics device formed by two vertically stacked ring resonators excited through an underlying bus waveguide. We demonstrate that the vertical propagation of light, due to evanescent coupling, is enhanced by the resonant behavior of the device and the polarization state of a horizontally polarized input wave tends to be rotated within the device. In particular, a gradual polarization rotation can be observed when passing from one propagation plane to another, due to the geometry of the structure. This effect has been explained by taking into account all the physical mechanisms, which contribute to the polarization conversion. Although numerical results of general validity have been obtained, we also considered, as an example, silicon nitride technology due to its intrinsic features related to low cost and reduced technological problems.

  11. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  12. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  13. Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip

    NASA Technical Reports Server (NTRS)

    Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)

    1994-01-01

    A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.

  14. The stacking dependent electronic structure and optical properties of bilayer black phosphorus.

    PubMed

    Shu, Huabing; Li, Yunhai; Niu, Xianghong; Wang, Jinlan

    2016-02-17

    By employing density-functional theory, the G0W0 method and Bethe-Salpter equation, we explore quasi-particle energy bands, optical responses and excitons of bilayer black phosphorus (BBP) with four different stacking patterns. All the structures are direct band gap semiconductors and the band gap is highly dependent on the stacking pattern, with a maximum of 1.31 eV for AB-stacking and a minimum of 0.92 eV for AD-stacking. Such dependence can be well understood by the tight-binding model in terms of the interlayer hopping. More interestingly, stacking sensitive optical absorption and exciton binding energy are observed in BBPs. For x-polarized light, more red-shift of optical adsorption appears in AA-stacking and the strong exciton binding energy in the AA-stacking bilayer can be as large as 0.82 eV, that is ∼1.7 times larger than that of AD-stacking bilayer. PMID:26845322

  15. Structure, energetics, and electronic properties of stacking fault defects in ilmenite-structured ZnTiO3

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Du, Jincheng

    2016-08-01

    The stacking fault behaviors on ilmenite ZnTiO3 were investigated by calculating the generalized stacking fault (GSF) energies using density functional theory (DF T) based on first principles calculations and classical calculations employing effective partial charge interatomic potentials. The results show that stable and unstable stacking fault energies are in qualitative agreement and provide the same sequence of stacking fault energies, although there exist quantitative differences with DFT providing lower stable and unstable stacking fault energy values than those from classical potential calculations. The γ-surfaces of two low energy surfaces, (1 1 0) and (1 0 4), of ZnTiO3 were fully mapped together with ideal shear stress (ISS) calculations. It was found that stacking faults along <4~ 5 ~\\bar{1} >/{1 0 4} are preferred energetically and are most probable to nucleate dislocations due to their significantly lower γ sf/ γ usf values. The atomic structures of the low energy stacking faults were analyzed and their electronic structures calculated and compared with bulk ZnTiO3 structures. It was found that stacking fault formation led to narrowing of the band gap and creating inter-bandgap states, mainly due to the dangling bonds and bonding defects, as compared to the bulk structures.

  16. Effects of stacking faults on the electronic structures of quantum rods

    SciTech Connect

    Wang, Lin-Wang

    2004-03-30

    Atomistic semiempirical pseudopotential method is used to study the effects of stacking faults in a wurtzite structure quantum rod. It is found that a single stacking fault can cause a 10-50 meV change in the conduction state eigen energy, and a localization in the electron wave function. However, the effects on the hole eigen energies and wave functions are very small.

  17. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process.

  18. Stacking Sequence and Layer-Type Changes in Topologically Close-Packed Structures.

    NASA Astrophysics Data System (ADS)

    Pei, Shiyou

    1988-12-01

    Crystal structure changes in several A _3B-type quasi-binary alloy series, involving Fe, Co, Ni, Cu, Pd and Pt as the A-component elements and Ti, V, Zr and Nb as the B-component elements, have been explored experimentally using X-ray and electron diffraction. The aim of this work was to discover various stacking sequence and ordered layer-type changes in close-packed structures. Our experimental data further confirm that the hexagonality of the stacking always increases in these alloy series as either the electron concentration (e/a) of a given alloy, or the size ratio (R_{rm B} /R_{rm A}) between two types of atoms is increased. This trend is consistent with the results observed by earlier workers in similar alloy systems. Interestingly, we also note that these observed trends are independent of the component, either the A- or B-, and of the type of stacking layers, either the triangularly-ordered (T-type) or the rectangularly -ordered (R-type), involved in the substitutional change. In addition, two new paths of stacking sequence changes have been established through our experimental work, namely, 3 to 3 to 2 and 1 to 5 to 2. An Ising model has been explored to discover if the observed stacking sequence changes can be interpreted in terms of interactions between a few adjacent layers. Using these interactions as phenomenological parameters, a stacking stability map was constructed showing the arrangement of predicted ground state phases on a two-dimensional parameter -plane. Comparing this map with the known experimental data, it was found that the position and the extent of phase regions in the derived map are rather similar to several real composition phase diagrams. Therefore, such a map can provide useful information about the stacking sequence changes (e.g., allowed or excluded stacking arrangements for the neighboring phases) to be expected in an actual alloy phase diagrams. In a different approach, a total energy calculation utilizing the linearized

  19. Structural Analysis for Subsidence of Stacked B-25 Boxes

    SciTech Connect

    Jones, W.E.

    2003-06-25

    The Savannah River Site (SRS) and other U.S. Department of Energy (DOE) sites use shallow land burial facilities (i.e., trenches) to dispose low-level radioactive waste. However, at SRS and other DOE sites, waste containers with up to 90 percent void space are disposed in the shallow land burial facilities. Corrosion and degradation of these containers can result in significant subsidence over time, which can compromise the integrity of the long-term cover. This in turn can lead to increased water infiltration through the long-term cover into the waste and subsequent increased radionuclide transport into the environment. Understanding and predicting shallow-buried, low-level waste subsidence behavior is necessary for evaluating cost-effective and appropriate stabilization required to maintain cover system long-term stability and viability, and to obtain stakeholder acceptance of the long-term implications of waste disposal practices. Two methods (dynamic compaction and static surcharge) have been used at SRS to accelerate waste and container consolidation and reduce potential subsidence prior to long term cover construction. Dynamic compaction comprises repeatedly dropping a heavy (20 ton) weight from about a 40-ft height to consolidate the waste and containers. Static surcharge is the use of a thick (15 ft to 30 ft) soil cover to consolidate the underlying materials over a longer time period (three to six months in this case). Quasi-static modeling of a stack of four B-25 boxes at various stags of corrosion with an applied static surcharge has been conducted and is presented herein.

  20. Structure for common access and support of fuel cell stacks

    DOEpatents

    Walsh, Michael M.

    2000-01-01

    A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.

  1. Effect of foundation flexibility on ductility reduction factors for R/C stack-like structures

    NASA Astrophysics Data System (ADS)

    Halabian, Amir M.; Kabiri, Shabnam

    2011-06-01

    The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-like structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.

  2. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.

    PubMed

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong; Hou, Yanping

    2012-07-01

    The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm. PMID:22608915

  3. Novel substrate trigger SCR-LDMOS stacking structure for high-voltage ESD protection application

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Rong; Ming, Qiao; Zhang, Bo

    2015-04-01

    A novel substrate trigger semiconductor control rectifier-laterally diffused metal-oxide semiconductor (STSCR-LDMOS) stacked structure is proposed and simulated using the transimission line pulser (TLP) multiple-pulse simulation method in a 0.35-μm, 60-V biploar-CMOS-DMOS (BCD) process without additional masks. On account of a very low holding voltage, it is susceptible to latch-up-like danger for the semiconductor control rectifier-laterally diffused metal-oxide semiconductor (SCR-LDMOS) in high-voltage electro-static discharge (ESD) protection applications. Although the conventional stacking structure has achieved strong latch-up immunity by increasing holding voltage, excessive high trigger voltage does not meet requirements for an ESD protection device. The holding voltage of the proposed stacked structure is proportional to the stacking number, whereas the trigger voltage remains nearly the same. A high holding voltage of 30.6 V and trigger voltage of 75.4 V are achieved.

  4. Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks.

    PubMed

    Wu, Zhizhong; Lee, Daeyeon; Rubner, Michael F; Cohen, Robert E

    2007-08-01

    Thin-film Bragg stacks exhibiting structural color have been fabricated by a layer-by-layer (LbL) deposition process involving the sequential adsorption of nanoparticles and polymers. High- and low-refractive-index regions of quarter-wave stacks were generated by calcining LbL-assembled multilayers containing TiO(2) and SiO(2) nanoparticles, respectively. The physical attributes of each region were characterized by a recently developed ellipsometric method. The structural color characteristics of the resultant nanoporous Bragg stacks could be precisely tuned in the visible region by varying the number of stacks and the thickness of the high- and low-refractive-index stacks. These Bragg stacks also exhibited potentially useful superhydrophilicity and self-cleaning properties. PMID:17583907

  5. Control of interfacial properties of Pr-oxide/Ge gate stack structure by introduction of nitrogen

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Kondo, Hiroki; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-06-01

    We have demonstrated the control of interfacial properties of Pr-oxide/Ge gate stack structure by the introduction of nitrogen. From C- V characteristics of Al/Pr-oxide/Ge 3N 4/Ge MOS capacitors, the interface state density decreases without the change of the accumulation capacitance after annealing. The TEM and TED measurements reveal that the crystallization of Pr-oxide is enhanced with annealing and the columnar structure of cubic-Pr 2O 3 is formed after annealing. From the depth profiles measured using XPS with Ar sputtering for the Pr-oxide/Ge 3N 4/Ge stack structure, the increase in the Ge component is not observed in a Pr-oxide film and near the interface between a Pr-oxide film and a Ge substrate. In addition, the N component segregates near the interface region, amorphous Pr-oxynitride (PrON) is formed at the interface. As a result, Pr-oxide/PrON/Ge stacked structure without the Ge-oxynitride interlayer is formed.

  6. Three-dimensional stacked structured ASIC devices and methods of fabrication thereof

    SciTech Connect

    Shinde, Subhash L.; Teifel, John; Flores, Richard S.; Jarecki Jr., Robert L.; Bauer, Todd

    2015-11-19

    A 3D stacked sASIC is provided that includes a plurality of 2D reconfigurable structured structured ASIC (sASIC) levels interconnected through hard-wired arrays of 3D vias. The 2D sASIC levels may contain logic, memory, analog functions, and device input/output pad circuitry. During fabrication, these 2D sASIC levels are stacked on top of each other and fused together with 3D metal vias. Such 3D vias may be fabricated as through-silicon vias (TSVs). They may connect to the back-side of the 2D sASIC level, or they may be connected to top metal pads on the front-side of the 2D sASIC level.

  7. Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-03-28

    We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge{sub 0.96}Sn{sub 0.04} self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy, and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

  8. Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis

    NASA Astrophysics Data System (ADS)

    Oliveira, F.; Fischer, I. A.; Benedetti, A.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.; Schulze, J.

    2015-03-01

    We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge0.96Sn0.04 self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy, and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

  9. Simultaneous inversion for anisotropic and structural crustal properties by stacking of radial and transverse receiver functions

    NASA Astrophysics Data System (ADS)

    Link, Frederik; Rümpker, Georg; Kaviani, Ayoub; Singh, Manvendra

    2016-04-01

    events on the results. It turns out, that the orientation of the symmetry axis is most sensitive to limitations and gaps in the azimuthal distribution. The extended stacking method provides an average model of the anisotropic crust below a station. Therefore, internal (vertical) variations cannot be resolved. Complex structures, which differ from the assumed single-layer model, will also affect the results. For example, an inclination of the layer boundary may cause an apparent anisotropic effect. We will also show examples for the application of the method to recently obtained data sets.

  10. Structural Insight into Golgi Membrane Stacking by GRASP65 and GRASP55 Proteins*

    PubMed Central

    Feng, Yanbin; Yu, Wenying; Li, Xinxin; Lin, Shaoyu; Zhou, Ying; Hu, Junjie; Liu, Xinqi

    2013-01-01

    The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking. PMID:23940043

  11. The electronic structure and bonding of hydrogen near a fcc Fe stacking fault

    NASA Astrophysics Data System (ADS)

    Moro, L.; Ferullo, R.; Brizuela, G.; Juan, A.

    2000-02-01

    The atom superposition and electron delocalization molecular orbital (ASED-MO) semiempirical method is used to analyse the atomic hydrogen-Fe interaction. The face centred cubic (fcc) Fe model contains a stacking fault and as a comparison the H-fcc Fe (normal) system is also studied. The solid is represented by a cluster of 180 metallic atoms distributed in five layers. The interstitial atoms localized in different geometric positions found an energetic minimum in a zone close to octahedral interstitial holes in the stacking fault. The electronic structure shows that the H-Fe bond involves mainly the Fe 4s and 4p orbitals and the 1s H orbital. The Fe-Fe bond near H is destabilized, to approximately 27% of its original value.

  12. Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bablu; Simsek, Ergun

    2016-06-01

    We numerically study the possibility of using atomically thin transition metal dichalcogenides (TMDs) for applications requiring broadband absorption in the visible range of the electromagnetic spectrum. We demonstrate that when monolayer TMDs are positioned into a finite-period of multilayer Bragg stack geometry, they make broadband, wide-angle, almost polarization-independent absorbers. In our study, we consider molybdenum disulfide (MoS2) and silicon dioxide (SiO2) as semiconducting and dielectric thin film of alternate high- and low- index films, respectively. By optimizing the thickness of the SiO2 film, we find that monolayer MoS2 based Bragg stacks can absorb 94.7% of the incident energy in the visible (350-700 nm). Similar structures can be engineered to make perfect reflectors for saturable absorption applications. We also demonstrate that bandwidth of metamaterial absorbers can be expanded using monolayer TMDs.

  13. STAR3D: a stack-based RNA 3D structural alignment tool

    PubMed Central

    Ge, Ping; Zhang, Shaojie

    2015-01-01

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  14. STAR3D: a stack-based RNA 3D structural alignment tool.

    PubMed

    Ge, Ping; Zhang, Shaojie

    2015-11-16

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  15. Divergent dielectric characteristics in cascaded high-K gate stacks with reverse gradient bandgap structures

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Chen; Cheng, Po-Hsien; Lee, Min-Hung; Lin, Hsin-Chih; Chen, Miin-Jang

    2016-07-01

    The characteristics of cascaded high-K gate stacks with reverse dielectric sequence, TiO2/ZrO2/Al2O3 and Al2O3/ZrO2/ TiO2, on the Si substrate were investigated. The reverse sequence with different gradient bandgap structure gives rise to distinct conduction pathways, resulting in significant divergence of the leakage current density (J g) and the capacitance equivalent thickness (CET). The trapping sites in the high-permittivity TiO2 layer dominate the leakage current paths and strongly impact the conductance and the capacitance of the cascaded high-K gate stacks. Thus, a low CET of 1.05 nm and a low J g of ∼5  ×  10–4 A cm‑2 were achieved due to effective suppression of the leakage current through the traps of TiO2 in the cascaded TiO2/ZrO2/Al2O3 gate stack. In addition, the TiO2 layer gets crystallized in the cascaded TiO2/ZrO2/Al2O3 structure to achieve a higher capacitance because of the intermixing between TiO2 and ZrO2 due to the different reactivity of the precursors for Ti and Zr. This study demonstrates a way to effectively incorporate the high permittivity and low-bandgap materials, such as TiO2, into high-K gate stacks, to further improve device scaling.

  16. Stacking Up

    ERIC Educational Resources Information Center

    Naylor, Jim

    2005-01-01

    Chimneys and stacks appear to be strong and indestructible, but chimneys begin to deteriorate from the moment they are built. Early on, no signs are apparent; but deterioration accelerates in subsequent years, and major repairs are soon needed instead of minor maintenance. With proper attention, most structures can be repaired and continue to…

  17. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  18. Structural transformations of stacking fault tetrahedra upon the absorption of point defects

    NASA Astrophysics Data System (ADS)

    Poletaev, G. M.; Starostenkov, M. D.

    2009-01-01

    Mechanisms of the structural modification of stacking fault tetrahedra (SFTs) upon the absorption of point defects have been studied by the method of molecular dynamics. The sequential absorption of vacancies by a perfect SFT is accompanied by the following transformations: (i) the formation of a step on one of the SFT faces, (ii) a change in the step sign upon reaching the middle of the face, (iii) the formation of an SFT with truncated vertex, and (iv) the formation of the perfect SFT. Upon the absorption of interstitial atoms, the stages of SFT transformation follow the reverse order.

  19. Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators

    SciTech Connect

    Redmond, J.; Barney, P.

    1998-06-01

    This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.

  20. Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.

    2014-01-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.

  1. Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures.

    PubMed

    He, Yongmin; Yang, Yang; Zhang, Zhuhua; Gong, Yongji; Zhou, Wu; Hu, Zhili; Ye, Gonglan; Zhang, Xiang; Bianco, Elisabeth; Lei, Sidong; Jin, Zehua; Zou, Xiaolong; Yang, Yingchao; Zhang, Yuan; Xie, Erqing; Lou, Jun; Yakobson, Boris; Vajtai, Robert; Li, Bo; Ajayan, Pulickel

    2016-05-11

    Vertically stacked van der Waals heterostructures composed of compositionally different two-dimensional atomic layers give rise to interesting properties due to substantial interactions between the layers. However, these interactions can be easily obscured by the twisting of atomic layers or cross-contamination introduced by transfer processes, rendering their experimental demonstration challenging. Here, we explore the electronic structure and its strain dependence of stacked MoSe2/WSe2 heterostructures directly synthesized by chemical vapor deposition, which unambiguously reveal strong electronic coupling between the atomic layers. The direct and indirect band gaps (1.48 and 1.28 eV) of the heterostructures are measured to be lower than the band gaps of individual MoSe2 (1.50 eV) and WSe2 (1.60 eV) layers. Photoluminescence measurements further show that both the direct and indirect band gaps undergo redshifts with applied tensile strain to the heterostructures, with the change of the indirect gap being particularly more sensitive to strain. This demonstration of strain engineering in van der Waals heterostructures opens a new route toward fabricating flexible electronics. PMID:27120401

  2. Superior unipolar resistive switching in stacked ZrOx/ZrO2/ZrOx structure

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Li; Lin, Tse-Yu

    2016-03-01

    This study investigates the performance of unipolar-switched ZrO2 RRAM, using an oxygen-deficient and amorphous ZrOx capping in a sandwich stack Al/ZrOx/ZrO2/ZrOx/Al structure. Superior high and low resistance switching and a resistance ratio (HRS/LRS) greater than 10 showed excellent dc endurance of 7378 switching cycles and 3.8 × 104 cycles in pulse switching measurements. Recovery behavior, observed in the I-V curve for the SET process (or HRS), led to HRS fluctuations and instability. A new resistance switching model for the stacked ZrO2 RRAM is proposed in this paper. In this model, oxygen-deficient and amorphous ZrOx film, capped on polycrystalline ZrO2 film, plays a key role and acts as an oxygen reservoir in making the oxygen ions redox easily for the SET process and in facilitating re-oxidation for the RESET process, resulting in excellent endurance. By improving the stability and recovery phenomena, engineering parameters of the current control may play a critical role during switching, and they can be correlated to the film's thickness and the oxygen content of the amorphous ZrOx film.

  3. Stacking faults on (001) in transition-metal disilicides with the C11{sub b} structure

    SciTech Connect

    Ito, K.; Nakamoto, T.; Inui, H.; Yamaguchi, M.

    1997-12-31

    Stacking faults on (001) in MoSi{sub 2} and WSi{sub 2} with the C11{sub b} structure have been characterized by transmission electron microscopy (TEM), using their single crystals grown by the floating-zone method. Although WSi{sub 2} contains a high density of stacking faults, only several faults are observed in MoSi{sub 2}. For both crystals, (001) faults are characterized to be of the Frank-type in which two successive (001) Si layers are removed from the lattice, giving rise to a displacement vector parallel to [001]. When the displacement vector of faults is expressed in the form of R = 1/n[001], however, their n values are slightly deviated from the exact value of 3, because of dilatation of the lattice in the direction perpendicular to the fault, which is caused by the repulsive interaction between Mo (W) layers above and below the fault. Matching of experimental high-resolution TEM images with calculated ones indicates n values to be 3.12 {+-} 0.10 and 3.34 {+-} 0.10 for MoSi{sub 2} and WSi{sub 2}, respectively.

  4. Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Matsushita, Tomohiro; Koh, Shinji; Daimon, Hiroshi

    2013-11-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions.

  5. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC–stacked N–layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  6. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution

    PubMed Central

    Mendes, Luís F. S.; Garcia, Assuero F.; Kumagai, Patricia S.; de Morais, Fabio R.; Melo, Fernando A.; Kmetzsch, Livia; Vainstein, Marilene H.; Rodrigues, Marcio L.; Costa-Filho, Antonio J.

    2016-01-01

    Among all proteins localized in the Golgi apparatus, a two-PDZ (PSD95/DlgA/Zo-1) domain protein plays an important role in the assembly of the cisternae. This Golgi Reassembly and Stacking Protein (GRASP) has puzzled researchers due to its large array of functions and relevance in Golgi functionality. We report here a biochemical and biophysical study of the GRASP55/65 homologue in Cryptococcus neoformans (CnGRASP). Bioinformatic analysis, static fluorescence and circular dichroism spectroscopies, calorimetry, small angle X-ray scattering, solution nuclear magnetic resonance, size exclusion chromatography and proteolysis assays were used to unravel structural features of the full-length CnGRASP. We detected the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. Our results indicate an unusual behavior of CnGRASP in solution, closely resembling a class of intrinsically disordered proteins called molten globule proteins. To the best of our knowledge, this is the first structural characterization of a full-length GRASP and observation of a molten globule-like behavior in the GRASP family. The possible implications of this and how it could explain the multiple facets of this intriguing class of proteins are discussed. PMID:27436376

  7. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution.

    PubMed

    Mendes, Luís F S; Garcia, Assuero F; Kumagai, Patricia S; de Morais, Fabio R; Melo, Fernando A; Kmetzsch, Livia; Vainstein, Marilene H; Rodrigues, Marcio L; Costa-Filho, Antonio J

    2016-01-01

    Among all proteins localized in the Golgi apparatus, a two-PDZ (PSD95/DlgA/Zo-1) domain protein plays an important role in the assembly of the cisternae. This Golgi Reassembly and Stacking Protein (GRASP) has puzzled researchers due to its large array of functions and relevance in Golgi functionality. We report here a biochemical and biophysical study of the GRASP55/65 homologue in Cryptococcus neoformans (CnGRASP). Bioinformatic analysis, static fluorescence and circular dichroism spectroscopies, calorimetry, small angle X-ray scattering, solution nuclear magnetic resonance, size exclusion chromatography and proteolysis assays were used to unravel structural features of the full-length CnGRASP. We detected the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. Our results indicate an unusual behavior of CnGRASP in solution, closely resembling a class of intrinsically disordered proteins called molten globule proteins. To the best of our knowledge, this is the first structural characterization of a full-length GRASP and observation of a molten globule-like behavior in the GRASP family. The possible implications of this and how it could explain the multiple facets of this intriguing class of proteins are discussed. PMID:27436376

  8. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations.

    PubMed

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-01-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent. PMID:27403720

  9. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations

    PubMed Central

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-01-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent. PMID:27403720

  10. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-07-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent.

  11. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-01

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise. PMID:27295399

  12. Double-Layer ULVZ Shear Velocity Structure Imaged With Stacked ScS Data

    NASA Astrophysics Data System (ADS)

    Avants, M.; Lay, T.; Garnero, E.

    2005-12-01

    The ultra-low velocity zone (ULVZ) has been imaged as a thin (5-40 km thick) layer just above the core-mantle boundary (CMB), with P and S velocities reduced by up to 10 and 30%, respectively. Accurate characterization of the ULVZ is important, as it may relate to, for example, the role of the lowermost mantle in Earth's evolution, mantle and outer core convection, the geodynamo, and heat flux into the mantle. A direct measurement of S velocity in the ULVZ, independent of the P-wave velocity, is needed to better constrain ULVZ properties. We establish tangential component ScS data as a new probe of ULVZ shear velocity properties. Lowermost mantle structure beneath the central Pacific is studied using data from 38 deep focus Tonga-Fiji earthquakes, recorded by dense broadband seismic networks in western North America. Our data set consists of 442 instrument-deconvolved displacement seismograms, which are additionally deconvolved by average source-time functions (source wavelets) constructed for each event, in order to equalize the signals and to extend the signal bandwidth to high frequencies. The resulting traces are used in a double-beam stacking approach to enhance the signal-to-noise ratio of any coherent precursory reflections of the wide-angle transverse component ScS data, which should be detectable if ULVZ structure is present beneath our central Pacific study region. Our stacks reveal two distinct ScS precursors, which indicate a double layer ULVZ structure in this region. Both layers show strong lateral variations in shear velocity reduction (dVs) and thickness. The deeper ULVZ layer is well modeled by dVs drops varying from 3.3-7.4% (relative to PREM) with a thickness range of 24-30 km. The overlying layer has dVs reductions from 0.8-2.0% (relative to PREM), and 60-86 km thickness. Thus the imaged 2-layered ULVZ has dVs reductions far milder than previous studies (10-30%), which have argued for a partial melt origin to the ULVZ. Finer subdivisions of data

  13. Stacking-dependent energetics and electronic structure of ultrathin polymorphic V2VI3 topological insulator nanofilms

    NASA Astrophysics Data System (ADS)

    Li, Can; Winzer, Torben; Walsh, Aron; Yan, Binghai; Stampfl, Catherine; Soon, Aloysius

    2014-08-01

    Topological insulators represent a paradigm shift in surface physics. The most extensively studied Bi2Se3-type topological insulators exhibit layered structures, wherein neighboring layers are weakly bonded by van der Waals interactions. Using first-principles density-functional theory calculations, we investigate the impact of the stacking sequence on the energetics and band structure properties of three polymorphs of Bi2Se3,Bi2Te3, and Sb2Te3. Considering their ultrathin films up to 6 nm as a function of its layer thickness, the overall dispersion of the band structure is found to be insensitive to the stacking sequence, while the band gap is highly sensitive, which may also affect the critical thickness for the onset of the topologically nontrivial phase. Our calculations are consistent with both experimental and theoretical results, where available. We further investigate tribological layer slippage, where we find a relatively low energy barrier between two of the considered structures. Both the stacking-dependent band gap and low slippage energy barriers suggest that polymorphic stacking modification may offer an alternative route for controlling the properties of this new state of matter.

  14. Electronic structure and lattice matching in graphene/h-BN stacked thin films

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Saito, Susumu; Cohen, Marvin

    2013-03-01

    In this work, we study the electronic structure and possibility of lattice matching of thin films composed of graphene and hexagonal boron nitride (h-BN) within the framework of the density functional theory. Since graphene and h-BN have different in-plane lattice constants intrinsically, we first study relative stabilities of commensurate thin films with lattice matching and incommensurate thin films without lattice matching by comparing total energies in order to clarify the stable geometries of graphene/h-BN thin films. As a result, we find some stacking patterns where commensurate thin films are more stable than incommensurate thin films. We also find that the energy gain due to interlayer interaction depends on the number of layers in thin films. In addition, we report electronic properties of these thin film systems. Some commensurate thin films are found to possess finite band gaps, while induced band gaps should be almost canceled out in incommensurate phases. We also discuss the electric field effect on the electronic properties of graphene/h-BN thin films. This work was partially supported by NSF Grant No. DMR-10-1006184, DOE under Contract No. DE-AC02-05CH11231, and by the Global Center of Excellence Program by MEXT, Japan. Y. S. also acknowledges the funding from JSPS.

  15. Trinuclear organooxotin assemblies from solvothermal synthesis reaction: Crystal structure, hydrogen bonding and π π stacking interaction

    NASA Astrophysics Data System (ADS)

    Ma, Chunlin; Sun, Junshan; Zhang, Rufen

    2007-05-01

    Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.

  16. Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions.

    PubMed

    Ohyama, Takako; Nagata, Takashi; Tsuda, Kengo; Kobayashi, Naohiro; Imai, Takao; Okano, Hideyuki; Yamazaki, Toshio; Katahira, Masato

    2012-04-01

    Mammalian Musashi1 (Msi1) is an RNA-binding protein that regulates the translation of target mRNAs, and participates in the maintenance of cell 'stemness' and tumorigenesis. Msi1 reportedly binds to the 3'-untranslated region of mRNA of Numb, which encodes Notch inhibitor, and impedes initiation of its translation by competing with eIF4G for PABP binding, resulting in triggering of Notch signaling. Here, the mechanism by which Msi1 recognizes the target RNA sequence using its Ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2 has been revealed on identification of the minimal binding RNA for each RBD and determination of the three-dimensional structure of the RBD1:RNA complex. Unique interactions were found for the recognition of the target sequence by Msi1 RBD1: adenine is sandwiched by two phenylalanines and guanine is stacked on the tryptophan in the loop between β1 and α1. The minimal recognition sequences that we have defined for Msi1 RBD1 and RBD2 have actually been found in many Msi1 target mRNAs reported to date. The present study provides molecular clues for understanding the biology involving Musashi family proteins. PMID:22140116

  17. Highly irregular stacking structure in r-BN pressed up to 7.7 GPa at room temperature

    NASA Astrophysics Data System (ADS)

    He, L. L.; Taniguchi, T.; Sato, T.; Horiuchi, S.

    1997-11-01

    The structural evolution in rhombohedral-type boron nitride (r-BN) pressed up to 7.7 GPa at room temperature is examined before and after pressing using high-resolution transmission electron microscopy. In the starting state, r-BN is in a platelike form with some folding. The plates consist of an almost perfect 3R structure. After pressing, a large number of stacking faults is formed and causes mixing of 3R and 2H in a few areas and a highly irregular stacking structure in most areas. This means that the coherent slip due to shearing between sp2 sheets is the dominant deformation mechanism in r-BN under high pressure at room temperature. All of these structures cause a broadening of the x-ray diffraction peaks. In some plates, the 2H structure is found in a relatively large area. It has a hexagonal lattice with the stacking sequence of …ABAB… and lattice constants of a=0.25 nm and c=0.67 nm. The structural evolution in r-BN revealed after pressing is in contrast to that in hexagonal-type BN, in which twinning is the dominant deformation mechanism that introduces the folding of plates under high pressure at high temperature.

  18. Electronic structure, stacking energy, partial charge, and hydrogen bonding in four periodic B-DNA models

    NASA Astrophysics Data System (ADS)

    Poudel, Lokendra; Rulis, Paul; Liang, Lei; Ching, W. Y.

    2014-08-01

    We present a theoretical study of the electronic structure of four periodic B-DNA models labeled (AT)10,(GC)10, (AT)5(GC)5, and (AT-GC)5 where A denotes adenine, T denotes thymine, G denotes guanine, and C denotes cytosine. Each model has ten base pairs with Na counterions to neutralize the negative phosphate group in the backbone. The (AT)5(GC)5 and (AT-GC)5 models contain two and five AT-GC bilayers, respectively. When compared against the average of the two pure models, we estimate the AT-GC bilayer interaction energy to be 19.015 Kcal/mol, which is comparable to the hydrogen bonding energy between base pairs obtained from the literature. Our investigation shows that the stacking of base pairs plays a vital role in the electronic structure, relative stability, bonding, and distribution of partial charges in the DNA models. All four models show a highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gap ranging from 2.14 to 3.12 eV with HOMO states residing on the PO4 + Na functional group and LUMO states originating from the bases. Our calculation implies that the electrical conductance of a DNA molecule should increase with increased base-pair mixing. Interatomic bonding effects in these models are investigated in detail by analyzing the distributions of the calculated bond order values for every pair of atoms in the four models including hydrogen bonding. The counterions significantly affect the gap width, the conductivity, and the distribution of partial charge on the DNA backbone. We also evaluate quantitatively the surface partial charge density on each functional group of the DNA models.

  19. Data in support of crystal structures of highly-ordered long-period stacking-ordered phases with 18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system

    PubMed Central

    Kishida, Kyosuke; Nagai, Kaito; Matsumoto, Akihide; Inui, Haruyuki

    2015-01-01

    The crystal structures of highly-ordered Mg–Zn–Y long-period stacking-ordered (LPSO) phases with the 18R, 14H and 10H-type stacking sequences have been investigated by atomic-resolution scanning transmission electron microscopy (STEM) and transmission electron microscopy (Kishida et al., 2015) [1]. This data article provides supporting materials for the crystal structure analysis based on the crystallographic theory of the order–disorder (OD) structure and the crystallographic information obtained through the structural optimization for various simple polytypes of the highly-ordered Mg–Zn–Y LPSO phases with the 18R, 14H and 10H-type stacking sequences by first-principles density functional theory (DFT) calculations. PMID:26566542

  20. Octa-O-propanoyl-B-maltose: crystal structure, acyl stacking, related structures and conformational anaylsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The crystal structure of beta-maltose octapropanoate (1) was solved to increase knowledge of the influences on conformations of di-, oligo- and polysaccharides. The O6 and O6' atoms are in gg and gt conformations, respectively. Extrapolation of the coordinates of the non-reducing residue and observe...

  1. Electronic States of Hafnium and Vanadium oxide in Silicon Gate Stack Structure

    NASA Astrophysics Data System (ADS)

    Zhu, Chiyu; Tang, Fu; Liu, Xin; Yang, Jialing; Nemanich, Robert

    2010-03-01

    Vanadium oxide (VO2) is a narrow band gap material with a metal-insulator transition (MIT) at less than 100C. Hafnium oxide (HfO2) is currently the preferred high-k material for gate dielectrics. To utilize VO2 in a charge storage device, it is necessary to understand the band relationships between VO2, HfO2, and Si substrate. In this study, a 2nm thick VO2 layer is embedded in a dielectric stack structure between an oxidized n-type Si(100) surface and a 2nm HfO2 layer. The in situ experiments are carried out in an UHV multi-chamber system. After each growth step, the surface is characterized using XPS and UPS. After the initial plasma cleaning and oxidation treatment the Si substrate displayed essentially flat bands at the surface. After deposition of the VO2 layer, the Si 2p peak shifted to lower binding energy, and the Si 2p associated with the SiO2 layer also was shifted, indicating an internal field in the SiO2. The VO2 valence band maximum (VBM) was identified at 0.6 eV below the Fermi level (EF). This ultra thin VO2 exhibits the metal-insulator transition at a temperature higher than thicker films. As a comparison, a 100nm thick film of VO2 on Si showed a MIT at 60C. After the HfO2 deposition, the Si 2p substrate feature returned to the initial value indicating a return to flat band conditions. The UPS indicated the VBM of HfO2 at 4.0 eV below EF. This work is supported by the NSF (DMR-0805353).

  2. Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO2 stack structures

    NASA Astrophysics Data System (ADS)

    Lee, Dongjin; Cho, Eunae; Lee, Jieun; Jung, Kyoungho; Jeong, Moonyoung; Yamada, Satoru; Hong, Hyeongsun; Lee, Kyupil; Heo, Sung; Ko, Dongsu; Kim, Yong Su; Kyoung, Yong Koo; Lee, Hyung-Ik; Lee, Hyo Sug; Park, Gyeong-Su; Shin, Jai Kwang

    2016-05-01

    In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to -430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO2 stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO2 interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness of the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different Vth values in the TiN/XO/SiO2 stack structures is expected.

  3. Structural Analysis and Direct Imaging of Rotational Stacking Faults in Few-Layer Graphene Synthesized from Solid Botanical Precursor

    NASA Astrophysics Data System (ADS)

    Kalita, Golap; Wakita, Koichi; Umeno, Masayoshi

    2011-07-01

    Here, we report the structural analysis and rotational stacking faults of few-layer graphene sheets derived by the controlled pyrolysis of the solid botanical derivative camphor (C10H16O). The second-order Raman spectra of the sheets show that the graphene layers are more than one single layer, and the numbers of layers can be controlled by adjusting the amount of camphor pyrolyzed. Transmission electron microscopy images show a minimum of 3 layers for thinner graphene sheets and a maximum of 12 layers for thicker graphene sheets. Low-voltage aberration-corrected high-resolution transmission electron microscopy is also carried out to gain insight into the hexagonal structure and stacking of graphene layers. The transmission electron microscopy study showed the presence of moiré patterns with a relative rotation between graphene layers.

  4. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures

    NASA Astrophysics Data System (ADS)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-01

    Many natural and biomimetic platelet-matrix composites—such as nacre, silk, and clay-polymer—exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  5. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    PubMed

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-01-01

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures. PMID:25774944

  6. Fabrication of InAs quantum dot stacked structure on InP(311)B substrate by digital embedding method

    NASA Astrophysics Data System (ADS)

    Akahane, Kouichi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2015-12-01

    Self-assembled InAs quantum dots (QDs) grown on an InP(311)B substrate were embedded using lattice-matched InAlAs/InGaAs superlattice with the digital embedding method. The thickness of quantum wells and barriers of the superlattice varied from 2 to 16 monolayers. The six layer stacking structures were successfully grown without any degradation of the QD and superlattice structure. The cross-sections of QDs embedded within the superlattice were visualized by scanning transmission microscope. The emission wavelength of the QDs was measured by photoluminescence and could be changed by changing the thickness of the superlattice.

  7. Geophysical exploration using near surface structure corrections developed from common endpoint gather stacked traces

    SciTech Connect

    Propes, R.L.

    1991-12-17

    This paper describes a method of geophysical exploration comprising generating from seismic traces a near surface model of the earth having weathering effects removed. It comprises: generating common end point (CEP) gathers of a set of seismic traces along a seismic line of exploration, the set of seismic traces having refraction first arrivals at source-receiver offsets greater than a crossover distance; selecting a set of traces from each CEP gather having source-receiver offsets greater than the crossover distance, first arrivals in the selected traces thus representing refraction first arrivals; generating for each =selected set of traces a refraction stacked trace by linear moveout correcting each of the selected set of traces in each CEP gather so that each refraction first arrival occurs at a time it would have for a receiver at zero source-receiver offset; stacking the resulting linear moveout corrected traces of each selected set of traces producing a refraction stacked trace for each selected set of traces.

  8. Control of Interfacial Properties of Al2O3/Ge Gate Stack Structure Using Radical Nitridation Technique

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Kyogoku, Shinya; Sakashita, Mitsuo; Takeuchi, Wakana; Kondo, Hiroki; Takeuchi, Shotaro; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-10-01

    We have investigated the control of the interfacial properties of Al2O3/Ge gate stack structures by the radical nitridation technique. In the Al2O3/Ge structures formed by the atomic layer deposition method, the interface state density increases with the deposition temperature due to the decrease in the thickness of the Ge oxide interlayer. On the other hand, the hysteresis width of the capacitance-voltage (C-V) characteristics decreases with increasing deposition temperature, which indicates a decrease in the oxide trap density near the interface. We also investigated the control of the interfacial structure by the radical nitridation of Al2O3/Ge to form an interfacial structure after the deposition of a high-k dielectric layer. The results of X-ray photoelectron spectroscopy reveal that an Al2O3/Ge3N4/GeO2/Ge stack structure is formed after the radical nitridation owing to the minimal oxygen diffusion into the Al2O3/Ge interface. Furthermore, the interfacial mixing is suppressed after radical nitridation at less than 300 °C. As a result, we can decrease the interface state density of the Al2O3/Ge sample after the radical nitridation by more than one order of magnitude compared with that without radical nitridation.

  9. Microscopically-Tuned Band Structure of Epitaxial Graphene through Interface and Stacking Variations Using Si Substrate Microfabrication

    PubMed Central

    Fukidome, Hirokazu; Ide, Takayuki; Kawai, Yusuke; Shinohara, Toshihiro; Nagamura, Naoka; Horiba, Koji; Kotsugi, Masato; Ohkochi, Takuo; Kinoshita, Toyohiko; Kumighashira, Hiroshi; Oshima, Masaharu; Suemitsu, Maki

    2014-01-01

    Graphene exhibits unusual electronic properties, caused by a linear band structure near the Dirac point. This band structure is determined by the stacking sequence in graphene multilayers. Here we present a novel method of microscopically controlling the band structure. This is achieved by epitaxy of graphene on 3C-SiC(111) and 3C-SiC(100) thin films grown on a 3D microfabricated Si(100) substrate (3D-GOS (graphene on silicon)) by anisotropic etching, which produces Si(111) microfacets as well as major Si(100) microterraces. We show that tuning of the interface between the graphene and the 3C-SiC microfacets enables microscopic control of stacking and ultimately of the band structure of 3D-GOS, which is typified by the selective emergence of semiconducting and metallic behaviours on the (111) and (100) portions, respectively. The use of 3D-GOS is thus effective in microscopically unlocking various potentials of graphene depending on the application target, such as electronic or photonic devices. PMID:24903119

  10. Stack filters

    NASA Astrophysics Data System (ADS)

    Wendt, P. D.; Coyle, E. J.; Gallagher, N. C., Jr.

    1986-08-01

    A large class of easily implemented nonlinear filters called stack filters are discussed which includes the rank order operators in addition to the compositions of morphological operators. Techniques similar to those used to determine the root signal behavior of median filters are employed to study the convergence properties of the filters, and necessary conditions for a stack filter to preserve monotone regions or edges in signals, and the output distribution of the filters, are obtained. Among the stack filters of window width three are found asymmetric median filters in which one removes only positive going edges, the other removes only negative going edges, while the median filter removes impulses of both signs.

  11. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    NASA Astrophysics Data System (ADS)

    Kordatos, Apostolis; Kelaidis, Nikolaos; Giamini, Sigiava Aminalragia; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios

    2016-04-01

    Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  12. High holding voltage segmentation stacking silicon-controlled-rectifier structure with field implant as body ties blocking layer

    NASA Astrophysics Data System (ADS)

    Yen, Shiang-Shiou; Cheng, Chun-Hu; Lan, Yu-Pin; Chiu, Yu-Chien; Fan, Chia-Chi; Hsu, Hsiao-Hsuan; Chang, Shao-Chin; Jiang, Zhe-Wei; Hung, Li-Yue; Tsai, Chi-Chung; Chang, Chun-Yen

    2016-04-01

    High electrostatic discharge (ESD) protection robustness and good transient-induced latchup immunity are two important issues for high voltage integrate circuit application. In this study, we report a high-voltage-n-type-field (HVNF) implantation to act as the body ties blocking layer in segmented topology silicon-controlled-rectifier (SCR) structure in 0.11 µm 32 V high voltage process. This body ties blocking layer eliminate the elevated triggered voltage in segmented technique. Using a large resistance as shunt resistor in resistor assisted triggered SCRs stacking structure, the double snapback phenomenon is eliminate. The series SCR could be decoupled a sufficient voltage drop to turned-on when a very low current flow through the shunt resistor. The holding voltage and the failure current of 22 V and 3.4 A are achieved in the best condition of segmented topology SCR stacking structure, respectively. It improves the latchup immunity at high voltage ICs application. On the other hand, the triggered voltage almost keep the same value which is identical to SCR single cell without using segmented topology.

  13. Al and Ge simultaneous oxidation using neutral beam post-oxidation for formation of gate stack structures

    SciTech Connect

    Ohno, Takeo; Nakayama, Daiki; Samukawa, Seiji

    2015-09-28

    To obtain a high-quality Germanium (Ge) metal–oxide–semiconductor structure, a Ge gate stacked structure was fabricated using neutral beam post-oxidation. After deposition of a 1-nm-thick Al metal film on a Ge substrate, simultaneous oxidation of Al and Ge was carried out at 300 °C, and a Ge oxide film with 29% GeO{sub 2} content was obtained by controlling the acceleration bias power of the neutral oxygen beam. In addition, the fabricated AlO{sub x}/GeO{sub x}/Ge structure achieved a low interface state density of less than 1 × 10{sup 11 }cm{sup −2 }eV{sup −1} near the midgap.

  14. Side-chain effects on electronic structure and molecular stacking arrangement of PCBM spin-coated films

    NASA Astrophysics Data System (ADS)

    Bazylewski, Paul F.; Kim, Kyung Hwan; Forrest, Jay L.; Tada, Hirokazu; Choi, Dong Hoon; Chang, Gap Soo

    2011-05-01

    The electronic structure and molecular stacking arrangement of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was studied using a combination of near-edge X-ray absorption fine structure measurements and density functional theory calculations. Measurements show that the side chain lifts the energy degeneracy of the C60 molecular orbitals around the chain attachment. This breaks the orbital symmetry of the LUMO of the C60 backbone which is observed through polarization dependence of C 1s → π∗ transitions. This dependence is analyzed to determine the bulk crystal structure of PCBM. X-ray emission and absorption measurements indicate the band gap energy of PCBM to be 1.87 eV.

  15. Ferrocene-Substituted Naphthalenediimide with Broad Absorption and Electron-Transport Properties in the Segregated-Stack Structure.

    PubMed

    Takai, Atsuro; Sakamaki, Daisuke; Seki, Shu; Matsushita, Yoshitaka; Takeuchi, Masayuki

    2016-05-23

    A new naphthalenediimide (NDI) molecule, where two ferrocene (Fc) units were directly attached to both imide nitrogens (Fc-NDI-Fc), was synthesized. The Fc units provide high crystallinity to Fc-NDI-Fc with good solubility to conventional organic solvents. The Fc units also work as electron-donating substituents, in contrast to the electron-deficient NDI unit, resulting in broad charge-transfer absorption of Fc-NDI-Fc from the UV region to 1500 nm in the solid state. The crystal structure analysis revealed that Fc-NDI-Fc formed a segregated-stack structure. The DFT calculation based on the crystal structure showed that the NDI π-orbitals extended over two axes. The extended π-network of the NDI units led to the electron-transport properties of Fc-NDI-Fc, which was confirmed using a flash-photolysis time-resolved microwave conductivity technique. PMID:27061109

  16. Designing π-stacked molecular structures to control heat transport through molecular junctions

    SciTech Connect

    Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

    2014-12-08

    We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

  17. Stacking attributes from local slopes

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Gajewski, D.; Dell, S.; Nath, S. K.; Wave Inversion Technology (Wit) Consortium

    2010-12-01

    CMP stacking is controlled by the stacking velocity which is determined by a one-dimendional optimization procedure using semblance as a coherence criterion. New multi-parameter stacking formulas like the Common Reflection Surface (CRS) operator consider neighboring CMP locations in the stack. These methods stack considerably more traces than conventional CMP processing leading to stacked sections with an improved signal-to-nose ratio and better image quality. The corresponding stacking trajectories are controlled by three stacking attributes for the 2-D case and eight for the 3-D case. The determination of these attributes requires a multi-dimensional optimization procedure which is time consuming. If we know good starting values, we can limit the search intervals considerably and speed up the process. It was shown that the stacking attributes are linked to local slopes in seismic zero offset and constant offset sections. Therefore, the determination of local slopes can guide the choice of the search intervals in the optimization procedure. We use structural tensors for the determination of local slopes. Structural tensors represent a versatile tool to investigate coherent features in the data superior to other slop determination tools like slant stacking or plane wave destructors. The window size is adjustable and allows to optimize smoothing and smearing in the slope determination process where the smoothing can be performed along structural events (directional smoothing). This smart feature helps to consider complex geologies and acknowledges faults and conflicting dips without any significant change in computation time. Different variants of the algorithm are used to determine slopes in CMP gathers, stacked and time or depth migrated sections. The results of the local slope determinations are used to compute stacking attributes for the CRS method. We compare these to stacking attributes obtained from optimization. The attributes determined from local slopes

  18. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate.

    PubMed

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A; Joachimiak, Andrzej; Kharel, Madan K; Singh, Shanteri; Thorson, Jon S; Phillips, George N

    2016-05-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5' phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation. PMID:27191010

  19. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate

    PubMed Central

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M.; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A.; Joachimiak, Andrzej; Kharel, Madan K.; Singh, Shanteri; Thorson, Jon S.; Phillips, George N.

    2016-01-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5′ phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation. PMID:27191010

  20. Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon

    SciTech Connect

    Ziebarth, Benedikt Gumbsch, Peter; Mrovec, Matous; Elsässer, Christian

    2014-09-07

    Sodium decorated stacking faults (SFs) were recently identified as the primary cause of potential-induced degradation in silicon (Si) solar-cells due to local electrical short-circuiting of the p-n junctions. In the present study, we investigate these defects by first principles calculations based on density functional theory in order to elucidate their structural, thermodynamic, and electronic properties. Our calculations show that the presence of sodium (Na) atoms leads to a substantial elongation of the Si-Si bonds across the SF, and the coverage and continuity of the Na layer strongly affect the diffusion behavior of Na within the SF. An analysis of the electronic structure reveals that the presence of Na in the SF gives rise to partially occupied defect levels within the Si band gap that participate in electrical conduction along the SF.

  1. Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato B.; de Brito Mota, F.; Rivelino, R.; Kakanakova-Georgieva, A.; Gueorguiev, G. K.

    2016-04-01

    Graphite-like hexagonal AlN (h-AlN) multilayers have been experimentally manifested and theoretically modeled. The development of any functional electronics applications of h-AlN would most certainly require its integration with other layered materials, particularly graphene. Here, by employing vdW-corrected density functional theory calculations, we investigate structure, interaction energy, and electronic properties of van der Waals stacking sequences of few-layer h-AlN with graphene. We find that the presence of a template such as graphene induces enough interlayer charge separation in h-AlN, favoring a graphite-like stacking formation. We also find that the interface dipole, calculated per unit cell of the stacks, tends to increase with the number of stacked layers of h-AlN and graphene.

  2. The structure of the Temsamane fold-and-thrust stack (eastern Rif, Morocco): Evolution of a transpressional orogenic wedge

    NASA Astrophysics Data System (ADS)

    Jabaloy-Sánchez, Antonio; Azdimousa, Ali; Booth-Rea, Guillermo; Asebriy, Lahcen; Vázquez-Vílchez, Mercedes; Martínez-Martínez, José Miguel; Gabites, Janet

    2015-11-01

    The structure of the Temsamane fold-and-thrust stack corresponds to four units limited by anastomosing ductile shear zones cutting a trend of south verging recumbent folds. This ductile stack was formed in an inclined left-handed transpressional zone at the North African paleomargin during Chattian to Langhian times producing two main deformational events. The first event (Dp) produced a Sp/Lp planar linear fabric generated in a non-coaxial deformation with a top-to-the-WSW sense of movement and was associated to metamorphic P-T conditions varying from late diagenesis in the southernmost Temsamane outcrops to epizone in the north. According to the 40Ar/39Ar ages, this deformation occurred at Chattian-Aquitanian times. The second deformational event (Dc event) generated ENE-WSW trending folds with SSE vergence and a set of anastomosing shear zones with Sm/Lm planar linear fabric. The latter units were generated at around 15 Ma (Langhian), and indicate a strong localization of the simple shear component of the transpression. Moreover, this orientation is compatible with the kinematics of the Temsamane detachment, which can explain most of the uplift of the Temsamane rocks from the middle to the uppermost crust. The described evolution indicates that collision between the western Mediterranean terranes and the North African paleomargin and the formation of the Rifean orogenic wedge occurred at Chattian to Langhian times.

  3. Characterization of Damage of Al2O3/Ge Gate Stack Structure Induced with Light Radiation during Plasma Nitridation

    NASA Astrophysics Data System (ADS)

    Kusumandari; Takeuchi, Wakana; Kato, Kimihiko; Shibayama, Shigehisa; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2012-01-01

    We have investigated the effects of light radiation during plasma nitridation on the electrical properties of an Al2O3/Ge gate stack structure using the pallet for plasma evaluation (PAPE) technique. From the capacitance-voltage characteristics, the flatband voltage shift due to fixed oxide charges significantly increases after light exposure with an energy higher than 7.5 eV. In addition, the density of trapped charges near the interface and the interface state density (Dit) also significantly increase after light exposure with an energy over 11.3 eV. The net density of positive fixed oxide charges, the density of trapped charges near the interface, and Dit can be reduced by post-metallization annealing (PMA) in N2 ambient at 300 °C.

  4. A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure.

    PubMed

    Smith, Darren A; Holroyd, Leo F; van Mourik, Tanja; Jones, Anita C

    2016-05-25

    The fluorescence properties of dinucleotides incorporating 2-aminopurine (2AP) suggest that the simplest oligonucleotides adopt conformations similar to those found in duplex DNA. However, there is a lack of structural data for these systems. We report a density functional theory (DFT) study of the structures of 2AP-containing dinucleotides (deoxydinucleoside monophosphates), including full geometry optimisation of the sugar-phosphate backbone. Our DFT calculations employ the M06-2X functional for reliable treatment of dispersion interactions and include implicit aqueous solvation. Dinucleotides with 2AP in the 5'-position and each of the natural bases in the 3'-position are examined, together with the analogous 5'-adenine-containing systems. Computed structures are compared in detail with typical B-DNA base-step parameters, backbone torsional angles and sugar pucker, derived from crystallographic data. We find that 2AP-containing dinucleotides adopt structures that closely conform to B-DNA in all characteristic parameters. The structures of 2AP-containing dinucleotides closely resemble those of their adenine-containing counterparts, demonstrating the fidelity of 2AP as a mimic of the natural base. As a first step towards exploring the conformational heterogeneity of dinucleotides, we also characterise an imperfectly stacked conformation and one in which the bases are completely unstacked. PMID:27186599

  5. Effects of Low-k Stack Structure on Performance of Complementary Metal Oxide Semiconductor Devices and Chip Package Interaction Failure

    NASA Astrophysics Data System (ADS)

    Tagami, Masayoshi; Inoue, Naoya; Ueki, Makoto; Narihiro, Mitsuru; Tada, Munehiro; Yamamoto, Hironori; Ito, Fuminori; Furutake, Naoya; Saito, Shinobu; Onodera, Takahiro; Takeuchi, Tsuneo; Hayashi, Yoshihiro

    2012-09-01

    Low capacitance and highly reliable Cu dual-damascene (DD) interconnects have been developed with self-organized “seamless low-k SiOCH stacks” (SEALS) structure. A carbon-rich sub-nano porous SiOCH (k=2.5) was directly stacked on an oxygen-rich porous SiOCH (k=2.7) in the SEALS structure, without a hard-mask (HM) and etch-stop (ES) layer of SiO2. The effective k-value (keff) of the Cu DD interconnect including the SiCN capping layer (k=4.9) was reduced to 2.9 compared to 3.4 on a conventional hybrid structure with SiO2-HM and ES, which had been used in 65-nm-node mass production. The interconnect delay of a 45-nm-node complementary metal oxide semiconductor (CMOS) ring oscillator (RO) was reduced by 15% referring to that of the conventional hybrid structure. Interconnect reliabilities, such as the interline time dependent dielectric breakdown (TDDB) and thermal cycles, were unchanged from those of the conventional hybrid interconnects. No failure was detected for chip package interaction (CPI) during reliability tests in a plastic ball grid array (PBGA) package. SEALS is a promising structure for scaled down ultra large scale integrations (ULSIs) for highly reliable and high speed operation, and low power consumption.

  6. Non-covalent stacking interactions directing the structural and photophysical features of mono- and dinuclear cyclometalated palladium(ii) complexes.

    PubMed

    Santana, M D; López-Banet, L; Sánchez, G; Pérez, J; Pérez, E; García, L; Serrano, J L; Espinosa, A

    2016-05-17

    The solution/solid state luminescence properties of selected orthometalated palladium complexes have been investigated in parallel with the relevant structural information provided by their X-ray crystal structures and theoretical calculations. Two cyclometalated backbones with different stacking abilities and a selection of bridging O^O, O^N or N^S ligands comprise the series under study, [{Pd(μ-L) (C^N)}2] (C^N = N-phenylpyrazole (Phpz) ; N-benzylideneaniline (Bza) ; L = acetate (Aco) , succinimidate (succ) , phthalimidate (phthal) , 1-methylimidazoline-2 thionate (Smeimid) ), completed with mononuclear [Pd(C^N)(N-pClPhsal)] (N-pClPhsal = chlorophenylsalycilaldiminate) complexes. New compounds , and were synthesized and the X-ray structures of , , , and have been elucidated in order to examine and compare solid-state Pd(C^N)-Pd(C^N) and ligand-ligand interactions with the rest of the series. The molecular structures of the complexes reveal intramolecular PdPd distances between 2.842 and 2.999 Å and π-π and C-Hπ interactions. All complexes studied show emission in the solid state at room temperature and a relationship is observed between emission energy, the nature of the lowest energy excited state, and metal-metal interactions. DFT calculations are undertaken to gain insight into the relationship between the structure and photophysical properties of the complexes. PMID:27137832

  7. Direct observation of bias-dependence potential distribution in metal/HfO{sub 2} gate stack structures by hard x-ray photoelectron spectroscopy under device operation

    SciTech Connect

    Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Chikyo, T.

    2014-01-28

    Although gate stack structures with high-k materials have been extensively investigated, there are some issues to be solved for the formation of high quality gate stack structures. In the present study, we employed hard x-ray photoelectron spectroscopy in operating devices. This method allows us to investigate bias dependent electronic states, while keeping device structures intact. Using this method, we have investigated electronic states and potential distribution in gate metal/HfO{sub 2} gate stack structures under device operation. Analysis of the core levels shifts as a function of the bias voltage indicated that a potential drop occurred at the Pt/HfO{sub 2} interface for a Pt/HfO{sub 2} gate structure, while a potential gradient was not observed at the Ru/HfO{sub 2} interface for a Ru/HfO{sub 2} gate structure. Angle resolved photoelectron spectroscopy revealed that a thicker SiO{sub 2} layer was formed at the Pt/HfO{sub 2} interface, indicating that the origin of potential drop at Pt/HfO{sub 2} interface is formation of the thick SiO{sub 2} layer at the interface. The formation of the thick SiO{sub 2} layer at the metal/high-k interface might concern the Fermi level pinning, which is observed in metal/high-k gate stack structures.

  8. Structural and electronic properties of β-FeSi2 nanoparticles: The role of stacking fault domains

    NASA Astrophysics Data System (ADS)

    Imlau, Robert; Kovács, András; Mehmedovic, Ervin; Xu, Pengxiang; Stewart, Andrew A.; Leidinger, Christine; Dunin-Borkowski, Rafal E.; Bihlmayer, Gustav; Wiggers, Hartmut; Carius, Reinhard; Kolb, Ute; Luysberg, Martina

    2014-02-01

    We use conventional and aberration-corrected transmission electron microscopy (TEM) and ab initio calculations to investigate the structural and electronic properties of β-FeSi2 nanoparticles, which are a promising material for photovoltaic applications due to a band gap of <1 eV and a high absorption coefficient. The nanoparticles have average sizes of ˜20 nm, form aggregates, and are prepared by gas-phase synthesis. Amorphous SiOx shells with thicknesses of ˜1.7 nm around β-FeSi2 cores are identified on individual nanoparticles using electron energy-loss spectroscopy, while stacking fault domains in the nanoparticles are observed using high-resolution TEM, nanobeam electron diffraction, and automated diffraction tomography. Ab initio calculations indicate only minor changes in band structure in the faulted structure when compared to perfect β-FeSi2. The optical properties of imperfect β-FeSi2 nanoparticles are therefore expected to be the same as those of the perfect structure, suggesting that β-FeSi2 nanoparticles are suitable candidates for use in optical absorber layers in thin film solar cells.

  9. Preparation and Characterization of [pi]-Stacking Quinodimethane Oligothiophenes. Predicting Semiconductor Behavior and Bandwidths from Crystal Structures and Molecular Orbital Calculations

    SciTech Connect

    Janzen, Daron E.; Burand, Michael W.; Ewbank, Paul C.; Pappenfus, Ted M.; Higuchi, Hiroyuki; da Silva, Demetrio A.; Young, Victor G.; Bredas, Jean-Luc; Mann, Kent R.

    2010-11-16

    A series of new quinodimethane-substituted terthiophene and quaterthiophene oligomers has been investigated for comparison with a previously studied quinoid oligothiophene that has demonstrated high mobilities and ambipolar transport behavior in thin-film transistor devices. Each new quinoidal thiophene derivative shows a reversible one-electron oxidation between 0.85 and 1.32 V, a quasi-reversible one-electron second oxidation between 1.37 and 1.96 V, and a reversible two-electron reduction between -0.05 and -0.23 V. The solution UV-vis-NIR spectrum of each compound is dominated by an intense epsilon congruent with 100,000 M{sup -1} cm{sup -1} low energy pi-pi transition that has a lambda(max) ranging between 648 and 790 nm. All X-ray crystal structures exhibit very planar quinoidal backbones and short intermolecular pi-stacking distances (3.335-3.492 A). Structures exhibit a single pi-stacking distance with parallel cofacial stacking (sulfur atoms of equivalent rings pointed in the same direction) or with alternating distances and antiparallel cofacial stacking (sulfur atoms of equivalent rings pointed in the opposite direction). Examples of the layered and herringbone-packing motifs are observed for both the parallel and the antiparallel cofacial stacking. Analysis of the X-ray structures and molecular orbital calculations indicates that all of these compounds have one-dimensional electronic band structures as a result of the pi-stacking. For structures with a unique pi-stacking distance, a simple geometric overlap parameter calculated from the shape of the molecule and the slip from perfect registry in the pi-stack correlates well with the transfer integrals (t) calculated using molecular orbital theory. The calculated valence (633 meV) and conduction (834 meV) bandwidths for a quinoid quaterthiophene structure are similar to those calculated for the benchmark pentacene and indicate that both hole and electron mobilities could be significant.

  10. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin; Urko, Willam

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  11. Cryo-electron tomography of plunge-frozen whole bacteria and vitreous sections to analyze the recently described bacterial cytoplasmic structure, the Stack.

    PubMed

    Delgado, Lidia; Martínez, Gema; López-Iglesias, Carmen; Mercadé, Elena

    2015-03-01

    Cryo-electron tomography (CET) of plunge-frozen whole bacteria and vitreous sections (CETOVIS) were used to revise and expand the structural knowledge of the "Stack", a recently described cytoplasmic structure in the Antarctic bacterium Pseudomonas deceptionensis M1(T). The advantages of both techniques can be complementarily combined to obtain more reliable insights into cells and their components with three-dimensional imaging at different resolutions. Cryo-electron microscopy (Cryo-EM) and CET of frozen-hydrated P. deceptionensis M1(T) cells confirmed that Stacks are found at different locations within the cell cytoplasm, in variable number, separately or grouped together, very close to the plasma membrane (PM) and oriented at different angles (from 35° to 90°) to the PM, thus establishing that they were not artifacts of the previous sample preparation methods. CET of plunge-frozen whole bacteria and vitreous sections verified that each Stack consisted of a pile of oval disc-like subunits, each disc being surrounded by a lipid bilayer membrane and separated from each other by a constant distance with a mean value of 5.2±1.3nm. FM4-64 staining and confocal microscopy corroborated the lipid nature of the membrane of the Stacked discs. Stacks did not appear to be invaginations of the PM because no continuity between both membranes was visible when whole bacteria were analyzed. We are still far from deciphering the function of these new structures, but a first experimental attempt links the Stacks with a given phase of the cell replication process. PMID:25617813

  12. Zigzag stacks and m-regular linear stacks.

    PubMed

    Chen, William Y C; Guo, Qiang-Hui; Sun, Lisa H; Wang, Jian

    2014-12-01

    The contact map of a protein fold is a graph that represents the patterns of contacts in the fold. It is known that the contact map can be decomposed into stacks and queues. RNA secondary structures are special stacks in which the degree of each vertex is at most one and each arc has length of at least two. Waterman and Smith derived a formula for the number of RNA secondary structures of length n with exactly k arcs. Höner zu Siederdissen et al. developed a folding algorithm for extended RNA secondary structures in which each vertex has maximum degree two. An equation for the generating function of extended RNA secondary structures was obtained by Müller and Nebel by using a context-free grammar approach, which leads to an asymptotic formula. In this article, we consider m-regular linear stacks, where each arc has length at least m and the degree of each vertex is bounded by two. Extended RNA secondary structures are exactly 2-regular linear stacks. For any m ≥ 2, we obtain an equation for the generating function of the m-regular linear stacks. For given m, we deduce a recurrence relation and an asymptotic formula for the number of m-regular linear stacks on n vertices. To establish the equation, we use the reduction operation of Chen, Deng, and Du to transform an m-regular linear stack to an m-reduced zigzag (or alternating) stack. Then we find an equation for m-reduced zigzag stacks leading to an equation for m-regular linear stacks. PMID:25455155

  13. Effect of test structure on electromigration characteristics in three-dimensional through silicon via stacked devices

    NASA Astrophysics Data System (ADS)

    Oba, Yoshiyuki; De Messemaeker, Joke; Tyrovouzi, Anna Maria; Miyamori, Yuichi; De Vos, Joeri; Wang, Teng; Beyer, Gerald; Beyne, Eric; De Wolf, Ingrid; Croes, Kristof

    2015-05-01

    Electromigration failure locations in three-dimensional (3D) interconnect structures with high-aspect-ratio through silicon vias, (TSVs, Φ5 × 50 µm2) connected to 40-µm-pitch CuSn solder joints have been identified using test structures which were designed to avoid failures in the back-end-of-line (BEOL). The resistance of the structures with the TSV and bump connections showed a continuous increase until failure. For the structures without a bump connection, where only TSV and re-distributed line (RDL) were the electrically connected, the resistance remained constant prior to the final failure. From cross-sectional analyses after the test, the failure locations were identified at the TSV bottom or at the bump bottom. The location of void formation was changed by applied current direction. The flux divergence generated by the barrier metal and the reservoir effect plays a crucial role in the void formation, and each failure mode is considered to have a different impact on the reliability performance.

  14. A low-temperature fabricated gate-stack structure for Ge-based MOSFET with ferromagnetic epitaxial Heusler-alloy/Ge electrodes

    NASA Astrophysics Data System (ADS)

    Fujita, Yuichi; Yamada, Michihiro; Nagatomi, Yuta; Yamamoto, Keisuke; Yamada, Shinya; Sawano, Kentarou; Kanashima, Takeshi; Nakashima, Hiroshi; Hamaya, Kohei

    2016-06-01

    A possible low-temperature fabrication process of a gate-stack for Ge-based spin metal–oxide–semiconductor field-effect transistor (MOSFET) is investigated. First, since we use epitaxial ferromagnetic Heusler alloys on top of the phosphorous doped Ge epilayer as spin injector and detector, we need a dry etching process to form Heusler-alloy/n+-Ge Schottky-tunnel contacts. Next, to remove the Ge epilayers damaged by the dry etching process, the fabricated structures are dipped in a 0.03% diluted H2O2 solution. Finally, Al/SiO2/GeO2/Ge gate-stack structures are fabricated at 300 °C as a top gate-stack structure. As a result, the currents in the Ge-MOSFET fabricated here can be modulated by applying gate voltages even by using the low-temperature formed gate-stack structures. This low-temperature fabrication process can be utilized for operating Ge spin MOSFETs with a top gate electrode.

  15. Two-bit memory and quantized storage phenomenon in conventional MOS structures with double-stacked Pt-NCs in an HfAlO matrix.

    PubMed

    Zhou, Guangdong; Wu, Bo; Liu, Xiaoqin; Li, Ping; Zhang, Shuangju; Sun, Bai; Zhou, Ankun

    2016-03-01

    A two-bit memory and quantized storage phenomenon are observed at room temperature for a device based on the traditional MOS structure with double-stacked Pt-nanocrystals (Pt-NCs). A 2.68 and 1.72 V flat band voltage shift (memory window) has been obtained when applying a ±7 V programming/erasing voltage to the structures with double-stacked Pt-NCs. The memory windows of 2.40 and 1.44 V can be retained after stress for 10(5) seconds, which correspond to 89.55% and 83.72% stored charges reserved. The quantized charge storage phenomenon characterized by current-voltage (J-V) hysteresis curves was detected at room temperature. The shrinkage of the memory window results from the decreasing tunneling probability, which strongly depends on the number of stacks. The traps, de-traps and quantum confinement effects of Pt-NCs may contribute to the improvement of dielectric characteristics and the two-bit memory behavior. The multi-bit memory and quantized storage behavior observed in the Pt-NCs stacks structure at room temperature might provide a feasible method for realizing the multi-bit storage in non-volatile flash memory devices. PMID:26864686

  16. Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks

    PubMed Central

    Golovina, Elena A.; Golovin, Andrey V.; Hoekstra, Folkert A.; Faller, Roland

    2009-01-01

    Abstract According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (<1:1, 1:1, and >1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis. PMID:19619463

  17. Phonon instability and self-organized structures in multilayer stacks of confined dipolar Bose-Einstein condensates in optical lattices

    NASA Astrophysics Data System (ADS)

    Köberle, Patrick; Wunner, Günter

    2009-12-01

    In calculations to date [D.-W. Wang and E. Demler, e-print arXiv:0812.1838; M. Klawunn and L. Santos, Phys. Rev. A 80, 013611 (2009)] of multilayer stacks of dipolar condensates, created in one-dimensional optical lattices, the condensates have been assumed to be two dimensional. In a real experiment, however, the condensates do not extend to infinity in the oblate direction, but have to be confined by a trap potential, too. By three-dimensional numerical simulations of this realistic experimental situation we find a crucial dependence of the phonon instability boundary on the number of layers. Moreover, near the boundary of the phonon instability, a variety of structured ground-state wave functions emerges, which may indicate the onset of a roton instability [S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Phys. Rev. Lett. 98, 030406 (2007); R. M. Wilson, S. Ronen, J. L. Bohn, and H. Pu, Phys. Rev. Lett. 100, 245302 (2008)]. We also consider the effect of a variable number of atoms per layer on the appearance of the phonon instability.

  18. Multi-Scale Mechanical Probing Techniques To Investigate The Stability Of BEOL Layer Stacks With Sub-100 nm Structures

    NASA Astrophysics Data System (ADS)

    Geisler, Holm; Lehr, Matthias U.; Platz, Alexander; Mayer, Ulrich; Hofmann, Petra; Engelmann, Hans-Jürgen

    2011-09-01

    The stress levels induced by chip-package interaction (CPI) impose an increased risk of mechanical failure on advanced backend-of-line (BEOL) layer stacks in microelectronic circuits if they contain fragile ultralow-k (ULK) interlayer dielectric (ILD) films. On the one hand, multilevel finite element modeling is used to assess the potential risk at an early stage of the development of new microelectronic products. On the other hand, the theoretical models need as accurate as possible materials parameters as an input to provide realistic results. Moreover, it is highly desirable to have multi-scale experimental probes available which can provide complementary data to support the modeling calculations. The present paper provides an overview about various mechanical probing techniques which operate on the scale of less than 100 nm up to more than 100 μm. In this way, typical feature sizes are covered which occur from the package level via solder bumps or copper pillars down to small Cu/ULK interconnect structures. The experimental approaches are based on nanoindentation with lateral force detection and in-situ scanning probe microscopy (SPM) imaging capabilities, and they include a novel technique named bump assisted BEOL stability indentation (BABSI) test. Especially, the interrelation between small-scale mechanical properties of ULK dielectric films and stresses acting on larger scales are quantitatively assessed by means of the experimental approaches described here.

  19. Communication: Ion mobility of the radical cation dimers: (Naphthalene)2+• and naphthalene+•-benzene: Evidence for stacked sandwich and T-shape structures

    NASA Astrophysics Data System (ADS)

    Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy

    2015-05-01

    Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.

  20. Imaging the Structure of Grains, Grain Boundaries, and Stacking Sequences in Single and Multi-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Muller, David

    2012-02-01

    Graphene can be produced by chemical vapor deposition (CVD) on copper substrates on up to meter scales [1, 2], making their polycrystallinity [3,4] almost unavoidable. By combining aberration-corrected scanning transmission electron microscopy and dark-field transmission electron microscopy, we image graphene grains and grain boundaries across six orders of magnitude. Atomic-resolution images of graphene grain boundaries reveal that different grains can stitch together via pentagon-heptagon pairs. We use diffraction-filtered electron imaging to map the shape and orientation of several hundred grains and boundaries over fields of view of a hundred microns. Single, double and multilayer graphene can be differentiated, and the stacking sequence and relative abundance of sequences can be directly imaged. These images reveal an intricate patchwork of grains with structural details depending strongly on growth conditions. The imaging techniques enabled studies of the structure, properties, and control of graphene grains and grain boundaries [5]. [4pt] [1] X. Li et al., Science 324, 1312 (2009).[0pt] [2] S. Bae et al., Nature Nanotechnol. 5, 574 (2010).[0pt] [3] J. M. Wofford, et al., Nano Lett., (2010).[0pt] [4] P. Y. Huang, et al., Nature 469, 389--392 (2011); arXiv:1009.4714, (2010)[0pt] [5] In collaboration with Pinshane Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, A. W. Tsen, L. Brown, R. Hovden, F. Ghahari, W. S. Whitney, M.P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, N. Petrone, J. Hone, J. Park, P. L. McEuen

  1. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack. PMID:27620192

  2. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    PubMed

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP. PMID:27250915

  3. The ELSA - Flood - Stack: A reconstruction from the laminated sediments of Eifel Maar structures during the last 60 000 years

    NASA Astrophysics Data System (ADS)

    Brunck, Heiko; Sirocko, Frank; Albert, Johannes

    2016-04-01

    events from 60 000 years until present times and indicates variable periodicities of flood activity linked to predominant climatic and anthropogenic development. It turns out that low vegetation coverage related to Greenland Stadial phases or anthropogenic impact is the main cause for the development of flood layers in maar sediments, while precipitation plays only a secondary role. References Brunck, H., Albert, J., Sirocko, F., 2015 (in press). The ELSA - Flood - Stack: A reconstruction from the laminated sediments of Eifel Maar structures during the last 60 000 years. Global and Planetary Change, Elsevier. Sirocko, F., Knapp, H., Dreher, F., Förster, M., Albert, J., Brunck, H., Veres, D., Dietrich, S., Zech, M., Hambach, U., Röhner, M., Rudert, S., Schwibus, K., Adams, C., Sigl, P., 2015 (in press). The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60 000 years. Global and Planetary Change, Elsevier.

  4. Investigation of Ge nanocrytals in a metal-insulator-semiconductor structure with a HfO2/SiO2 stack as the tunnel dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Shiye; Liu, Weili; Wan, Qing; Dai, J. Y.; Lee, P. F.; Suhua, Luo; Shen, Qinwo; Zhang, Miao; Song, Zhitang; Lin, Chenglu

    2005-03-01

    A metal-insulator-semiconductor (MIS) structure containing a HfO2 control gate, a Ge nanocrystal-embedded HfO2 dielectric and a HfO2/SiO2 stack layer as tunnel oxide, was fabricated by an electron-beam evaporation method. High-resolution transmission electron microscopy study revealed that the HfO2/SiO2 stack layer minimized Ge penetration, leading to the formation of Ge nanocrystals that are self-aligned between the tunnel oxide and the capping HfO2 layer. Influence of different annealing conditions on the formation and distribution of Ge nanocrystals was studied. Current-voltage (I -V) and capacitance-voltage (C-V) measurements revealed promising electrical characteristics of the MIS structure, and relatively high stored charge density of 1012cm-2 was achieved.

  5. Structural and thermodynamic consideration of metal oxide doped GeO{sub 2} for gate stack formation on germanium

    SciTech Connect

    Lu, Cimang Lee, Choong Hyun; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira

    2014-11-07

    A systematic investigation was carried out on the material and electrical properties of metal oxide doped germanium dioxide (M-GeO{sub 2}) on Ge. We propose two criteria on the selection of desirable M-GeO{sub 2} for gate stack formation on Ge. First, metal oxides with larger cation radii show stronger ability in modifying GeO{sub 2} network, benefiting the thermal stability and water resistance in M-GeO{sub 2}/Ge stacks. Second, metal oxides with a positive Gibbs free energy for germanidation are required for good interface properties of M-GeO{sub 2}/Ge stacks in terms of preventing the Ge-M metallic bond formation. Aggressive equivalent oxide thickness scaling to 0.5 nm is also demonstrated based on these understandings.

  6. Towards the understanding at the molecular level of the structured-water absorption and fluorescence spectra: a fingerprint of π-stacked water

    NASA Astrophysics Data System (ADS)

    Segarra-Martí, Javier; Coto, Pedro B.; Rubio, Mercedes; Roca-Sanjuán, Daniel; Merchán, Manuela

    2013-07-01

    An intriguing absorption peak around ∼270 nm (4.59 eV) has been recurrently recorded in aqueous solutions of salts, sugars, amino acids, in the free-solute zone (exclusion zone) adjacent to various hydrophilic surfaces, as well as a transient in the conversion process of ice to water. The corresponding associated fluorescence has been observed in the interval 480-490 nm (2.58-2.53 eV). The spectroscopic features have been related to the presence of structured water but its nature remains incompletely understood. On the basis of high-level ab initio computations, the main absorption feature of structured water is assigned to the presence of two π-stacked ground-state water molecules, preferably non-hydrogen bonded, at relatively short intermolecular distances (around 2 Å). The lowest singlet excited state is characterised by an equilibrium distance of around 2 Å with a vertical absorption transition predicted at 4.5 eV. The excited π-stacked dimer has a large binding energy (∼1 eV). Therefore, near-ultraviolet light may favour the formation of structured water. Two relaxed side-hydrated π-stacked water molecules (a relaxed tetramer) constitute the smallest unique excimer-type fluorescent moiety consistent with the available experimental data.

  7. Evolution and dimensional crossover from the bulk subbands in ABC-stacked graphene to a three-dimensional Dirac cone structure in rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hong; Chang, Cheng-Peng; Lin, Ming-Fa

    2016-02-01

    Rhombohedral graphite behaves like a topological semimetal, possessing flat surface subbands while being semimetallic in the bulk. The bulk-surface correspondence arises from the ABC-stacking configuration of graphene layers. The bulk subbands in rhombohedral graphite can be interpreted as a three-dimensional Dirac cone structure, whose Dirac points form continuous lines spiraling in momentum space. In this paper, we study the evolution of gapped bulk subbands in ABC-stacked N -layer graphene with an increase of N , and their dimensional crossover to the three-dimensional Dirac cone structure in the bulk limit, where the bulk gap closes up at the Dirac-point spirals. To clarify the effect of coupling to the surface subbands, we use a nonperturbative effective Hamiltonian closed in the bulk subspace. As a consequence, the wavelength of the standing-wave function across the stack of layers depends on the in-plane Bloch momentum. In the bulk limit, the coupling vanishes and hence the wavelength is irrelevant to the surface.

  8. Electrochemical cell stack assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  9. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking

    PubMed Central

    Kim, Namhee; Laing, Christian; Wang, Jason T. L.; Schlick, Tamar

    2016-01-01

    RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS) motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/. PMID:26789998

  10. Bundled Stack Discotic Columnar Liquid Crystalline Phase with Inter Stack Electronic Coupling

    SciTech Connect

    Wang, Bin; Sun, Runkun; Gunbas, Duygu; Zhang, Hao; Grozema, Ferdinand; Xiao, Kai; Jin, Shi

    2015-01-01

    The first compound capable of forming a bundled stack discotic columnar liquid crystalline (BSDCLC) phase was designed and synthesized. The unique perylene anhydride inter stack interaction was found to be the key to the formation of the BSDCLC structure and inter stack electronic coupling (ISEC).

  11. A bundled-stack discotic columnar liquid crystalline phase with inter-stack electronic coupling

    DOE PAGESBeta

    Wang, Bin; Sun, Runkun; Günbaş, Duygu D.; Zhang, Hao; Grozema, Ferdinand C.; Xiao, Kai; Jin, Shi

    2015-06-15

    The first compound proving to be capable of forming a bundled-stack discotic columnar liquid crystalline (BSDCLC) phase was designed and synthesized. Finally, the unique perylene anhydride inter-stack interaction was found to be the key to the formation of the BSDCLC structure and inter-stack electronic coupling (ISEC).

  12. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  13. Quantum-mechanical computations on the electronic structure of trans-resveratrol and trans-piceatannol: a theoretical study of the stacking interactions in trans-resveratrol dimers.

    PubMed

    Mikulski, Damian; Molski, Marcin

    2012-07-01

    Accurate quantum-chemical calculations based on the second-order Møller-Plesset perturbation method (MP2) and density functional theory (DFT) were performed for the first time to investigate the electronic structures of trans-resveratrol and trans-piceatannol, as well as to study the stacking interaction between trans-resveratrol molecules. Ab initio MP2 calculations performed with using standard split-valence Pople basis sets led us to conclude that these compounds have structures that deviate strongly from planarity, whereas the DFT computations for the same basis sets revealed that the equilibrium geometries of these bioactive polyphenols are planar. Furthermore, the results obtained at the MP2(full)/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels indicated that the geometries of trans-resveratrol and trans-piceatannol are practically planar at their absolute energy minima. The relative energies of the equilibrium geometries of trans-resveratrol on its potential energy surface were computed at the MP2(full)/aug-cc-pVTZ level. According to the results obtained, a T-shaped (edge-to-phase) conformer of trans-resveratrol dimer is the most stable in vacuum. This T-shaped conformer is mainly stabilized by strong hydrogen bonding and weak C-H...π interactions. Stacked structures with parallel-displaced trans-stilbene skeletons were also found to be energetically stable. The vertical separation and twist angle dependencies of the stacking energy were investigated at the MP2(full)/aug-cc-pVTZ, B3LYP/aug-cc-pVTZ, and HF/aug-cc-pVTZ levels. The standard B3LYP functional and the Hartree-Fock method neglect long-range attractive dispersion interactions. The MP2 computations revealed that the London dispersion energy cannot be neglected at long or short distances. The stacked model considered here may be useful for predicting the quantum nature of the interactions in π-stacked systems of other naturally occurring stilbenoids, and can help to enhance our understanding of the

  14. The dispersion in accumulation at InGaAs-based metal/oxide/semiconductor gate stacks with a bi-layered dielectric structure

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-08-01

    InGaAs gate stacks comprising the moderate dielectric constant (k) Al2O3 have a significantly lower dispersion in accumulation in comparison to stacks with the high-k HfO2 of the same physical thickness. As a result, a HfO2/Al2O3 bi-layer structure seems attractive in terms of both high effective dielectric constant and low dispersion in accumulation. The influence of Al2O3 thickness on the dispersion was investigated in metal/HfO2/Al2O3/InGaAs gate stacks with a fixed overall dielectric thickness. An effective suppression of the dispersion with the increase of the Al2O3 thickness was observed. However, the Al2O3 thickness required for passivation of the dispersion in accumulation was significantly higher in comparison to both the border traps related tunneling distance in Al2O3 and the minimal thickness required for the Al2O3/InGaAs band offset stabilization. The phenomenon can be explained by the lower dielectric constant of Al2O3 film (compared to the subsequently deposited HfO2 layer), where Al2O3 dielectric constant dependence on the film thickness enhances the dispersion intensity. As a result, the guidelines for the passivation layer engineering are: maximization of both majority carriers band offsets and of the dielectric constant of the passivation layer.

  15. Split stack blowout prevention system

    SciTech Connect

    Crager, B.L.; Ray, D.R.; Steddum, R.E.

    1980-03-18

    A blowout prevention system for an offshore structure positioned on the underwater bottom in a body of water which contains moving ice masses that could force the structure off location wherein a surface blowout preventer stack for conventional well control is connected to the upper end of a riser with the lower end of the riser being disconnectably connected to a subsurface blowout preventer stack which provides the necessary well control should the structure be forced off location. The subsurface stack is positioned on a wellhead located in a chamber in the subsea bottom and is disconnectably connected to the riser so that the riser may be quickly removed from the subsea bottom should the structure be forced off location.

  16. Guanine base stacking in G-quadruplex nucleic acids.

    PubMed

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-02-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5'-5' manner based on different accessible tetrad stacking modes at the stacking interfaces of 5'-5' and 3'-3' stacked G-quadruplexes. PMID:23268444

  17. Structural and electronic properties of AB- and AA-stacking bilayer-graphene intercalated by Li, Na, Ca, B, Al, Si, Ge, Ag, and Au atoms

    NASA Astrophysics Data System (ADS)

    Tayran, Ceren; Aydin, Sezgin; Çakmak, Mehmet; Ellialtıoğlu, Şinasi

    2016-04-01

    The structural and electronic properties of X (=Li, Na, Ca, B, Al, Si, Ge, Ag, and Au)-intercalated AB- and AA-stacking bilayer-graphene have been investigated by using ab initio density functional theory. It is shown that Boron (Lithium)-intercalated system is energetically more stable than the others for the AB (AA) stacking bilayer-graphene systems. The structural parameters, electronic band structures, and orbital nature of actual interactions are studied for the relaxed stable geometries. It is seen that the higher the binding energy, the smaller is the distance between the layers, in these systems. The electronic band structures for these systems show that different intercalated atoms can change the properties of bilayer-graphene differently. For qualitative description of the electronic properties, the metallicities of the systems are also calculated and compared with each other. The Mulliken analysis and electron density maps clearly indicate that the interactions inside a single layer (intralayer interactions) are strong and highly covalent, while the interactions between the two layers (interlayer interactions) are much weaker.

  18. Minimization of germanium penetration, nanocrystal formation, charge storage, and retention in a trilayer memory structure with silicon nitride/hafnium dioxide stack as the tunnel dielectric

    NASA Astrophysics Data System (ADS)

    Ng, T. H.; Chim, W. K.; Choi, W. K.; Ho, V.; Teo, L. W.; Du, A. Y.; Tung, C. H.

    2004-05-01

    Trilayer structures, consisting of a rapid thermal oxide (RTO) layer (2.5 or 5 nm thick) grown on silicon, a sputtered Ge middle layer (3-20 nm thick), and a 50-nm-thick sputtered silicon oxide capping layer, exhibit significant penetration of Ge atoms into the silicon substrate for devices with the smaller (2.5 nm) RTO thickness, resulting in negligible nanocrystal formation and hence no charge storage or memory effect. The Ge penetration is minimized by replacing the RTO layer with a high dielectric constant (high-κ) silicon nitride/hafnium dioxide stack (grown by metalorganic chemical vapor deposition) having a larger physical thickness but smaller equivalent oxide thickness of 1.9 nm. Results show that the high-κ trilayer structure exhibits better charge storage capability (in terms of a lower program voltage) and better charge retention performance as compared to the RTO trilayer structure.

  19. Effect of Pr Valence State on Interfacial Structure and Electrical Properties of Pr Oxide/PrON/Ge Gate Stack Structure

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Kondo, Hiroki; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-04-01

    In this study, we investigated the valence state and chemical bonding state of Pr in a Pr oxide/PrON/Ge structure. We clarified the relationship between the valence state of Pr and the Pr oxide/Ge interfacial reaction using Pr oxide/Ge and Pr oxide/PrON/Ge samples. We found the formation of three Pr oxide phases in Pr oxide films; hexagonal Pr2O3 (h-Pr2O3) (Pr3+), cubic Pr2O3 (c-Pr2O3) (Pr3+), and c-PrO2 (Pr4+). We also investigated the effect of a nitride interlayer on the interfacial reaction in Pr oxide/Ge gate stacks. In a sample with a nitride interlayer (Pr oxide/PrON/Ge), metallic Pr-Pr bonds are also formed in the c-Pr2O3 film. After annealing in H2 ambient, the diffusion of Ge into Pr oxide is not observed in this sample. Pr-Pr bonds probably prevent the interfacial reaction and Ge oxide formation, considering that the oxygen chemical potential of this film is lower than that of a GeO2/Ge system. On the other hand, the rapid thermal oxidation (RTO) treatment terminates the O vacancies and defects in c-Pr2O3. As a result, c-PrO2 with tetravalent Pr is formed in the Pr oxide/PrON/Ge sample with RTO. In this sample, the leakage current density is effectively decreased in comparison with the sample without RTO. Hydrogen termination works effectively in Pr oxide/PrON/Ge samples with and without RTO, and we can achieve an interface state density of as low as 4 ×1011 eV-1·cm-2.

  20. Effect of spacer layer thickness on structural and optical properties of multi-stack InAs/GaAsSb quantum dots

    SciTech Connect

    Kim, Yeongho; Ban, Keun-Yong Honsberg, Christiana B.; Boley, Allison; Smith, David J.

    2015-10-26

    The structural and optical properties of ten-stack InAs/GaAsSb quantum dots (QDs) with different spacer layer thicknesses (d{sub s} = 2, 5, 10, and 15 nm) are reported. X-ray diffraction analysis reveals that the strain relaxation of the GaAsSb spacers increases linearly from 0% to 67% with larger d{sub s} due to higher elastic stress between the spacer and GaAs matrix. In addition, the dislocation density in the spacers with d{sub s} = 10 nm is lowest as a result of reduced residual strain. The photoluminescence peak energy from the QDs does not change monotonically with increasing d{sub s} due to the competing effects of decreased compressive strain and weak electronic coupling of stacked QD layers. The QD structure with d{sub s} = 10 nm is demonstrated to have improved luminescence properties and higher carrier thermal stability.

  1. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.

    PubMed

    Hu, Zhaosheng; Liu, Zhe; Li, Lin; Quan, Baogang; Li, Yunlong; Li, Junjie; Gu, Changzhi

    2014-10-15

    Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double-layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity "hot spots" effect. A simply reproducible high-throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double-layer stacked Au nanospheres construct a three-dimensional plasmonic nanostructure with tunable nanospacing and high-density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near-field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 10(7). Both heterogeneous nanosphere group (Au/Al2O@Ag) and pyramid-shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 10(9). These wafer-scale, high density homo/hetero-metal-nanosphere arrays with tunable nanojunction between adjacent shell-isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics. PMID:24995658

  2. Unraveling Base Stacking Driving Forces in DNA.

    PubMed

    Mak, Chi H

    2016-07-01

    Base stacking is a key determinant of nucleic acid structures, but the precise origin of the thermodynamic driving force behind the stacking of nucleobases remains open. The rather mild stacking free energy measured experimentally, roughly a kcal/mol depending on the identity of the bases, is physiologically significant because while base stacking confers stability to the genome in its double helix form, the duplex also has to be unwound in order to be replicated or transcribed. A stacking free energy that is either too high or too low will over- or understabilize the genome, impacting the storage of genetic information and also its retrieval. While the molecular origin of stacking driving force has been attributed to many different sources including dispersion, electrostatics, and solvent hydrogen bonding, here we show via a systematic decomposition of the stacking free energy using large-scale computer simulations that the dominant driving force stabilizing base stacking is nonhydrophobic solvent entropy. Counteracting this is the conformational entropic penalty on the sugar-phosphate backbone against stacking, while solvent hydrogen-bonding, charge-charge interactions, and dispersive forces produce only secondary perturbations. Solvent entropic forces and DNA backbone conformational strains therefore work against each other, leading to a very mild composite stacking free energy in agreement with experiments. PMID:27045853

  3. Fifty years of stacking

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed

    2014-06-01

    Common-Mid-Point (CMP) stacking is a major process to enhance signal-to-noise ratio in seismic data. Since its appearance fifty years ago, CMP stacking has gone through different phases of prosperity and negligence within the geophysical community. During those times, CMP stacking developed from a simple process of averaging into a sophisticated process that involves complicated mathematics and state-of-the-art computation. This article summarizes the basic principles, assumptions, and violations related to the CMP stacking technique, presents a historical overview on the development stages of CMP stacking, and discusses its future potentiality.

  4. Localized double-array stacking analysis of PcP: D″ and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, Thorne; Revenaugh, Justin

    2009-01-01

    A large, high quality P-wave data set comprising short-period and broadband signals sampling four separate regions in the lowermost mantle beneath the Cocos plate, Mexico, the central Pacific, and the north Pacific is analyzed using regional one-dimensional double-array stacking and modelling with reflectivity synthetics. A data-screening criterion retains only events with stable PcP energy in the final data stacks used for modelling and interpretation. This significantly improves the signal stacks relative to including unscreened observations, allows confident alignment on the PcP arrival and allows tight bounds to be placed on P-wave velocity structure above the core–mantle boundary (CMB). The PcP reflections under the Cocos plate are well modelled without any ultra-low velocity zone from 5 to 20°N. At latitudes from 15 to 20°N, we find evidence for two P-wave velocity discontinuities in the D″ region. The first is ∼182 km above the CMB with a δln Vp of +1.5%, near the same depth as a weaker discontinuity (<+0.5%) observed from 5 to 15°N in prior work. The other reflector is ∼454 km above the CMB, with a δln Vp of +0.4%; this appears to be a shallower continuation of the joint P- and S-wave discontinuity previously detected south of 15° N, which is presumed to be the perovskite to post-perovskite phase transition. The data stacks for paths bottoming below Mexico have PcP images that are well matched with the simple IASP91 structure, contradicting previous inferences of ULVZ presence in this region. These particular data are not very sensitive to any D″ discontinuities, and simply bound them to be <∼2%, if present. Data sampling the lowermost mantle beneath the central Pacific confirm the presence of a ∼15-km thick ultra-low velocity zone (ULVZ) just above the CMB, with δln Vp and δln Vs of around −3 to −4% and −4 to −8%, respectively. The ULVZ models predict previous S-wave data stacks well. The data for this region

  5. The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water

    NASA Astrophysics Data System (ADS)

    Ladik, János; Bende, Attila; Bogár, Ferenc

    2008-03-01

    Using the ab initio Hartree-Fock crystal orbital method in its linear combination of atomic orbital form, the energy band structure of the four homo-DNA-base stacks and those of poly(adenilic acid), polythymidine, and polycytidine were calculated both in the absence and presence of their surrounding water molecules. For these computations Clementi's double ζ basis set was applied. To facilitate the interpretation of the results, the calculations were supplemented by the calculations of the six narrow bands above the conduction band of poly(guanilic acid) with water. Further, the sugar-phosphate chain as well as the water structures around poly(adenilic acid) and polythymidine, respectively, were computed. Three important features have emerged from these calculations. (1) The nonbase-type or water-type bands in the fundamental gap are all close to the corresponding conduction bands. (2) The very broad conduction band (1.70eV) of the guanine stack is split off to seven narrow bands in the case of poly(guanilic acid) (both without and with water) showing that in the energy range of the originally guanine-stack-type conduction band, states belonging to the sugar, to PO4-, to Na+, and to water mix with the guanine-type states. (3) It is apparent that at the homopolynucleotides with water in three cases the valence bands are very similar (polycytidine, because it has a very narrow valence band, does not fall into this category). We have supplemented these calculations by the computation of correlation effects on the band structures of the base stacks by solving the inverse Dyson equation in its diagonal approximation taken for the self-energy the MP2 many body perturbation theory expression. In all cases the too large fundamental gap decreased by 2-3eV. In most cases the widths of the valence and conduction bands, respectively, decreased (but not in all cases). This unusual behavior is most probably due to the rather large complexity of the systems. From all this

  6. Progress Update: Stack Project Complete

    SciTech Connect

    Cody, Tom

    2010-01-01

    Progress update from the Savannah River Site. The 75 foot 293 F Stack, built for plutonium production, was cut down to size in order to prevent injury or release of toxic material if the structure were to collapse due to harsh weather.

  7. Progress Update: Stack Project Complete

    ScienceCinema

    Cody, Tom

    2012-06-14

    Progress update from the Savannah River Site. The 75 foot 293 F Stack, built for plutonium production, was cut down to size in order to prevent injury or release of toxic material if the structure were to collapse due to harsh weather.

  8. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  9. Pressure-Induced Phase Transitions in Ammonium Squarate: A Supramolecular Structure Based on Hydrogen-Bonding and [pi]-Stacking Interactions

    SciTech Connect

    Li, Shourui; Wang, Kai; Zhou, Mi; Li, Qian; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2012-02-06

    We report the results of high-pressure Raman and X-ray diffraction measurements performed on ammonium squarate ((NH{sub 4}){sub 2}C{sub 4}O{sub 4}, AS), a representative supramolecular architecture based on hydrogen bonding and {pi}-stacking interactions, at various pressures up to 19 GPa. Two phase transitions at 2.7 GPa and in the pressure range of 11.1-13.6 GPa were observed. Both Raman and XRD results provide convincing evidence for these two phase transitions. The first phase transition is attributed to the rearrangements of hydrogen-bonding networks, resulting in the symmetry transformation from P2{sub 1}/c to P1. The second one, which is identified as an order-disorder phase transition, arises from significant modifications of squarate rings and random orientations of NH{sub 4}{sup +} cations. The cooperative effects between hydrogen-bonding and {pi}-stacking interactions, as well as mechanisms for the phase transitions, are discussed by virtue of the local structure of AS.

  10. Effects of Gate Stack Structural and Process Defectivity on High-k Dielectric Dependence of NBTI Reliability in 32 nm Technology Node PMOSFETs

    PubMed Central

    Hussin, H.; Soin, N.; Bukhori, M. F.; Wan Muhamad Hatta, S.; Abdul Wahab, Y.

    2014-01-01

    We present a simulation study on negative bias temperature instability (NBTI) induced hole trapping in E′ center defects, which leads to depassivation of interface trap precursor in different geometrical structures of high-k PMOSFET gate stacks using the two-stage NBTI model. The resulting degradation is characterized based on the time evolution of the interface and hole trap densities, as well as the resulting threshold voltage shift. By varying the physical thicknesses of the interface silicon dioxide (SiO2) and hafnium oxide (HfO2) layers, we investigate how the variation in thickness affects hole trapping/detrapping at different stress temperatures. The results suggest that the degradations are highly dependent on the physical gate stack parameters for a given stress voltage and temperature. The degradation is more pronounced by 5% when the thicknesses of HfO2 are increased but is reduced by 11% when the SiO2 interface layer thickness is increased during lower stress voltage. However, at higher stress voltage, greater degradation is observed for a thicker SiO2 interface layer. In addition, the existence of different stress temperatures at which the degradation behavior differs implies that the hole trapping/detrapping event is thermally activated. PMID:25221784

  11. Two-dimensionally stacked heterometallic layers hosting a discrete chair dodecameric ring of water clusters: synthesis and structural study.

    PubMed

    Kenfack Tsobnang, Patrice; Wenger, Emmanuel; Biache, Coralie; Lambi Ngolui, John; Ponou, Siméon; Dahaoui, Slimane; Lecomte, Claude

    2014-10-01

    The stacked two-dimensional supramolecular compound catena-{Co(amp)3Cr(ox)3·6H2O} (amp = 2-picolylamine, ox = oxalate) has been synthesized from the bimolecular approach using hydrogen bonds. It is built from layers in which both Co(amp)(3+) (D) and Cr(ox)(3-) (A) ions are bonded in a repeating DADADA… pattern along the a and c axes by multiple hydrogen bonds. These layers host a well resolved R12 dodecameric discrete ring of water clusters built by six independent molecules located around the 2c centrosymmetric Wyckoff positions of the P21/n space group in which the compound crystallizes. These clusters are ranged along the [001] direction, occupy 733.5 Å(3) (22.0%) of the unit cell and have a chair conformation via 12 hydrogen bonds. The water molecules of the cluster are linked with stronger hydrogen bonds than those between the cluster and its host, which explains the single continuous step of the dehydration process of the compound. PMID:25274525

  12. Sobol's sensitivity analysis for a fuel cell stack assembly model with the aid of structure-selection techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Cho, Chongdu; Piao, Changhao; Choi, Hojoon

    2016-01-01

    This paper presents a novel method for identifying the main parameters affecting the stress distribution of the components used in assembly modeling of proton exchange membrane fuel cell (PEMFC) stack. This method is a combination of an approximation model and Sobol's method, which allows a fast global sensitivity analysis for a set of uncertain parameters using only a limited number of calculations. Seven major parameters, i.e., Young's modulus of the end plate and the membrane electrode assembly (MEA), the contact stiffness between the MEA and bipolar plate (BPP), the X and Y positions of the bolts, the pressure of each bolt, and the thickness of the end plate, are investigated regarding their effect on four metrics, i.e., the maximum stresses of the MEA, BPP, and end plate, and the stress distribution percentage of the MEA. The analysis reveals the individual effects of each parameter and its interactions with the other parameters. The results show that the X position of a bolt has a major influence on the maximum stresses of the BPP and end plate, whereas the thickness of the end plate has the strongest effect on both the maximum stress and the stress distribution percentage of the MEA.

  13. Effect of Thermal Budget on the Electrical Characterization of Atomic Layer Deposited HfSiO/TiN Gate Stack MOSCAP Structure

    PubMed Central

    Khan, Z. N.; Ahmed, S.; Ali, M.

    2016-01-01

    Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412

  14. Effect of Thermal Budget on the Electrical Characterization of Atomic Layer Deposited HfSiO/TiN Gate Stack MOSCAP Structure.

    PubMed

    Khan, Z N; Ahmed, S; Ali, M

    2016-01-01

    Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device's output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412

  15. Stacking Global Seismograms Revisited

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.; Buehler, J. S.; Denolle, M.; Fan, W.; Ma, Z.; Mancinelli, N. J.; Matoza, R. S.; Wang, W.; Wang, Y.; Zhan, Z.

    2014-12-01

    Over 20 years ago, stacks of global seismograms produced direct images of the global seismic wavefield highlighting the visibility, frequency content, and polarity of known seismic phases, and also identified a host of new phases associated with reflections and phase conversions from upper-mantle discontinuities. Two different stacking methods proved particularly useful: (1) STA/LTA-filtered stacks that describe the local signal-to-noise characteristics of the major seismic phases. These serve to image the entire wavefield in a uniform way for educational purposes and to show which phases are observed most clearly as a guide to future research. These stacks also resolve SH versus SV timing differences consistent with radial anisotropy. (2) Reference-phase stacks that preserve the polarity, amplitude, and timing of traces with respect to a specified target phase. These show a large number of top-side and bottom-side reflections and phase conversions from the 410- and 660-km discontinuities that create weak phases with a characteristic "railroad track" appearance both preceding and following many of the main seismic phases. Reference-phase stacking can also be used to produce coherent surface-wave stacks at very long periods, which directly show the dispersive character of the surface waves. Here we revisit and update these stacks by exploiting the vastly increased data now available from the IRIS DMC to produce greatly improved wavefield images. We present several examples of the different stacking approaches and point out their various features, including promising targets for future research.

  16. A series of Cd(II) complexes with {pi}-{pi} stacking and hydrogen bonding interactions: Structural diversities by varying the ligands

    SciTech Connect

    Wang Xiuli; Zhang Jinxia; Liu Guocheng; Lin Hongyan

    2011-02-15

    Seven new Cd(II) complexes consisting of different phenanthroline derivatives and organic acid ligands, formulated as [Cd(PIP){sub 2}(dnba){sub 2}] (1), [Cd(PIP)(ox)].H{sub 2}O (2), [Cd(PIP)(1,4-bdc)(H{sub 2}O)].4H{sub 2}O (3), [Cd(3-PIP){sub 2}(H{sub 2}O){sub 2}].4H{sub 2}O (4), [Cd{sub 2}(3-PIP){sub 4}(4,4'-bpdc)(H{sub 2}O){sub 2}].5H{sub 2}O (5), [Cd(3-PIP)(nip)(H{sub 2}O)].H{sub 2}O (6), [Cd{sub 2}(TIP){sub 4}(4,4'-bpdc)(H{sub 2}O){sub 2}].3H{sub 2}O (7) (PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 3-PIP=2-(3-pyridyl)imidazo[4,5-f]1,10-phenanthroline, TIP=2-(2-thienyl)imidazo[4,5-f]1,10-phenanthroline, Hdnba=3,5-dinitrobenzoic acid, H{sub 2}ox=oxalic acid, 1,4-H{sub 2}bdc=benzene-1,4-dicarboxylic acid, 4,4'-H{sub 2}bpdc=biphenyl-4,4'-dicarboxylic acid, H{sub 2}nip=5-nitroisophthalic acid) have been synthesized under hydrothermal conditions. Complexes 1 and 4 possess mononuclear structures; complexes 5 and 7 are isostructural and have dinuclear structures; complexes 2 and 3 feature 1D chain structures; complex 6 contains 1D double chain, which are further extended to a 3D supramolecular structure by {pi}-{pi} stacking and hydrogen bonding interactions. The N-donor ligands with extended {pi}-system and organic acid ligands play a crucial role in the formation of the final supramolecular frameworks. Moreover, thermal properties and fluorescence of 1-7 are also investigated. -- Graphical abstract: Seven new supramolecular architectures have been successfully isolated under hydrothermal conditions by reactions of different phen derivatives and Cd(II) salts together with organic carboxylate anions auxiliary ligands. Display Omitted Research highlights: {yields} Complexes 1-7 are 0D or 1D polymeric structure, the {pi}-{pi} stacking and H-bonding interactions extend the complexes into 3D supramolecular network. To our knowledge, systematic study on {pi}-{pi} stacking and H-bonding interactions in cadmium(II) complexes are still limited. {yields} The structural

  17. Supramolecular self-assembly of a coumarine-based acylthiourea synthon directed by π-stacking interactions: Crystal structure and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Ashraf, Saba; Flörke, Ulrich; Delgado Espinoza, Zuly Yuliana; Erben, Mauricio F.; Pérez, Hiram

    2016-05-01

    The structure of 1-(2-oxo-2H-chromene-3-carbonyl)-3-(2-methoxy-phenyl)thiourea (1) has been determined by single-crystal X-ray crystallography. This compound crystallizes in the monoclinic space group P21/c with a = 7.455 (2) Å, b = 12.744 (3) Å, c = 16.892 (4) Å, β = 90.203 (6)° and Z = 4. Both, the coumarin and the phenyl rings are nearly coplanar with the central 1-acylthiourea group, with the Cdbnd O and Cdbnd S bonds adopting an opposite orientation. Intramolecular N-H···O, C-H···O, and C-H···S hydrogen bonds are favored by the planar conformation. The molecules are packed through C-H···O, C-H···S and C-H···C hydrogen bonds, and two π···π interactions with offset arrangement. Inter-centroid distance of 3.490 (2) Å, slip angles of 18.5 and 20.9°, and vertical displacements of 1.10 and 1.24 Å are the stacking parameters corresponding to the stronger π···π interaction. Hirshfeld surface analysis was performed for visualizing, exploring and quantifying intermolecular interactions in the crystal lattice of compound 1, and compared with two closely related species. Shape index and Curvedness surfaces indicated π-stacking with different features in opposed sides of the molecule. Fingerprint plot showed C···C contacts with similar contributions to the crystal packing in comparison with those associated to hydrogen bonds. Enrichment ratios for H···H, O···H, S···H and C···C contacts revealed a high propensity to form in the crystal.

  18. Stack gas treatment

    DOEpatents

    Reeves, Adam A.

    1977-04-12

    Hot stack gases transfer contained heat to a gravity flow of pebbles treated with a catalyst, cooled stacked gases and a sulfuric acid mist is withdrawn from the unit, and heat picked up by the pebbles is transferred to air for combustion or other process. The sulfuric acid (or sulfur, depending on the catalyst) is withdrawn in a recovery unit.

  19. Evolution of magnetic layers stacking sequence within the magnetic structure of Ho(CoxNi1-x)2B2C

    NASA Astrophysics Data System (ADS)

    ElMassalami, M.; Takeya, H.; Ouladdiaf, B.; Gomes, A. M.; Paiva, T.; dos Santos, R. R.

    2014-12-01

    We evaluated the influence of Co substitution on the magnetic structure of Ho(CoxNi1-x)2B2C (x=0.2, 0.4, 0.6, 0.8) using neutron diffraction, magnetization and specific heat studies. Different modes are stabilized: an AFM k=(0,0,1) mode for x=0.2, a spiral k=(0,0,0.49) mode for x=0.4, a spiral k=(0,0,0.26) mode for x=0.6, and a FM k=(0,0,0) mode for x=0.8. Recalling that for x=0.0, k=(0,0,1) while for x=1.0, k=(0,0,0), then all these magnetic structures can be visualized as a variation in the stacking sequence, along the z-axis, of the intra-planar FM-coupled Ho sheets as such Co substitution controls the z-component of the k=(0,0,ux) vector where ux=0,0.26,0.49, or 1. We discuss this inference and the observation that in spite of such a diversity of magnetic structures, the critical temperatures and the saturated moments are only weakly influenced by substitution.

  20. The Four Canonical TPR Subunits of Human APC/C Form Related Homo-Dimeric Structures and Stack in Parallel to Form a TPR Suprahelix☆

    PubMed Central

    Zhang, Ziguo; Chang, Leifu; Yang, Jing; Conin, Nora; Kulkarni, Kiran; Barford, David

    2013-01-01

    The anaphase-promoting complex or cyclosome (APC/C) is a large E3 RING-cullin ubiquitin ligase composed of between 14 and 15 individual proteins. A striking feature of the APC/C is that only four proteins are involved in directly recognizing target proteins and catalyzing the assembly of a polyubiquitin chain. All other subunits, which account for > 80% of the mass of the APC/C, provide scaffolding functions. A major proportion of these scaffolding subunits are structurally related. In metazoans, there are four canonical tetratricopeptide repeat (TPR) proteins that form homo-dimers (Apc3/Cdc27, Apc6/Cdc16, Apc7 and Apc8/Cdc23). Here, we describe the crystal structure of the N-terminal homo-dimerization domain of Schizosaccharomyces pombe Cdc23 (Cdc23Nterm). Cdc23Nterm is composed of seven contiguous TPR motifs that self-associate through a related mechanism to those of Cdc16 and Cdc27. Using the Cdc23Nterm structure, we generated a model of full-length Cdc23. The resultant “V”-shaped molecule docks into the Cdc23-assigned density of the human APC/C structure determined using negative stain electron microscopy (EM). Based on sequence conservation, we propose that Apc7 forms a homo-dimeric structure equivalent to those of Cdc16, Cdc23 and Cdc27. The model is consistent with the Apc7-assigned density of the human APC/C EM structure. The four canonical homo-dimeric TPR proteins of human APC/C stack in parallel on one side of the complex. Remarkably, the uniform relative packing of neighboring TPR proteins generates a novel left-handed suprahelical TPR assembly. This finding has implications for understanding the assembly of other TPR-containing multimeric complexes. PMID:23583778

  1. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  2. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure

    PubMed Central

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  3. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    PubMed

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  4. Synthesis and structure of a 2D Zn complex with mixed ligands stacked in offset ABAB manner

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Wang, Yan-Qing; Ni, Gang

    2016-07-01

    The title complex, {[Zn(ODIB)1/2( bpdc)]·2DMF} n was prepared under hydrothermal conditions (dimethylformamide and water) based on two ligands, namely, 1,1'-oxy-bis[3,5-diimidazolyl-benzene] (ODIB) and biphenyldicarboxylic acid (H2 bpdc). ODIB ligands link Zn cations to give layers in crystal. bpdc 2- anions coordinate to Zn atoms, however, their introduction does not increase the dimension of the structure. Each layer is partially passes through the adjacent layers in the offset ABAB manner.

  5. A series of Cd(II) complexes with π-π stacking and hydrogen bonding interactions: Structural diversities by varying the ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xiuli; Zhang, Jinxia; Liu, Guocheng; Lin, Hongyan

    2011-02-01

    Seven new Cd(II) complexes consisting of different phenanthroline derivatives and organic acid ligands, formulated as [Cd(PIP) 2(dnba) 2] ( 1), [Cd(PIP)(ox)]·H 2O ( 2), [Cd(PIP)(1,4-bdc)(H 2O)]·4H 2O ( 3), [Cd(3-PIP) 2(H 2O) 2]·4H 2O ( 4), [Cd 2(3-PIP) 4(4,4'-bpdc)(H 2O) 2]·5H 2O ( 5), [Cd(3-PIP)(nip)(H 2O)]·H 2O ( 6), [Cd 2(TIP) 4(4,4'-bpdc)(H 2O) 2]·3H 2O ( 7) (PIP=2-phenylimidazo[4,5- f]1,10-phenanthroline, 3-PIP=2-(3-pyridyl)imidazo[4,5- f]1,10-phenanthroline, TIP=2-(2-thienyl)imidazo[4,5- f]1,10-phenanthroline, Hdnba=3,5-dinitrobenzoic acid, H 2ox=oxalic acid, 1,4-H 2bdc=benzene-1,4-dicarboxylic acid, 4,4'-H 2bpdc=biphenyl-4,4'-dicarboxylic acid, H 2nip=5-nitroisophthalic acid) have been synthesized under hydrothermal conditions. Complexes 1 and 4 possess mononuclear structures; complexes 5 and 7 are isostructural and have dinuclear structures; complexes 2 and 3 feature 1D chain structures; complex 6 contains 1D double chain, which are further extended to a 3D supramolecular structure by π- π stacking and hydrogen bonding interactions. The N-donor ligands with extended π-system and organic acid ligands play a crucial role in the formation of the final supramolecular frameworks. Moreover, thermal properties and fluorescence of 1- 7 are also investigated.

  6. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-01-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980s, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 refs., 8 figs.

  7. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-03-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980's, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 references, 8 figures.

  8. Wind tunnel investigation of the effect of platform-type structures on dispersion of effluents from short stacks

    SciTech Connect

    Petersen, R.L.

    1986-12-01

    This paper is directed to those persons interested in predicting concentrations downwind of platform-type structures associated with oil or gas facilities that operate on the Outer Continental Shelf. The specific purpose of this study was to determine the effect of platform-type structures on the dispersion of pollutant plumes and to assess the adequacy of the building wake algorithm included in the Offshore and Coastal Dispersion (OCD) Model. To meet the study objectives, a comprehensive wind-tunnel modeling study was conducted. Scale models of three typical oil platforms were positioned in an open-circuit wind tunnel and various source and meteorological conditions were simulated. Concentration and visual measurements were then obtained so that the dispersion characteristics could be quantitatively and qualitatively defined. Prior to conducting the platform wake evaluation, wind tunnel tests were conducted simulating two cases from tracer field experiments conducted in the Gulf of Mexico. The simulations demonstrated that the wind tunnel can adequately simulate dispersion over water.

  9. Band alignment of vanadium oxide as an interlayer in a hafnium oxide-silicon gate stack structure

    NASA Astrophysics Data System (ADS)

    Zhu, Chiyu; Kaur, Manpuneet; Tang, Fu; Liu, Xin; Smith, David J.; Nemanich, Robert J.

    2012-10-01

    Vanadium oxide (VO2) is a narrow band gap material (Eg = 0.7 eV) with a thermally induced insulator-metal phase transition at ˜343 K and evidence of an electric field induced transition at T < 343 K. To explore the electronic properties of VO2, a sandwich structure was prepared with a 2 nm VO2 layer embedded between an oxidized Si(100) surface and a 2 nm hafnium oxide (HfO2) layer. The layer structure was confirmed with high resolution transmission electron microscopy. The electronic properties were characterized with x-ray and ultraviolet photoemission spectroscopy, and the band alignment was deduced on both n-type and p-type Si substrates. The valence band offset between VO2 and SiO2 is measured to be 4.0 eV. The valence band offset between HfO2 and VO2 is measured to be ˜3.4 eV. The band relation developed from these results demonstrates the potential for charge storage and switching for the embedded VO2 layer.

  10. PAM stack test utility

    Energy Science and Technology Software Center (ESTSC)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  11. On Understanding Stacking Fault Formation in Ice

    NASA Astrophysics Data System (ADS)

    Pirzadeh, Payman; Kusalik, Peter G.

    2012-12-01

    Despite dedicated efforts aimed at revealing possible molecular structures of the ice defects associated with stacking faults in ice (I), these molecular arrangements have remained a puzzle. Here we demonstrate how the reorganization of water molecules on different faces of ice (I) can facilitate formation of stacking faults within a crystal. We show that a pair of point defects can manifest a particular combination of coupled five- and eight-membered rings (5-8 rings). These structural motifs can facilitate a shift in layers within an ice (I) crystal, thereby inducing stacking faults. Furthermore, the presence of molecular solutes such as methane at the ice interface appears to trigger the formation of coupled 5-8 rings. The observation of such coupled 5-8 ring defects provides insights into the possible molecular mechanisms of stacking fault formation in ice (I) and has implications for ice crystal growth phenomenology and the consequent physical and chemical properties of ice.

  12. D0 Vent Stacks

    SciTech Connect

    Fuerst, J.D.; /Fermilab

    1988-01-22

    There are two nitrogen/argon exhaust headers in the D0 cryogenic piping system, one for the liquid argon dewar and another for the three argon calorimeters. These headers serve two functions, venting both nitrogen exhaust from the cooling loops and cold argon gas should any argon vessel blow a relief. These headers are vacuum jacketed until they exit the building. At that point, uninsulated exhaust stacks direct the flow into the atmosphere. This note deals with the these stacks.

  13. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  14. Stacking fault energy in some single crystals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2012-06-01

    The stacking fault energy of single crystals has been reported using the peak shift method. Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory. The structural characterizations of these crystals are made by XRD. Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry, which possesses the stacking fault in the single crystal.

  15. Structural and electrical characteristics of ALD-HfO2/n-Si gate stack with SiON interfacial layer for advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Gupta, Richa; Rajput, Renu; Prasher, Rakesh; Vaid, Rakesh

    2016-09-01

    We report the fabrication of an ultra-thin silicon oxynitride (SiON) as an interfacial layer (IL) for n-Si/ALD-HfO2 gate stack with reduced leakage current. The XRD, AFM, FTIR, FESEM and EDAX characterizations have been performed for structural and morphological studies. Electrical parameters such as dielectric constant (K), interface trap density (Dit), leakage current density (J), effective oxide charge (Qeff), barrier height (Φbo), ideality factor (ƞ), breakdown-voltage (Vbr) and series resistance (Rs) were extracted through C-V, G-V and I-V measurements. The determined values of K, Dit, J, Qeff, Φbo, ƞ, Vbr and Rs are 14.4, 0.5 × 10 11 eV-1 cm-2, 2.2 × 10-9 A/cm2, 0.3 × 1013 cm-2, 0.42, 2.1, -0.33 and 14.5 MΩ respectively. SiON growth prior to HfO2 deposition has curtailed the problem of high leakage current density and interfacial traps due to sufficient amount of N2 incorporated at the interface.

  16. Optical and structural properties of GaN epitaxial layers on LiAlO2 substrates and their correlation with basal-plane stacking faults

    NASA Astrophysics Data System (ADS)

    Lutsenko, E. V.; Rzheutski, M. V.; Pavlovskii, V. N.; Yablonskii, G. P.; Alanzi, M.; Hamidalddin, A.; Alyamani, A.; Mauder, C.; Kalisch, H.; Reuters, B.; Heuken, M.; Vescan, A.; Naresh-Kumar, G.; Trager-Cowan, C.

    2016-01-01

    The optical and structural properties of m-plane GaN layers grown by metal organic vapor phase epitaxy on LiAlO2 (100) substrates were investigated. Temperature-dependent and time-resolved photoluminescence (PL), X-ray diffraction and Raman scattering measurements were performed to analyze the correlation of the sample properties with the density of I1-type basal-plane stacking faults (BSFs). Electron channeling contrast imaging was used to reveal and calculate the density of BSFs reaching the surface of an m-plane GaN/LiAlO2 layer. It was shown that a local increase of BSF density in the investigated samples results in a rise of the total PL efficiency at low temperatures because of the localization of excitons at BSFs and, therefore, a suppression of their diffusion to nonradiative centers. Parameters of time decay and temperature quenching of the BSF-related PL band were determined. A correlation of both εxx and εzz strain components with the BSFs and crystal mosaicity was observed, and possible reasons of this correlation are discussed.

  17. Composition Control of CuInSe2 Thin Films Using Cu/In Stacked Structure in Coulometric Controlled Electrodeposition Process.

    PubMed

    Kwon, Yong Hun; Do, Hyun Woo; Kim, Hyoungsub; Cho, Hyung Koun

    2015-10-01

    Cu/In bi-metal stacked structures were prepared on Mo coated soda lime glass substrates using electrodeposition method. These metallic precursors were selenized at 550 °C for 60 min to synthesize the CuInSe2 (CIS) thin films in a thermal evaporator chamber with an Se overpressure atmosphere. The composition ratios of CIS thin films were systematically controlled using the coulometric method of the electrodeposition, where the accumulated coulomb of In layers was varied from 1062 to 6375 mC/cm2. As a result, the stoichiometric CIS film was obtained in the Cu/In coulomb ratio of 0.6. Highly crystallized CIS films were produced from the liquid Cu-Se phase in the Cu/In coulomb ratio of ≥0.6. In contrast, the crystallinity and grain size were degraded in the In-rich region. We found that the Cu/In composition ratio of CIS films was linearly proportional to the precursor thickness determined by the coulomb ratio. PMID:26726424

  18. Structural Studies on Porphyrin-PNA Conjugates in Parallel PNA:PNA Duplexes: Effect of Stacking Interactions on Helicity.

    PubMed

    Accetta, Alessandro; Petrovic, Ana G; Marchelli, Rosangela; Berova, Nina; Corradini, Roberto

    2015-12-01

    Parallel PNA:PNA duplexes were synthesized and conjugated with meso-tris(pyridyl)phenylporphyrin carboxylic acid at the N-terminus. The introduction of one porphyrin unit was shown to affect slightly the stability of the PNA:PNA parallel duplex, whereas the presence of two porphyrin units at the same end resulted in a dramatic increase of the melting temperature, accompanied by hysteresis between melting and cooling curves. The circular dichroism (CD) profile of the Soret band and fluorescence quenching strongly support the occurrence of a face-to-face interaction between the two porphyrin units. Introduction of a L-lysine residue at the C-terminal of one strand of the parallel duplex induced a left-handed helical structure in the PNA:PNA duplex if the latter contains only one or no porphyrin moiety. The left-handed helicity was revealed by nucleobase CD profile at 240-280 nm and by the induced-CD observed in the presence of the DiSC2 (5) cyanine dye at ~500-550 nm. Surprisingly, the presence of two porphyrin units led to the disappearance of the nucleobase CD signal and the absence of CD exciton coupling within the Soret band region. In addition, a dramatic decrease of induced CD of DiSC2 (5) was observed. These results are in agreement with a model where the porphyrin-porphyrin interactions cause partial loss of chirality of the PNA:PNA parallel duplex, forcing it to adopt a ladder-like conformation. PMID:26412743

  19. Stacked subwavelength gratings for imaging polarimetry

    NASA Astrophysics Data System (ADS)

    Deguzman, Panfilo Castro

    The stacking of subwavelength gratings (SWG) in an integrated structure is presented for an application in imaging polarimetry. Imaging polarimetry extends the capability of conventional imaging by providing polarization information about a scene, in addition to variations in intensity. In this dissertation, a novel approach is introduced to develop a real-time imaging polarimeter. Subwavelength gratings are implemented as linear and circular polarization filters that are directly mounted onto the focal plane array of an infrared (IR) camera. Wire grid polarizers are used as linear polarization filters. The stacked structure, consisting of a wire grid polarizer and a form birefringent quarter-wave plate (QWP), implements the circular polarization filter and is the focus of this dissertation. Initial investigations of the development of the individual SWG components and their integration are presented. Rigorous Coupled Wave Analysis (RCWA) was used to design the SWG structures. A broadband form birefringent quarter-wave plate for the 3.5 to 5 μm wavelength range was designed as a grating structure patterned directly into the substrate. Two fabrication methods for the wire grid polarizer were investigated. A 0.5 μm period polarizer was patterned by interference lithography. A 1 μm period polarizer was patterned by contact printing. The stacking of the subwavelength grating structures was analyzed using the Jones Matrix calculus and a new RCWA method (developed by fellow graduate student Jianhua Jiang). Stacked SWG's were fabricated as large area (1.3 cm x 1.3 cm) filters and as a 256 x 256 array of small aperture (15 μm x 15 μm) pixels. Two stack designs were investigated, referred to as Stack I and Stack II. Stack I consisted of the 0.5 μm period polarizer and the form birefringent QWP. Stack II consisted of the I μm grid period polarizer and the form birefringent QWP. Simulation and measured results are presented to compare the cases of samples with and

  20. Stack Characterization System Development and Testing

    SciTech Connect

    Noakes, Mark W; Lind, Randall F; Lloyd, Peter D; Pin, Francois G; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory, as well as the rest of the U.S. Department of Energy community, has numerous off-gas stacks that need to be decommissioned, demolished, and packaged for disposal. Disposal requires a waste disposition determination phase. Process knowledge typically makes a worst-case scenario decision that may place lower-level waste into a more expensive higher-level waste disposal category. Truly useful radiological and chemical sampling can be problematic on old stacks due to their inherent height and access hazards, and many of these stacks have begun to deteriorate structurally. A remote stack characterization system (SCS) that can manage sample and data collection removes people from the hazards and provides an opportunity for access to difficult to reach internal stack areas. The SCS is a remotely operated articulated radiological data recovery system designed to deploy down into off-gas stacks from the top via crane. The battery-powered SCS is designed to stabilize itself against the stack walls and move various data recovery systems into areas of interest on the inner stack walls. Stabilization is provided by a tripod structure; sensors are mounted in a rotatable bipod underneath the tripod. Sensors include a beta/gamma/alpha detector, a removable contaminant multi-sample automated sampler, and a multi-core remote core drill. Multiple cameras provide remote task viewing, support for sampling, and video documentation of the process. A delay in funding has delayed project delivery somewhat. Therefore, this paper describes the technology and shows fabrication and testing progress to the extent that data is available.

  1. Barrier RF stacking

    SciTech Connect

    Chou, W.; Wildman, D.; Zheng, H.; Takagi, A.; /KEK, Tsukuba

    2004-12-01

    A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver {+-}7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement.

  2. Barrier RF Stacking

    SciTech Connect

    Chou, W.; Wildman, D.; Zheng, H.; Takagi, A.

    2005-06-08

    A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver {+-}7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement.

  3. Barrier RF Stacking

    NASA Astrophysics Data System (ADS)

    Chou, W.; Wildman, D.; Zheng, H.; Takagi, A.

    2005-06-01

    A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver ±7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement.

  4. Stack filter classifiers

    SciTech Connect

    Porter, Reid B; Hush, Don

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  5. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, Murray; Schroll, Craig R.

    1985-10-22

    Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.

  6. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  7. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  8. Transformation from a 2D stacked layer to 3D interpenetrated framework by changing the spacer functionality: synthesis, structure, adsorption, and magnetic properties.

    PubMed

    Maji, Tapas Kumar; Ohba, Masaaki; Kitagawa, Susumu

    2005-12-12

    Two novel coordination polymers of Cu(II), viz. [Cu(bipy)(1,4-napdc)(H2O)2]n and {[Cu(bpe)1.5(1,4-napdc)](H2O)}n (bipy=4,4'-bipyridine; bpe=1,2-bis(4-pyridyl)ethane; 1,4-napdc2-=1,4-naphthalenedicarboxylate), have been synthesized and structurally characterized by changing only the pillar motifs. Both the compounds crystallize by slow evaporation from the ammoniacal solution of the as-synthesized solid. Framework 1 crystallizes in monoclinic crystal system, space group P2/n (No. 13), with a=11.028(19) A, b=11.16(3) A, c=7.678(13) A, beta=103.30(5) degrees, and Z=2. Framework 2 crystallizes in triclinic system, space group, P (No. 2), a=10.613(4) A, b=10.828(10) A, c=13.333(9) A, alpha=85.25(9) degrees, beta=82.59(6) degrees, gamma=60.37(5) degrees, and Z=2. The structure determination reveals that has a 2D network based on rectangular grids, where each Cu(II) is in 4+2 coordination mode. The 2D networks stacked in a staggered manner through the pi-pi interaction to form a 3D supramolecular network. In the case of, a {Cu(bpe)1.5}n ladder connected by 1,4-napdc2- results a 2D cuboidal bilayer network and each bilayer network is interlocked by two adjacent identical network (upper and lower) forming 3-fold interpenetrated 3D framework with small channel along the c-axis, which accommodates two water molecules. The TGA and XRPD measurements reveal that both the frameworks are stable after dehydration. Adsorption measurements (N2, CO2, and different solvents, like H2O, MeOH, etc.) were carried out for both frameworks. Framework shows type-II sorption profile with N2 in contrast to H2O and MeOH, which are chemisorbed in the framework. In case of, only H2O molecules can diffuse into the micropore, whereas N2, CO2, and MeOH cannot be adsorbed, as corroborated by the smaller channel aperture. The low-temperature (300-2 K) magnetic measurement of and reveals that both are weakly antiferromagnetically coupled (J=-1.85 cm-1, g=2.02; J=-0.153 cm-1, g=2.07), which is correlated

  9. Mismatch relaxation by stacking fault formation of AlN islands in AlGaN/GaN structures on m-plane GaN substrates

    SciTech Connect

    Smalc-Koziorowska, Julita; Sawicka, Marta; Skierbiszewski, Czeslaw; Grzegory, Izabella

    2011-08-08

    We study the mismatch relaxation of 2-5 nm thin elongated AlN islands formed during growth of AlGaN on bulk m-plane GaN by molecular beam epitaxy. The relaxation of these m-plane AlN layers is anisotropic and occurs through the introduction of stacking faults in [0001] planes during island coalescence, while no relaxation is observed along the perpendicular [1120] direction. This anisotropy in the mismatch relaxation and the formation of stacking faults in the AlN islands are explained by the growth mode of the AlN platelets and their coalescence along the [0001] direction.

  10. Stacking interactions in PUF-RNA complexes

    SciTech Connect

    Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen; Opperman, Laura; Gross, Leah; Tanaka Hall, Traci M; Wickens, Marvin

    2012-07-02

    Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.

  11. Gene stacking by recombinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits into diverse crops grown in a variety of environments. Over two decades of research has identified several site-specific recombinases that carry out efficient cis and trans recombination betw...

  12. STACK GAS REHEAT EVALUATION

    EPA Science Inventory

    The report gives results of technical and economic evaluations of stack gas reheat (SGR) following wet flue gas desulfurization (FGD) for coal-fired power plants. The evaluations were based on information from literature and a survey of FGD users, vendors, and architect/engineer ...

  13. Stacking with No Planarity?

    PubMed

    Gunaydin, Hakan; Bartberger, Michael D

    2016-04-14

    This viewpoint describes the results obtained from matched molecular pair analyses and quantum mechanics calculations that show unsaturated rings found in drug-like molecules may be replaced with their saturated counterparts without losing potency even if they are engaged in stacking interactions with the side chains of aromatic residues. PMID:27096037

  14. Computer Center: 2 HyperCard Stacks for Biology.

    ERIC Educational Resources Information Center

    Duhrkopf, Richard, Ed.

    1989-01-01

    Two Hypercard stacks are reviewed including "Amino Acids," created to help students associate amino acid names with their structures, and "DNA Teacher," a tutorial on the structure and function of DNA. Availability, functions, hardware requirements, and general comments on these stacks are provided. (CW)

  15. 23. Brick coke quencher, brick stack, metal stack to right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Brick coke quencher, brick stack, metal stack to right, coke gas pipe to left; in background, BOF building, limestone piles, Levy's Slag Dump. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  16. Cassette less SOFC stack and method of assembly

    DOEpatents

    Meinhardt, Kerry D

    2014-11-18

    A cassette less SOFC assembly and a method for creating such an assembly. The SOFC stack is characterized by an electrically isolated stack current path which allows welded interconnection between frame portions of the stack. In one embodiment electrically isolating a current path comprises the step of sealing a interconnect plate to a interconnect plate frame with an insulating seal. This enables the current path portion to be isolated from the structural frame an enables the cell frame to be welded together.

  17. Effect of hydrogen in controlling the structural orientation of ZnO:Ga:H as transparent conducting oxide films suitable for applications in stacked layer devices.

    PubMed

    Mondal, Praloy; Das, Debajyoti

    2016-07-27

    Hydrogenation of the ZnO:Ga network has been chosen as a promising avenue to further upgrade the optoelectronic and structural properties of the films. With an optimum incorporation of hydrogen at a low substrate temperature (TS = 100 °C) in RF magnetron sputtering plasma, the ZnO:Ga:H film, with a large crystallite size (∼17 nm) and improved crystallinity along the optimally preferred c-axis orientation with respect to both the 〈100〉 (I〈002〉/I〈100〉 ∼ 74) and 〈103〉 (I〈002〉/I〈103〉 ∼ 10) directions, attains a high electrical conductivity (σ ∼ 1.5 × 10(3)) and ∼90% visible range optical transmission that yields a wide optical band gap of ∼3.78 eV. The dominant c-axis orientation of the ZnO crystals exhibits a distinct UV luminescence band at ∼340 nm that arises as a result of the typical exciton emission or near-band-edge emission, which occurs due to the recombination of photo-generated electrons and holes in the valence band or in traps near the valence band. Vacancies created by the out diffusion of oxygen from the network induces the growth along the 〈103〉 crystallographic orientation. With the introduction of an optimum amount of hydrogen into the network, the VO peak (OII) in the O 1s XPS spectrum significantly reduces in intensity while the Zn-OH peak (OIII) increases, indicating enhanced surface absorption of O species, which causes the improvement of c-axis orientation. The increase in the conductivity has been attributed to the centers assigned to isolated hydrogen atoms in the anti-bonding sites (ABO) or bond-centered sites of O-Zn bonds (BC), and Zn vacancies passivated by one or two hydrogen atoms. Hydrogen-induced dopant-like defects in the film and the associated large amount of tensile stress developed within the network has been correlated to the high conductivity and the wide band gap of the ZnO:Ga:H film due to the decreased repulsion between the O 2p and the Zn 4s bands and the Burstein-Moss effect as a

  18. Pre-stack full-waveform inversion of multichannel seismic data to retrieve thermohaline ocean structure. Application to the Gulf of Cadiz (SW Iberia).

    NASA Astrophysics Data System (ADS)

    Dagnino, Daniel; Jiménez Tejero, Clara-Estela; Meléndez, Adrià; Gras, Clàudia; Sallarès, Valentí; Ranero, César R.

    2016-04-01

    This work demonstrates the feasibility to retrieve high-resolution models of oceanic physical parameters by means of 2D adjoint-state full-waveform inversion (FWI). The proposed method is applied to pre-stack multi-channel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in the framework of the EU GO (Geophysical Oceanography) project in 2006. We first design and apply a specific data processing flow that allows reducing data noise without modifying trace amplitudes. This step is shown to be essential to obtain accurate results due to the low signal-to-noise ratio (SNR) of water layer reflections, which are typically three-to-four orders of magnitude weaker than those in solid earth. Second, we propose new techniques to improve the inversion results by reducing the artefacts appearing in the gradient and misfit as a consequence of the low SNR. We use a weight and filter operator to focus in the regions where the gradient is reliable. The source wavelet is then inverted together with the sound speed. We demonstrate the efficiency of the proposed method and inversion strategy retrieving a 2D sound speed model along a 50 km-long MCS profile collected in the Gulf of Cadiz during the GO experiment. In this region, the Mediterranean outflow entrains the Atlantic waters, creating a salinity complex thermohaline structure that can be measured by a difference in acoustic impedance. The inverted sound speed model have a resolution of 75m for the horizontal direction, which is two orders of magnitude better than the models obtained using conventional, probe-based oceanographic techniques. In a second step, temperature and salinity are derived from the sound speed by minimizing the difference between the inverted and the theoretical sound speed estimated using the thermodynamic equation of seawater (TEOS-10 software). To apply the TEOS-10 we first calculate a linear-fitting between temperature and salinity using regional data from the National Oceanic and

  19. Energy Expenditure of Sport Stacking

    ERIC Educational Resources Information Center

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  20. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  1. Thermoacoustic Refrigerator's Stack Optimization

    NASA Astrophysics Data System (ADS)

    El-Fawal, Mawahib Hassan; Mohd-Ghazali, Normah; Yaacob, Mohd. Shafik; Darus, Amer Nordin

    2010-06-01

    The standing wave thermoacoustic refrigerator, which uses sound generation to transfer heat, was developed rapidly during the past four decades. It was regarded as a new, promising and environmentally benign alternative to conventional compression vapor refrigerators, although it was not competitive regarding the coefficient of performance (COP) yet. Thus the aim of this paper is to enhance thermoacoustic refrigerator's stack performance through optimization. A computational optimization procedure of thermoacoustic stack design was fully developed. The procedure was designed to achieve optimal coefficient of performance based on most of the design and operating parameters. Cooling load and acoustic power governing equations were set assuming the linear thermoacoustic theory. Lagrange multipliers method was used as an optimization technique tool to solve the governing equations. Numerical analyses results of the developed design procedure are presented. The results showed that the stack design parameters are the most significant parameters for the optimal overall performance. The coefficient of performance obtained increases by about 48.8% from the published experimental optimization methods. The results are in good agreement with past established studies.

  2. Performance evaluation of PEFC stack

    SciTech Connect

    Fujita, Jun-ichi; Ohtsuki, Jitsuji; Shindo, Yoshihiko

    1996-12-31

    Polymer electrolyte fuel cells (PEFCs) have many advantages such as high current density, short start-up time and endurance for start-stop cycles. Making use of these advantages, Fuji Electric has been working with the Kansai Electric Power Co., Inc. to explore practical applications of PEFCs for an electric utility use. Since large-sized electrodes are required in the electric utility applications, we have fabricated 600cm{sup 2} membrane-electrode assemblies by using hot-press method. We have also designed a cell structure to realize a uniform reaction over the electrodes. The structure includes a properly-shaped gas flow channel, a temperature-gradient cooling system. Using the 600cm{sup 2} (25x24cm) electrodes, a 30-cell stack (5kW) were constructed and tested.

  3. Conformational Preferences of π-π Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of π-π Interaction.

    PubMed

    Zhao, Yuan; Li, Jue; Gu, Hui; Wei, Dongqing; Xu, Yao-Chang; Fu, Wei; Yu, Zhengtian

    2015-09-01

    π-π Interaction is a direct attractive non-covalent interaction between aromatic moieties, playing an important role in DNA stabilization, drug intercalation, etc. Aromatic rings interact through several different conformations including face-to-face, T-shaped, and offset stacked conformation. Previous quantum calculations indicated that T-shaped and offset stacked conformations are preferred for their smaller electron repulsions. However, substitution group on aromatic ring could have a great impact on π-π interaction by changing electron repulsion force between two rings. To investigate π-π interaction between ligand and aromatic side chain of protein, Brookhaven Protein Data Bank was analyzed. We extracted isolated dimer pairs with the aim of excluding multiple π-π stacking effects and found that T-shaped conformation is prevalent among aromatic interaction between phenyl ring of ligand and protein, which corresponds with the phenomenon of Phe-Phe interactions in small peptide. Specifically, for the non-substitution model, both Phe-Phe and Phenyl-Phe exhibit a favored T-shaped conformation whose dihedral angle is around 50°-70° and centroid distance is between 5.0 and 5.6 Å. However, it could be changed by substituent effect. The hydroxyl group could contact in the case of Tyr-Tyr pairs, while they point away from phenyl plane in Phe-Tyr pairs. PMID:26370211

  4. Intracomplex {pi}-{pi} stacking interaction between adjacent phenanthroline molecules in complexes with rare-earth nitrates: Crystal and molecular structures of bis(1,10-Phenanthroline)trinitratoytterbium and bis(1,10-Phenanthroline)trinitratolanthanum

    SciTech Connect

    Sadikov, G. G. Antsyshkina, A. S.; Rodnikova, M. N.; Solonina, I. A.

    2009-01-15

    Crystals of the compounds Yb(NO{sub 3}){sub 3}(Phen){sub 2} and La(NO{sub 3}){sub 3}(Phen){sub 2} (Phen = 1,10-phenanthroline) are investigated using X-ray diffraction. It is established that there exist two different crystalline modifications: the main modification (phase 1) is characteristic of all members of the isostructural series, and the second modification (phase 2) is observed only for the Eu, Er, and Yb elements. It is assumed that the stability and universality of main phase 1 are associated with the occurrence of the nonbonded {pi}-{pi} stacking interactions between the adjacent phenanthroline ligands in the complexes. The indication of the interactions is a distortion of the planar shape of the Phen molecule (the folding of the metallocycle along the N-N line with a folding angle of 11{sup o}-13{sup o} and its 'boomerang' distortion). The assumption regarding the {pi}-{pi} stacking interaction is very consistent with the shape of the ellipsoids of atomic thermal vibrations, as well as with the data obtained from thermography and IR spectroscopy. An analysis of the structures of a number of rare-earth compounds has demonstrated that the intracomplex {pi}-{pi} stacking interactions directly contribute to the formation of supramolecular associates in the crystals, such as molecular dimers, supramolecules, chain and layered ensembles, and framework systems.

  5. Contemporary sample stacking in analytical electrophoresis.

    PubMed

    Malá, Zdena; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    This contribution is a methodological review of the publications about the topic from the last 2 years. Therefore, it is primarily organized according to the methods and procedures used in surveyed papers and the origin and type of sample and specification of analytes form the secondary structure. The introductory part about navigation in the architecture of stacking brings a brief characterization of the various stacking methods, with the description of mutual links to each other and important differences among them. The main body of the article brings a survey of publications organized according to main principles of stacking and then according to the origin and type of the sample. Provided that the paper cited gave explicitly the relevant data, information about the BGE(s) used, procedure, detector employed, and reached LOD and/or concentration effect is given. The papers where the procedure used is a combination of diverse fragments and parts of various stacking techniques are mentioned in a special section on combined techniques. The concluding remarks in the final part of the review evaluate present state of art and the trends of sample stacking in CE. PMID:25113855

  6. Intelligent Control System of Stack-boiler

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jingxia, Niu; Jianhua, Lang; Shaofeng, Li; Zhi, Li

    Boiler combustion control system's basic task is to make fuel burn calories adapt to the needs of the water temperature and ensure the economical combustion and the safe operation. In the foundations which have analyzed the stack-boiler's work process and control system structure, the system designed by using the self-learning and self-optimizing fuzzy control system of the PC to make air/coal ratio achieve the best and realize the optimized combustion; through PLC to accelerate the speed of response to the boiler, and speed up the PC to optimize the speed and realize the double loop control system for stack-boiler. The control system in premise of the stack-boiler reaches the goal of the load to achieve the highest efficiency of the boiler combustion.

  7. Barrier RF stacking

    SciTech Connect

    Weiren Chou and Akira Takagi

    2003-02-24

    This paper introduces a new method for stacking beams in the longitudinal phase space. It uses RF barriers to confine and compress beams in an accelerator, provided that the machine momentum acceptance is a few times larger than the momentum spread of the injected beam. This is the case for the Fermilab Main Injector. A barrier RF system employing Finemet cores and high-voltage solid-state switches is under construction. The goal is to double the number of protons per cycle on the production target for Run2 and NuMI experiments.

  8. Stacked Extreme Learning Machines.

    PubMed

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed. PMID:25361517

  9. Stacked reverberation mapping

    NASA Astrophysics Data System (ADS)

    Fine, S.; Shanks, T.; Green, P.; Kelly, B. C.; Croom, S. M.; Webster, R. L.; Berger, E.; Chornock, R.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Price, P. A.

    2013-07-01

    Over the past 20 years reverberation mapping has proved one of the most successful techniques for studying the local (<1 pc) environment of supermassive black holes that drive active galactic nuclei. Key successes of reverberation mapping have been direct black hole mass estimates, the radius-luminosity relation for the Hβ line and the calibration of single-epoch mass estimators commonly employed up to z ˜ 7. However, observing constraints mean that few studies have been successful at z > 0.1, or for the more-luminous quasars that make up the majority of current spectroscopic samples, or for rest-frame ultraviolet emission lines available in optical spectra of z > 0.5 objects. Previously, we described a technique for stacking cross-correlations to obtain reverberation mapping results at high z. Here, we present the first results from a campaign designed for this purpose. We construct stacked cross-correlation functions for the C IV and Mg II lines and find a clear peak in both. We find that the peak in the Mg II correlation is at longer lags than C IV consistent with previous results at low redshift. For the C IV sample, we are able to bin by luminosity and find evidence for increasing lags for more-luminous objects. This C IV radius-luminosity relation is consistent with previous studies but with a fraction of the observational cost.

  10. Asymmetric Flexible Supercapacitor Stack

    PubMed Central

    2008-01-01

    Electrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs) have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm) based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM and HRTEM). An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  11. Crystal structures of five (2-chloro-quinolin-3-yl)methyl ethers: supra-molecular assembly in one and two dimensions mediated by hydrogen bonding and π-π stacking.

    PubMed

    Sowmya, Haliwana B V; Suresha Kumara, Tholappanavara H; Gopalpur, Nagendrappa; Jasinski, Jerry P; Millikan, Sean P; Yathirajan, Hemmige S; Glidewell, Christopher

    2015-06-01

    In the mol-ecules of the title compounds, methyl 5-bromo-2-[(2-chloro-quinolin-3-yl)meth-oxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methyl-quinolin-3-yl)meth-oxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methyl-quinolin-3-yl)meth-oxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z' = 4 in space group P212121, and 2-chloro-3-[(naphthalen-1-yl-oxy)meth-yl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloro-quinolin-3-yl)meth-oxy]-4-(hy-droxy-meth-yl)-6-methyl-pyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The mol-ecules of (I) are linked by two independent π-π stacking inter-actions to form chains, but there are no hydrogen bonds present in the structure. In (II), the mol-ecules are weakly linked into chains by a single type of π-π stacking inter-action. In (III), three of the four independent mol-ecules are linked by π-π stacking inter-actions but the other mol-ecule does not participate in such inter-actions. Weak C-H⋯O hydrogen bonds link the mol-ecules into three types of chains, two of which contain just one type of independent mol-ecule while the third type of chain contains two types of mol-ecule. The mol-ecules of (IV) are linked into chains by a C-H⋯π(arene) hydrogen bond, but π-π stacking inter-actions are absent. In (V), there is an intra-molecular O-H⋯O hydrogen bond, and mol-ecules are linked into sheets by a combination of O-H⋯N hydrogen bonds and π-π stacking inter-actions. PMID:26090133

  12. Crystal structures of five (2-chloro­quinolin-3-yl)methyl ethers: supra­molecular assembly in one and two dimensions mediated by hydrogen bonding and π–π stacking

    PubMed Central

    Sowmya, Haliwana B. V.; Suresha Kumara, Tholappanavara H.; Gopalpur, Nagendrappa; Jasinski, Jerry P.; Millikan, Sean P.; Yathirajan, Hemmige S.; Glidewell, Christopher

    2015-01-01

    In the mol­ecules of the title compounds, methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z′ = 4 in space group P212121, and 2-chloro-3-[(naphthalen-1-yl­oxy)meth­yl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloro­quinolin-3-yl)meth­oxy]-4-(hy­droxy­meth­yl)-6-methyl­pyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The mol­ecules of (I) are linked by two independent π–π stacking inter­actions to form chains, but there are no hydrogen bonds present in the structure. In (II), the mol­ecules are weakly linked into chains by a single type of π–π stacking inter­action. In (III), three of the four independent mol­ecules are linked by π–π stacking inter­actions but the other mol­ecule does not participate in such inter­actions. Weak C—H⋯O hydrogen bonds link the mol­ecules into three types of chains, two of which contain just one type of independent mol­ecule while the third type of chain contains two types of mol­ecule. The mol­ecules of (IV) are linked into chains by a C—H⋯π(arene) hydrogen bond, but π–π stacking inter­actions are absent. In (V), there is an intra­molecular O—H⋯O hydrogen bond, and mol­ecules are linked into sheets by a combination of O—H⋯N hydrogen bonds and π–π stacking inter­actions. PMID:26090133

  13. Stacking and twin faults in close-packed crystal structures: exact description of random faulting statistics for the full range of faulting probabilities.

    PubMed

    Estevez-Rams, E; Welzel, U; Pentón Madrigal, A; Mittemeijer, E J

    2008-09-01

    The classical model of independent random single deformation faults and twin faulting in face-centered-cubic and hexagonal close packing is revisited. The model is extended to account for the whole range of faulting probabilities. The faulting process resulting in the final stacking sequences is described by several equivalent computational models. The probability sequence tree is established. Random faulting is described as a finite-state automaton machine. An expression giving the percent of hexagonality from the faulting probabilities is derived. The average sizes of the cubic and hexagonal domains are given as a function of single deformation and twinning fault probabilities. An expression for the probability of finding a given sequence within the complete stacking arrangement is also derived. The probability P(0)(Delta) of finding two layers of the same type Delta layers apart is derived. It is shown that previous generalizations did not account for all terms in the final probability expressions. The different behaviors of the P(0)(Delta) functions are discussed. PMID:18708717

  14. Thermoacoustic pin stacks. Summary report

    SciTech Connect

    Keolian, R.M.

    1994-07-06

    The construction and testing of a new stack geometry for thermoacoustic engines, called a pin stack, has been started. The stack is at the heart of a class of heat engines that use sound to deliver refrigeration, or use a temperature difference to generate sound. Calculations show that the pin stack should make useful improvements in engine efficiency. About 2000 wires will be hand sewn in a hexagonal lattice between the hot and cold heat exchangers in a sound source using low pressure neon gas between 300 K and 77 K. Thermoacoustics, Refrigeration, Acoustic source, Heat pump.

  15. Stacked insulator induction accelerator gaps

    SciTech Connect

    Houck, T.I.; Westenskow, G.A.; Kim, J.S.; Eylon, S.; Henestroza, E.; Yu, S.S.; Vanecek, D.

    1997-05-01

    Stacked insulators, with alternating layers of insulating material and conducting film, have been shown to support high surface electrical field stresses. We have investigated the application of the stacked insulator technology to the design of induction accelerator modules for the Relativistic-Klystron Two-Beam Accelerator program. The rf properties of the accelerating gaps using stacked insulators, particularly the impedance at frequencies above the beam pipe cutoff frequency, are investigated. Low impedance is critical for Relativistic-Klystron Two-Beam Accelerator applications where a high current, bunched beam is trsnsported through many accelerating gaps. An induction accelerator module designs using a stacked insulator is presented.

  16. Memory Stacking in Hierarchical Networks.

    PubMed

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu

    2016-02-01

    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns. PMID:26654206

  17. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  18. Stack Trace Analysis Tool

    SciTech Connect

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  19. Stack Trace Analysis Tool

    SciTech Connect

    2008-01-16

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet free based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  20. The LSST Software Stack

    NASA Astrophysics Data System (ADS)

    Jenness, Timothy; LSST Data Management Team

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is an 8-m optical ground-based telescope being constructed on Cerro Pachon in Chile. LSST will survey half the sky every few nights in six optical bands. The data will be transferred to the data center in North America and within 60 seconds it will be reduced using difference imaging and an alert list be generated for the community. Additionally, annual data releases will be constructed from all the data during the 10-year mission, producing catalogs and deep co-added images with unprecedented time resolution for such a large region of sky. In the paper we present the current status of the LSST stack including the data processing components, Qserv database and data visualization software, describe how to obtain it, and provide a summary of the development road map.

  1. Stack Trace Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2008-01-16

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet free based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a single call prefix tree.more » The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.« less

  2. Stack Trace Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree.more » The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.« less

  3. Crustal structure of the Churchill-Superior boundary zone between 80 and 98 deg W longitude from Magsat anomaly maps and stacked passes

    NASA Technical Reports Server (NTRS)

    Hall, D. H.; Millar, T. W.; Noble, I. A.

    1985-01-01

    A modeling technique using spherical shell elements and equivalent dipole sources has been applied to Magsat signatures at the Churchill-Superior boundary in Manitoba, Ontario, and Ungava. A large satellite magnetic anomaly (12 nT amplitude) on POGO and Magsat maps near the Churchill-Superior boundary was found to be related to the Richmond Gulf aulacogen. The averaged crustal magnetization in the source region is 5.2 A/m. Stacking of the magnetic traces from Magsat passes reveals a magnetic signature (10 nT amplitude) at the Churchill-Superior boundary in an area studied between 80 deg W and 98 deg W. Modeling suggests a steplike thickening of the crust on the Churchill side of the boundary in a layer with a magnetization of 5 A/m. Signatures on aeromagnetic maps are also found in the source areas for both of these satellite anomalies.

  4. Structure and U-Pb zircon geochronology of an Alpine nappe stack telescoped by extensional detachment faulting (Kulidzhik area, Eastern Rhodopes, Bulgaria)

    NASA Astrophysics Data System (ADS)

    Georgiev, Neven; Froitzheim, Nikolaus; Cherneva, Zlatka; Frei, Dirk; Grozdev, Valentin; Jahn-Awe, Silke; Nagel, Thorsten J.

    2016-01-01

    The Rhodope Metamorphic Complex is a stack of allochthons assembled during obduction, subduction, and collision processes from Jurassic to Paleogene and overprinted by extensional detachment faults since Middle Eocene. In the study area, the following nappes occur in superposition (from base to top): an orthogneiss-dominated unit (Unit I), garnet-bearing schist with amphibolite and serpentinite lenses (Unit II), greenschist, phyllite, and calcschist with reported Jurassic microfossils (Unit III), and muscovite-rich orthogneiss (Unit IV). U-Pb dating of zircons from a K-feldspar augengneiss (Unit I) yielded a protolith age of ca. 300 Ma. Garnet-bearing metasediment from Unit II yielded an age spectrum with distinct populations between 310 and 250 Ma (detrital), ca. 150 Ma, and ca. 69 Ma (the last two of high-grade metamorphic origin). An orthogneiss from Unit IV yielded a wide spectrum of ages. The youngest population gives a concordia age of 581 ± 5 Ma, interpreted as the age of the granitic protolith. Unit I represents the Lower Allochthon (Byala Reka-Kechros Dome), Unit II the Upper Allochthon (Krumovitsa-Kimi Unit), Unit III the Uppermost Allochthon (Circum-Rhodope Belt), and Unit IV a still higher, far-travelled unit of unknown provenance. Telescoping of the entire Rhodope nappe stack to a thickness of only a few 100 m is due to Late Eocene north directed extensional shearing along the newly defined Kulidzhik Detachment which is part of a major detachment system along the northern border of the Rhodopes. Older top-to-the south mylonites in Unit I indicate that Tertiary extension evolved from asymmetric (top-to-the-south) to symmetric (top-to-the-south and top-to-the-north), bivergent unroofing.

  5. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  6. 49 CFR 178.815 - Stacking test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Stacking test. 178.815 Section 178.815... Stacking test. (a) General. The stacking test must be conducted for the qualification of all IBC design types intended to be stacked. (b) Special preparation for the stacking test. (1) All IBCs...

  7. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin

    NASA Astrophysics Data System (ADS)

    Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw

    2014-04-01

    Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.

  8. Ribosomes in a Stacked Array

    PubMed Central

    Yamashita, Yui; Kadokura, Yoshitomo; Sotta, Naoyuki; Fujiwara, Toru; Takigawa, Ichigaku; Satake, Akiko; Onouchi, Hitoshi; Naito, Satoshi

    2014-01-01

    Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-l-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state. PMID:24652291

  9. Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Beini; Lu, Yonghong; Wu, Pingxiao; Huang, Zhujian; Zhu, Yajie; Dang, Zhi; Zhu, Nengwu; Lu, Guining; Huang, Junyi

    2016-03-01

    For enhanced photocatalytic performance of visible light responsive CdZnS, a series of Cd0.5Zn0.5S solid solutions were fabricated by different methods. It was found that the semiconductor obtained through the precipitation-hydrothermal method (CZS-PH) exhibited the highest photocatalytic hydrogen production rate of 2154 μmol h-1 g-1. The enhanced photocatalytic hydrogen production of CZS-PH was probably due to stacking fault formation as well as narrow bandgap, a large surface area and a small crystallite size. Based on this, carbon nanotubes modified with Cu2+ (CNTs (Cu)) were used as a cocatalyst for CZS-PH. The addition of CNTs (Cu) enhanced notably the absorption of the composites for visible light. The highest photocatalytic hydrogen production rate of the Cd0.5Zn0.5S-CNTs (Cu) composite was 2995 μmol h-1 g-1 with 1.0 wt.% of CNTs (Cu). The improvement of the photocatalytic activity by loading of CNTs (Cu) was not due to alteration of bandgap energy or surface area, and was probably attributed to suppression of the electron-hole recombination by the CNTs, with Cu2+ anchored in the interface optimizing the photogenerated electron transfer pathway between the semiconductor and CNTs. We report here the successful combination of homojunction and heterojunction in CdZnS semiconductor, which resulted in promotion of charge separation and enhanced photocatalytic activity.

  10. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.

    PubMed

    Li, Yingtao; Yuan, Peng; Fu, Liping; Li, Rongrong; Gao, Xiaoping; Tao, Chunlan

    2015-10-01

    Diode-like volatile resistive switching as well as nonvolatile resistive switching behaviors in a Cu/ZrO₂/TiO₂/Ti stack are investigated. Depending on the current compliance during the electroforming process, either volatile resistive switching or nonvolatile resistive switching is observed. With a lower current compliance (<10 μA), the Cu/ZrO₂/TiO₂/Ti device exhibits diode-like volatile resistive switching with a rectifying ratio over 10(6). The permanent transition from volatile to nonvolatile resistive switching can be obtained by applying a higher current compliance of 100 μA. Furthermore, by using different reset voltages, the Cu/ZrO₂/TiO₂/Ti device exhibits multilevel memory characteristics with high uniformity. The coexistence of nonvolatile multilevel memory and diode-like volatile resistive switching behaviors in the same Cu/ZrO₂/TiO₂/Ti device opens areas of applications in high-density storage, logic circuits, neural networks, and passive crossbar memory selectors. PMID:26358828

  11. Fabrication of high gradient insulators by stack compression

    SciTech Connect

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  12. Stack sampling apparatus

    SciTech Connect

    Lind, Randall F; Lloyd, Peter D; Love, Lonnie J; Noakes, Mark W; Pin, Francois G; Richardson, Bradley S; Rowe, John C

    2014-09-16

    An apparatus for obtaining samples from a structure includes a support member, at least one stabilizing member, and at least one moveable member. The stabilizing member has a first portion coupled to the support member and a second portion configured to engage with the structure to restrict relative movement between the support member and the structure. The stabilizing member is radially expandable from a first configuration where the second portion does not engage with a surface of the structure to a second configuration where the second portion engages with the surface of the structure.

  13. Annealing effects of in-depth profile and band discontinuity in TiN/LaO/HfSiO/SiO{sub 2}/Si gate stack structure studied by angle-resolved photoemission spectroscopy from backside

    SciTech Connect

    Toyoda, S.; Kumigashira, H.; Oshima, M.; Kamada, H.; Tanimura, T.; Ohtsuka, T.; Hata, Y.; Niwa, M.

    2010-01-25

    We have investigated annealing effects on in-depth profile and band discontinuity for a metal gate/high-k gate stack structure on a Si substrate using backside angle-resolved photoemission spectroscopy with synchrotron radiation. In-depth profiles analyzed from angle-resolved photoemission spectroscopy show that La atoms diffuse through the HfSiO layer and reach interfacial SiO{sub 2} layers by rapid thermal annealing. Chemical shift of Si 2p core-level spectra suggests that there are changes in the band discontinuity at the high-k/SiO{sub 2} interface, which is well related to the V{sub th} shift based on the interface dipole model.

  14. Multistage Force Amplification of Piezoelectric Stacks

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  15. Influence of electric fields on absorption spectra of AAB-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Chiu, Chih-Wei; Chen, Rong-Bin

    2016-06-01

    The tight-binding model and gradient approximation are, respectively, used to calculate the band structures and the absorption spectra of AAB-stacked trilayer graphene (AAB-TLG). AAB stacking, the lowest symmetric geometric structure in trilayer systems, induces the most atomic interactions, and thus, complicates the energy dispersions and the joint density of states. AAB stacking enriches the optical absorption spectra [A(ω)], which dictate the characteristics of the electronic structure. A(ω) are changed by the static electric field, such as the intensity, frequency, and number of absorption structures. These results contrast sharply with those for TLG in other stacking configurations.

  16. Stacking faults in SiC nanowires.

    PubMed

    Wallis, K L; Wieligor, M; Zerda, T W; Stelmakh, S; Gierlotka, S; Palosz, B

    2008-07-01

    SiC nanowires were obtained by a reaction between vapor silicon and multiwall carbon nanotubes, CNT, in vacuum at 1200 degrees C. Raman and IR spectrometry, X-ray diffraction and high resolution transmission electron microscopy, HRTEM, were used to characterize properties of SiC nanowires. Morphology and chemical composition of the nanowires was similar for all samples, but concentration of structural defects varied and depended on the origin of CNT. Stacking faults were characterized by HRTEM and Raman spectroscopy, and both techniques provided complementary results. Raman microscopy allowed studying structural defects inside individual nanowires. A thin layer of amorphous silicon carbide was detected on the surface of nanowires. PMID:19051903

  17. 49 CFR 178.1055 - Stacking test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Stacking test. 178.1055 Section 178.1055... Containers § 178.1055 Stacking test. (a) General. The stacking test must be conducted for the qualification of all Flexible Bulk Containers design types. (b) Special preparation for the stacking test....

  18. Fuel cell stack compressive loading system

    DOEpatents

    Fahle, Ronald W.; Reiser, Carl A.

    1982-01-01

    A fuel cell module comprising a stack of fuel cells with reactant gas manifolds sealed against the external surfaces of the stack includes a constraint system for providing a compressive load on the stack wherein the constraint system maintains the stack at a constant height (after thermal expansion) and allows the compressive load to decrease with time as a result of the creep characteristics of the stack. Relative motion between the manifold sealing edges and the stack surface is virtually eliminated by this constraint system; however it can only be used with a stack having considerable resiliency and appropriate thermal expansion and creep characteristics.

  19. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    PubMed

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous. PMID:26809017

  20. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  1. Slippage in stacking of graphene nanofragments induced by spin polarization.

    PubMed

    Lei, Yanyu; Jiang, Wanrun; Dai, Xing; Song, Ruixia; Wang, Bo; Gao, Yang; Wang, Zhigang

    2015-01-01

    Spin polarization and stacking are interesting effects in complex molecular systems and are both presented in graphene-based materials. Their possible combination may provide a new perspective in understanding the intermolecular force. The nanoscale graphene structures with zigzag edges could possess spin-polarized ground states. However, the mechanical effect of spin polarization in stacking of graphene nanofragments is not clear. Here we demonstrate the displacement between two stacked rhombic graphene nanofragments induced by spin polarization, using first-principles density-functional methods. We found that, in stacking of two rhombic graphene nanofragments, a spin-polarized stacked conformation with zero total spin is energetically more favorable than the closed-shell stacking. The spin-polarized conformation gives a further horizontal interlayer displacement within 1 angstrom compared with the closed-shell structure. This result highlights that, besides the well-known phenomenologically interpreted van der Waals forces, a specific mechanism dependent on the monomeric spin polarization may lead to obvious mechanical effects in some intermolecular interactions. PMID:26078005

  2. Slippage in stacking of graphene nanofragments induced by spin polarization

    NASA Astrophysics Data System (ADS)

    Lei, Yanyu; Jiang, Wanrun; Dai, Xing; Song, Ruixia; Wang, Bo; Gao, Yang; Wang, Zhigang

    2015-06-01

    Spin polarization and stacking are interesting effects in complex molecular systems and are both presented in graphene-based materials. Their possible combination may provide a new perspective in understanding the intermolecular force. The nanoscale graphene structures with zigzag edges could possess spin-polarized ground states. However, the mechanical effect of spin polarization in stacking of graphene nanofragments is not clear. Here we demonstrate the displacement between two stacked rhombic graphene nanofragments induced by spin polarization, using first-principles density-functional methods. We found that, in stacking of two rhombic graphene nanofragments, a spin-polarized stacked conformation with zero total spin is energetically more favorable than the closed-shell stacking. The spin-polarized conformation gives a further horizontal interlayer displacement within 1 angstrom compared with the closed-shell structure. This result highlights that, besides the well-known phenomenologically interpreted van der Waals forces, a specific mechanism dependent on the monomeric spin polarization may lead to obvious mechanical effects in some intermolecular interactions.

  3. Multi-functional stacked light-trapping structure for stabilizing and boosting solar-electricity efficiency of hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Hsien; Shieh, Jia-Min; Pan, Fu-Ming; Shen, Chang-Hong; Huang, Jung Y.; Wu, Tsung-Ta; Kao, Ming-Hsuan; Hsiao, Tzu-Hsuan; Yu, Peichen; Kuo, Hao-Chung; Lee, Ching-Ting

    2013-08-01

    A sandwiched light-trapping electrode structure, which consists of a capping aluminum-doped ZnO (AZO) layer, dispersed plasmonic Au-nanoparticles (Au-NPs), and a micro-structured transparent conductive substrate, is employed to stabilize and boost the conversion-efficiency of hydrogenated amorphous silicon (a-Si:H) solar cells. The conformal AZO ultrathin layer (5 nm) smoothened the Au-NP-dispersed electrode surface, thereby reducing defects across the AZO/a-Si:H interface and resulting in a high resistance to photo-degradation in the ultraviolet-blue photoresponse band. With the plasmonic light-trapping structure, the cell has a high conversion-efficiency of 10.1% and the photo-degradation is as small as 7%.

  4. Stacking interactions and DNA intercalation

    SciTech Connect

    Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo; Lundqvist, Prof. Bengt I.; Langreth, David C.

    2009-01-01

    The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observed proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.

  5. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    SciTech Connect

    Que, Yande; Xiao, Wende E-mail: hjgao@iphy.ac.cn; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun E-mail: hjgao@iphy.ac.cn

    2015-12-28

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  6. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun

    2015-12-01

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  7. Anharmonic stacking in supercoiled DNA

    NASA Astrophysics Data System (ADS)

    Zoli, Marco

    2012-05-01

    Multistep denaturation in a short circular DNA molecule is analyzed by a mesoscopic Hamiltonian model which accounts for the helicoidal geometry. Computation of melting profiles by the path integral method suggests that stacking anharmonicity stabilizes the double helix against thermal disruption of the hydrogen bonds. Twisting is essential in the model to capture the importance of nonlinear effects on the thermodynamical properties. In a ladder model with zero twist, anharmonic stacking scarcely affects the thermodynamics. Moderately untwisted helices, with respect to the equilibrium conformation, show an energetic advantage against the overtwisted ones. Accordingly moderately untwisted helices better sustain local fluctuational openings and make more unlikely the thermally driven complete strand separation.

  8. Pressurized electrolysis stack with thermal expansion capability

    DOEpatents

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  9. Stacked rig refurbished for ultradeep gas drilling

    SciTech Connect

    Noevig, T.; Gutsche, W. )

    1995-01-09

    A heavy drilling rig, cold stacked for several years, recently underwent numerous structural, equipment, and computer upgrades for drilling ultradeep (8,000 m) gas wells in Germany. The technical improvements on the rig included supplementary installations and modifications to safety, quality, engineering, noise abatement, and environmental protection systems. With a maximal hook load of 700 tons, the drilling rig is one of the heaviest of its kind in Europe. The rig has a drilling depth range of 7,000--8,000 m, and the top drive system enables horizontal drilling. The paper describes the rig site, mast, top drive, substructure, draw works, power station, mud system, instrumentation, and other equipment.

  10. Multibeam collimator uses prism stack

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  11. STACK SAMPLING FOR ORGANIC EMISSIONS

    EPA Science Inventory

    The paper reviews some of the more important principles involved in stack sampling for organics, briefly describes and discusses recently developed equipment, and points out a few of the more serious pitfalls. Extensive references are provided, many of which are often overlooked ...

  12. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  13. POLYMERIC INTERFACES FOR STACK MONITORING

    EPA Science Inventory

    Research has been performed on the use of polymeric interfaces for in situ continuous stack monitoring of gaseous pollutants. Permeabilities of candidate interface materials to SO2 were measured at temperatures from ambient to 200C, and the results were used to design interfaces ...

  14. Two- and Three-Tiered Stacked Architectures by Covalent Assembly.

    PubMed

    Ren, Fengfeng; Day, Kody J; Hartley, C Scott

    2016-07-18

    Simple discotic cores functionalized with reactive arms have been assembled into two- and three-tiered covalent stacks through imine formation. The targets are obtained in good yields, but competing formation of misassembled byproducts highlights some of the challenges inherent to the thermodynamically controlled assembly of rigid, compact, three-dimensional architectures. The structures comprise a central stack of arenes surrounded by a triple helix of interconnected arms. The racemization rate is strongly dependent on the number of tiers, suggesting cooperative conformational coupling in these multi-tiered structures. PMID:27297833

  15. LETTER TO THE EDITOR: High colour rendering index non-doped-type white organic light-emitting devices with a RGB-stacked multilayer structure

    NASA Astrophysics Data System (ADS)

    Xie, Wenfa; Zhao, Yi; Li, Chuannan; Liu, Shiyong

    2005-12-01

    A non-doped-type white organic light-emitting device with high colour rendering index has been reported. The structure of the device is ITO/NPB (50 nm)/TPBI (3 nm)/Alq3 (d nm)/DCM2 (0.1 nm)/TPBI (40 - d nm)/Alq3 (10 nm)/LiF/Al, where NPB is N, N'-bis-(1-naphthyl)-N, N'-diphenyl-1, 1'-biph-enyl-4, 4'-diamine, TPBI is 2, 2', 2''-(1, 3, 5-phenylene) tris(1-phenyl-1H-benzimidazole), Alq3 is tris (8-hydroxyquinoline) aluminium, DCM2 is [2-methyl-6-[2-(2, 3, 6, 7-tetrahydro-1H, 5H-benzo[ij] quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene] propane-dinitrile. Through the optimization of d, pure white emission with CIE coordinates of (0.3198, 0.3400) at 9 V was obtained, at which the colour temperature and colour rendering index were 6080 K and 97, respectively. The CIE coordinates of the device change from (0.4552, 0.3867) at 4 V to (0.2864, 0.2865) at 19 V that are well in the white region. Its maximum luminance was 10 855 cd m-2 at 19 V and maximum power efficiency was 1.31 lm W-1 at 5 V.

  16. Interaction driven quantum Hall effect in artificially stacked graphene bilayers.

    PubMed

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  17. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    PubMed Central

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  18. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-04-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.

  19. The ELSA-Flood-Stack: A reconstruction from the laminated sediments of Eifel maar structures during the last 60 000 years

    NASA Astrophysics Data System (ADS)

    Brunck, H.; Sirocko, F.; Albert, J.

    2016-07-01

    This study reconstructs the main flood phases in central Europe from event layers in sediment cores from Holocene Eifel maar lakes and Pleistocene dry maar structures. These reconstructions are combined with recent gauge time-series to cover the entire precipitation extremes of the last 60 000 years. In general, Eifel maar sediments are perfectly suited for the preservation of event layers since the deep water in the maar lakes is seasonal anoxic and therefore, bioturbation is low. However, the preservation of annual lamination is only preserved in Holzmaar and Ulmener Maar; the other cores are dated by 14C, magnetostratigraphy, tephra markers and ice core tuning. The cores were drilled in the Eifel region of central western Germany, which represents a climatic homogenous region from Belgium to Poland and all across Central Europe. A total of 233 flood layers over 7.5 mm were detected in all analysed cores. The stratigraphic classification of the flood events follows the newly defined Landscape Evolution Zones (LEZ). The strongest events in the Holocene have occurred during LEZ 1 (0-6000 b2k) in the years 658, 2800 and 4100 b2k. Flood layers in the LEZ 2 (6000-10 500 b2k) are not as frequent as during the LEZ 1, nevertheless, the floods cluster between 6000 and 6500 b2k. Twenty flood layers are found in the LEZ 3 (10 500-14 700 b2k); 11 in LEZ 4 (14 700-21 000 b2k); 15 in LEZ 5 (21 000-28 500 b2k); 34 in LEZ 6 (28 500-36 500 b2k); 8 in LEZ 7 (36 500-49 000 b2k); zero in LEZ 8 (49 000-55 000 b2k) and LEZ 9 (55 000-60 000 b2k). The maximum flood phases during the Pleistocene are at 11 500-17 500 (late glacial and Younger Dryas), 23 000-24 000 (before Greenland Interstadial (GI) 2), 29 000-35 000 (especially between GI 5 and 4) and 44 000-44 500 b2k (transition from GI 12 to 11). The variations in flood dynamics are climatically driven and mainly associated with climate transitions and colder periods, combined with light vegetation. It turns out that low vegetation

  20. 49 CFR 178.980 - Stacking test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the qualification of all Large Packagings design types intended to be stacked. (b) Special preparation for the stacking test. (1) All Large Packagings except flexible Large Packaging design types must be... permissible gross mass and stacked on the test Large Packaging; (ii) The calculated superimposed test...

  1. 49 CFR 178.606 - Stacking test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Stacking test. 178.606 Section 178.606... Packagings and Packages § 178.606 Stacking test. (a) General. All packaging design types other than bags must be subjected to a stacking test. (b) Number of test samples. Three test samples are required for...

  2. 49 CFR 178.980 - Stacking test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Stacking test. 178.980 Section 178.980... Packagings § 178.980 Stacking test. (a) General. The stacking test must be conducted for the qualification of... test. (1) All Large Packagings except flexible Large Packaging design types must be loaded to...

  3. 49 CFR 178.980 - Stacking test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Stacking test. 178.980 Section 178.980... Packagings § 178.980 Stacking test. (a) General. The stacking test must be conducted for the qualification of... test. (1) All Large Packagings except flexible Large Packaging design types must be loaded to...

  4. 49 CFR 178.606 - Stacking test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Stacking test. 178.606 Section 178.606... Packagings and Packages § 178.606 Stacking test. (a) General. All packaging design types other than bags must be subjected to a stacking test. (b) Number of test samples. Three test samples are required for...

  5. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    SciTech Connect

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  6. Stack Monitor Operating Experience Review

    SciTech Connect

    L. C. Cadwallader; S. A. Bruyere

    2009-05-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative “all modes” failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  7. Stacks

    ERIC Educational Resources Information Center

    Kimber, Lizzie

    2010-01-01

    Linton Waters and Jayne Kranat ran a session on the Nuffield "Applying Mathematical Processes" (AMP) activities at BCME7 in Manchester in April this year. These 1-2 hour activities are revamps of some of the Graded Assessment in Mathematics (GAIM) resources, developed in the 1980s, and are freely available via the Nuffield website and the original…

  8. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  9. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics

    PubMed Central

    2015-01-01

    Molecular dynamics (MD) simulations for RNA tetramers r(AAAA), r(CAAU), r(GACC), and r(UUUU) are benchmarked against 1H–1H NOESY distances and 3J scalar couplings to test effects of RNA torsion parametrizations. Four different starting structures were used for r(AAAA), r(CAAU), and r(GACC), while five starting structures were used for r(UUUU). On the basis of X-ray structures, criteria are reported for quantifying stacking. The force fields, AMBER ff99, parmbsc0, parm99χ_Yil, ff10, and parmTor, all predict experimentally unobserved stacks and intercalations, e.g., base 1 stacked between bases 3 and 4, and incorrect χ, ϵ, and sugar pucker populations. The intercalated structures are particularly stable, often lasting several microseconds. Parmbsc0, parm99χ_Yil, and ff10 give similar agreement with NMR, but the best agreement is only 46%. Experimentally unobserved intercalations typically are associated with reduced solvent accessible surface area along with amino and hydroxyl hydrogen bonds to phosphate nonbridging oxygens. Results from an extensive set of MD simulations suggest that recent force field parametrizations improve predictions, but further improvements are necessary to provide reasonable agreement with NMR. In particular, intramolecular stacking and hydrogen bonding interactions may not be well balanced with the TIP3P water model. NMR data and the scoring method presented here provide rigorous benchmarks for future changes in force fields and MD methods. PMID:26082675

  10. Pi-stacked interactions in explosive crystals: buffers against external mechanical stimuli.

    PubMed

    Zhang, Chaoyang; Wang, Xiaochuan; Huang, Hui

    2008-07-01

    The pi-stacked interactions in some explosive crystal packing are discussed. Taking a typical pi-stacked explosive 2,4,6-trinitrobenzene-1,3,5-triamine (TATB) as a sample and using molecular simulations, we investigated the nature of the pi-stacked interactions versus the external mechanical stimuli causing possible slide and compression of explosives. As a result, between the neighbor layers in the TATB unit cell, the electrostatic attraction decreases with a little decrease of vdW attraction when its top layer slides, whereas the vdW attraction increases with a decrease of electrostatic attraction when TATB crystal is compressed along its c axis. Meanwhile, we studied the correlation between the pi-stacked structures and the impact sensitivities of explosives by means of three representatives including TATB with typical planar pi-stacked structures, 2,2-dinitroethylene-1,1-diamine (Fox-7) with wavelike pi-stacked structures, and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) without pi-stacked structure. The results showed that pi-stacked structures, particularly planar layers, can effectively buffer against external mechanical stimuli. That is, pi-stacked structures can partly convert the mechanical energy acting on them into their intermolecular interaction energy, to avoid the increase of the molecular vibration resulting in the explosive decomposition, the formation of hot spots, and the final detonation. This is another reason for the low mechanical sensitivity of pi-stacked explosives besides their stable conjugated molecular structures. PMID:18529058