Science.gov

Sample records for oxygen deficient perovskite

  1. Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency.

    PubMed

    Petrie, Jonathan R; Jeen, Hyoungjeen; Barron, Sara C; Meyer, Tricia L; Lee, Ho Nyung

    2016-06-15

    Oxygen vacancies in transition-metal oxides facilitate catalysis critical for energy storage and generation. However, promoting vacancies at the lower temperatures required for operation in devices such as metal-air batteries and portable fuel cells has proven elusive. Here we used thin films of perovskite-based strontium cobaltite (SrCoOx) to show that epitaxial strain is a powerful tool for manipulating the oxygen content under conditions consistent with the oxygen evolution reaction, yielding increasingly oxygen-deficient states in an environment where the cobaltite would normally be fully oxidized. The additional oxygen vacancies created through tensile strain enhance the cobaltite's catalytic activity toward this important reaction by over an order of magnitude, equaling that of precious-metal catalysts, including IrO2. Our findings demonstrate that strain in these oxides can dictate the oxygen stoichiometry independent of ambient conditions, allowing unprecedented control over oxygen vacancies essential in catalysis near room temperature. PMID:27232374

  2. Enhancing perovskite electrocatalysis through strain tuning of oxygen deficiency

    DOE PAGESBeta

    Barron, Sara C.; Lee, Ho Nyung; Petrie, Jonathan R.; Jeen, Hyoungjeen; Meyer, Tricia L.

    2016-05-27

    Oxygen vacancies in transition-metal oxides facilitate catalysis critical for energy storage and generation. However, promoting vacancies at the lower temperatures required for operation in devices such as metal–air batteries and portable fuel cells has proven elusive. Here we used thin films of perovskite-based strontium cobaltite (SrCoOx) to show that epitaxial strain is a powerful tool for manipulating the oxygen content under conditions consistent with the oxygen evolution reaction, yielding increasingly oxygen-deficient states in an environment where the cobaltite would normally be fully oxidized. The additional oxygen vacancies created through tensile strain enhance the cobaltite’s catalytic activity toward this important reactionmore » by over an order of magnitude, equaling that of precious-metal catalysts, including IrO2. Lastly, our findings demonstrate that strain in these oxides can dictate the oxygen stoichiometry independent of ambient conditions, allowing unprecedented control over oxygen vacancies essential in catalysis near room temperature.« less

  3. An oxygen-deficiency modulated multiferroic: Cobalt-substituted perovskite

    NASA Astrophysics Data System (ADS)

    Florez, Juan Manuel

    In this work, we use density functional theory to model recently demonstrated room temperature ferromagnetism and ferroelectricity in polycrystalline and single crystal Cobalt-substituted SrTiO3 thin films (SrTi0.70Co0.30O3-d), deposited at different oxygen pressures to change their oxygen vacancy concentration. The modeling indicates an origin for both magnetism and electric polarization in the interactions between oxygen vacancies and the B-site cations. The magnetization saturation increases with the oxygen deficiency as a result of valence spin states changes, which depend on whether the oxygen octahedral of the respective local B-site cations are complete or not. On the other hand, a finite electric polarization appears as a result of a non-centrosymmetric distribution of different resulting local charges and such a polarization increases when the oxygen vacancies increase. Increasing of both order parameters, magnetic and ferroelectric, are analyzed respect to all possible Co-sites and O-vacancies distributions, showing that these results suggest a class of multiferroic materials with properties controlled by their oxygen stoichiometry. Agreement and discrepancies between experiments and modeling are discussed. 1J M Florez and P Vargas thank Fondecyt 1130950 and 11130128, all authors thank the MISTI MIT-Chile, and CAR thanks the (S3TEC) and DoE under DE-SC0001299.

  4. Structural and Magnetic Phase Coexistence in Oxygen Deficient Perovskites (Sr,Ca)FeO 2 . 5 + δ

    NASA Astrophysics Data System (ADS)

    Carlo, J. P.; Evans, M. E.; Anczarski, J. A.; Ock, J.; Boyd, K.; Pollichemi, J. R.; Leahy, I. A.; Vogel, W.; Viescas, A. J.; Papaefthymiou, G. C.

    A variety of compounds crystallize into perovskite and similar structures, making them versatile laboratories for many phenomena and applications, including multiferroicity, superconductivity, and photovoltaics. Oxygen-deficient perovskites ABOx have attracted interest for use in fuel cells and related applications due to high oxygen mobility and the possibility of charge disproportionation. Vast chemical flexibility is obtained through reductions in lattice symmetry and rotation/distortion of the BO6 octahedra, as well as ordering of oxygen vacancies. We have synthesized and studied the structural and magnetic properties of oxygen-deficient perovskites (Sr,Ca)FeO2 . 5 + δ using x-ray diffraction and Mossbauer spectroscopy. While the ideal perovskite has δ = 0.5, this requires Fe4+, and hence strongly oxidizing environments. When grown in air, Fe3+ is favored, yielding δ ~ 0. SrFeO2 . 5 + δ exhibits cubic symmetry and paramagnetism at 300K, but CaFeO2 . 5 + δ crystallizes into the orthorhombic brownmillerite structure, and is magnetically ordered at 300K. In the doped intermediaries we find coexistence of cubic/paramagnetic and orthorhombic/magnetic phases over a wide range of Ca content. Financial support from the Villanova Undergraduate Research Fellowship program and the Research Corporation for Science Advancement.

  5. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sengodan, Sivaprakash; Choi, Sihyuk; Jun, Areum; Shin, Tae Ho; Ju, Young-Wan; Jeong, Hu Young; Shin, Jeeyoung; Irvine, John T. S.; Kim, Guntae

    2015-02-01

    Different layered perovskite-related oxides are known to exhibit important electronic, magnetic and electrochemical properties. Owing to their excellent mixed-ionic and electronic conductivity and fast oxygen kinetics, cation layered double perovskite oxides such as PrBaCo2O5 in particular have exhibited excellent properties as solid oxide fuel cell oxygen electrodes. Here, we show for the first time that related layered materials can be used as high-performance fuel electrodes. Good redox stability with tolerance to coking and sulphur contamination from hydrocarbon fuels is demonstrated for the layered perovskite anode PrBaMn2O5+δ (PBMO). The PBMO anode is fabricated by in situ annealing of Pr0.5Ba0.5MnO3-δ in fuel conditions and actual fuel cell operation is demonstrated. At 800 °C, layered PBMO shows high electrical conductivity of 8.16 S cm-1 in 5% H2 and demonstrates peak power densities of 1.7 and 1.3 W cm-2 at 850 °C using humidified hydrogen and propane fuels, respectively.

  6. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.

    PubMed

    Sengodan, Sivaprakash; Choi, Sihyuk; Jun, Areum; Shin, Tae Ho; Ju, Young-Wan; Jeong, Hu Young; Shin, Jeeyoung; Irvine, John T S; Kim, Guntae

    2015-02-01

    Different layered perovskite-related oxides are known to exhibit important electronic, magnetic and electrochemical properties. Owing to their excellent mixed-ionic and electronic conductivity and fast oxygen kinetics, cation layered double perovskite oxides such as PrBaCo2O5 in particular have exhibited excellent properties as solid oxide fuel cell oxygen electrodes. Here, we show for the first time that related layered materials can be used as high-performance fuel electrodes. Good redox stability with tolerance to coking and sulphur contamination from hydrocarbon fuels is demonstrated for the layered perovskite anode PrBaMn2O5+δ (PBMO). The PBMO anode is fabricated by in situ annealing of Pr0.5Ba0.5MnO3-δ in fuel conditions and actual fuel cell operation is demonstrated. At 800 °C, layered PBMO shows high electrical conductivity of 8.16 S cm(-1) in 5% H2 and demonstrates peak power densities of 1.7 and 1.3 W cm(-2) at 850 °C using humidified hydrogen and propane fuels, respectively. PMID:25532072

  7. Spin glass behavior in a highly oxygen deficient Perovskite BaBiO.28Co0.72O2.2

    SciTech Connect

    Klimczuk, Thomasz W; Zandbergen, H; Huang, Q; Mcqueen, T

    2008-01-01

    A highly oxygen deficient perovskite, BaBio.28Coo.n02.2, was synthesized by solid state reaction. The crystal structure was determined by neutron and x-ray powder diffraction. The material exhlbits semiconducting behavior with an energy gap of 1.8 eV. Magnetic susceptibility studies reveal spin-glass ordering, which may have its origin in the frustration caused by the presence of competing antiferromagnetic and ferromagnetic interactions. The electron diffraction study shows the existence of short range ordering in thls phase.

  8. Thermal expansion behaviour in the oxygen deficient perovskites Sr{sub 2}BSbO{sub 5.5} (B=Ca, Sr, Ba). Competing effects of water and oxygen ordering

    SciTech Connect

    Zhou Qingdi; Kennedy, Brendan J.; Avdeev, Maxim

    2011-09-15

    Neutron diffractions studies reveal the presence of oxygen disorder in the oxygen deficient perovskites Sr{sub 2}BSbO{sub 5.5} (B=Ca, Sr, Ba). Synchrotron X-ray studies demonstrate that these oxides have a double perovskite-type structure with the cell size increasing as the size of the B cation increases from 8.2114(2) A for B=Ca to 8.4408(1) A for B=Ba. It is postulated that a combination of local clustering of the anions and vacancies together with water-water and water-host hydrogen bonds plays a role in defining the volume of the encapsulated water clusters and that changes in the local structure upon heating result in anomalous thermal expansion observed in variable temperature diffraction measurements. - Graphical abstract: The oxides Sr{sub 2}BSbO{sub 5.5} (B=Ca, Sr, Ba) have unusual anion disorder. There is a lag in the contraction in the cell size of Sr{sub 2}CaSbO{sub 5.5}nH{sub 2}O established from X-ray diffraction measurements following the loss of water suggesting changes on the local structure are important. Highlights: > The average structures of the defect perovskites Sr{sub 2}MSbO{sub 5.5} established. > Anion and cation disorder quantified by neutron and synchrotron X-ray diffraction. > Anomalous thermal expansion due to local clustering of anions and vacancies observed.

  9. Hydration thermodynamics of the proton conducting oxygen-deficient perovskite series BaTi1-xMxO3-x/2 with M = In or Sc.

    PubMed

    Bjørheim, Tor Svendsen; Rahman, Seikh M H; Eriksson, Sten G; Knee, Christopher S; Haugsrud, Reidar

    2015-03-16

    This article establishes the effect of structure and composition on water uptake and the hydration and proton transport properties of the oxygen-deficient perovskite series BaTi1-x(In,Sc)xO3-x/2, with 0.2 ≤ x ≤ 0.7. The equilibrium water uptake is determined by thermogravimetry, while combining thermogravimetry with differential scanning calorimetry allows for direct determination of the materials' hydration thermodynamics. Proton and oxide ion transport properties are characterized by means of ac impedance measurements up to 1000 °C. In general, the hydration thermodynamics of the scandates are more favorable than that of the indates and are also affected by changes in crystal structure throughout the series. The more favorable hydration thermodynamics of cubic scandates increase their proton conductivity at higher temperatures compared to their indate counterparts. In contrast to the BaTi1-xInxO3-x/2 series, the BaTi1-xScxO3-x/2 (0.5 ≤ x ≤ 0.7) materials retain their cubic structures upon full saturation by protons and show no signs of chemical instability upon exposure to 1 atm H2O(g) down to 100 °C. The BaTi1-xScxO3-x/2 materials with 0.5 ≤ x ≤ 0.7 may therefore find application in, for instance, steam electrolysis or similar processes involving high water vapor pressures. PMID:25731587

  10. Crystal structures, charge and oxygen-vacancy ordering in oxygen deficient perovskites SrMnO {sub x} (x<2.7)

    SciTech Connect

    Suescun, Leopoldo Chmaissem, Omar; Mais, James; Dabrowski, Bogdan; Jorgensen, James D.

    2007-05-15

    Bulk SrMnO {sub x} samples with oxygen contents 2.5{<=}x<2.7 have been studied using a combination of neutron time-of-flight and high-energy high-resolution synchrotron X-ray diffraction measurements along with thermogravimetric analysis. We report the identification and characterization of two new oxygen-vacancy ordered phases, Sr{sub 5}Mn{sub 5}O{sub 13} (SrMnO{sub 2.6}-tetragonal P4/m a=8.6127(3) A, c=3.8102(2) A) and Sr{sub 7}Mn{sub 7}O{sub 19} (SrMnO{sub 2.714}-monoclinic P2/m a=8.6076(4) A, b=12.1284(4) A, c=3.8076(2) A, {gamma}=98.203(2){sup o}). The nuclear and magnetic structures of Sr{sub 2}Mn{sub 2}O{sub 5} are also reported (SrMnO{sub 2.5} nuclear: orthorhombic Pbam, magnetic: Orthorhombic Ay type P{sub c}bam with c {sub M}=2c). In the three phases, oxygen-vacancies are ordered in lines running along one of the (100) directions of the parent cubic perovskite system. Oxygen-vacancy ordering allows the charge and orbital ordering of the Mn{sup 3+} and Mn{sup 4+} cations in the new phases. - Graphical abstract: The structures of Sr{sub 5}Mn{sub 5}O{sub 13} and Sr{sub 7}Mn{sub 7}O{sub 19} (shown) were determined using synchrotron X-rays and neutron time-of-flight powder diffraction and the Rietveld method on multiphase bulk samples. Charge, orbital and oxygen vacancy-ordering has been observed in the novel compounds where Mn{sup 4+} octahedra and Mn{sup 3+} pyramids are linked through the corners leaving lines of vacant oxygen sites lying along the c-axis.

  11. The oxygen deficient cubic perovskite SrFe 1- xSc xO 3- δ ( x ≤ 0.5; 0.1 ≤ δ ≤ 0.5): Structural features and physical properties

    NASA Astrophysics Data System (ADS)

    Rizki, Youssef; Bréard, Yohann; Le Breton, Jean-Marie; Folcke, Emeric; Lechevallier, Luc; Kobayashi, Wataru; Maignan, Antoine

    2010-09-01

    Solid state synthesis method has been used to stabilize oxygen deficient perovskite phases SrFe 1- xSc xO 3- δ (0 ≤ x ≤ 0.5). The good homogeneity of samples is confirmed by energy dispersive spectroscopy (EDS) analysis performed with a transmission electronic microscope (TEM). By combining X-ray and electronic diffraction (ED), it is demonstrated that the cationic substitution on the B site of the perovskite induces a decrease of the oxygen content but without inducing long range ordering phenomenon. On this basis, X-ray patterns of compounds were indexed in the cubic Pm3m space group. The oxidation states of iron evidenced by Mössbauer spectroscopy, are in good agreement with the oxygen stoichiometries determined by cerimetric titration. In the SrFe 1- xSc xO 3- δ series, the Fe 3+/Fe 4+ origin of the electronic conductivity is clearly evidenced. The limit compound SrFe 0.5Sc 0.5O 2.5 is highly resistive and characterized by a cluster glass-like behaviour. Finally, negative magnetoresistivity properties are revealed for the x = 0.1 and x = 0.2 samples, reaching -10% around the magnetic transition temperature in a 7T magnetic field.

  12. Infrared and transport properties of the layered perovskite related oxide Ba 5Nb 4O 15 and its oxygen deficient phases

    NASA Astrophysics Data System (ADS)

    Pagola, S.; Massa, N. E.; Polla, G.; Leyva, G.; Carbonio, R. E.

    1994-12-01

    Ba 5Nb 4O 15-x oxides were studied by infrared, electrical resistivity and thermogravimmetric analysis (TGA). FIR reflectivity measurementsreveal a strong ionic compound that has well defined features in groups that we assign to oxygen stretching, bending and lattice phonons splitted by the lower symmetry of this layered compound. For the sample with x = 0.56, oxygen vacancies do not affect phonon band profiles, indicating that carriers are not free enough to interact with longitudinal modes. Electrical resistivity vs. temperature measurements show that the oxygen deficient compounds, for low values of x, are small band gap semiconductors.

  13. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  14. Structure and magnetism in the oxygen-deficient perovskites Ce{sub 1-x}Sr {sub x}CoO{sub 3-{delta}} (x {>=} 0.90)

    SciTech Connect

    James, M. . E-mail: mja@ansto.gov.au; Wallwork, K.S.; Withers, R.L.; Goossens, D.J.; Wilson, K.F.; Horvat, J.; Wang, X.L.; Colella, M.

    2005-08-11

    We have examined the structure and phase behaviour of strontium-doped Ce{sub 1-x}Sr {sub x}CoO{sub 3-{delta}} and found that the perovskite form is stabilised over a relatively narrow solid solution range (x > 0.85). A combination of electron, powder X-ray and neutron diffraction has revealed tetragonal superstructures of the basic perovskite unit; (I4/mmm) 2a {sub p} x 2a {sub p} x 4a {sub p} (x = 0.90) and (P4/mmm) a {sub p} x a {sub p} x 2a {sub p} (x = 0.95). Magnetisation measurements show ferromagnetic behaviour under applied magnetic fields. Low temperature neutron diffraction of Ce{sub 0.10}Sr{sub 0.90}CoO{sub 2.80} in zero field reveals a magnetic cell of dimension 2a {sub p} x 2a {sub p} x 4a {sub p} with an ordered cobalt moment of 1.7 B.M. at 25 K.

  15. Magnetic and Mössbauer studies on oxygen deficient perovskite, La0.6Sr0.4FeO3-δ

    NASA Astrophysics Data System (ADS)

    Yang, J. B.; Yelon, W. B.; James, W. J.; Zhou, X. D.; Xie, Y. X.; Anderson, H. U.; Chu, Z.

    2002-05-01

    Samples of La0.6Sr0.4Fe3-δ with varying oxygen vacancy contents were prepared by heating them in different gas flows. Magnetization measurement showed that samples with low oxygen vacancies have a magnetic ordering temperature in the range of 300-325 K while those with 9%-12% oxygen vacancies have a magnetic ordering temperature of 800 K and higher. Mössbauer spectra at 300 K exhibit paramagnetic or weak magnetic characteristics for the N2, O2, and air-quenched samples, whereas an average hyperfine field of 52 T is found for the CO/CO2 reduced samples. The heat treatment in the reducing atmosphere creates oxygen vacancies and increases unit cell volume. However, the Fe-O bond length remains nearly constant, resulting in distortion/rotation of the oxygen octahedra which increases the Fe-O-Fe bond angle as much as 12 degrees. This dramatically affects the Fe-O-Fe superexchange coupling and plays a key role in the increase of the Nèel temperatures.

  16. Crystal structure of oxygen deficient 16L hexagonal perovskites Ba 4(Ca,Cr,Mn) 4- yO 12- x

    NASA Astrophysics Data System (ADS)

    Floros, N.; Hervieu, M.; Michel, C.; Perez, O.; Raveau, B.; Suard, E.

    2002-04-01

    The crystal structure of Ba 4Ca 0.9Mn 3.1O 11.3 has been determined by neutron powder diffraction at room temperature. A chromium substituted phase, Ba 4Ca 0.85Mn 2.65Cr 0.5O 11.5, has also been isolated and studied by neutron diffraction. The two compounds exhibit the same close-packed structure built up from [BaO 3] (h,c) and [BaO 2] (c') layers in a (hhhccc'cc) 2 stacking sequence. They crystallize in an hexagonal symmetry, space group P 6¯m2, with the unit cell parameters a=5.8005(1) and c=38.954(1) Å for Ba 4Ca 0.9Mn 3.1O 11.3. Calcium is found in octahedral environment while part of the manganese is in tetrahedra inducing a high oxidation degree for these atoms. A single crystal X-ray diffraction study has shown the possibility to introduce cationic deficiency in such a structure leading to the composition Ba 4CaMn 2.5O 11+ δ.

  17. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. PMID:26247625

  18. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen....

  19. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen....

  20. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen....

  1. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen....

  2. 30 CFR 57.5015 - Oxygen deficiency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen deficiency. 57.5015 Section 57.5015..., Physical Agents, and Diesel Particulate Matter Air Quality-Underground Only § 57.5015 Oxygen deficiency. Air in all active workings shall contain at least 19.5 volume percent oxygen....

  3. Influence of iron addition on the oxygen-deficient Sr{sub 0.85}Bi{sub 0.15}Co{sub 1-x}Fe{sub x}O{sub 3-{delta}} (0.0{<=}x{<=}1.0) perovskites

    SciTech Connect

    Eriksson, Annika K.; Lindberg, Fredrik; Svensson, Gunnar; Svedlindh, Peter; Henry, Paul F.; Eriksson, Sten-G.; Knee, Christopher S.

    2008-08-15

    A series of oxygen-deficient Sr{sub 0.85}Bi{sub 0.15}Co{sub 1-x}Fe{sub x}O{sub 3-{delta}} (0.0{<=}x{<=}1.0) perovskite phases were prepared using solid-state reaction. Results of neutron powder diffraction analyses show that the introduction of Fe onto the B-site severely effects the long range coherence of the oxygen vacancy ordered, I4/mmm supercell, observed for the x=0.0 sample. For x=0.1 a smaller, a=b{approx}a{sub p}, c{approx}2a{sub p}, P4/mmm supercell gives the best agreement to the diffraction data, whilst phases in the range 0.2{<=}x{<=}0.6 adopt disordered cubic perovskite structures. Pseudo-cubic, a=b{approx}a{sub p}, c{approx}a{sub p}, structures are found for x{>=}0.8. Evidence of weak superstructures, reflecting local oxygen ordering, is also obtained from electron diffraction. For all oxygen-annealed phases the average structure reverts to cubic Pm3-bar m. The as-prepared samples show G-type antiferromagnetic order at room temperature. The oxygen annealed x=0.10, 0.25 and 1.0 samples display low-temperature spin-glass transitions. - Graphical abstract: Evolving crystal structures of the as-prepared Sr{sub 0.85}Bi{sub 0.15}Co{sub 1-x}Fe{sub x}O{sub 3-{delta}} perovskites as a function of iron content for the compositional range 0.1{<=}x{<=}1.0.

  4. Synthesis and Characterization of Sr3FeMoO6.88: An Oxygen-Deficient 2D Analogue of the Double Perovskite Sr2FeMoO6

    SciTech Connect

    Veith, Gabriel M; Greenblatt, Martha; Croft, Mark; Ramanujachary, K. V.; Hattrick-Simpers, J.; Lofland, Samuel E.; Nowik, Israel

    2005-01-01

    We have prepared Sr{sub 3}FeMoO{sub 6.88(1)}, an oxygen-deficient two-dimensional analogue of the double perovskite Sr{sub 2}FeMoO{sub 6}, and have investigated its structure and physical properties. According to powder X-ray and neutron diffraction data, Sr{sub 3}FeMoO{sub 6.88} adopts the tetragonal n = 2 Ruddlesden-Popper structure (space group I4/mmm) with a completely disordered B-cation distribution and oxygen vacancies occurring preferentially at the axial O1 sites between the perovskite layers. X-ray absorption near-edge spectroscopy and Moessbauer data are consistent with trivalent Fe and mixed (4+/5+) Mo oxidation state. The compound is semiconducting, showing an intrinsic magnetic transition at {approx}85 K and an additional upturn in the magnetic susceptibility at {approx}270 K, the latter is associated with intergrowth defects. An appreciable magnetoresistance, reaching the value of {approx} -15% at 5 K and 5 T is also observed.

  5. ODH, oxygen deficiency hazard cryogenic analysis

    SciTech Connect

    Augustynowicz, S.D.

    1993-07-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN{sub 2}) to 850 (LH{sub e}), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour ({O}) is defined as: {O} = {Sigma} N{sub i}P{sub i}F{sub i}, where N{sub i} = number of components, P{sub i} =probability of failure or operator error, and F{sub i} - fatality factor. ODHs range from ``unclassified`` ({O}<10{sup {minus}9} 1/h) to class 4, which is the most hazardous ({O}>10{sup {minus}1} 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined.

  6. Design Principles of Perovskites for Thermochemical Oxygen Separation

    PubMed Central

    Ezbiri, Miriam; Allen, Kyle M.; Gàlvez, Maria E.; Steinfeld, Aldo

    2015-01-01

    Abstract Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar‐driven synthesis of liquid hydrocarbon fuels from CO2, H2O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through “thermochemical pumping” of O2 against a pO2 gradient with low‐grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high‐temperature X‐ray diffraction for SrCoO3−δ, BaCoO3−δ and BaMnO3−δ perovskites and Ag2O and Cu2O references confirm the predicted performance of SrCoO3−δ, which surpasses the performance of state‐of‐the‐art Cu2O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3−δ −1 exchanged at 12.1 μmol O 2 min−1 g−1 at 600–900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. PMID:25925955

  7. Dynamic Octahedral Breathing in Oxygen-Deficient Ba0.9Co0.7Fe0.2Nb0.1O3-δ Perovskite Performing as a Cathode in Intermediate-Temperature SOFC.

    PubMed

    Gong, Yudong; Sun, Chunwen; Huang, Qiu-An; Alonso, Jose Antonio; Fernández-Díaz, Maria Teresa; Chen, Liquan

    2016-03-21

    Ba0.9Co0.7Fe0.2Nb0.1O3-δ outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba0.9Co0.7Fe0.2Nb0.1O3-δ shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching Beq ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba0.9Co0.7Fe0.2Nb0.1O3-δ account for its good performance as an oxygen-reduction catalyst. PMID:26958863

  8. Improving the Performance of Perovskite in Nonaqueous Oxygen Electrocatalysis.

    PubMed

    Lu, Meihua; Xu, Chaohe; Zhan, Yi; Lee, Jim Yang

    2016-04-20

    Nanoparticle (NP) aggregates of lanthanum cobalt oxide perovskite (LCO) were compounded with reduced graphene oxide (rGO) nanosheets and used as the cathode catalyst for nonaqueous lithium-oxygen batteries (LOBs). The LCO NP aggregates were completely surrounded by rGO nanosheets in the composite with 10.5 wt % of rGO (LCO-rGO-10.5) but were partially exposed in the composite with 7.5 wt % of rGO (LCO-rGO-7.5). Both composites performed better than pristine LCO NPs and rGO nanosheets in nonaqueous oxygen electrocatalysis. The LCO-rGO-7.5 composite excelled at capacity and rate performance, while the LCO-rGO-10.5 composite was better at cycle stability. The good performance of the LCO-rGO composites was due to the synergy of functions of LCO and rGO. PMID:26663461

  9. Perovskite-type oxides - Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.

    1988-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  10. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency....

  11. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency....

  12. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency....

  13. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency....

  14. 30 CFR 57.8527 - Oxygen-deficiency testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen-deficiency testing. 57.8527 Section 57... Underground Only § 57.8527 Oxygen-deficiency testing. Flame safety lamps or other suitable devices shall be used to test for acute oxygen deficiency....

  15. Antiferromagnetism and superconductivity in oxygen-deficient YBa2Cu3O(x)

    NASA Technical Reports Server (NTRS)

    Brewer, J. H.; Carolan, J. F.; Chaklader, A. C. D.; Hardy, W. N.; Ansaldo, E. J.

    1988-01-01

    Positive-muon spin-rotation and -relaxation measurements of the oxygen-deficient perovskite YBa2Cu3O(x) have revealed local antiferromagnetic order for x = 6.0-6.4 with a Neel temperature TN that decreases rapidly with increasing oxygen content x. For slowly annealed samples with x = 6.35-6.5 the superconducting transition temperature Tc increases smoothly with x from 25 K at x = 6.348 to 60 K at x = 6.507. Two such samples with x = 6.348 and x = 6.400 appear to 'switch' from superconductivity to antiferromagnetic order at lower temperatures.

  16. Systematic Study of Compositional and Synthetic Control of Vacancy and Magnetic Ordering in Oxygen-Deficient Perovskites Ca2Fe2 xMnxO5+yand CaSrFe2 xMnxO5+y (x = 1/2, 2/3, and 1; y = 0 1/2)

    SciTech Connect

    Ramezanipour, Farshid; Greedan, John E; Cranswick, Lachlan M.D.; Donaberger, R. L.; Garlea, Vasile O; Siewenie, Joan

    2012-01-01

    Ten compounds belonging to the series of oxygen-deficient perovskite oxides Ca2Fe2 xMnxO5 and CaSrFe2 xMnxO5+y, where x = 1/2, 2/3, and 1 and y 0 0.5, were synthesized and investigated with respect to the ordering of oxygen vacancies on both local and long-range length scales and the effect on crystal structure and magnetic properties. For the set with y 0 the oxygen vacancies always order in the long-range sense to form the brownmillerite structure containing alternating layers of octahedrally and tetrahedrally coordinated cations. However, there is a change in symmetry from Pnma to Icmm upon substitution of Sr for one Ca for all x, indicating local Td chain (vacancy) disorder. In the special case of CaSrFeMnO5 the neutron diffraction peaks broaden, indicating only short-range structural order on a length scale of 160 . This reveals a systematic progression from Ca2FeMnO5 (Pnma, well-ordered tetrahedral chains) to CaSrFeMnO5 (Icmm, disordered tetrahedral chains, overall short-range order) to Sr2FeMnO5 (Pm3m, destruction of tetrahedral chains in a long-range sense). Systematic changes occur in the magnetic properties as well. While long-range antiferromagnetic order is preserved, the magnetic transition temperature, Tc, decreases for the same x when Sr substitutes for one Ca. A review of the changes in Tc for the series Ca2Fe2 xMxO5, taking into account the tetrahedral/octahedral site preferences for the various M3+ ions, leads to a partial understanding of the origin of magnetic order in these materials in terms of a layered antiferromagnetic model. While in all cases the preferred magnetic moment direction is (010) at low temperatures, there is a cross over for x = 0.5 to (100) with increasing temperature for both the Ca2Fe2 xMnxO5 and the CaSrFe2 xMnxO5 series. For the y > 0 phases, while a brownmillerite ordering of oxygen vacancies is preserved for the Ca2 phases, a disordered Pm3m cubic perovskite structure is always found when Sr is substituted for one Ca

  17. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites

    DOE PAGESBeta

    Uberuaga, Blas Pedro; Pilania, Ghanshyam

    2015-07-08

    Perovskite structured oxides (ABO3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two end member single perovskites.more » Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less

  18. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites

    SciTech Connect

    Uberuaga, Blas Pedro; Pilania, Ghanshyam

    2015-07-08

    Perovskite structured oxides (ABO3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two end member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.

  19. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes.

    PubMed

    Mefford, J Tyler; Hardin, William G; Dai, Sheng; Johnston, Keith P; Stevenson, Keith J

    2014-07-01

    Perovskite oxides have attracted significant attention as energy conversion materials for metal-air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage. PMID:24880729

  20. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Mefford, J. Tyler; Hardin, William G.; Dai, Sheng; Johnston, Keith P.; Stevenson, Keith J.

    2014-07-01

    Perovskite oxides have attracted significant attention as energy conversion materials for metal-air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage.

  1. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  2. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  3. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites.

    PubMed

    Petrie, Jonathan R; Cooper, Valentino R; Freeland, John W; Meyer, Tricia L; Zhang, Zhiyong; Lutterman, Daniel A; Lee, Ho Nyung

    2016-03-01

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of the eg orbitals, which can customize orbital asymmetry at the surface. Analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides. PMID:26866808

  4. Oxygen reduction and evolution reactions of air electrodes using a perovskite oxide as an electrocatalyst

    NASA Astrophysics Data System (ADS)

    Nishio, Koji; Molla, Sergio; Okugaki, Tomohiko; Nakanishi, Shinji; Nitta, Iwao; Kotani, Yukinari

    2015-03-01

    The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of air electrodes consisting of La0.5Sr0.5CoO3 and/or carbon in the electrocatalyst layer are studied by using two types of gas diffusion electrodes. Cyclic voltammetry and square wave voltammetry studies reveal very low ORR activity of carbon-free perovskite and remarkably enhanced ORR of perovskite-carbon composites. The ORR current density at -0.5 V vs. Hg/HgO is higher than 200 mA cm-2 in a wide range of perovskite-carbon composition, suggesting good peroxide reducing capability of the perovskite. The ORR mechanisms of perovskite-carbon composites are consistent with the 2+2-electron mechanisms. The ORR and OER properties of perovskite-carbon composite electrodes are significantly influenced by the carbon species. The electrode exhibits a higher ORR current density, but inferior cycling performances when a carbon material with a higher specific surface area is used, and vice versa. Under a current density of 20 mA cm-2 and ORR and OER durations of 30 min, a gas diffusion type electrode consists of La0.5Sr0.5CoO3 and a low surface area carbon are capable of more than 150 cycles.

  5. Application of Electron Structure Calculations to the Migration of Oxygen through a Perovskite Membrane

    NASA Astrophysics Data System (ADS)

    Wood, Douglas A.

    The focus of this thesis is the application of electron structure calculations, particularly density functional theory, to the analysis of the process by which oxygen is able to migrate through a perovskite crystal. This property creates the possibility of using perovskite membranes to separate oxygen from air. This could be applied to the generation of syngas directly from natural gas without the need for a separate air separation unit. A perovskite has the nominal formula ABO3 where A is a rare earth type cation and B is a transition type cation. The structure consists of the B cations arranged in a cube with the A cation in the center. The oxygen ions are located at the midpoint of each B-B cube edge and form an octahedron centered on each B cation. Any real perovskite crystal will contain a certain fraction of vacancies at the oxygen sites. Oxygen migrates through the crystal by jumping from a neighboring site to the vacancy. The permeability of the crystal is thus a function of the concentration of vacancies and the activation energy of the jump from a neighboring site to the vacancy. These properties can be modified by adding dopants for the A and B cations. The literature contains a substantial amount of experimental work on the effect of such dopants. The overall migration process can be divided into components (i) the concentration of oxygen vacancies, (ii) the activation energy for a neighboring on-site oxygen atom to jump to the vacant site, (iii) the concentration of surface vacancies, and (iv) the processes by which oxygen ions transfer back and forth between the perovskite surface and the contiguous vapor space. Using SrTiO3 and LaCoO3 as model compounds, DFT calculations have been used to (i) calculate various properties of the perovskite crystal, (ii) estimate the activation energy of a jump between an occupied oxygen site and an adjacent vacant oxygen site, (iii) predict the effects of various dopants at the A and B site and (iv) analyze the

  6. Relaxation behavior of oxygen deficient strontium manganite

    SciTech Connect

    Pandey, Namita Thakur, Awalendra Kumar

    2014-04-24

    Conduction behavior of nanocrystalline oxygen deficient ceramic-SrMnO{sub 3–δ}(δ∼0.14) has been studied. The structural analysis of nano-SrMnO{sub 2.86} follows hexagonal unit cell structure with P6{sub 3}/mmc (194) space group belonging to 6/mmm point group with 4H – layered type hexagonal-cubic layers. The system have lattice parameters; a = 5.437(92) Å, c = 9.072(92) Å, c/a∼1.66 (85) with α =90° γ= 120° and cell volume, V= 232.35(18). The relaxation times estimated from complex impedance and modulus relaxation spectrum, show the thermally activated system with corresponding activation energies as 0.66 eV and 0.51 eV The stretching factor ‘β’ from the scaled modulus spectrum shows the poly-dispersive non-Debye nature of the system. The hopping number ‘n’ shows the influence of ionic charge carriers which controls the conduction mechanism of nano-SrMnO{sub 2.86}.

  7. Unprecedented Perovskite Oxyfluoride Membranes with High-Efficiency Oxygen Ion Transport Paths for Low-Temperature Oxygen Permeation.

    PubMed

    Zhu, Jiawei; Liu, Gongping; Liu, Zhengkun; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-05-01

    Unprecedented perovskite oxyfluoride membranes, a new generation of mixed ionic-electronic conducting (MIEC) membranes, feature extraordinary performance for low-temperature oxygen permeation, which transcend the performance of state-of-the-art MIEC membranes and fulfil commercial requirements. These results provide important progress for MIEC membranes and will potentially open the door to exploring high-performance MIEC compounds. PMID:26970399

  8. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications. PMID:27478888

  9. Strain-induced significant increase in metal-insulator transition temperature in oxygen-deficient Fe oxide epitaxial thin films

    PubMed Central

    Hirai, Kei; Kan, Daisuke; Ichikawa, Noriya; Mibu, Ko; Yoda, Yoshitaka; Andreeva, Marina; Shimakawa, Yuichi

    2015-01-01

    Oxygen coordination of transition metals is a key for functional properties of transition-metal oxides, because hybridization of transition-metal d and oxygen p orbitals determines correlations between charges, spins and lattices. Strain often modifies the oxygen coordination environment and affects such correlations in the oxides, resulting in the emergence of unusual properties and, in some cases, fascinating behaviors. While these strain effects have been studied in many of the fully-oxygenated oxides, such as ABO3 perovskites, those in oxygen-deficient oxides consisting of various oxygen coordination environments like tetrahedra and pyramids as well as octahedra remain unexplored. Here we report on the discovery of a strain-induced significant increase, by 550 K, in the metal-insulator transition temperature of an oxygen-deficient Fe oxide epitaxial thin film. The observed transition at 620 K is ascribed to charge disproportionation of Fe3.66+ into Fe4+ and Fe3+, associated with oxygen-vacancy ordering. The significant increase in the metal-insulator transition temperature, from 70 K in the bulk material, demonstrates that epitaxial growth of oxygen-deficient oxides under substrate-induced strain is a promising route for exploring novel functionality. PMID:25600001

  10. Strain-induced significant increase in metal-insulator transition temperature in oxygen-deficient Fe oxide epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Hirai, Kei; Kan, Daisuke; Ichikawa, Noriya; Mibu, Ko; Yoda, Yoshitaka; Andreeva, Marina; Shimakawa, Yuichi

    2015-01-01

    Oxygen coordination of transition metals is a key for functional properties of transition-metal oxides, because hybridization of transition-metal d and oxygen p orbitals determines correlations between charges, spins and lattices. Strain often modifies the oxygen coordination environment and affects such correlations in the oxides, resulting in the emergence of unusual properties and, in some cases, fascinating behaviors. While these strain effects have been studied in many of the fully-oxygenated oxides, such as ABO3 perovskites, those in oxygen-deficient oxides consisting of various oxygen coordination environments like tetrahedra and pyramids as well as octahedra remain unexplored. Here we report on the discovery of a strain-induced significant increase, by 550 K, in the metal-insulator transition temperature of an oxygen-deficient Fe oxide epitaxial thin film. The observed transition at 620 K is ascribed to charge disproportionation of Fe3.66+ into Fe4+ and Fe3+, associated with oxygen-vacancy ordering. The significant increase in the metal-insulator transition temperature, from 70 K in the bulk material, demonstrates that epitaxial growth of oxygen-deficient oxides under substrate-induced strain is a promising route for exploring novel functionality.

  11. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH. PMID:26271910

  12. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.

    2012-01-01

    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  13. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells.

    PubMed

    Zhu, Yinlong; Chen, Zhi-Gang; Zhou, Wei; Jiang, Shanshan; Zou, Jin; Shao, Zongping

    2013-12-01

    Solid oxide fuel cells (SOFCs) directly convert fossil and/or renewable fuels into electricity and/or high-quality heat in an environmentally friendly way. However, high operating temperatures result in high cost and material issues, which have limited the commercialization of SOFCs. To lower their operating temperatures, highly active and stable cathodes are required to maintain a reasonable power output. Here, we report a layer-structured A-site deficient perovskite Sr0.95 Nb0.1 Co0.9 O3-δ (SNC0.95) prepared by solid-state reactions that shows not only high activity towards the oxygen reduction reaction (ORR) at operating temperatures below 600 °C, but also offers excellent structural stability and compatibility, and improved CO2 resistivity. An anode-supported fuel cell with SNC0.95 cathode delivers a peak power density as high as 1016 mW cm(-2) with an electrode-area-specific resistance of 0.052 Ω cm(2) at 500 °C. PMID:24155098

  14. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    DOE PAGESBeta

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of themore » eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  15. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers.

    PubMed

    Aristidou, Nicholas; Sanchez-Molina, Irene; Chotchuangchutchaval, Thana; Brown, Michael; Martinez, Luis; Rath, Thomas; Haque, Saif A

    2015-07-01

    In this paper we report on the influence of light and oxygen on the stability of CH3 NH3 PbI3 perovskite-based photoactive layers. When exposed to both light and dry air the mp-Al2 O3 /CH3 NH3 PbI3 photoactive layers rapidly decompose yielding methylamine, PbI2 , and I2 as products. We show that this degradation is initiated by the reaction of superoxide (O2 (-) ) with the methylammonium moiety of the perovskite absorber. Fluorescent molecular probe studies indicate that the O2 (-) species is generated by the reaction of photoexcited electrons in the perovskite and molecular oxygen. We show that the yield of O2 (-) generation is significantly reduced when the mp-Al2 O3 film is replaced with an mp-TiO2 electron extraction and transport layer. The present findings suggest that replacing the methylammonium component in CH3 NH3 PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability. PMID:26014846

  16. D0 Detector Collision Hall Oxygen Deficiancy Hazard Analysis

    SciTech Connect

    Wu, J.; /Fermilab

    1992-08-06

    EN-258, D0 Platform ODH Analysts. provided the oxygen deficiency hazard analysts for the D0 detector in the Assembly Hall. This note covers the same analysis. but revised for the Collision Hall. Liquid cryogens. released and warming to atmosphere conditions, expand to, on average, seven hundred times their liquid volume, and displace vital atmospheric oxygen. An oxygen deficiency hazard analysis assesses the increased risk to personnel in areas containing cryogenic systems. The D0 detector Collision Hall ODH analysis has been approached five different ways using established methods. If the low beta quad magnets are powered, and the exhaust rate is below 4220 scfm, the area is ODH class 1. In any other case, the analysis shows the area to be ODH class 0 as equipped (with ventilation fans) and requiring no special safety provisions. System designers have provided for a reduced oxygen level detection and warning system as well as emergency procedures to address fault conditions.

  17. Impact of microstructure on oxygen semi-permeation performance of perovskite membranes: Understanding of oxygen transport mechanisms

    NASA Astrophysics Data System (ADS)

    Reichmann, M.; Geffroy, P.-M.; Richet, N.; Chartier, T.

    2016-08-01

    The influence of dense membrane microstructures on semi permeation performance is still not well understood, and no consensus or explanation can be established from the literature. The apparent discrepancy is likely due to a poor understanding of the oxygen transport mechanisms through the membrane and, specifically, to the impact of the microstructure on the oxygen surface exchange kinetics. The aim of this paper is to provide a better understanding of the impact of microstructures on oxygen transport mechanisms through the membrane. Two reference materials, Ba0.5Sr0.5Fe0.7Co0.3O3 (BSFCo) and La0.5Sr0.5Fe0.7Ga0.3O3 (LSFG) perovskites, are considered to explain the discrepancies observed in the literature.

  18. Enhanced CO2 Resistance for Robust Oxygen Separation Through Tantalum-doped Perovskite Membranes.

    PubMed

    Zhang, Chi; Tian, Hao; Yang, Dong; Sunarso, Jaka; Liu, Jian; Liu, Shaomin

    2016-03-01

    Oxygen selective membranes with enhanced oxygen permeability and CO2 resistance are highly required in sustainable clean energy generation technologies. Here, we present novel, cobalt-free, SrFe1-x Tax O3-δ (x=0, 0.025, 0.05, 0.1, 0.2) perovskite membranes. Ta-doping induced lattice structure progression from orthorhombic (x=0) to cubic (x=0.05). SrFe0.95 Ta0.05 O3-δ (SFT0.05) showed the highest oxygen flux rates reaching 0.85 mL min(-1) cm(-2) at 950 °C on a 1.0 mm-thick membrane. Surface decoration can increase the permeation rate further. Ta inclusion within the perovskite lattice of SrFeO3-δ (SF) enhanced the CO2 resistance of the membranes significantly as evidenced by the absence of the carbonate functional groups on the FTIR spectrum when exposed to CO2 atmosphere at 850 °C. The CO2 resistance of Ta-doped SF compounds correlates with the lower basicity and the higher binding energy for the lattice oxygen. SFT0.05 demonstrated high stability during long-term permeation tests under 10% CO2 atmosphere. PMID:26813048

  19. Tubular dense perovskite type membranes. Preparation, sealing, and oxygen permeation properties

    SciTech Connect

    Li, S.; Qi, H.; Xu, N.; Shi, J.

    1999-12-01

    Tubular dense perovskite type membranes were prepared by isostatic pressing and plastic extrusion. The resulting tubular La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3{minus}{delta}} perovskite type membrane prepared by plastic extrusion (designated as PE-LSCF) has a lower density and oxygen permeation flux compared with that prepared by isostatic pressing (designated as IP-LSCF). A ceramic binder developed by the research center provided reliable sealing for the tubular dense membrane at high temperature. The oxygen permeation flux increases with increasing temperature, and the value is about 0.13 cm{sup 3}/cm{sup 2} min (STP) at 1,123 K. The activation energy for oxygen permeation is 168 kJ/mol at the temperature range of 1,073--1,173. X-ray diffraction analysis for the membranes over 110 h of operation indicated that SrSO{sub 4}, CoSO{sub 4}, SrO, Co{sub 2}O{sub 3}, and La{sub 2}O{sub 3} were formed on the surfaces of the tubular membrane, especially for the tubular PE-LSCF membrane, because of interaction with trace SO{sub 2} in the air and the helium and segregation of surface elements.

  20. Origin of the Diverse Behavior of Oxygen Vacancies in ABO3 Perovskites: A Symmetry Based Analysis

    SciTech Connect

    Yin, W. J.; Wei, S. H.; Al-Jassim, M. M.; Yan, Y. F.

    2012-05-15

    Using band symmetry analysis and density functional theory calculations, we reveal the origin of why oxygen vacancy (V{sub O}) energy levels are shallow in some ABO{sub 3} perovskites, such as SrTiO{sub 3}, but are deep in some others, such as LaAlO{sub 3}. We show that this diverse behavior can be explained by the symmetry of the perovskite structure and the location (A or B site) of the metal atoms with low d orbital energies, such as Ti and La atoms. When the conduction band minimum (CBM) is an antibonding {Gamma}12 state, which is usually associated with the metal atom with low d orbital energies at the A site (e.g., LaAlO{sub 3}), then the V{sub O} energy levels are deep inside the gap. Otherwise, if the CBM is the nonbonding {Gamma}25{prime} state, which is usually associated with metal atoms with low d orbital energies at the B site (e.g., SrTiO{sub 3}), then the V{sub O} energy levels are shallow and often above the CBM. The V{sub O} energy level is also deep for some uncommon ABO{sub 3} perovskite materials that possess a low s orbital, or large-size cations, and an antibonding {Gamma}{sub 1} state CBM, such as ZnTiO{sub 3}. Our results, therefore, provide guidelines for designing ABO{sub 3} perovskite materials with desired functional behaviors.

  1. 30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized...

  2. 30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized...

  3. 30 CFR 77.101 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests for methane and for oxygen deficiency... oxygen deficiency; qualified person. (a) The provisions of Subparts C, P, R, and T of this Part 77 require that tests for methane and for oxygen deficiency be made by a qualified person. A person is...

  4. 30 CFR 77.101 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests for methane and for oxygen deficiency... oxygen deficiency; qualified person. (a) The provisions of Subparts C, P, R, and T of this Part 77 require that tests for methane and for oxygen deficiency be made by a qualified person. A person is...

  5. 30 CFR 77.1901-1 - Methane and oxygen deficiency tests; approved devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methane and oxygen deficiency tests; approved... AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1901-1 Methane and oxygen deficiency tests; approved devices. Tests for oxygen deficiency shall be made with a permissible flame safety lamp or...

  6. 30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized...

  7. 30 CFR 77.101 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests for methane and for oxygen deficiency... oxygen deficiency; qualified person. (a) The provisions of Subparts C, P, R, and T of this Part 77 require that tests for methane and for oxygen deficiency be made by a qualified person. A person is...

  8. 30 CFR 77.1901-1 - Methane and oxygen deficiency tests; approved devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane and oxygen deficiency tests; approved... AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1901-1 Methane and oxygen deficiency tests; approved devices. Tests for oxygen deficiency shall be made with a permissible flame safety lamp or...

  9. 30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized...

  10. 30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized...

  11. 30 CFR 77.101 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests for methane and for oxygen deficiency... oxygen deficiency; qualified person. (a) The provisions of Subparts C, P, R, and T of this Part 77 require that tests for methane and for oxygen deficiency be made by a qualified person. A person is...

  12. 30 CFR 77.1901-1 - Methane and oxygen deficiency tests; approved devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methane and oxygen deficiency tests; approved... AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1901-1 Methane and oxygen deficiency tests; approved devices. Tests for oxygen deficiency shall be made with a permissible flame safety lamp or...

  13. 30 CFR 77.101 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests for methane and for oxygen deficiency... oxygen deficiency; qualified person. (a) The provisions of Subparts C, P, R, and T of this Part 77 require that tests for methane and for oxygen deficiency be made by a qualified person. A person is...

  14. 30 CFR 77.1901-1 - Methane and oxygen deficiency tests; approved devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methane and oxygen deficiency tests; approved... AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1901-1 Methane and oxygen deficiency tests; approved devices. Tests for oxygen deficiency shall be made with a permissible flame safety lamp or...

  15. 30 CFR 77.1901-1 - Methane and oxygen deficiency tests; approved devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane and oxygen deficiency tests; approved... AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1901-1 Methane and oxygen deficiency tests; approved devices. Tests for oxygen deficiency shall be made with a permissible flame safety lamp or...

  16. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.

    PubMed

    Muñoz-García, Ana B; Ritzmann, Andrew M; Pavone, Michele; Keith, John A; Carter, Emily A

    2014-11-18

    CONSPECTUS: Global advances in industrialization are precipitating increasingly rapid consumption of fossil fuel resources and heightened levels of atmospheric CO2. World sustainability requires viable sources of renewable energy and its efficient use. First-principles quantum mechanics (QM) studies can help guide developments in energy technologies by characterizing complex material properties and predicting reaction mechanisms at the atomic scale. QM can provide unbiased, qualitative guidelines for experimentally tailoring materials for energy applications. This Account primarily reviews our recent QM studies of electrode materials for solid oxide fuel cells (SOFCs), a promising technology for clean, efficient power generation. SOFCs presently must operate at very high temperatures to allow transport of oxygen ions and electrons through solid-state electrolytes and electrodes. High temperatures, however, engender slow startup times and accelerate material degradation. SOFC technologies need cathode and anode materials that function well at lower temperatures, which have been realized with mixed ion-electron conductor (MIEC) materials. Unfortunately, the complexity of MIECs has inhibited the rational tailoring of improved SOFC materials. Here, we gather theoretically obtained insights into oxygen ion conductivity in two classes of perovskite-type materials for SOFC applications: the conventional La1-xSrxMO3 family (M = Cr, Mn, Fe, Co) and the new, promising class of Sr2Fe2-xMoxO6 materials. Using density functional theory + U (DFT+U) with U-J values obtained from ab initio theory, we have characterized the accompanying electronic structures for the two processes that govern ionic diffusion in these materials: (i) oxygen vacancy formation and (ii) vacancy-mediated oxygen migration. We show how the corresponding macroscopic oxygen diffusion coefficient can be accurately obtained in terms of microscopic quantities calculated with first-principles QM. We find that the

  17. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments.

    PubMed

    Hu, Wei-Chieh; Lin, Ta-Hui

    2016-04-22

    In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions. PMID:26963760

  18. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Chieh; Lin, Ta-Hui

    2016-04-01

    In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.

  19. Persistent Optically Induced Magnetism in Oxygen-Deficient Strontium Titanate

    NASA Astrophysics Data System (ADS)

    Rice, W. D.; Thompson, J. D.; Crooker, S. A.; Bombeck, M.; Ambwani, P.; Leighton, C.

    2014-03-01

    Strontium titanate (SrTiO3) is a foundational material in the emerging field of complex oxide electronics. While its electronic, optical, and lattice properties have been studied for decades, SrTiO3 has recently become a renewed focus of materials research owing to the discovery of magnetism and superconductivity at interfaces between SrTiO3 and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role. Here we observe an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO3-δ crystals using magnetic circular dichroism spectroscopy and SQUID magnetometry. The optically induced magnetization appears below ~18 K, persists for hours below 10 K, and is tunable via the polarization and wavelength of sub-bandgap (400-500 nm) light. These effects, which only occur in oxygen-deficient samples, reveal a detailed interplay between defects, magnetism, and light in oxide materials. W. D. Rice et al. submitted. See article on arXiv.

  20. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  1. Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures

    SciTech Connect

    Kan, Daisuke Aso, Ryotaro; Kurata, Hiroki; Shimakawa, Yuichi

    2015-06-01

    Interface engineering of structural distortions is a key for exploring the functional properties of oxide heterostructures and superlattices. In this paper, we report on our comprehensive investigations of oxygen octahedral distortions at the heterointerface between perovskite oxides SrRuO{sub 3} and BaTiO{sub 3} on GdScO{sub 3} substrates and of the influences of the interfacially engineered distortions on the magneto-transport properties of the SrRuO{sub 3} layer. Our state-of-the-art annular bright-field imaging in aberration-corrected scanning transmission electron microscopy revealed that the RuO{sub 6} octahedral distortions in the SrRuO{sub 3} layer have strong dependence on the stacking order of the SrRuO{sub 3} and BaTiO{sub 3} layers on the substrate. This can be attributed to the difference in the interfacial octahedral connections. We also found that the stacking order of the oxide layers has a strong impact on the magneto-transport properties, allowing for control of the magnetic anisotropy of the SrRuO{sub 3} layer through interface engineering. Our results demonstrate the significance of the interface engineering of the octahedral distortions on the structural and physical properties of perovskite oxides.

  2. Remarkable effect of Pt nanoparticles on visible light-induced oxygen generation from water catalysed by perovskite oxides.

    PubMed

    Gupta, Uttam; Naidu, B S; Rao, C N R

    2015-01-14

    Oxidation of water is a challenging process with a positive free energy change and it is purposeful to find good catalysts to facilitate the process. While the perovskite oxides, LaCoO3 and LaMnO3, are good electron transfer catalysts in artificial photosynthesis to produce oxygen by the oxidation of water, the electron transfer is further favoured by the presence of platinum nanoparticles, causing a substantial increase in oxygen evolution. PMID:25407344

  3. Reactivity of perovskites with water: Role of hydroxylation in wetting and implications for oxygen electrocatalysis

    DOE PAGESBeta

    Stoerzinger, Kelsey A.; Hong, Wesley T.; Azimi, Gisele; Crumlin, Ethan J.; Biegalski, Michael D.; Bluhm, Hendrik; Varanasi, Kripa K.; Shao-Horn, Yang; Giordano, Livia; Lee, Yueh -Lin

    2015-07-15

    Oxide materials play an important role in technical applications such as gas sensing and catalysis, where they can react notably with water in vapor or liquid form. We find that the coverage of (*OH) measured at fixed relative humidity trends with the electron donor (basic) character of wetted perovskite oxide surfaces, corresponding to low contact angles when removing a droplet of water. We report for the first time that the affinity toward hydroxylation, coincident with strong adsorption energies calculated for dissociative and molecular adsorption of water, leads to strong H-bonding detrimental to catalysis of the oxygen reduction reaction (ORR). Furthermore,more » this suggests that hydrophobic oxides with low tendency to hydroxylate may demonstrate improved catalytic activity for the ORR.« less

  4. Electrical properties and water incorporation in A-site deficient perovskite La1-xBaxNb3O9-0.5x

    NASA Astrophysics Data System (ADS)

    Animitsa, I.; Iakovleva, A.; Belova, K.

    2016-06-01

    Barium doped A-site deficient perovskites La1-xBaxNb3O9-0.5x (x=0-0.05) were synthesized by the solid state method, their structure, electrical properties and state of oxygen-hydrogen groups have been investigated. These phases were found to be able to incorporate water from the gas phase and to exhibit proton transport. Hydration is accompanied by the formation of different forms of oxygen-hydrogen groups: OH- - groups and H3O+ - ions. The total conductivities of doped samples increased in a wet atmosphere due to the appearance of proton current carriers (at the temperatures below 700 °C), but the conductivity increased insignificantly (~0.25 order of magnitude) because of a low doping level and, consequently, small concentration of protons. TG-measurements confirmed relatively low water content (below 0.2%). The total conductivity depends substantially on x and exhibits a minimum on σ-f(x) dependencies. It has been suggested that such behavior is a manifestation of a mixed cation effect.

  5. Multiferroic grain boundaries in oxygen-deficient ferroelectric lead titanate.

    PubMed

    Shimada, Takahiro; Wang, Jie; Ueda, Taku; Uratani, Yoshitaka; Arisue, Kou; Mrovec, Matous; Elsässer, Christian; Kitamura, Takayuki

    2015-01-14

    Ultimately thin multiferroics arouse remarkable interest, motivated by the diverse utility of coexisting ferroelectric and (anti)ferromagnetic order parameters for novel functional device paradigms. However, the ferroic order is inevitably destroyed below a critical size of several nanometers. Here, we demonstrate a new path toward realization of atomically thin multiferroic monolayers while resolving a controversial origin for unexpected "dilute ferromagnetism" emerged in nanocrystals of nonmagnetic ferroelectrics PbTiO3. The state-of-the-art hybrid functional of Hartree-Fock and density functional theories successfully identifies the origin and underlying physics; oxygen vacancies interacting with grain boundaries (GBs) bring about (anti)ferromagnetism with localized spin moments at the neighboring Ti atoms. This is due to spin-polarized defect states with broken orbital symmetries at GBs. In addition, the energetics of oxygen vacancies indicates their self-assembling nature at GBs resulting in considerably high concentration, which convert the oxygen-deficient GBs into multiferroic monolayers due to their atomically thin interfacial structure. This synthetic concept that realizes multiferroic and multifunctional oxides in a monolayered geometry through the self-assembly of atomic defects and grain boundary engineering opens a new avenue for promising paradigms of novel functional devices. PMID:25485474

  6. Oxygen vacancy ordering in strontium doped rare earth cobaltate perovskites Ln{sub 1-x}Sr {sub x}CoO{sub 3-{delta}} (Ln = La, Pr and Nd; x > 0.60)

    SciTech Connect

    James, M. . E-mail: mja@ansto.gov.au; Tedesco, T.; Cassidy, D.J.; Withers, R.L.

    2005-06-15

    A family of Sr-doped perovskite compounds Ln{sub 1-x}Sr {sub x}CoO{sub 3-{delta}} (Ln = La{sup 3+}, Pr{sup 3+} and Nd{sup 3+}; x > 0.60), were prepared by sol-gel chemistry and reaction at 1100 deg. C under 1 atm of oxygen. This structural family has been shown to be present only for rare earth ions larger than Sm{sup 3+} and an upper limit of Sr{sup 2+} solubility in these phases was found to exist between x = 0.90 and 0.95. X-ray diffraction shows oxygen-deficient, simple cubic (Pm-3m) perovskite crystal structures. The combination of electron and powder neutron diffraction reveals that oxygen vacancy ordering occurs, leading to a tetragonal (P4/mmm) superstructure and a doubling of the basic perovskite unit along the crystallographic c-axis. No additional Ln{sup 3+}/Sr{sup 2+} cation ordering was observed.

  7. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  8. Oxygen vacancy ordering within anion-deficient Ceria

    SciTech Connect

    Hull, S.; Norberg, S.T.; Ahmed, I.; Eriksson, S.G.; Marrocchelli, D.; Madden, P.A.

    2009-10-15

    The structural properties of anion deficient ceria, CeO{sub 2-{delta}}, have been studied as a function of oxygen partial pressure, p(O{sub 2}), over the range 0>=log{sub 10p}(O{sub 2})>=-18.9 at 1273(2) K using the neutron powder diffraction technique. Rietveld refinement of the diffraction data collected on decreasing p(O{sub 2}) showed increases in the cubic lattice parameter, a, the oxygen nonstoichiometry, delta, and the isotropic thermal vibration parameters, u{sub Ce} and u{sub O}, starting at log{sub 10p}(O{sub 2}){approx}-11. The increases are continuous, but show a distinct kink at log{sub 10p}(O{sub 2}){approx}-14.5. Analysis of the total scattering (Bragg plus diffuse components) using reverse Monte Carlo (RMC) modelling indicates that the O{sup 2-} vacancies preferentially align as pairs in the <111> cubic directions as the degree of nonstoichiometry increases. This behaviour is discussed with reference to the chemical crystallography of the CeO{sub 2}-Ce{sub 2}O{sub 3} system at ambient temperature and, in particular, to the nature of the long-range ordering of O{sup 2-} vacancies within the crystal structure of Ce{sub 7}O{sub 12}. - Graphical abstract: Partial radial distribution function for oxygen vacancies within CeO{sub 1.710} at 1273 K (solid line) showing the increased tendency for local ordering in <111> directions compared to a random distribution (dashed line).

  9. 30 CFR 75.150 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests for methane and for oxygen deficiency... Certified Persons § 75.150 Tests for methane and for oxygen deficiency; qualified person. (a) The provisions of Subpart D—Ventilation of this part and § 75.1106 require that tests for methane and for...

  10. 30 CFR 75.150 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests for methane and for oxygen deficiency... Certified Persons § 75.150 Tests for methane and for oxygen deficiency; qualified person. (a) The provisions of Subpart D—Ventilation of this part and § 75.1106 require that tests for methane and for...

  11. 30 CFR 75.150 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests for methane and for oxygen deficiency... Certified Persons § 75.150 Tests for methane and for oxygen deficiency; qualified person. (a) The provisions of Subpart D—Ventilation of this part and § 75.1106 require that tests for methane and for...

  12. 30 CFR 75.150 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests for methane and for oxygen deficiency... Certified Persons § 75.150 Tests for methane and for oxygen deficiency; qualified person. (a) The provisions of Subpart D—Ventilation of this part and § 75.1106 require that tests for methane and for...

  13. 30 CFR 75.150 - Tests for methane and for oxygen deficiency; qualified person.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests for methane and for oxygen deficiency... Certified Persons § 75.150 Tests for methane and for oxygen deficiency; qualified person. (a) The provisions of Subpart D—Ventilation of this part and § 75.1106 require that tests for methane and for...

  14. Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range

    SciTech Connect

    Ravkina, Olga; Klande, Tobias; Feldhoff, Armin

    2013-05-01

    The series of (Ba₀.₅Sr₀.₅)(Co₀.₈Fe₀.₂){sub 1–z}Zr{sub z}O{sub 3–δ} (z=0, 0.01, 0.03, 0.05, 0.07, and 0.09) was synthesized by a sol–gel method. The materials with a zirconium content up to 3 mol% were found to be single phase. Further increase results in formation of a mixed (Ba,Sr)ZrO₃ by-phase, which was found along the grain boundaries and in the grains. With increasing zirconium content the oxygen permeation flux decreases considerably. The effect of the zirconium substitution on the long-term phase stability was investigated by long-term oxygen permeation experiments and X-ray diffraction. A slight stabilization of the oxygen flux of (Ba₀.₅Sr{sub 0.5})(Co₀.₈Fe₀.₂)₀.₉₇Zr₀.₀₃O{sub 3–δ} was found after 180 h at 1023 K. However, all compositions show a decrease in permeation flux with time, but the pure BSCF membrane exhibited the strongest drop after 180 h of operation. The decomposition products of the cubic perovskite phase were found to be a hexagonal Ba{sub 0.5±x}Sr{sub 0.5±x}CoO₃ and a rhombohedral Ba{sub 1–x}Sr{sub x}Co{sub 2–y}Fe{sub y}O{sub 5–δ}. - Graphical abstract: Backscattered-electron channeling contrast image of BSCF membrane cross-section after long-term oxygen permeation at 1023 K showing different phases in different colors. Highlights: • Ba₀.₅Sr₀.₅Co₀.₈Fe₀.₂O{sub 3–δ} systematically doped with increasing amount of zirconium. • Cubic single-phase materials up to 3 wt% zirconium. • Mixed (Ba,Sr)ZrO₃ by-phase formed mainly in the grain boundaries. • Jänecke prism was proposed by XRD and EDXS data. • (Ba₀.₅Sr₀.₅)(Co₀.₈Fe₀.₂)₀.₉₇Zr₀.₀₃O{sub 3–δ} showed a slight stabilization of oxygen flux as compared to pure Ba₀.₅Sr₀.₅Co₀.₈Fe₀.₂O{sub 3–δ}.

  15. Praseodymium-deficiency Pr0.94BaCo2O6-δ double perovskite: A promising high performance cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Fuchang; Xia, Tian; Wang, Jingping; Shi, Zhan; Zhao, Hui

    2015-10-01

    Praseodymium-deficiency Pr0.94BaCo2O6-δ (P0.94BCO) double perovskite has been evaluated as a cathode material for intermediate-temperature solid oxide fuel cells. X-ray diffraction pattern shows the orthorhombic structure with double lattice parameters from the primitive perovskite cell in Pmmm space group. P0.94BCO has a good chemical compatibility with Ce0.9Gd0.1O1.95 (CGO) electrolyte even at 1000 °C for 24 h. It is observed that the Pr-deficiency can introduce the extra oxygen vacancies in P0.94BCO, further enhancing its electrocatalytic activity for oxygen reduction reaction. P0.94BCO demonstrates the promising cathode performance as evidenced by low polarization are-specific resistance (ASR), e. g. 0.11 Ω cm2 and low cathodic overpotential e. g. -56 mV at a current density of -78 mA cm-2 at 600 °C in air. These features are comparable to those of the benchmark cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ. The fuel cell CGO-Ni|CGO|P0.94BCO presents the attractive peak power density of 1.05 W cm-2 at 600 °C. Furthermore, the oxygen reduction kinetics of P0.94BCO material is also investigated, and the rate-limiting steps for oxygen reduction reaction are determined.

  16. Effects of carbon on oxygen reduction and evolution reactions of gas-diffusion air electrodes based on perovskite-type oxides

    NASA Astrophysics Data System (ADS)

    Nishio, Koji; Molla, Sergio; Okugaki, Tomohiko; Nakanishi, Shinji; Nitta, Iwao; Kotani, Yukinari

    2015-12-01

    Electrochemical properties of three perovskite oxides with different B-site elements, LaMnO3, La0.6Sr0.4FeO3 and LaNiO3, are examined with and without carbon using gas-diffusion electrodes, in comparison with our previous results on La0.5Sr0.5CoO3. Cyclic voltammetry studies reveal very low oxygen reduction current density of carbon-free perovskite oxides, indicating their poor catalytic activity on oxygen reduction reactions. By mixing carbon with perovskite oxides, the oxygen reduction current density is increased by about two orders. The results are consistent with the peroxide pathway mechanism in which the perovskite oxide is highly active on either electrochemical reduction or chemical decomposition. Electrochemical properties of a three-layered gas diffusion electrode demonstrate the peroxide pathway mechanism works even the perovskite oxide and the carbon exist in separate layers. Oxygen evolution reactions are prominently dependent on the oxide species and also on an addition of carbon. The electrode based on carbon-free LaNiO3 or La0.5Sr0.5CoO3 show moderate oxygen evolution activity, and the activity is further enhanced by an addition of carbon, while LaMnO3 and La0.6Sr0.4FeO3 show poor activity even with an addition of carbon.

  17. Reactivity of oxygen deficient cerium oxide clusters with small gaseous molecules.

    PubMed

    Nagata, Toshiaki; Miyajima, Ken; Hardy, Robert Allan; Metha, Gregory F; Mafuné, Fumitaka

    2015-06-01

    Oxygen deficient cerium oxide cluster ions, Ce(n)O(m)(+) (n = 2-10, m = 1-2n) were prepared in the gas phase by laser ablation of a cerium oxide rod. The reactivity of the cluster ions was investigated using mass spectrometry, finding that oxygen deficient clusters are able to extract oxygen atoms from CO, CO2, NO, N2O, and O2 in the gas phase. The oxygen transfer reaction is explained in terms of the energy balance between the bond dissociation energy of an oxygen containing molecule and the oxygen affinity of the oxygen-deficient cerium oxide clusters, which is supported by DFT calculations. The reverse reaction, i.e., formation of the oxygen deficient cluster ions from the stoichiometric ones was also examined. It was found that intensive heating of the stoichiometric clusters results in formation of oxygen deficient clusters via Ce(n)O(2n)(+) → Ce(n)O(2n-2)(+) + O2, which was found to occur at different temperatures depending on cluster size, n. PMID:25965076

  18. Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells.

    PubMed

    Pan, Jia Hong; Shen, Chao; Ivanova, Irina; Zhou, Na; Wang, Xingzhu; Tan, Wee Chong; Xu, Qing-Hua; Bahnemann, Detlef W; Wang, Qing

    2015-07-15

    We describe a general synthesis strategy, which combines sol-gel and hydrothermal processes, for the large-scale synthesis of porous perovskite titanates spheres with tunable particle size and inner structures. Amorphous hydrous TiO2 solid spheres (AHTSS) are first synthesized by a sol-gel method and are then used as precursor and template for the subsequent hydrothermal reaction with alkaline earth metal ions in an alkaline medium. This strategy can be generalized to synthesize porous spheres of various perovskite titanates (i.e., SrTiO3, BaTiO3, and CaTiO3) consisting of single-crystalline nanocubes. By controlling the textural properties (i.e., size, porosity, and structure) of AHTSS, perovskite titanates with tunable size and inner structures are selectively synthesized. The underlying formation mechanism is manifested by XRD and TEM to involve in situ crystallization or Ostwald ripening during the hydrothermal process. The obtained porous SrTiO3 spheres present superior performance in photocatalytic oxygen evolution and CdSe-sensitized mesoscopic solar cells. PMID:26091019

  19. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  20. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions

    SciTech Connect

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O₃ and Pb(Mg1/3Nb2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impact on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.

  1. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions

    DOE PAGESBeta

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O₃ and Pb(Mg1/3Nb2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impactmore » on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  2. Health safe alarm evaluation. Final report. [Combustible gas/oxygen deficiency

    SciTech Connect

    Hossain, M.A.; Bishop, E.C.

    1981-12-01

    The USAF Occupational and Environmental Health Laboratory (USAF OEHL) conducted an evaluation of the National Mine Service Company, Model MX 241, Combination Combustible Gas/Oxygen Deficiency Alarm. The evaluation included determination of linearity of response to a calibration gas (hexane) and the instrument's ability to set the %LEL alarm at or below 5% LEL and oxygen alarm at or below 19.5% oxygen. Recommendation of the MX 241 for specific application was made based upon the evaluation results.

  3. Computational Study of Oxygen Diffusion along a[100] Dislocations in the Perovskite Oxide SrTiO3.

    PubMed

    Waldow, Stephan P; De Souza, Roger A

    2016-05-18

    We used classical molecular-dynamics simulations to study the atomistic structure of, and the diffusion of oxygen ions along, the periodic array of edge dislocations comprising a symmetrical 6.0° [100] tilt grain boundary in SrTiO3. The results indicate that, at elevated temperatures, the two types of dislocation core (TiO2-type and SrO-type) that make up the boundary are stable and that oxygen-deficient cores maintain their dissociated structures. They also confirm that oxygen vacancies prefer to reside at the cores rather than in the bulk. Tracer diffusion coefficients of oxygen were obtained for oxygen-deficient bulk and grain-boundary simulation cells at temperatures in the range of 1000 ≤ T/K ≤ 2300. Calculated values of the oxygen-vacancy diffusion coefficient for the bulk phase agree extremely well with published experimental data. Tracer diffusion coefficients obtained for the grain-boundary cell are, in comparison to those for the bulk, lower in magnitude and have a higher activation enthalpy, indicating that, relative to the bulk, the migration of oxygen ions along a[100] dislocation cores in SrTiO3 is hindered. These results provide further support for the decoupled model of filament formation in resistively switching SrTiO3. PMID:27121113

  4. Origin of photoactivity of oxygen-deficient TiO{sub 2} under visible light

    SciTech Connect

    Lo, H.-H.; Gopal, Neeruganti O.; Ke, S.-C.

    2009-08-24

    As it is now well established that oxygen vacancies are spontaneously introduced during nitrogen doping of anatase TiO{sub 2}, there is a lively debate on whether nitrogen dopant or oxygen vacancy contributes to the visible light photoactivity of the doped catalyst. We showed that the coordinately unsaturated Ti site is integral to the visible light photoactivity in anatase oxygen-deficient TiO{sub 2} catalyst. Accordingly, oxygen vacancies may contribute to the visible light photoactivities in N-doped TiO{sub 2} and other nonmetallic ion-doped TiO{sub 2} as well. A redox active visible light photocatalyst has been developed based on oxygen-deficient structure in anatase TiO{sub 2}.

  5. Oxygen vacancy ordering and magnetism in the rare earth stabilised perovskite form of "SrCoO 3- δ"

    NASA Astrophysics Data System (ADS)

    James, M.; Cassidy, D.; Wilson, K. F.; Horvat, J.; Withers, R. L.

    2004-07-01

    We have demonstrated that SrCoO 3- δ can be stabilised into phase pure perovskite forms by the introduction of small amounts ˜5% of certain rare earth ions (Sm 3+Yb 3+). At the same doping levels, La 3+ and Pr 3+ crystallise with the same isostructural trigonal structure as Sr 6Co 5O 15; while the Nd 3+ composition shows a mixture of both structure types. Powder X-ray diffraction showed only a simple cubic perovskite structure, however, a combination of electron and neutron diffraction has revealed a tetragonal ( P4/ mmm) ap× ap×2 ap superstructure. Strontium and the rare earth ions are disordered over a single site, while the oxygen vacancies are localised on the apical O2 sites. Magnetisation measurements show that these materials undergo transitions to a spin-glass state at temperatures below 150 K, and that significant coupling occurs between the rare earth ions and the mixed Co 3+/4+ ions. Magnetisation measurements as a function of applied field reveals that below the transition temperature ferromagnetic ordering takes place at relatively large fields.

  6. Photoinduced transformations of oxygen-deficient centers in Silica and Germanosilicate glasses

    SciTech Connect

    Marchenko, V.M.

    1995-07-01

    The methods for producing the oxygen-deficient centers and the experimental findings on the photoinduced processes in silica and germanosilicate glasses as well as in such optical waveguides manufactured from these glasses that underlie the development of promising integrated-optical and optical fiber devices and instruments are considered. the discrepancy in the photochromic process interpretation made on the ground of the structural models proposed for the oxygen-deficient centers in the glasses under consideration is discussed. The observable photoinduced transformations of the oxygen-deficient centers and associated changes in the physical properties of the glasses are explained on the assumption that photoexcitation initiates not internal ionization, but solid-phase chemical reactions accompanied by the breaking and switching of valence bonds.

  7. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Ran, Ran; Chen, Yubo; Shao, Zongping; Liu, Meilin

    2016-01-13

    Solid oxide fuel cells (SOFCs) have potential to be the cleanest and most efficient electrochemical energy conversion devices with excellent fuel flexibility. To make SOFC systems more durable and economically competitive, however, the operation temperature must be significantly reduced, which depends sensitively on the development of highly active electrocatalysts for oxygen reduction reaction (ORR) at low temperatures. Here we report a novel silver nanoparticle-decorated perovskite oxide, prepared via a facile exsolution process from a Sr0.95Ag0.05Nb0.1Co0.9O3-δ (SANC) perovskite precursor, as a highly active and robust ORR electrocatalyst for low-temperature SOFCs. The exsolved Sr0.95Ag0.05Nb0.1Co0.9O3-δ (denoted as e-SANC) electrode is very active for ORR, achieving a very low area specific resistance (∼0.214 Ω cm(2) at 500 °C). An anode-supported cell with the new heterostructured cathode demonstrates very high peak power density (1116 mW cm(-2) at 500 °C) and stable operation for 140 h at a current density of 625 mA cm(-2). The superior ORR activity and stability are attributed to the fast oxygen surface exchange kinetics and the firm adhesion of the Ag nanoparticles to the Sr0.95Nb0.1Co0.9O3-δ (SNC0.95) support. Moreover, the e-SANC cathode displays improved tolerance to CO2. These unique features make the new heterostructured material a highly promising cathode for low-temperature SOFCs. PMID:26619096

  8. Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use1

    PubMed Central

    López-Millán, Ana Flor; Morales, Fermín; Andaluz, Sofía; Gogorcena, Yolanda; Abadía, Anunciación; Rivas, Javier De Las; Abadía, Javier

    2000-01-01

    Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 μm, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates. PMID:11027736

  9. Correlations between the oxygen deficiency and the laser damage resistance of different oxide films

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Yi, Peng; Fan, Heliang; Qi, Jianwei; Qiang, Yinghuai; Liu, Jiongtian; Tao, Chunxian; Li, Dawei

    2014-01-01

    Ta2O5, ZrO2 and HfO2 films are deposited on BK7 substrates by electron beam evaporation method. The effects of oxygen deficiency on the optical properties and laser-induced damage threshold (LIDT) are investigated by the combination of experimental methods and first principles calculations. The results show that the oxygen deficiency weakens the transmittance, whereas it enhances the absorption of all the films. Once the oxide vacancy appears, the band gaps decrease greatly, which seriously decrease the LIDT. The calculated negative vacancy energies indicate that, when the oxygen vacancy exists, Ta2O5 is most easily to be damaged, next is ZrO2 and the last is HfO2. It is consistent with the LIDT results that Ta2O5 increases 64.8%, ZrO2 increases 19.4% and HfO2 increases 12.9% when the oxygen vacancy is eliminated.

  10. Effects of environmental oxygen deficiency on embryos and larvae of bay scallop, Argopecten irradians irradians

    NASA Astrophysics Data System (ADS)

    Chun-de, Wang; Fu-Sui, Zhang

    1995-12-01

    The experimental results showed that: 1) The embryonic development of bay scallop is inhibited at a dissolved oxygen range of 1.38-3.64×10-3 at 23°C, and completely blocked below the lower limit. 2) The tolerance of larvae to anoxia increased with larval sizes and was related to their oxygen debt. 3) The scallop larvae exhibited specific behavioral responses to oxygen deficiency, which finally led to velum disintegration and larval death. The possible relationship between environmental oxygen deficiency and the disease of disintegration of the larval velum is also discussed. In this study, considerable oxygen debt was found in bay scallop larvae, which was greater in small animals. Based on the works of previous authors, a new concept is proposed for the estimation of oxygen debt, namely, the compensatory rate of oxygen debt (CROD). This can be used in intra—or interspecific comparison of oxygen debt. The results can be helpful in the management of water quality and for the prevention of larval diseases encountered in scallop culture.

  11. Oxygen-deficient waters along the Japanese coast and their effects upon the estuarine ecosystem.

    PubMed

    Suzuki, T

    2001-01-01

    Development of hypoxia in Japan has been confirmed in the inner part of almost every major bay of Japan on the Pacific Coast from Tokyo southward. This paper presents multiple aspects (present condition, hydraulic mechanism, effect upon fisheries, historical progress and nutrient budget between sediment and water) using Mikawa Bay, where Japan's most serious hypoxia occurs, as an example. Although hypoxia basically results from the increase of nutrient load input from domestic and livestock sources, the intense reclamation of shallows (including tidal flats) and the large reduction in river flow due to farmland irrigation drastically accelerated dissolved oxygen deficiency. Oxygen-deficient waters in Mikawa Bay are large enough to strip the water purification capacity of the remaining shallows. Unfortunately, the shallows have turned from a purifier to a source of nutrient load. These conditions are more or less common in all bays where the dissolved oxygen-deficient waters have been reported. To break this cycle, dissolved oxygen deficiency must be contained to the extent that the purification capacity of the shallows can be restored to an efficient level. For this purpose, the first thing to do is to restore tidal flats over an extensive area and to recover sufficient water flow, which may be a more urgent imperative than reducing the nutrient load input. PMID:11285889

  12. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  13. Enhanced magnetoresistance induced by oxygen deficiency in La{sub 0.4}Ca{sub 0.6}MnO{sub 3-δ} oxides

    SciTech Connect

    Triki, M. Dhahri, E.; Hlil, E. K.; Garden, J. L.

    2014-03-14

    We report electrical features and magnetoresistance behavior of the oxygen deficient La{sub 0.4}Ca{sub 0.6}MnO{sub 3-δ} perovskites (δ = 0, 0.15, and 0.2). These samples will be referred to as S0, S15, and S20, respectively. The dependence of electrical transport on temperature and magnetic field is systematically investigated between 2 K and 400 K in magnetic field ranging up to 5 T. The parent compound shows a stable charge ordering/antiferromagnetic state with a semiconductor-like behavior in all considered temperature range. The variable range hopping and thermally activated hopping models are found to fit well with the electrical resistivity data at low and high temperatures, respectively. Oxygen deficiency tends to weaken the charge ordering and induce ferromagnetism and metallicity at low temperature. Metal insulator transition appears at higher fields for lower oxygen deficit (S15 sample) and without field for the S20 sample. The resistivity data for S15 sample are discussed in the framework of the variable-range hopping model. Abnormal transport properties were observed in the S20 sample, characterized by the double metal-insulator transitions and low minimum behavior. These results are discussed in terms of phenomenological percolation model, based on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. While the parent compound shows no magnetoresistance, a large magnetoresistance is observed in the deficient samples at low temperature reaching 90% and 75% at 2 T for S15 and S20 samples, respectively. Noticeably, these values reached 98% and 91% at 5 T. The appearance of colossal magnetoresistance is attributed to the spin dependent hopping between spin clusters and/or ferromagnetic domains.

  14. Metalloporphyrin-modified perovskite-type oxide for the electroreduction of oxygen

    NASA Astrophysics Data System (ADS)

    Nagai, Tsukasa; Yamazaki, Shin-ichi; Asahi, Masafumi; Siroma, Zyun; Fujiwara, Naoko; Ioroi, Tsutomu

    2015-10-01

    Perovskite-type oxide-carbon (Vulcan XC72) mixture (La0.6Sr0.4Mn0.6Fe0.4O3/C) was modified by a metalloporphyrin (cobalt octaethylporphyrin: Co-OEP) having two-electron O2 reduction activity, and its electrochemical reduction activity for O2 (ORR) was investigated in an alkaline solution by rotating ring disk electrode (RRDE) voltammetry. The Co-OEP/La0.6Sr0.4Mn0.6Fe0.4O3/C catalyst showed improved ORR activity, with a positive shift of the onset potential. In addition, a decreased ring current compared to Co-OEP/C suggested that the quasi-four-electron reduction of O2 was also enhanced. Further experiments showed that ORR activity was also enhanced by Co-OEP-modification of other types of carbon (Ketjenblack EC600JD, Denka Black) or perovskite-type oxide (La0.6Ca0.4Mn0.6Fe0.4O3, La0.8Sr0.2Co0.6Fe0.4O3). In the case of the addition of other porphyrin complexes (cobalt tetraphenylporphyrin (Co-TPP), iron octaethylporphyrin (Fe-OEP)) to a La0.6Sr0.4Mn0.6Fe0.4O3/C catalyst, the onset potential did not shift to the positive side due to the lower activity compared to Co-OEP.

  15. Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films

    SciTech Connect

    Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A.; Perez de la Cruz, J.; Vilarinho, P. M.; Tavares, P. B.

    2013-07-21

    Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

  16. Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries.

    PubMed

    Takeguchi, Tatsuya; Yamanaka, Toshiro; Takahashi, Hiroki; Watanabe, Hiroshi; Kuroki, Tomohiro; Nakanishi, Haruyuki; Orikasa, Yuki; Uchimoto, Yoshiharu; Takano, Hiroshi; Ohguri, Nobuaki; Matsuda, Motofumi; Murota, Tadatoshi; Uosaki, Kohei; Ueda, Wataru

    2013-07-31

    For the development of a rechargeable metal-air battery, which is expected to become one of the most widely used batteries in the future, slow kinetics of discharging and charging reactions at the air electrode, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, are the most critical problems. Here we report that Ruddlesden-Popper-type layered perovskite, RP-LaSr3Fe3O10 (n = 3), functions as a reversible air electrode catalyst for both ORR and OER at an equilibrium potential of 1.23 V with almost no overpotentials. The function of RP-LaSr3Fe3O10 as an ORR catalyst was confirmed by using an alkaline fuel cell composed of Pd/LaSr3Fe3O10-2x(OH)2x·H2O/RP-LaSr3Fe3O10 as an open circuit voltage (OCV) of 1.23 V was obtained. RP-LaSr3Fe3O10 also catalyzed OER at an equilibrium potential of 1.23 V with almost no overpotentials. Reversible ORR and OER are achieved because of the easily removable oxygen present in RP-LaSr3Fe3O10. Thus, RP-LaSr3Fe3O10 minimizes efficiency losses caused by reactions during charging and discharging at the air electrode and can be considered to be the ORR/OER electrocatalyst for rechargeable metal-air batteries. PMID:23802735

  17. Magnetism and Metal-Insulator Transition in Oxygen Deficient SrTiO3

    SciTech Connect

    Lopez-Bezanilla, Alejandro; Ganesh, Panchapakesan; Littlewood, Peter B.

    2015-09-08

    First-principles calculations to study the electronic and magnetic properties of bulk, oxygen-deficient SrTiO3 (STO) under different doping conditions and densities have been conducted. The appearance of magnetism in oxygen-deficient STO is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. We find that while an isolated vacancy behaves as a nonmagnetic double donor, manipulation of the doping conditions allows the stability of a single-donor state, with emergent local moments coupled ferromagnetically by carriers in the conduction band. Strong local lattice distortions enhance the binding of this state. The energy of the in-gap local moment can be further tuned by orthorhombic strain. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient STO, which may have important implications in the design of optical devices.

  18. Magnetism and Metal-Insulator Transition in Oxygen Deficient SrTiO3

    DOE PAGESBeta

    Lopez-Bezanilla, Alejandro; Ganesh, Panchapakesan; Littlewood, Peter B.

    2015-09-08

    First-principles calculations to study the electronic and magnetic properties of bulk, oxygen-deficient SrTiO3 (STO) under different doping conditions and densities have been conducted. The appearance of magnetism in oxygen-deficient STO is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. We find that while an isolated vacancy behaves as a nonmagnetic double donor, manipulation of the doping conditions allows the stability of a single-donor state, with emergent local moments coupled ferromagnetically by carriers in the conduction band. Strong local lattice distortions enhance themore » binding of this state. The energy of the in-gap local moment can be further tuned by orthorhombic strain. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient STO, which may have important implications in the design of optical devices.« less

  19. Oxygen deficiency hazards associated with liquefied gas systems development of a program of controls

    SciTech Connect

    Miller, T.M.; Mazur, P.O.

    1983-01-01

    The use of liquefied gases in industry and research has become commonplace. Release into the atmosphere of these gases, whether intentional or not, will result in a displacement of air and a reduction in the oxygen concentration. Exposure to reduced levels of oxygen levels may cause reduced abilities, unconsciousness, or death. This paper describes the derivation of a novel program of controls for oxygen deficiency hazards. The key to this approach is a quantitative assessment of risk for each planned operation and the application of control measures to reduce that risk to an acceptable level. Five risk levels evolve which are based on the probability of fatality. Controls such as training, oxygen monitoring equipment, self-rescue respirators, and medical surveillance are required when the probability of fatality exceeds 10/sup -7/ per hour. The quantitative nature of this program ensures an appropriate level of control without undue burden or expense. 11 references, 5 figures, 3 tables.

  20. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Cao, Xuecheng; Zhang, Liya; Zhang, Cong; Yang, Ruizhi

    2013-11-01

    An urchin-like La0.8Sr0.2MnO3 (LSM) perovskite oxide has been synthesized through a co-precipitation method with urea as a precipitator, and characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. SEM results show that a micro/nanocomposite with an urchin-like morphology has been obtained. The as-synthesized LSM perovskite oxide has a high specific surface area of 48 m2 g-1. The catalytic activity of the oxide for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in 0.1 M KOH solution has been studied by using a rotating-ring-disk electrode (RRDE). In the ORR test, a maximum cathodic current density of 5.2 mA cm-2 at -1.0 V (vs. Ag/AgCl) with 2500 rpm was obtained, and the ORR mainly favors a direct four-electron pathway. The results of anodic linear scanning voltammograms indicate that the urchin-like LSM perovskite oxide exhibits an encouraging catalytic activity for the OER. All electrochemical measurements suggest that the urchin-like LSM perovskite oxide could be used as a bifunctional catalyst for the ORR and the OER.

  1. Investigation of personal and fixed head oxygen deficiency hazard monitor performance for helium gas

    SciTech Connect

    D. Arenius; D. Curry; A. Hutton; K. Mahoney; S. Prior; H. Robertson

    2002-05-10

    On May 14, 2001, the Thomas Jefferson National Accelerator Facility (JLAB) conducted a planned liquid helium release into its accelerator tunnel to study the effectiveness of the JLAB facility to vent the helium and therefore limit the oxygen deficiency hazard (ODH). During the test, it was discovered that a wide range of various oxygen deficiency monitors, of different manufacturers, were providing substantial conflicting measurements of the true oxygen level where health effects are of concern. Yet, when tested separately with nitrogen gas as the diluting gas into air, the same models performed very well. This problem, which is associated with helium displacement of air, was found for both personal oxygen monitors and fixed installation monitors from many different manufacturers. By informing other facilities of its findings, JLAB became aware this problem also exists among other national laboratories and facilities. Many manufacturers do not have data on the effects of helium displacing air for their devices. Some manufacturers have now duplicated the test results conducted at JLAB. Since both fixed installation and personal oxygen monitors have become standard safety device in many research facilities and industries in the United States and abroad, it is important that these facilities are aware of the problem and how it is being addressed at JLAB. This paper discusses the methods, procedures and materials used by JLAB to qualify its ODH sensors for helium. Data and graphs of JLAB's findings are provided.

  2. {110}-Layered B-cation ordering in the anion-deficient perovskite Pb2.4Ba2.6Fe2Sc2TiO13 with the crystallographic shear structure.

    PubMed

    Tyablikov, O A; Batuk, D; Tsirlin, A A; Batuk, M; Verchenko, V Yu; Filimonov, D S; Pokholok, K V; Sheptyakov, D V; Rozova, M G; Hadermann, J; Antipov, E V; Abakumov, A M

    2015-06-21

    A novel anion-deficient perovskite-based compound, Pb(2.4)Ba(2.6)Fe(2)Sc(2)TiO(13), was synthesized via the citrate-based route. This compound is an n = 5 member of the AnBnO(3n-2) homologous series with unit-cell parameters related to the perovskite subcell a(p)≈ 4.0 Å as a(p)√2 ×a(p)× 5a(p)√2. The crystal structure of Pb(2.4)Ba(2.6)Fe(2)Sc(2)TiO(13) consists of quasi-2D perovskite blocks with a thickness of three octahedral layers separated by the 1/2[110](1[combining macron]01)(p) crystallographic shear (CS) planes, which are parallel to the {110} plane of the perovskite subcell. The CS planes transform the corner-sharing octahedra into chains of edge-sharing distorted tetragonal pyramids. Using a combination of neutron powder diffraction, (57)Fe Mössbauer spectroscopy and atomic resolution electron energy-loss spectroscopy we demonstrate that the B-cations in Pb(2.4)Ba(2.6)Fe(2)Sc(2)TiO(13) are ordered along the {110} perovskite layers with Fe(3+) in distorted tetragonal pyramids along the CS planes, Ti(4+) preferentially in the central octahedra of the perovskite blocks and Sc(3+) in the outer octahedra of the perovskite blocks. Magnetic susceptibility and Mössbauer spectroscopy indicate a broadened magnetic transition around T(N)∼ 45 K and the onset of local magnetic fields at low temperatures. The magnetic order is probably reminiscent of that in other AnBnO(3n-2) homologues, where G-type AFM order within the perovskite blocks has been observed. PMID:25695142

  3. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones.

    PubMed

    Janssen, David J; Conway, Tim M; John, Seth G; Christian, James R; Kramer, Dennis I; Pedersen, Tom F; Cullen, Jay T

    2014-05-13

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals. PMID:24778239

  4. Oxygen deficient ZnO 1-x nanosheets with high visible light photocatalytic activity.

    PubMed

    Guo, Hong-Li; Zhu, Qing; Wu, Xi-Lin; Jiang, Yi-Fan; Xie, Xiao; Xu, An-Wu

    2015-04-28

    Zinc oxide is one of the most important wide-band-gap (3.2 eV) materials with versatile properties, however, it can not be excited by visible light. In this work, we have developed an exquisite and simple way to prepare oxygen-deficient ZnO 1-x nanosheets with a gray-colored appearance and excellent visible light photocatalytic activity. Detailed analysis based on UV-Vis absorption spectra, X-band electron paramagnetic resonance (EPR) spectra, and photoluminescence (PL) spectra confirms the existence of oxygen vacancies in ZnO 1-x. The incorporation of oxygen defects could effectively extend the light absorption of ZnO 1-x into the visible-light region due to the fact that the energy of the localized state is located in the forbidden gap. Thus, our obtained ZnO 1-x shows a higher photodegradation of methyl orange (MO) compared to defect-free ZnO under visible light illumination. Additionally, the high content of ˙OH radicals with a strong photo-oxidation capability over the ZnO 1-x nanosheets significantly contributes to the improvement in the photocatalytic performance. Our oxygen deficient ZnO 1-x sample shows a very high photocatalytic activity for the degradation of MO even after 5 cycles without any obvious decline. The results demonstrate that defect engineering is a powerful tool to enhance the optoelectronic and photocatalytic performances of nanomaterials. PMID:25812132

  5. Magnetism and metal-insulator transition in oxygen deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter

    2015-03-01

    We report new findings in the electronic structure and magnetism of oxygen vacancies in SrTiO3. By means of first-principles calculations we show that the appearance of magnetism in oxygen-deficient SrTiO3 is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. While an isolated vacancy behaves as a non-magnetic double donor, manipulation of the doping conditions allows the stability of a single donor state with emergent local moments. Strong local lattice distortions enhance the binding of this state. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient SrTiO3, which may have important implications in the design of switchable magneto-optic devices. AL-B and PBL were supported by DOE-BES under Contract No. DE-AC02-06CH11357. PG was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT- Battelle, LLC, for the US Department of Energy.

  6. Oxygen Deficiency Responsive Gene Expression in Chlamydomonas reinhardtii through a Copper-Sensing Signal Transduction Pathway1

    PubMed Central

    Quinn, Jeanette M.; Eriksson, Mats; Moseley, Jeffrey L.; Merchant, Sabeeha

    2002-01-01

    Chlamydomonas reinhardtii activates Cpx1, Cyc6, and Crd1, encoding, respectively, coproporphyrinogen oxidase, cytochrome c6, and a novel di-iron enzyme when transferred to oxygen-deficient growth conditions. This response is physiologically relevant because C. reinhardtii experiences these growth conditions routinely, and furthermore, one of the target genes, Crd1, is functionally required for normal growth under oxygen-depleted conditions. The same genes are activated also in response to copper-deficiency through copper-response elements that function as target sites for a transcriptional activator. The core of the copper-response element, GTAC, is required also for the hypoxic response, as is a trans-acting locus, CRR1. Mercuric ions, which antagonize the copper-deficiency response, also antagonize the oxygen-deficiency response of these target genes. Taken together, these observations suggest that the oxygen- and copper-deficiency responses share signal transduction components. Nevertheless, whereas the copper-response element is sufficient for the nutritional copper response, the oxygen-deficiency response requires, in addition, a second cis-element, indicating that the response to oxygen depletion is not identical to the nutritional copper response. The distinction between the two responses is also supported by comparative analysis of the response of the target genes, Cyc6, Cpx1, and Crd1, to copper versus oxygen deficiency. A Crr1-independent pathway for Hyd1 expression in oxygen-depleted C. reinhardtii demonstrates the existence of multiple oxygen/redox-responsive circuits in this model organism. PMID:11842150

  7. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  8. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.

    PubMed

    Suntivich, Jin; May, Kevin J; Gasteiger, Hubert A; Goodenough, John B; Shao-Horn, Yang

    2011-12-01

    The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds. PMID:22033519

  9. Effect of oxygen vacancies on the magnetic structure of the La0.6Sr0.4FeO3-δ perovskite: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Yelon, W. B.; Yang, J. B.; James, W. J.; Anderson, H. A.; Xie, Y.; Malik, S. K.

    2002-05-01

    Magnetic interactions in perovskite compounds of the type La1-xSrxMO3-δ (M=3d transition such as Mn and Fe) are presumed to arise through a super exchange between 3d electrons of the magnetic ions via oxygen orbitals. The magnetic structure of La0.6Sr0.4FeO3-δ has been studied with neutron diffraction. Oxygen vacancies were created by annealing samples under various gases including N2, air and mixtures of CO/CO2. All La0.6Sr0.4FeO3-δ compounds maintain the rhombohedral structure (space group R3¯c). The air- or oxygen-annealed samples have almost no oxygen vacancies while those made in the reducing atmosphere show 7%-11% oxygen vacancies. The rhombohedral distortion decreases in the reduced samples. All the samples exhibit antiferromagnetic ordering at room temperature, although a small ferromagnetic moment may also be present. The samples with little or no oxygen vacancies show a room temperature magnetic moment of ˜1.4μB at the Fe site while those having >7% oxygen vacancies show a moment of ˜4.0μB. Magnetization measurements reveal a much higher magnetic ordering temperature in samples with oxygen vacancies

  10. First-principles study of spin transition and seismic properties of ferric iron-bearing post-perovskite with oxygen vacancy

    NASA Astrophysics Data System (ADS)

    Gao, Benzhou; He, Kaihua; Chen, Qili; Wang, Xicheng; Wang, Qingbo; Wan, Miao; Ji, Guangfu

    2014-09-01

    The spin states, elastic properties and seismic velocities of ferric iron-bearing post-perovskite MgSiO3 (pPv) with single oxygen vacancy [Mg8(Si6,Fe2)O23 and Mg16(Si14,Fe2)O47] were calculated by first principles based on density functional theory. The effects of ferric iron and oxygen vacancy on seismic waves were studied for the host pPv subjected to a hydrostatic pressure. Calculations revealed a new spin transition from intermediate-spin to low-spin states with increasing pressure. As a result, the volume was reduced and the elastic constants were modified, producing a clear decrease in the seismic velocities of both compressive wave and shear wave due to the reduction of bulk modulus and shear modulus. The ferric iron and oxygen vacancy also had a minor effect on wave anisotropy.

  11. First-principles study of spin transition and seismic properties of ferric iron-bearing post-perovskite with oxygen vacancy

    NASA Astrophysics Data System (ADS)

    Gao, Benzhou; He, Kaihua; Chen, Qili; Wang, Xicheng; Wang, Qingbo; Wan, Miao; Ji, Guangfu

    2015-02-01

    The spin states, elastic properties and seismic velocities of ferric iron-bearing post-perovskite MgSiO3 (pPv) with single oxygen vacancy [Mg8(Si6,Fe2)O23 and Mg16(Si14,Fe2)O47] were calculated by first principles based on density functional theory. The effects of ferric iron and oxygen vacancy on seismic waves were studied for the host pPv subjected to a hydrostatic pressure. Calculations revealed a new spin transition from intermediate-spin to low-spin states with increasing pressure. As a result, the volume was reduced and the elastic constants were modified, producing a clear decrease in the seismic velocities of both compressive wave and shear wave due to the reduction of bulk modulus and shear modulus. The ferric iron and oxygen vacancy also had a minor effect on wave anisotropy.

  12. Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea

    NASA Astrophysics Data System (ADS)

    Große, Fabian; Greenwood, Naomi; Kreus, Markus; Lenhart, Hermann-Josef; Machoczek, Detlev; Pätsch, Johannes; Salt, Lesley; Thomas, Helmuth

    2016-04-01

    Low oxygen conditions, often referred to as oxygen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM-ECOHAM to provide a general characterisation of the different zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub-thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly productive, non-stratified coastal zone, (2) a productive, seasonally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub-thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification periods (> 60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub-thermocline volume implying both a small initial oxygen inventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen deficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification

  13. Structure and dielectric characterization of a new A-site deficient La 5/3MgTaO 6 perovskite

    NASA Astrophysics Data System (ADS)

    Khalyavin, D. D.; Senos, A. M. R.; Mantas, P. Q.; Argyriou, D. N.; Tarroso Gomes, I.; Vieira, L. G.; Ribeiro, J. L.

    2007-01-01

    The crystal structure of new A-site deficient La 5/3MgTaO 6 perovskite was investigated by neutron, X-ray and electron diffraction. Neutron and X-ray powder diffraction spectra were refined in the monoclinic I2/m space group, with the parameters of the unit cell a=5.6304(2) Å, b=5.6226(2) Å, c=7.9434(2) Å and β=90.04(1)°. This structural model presumes a random distribution of the vacancies and takes into account both a rock salt-type Mg 2+/Ta 5+ cation ordering and a-a-c0 configuration of the octahedral tilting. Electron diffraction showed that the crystal structure is more complex at the local level due to a short-range vacancy ordering. This observation in combination with the symmetry analysis leads to the conclusion that the C2/m symmetry with 2√2 ap×2√2 ap×2 ap supercell is more adequate for the description of the crystal structure in the local level. Dielectric measurements performed in a wide frequency range were correlated with the crystal structure and compared with other ordered double perovskites. Far-infrared spectroscopy was used to characterize the lattice contribution to the dielectric response at the microwave frequencies. The complex dielectric function was evaluated and extrapolated down to the gigahertz range. The effect of the vacancies on the intrinsic dielectric losses is discussed based on the spatial phonon correlation model.

  14. Underestimation of oxygen deficiency hazard through use of linearized temperature profiles

    SciTech Connect

    Kerby, J.

    1989-06-15

    The failure mode analysis for any cryogenic system includes the effects of a large liquid spill due to vessel rupture or overfilling. The Oxygen Deficiency Hazard (ODH) analysis for this event is a strong function of the estimated heat flux entering the spilled liquid. A common method for estimating the heat flux is to treat the surface on which the liquid spills as a semi-infinite solid. This note addresses the effect of linearizing the temperature profile in this form of analysis, and shows it to cause the calculated flux to be underestimated by more than a factor of two. 3 refs., 2 figs.

  15. Multiferroic Domain Walls in Ferroelectric PbTiO3 with Oxygen Deficiency.

    PubMed

    Xu, Tao; Shimada, Takahiro; Araki, Yasumitsu; Wang, Jie; Kitamura, Takayuki

    2016-01-13

    Atomically thin multiferroics with the coexistence and cross-coupling of ferroelectric and (anti)ferromagnetic order parameters are promising for novel magnetoelectric nanodevices. However, such ferroic order disappears at a critical thickness in nanoscale. Here, we show a potential path toward ultrathin multiferroics by engineering an unusual domain wall (DW)-oxygen vacancy interaction in nonmagnetic ferroelectric PbTiO3. We demonstrate from first-principles that oxygen vacancies formed at the DW unexpectedly bring about magnetism with a localized spin moment around the vacancy. This magnetism originates from the orbital symmetry breaking of the defect electronic state due to local crystal symmetry breaking at the DW. Moreover, the energetics of defects shows the self-organization feature of oxygen vacancies at the DW, resulting in a planar-arrayed concentration of magnetic oxygen vacancies, which consequently changes the deficient DWs into multiferroic atomic layers. This DW-vacancy engineering opens up a new possibility for novel ultrathin multiferroic. PMID:26654475

  16. "Ba6Nb4RuO18" and "LaBa4Nb3RuO15" - The structural consequences of substituting paramagnetic cations into AnBn-1O3n cation-deficient perovskite oxides

    NASA Astrophysics Data System (ADS)

    Kamil, Elynor L.; Morgan, Harry W. T.; Hayward, Michael A.

    2016-06-01

    The B-cation deficient perovskite phases Ba6Nb4RuO18 and LaBa4Nb3RuO15 were prepared by ceramic synthesis. Neutron powder diffraction analysis indicates that rather than the 6-layer and 5-layer cation-deficient perovskite structures expected for these phases (by analogy to the known structures of Ba6Nb4TiO18 and LaBa4Nb3TiO15) they adopt 5-layer and 4-layer B-cation deficient perovskite structures respectively, and are better described as Ba5Nb3.33Ru0.81O15 and Ba3.16La0.84Nb2.36Ru0.72O12. The factors that lead to the compositionally analogous Nb/Ru and Nb/Ti phases adopting different structures are discussed on the basis of the difference between d0 and non-d0 transition metal cations.

  17. Reactive oxygen species abrogate the anticarcinogenic effect of eicosapentaenoic acid in Atm-deficient mice.

    PubMed

    Schubert, Ralf; Reichenbach, Janine; Koch, Claudia; Kloess, Stephan; Koehl, Ulrike; Mueller, Klaus; Baer, Patrick; Beermann, Christopher; Boehles, Hansjosef; Zielen, Stefan

    2010-01-01

    Recent studies have demonstrated that n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) are able to suppress cell proliferation and inhibit tumor growth. The objective of our study was to investigate the influence of a high dose EPA on the development of the tumor phenotype in ataxia-telangiectasia mutated (Atm)-deficient mice, a genetic cancer model that is associated with increased levels of oxidative stress. We analyzed toxicity, proliferation, cell-cycle progression, and apoptosis of EPA in vitro and latency to tumorigenesis in vivo. Because of the impact of reactive oxygen species (ROS) on the tumor incidence in ataxia telangiectasia (AT), we further analyzed the effect of EPA on the generation of ROS and oxidative DNA damage (ODD). EPA effectively inhibited proliferation, altered cell-cycle progression, and induced apoptosis of tumor cells (AT-4). EPA showed no effect on the latency to tumorigenesis in Atm-deficient mice. EPA treatment was accompanied by a significant increase of ROS and ODD. Our results demonstrate the antiproliferative effect of EPA on tumor cells by alteration of cell-cycle progression and induction of apoptosis in vitro. On the other hand, EPA treatment of Atm-deficient mice led to the formation of ROS and accumulation of ODD that might have abrogated the anticarcinogenic effect caused by EPA. PMID:20574919

  18. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    PubMed

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-01-01

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism. PMID:24751601

  19. Manganese Deficiency Can Replace High Oxygen Levels Needed for Lignin Peroxidase Formation by Phanerochaete chrysosporium

    PubMed Central

    Rothschild, Nathan; Levkowitz, Ayala; Hadar, Yitzhak; Dosoretz, Carlos G.

    1999-01-01

    The combined effects of Mn and oxygen on lignin peroxidase (LIP) activity and isozyme composition in Phanerochaete chrysosporium were studied by using shallow stationary cultures grown in the presence of limited or excess N. When no Mn was added, LIP was formed in both N-limited and N-excess cultures exposed to air, but no LIP activity was observed at Mn concentrations greater than 13 mg/liter. In oxygen-flushed, N-excess cultures, LIP was formed at all Mn concentrations, and the peak LIP activity values in the extracellular fluid were nearly identical in the presence of Mn concentrations ranging from 3 to 1,500 mg/liter. When the availability of oxygen to cultures exposed to air was increased by growing the fungus under nonimmersed liquid conditions, higher levels of Mn were needed to suppress LIP formation compared with the levels needed in shallow stationary cultures. The composition of LIP isozymes was affected by the levels of N and Mn. Addition of veratryl alcohol to cultures exposed to air did not eliminate the suppressive effect of Mn on LIP formation. A deficiency of Mn in N-excess cultures resulted in lower biomass and a lower rate of glucose consumption than in the presence of Mn. In addition, almost no activity of the antioxidant enzyme Mn superoxide dismutase was observed in Mn-deficient, N-excess cultures, but the activity of this enzyme increased as the Mn concentration increased from 3 to 13 mg/liter. No Zn/Cu superoxide dismutase activity was observed in N-excess cultures regardless of the Mn concentration. PMID:9925572

  20. Distribution change of oxygen vacancies in layered perovskite type(Sr, La){sub n+1}Fe{sub n}O{sub 3n+1} (n=3)

    SciTech Connect

    Kagomiya, Isao Jimbo, Keigo; Kakimoto, Ken-ichi

    2013-11-15

    To elucidate characteristic oxygen vacancy formation in layered perovskite (Sr, La){sub n+1}Fe{sub n}O{sub 3n+1} with the perovskite layer number: n=3, oxygen vacancy content δ of the (Sr{sub 0.775}La{sub 0.225}){sub 4}Fe{sub 3}O{sub 10−δ} (SLF4310) was investigated using a titration technique and a thermogravimetric analysis. The equilibrium constant K for the reduction reaction: Oo{sup ×}+2Fe{sub Fe}{sup ∙} (Fe{sup 4+})=1/2O{sub 2}+Vo{sup ∙∙}+2Fe{sub Fe}{sup ×}(Fe{sup 3+}) was estimated using the vacancy content δ. The Arrhenius plot of the K reveals slope change at approximately 775 °C. From the Rietveld analysis, the oxygen vacancies are the most remarkable at the O2 (O4) sites at lower (higher) temperatures than about 800 °C, which temperature is approximately comparable with that of slope change in the K. These facts mean that distribution of vacancy sites in the SLF4310 changes at approximately 775 °C, accompanying no structural phase transition. The vacancy distribution change affects to the ion conductivity of the SLF4310. - Graphical abstract: Crystal structure of (Sr{sub 0.775}La{sub 0.225}){sub 4}Fe{sub 3}O{sub 10−δ} (SLF4310) at 1000 °C. Display Omitted - Highlights: • Distribution change of oxygen vacancies is appeared at approximately 775 °C. • The distribution change with no structure phase transition is the first observation. • The vacancy distribution change affects the ion conductivity of the SLF4310.

  1. Plentiful magnetic moments in oxygen deficient SrTiO3.

    SciTech Connect

    Lopez Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter B.

    2015-10-01

    Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO3. Hole and electron doping of oxygen deficient SrTiO3 yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defected sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO3-d is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments in the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.

  2. Research Update: Plentiful magnetic moments in oxygen deficient SrTiO{sub 3}

    SciTech Connect

    Lopez-Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter B.

    2015-10-01

    Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO{sub 3}. Hole and electron doping of oxygen deficient SrTiO{sub 3} yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defect sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO{sub 3−δ} is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments in the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono- and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.

  3. Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Triana, C. A.; Granqvist, C. G.; Niklasson, G. A.

    2015-07-01

    Thin films of Li x WO 3 - z with 0 ≤ x ≤ 0.27 and 0 ≤ z ≤ 0.27 were prepared by sputter deposition followed by electrochemical lithiation. Kramers-Kronig-consistent complex dielectric functions were obtained for these films by numerical inversion of experimental spectra of optical transmittance and reflectance by using a superposition of Tauc-Lorentz and Lorentz oscillator models. Low-energy optical absorption bands were induced by oxygen vacancies and/or by electrochemical intercalation of Li+ species together with charge compensating electrons. The experimental optical conductivity was fitted to a small-polaron model for disordered systems with strong electron-phonon interaction, taking into account transitions near the Fermi level. The optical absorption is due to small-polaron hopping and associated with the formation of W5+ states due to transfer of electrons from oxygen vacancies and/or insertion of Li+ species. The results also show increases in the Fermi level, caused by oxygen deficiency or Li+ insertion, which occur along with a band gap shift towards higher energies for the Li+ intercalated films.

  4. Oxygen deficiency and Sn doping of amorphous Ga2O3

    NASA Astrophysics Data System (ADS)

    Heinemann, M. D.; Berry, J.; Teeter, G.; Unold, T.; Ginley, D.

    2016-01-01

    The potential of effectively n-type doping Ga2O3 considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaOx is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaOx thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence on the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaOx layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaOx as an electron transport layer in Cu(In,Ga)Se2 and in Cu2O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.

  5. Research Update: Plentiful magnetic moments in oxygen deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter B.

    2015-10-01

    Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO3. Hole and electron doping of oxygen deficient SrTiO3 yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defect sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO3-δ is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments in the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono- and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.

  6. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-01

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa. PMID:26742465

  7. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Noked, O.; Kantor, I.; Joseph, B.; Mathon, O.; Shuker, R.; Kennedy, B. J.; Pascarelli, S.; Sterer, E.

    2016-02-01

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb5+ towards Nb4+ above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ˜14.5 GPa.

  8. Oxygen rocking aqueous batteries utilizing reversible topotactic oxygen insertion/extraction in iron-based perovskite oxides Ca1–xLaxFeO3−δ

    PubMed Central

    Hibino, Mitsuhiro; Kimura, Takeshi; Suga, Yosuke; Kudo, Tetsuichi; Mizuno, Noritaka

    2012-01-01

    Developments of large-scale energy storages with not only low cost and high safety but also abundant metals are significantly demanded. While lithium ion batteries are the most successful method, they cannot satisfy all conditions. Here we show the principle of novel lithium-free secondary oxygen rocking aqueous batteries, in which oxygen shuttles between the cathode and anode composed of iron-based perovskite-related oxides Ca0.5La0.5FeOz (2.5 ≤ z ≤ 2.75 and 2.75 ≤ z ≤ 3.0). Compound Ca0.5La0.5FeOz can undergo two kinds of reduction and reoxidation of Fe4+/Fe3+ and Fe3+/Fe2+, that are accompanied by reversible and repeatable topotactic oxygen extraction and reinsertion during discharge and charge processes. PMID:22924108

  9. Effect of Oxygen-deficiencies on Resistance Switching in Amorphous YFe0.5Cr0.5O3−d films

    PubMed Central

    Wang, Xianjie; Hu, Chang; Song, Yongli; Zhao, Xiaofeng; Zhang, Lingli; Lv, Zhe; Wang, Yang; Liu, Zhiguo; Wang, Yi; Zhang, Yu; Sui, Yu; Song, Bo

    2016-01-01

    Herein, we demonstrate the contribution of the oxygen-deficiencies on the bipolar resistance switching (RS) properties of amorphous-YFe0.5Cr0.5O3−d (a-YFCO) films. The a-YFCO films were prepared under various oxygen pressures to tune the concentration of oxygen-deficiencies in the films. The XPS data verify that the oxygen-deficiencies increase with decreasing oxygen pressure. The RS property becomes more pronounced with more oxygen-deficiencies in a-YFCO films. Based on the Ohmic conduction measurements in the low resistance state, we confirm that the RS mechanism is related to the migration of oxygen-deficiencies. The enhanced RS and long retention in a-YFCO suggest a great potential for applications in nonvolatile memory devices. PMID:27452114

  10. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.

    PubMed

    Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M

    2016-01-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors. PMID:27364139

  11. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    NASA Astrophysics Data System (ADS)

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n‑1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n‑1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  12. Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films

    SciTech Connect

    Thoegersen, Annett; Rein, Margrethe; Monakhov, Edouard; Mayandi, Jeyanthinath; Diplas, Spyros

    2011-06-01

    The atomic structure and composition of noninterfacial ITO and ITO-Si interfaces were studied with transmission electron microscopy and x-ray photoelectron spectroscopy (XPS). The films were deposited by dc magnetron sputtering on monocrystalline p-type (100) Si wafers. Both as deposited and heat treated films consisted of crystalline ITO. The ITO/Si interface showed a more complicated composition. A thin layer of SiO{sub x} was found at the ITO/Si interface together with In and Sn nanoclusters, as well as highly oxygen deficient regions, as observed by XPS. High energy electron exposure of this area crystallized the In nanoclusters and at the same time increased the SiO{sub x} interface layer thickness.

  13. Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)

    NASA Astrophysics Data System (ADS)

    Peery, Travis

    2013-06-01

    The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.

  14. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    PubMed Central

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    2016-01-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n−1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n−1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors. PMID:27364139

  15. Polyketide Quinones Are Alternate Intermediate Electron Carriers during Mycobacterial Respiration in Oxygen-Deficient Niches.

    PubMed

    Anand, Amitesh; Verma, Priyanka; Singh, Anil Kumar; Kaushik, Sandeep; Pandey, Rajesh; Shi, Ce; Kaur, Harneet; Chawla, Manbeena; Elechalawar, Chandra Kumar; Kumar, Dhirendra; Yang, Yong; Bhavesh, Neel S; Banerjee, Rajkumar; Dash, Debasis; Singh, Amit; Natarajan, Vivek T; Ojha, Anil K; Aldrich, Courtney C; Gokhale, Rajesh S

    2015-11-19

    Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygen-rich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology. PMID:26585386

  16. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment

    NASA Astrophysics Data System (ADS)

    Singh, Aadesh P.; Kodan, Nisha; Mehta, Bodh R.

    2016-05-01

    The effect of thermal treatment on TiO2 thin films under oxygen deficient environment (5% H2 in Ar) at partial pressure of 2 × 10-2 Torr have been studied for photoelectrochemical (PEC) water splitting application. Thermal treatment in anatase TiO2 thin films exhibits a shift in optical absorption from UV to visible region and activates TiO2 for water splitting application under visible light. X-ray photoelectron spectroscopy results showed that the thermal treated thin films contain oxygen vacancies, which suggests improved charge transport. Optical absorption, X-ray spectroscopy (XPS) and Kelvin probe force microscope (KPFM) studies show reduction in band gap by 0.36 eV, shift in valence band maximum by 0.49 eV towards the Fermi level and work function values by 0.3 eV towards the vacuum level. The pristine TiO2 thin films exhibit very less photoactivity in terms of photocurrent density, whereas thermally treated thin films displayed a markedly enhanced photocurrent density of ∼2.41 mA/cm2 at 0.23 V vs. Ag/AgCl. Higher values of photocurrent density in thermal treated TiO2 films have been explained in terms of change in the optical and electrical properties along with energy band diagram.

  17. Diffusion of gases in air and its affect on oxygen deficiency hazard abatement

    SciTech Connect

    Theilacker, J.C.; White, M.J.; /Fermilab

    2005-09-01

    Density differences between air and released gases of cryogenic systems have been used to either require special oxygen deficiency hazard (ODH) control measures, or as a means of abatement. For example, it is not uncommon to assume that helium spills will quickly collect at the ceiling of a building or enclosure and will efficiently exit at the nearest vertical penetration or vent. Oxygen concentration reduction was found to be detectable during a localized helium spill throughout the entire 6.3 km Tevatron tunnel. This prompted us to perform diffusion tests in air with common gases used at Fermilab. The tests showed that gases, more readily than expected, diffused through an air column in the direction opposing buoyancy. Test results for helium and sulfur hexafluoride are presented. A system of tests were performed to better understand how easily released gases would fully mix with air and whether they remained fully mixed. The test results have been applied to a new system at Fermilab for ODH abatement.

  18. Oxygen-Deficient Zirconia (ZrO2-x): A New Material for Solar Light Absorption.

    PubMed

    Sinhamahapatra, Apurba; Jeon, Jong-Pil; Kang, Joonhee; Han, Byungchan; Yu, Jong-Sung

    2016-01-01

    Here, we present oxygen-deficient black ZrO2-x as a new material for sunlight absorption with a low band gap around ~1.5 eV, via a controlled magnesiothermic reduction in 5% H2/Ar from white ZrO2, a wide bandgap(~5 eV) semiconductor, usually not considered for solar light absorption. It shows for the first time a dramatic increase in solar light absorbance and significant activity for solar light-induced H2 production from methanol-water with excellent stability up to 30 days while white ZrO2 fails. Generation of large amounts of oxygen vacancies or surface defects clearly visualized by the HR-TEM and HR-SEM images is the main reason for the drastic alteration of the optical properties through the formation of new energy states near valence band and conduction band towards Fermi level in black ZrO2-x as indicated by XPS and DFT calculations of black ZrO2-x. Current reduction method using Mg and H2 is mild, but highly efficient to produce solar light-assisted photocatalytically active black ZrO2-x. PMID:27264788

  19. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  20. Decomposition of CO{sub 2} to carbon using oxygen-deficient Zn(II)-bearing ferrite

    SciTech Connect

    Tabata, M.; Kato, H.; Tsuji, M.; Tamaura, Y.

    1994-12-31

    Oxygen-deficient Zn(II)-bearing ferrites (Zn{sub x}Fe{sub 3{minus}x}O{sub 4{minus}{delta}}, O {le} x {le} 1, {delta} > 0) have been synthesized and studied for their reactivity in the decomposition of CO{sub 2} to carbon at 300 C. They were prepared by reducing Zn(II)-bearing ferrites with H{sub 2} gas at 300 C. The oxygen-deficient Zn(II)-bearing ferrites consisted of a single phase of a spinel-type structure which was oxygen-deficient compared with their stoichiometric compositions. Their lattice constants were larger than those of the corresponding stoichiometric spinels. Decomposition of CO{sub 2} to carbon proceeded accompanied by an oxidation of the oxygen-deficient Zn(II)-bearing ferrite. The amount of carbon deposited on the ferrite decreased when Zn content in Zn(II)-bearing ferrite increased. The decrease in the amount of carbon deposited is due to changes in the electron conductivity according to the Zn content in Zn(II)-bearing ferrite. These changes contribute to their reactivity for decomposition of CO{sub 2} to carbon.

  1. Electrochromic coloration efficiency of a-WO[sub 3[minus]y] thin films as a function of oxygen deficiency

    SciTech Connect

    Lee, S.; Cheong, H.M.; Tracy, C.E.; Mascarenhas, A.; Czanderna, A.W.; Deb, S.K. )

    1999-09-01

    We report on how electrochromic coloration is affected by oxygen deficient stoichiometries in sputtered amorphous tungsten oxide (a-WO[sub 3[minus]y]) films. The electrochromic coloration efficiency increases with increasing oxygen deficiency in (a-WO[sub 3[minus]y]) films. No coloration is observed in nearly stoichiometric WO[sub 3] films. Raman spectroscopic studies reveal that the number of W[sup 5+] states generated with lithium insertion increases with the oxygen deficiency. Furthermore, there are no Raman peaks resulting from W[sup 5+] states in lithiated a-WO[sub 3[minus]y] films with near perfect stoichiometry, which is consistent with the absence of electrochromic coloration in those films. We conclude that the coloration efficiency of a-WO[sub 3[minus]y] films depends on the number of the W[sup 5+] states generated by lithium insertion and that the oxygen deficiency plays an important role in generating the W[sup 5+] states with lithium insertion. [copyright] [ital 1999 American Institute of Physics.

  2. Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.

    PubMed

    Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linhui; Xu, Zhichuan

    2015-12-01

    An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31 nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al-O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. PMID:26511473

  3. Synthesis and characterization of A-site deficient rare-earth doped BaZr xTi 1- xO 3 perovskite-type compounds

    NASA Astrophysics Data System (ADS)

    Ostos, C.; Mestres, L.; Martínez-Sarrión, M. L.; García, J. E.; Albareda, A.; Perez, R.

    2009-05-01

    A-site deficient rare-earth doped BaZr xTi 1- xO 3 (BZT) ceramics were prepared from a soft-chemistry route and by solid-state reaction (SSR). Perovskite-like single-phase diagrams for the BaTiO 3-La 2/3TiO 3-BaZrO 3 system were constructed for each method of synthesis. Infrared spectroscopy on (Ba 1- yLa 2 y/3 )Zr xTi 1- xO 3 solid solution revealed a dramatic stress on the M-O (M = Ti, Zr) bonds due to the combined effect of A-site vacancies and the lower ionic radius of La 3+ than that of Ba 2+. A relationship between the M-O stretching vibration ( υ) and the tolerance factor ( t) was determined. (Ba 1- yLn 2 y/3 )Zr 0.09Ti 0.91O 3 (Ln = La, Pr, Nd) samples synthesized by SSR were selected for detailed studies. X-ray diffraction data were refined by the Rietveld method. Scanning electron microscopy on sintered compacts detected abnormal crystal growth and grain sizes in the range of about 1 μm up to 10 μm when the dopant concentration is 6.7 at. %. Impedance measurements exhibited that ferroelectric to paraelectric phase-transition temperature shifted to lower values as increasing rare-earth content. (Ba 1- yLn 2 y/3 )Zr 0.09Ti 0.91O 3 system showed a diffuse phase transition with a relaxor-like ferroelectric behaviour. Furthermore, the dielectric constant was enhanced with respect to non-doped BZT system.

  4. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10{sup −4} millibars

    SciTech Connect

    Premper, J.; Sander, D.; Kirschner, J.

    2015-03-15

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10{sup −4} millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs.

  5. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10(-4) millibars.

    PubMed

    Premper, J; Sander, D; Kirschner, J

    2015-03-01

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10(-4) millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs. PMID:25832240

  6. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    NASA Astrophysics Data System (ADS)

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These TinO2n-1 Magnéli phases present well-defined crystalline structures, i. e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with the same electronic transitions akin to interstitial Ti defect levels in TiO2-rutile. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: 1/2 per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors. We thank financial support from FAPESP and CNPq.

  7. Metallic-like to nonmetallic transitions in a variety of heavily oxygen deficient ferroelectrics

    SciTech Connect

    Bock, Jonathan A.; Trolier-McKinstry, Susan; Randall, Clive A.; Lee, Soonil

    2015-08-31

    The coupling between ferroelectric distortions and electron transport is an important factor in understanding ferroelectric/noncentrosymmetric materials with metallic conductivities and ferroelectric-based thermoelectrics. Here, multiple d{sup 0} ferroelectrics with a variety of crystal structures are doped via oxygen deficiency, resulting in metallic-like conduction in the paraelectric state. It is found that most of the studied systems show a metallic-like to nonmetallic transition near the paraelectric-ferroelectric transition. The metallic-like to nonmetallic transition temperature can be shifted using mechanisms that shift the paraelectric-ferroelectric transition temperature. It was found that the metallic-like to nonmetallic transition temperature could be shifted from 373 K to 273 K by varying (Ba{sub 1−x}Sr{sub x})TiO{sub 3−δ} from x = 0 to x = 0.3 and x = 1. The most probable mechanism for ferroelectric-electron transport coupling was determined to be Anderson localization associated with polarization with short-range order.

  8. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.

    PubMed

    Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui

    2015-10-14

    Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts. PMID:26418118

  9. First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1-xSrxCo1-yFeyO3-δ Perovskites

    SciTech Connect

    Merkle, Rotraut; Mastrikov, Yuri A.; Kotomin, Eugene A.; Kuklja, Maija M.; Maier, Joachim

    2012-01-01

    Based on first principles DFT calculations, we analyze oxygen vacancy formation and migration energies as a function of chemical composition in complex multicomponent (Ba,Sr)(Co,Fe)O3-δ perovskites which are candidate materials for SOFC cathodes and permeation membranes. The atomic relaxation, electronic charge redistribution and energies of the transition states of oxygen migration are compared for several perovskites to elucidate the atomistic reason for the exceptionally low migration barrier in Ba0.5Sr0.5Co0.8Fe0.2O3-δ that was previously determined experimentally. The critical comparison of Ba1-xSrxCo1-yFeyO3-δ perovskites with different cation compositions and arrangements shows that in addition to the geometric constraints the electronic structure plays a considerable role for the height of the oxygen migration barrier in these materials. These findings help understand advantages and limitations of the fast oxygen permeation and exchange properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ.

  10. Subtle local structural variations in oxygen deficient niobium germanate thin film glasses as revealed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahiner, M. A.; Nabizadeh, A.; Rivella, D.; Cerqueira, L.; Hachlica, J.; Morea, R.; Gonzalo, J.; Woicik, J. C.

    2016-05-01

    The local electronic and crystal structure of niobium-lead-germanate, Nb2O5-PbO- GeO2 (NPG), glass thin films on silicon substrates were probed by XANES and EXAFS. NPG glasses are promising candidates for applications in nonlinear optical devices because they exhibit interesting optical characteristics such as high nonlinear third order optical susceptibility. In this work NPG glasses were prepared with pulsed laser deposition method with varying oxygen partial pressure to induce thin films with different oxygen stoichiometry. Previously, it was shown that oxygen stoichiometry has a very important effect to produce unusual high optical susceptibility. Detailed EXAFS and XANES analyses in a series of NPG thin films revealed the subtle variations in the local environment around Nb atoms and the Nb oxidation states caused by oxygen deficiencies.

  11. Fatty Acid Binding Protein 4 Deficiency Protects against Oxygen-Induced Retinopathy in Mice

    PubMed Central

    Saint-Geniez, Magali; Ghelfi, Elisa; Liang, Xiaoliang; Yu, Chenwei; Spencer, Carrie; Abend, Stephanie; Hotamisligil, Gokhan; Cataltepe, Sule

    2014-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4−/− mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4−/− OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies. PMID:24802082

  12. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice.

    PubMed

    Saint-Geniez, Magali; Ghelfi, Elisa; Liang, Xiaoliang; Yu, Chenwei; Spencer, Carrie; Abend, Stephanie; Hotamisligil, Gokhan; Cataltepe, Sule

    2014-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4-/- mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4-/- OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies. PMID:24802082

  13. Spin texture induced by oxygen vacancies in strontium perovskite (001) surfaces: A theoretical comparison between SrTiO3 and SrHfO3

    NASA Astrophysics Data System (ADS)

    Garcia-Castro, A. C.; Vergniory, M. G.; Bousquet, E.; Romero, A. H.

    2016-01-01

    The electronic structure of SrTiO3 and SrHfO3 (001) surfaces with oxygen vacancies is studied by means of first-principles calculations. We reveal how oxygen vacancies within the first atomic layer of the SrTiO3 surface (i) induce a large antiferrodistortive motion of the oxygen octahedra at the surface, (ii) drive localized magnetic moments on the Ti 3 d orbitals close to the vacancies, and (iii) form a two-dimensional electron gas localized within the first layers. The analysis of the spin texture of this system exhibits a splitting of the energy bands according to the Zeeman interaction, lowering of the Ti 3 dx y level in comparison with dx z and dy z, and also an in-plane precession of the spins. No Rashba-like splitting for the ground state or for the ab initio molecular dynamics trajectory at 400 K is recognized as suggested recently by A. F. Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Instead, a sizable Rashba-like splitting is observed when the Ti atom is replaced by a heavier Hf atom with a much larger spin-orbit interaction. However, we observe the disappearance of the magnetism and the surface two-dimensional electron gas when full structural optimization of the SrHfO3 surface is performed. Our results uncover the sensitive interplay of spin-orbit coupling, atomic relaxations, and magnetism when tuning these Sr-based perovskites.

  14. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean

    USGS Publications Warehouse

    Dean, W.E.; Claypool, G.E.; Thide, J.

    1984-01-01

    and intercepts of C-S regression lines however, are different for each site and all are different from regression lines for samples from modern anoxic marine sediments and from Black Sea cores. The organic-carbon-rich limestones on Hess Rise, the Mid-Pacific Mountains, and other plateaus and seamounts in the Pacific Ocean are not synchronous but do occur within the same general middle Cretaceous time period as organic-carbon-rich lithofacies elsewhere in the world ocean, particularly in the Atlantic Ocean. Strata of equivalent age in the deep basins of the Pacific Ocean are not rich in organic carbon, and were deposited in oxygenated environments. This observation, together with the evidence that the plateau sites were considerably shallower and closse to the equator during the middle Creataceous suggests that local tectonic and hydrographic conditions may have resulted in high surface-water productivity and the preservation of organic matter in an oxygen-deficient environment where an expanded mid-water oxygen minimum developed and impinged on elevated platforms and seamounts. ?? 1984.

  15. Oxygen-vacancy concentration in A{sub 2}MgMoO{sub 6-{delta}} double-perovskite oxides

    SciTech Connect

    Matsuda, Y.; Karppinen, M.; Yamazaki, Y.; Yamauchi, H.

    2009-07-15

    Accurate oxygen-content analysis by means of a coulometric redox titration method specially devised for the purpose shows that as-synthesized (in 5% H{sub 2}/Ar) samples of the recently reported novel solid oxide fuel cells anode material Sr{sub 2}MgMoO{sub 6-{delta}} contain oxygen vacancies with a concentration of {delta}{approx}0.05. Oxygen contents and the resultant Mo-valence values are also analyzed for various A{sub 2}MgMoO{sub 6-{delta}} samples in order to reveal both the isovalent and aliovalent A-site cation substitution effects. - Graphical Abstract: A highly reproducible coulometric redox titration method has been developed to accurately analyze the mixed V/VI valence state of molybdenum and thereby the oxygen content in the recently reported SOFC-anode materials of A{sub 2}MgMoO{sub 6-{delta}}.

  16. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Yang, Guoquan; Feng, Jie; Sun, Wang; Dai, Ningning; Hou, Mingyue; Hao, Xiaoming; Qiao, Jinshuo; Sun, Kening

    2014-12-01

    As the cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs), A-site deficient SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) (SxFM) materials have been successfully synthesized using the sol-gel combustion method. In the perovskite structure of these oxides, the unit cell varies from pseudocubic to cubic with increasing deficiency. Thermal expansion coefficient of SxFM has also been measured and compared with that of Scandium-stabilized zirconium (ScSZ) electrolyte. X-ray photoelectron spectroscopy (XPS) results indicate that the Sr-deficiency has changed the proportion of Fe2+/Fe3+ and Mo6+/Mo5+ ratios, which directly influences the conductivity of SxFM materials. S1.950FM possesses the largest electrical conductivity and the lowest polarization resistance (Rp) among all the samples. The maximum power densities of a single cell with the S1.950FM cathode reaches 1083 mW cm-2, and the area specific resistance value is 0.17 Ω cm2 at 800 °C. These results indicate that the A-site deficiency could promote the electrochemical performance of SFM materials as cathodes for IT-SOFCs.

  17. Giant oxygen isotope effect on the metal-insulator transition of RNiO{sub 3} perovskites

    SciTech Connect

    Medarde, M.; Fauth, F.; Furrer, A.; Lacorre, P.; Conder, K.

    1998-08-01

    The metal to insulator transition displayed by all the members of the perovskite family RNiO{sub 3} (R = 4f rare earth different from La) has attracted a lot of interest since it constitutes one of the few examples of this phenomenon in perfectly stoichiometric compounds. In spite of the great deal of work performed during the last six years, the mechanism responsible for the electronic localization is still a matter of controversy. The observation of unusually large O isotope shifts on the metal-insulator temperature T{sub MI} reported in this study represents an important advance since it clearly proves the dominant role of the electron lattice interaction as driving force for the transition. Moreover, the good agreement between this observation and a simple model based on the existence of Jahn-Teller polarons in the metallic state gives further qualitative and quantitative support to the polaronic picture recently suggested to account for O isotope effects in other 3d transition metal oxides containing Jahn-Teller ions.

  18. Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells

    PubMed Central

    Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurišić, Aleksandra B.; Leung, Wallace Woon-fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles

    2014-01-01

    We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm2, and fill factor 0.64 had been achieved for our champion device. PMID:25341527

  19. Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurišić, Aleksandra B.; Leung, Wallace Woon-Fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles

    2014-10-01

    We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm2, and fill factor 0.64 had been achieved for our champion device.

  20. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO2(111) surfaces.

    PubMed

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I; Karakoti, Ajay S; Wang, Wenliang; Yang, Ping; Thevuthasan, S

    2016-06-21

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO2(111) surface was obtained by annealing the thin film under 2.0 × 10(-5) Torr of oxygen at ∼550 °C for 30 min. In order to reduce the CeO2(111) surface, the thin film was annealed under ∼5.0 × 10(-10) Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface. The saturated TMAA coverage on the CeO2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO2-δ(111) surface through dissociative adsorption. PMID:27220740

  1. Cerebral perfusion and oxygenation are impaired by folate deficiency in rat: absolute measurements with noninvasive near-infrared spectroscopy

    PubMed Central

    Hallacoglu, Bertan; Sassaroli, Angelo; Fantini, Sergio; Troen, Aron M

    2011-01-01

    Brain microvascular pathology is a common finding in Alzheimer's disease and other dementias. However, the extent to which microvascular abnormalities cause or contribute to cognitive impairment is unclear. Noninvasive near-infrared spectroscopy (NIRS) can address this question, but its use for clarifying the role of microvascular dysfunction in dementia has been limited due to theoretical and practical considerations. We developed a new noninvasive NIRS method to obtain quantitative, dynamic measurements of absolute brain hemoglobin concentration and oxygen saturation and used it to show significant cerebrovascular impairments in a rat model of diet-induced vascular cognitive impairment. We fed young rats folate-deficient (FD) and control diets and measured absolute brain hemoglobin and hemodynamic parameters at rest and during transient mild hypoxia and hypercapnia. With respect to control animals, FD rats featured significantly lower brain hemoglobin concentration (72±4 μmol/L versus 95±6 μmol/L) and oxygen saturation (54%±3% versus 65%±2%). By contrast, resting arterial oxygen saturation was the same for both groups (96%±4%), indicating that decrements in brain hemoglobin oxygenation were independent of blood oxygen carrying capacity. Vasomotor reactivity in response to hypercapnia was also impaired in FD rats. Our results implicate microvascular abnormality and diminished oxygen delivery as a mechanism of cognitive impairment. PMID:21386853

  2. Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3?

    NASA Astrophysics Data System (ADS)

    Metlenko, Veronika; Ramadan, Amr H. H.; Gunkel, Felix; Du, Hongchu; Schraknepper, Henning; Hoffmann-Eifert, Susanne; Dittmann, Regina; Waser, Rainer; de Souza, Roger A.

    2014-10-01

    The transport properties of edge dislocations comprising a symmetrical 6° [001] tilt grain boundary in weakly acceptor-doped SrTiO3 were investigated by means of various experimental and computational techniques. Oxygen transport along the dislocation array was probed by means of 18O/16O exchange experiments under (standard) oxidising conditions (pO2 = 5 × 10-1 bar) and also under reducing conditions (pO2 = 7 × 10-22 bar) at T = 973 K. In both cases, isotope profiles obtained by Secondary Ion Mass Spectrometry (SIMS) indicated no evidence of fast diffusion along the dislocation array. Charge transport across the dislocation array was probed in equilibrium electrical conductivity measurements as a function of oxygen partial pressure, 10-23 <= pO2/bar <= 1 at temperatures of T/K = 950, 1050, 1100. A significant decrease in the conductivity of the bicrystal (relative to that of a single crystal) was observed under oxidising conditions, but not under reducing conditions. These studies were complemented by static lattice simulations employing empirical pair-potentials. The simulations predict, that the tilt boundary comprises two types of dislocation cores, that the formation of oxygen vacancies is energetically preferred at both cores relative to the bulk, and that the migration of oxygen ions along both cores is hindered relative to the bulk. Combining all results and literature reports, we present a comprehensive and consistent picture of the transport properties of dislocations in SrTiO3.

  3. Can oxygen deficient SmFeAsO1 - x be synthesized?: Unintentional incorporation of hydride ion at oxygen vacancy site

    NASA Astrophysics Data System (ADS)

    Muraba, Yoshinori; Iimura, Soshi; Matsuishi, Satoru; Hosono, Hideo

    Hydrogen substitution and introduction of oxygen vacancy are effective electron doping methods for the LnFeAsO. However, their Tc vs e-/Fe diagrams do not entirely overlap each other, while Tc vs lattice dimension relationships are very similar. These contradictions can be understood by assuming that unintentional hydrogen is incorporated into the oxygen vacancy. To examine the preferred electron-dopant species in LnFeAsO and the influence of the atmosphere during synthesis on the formation of LnFeAsO1- x , we try to synthesize the SmFeAsO1- x under three well-controlled atmosphere (H2O, H2 and H2O- and H2-free). Under H2O and H2 atmosphere, hydrogen were incorporated at oxygen sites as the hydride ion and SmFeAsO1- x Hx was formed. On the other hand, when H2O and H2 were removed from synthetic process, nearly stoichiometric SmFeAsO was formed. Furthermore, DFT calculations showed that H-substituted samples are more stable than oxygen deficient samples. These results strongly imply that the reported LnFeAsO1- x was contaminated with unintentional hydrogen and LnFeAsO1- x Hx was misidentified as LnFeAsO1- x .

  4. Oxygen-Deficient TiO2 - x/Methylene Blue Colloids: Highly Efficient Photoreversible Intelligent Ink.

    PubMed

    Imran, M; Yousaf, Ammar B; Zhou, Xiao; Liang, Kuang; Jiang, Yi-Fan; Xu, An-Wu

    2016-09-01

    Oxygen-sensitive photoreversible intelligent ink capable of assessment with the human eye is an ongoing demand in the modern era. In the food industry, redox-dye-based oxygen indicator films have been proposed, but the leaching of dyes from the film that contaminates the food is one unsolved issue. On the other hand, it is also highly desirable to develop rewritable paper that significantly reduces the pressure on modern society for the production and consumption of paper. Herein, we have developed an oxygen-deficient TiO2 - x/methylene blue (MB) sol without relying on external sacrificial electron donors (SEDs) for photoreversible color switching. Oxygen vacancies in TiO2 - x can work as electron donor to favor the adsorption of the substrate and improve the charge separation that is required for the redox-based color-switching system. The problems of rewriteable paper and food packaging are addressed as two sides of a single coin in this article. We have used hydroxyethyl cellulose (HEC) for rewritable paper that can significantly delay the oxidation of leuco-MB (LMB) through hydrogen bonding and retain the printed information for a long time. The dye leaching from oxygen indicator films is also significantly reduced (only 1.54%) by using furcelleran as the coating polymer that is extracted from edible red seaweed. PMID:27556281

  5. Kinetics of oxygen reduction in perovskite cathodes for solid oxide fuel cells: A combined modeling and experimental approach

    NASA Astrophysics Data System (ADS)

    Miara, Lincoln James

    Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The

  6. Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3?

    PubMed

    Metlenko, Veronika; Ramadan, Amr H H; Gunkel, Felix; Du, Hongchu; Schraknepper, Henning; Hoffmann-Eifert, Susanne; Dittmann, Regina; Waser, Rainer; De Souza, Roger A

    2014-11-01

    The transport properties of edge dislocations comprising a symmetrical 6° [001] tilt grain boundary in weakly acceptor-doped SrTiO3 were investigated by means of various experimental and computational techniques. Oxygen transport along the dislocation array was probed by means of (18)O/(16)O exchange experiments under (standard) oxidising conditions (pO2 = 5 × 10(-1) bar) and also under reducing conditions (pO2 = 7 × 10(-22) bar) at T = 973 K. In both cases, isotope profiles obtained by Secondary Ion Mass Spectrometry (SIMS) indicated no evidence of fast diffusion along the dislocation array. Charge transport across the dislocation array was probed in equilibrium electrical conductivity measurements as a function of oxygen partial pressure, 10(-23) ≤ pO2/bar ≤ 1 at temperatures of T/K = 950, 1050, 1100. A significant decrease in the conductivity of the bicrystal (relative to that of a single crystal) was observed under oxidising conditions, but not under reducing conditions. These studies were complemented by static lattice simulations employing empirical pair-potentials. The simulations predict, that the tilt boundary comprises two types of dislocation cores, that the formation of oxygen vacancies is energetically preferred at both cores relative to the bulk, and that the migration of oxygen ions along both cores is hindered relative to the bulk. Combining all results and literature reports, we present a comprehensive and consistent picture of the transport properties of dislocations in SrTiO3. PMID:25263456

  7. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions

    PubMed Central

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-01-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits. PMID:27403611

  8. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions

    NASA Astrophysics Data System (ADS)

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-07-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits.

  9. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions.

    PubMed

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-01-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits. PMID:27403611

  10. Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films

    NASA Astrophysics Data System (ADS)

    Triana, C. A.; Granqvist, C. G.; Niklasson, G. A.

    2016-01-01

    Optical absorption in oxygen-deficient and Li+-ion inserted titanium oxide films was studied in the framework of small-polaron hopping. Non-stoichiometric TiOy films with 1.68 ≤ y ≤ 2.00 were deposited by reactive DC magnetron sputtering and were subjected to electrochemical intercalation of Li+-ions and charge-balancing electrons to obtain LixTiOy films with 0.12 ≤ x ≤ 0.34. Dispersion analysis was applied to calculate the complex dielectric function ɛ(ℏω) ≡ ɛ1(ℏω) + i ɛ2(ℏω) from numerical inversion of optical transmittance and reflectance spectra; a superposition of Tauc-Lorentz and Lorentz oscillator models was used for this purpose. Data on ɛ2(ℏω) were employed to calculate the optical conductivity and fit this property to a small-polaron model for disordered systems with strong electron-phonon interaction and involving transitions near the Fermi level. The introduction of oxygen vacancies and/or Li+ insertion yielded band gap widening by ˜0.20-0.35 eV, and both processes induced similar low-energy optical absorption. The small-polaron-based analysis indicated increases in the Fermi level by ˜0.15-0.3 eV for sub-stoichiometric and/or Li+-inserted films. This suggests the existence of polaronic Ti3+ states in the lower part of the conduction band arising from transfer of electrons from oxygen vacancies and/or inserted Li+ species. The present article is a sequel to an earlier paper on oxygen-deficient and/or Li+-inserted amorphous WOy thin films and forms part of a comprehensive investigation of optical absorption in amorphous transition metal oxides with different valence states of the metallic ions.

  11. Structure and local structure of perovskite based materials

    NASA Astrophysics Data System (ADS)

    Rossell Abrodos, Marta Dacil

    Perovskites, with general formula ABX3, where A and B are cations and X is an anion, form a very important class of inorganic crystals whose physical properties are extensively used in many technological applications. The basic, so-called aristotype structure, consists of an infinite array of corner-linked anion octahedra, with the A cations in the spaces between the octahedra and a B cation at the center of each octahedron. Interesting physical properties are often related to the flexibility of the perovskite structure to deform or to form non-stoichiometric compositions. In this thesis, four perovskite-related systems are studied. Transmission electron microscopy (TEM) is of prime interest to analyze the influence of the structure and microstructure on the physical properties of these systems. (1) The anion-deficient Sr4Fe6O12+delta (delta < 1) derivatives. These materials are mixed conducting oxides with high oxygen and electronic conductivity. A complete characterization of the structure of these anion-deficient compounds is deduced from electron diffraction and high-resolution TEM. The presence of anion vacancies in the Sr4Fe6O12+delta (delta < 1) structure is suggested to have an influence on the transport properties. (2) The CaRMnSnO6 (R = La, Pr, Nd, Sm-Dy) double perovskites. A random distribution of the Ca and R cations over the A positions and Mn and Sn cations over the B positions is found. Due to a random distribution of the Mn 3+ and Sn4+ cations, a spin glass behavior was found for CaLaMnSnO6. (3) The K3AlF6 elpasolite-type (or ordered double perovskite) structure. This compound is of high technological importance since it is a basic component of the melts for low temperature electrolysis in aluminum smelting. A sequence of phase transitions at different temperatures in K3AlF6 along with the data on unit cell dimensions and space symmetry of three major polymorphs is reported. (4) Ca 2Fe2O5 brownmillerite-type thin films deposited on three different

  12. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass.

    PubMed

    Yamamoto, Hironori; Yamamoto, Tamiji; Mito, Yugo; Asaoka, Satoshi

    2016-06-15

    Granulated coal ash (GCA), which is a by-product of coal thermal electric power stations, effectively decreases phosphate and hydrogen sulfide (H2S) concentrations in the pore water of coastal marine sediments. In this study, we developed a pelagic-benthic coupled ecosystem model to evaluate the effectiveness of GCA for diminishing the oxygen-deficient water mass formed in coastal bottom water of Hiroshima Bay in Japan. Numerical experiments revealed the application of GCA was effective for reducing the oxygen-deficient water masses, showing alleviation of the DO depletion in summer increased by 0.4-3mgl(-1). The effect of H2S adsorption onto the GCA lasted for 5.25years in the case in which GCA was mixed with the sediment in a volume ratio of 1:1. The application of this new GCA-based environmental restoration technique could also make a substantial contribution to form a recycling-oriented society. PMID:27143344

  13. Characterizing Redox Conditions in Oxygen-deficient Waters Off Peru During the 2013 US GEOTRACES Zonal Transect

    NASA Astrophysics Data System (ADS)

    Cutter, G. A.; Nielsdottir, M.

    2014-12-01

    The oxygen-deficient zone that extends from coastal Peru well into the tropical Pacific Ocean has been described as "suboxic," but recent measurements of sulfate reduction suggest it may have some anoxic characteristics (e.g., free sulfide). The redox poise of suboxia strongly affects the solubility/stability of a wide variety of trace elements and therefore their vertical and horizontal transport. The problem is that suboxic is not chemically well defined, but certainly represents a very wide range of redox conditions (pE of ca. 10 to -2). During the 2013 US GEOTRACES Pacific cruise (International GEOTRACES section GP16) we determined a suite of redox couples to help define the redox poise in the water column: oxygen(/water), iodate/iodide, nitrate/nitrite, selenate/elemental Se, arsenate/arsenite, and sulfate/hydrogen sulfide. Using the RV Thomas Thompson we occupied a total of 11 stations along 12° S from coastal Peru to 94° W to sample the oxygen deficient waters using a conventional CTD/rosette and the trace metal-clean US GEOTRACES CTD/carousel. Determinations of all the redox tracers were made on board ship except for selenium. On the Peru shelf, oxygen concentrations were less than 10 μM from 30m to the bottom, while farther offshore the depth of this oxygen minimum was 700 m thick starting at ca. 80 m depth; the layer thickness steadily decreased moving west. In spite of the low oxygen conditions, nitrate and iodate were still detectable, while their corresponding reduced species had maxima in the low O2 waters. Dissolved hydrogen sulfide was below the detection limit of 70 pM, and no evidence of As(V) reduction was found; selenium speciation has yet to be determined. The lack of detectable dissolved hydrogen sulfide shows the redox conditions are certainly not anoxic, and incomplete iodate and nitrate reduction suggest the redox environment is more oxidizing than previously reported. The apparent temporal and spatial variability of the redox poise will

  14. A multiproxy approach to understanding the "enhanced" flux of organic matter through the oxygen deficient waters of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Keil, R. G.; Neibauer, J.; Biladeau, C.; van der Elst, K.; Devol, A. H.

    2015-10-01

    Free-drifting sediment net traps were deployed 14 times at depths between 80 and 500 m for 1-3 days each during the late monsoon/intermonsoon transition in the central Arabian Sea. Two locations (19.5 and 15.5° N) were within the permanently oxygen deficient zone, and a third (11° N) had a shallow and thin oxygen minimum. The secondary nitrite maximum, which serves as a tracer of the oxygen deficient zone (ODZ) zone, thinned from ∼ 250 m thick at stations 19.5 and 15.5° N to ∼ 50 m thick at station 11° N. Overall, organic carbon fluxes ranged from 13.2 g m2 yr-1 at 80 m to a minimum of 1.1 g m2 yr-1 at 500 m. Fluxes at the more oxygenated 11° N station attenuate faster than within the permanent ODZ. Martin curve attenuation coefficients for 19.5 and 15.5° N are 0.59 and 0.63 and for 11° N it is 0.98. At least six potential mechanisms might explain why sinking particles sinking through the ODZ are more effectively transferred to depth; (M1) oxygen effects, (M2) microbial loop efficiencies and chemoautotrophy, (M3) changes in zooplankton dynamics, (M4) additions of ballast that might sorb and protect organic matter from decay, (M5) inputs of refractory organic matter, and (M6) changes in sinking speeds. These mechanisms are intertwined, and were explored using a combination of mineral (XPS) and organic matter characterizations of the sinking material and ship-board incubation experiments. Evidence was found supporting an oxygen effect and/or changes in the efficiency of the microbial loop including the addition of chemoautotrophic carbon to the sinking flux in the upper 500 m. Less evidence was found for the other potential mechanisms. A simple conceptual model consistent with our and other recent data suggests that the upper ODZ microbial community determines the initial flux attenuation, and that deeper in the water column zooplankton and sinking speed become more important. The exact interplay between the various mechanisms remains to be further

  15. Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni).

    PubMed

    Lee, Yueh-Lin; Gadre, Milind J; Shao-Horn, Yang; Morgan, Dane

    2015-09-01

    In this work, we performed density functional theory (DFT) calculations with inclusion of Hubbard U corrections for the transition metal d-electrons, to investigate stability and electrocatalytic activities of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) for the ABO3 (A = La; B = Cr, Mn, Fe, Co, and Ni) (001) surfaces. We showed surface binding energies of relevant ORR/OER species are coupled strongly to surface polarity and local oxidation states, giving large (∼1 eV scale per adsorbate) differences in binding between (001) AO and BO2 surfaces, where the more oxidized BO2 bare surfaces in general exhibit weak coverage dependence, while the more reduced AO bare surfaces of the LaCrO3, LaMnO3, and LaFeO3 perovskites with lower d-electron filling show strong/moderate coverage dependences. We then predicted that surface coverage can play a key role in determining surface stability, and when coverage effects are included the AO and BO2(001) surfaces have either similar stability or the AO surface is more stable, as found for 1 monolayer HO* covered AO surfaces of LaCrO3 and LaFeO3 under ORR conditions and 1 monolayer O* covered LaNiO3 AO surface under OER conditions. For the (001) AO surfaces with strong coverage dependent surface adsorption, we predicted a decrease in ORR overpotential of 1-2 V with proper treatment of coverage effects as compared to those of the bare surface simulations. Our results indicated that the GGA+U method and proper treatment of coverage effects more accurately predict ORR and OER overpotentials relative to experimental values as compared to the GGA method and bare surfaces. The overall ORR activity trends vs. the LaBO3 series were predicted to be Co > Mn ≈ Ni > Fe > Cr. PMID:26227442

  16. 17O NMR study of the doped electrons in lightly oxygen-deficient cubic SrMnO3 -x

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Verkhovskii, S.; Volkova, Z.; Gerashenko, A.; Mikhalev, K.; Germov, A.; Yakubovskii, A.; Korolev, A.; Dabrowski, B.; Tyutyunnik, A.

    2016-05-01

    The spin susceptibility of the localized Mn (t2 g) electrons, χs, and the spatially distributed spin density of the doped electrons were investigated by 17O nuclear magnetic resonance (NMR) in the paramagnetic (PM) and antiferromagnetic (AF) phases of electron-doped SrMnO3 -x ceramics with the cubic structure. Three lightly doped samples (2 x <0.015 ) were studied with TN=220 K-240 K. In the PM state χs increases gradually from TN and reaches a broad maximum above ˜1.5 TN . The gapped behavior of χs indicates a low-dimensional short-range spin order persisting above TN. These short-range one-dimensional correlations are consistent with 17O NMR results obtained at room temperature, which show that Mn magnetic moments are aligned along the edges of the cubic unit cell. Above 350 K all doped electrons are fast-moving eg electrons. They provide the uniform polarization of the localized spins which increases χs and the increasing doping shifts the oxygen-deficient SrMnO3 -x oxide towards a ferromagnetic (FM) metallic state. At lower T the doped electrons are heterogeneously distributed in the oxide: The fraction of the fast-moving electrons diminishes and vanishes below 100 K, while the remaining doped electrons slow down their hopping and each of them creates a FM domain. These FM domains which are detected below 10 K by 55Mn NMR can be considered as small-size magnetic polarons. Their T -activated hopping in the G-type AF lattice was probed by 17O spin-echo experiments. The energy barrier of hopping shows a trend to grow with increasing doping, indicating that the de Gennes metallic ground state cannot be achieved in oxygen-deficient SrMnO3 -x oxides, probably due to detrimental oxygen vacancy defects.

  17. Thermochemistry of perovskites in the lanthanum-strontium-manganese-iron oxide system

    NASA Astrophysics Data System (ADS)

    Marinescu, Cornelia; Vradman, Leonid; Tanasescu, Speranta; Navrotsky, Alexandra

    2015-10-01

    The enthalpies of formation from binary oxides of perovskites (ABO3) based on lanthanum strontium manganite La(Sr)MnO3 (LSM) and lanthanum strontium ferrite La(Sr)FeO3 (LSF) and mixed lanthanum strontium manganite ferrite La(Sr)Mn(Fe)O3 (LSMF) were measured by high temperature oxide melt solution calorimetry. Using iodometric titration, the oxygen content was derived. The perovskites with A-site cation deficiency have greater oxygen deficiency than the corresponding A-site stoichiometric series. Stability of LSMF decreases with increasing iron content. Increasing oxygen deficiency clearly destabilizes the perovskites. The results suggest an enthalpy of oxygen incorporation that is approximately independent of composition. 0.35La2O3 (xl, 25 °C)+Mn2O3 (xl, 25 °C)+0.3SrO (xl, 25 °C)+Fe2O3 (xl, 25 °C)+O2 (g, 25 °C)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 °C). (b) ∆ Hf,ox* (La0.7Sr0.3Mn1-yFeyO3-δ) .0.35 La2O3 (xl, 25 ººC) + (0.7-y+ 2δ)/2 Mn2O3 (xl, 25 ºC) + 0.3 SrO (xl, 25 ºC) + y/2Fe2O3 (xl, 25 ºC) + (0.3-2δ) MnO2 (xl, 25 ºC)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 ºC).

  18. Effect of zinc deficiency on NADPH and cytochrome P-450 dependent active oxygen generation in rat lung and liver

    SciTech Connect

    Hammermueller, J.D.; Bray, T.M.; Bettger, W.J.

    1986-03-05

    The cyt. P-450 system and cyt. P-450 reductase are involved in the generation of active oxygen species such as H/sub 2/O/sub 2/. The objective of this study was to investigate the effect of short term, severe, dietary zinc deficiency in rats on the formation of active oxygen in vitro. Weanling male Wistar rats were fed egg white-based diets containing less than 1 ppm Zn (ZnD). Controls were fed ad libitum (ZnAl) or pair-fed (ZnPF) a diet containing 100 ppm Zn. After 3 weeks lung and liver microsomes were assayed for H/sub 2/O/sub 2/ production (pmol H/sub 2/O/sub 2//mg protein/min) and cyt. P-450 reductase activity (nmol cyt. C reduced/mg protein/min). For the measurement of H/sub 2/O/sub 2/ production exogenous substrate (aminopyrine) and NADPH (cofactor) were provided to drive the cyt. P-450 system and NaN/sub 3/ was used to inhibit catalase. The results showed a significant effect of dietary Zn on NADPH and cyt. P-450 dependent active oxygen generation and support the hypothesis that Zn has a role in the function of biomembranes.

  19. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity

    PubMed Central

    O’Brien III, William G.; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-01-01

    Erythrocytes are the key target in 5′-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3−/− mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism. PMID:26249166

  20. Germ-free mice deficient of reactive oxygen species have increased arthritis susceptibility.

    PubMed

    Wing, Kajsa; Klocke, Katrin; Samuelsson, Annika; Holmdahl, Rikard

    2015-05-01

    The NADPH oxidase 2 (NOX2) complex is responsible for the production of ROS in phagocytic cells. Genetic defects in NOX2 lead to opportunistic infections and inflammatory manifestations such as granulomas in humans, also known as chronic granulomatous disease (CGD). This condition is mirrored in mice with defective ROS production and interestingly both species are predisposed to autoimmune diseases. An unresolved question is whether the hyper-inflammation and tendency to develop autoimmunity are secondary to the increased infections, or whether these are parallel phenomena. We generated germ-free ROS deficient Ncf1 mutant mice that when reared in specific pathogen-free condition, are highly susceptible to collagen-induced arthritis compared with wild-type mice. Strikingly, arthritis incidence and severity was almost identical in germ-free and specific pathogen-free ROS-deficient mice. In addition, partial reduction of the microbial flora by antibiotics treatment did not alter the disease course. Taken together, this shows that ROS has a clear immune regulatory function that is decoupled from its function in host defence. PMID:25689796

  1. Adrenal-derived 11-Oxygenated 19-Carbon Steroids are the Dominant Androgens in Classic 21-Hydroxylase Deficiency

    PubMed Central

    Turcu, Adina F.; Nanba, Aya T.; Chomic, Robert; Upadhyay, Sunil K.; Giordano, Thomas J.; Shields, James J.; Merke, Deborah P.; Rainey, William E.; Auchus, Richard J.

    2016-01-01

    Objective To comprehensively characterize androgens and androgen precursors in classic 21-hydroxylase deficiency (21OHD) and to gain insight to the mechanisms of their formation. Design Serum samples were obtained from 38 patients (19 men) with classic 21OHD, age 3-59, and 38 sex- and age-matched controls; 3 patients with 11β-hydroxylase deficiency; 4 patients with adrenal insufficiency; and 16 patients (8 men) undergoing adrenal vein sampling. Paraffin-embedded normal (n=5) and 21OHD adrenal tissue (n=3) was used for immunohistochemical studies. Methods We measured 11 steroids in all sera using liquid chromatography-tandem mass spectrometry. Immunofluroescence localized 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) and cytochrome b5 (CYB5A) within the normal and 21OHD adrenals. Results Four 11-oxygenated 19-carbon (11oxC19) steroids were significantly higher in male and female 21OHD patients than in controls: 11β-hydroxyandrostenedione, 11-ketoandrostenedione 11β-hydroxytestosterone, and 11-ketotestosterone (3-4-fold, p< 0.0001). For 21OHD patients, testosterone and 11-ketotestosterone were positively correlated in females, but inversely correlated in males. All 11oxC19 steroids were higher in adrenal vein than in inferior vena cava samples from men and women and rose with cosyntropin stimulation. Only trace amounts of 11oxC19 steroids were found in sera from patients with 11β-hydroxylase deficiency and adrenal insufficiency, confirming their adrenal origin. HSD3B2 and CYB5A immunoreactivities were sharply segregated in the normal adrenal glands, whereas areas of overlapping expression were identified in the 21OHD adrenals. Conclusions All four 11oxC19 steroids are elevated in both men and women with classic 21OHD. Our data suggest that 11oxC19 steroids are specific biomarkers of adrenal-derived androgen excess. PMID:26865584

  2. An assessment of gases in oxygen-deficient hay silos and the effects of forced ventilation.

    PubMed

    Kedan, G; Spielholz, P; Sjostrom, T; Trenary, B; Clark, R E

    2007-01-01

    Many modern tower silos used in the agricultural industry for hay and grain storage are oxygen-limiting by design. Forced-air ventilation using a forage blower is a method commonly used to decrease concentrations of toxic and asphyxiant gases and to increase the O2 content within a silo headspace prior to worker entry. This article describes the methods used to measure gas concentrations and the results obtained from a pilot study by the Washington Fatality Assessment and Control Evaluation (FACE) program of two oxygen-limiting forage tower silos in eastern Washington State. The silos were monitored for oxygen (O2), nitrogen dioxide (NO2), and carbon dioxide (CO2). Measured O2 concentrations were low in all areas of the headspaces monitored for both silos. After beginning forced-air ventilation, O2 concentrations within the silo headspace returned to ambient levels within 8 to 20 min. Nitrogen dioxide levels exceeded the Washington Industrial Safety and Health Act (WISHA) short-term exposure limit (STEL) in the silo that was filled six days earlier (silo 2), but not in the silo that was filled four days earlier (silo 1). The NO2 concentration in silo 2 decreased to below the WISHA STEL within 15 min of starting ventilation but began to rise shortly after ventilation was stopped. Carbon dioxide, which was only measured in silo 1, was detected at 2% within the headspace of this silo. The carbon dioxide concentration decreased to <1% within 3 min of starting ventilation. PMID:17370916

  3. A close correlation between induced ferromagnetism and oxygen deficiency in Fe doped In 2O 3

    NASA Astrophysics Data System (ADS)

    Singhal, R. K.; Samariya, A.; Kumar, Sudhish; Sharma, S. C.; Xing, Y. T.; Deshpande, U. P.; Shripathi, T.; Saitovitch, E.

    2010-11-01

    We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In 2O 3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In 3+ ions. The magnetization measurements show that the host In 2O 3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies ( Vo). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.

  4. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE PAGESBeta

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  5. Neutron diffraction studies on ABO3 (A=Lanthanum, Strontium, B=Iron, Cobalt , Nickel, Copper, Manganese, Titanium) perovskite used in solid oxide fuel cell (SOFC) and double perovskite Barium2YttriumRuthenium0.85Copper0.15Oxygen6 superconductor

    NASA Astrophysics Data System (ADS)

    Cai, Qingsheng

    ABO3(A=La, Sr, B=Fe, Co, Ni, Cu, Mn, Ti) perovskites are of great interest due to their mixed electronic and oxygen ion conductivity. They are candidates for the electrodes of SOFCs. The mixed conductivity can be enhanced through the substitution of La3+ by Sr2+ at A sites, and the substitution of Fe3+ by other transition metal ions at B sites. The charge imbalance and overall charge neutrality can be maintained by the presence of charged oxygen vacancies and mixed valence state ions at the B sites. These point defects are the origin of the mixed electronic and oxygen ion conductivity. This study investigates the effects of substitutions at A sites and/or B sites on the crystal and magnetic structure, oxygen vacancies, and the thermal expansion coefficients at different temperatures and gaseous environment. The oxygen vacancy concentration can relax the perovskite distortion and has a close relationship with the magnetic properties. La0.6Sr0.4FeO3-delta, La0.6Sr0.4Fe0.8Co0.2O3-delta , and La0.8Sr0.2Fe0.8Co0.2O 3-delta can be good candidates for the cathodes of SOFCs at intermediate temperature. The double perovskite Ba2YRu0.85Cu0.15O 6 superconductor and a mixture of 5wt% YBa2Cu3O 7-delta and undoped Ba2YRuO6 were investigated with the aid of neutron diffraction. The 1:1 B site ordering is observed and long range antiferromagnetic ordering of the Ru sublattice with a type I magnetic structure appears when the temperature is below 38K. An incommensurate antiferromagnetic ordering of Cu is observed in the temperature range 38K-85K. This ordering is not seen in undoped material. The decomposition of Cu-doped Ba2YRuO6 into undoped Ba 2YRuO6 and YBa2Cu3O7-delta is not seen. YBa2Cu3O7-delta is not stable at the temperature used to prepare the Cu-doped Ba2YRuO6 superconductor. These results confirm the presence of superconductivity without CuO2 planes.

  6. Tight relation between the oxygen deficiency and Tc in LaFeAsO1-δ

    NASA Astrophysics Data System (ADS)

    Guo, Y. F.; Shi, Y. G.; Yu, S.; Belik, A. A.; Matsushita, Y.; Tanaka, M.; Katsuya, Y.; Kobayashi, K.; Hata, Y.; Yasuoka, H.; Yamaura, K.; Takayama-Muromachi, E.

    2010-12-01

    Oxygen vacant superconductors LaFeAsO1-δ were synthesized under a high-pressure condition. A bell-shaped feature in Tc vs. δ was observed for LaFeAsO1-δ as well as TbFeAsO1-δ. The optimized Tc was achieved at δ of 0.15, being comparable with that for TbFeAsO1-δ. The relatively wide δ window of LaFeAsO1-δ may merit scientific and technical studies of high-Tc superconductivity.

  7. Oxygen-Deficient Zirconia (ZrO2−x): A New Material for Solar Light Absorption

    PubMed Central

    Sinhamahapatra, Apurba; Jeon, Jong-Pil; Kang, Joonhee; Han, Byungchan; Yu, Jong-Sung

    2016-01-01

    Here, we present oxygen-deficient black ZrO2−x as a new material for sunlight absorption with a low band gap around ~1.5 eV, via a controlled magnesiothermic reduction in 5% H2/Ar from white ZrO2, a wide bandgap(~5 eV) semiconductor, usually not considered for solar light absorption. It shows for the first time a dramatic increase in solar light absorbance and significant activity for solar light-induced H2 production from methanol-water with excellent stability up to 30 days while white ZrO2 fails. Generation of large amounts of oxygen vacancies or surface defects clearly visualized by the HR-TEM and HR-SEM images is the main reason for the drastic alteration of the optical properties through the formation of new energy states near valence band and conduction band towards Fermi level in black ZrO2−x as indicated by XPS and DFT calculations of black ZrO2−x. Current reduction method using Mg and H2 is mild, but highly efficient to produce solar light-assisted photocatalytically active black ZrO2−x. PMID:27264788

  8. Oxygen-Deficient Zirconia (ZrO2‑x): A New Material for Solar Light Absorption

    NASA Astrophysics Data System (ADS)

    Sinhamahapatra, Apurba; Jeon, Jong-Pil; Kang, Joonhee; Han, Byungchan; Yu, Jong-Sung

    2016-06-01

    Here, we present oxygen-deficient black ZrO2‑x as a new material for sunlight absorption with a low band gap around ~1.5 eV, via a controlled magnesiothermic reduction in 5% H2/Ar from white ZrO2, a wide bandgap(~5 eV) semiconductor, usually not considered for solar light absorption. It shows for the first time a dramatic increase in solar light absorbance and significant activity for solar light-induced H2 production from methanol-water with excellent stability up to 30 days while white ZrO2 fails. Generation of large amounts of oxygen vacancies or surface defects clearly visualized by the HR-TEM and HR-SEM images is the main reason for the drastic alteration of the optical properties through the formation of new energy states near valence band and conduction band towards Fermi level in black ZrO2‑x as indicated by XPS and DFT calculations of black ZrO2‑x. Current reduction method using Mg and H2 is mild, but highly efficient to produce solar light-assisted photocatalytically active black ZrO2‑x.

  9. Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii.

    PubMed

    Dang, Kieu-Van; Plet, Julie; Tolleter, Dimitri; Jokel, Martina; Cuiné, Stéphan; Carrier, Patrick; Auroy, Pascaline; Richaud, Pierre; Johnson, Xenie; Alric, Jean; Allahverdiyeva, Yagut; Peltier, Gilles

    2014-07-01

    During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)-mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand. PMID:24989042

  10. Structure and Electronic Transport of Oxygen-Deficient SrTiO3 Thin Films Buffered with DyScO3

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Purnima; Alaan, Urusa; Gray, Matthew; Suzuki, Yuri

    Oxygen deficiency in SrTiO3 (STO) induces metallic behavior in bulk and thin film form. Thus far, reports of STO thin film metallicity have been limited to homoepitaxial growth on bulk STO substrates. Growth on other substrates has suppressed metallicity, suggesting the important role of lattice distortions. In this presentation, we report on the metallicity and corresponding structure of oxygen-deficient STO films deposited on DyScO3 (DSO) buffered STO substrates and compare to STO films deposited directly on STO substrates. These films are epitaxial, atomically flat, expanded out-of-plane by ~0.6 %, and coherently strained to the STO substrate. Oxygen-deficient STO thin films grown on STO and DSO-buffered STO substrates are metallic, while films deposited on LaAlO3, (LaAlO3)(SrTaO3), and DSO substrates are insulating. The resistivities of metallic films follow a T3 dependence near room temperature, transitioning to a T2 dependence below ~100 K, and are increased by the addition of a DSO buffer. Comparison of sheet resistance across films of various thicknesses indicates the presence of an insulating layer around 7 unit cells thick. These properties indicate the importance of both oxygen deficiency and lattice structure in obtaining metallicity.

  11. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  12. Growth of praseodymium oxide on Si(111) under oxygen-deficient conditions

    SciTech Connect

    Schaefer, A.; Zielasek, V.; Baeumer, M.; Schmidt, Th.; Schowalter, M.; Schulz, Ch.; Rosenauer, A.; Falta, J.; Sandell, A.; Seifarth, O.; Schroeder, T.; Wollschlaeger, J.

    2009-07-15

    Surface science studies of thin praseodymium oxide films grown on silicon substrates are of high interest in view of applications in such different fields as microelectronics and heterogeneous catalysis. In particular, a detailed characterization of the growth and the final structure of the films are mandatory to achieve a fundamental understanding of such topics as oxygen mobility and defect structure, and their role for the electronic and chemical properties. In this paper, the MBE growth of praseodymium oxide films on Si(111) substrates was investigated at low-deposition rates (0.06 nm/min) and low-oxygen partial pressures (p(O{sub 2})<1x10{sup -10} mbar). To obtain insight into the structure and chemical composition of the growing film, spot profile analyzing low-energy electron diffraction (SPA-LEED), transmission electron microscopy, and synchrotron radiation-based x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) were applied. SPA-LEED reveals the formation of an initial closed layer followed by continuous roughening and formation of ordered three-dimensional structures. This result is in contrast to observations at higher-deposition rates, were a layer-by-layer growth was reported. XAS and XPS provide evidence that a continuous reaction takes place in the growing Pr{sub 2}O{sub 3} film leading to the formation of silicate and silicide structures within the film. Combining all data, a consistent picture of the deposition of praseodymium oxide on Si(111) emerges which clearly shows that in contrast to higher-throughput molecular beam epitaxy conditions the reactivity of the growing film strongly influences the growth behavior at low-deposition rates and low pressures.

  13. Colossal positive magnetoresistance in surface-passivated oxygen-deficient strontium titanite

    PubMed Central

    David, Adrian; Tian, Yufeng; Yang, Ping; Gao, Xingyu; Lin, Weinan; Shah, Amish B.; Zuo, Jian-Min; Prellier, Wilfrid; Wu, Tom

    2015-01-01

    Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO3) single crystals capped with ultrathin SrTiO3/LaAlO3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO3, and the three-unit-cell LaAlO3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides, and to realize devices with high-mobility carriers and interesting magnetoelectronic properties. PMID:25975606

  14. Effects of predation and oxygen deficiency on different age classes of the amphipod Monoporeia affinis

    NASA Astrophysics Data System (ADS)

    Sandberg, E.; Bonsdorff, E.

    1996-06-01

    Predation by the big brackish-water isopod Saduria entomon on two age-classes (juveniles and adults) of the small deposit-feeding amphipod Monoporeia (syn. Pontoporeia) affinis was studied at different oxygen conditions (normoxia>11 mg/l O 2, and moderate hypoxia 4 mg/l O 2). Vulnerability of juvenile and adult M. affinis was studied in single and mixed age-class treatments. The proportions of juveniles and adults were varied at one total numerical density. The predatory effects were measured as numbers of individuals consumed and of total biomass intake (mg ash-free dry weight). The highest predation rate (in numbers) was detected in the single-prey treatment with juvenile M. affinis, both in normoxia and moderate hypoxia. No preference for any of the two size classes was found in the treatment with equal numbers of adults and juveniles. In normoxia, the total number of prey consumed decreased with increasing proportions of adults, while intake increased in terms of biomass. In moderate hypoxia, high proportions of adults reduced the predation rate of S. entomon to such an extent that also the intake in terms of biomass was significantly negatively affected.

  15. Effect of cation substitution at the B site on the oxygen semi-permeation flux in La0.5Ba0.5Fe0.7B0.3O3-δ dense perovskite membranes with B = Al, Co, Cu, Mg, Mn, Ni, Sn, Ti and Zn (part II)

    NASA Astrophysics Data System (ADS)

    Reichmann, M.; Geffroy, P.-M.; Fouletier, J.; Richet, N.; Del Gallo, P.; Chartier, T.

    2015-03-01

    The aim of this paper is to provide insight into the effect of cation substitution at the B site on the oxygen semi-permeation performances. Particular attention is given here to identify the impact of cation substitution at the B site on oxygen diffusion and oxygen surface-exchange kinetics in the La0.5Ba0.5Fe0.7B0.3O3-δ perovskite membrane series with B = Al, Co, Cu, Mg, Mn, Ni, Sn, Ti and Zn. This study clearly shows that the prediction of the oxygen semi-permeation performances of membrane materials from the nature of cation at the A or B sites in perovskite structure is quite complex. The cation substitution at the B-site has a low impact on the nature of rate-determining step and a significant impact on oxygen semi-permeation performances, contrary to the cation substitution at A-site. Unfortunately, it is not possible to establish a relevant trend about the effect of the nature of cation in the A or B sites in perovskite structure on oxygen diffusion and the oxygen surface-exchange kinetics.

  16. New Opportunity for in Situ Exsolution of Metallic Nanoparticles on Perovskite Parent.

    PubMed

    Sun, Yi-Fei; Zhang, Ya-Qian; Chen, Jian; Li, Jian-Hui; Zhu, Ying-Tao; Zeng, Yi-Min; Amirkhiz, Babak Shalchi; Li, Jian; Hua, Bin; Luo, Jing-Li

    2016-08-10

    One of the main challenges for advanced metallic nanoparticles (NPs) supported functional perovskite catalysts is the simultaneous achievement of a high population of NPs with uniform distribution as well as long-lasting high performance. These are also the essential requirements for optimal electrode catalysts used in solid oxide fuel cells and electrolysis cells (SOFCs and SOECs). Herein, we report a facile operando manufacture way that the crystal reconstruction of double perovskite under reducing atmosphere can spontaneously lead to the formation of ordered layered oxygen deficiency and yield segregation of massively and finely dispersed NPs. The real-time observation of this emergent process was performed via an environmental transmission electron microscope. Density functional theory calculations prove that the crystal reconstruction induces the loss of coordinated oxygen surrounding B-site cations, serving as the driving force for steering fast NP growth. The prepared material shows promising capability as an active and stable electrode for SOFCs in various fuels and SOECs for CO2 reduction. The conception exemplified here could conceivably be extended to fabricate a series of supported NPs perovskite catalysts with diverse functionalities. PMID:27455174

  17. Electric transport coefficients in highly epitaxial LaBaCo2O5 + δ films with "p-to-n" transition induced by oxygen deficiency

    NASA Astrophysics Data System (ADS)

    Shaibo, J.; Zhang, Q. Y.; Wang, Y. Q.; Hu, H. C.; Li, X. N.; Pan, L. J.

    2016-08-01

    Electric transport coefficients such as carrier type, density, and mobility are the important physical parameters in designing functional devices. In this work, we report the study on the electric transport coefficients of the highly epitaxial LaBaCo2O5 + δ (LBCO) films, which were discussed as a function of electric conductivity for the first time and compared with the results calculated by the theory for mixed conduction. The mobility in the LBCO films was determined to be ˜0.85 and ˜40 cm2/V s for holes and electrons, respectively, and the density of p-type carriers strongly depends on the oxygen deficiency. Solid evidence is presented to demonstrate that the oxygen deficiency cannot make LBCO materials changed from p- to n-type. The n-type conduction observed in experiment is a counterfeit phenomenon caused by the deficiency in Hall measurement, rather than a realistic transition induced by oxygen deficiency. In addition, the temperature-dependent conductivity was discussed using the differential coefficients, which might be useful in the study of the samples with magnetic transition.

  18. Non-volatile memory based on transition metal perovskite oxide resistance switching

    NASA Astrophysics Data System (ADS)

    Nian, Yibo

    Driven by the non-volatile memory market looking for new advanced materials, this dissertation focuses on the study of non-volatile resistive random access memory (RRAM) based on transition metal perovskite oxides. Pr0.7Ca0.3MnO3 (PCMO), one of the representative materials in this family, has demonstrated a large range of resistance change when short electrical pulses with different polarity are applied. Such electrical-pulse-induced resistance (EPIR), with attractive features such as fast response, low power, high-density and non-volatility, makes PCMO and related materials promising candidates for non-volatile RRAM application. The objective of this work is to investigate, optimize and understand the properties of this universal EPIR behavior in transition metal perovskite oxide, represented by PCMO thin film devices. The research work includes fabrication of PCMO thin film devices, characterization of these EPIR devices as non-volatile memories, and investigation of their resistive switching mechanisms. The functionality of this perovskite oxide RRAM, including pulse magnitude/width dependence, power consumption, retention, endurance and radiation-hardness has been investigated. By studying the "shuttle tail" in hysteresis switching loops of oxygen deficient devices, a diffusion model with oxygen ions/vacancies as active agents at the metal/oxide interface is proposed for the non-volatile resistance switching effect in transition metal perovskite oxide thin films. The change of EPIR switching behavior after oxygen/argon ion implantation also shows experiment support for the proposed model. Furthermore, the universality, scalability and comparison with other non-volatile memories are discussed for future application.

  19. A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media: BaNiO3 and BaNi(0.83)O(2.5).

    PubMed

    Lee, Jin Goo; Hwang, Jeemin; Hwang, Ho Jung; Jeon, Ok Sung; Jang, Jeongseok; Kwon, Ohchan; Lee, Yeayeon; Han, Byungchan; Shul, Yong-Gun

    2016-03-16

    Establishment of a sustainable energy society has been strong driving force to develop cost-effective and highly active catalysts for energy conversion and storage devices such as metal-air batteries and electrochemical water splitting systems. This is because the oxygen evolution reaction (OER), a vital reaction for the operation, is substantially sluggish even with precious metals-based catalysts. Here, we show for the first time that a hexagonal perovskite, BaNiO3, can be a highly functional catalyst for OER in alkaline media. We demonstrate that the BaNiO3 performs OER activity at least an order of magnitude higher than an IrO2 catalyst. Using integrated density functional theory calculations and experimental validations, we unveil that the underlying mechanism originates from structural transformation from BaNiO3 to BaNi(0.83)O(2.5) (Ba6Ni5O15) over the OER cycling process. PMID:26910187

  20. Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1₋x)SrxFe(1₋y)CoyO(3₋δ) perovskite oxides for CO2 conversion

    SciTech Connect

    Maiti, Debtanu; Daza, Yolanda A.; Yung, Matthew M.; Kuhn, John N.; Bhethanabotla, Venkat R.

    2016-01-01

    Density functional theory (DFT) based investigation of two parameters of prime interest -- oxygen vacancy and surface terminations along (100) and (110) planes -- has been conducted for La(1-x)SrxFe(1-y)CoyO(3-..delta..) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO2 adsorption strength. The theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.

  1. Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5: unrivaled complexity in oxygen vacancy ordering.

    PubMed

    Clemens, Oliver; Gröting, Melanie; Witte, Ralf; Perez-Mato, J Manuel; Loho, Christoph; Berry, Frank J; Kruk, Robert; Knight, Kevin S; Wright, Adrian J; Hahn, Horst; Slater, Peter R

    2014-06-16

    We report here on the characterization of the vacancy-ordered perovskite-type structure of BaFeO2.5 by means of combined Rietveld analysis of powder X-ray and neutron diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c [a = 6.9753(1) Å, b = 11.7281(2) Å, c = 23.4507(4) Å, β = 98.813(1)°, and Z = 28] containing seven crystallographically different iron atoms. The coordination scheme is determined to be Ba7(FeO4/2)1(FeO3/2O1/1)3(FeO5/2)2(FeO6/2)1 = Ba7Fe([6])1Fe([5])2Fe([4])4O17.5 and is in agreement with the (57)Fe Mössbauer spectra and density functional theory based calculations. To our knowledge, the structure of BaFeO2.5 is the most complicated perovskite-type superstructure reported so far (largest primitive cell, number of ABX2.5 units per unit cell, and number of different crystallographic sites). The magnetic structure was determined from the powder neutron diffraction data and can be understood in terms of "G-type" antiferromagnetic ordering between connected iron-containing polyhedra, in agreement with field-sweep and zero-field-cooled/field-cooled measurements. PMID:24901981

  2. Electrosynthesis and crystal structure of the new 15R hexagonal perovskite Ba 5MnNa 2V 2O 13

    NASA Astrophysics Data System (ADS)

    Bendraoua, Abdelaziz; Quarez, Eric; Abraham, Francis; Mentré, Olivier

    2004-04-01

    A new manganese oxide Ba 5MnNa 2V 2O 13 with an original structure closely related to the cubic perovskite has been prepared by electrosynthesis in molten NaOH. Its crystal structure has been refined from single crystal X-ray diffraction in the R 3¯m space group, a=5.8490(6) Å, c=36.856(5) Å, Z=3, R1=4.72%, w R2=10.56%. The crystal structure is a rhombohedral 15R polytype and exhibits a close packed structure built up from [BaO 3- δ] ( c) and [BaO 2] ( c') layers within a ( ccc' cc) 3 stacking sequence. The resulting three-dimensional edifice is formed by Ba(Mn 0.33Na 0.67)O 3 cubic perovskite blocks separated by double sheets of V 5+O 4 tetrahedra pointing towards the central [BaO 2] c' layer. In the perovskite blocks, 1/6 of oxygen deficient vacancies located on layers surrounding manganese involve a Mn(IV) valence, in square pyramids rather than octahedra. On the same layers along c, the barium atom split from a central (0,0, z) position to close ( x,- x, z) positions as a compensation of the oxygen deficiency. In this work, a review of the Mn-related perovskite materials found in the literature is reported showing the wide variety of materials adopting related structural polytypes. A building scheme from simple to more complex edifices is also presented by successive intercalation of [BaO n] ( n=1, 2) in order to visualize topological relationships between the number of possible hexagonal perovskite series members.

  3. Oxygen Exchange Kinetics of Epitaxial PrBaCo2O5+delta Thin Films

    SciTech Connect

    Kim,G.; Wang, S.; Jacobson, A.; Yuan, Z.; Donner, W.; Chen, C.; Reimus, L.; Brodersen, P.; Mims, C.

    2006-01-01

    The oxygen exchange kinetics of thin films of the oxygen-deficient double perovskite PrBaCo{sub 2}O{sub 5+{delta}} (PBCO) have been determined by electrical conductivity relaxation (ECR) and by oxygen-isotope exchange and depth profiling (IEDP). Microstructural studies indicate that the PBCO films, prepared by pulsed laser deposition, have excellent single-crystal quality and epitaxial nature. The ECR and IEDP measurements reveal that the PBCO films have high electronic conductivity and rapid surface exchange kinetics, although the ECR data indicate the presence of two distinct kinetic pathways. The rapid surface kinetics compared with those of other perovskites suggest the application of PBCO as a cathode material in intermediate-temperature solid oxide fuel cells.

  4. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  5. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  6. Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1.

    PubMed

    Kim, Eun-Jin; Sabra, Wael; Zeng, An-Ping

    2003-09-01

    Pseudomonas aeruginosa PAO1 was recently found to exhibit two remarkable physiological responses to oxidative stress: (1) a strong reduction in the efficiency of oxygen transfer from the gas phase into the liquid phase, thus causing oxygen limitation in the culture and (2) formation of a clear polysaccharide capsule on the cell surface. In this work, it has been shown that the iron concentration in the culture plays a crucial role in evoking these phenomena. The physiological responses of two P. aeruginosa PAO1 isolates (NCCB 2452 and ATCC 15692) were examined in growth media with varied iron concentrations. In a computer-controlled bioreactor cultivation system for controlled dissolved oxygen tension (pO2), a strong correlation between the exhaustion of iron and the onset of oxygen limitation was observed. The oxygen transfer rate of the culture, characterized by the volumetric oxygen transfer coefficient, kLa, significantly decreased under iron-limited conditions. The formation of alginate and capsule was more strongly affected by iron concentration than by oxygen concentration. The reduction of the oxygen transfer rate and the subsequent oxygen limitation triggered by iron deficiency may represent a new and efficient way for P. aeruginosa PAO1 to adapt to growth conditions of iron limitation. Furthermore, the secretion of proteins into the culture medium was strongly enhanced by iron limitation. The formation of the virulence factor elastase and the iron chelators pyoverdine and pyochelin also significantly increased under iron-limited conditions. These results have implications for lung infection of cystic fibrosis patients by P. aeruginosa in view of the prevalence of iron limitation at the site of infection and the respiratory failure leading to death. PMID:12949186

  7. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices. PMID:27228558

  8. Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites

    NASA Astrophysics Data System (ADS)

    Cheng, Jihong; Navrotsky, Alexandra

    2004-01-01

    LaGaO 3 perovskites doped with Sr or Ba at the La site and Mg at the Ga site were prepared by solid-state reaction or sol-gel method and characterized. Enthalpies of formation from constituent oxides at 298 K were determined by high-temperature oxide melt solution calorimetry. Energetic trends are discussed in terms of defect chemistry. As oxygen deficiency increases, formation enthalpies define three trends, LaGa 1- yMg yO 3- δ (LGM), La 1- xSr xGa 1- yMg yO 3- δ (LSGM), and La 1- xBa xGa 1- yMg yO 3- δ (LBGM). They become less exothermic with increasing doping, suggesting a dominant destabilization effect from oxygen vacancies. The endothermic enthalpy of vacancy formation is 275±37, 166±18 and 138±12 kJ/mol of VO·· for LGM, LBGM and LSGM, respectively. Tolerance factor and ion size mismatch also affect enthalpies. In terms of energetics, Sr is the best dopant for the La site and Mg for the Ga site, supporting earlier studies, including oxygen ion conductivity and computer modeling.

  9. Vortex phase diagram as a function of oxygen deficiency in untwinned YBa{sub 2}Cu{sub 3}O{sub y}

    SciTech Connect

    Nishizaki, Terukazu; Shibata, Kenji; Naito, Tomoyuki; Maki, Makoto; Kobayashi, Norio

    1999-12-01

    Magnetization and resistivity measurements were performed in untwinned YBa{sub 2}Cu{sub 3}O{sub y} (YBCO) single crystals with different oxygen content. The authors find that the vortex phase diagram is a strong function of the oxygen deficiency: (1) For fully oxidized YBCO (y {approx{underscore}equal} 7, {Tc} {approx{underscore}equal} 87.5 K), the first-order vortex lattice melting line T{sub m}(H) is observed up to 30 T. (2) For slightly overdoped YBCO ({Tc} {approx{underscore}equal} 92 K), T{sub m}(H) and the vortex glass transition line T{sub g}(H) terminate at the multicritical point and the field-driven disordering transition line separates the vortex solid phase into the Bragg glass and the vortex glass phases. (3) For slightly underdoped YBCO ({Tc} {approx{underscore}equal} 92.3 K), T{sub g}(H) terminates well below the critical point of T{sub m}(H), indicating the existence of the vortex slush regime by the introduced oxygen deficiency.

  10. Correlated visible-light absorption and intrinsic magnetism of SrTiO3 due to oxygen deficiency: bulk or surface effect?

    PubMed

    Choi, Heechae; Song, Jin Dong; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-04-20

    The visible-light absorption and luminescence of wide band gap (3.25 eV) strontium titanate (SrTiO3) are well-known, in many cases, to originate from the existence of natural oxygen deficiency in the material. In this study based on density functional theory (DFT) calculations, we provide, to the best of our knowledge, the first report indicating that oxygen vacancies in the bulk and on the surfaces of SrTiO3 (STO) play different roles in the optical and magnetic properties. We found that the doubly charged state of oxygen vacancy (VO(2+)) is dominant in bulk SrTiO3 and does not contribute to the sub-band gap photoexcitation or intrinsic magnetism of STO. Neutral oxygen vacancies (VO(0)) on (001) surfaces terminated with both TiO2 and SrO layers induce magnetic moments, which are dependent on the charged state of VO. The calculated absorption spectra for the (001) surfaces exhibit mid-infrared absorption (<0.5 eV) and sub-band gap absorption (2.5-3.1 eV) due to oxygen vacancies. In particular, VO(0) on the TiO2-terminated surface has a relatively low formation energy and magnetic moments, which can explain the recently observed spin-dependent photon absorptions of STO in a magnetic circular dichroism measurement [Rice, W. D.; et al. Nat. Mater.13, 481, 2014]. PMID:25815532

  11. Mass-specific respiration of mesozooplankton and its role in the maintenance of an oxygen-deficient ecological barrier (BEDOX) in the upwelling zone off Chile upon presence of a shallow oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Donoso, Katty; Escribano, Ruben

    2014-01-01

    A shallow oxygen minimum zone (OMZ) in the coastal upwelling zone off Chile may vertically confine most zooplankton to a narrow (< 50 m) upper layer. From laboratory experiments, we estimated oxygen consumption of the mesozooplankton community obtained in Bay of Mejillones, northern Chile (23°S) in May 2010, December 2010 and August 2011. Mass-specific respiration rates were in the range of 8.2-24.5 μmol O2 mg dry mass- 1 day- 1, at an average temperature of 12 °C. Estimates of the mesozooplankton biomass in the water column indicated that its aerobic respiration may remove daily a maximum of about 20% of oxygen available at the base of the oxycline. Since previous work indicates that zooplankton aggregate near the base of the oxycline, the impact of aerobic respiration on oxygen content might be even stronger at this depth. Mesozooplankton respiration, along with community respiration by microorganisms near the base of the oxycline and a strongly stratified condition (limiting vertical flux of O2), are suggested as being critical factors causing and maintaining a persistent subsurface oxygen-deficient ecological barrier (BEDOX) in the upwelling zone. This BEDOX layer can have a major role in affecting and regulating zooplankton distribution and their dynamics in the highly productive coastal upwelling zone of the Humboldt Current System.

  12. Interaction between water flow and oxygen deficiency on growth in the infaunal brittle star Amphiura filiformis (Echinodermata: Ophiuroidea)

    NASA Astrophysics Data System (ADS)

    Nilsson, H. C.

    2000-12-01

    Interactions between 'oxygen concentration' (normoxia: >80% oxygen saturation, and hypoxia: 18% oxygen saturation) and 'water flow velocity' (low: 0.1 cm s -1, and moderate: 0.5 cm s -1) were studied on growth rates in the brittle star Amphiura filiformis in a flow-through aquaria system. Effects of 'sublethal predation' on growth rates were investigated as 'number of amputated arms' (1 and 3 arms) and 'amputation of the disk'. A significant interaction between oxygen concentration and water flow velocity was observed in mean arm regeneration rate, but in both flow velocities higher mean arm regeneration rates were observed in normoxia compared to hypoxia. In hypoxia a positive response in arm regeneration rate was observed in moderate flow compared to low flow velocity. In normoxia, however, no response to flow velocity was observed. The latter observation indicates that Amphiura filiformis is able to maintain the ventilation of the burrow at low flow velocities, but in low oxygen concentrations hydrodynamic forces seem to affect growth. A significant interaction between oxygen concentration and disk amputation was observed in both arm and disk regeneration rates, indicating that the disk is the major organ for gas exchange in this species. The number of arms amputated, however, did not affect mean arm regeneration rate. The results obtained in this study suggest that the secondary production in subtidal infaunal populations could be negatively affected by low oxygen concentrations and that this response is even more negative in combination with low flow velocities in the near-bottom water.

  13. Synthesis, crystal structure and charge distribution of Na{sub 7}As{sub 11}O{sub 31}: An oxygen-deficient layered sodium arsenate

    SciTech Connect

    Guesmi, Abderrahmen . E-mail: abderrahmen.guesmi@ipeim.mu.tn; Nespolo, Massimo; Driss, Ahmed

    2006-08-15

    A new sodium arsenate with layer structure has been synthesized and its crystal structure solved and refined by single-crystal X-ray diffraction. The crystal is trigonal, space group P3-bar m1, a=11.199(3)A, c=5.411(2)A, V=587.80(3)A{sup 3}, Z=1; the refinement converged to R=0.0282 and wR=0.0751 for 590 reflections with (I)>2sigma(I). The structural model gives the formula Na{sub 7}As{sub 11}O{sub 32}, which would be non-neutral; besides, the structural model is not validated by the charge distribution (CD) analysis, which gives an unsatisfactory agreement on the computed charges of the cations. The CD analysis suggest incomplete (5/6) occupation of the O5 site, which leads to the deficiency of an oxygen atom per unit cell and to formula Na{sub 7}As{sub 11}O{sub 31}: this new structural model corresponds to a neutral compound, is validated by the CD analysis, and results in better displacement parameters for O5 than its non neutral counterpart. The (001) anionic layers are built up from corner and edge sharing of As1 and As2 distorted octahedra and As3 distorted tetrahedra, the sodium cations playing the role of interlayer cations. The effects of the oxygen deficiency on the crystal structure are discussed.

  14. In situ formation of oxygen vacancy in perovskite Sr(0.95)Ti(0.8)Nb(0.1)M(0.1)O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis.

    PubMed

    Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng

    2014-01-01

    In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr(0.95)Ti(0.9)Nb(0.1)O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr(0.95)Ti(0.9)Nb(0.1)O3.00 to reduced Sr(0.95)Ti(0.9)Nb(0.1)O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr(0.95)Ti(0.8)Nb(0.1)M(0.1)O3.00 (M = Mn, Cr) to Sr(0.95)Ti(0.8)Nb(0.1)M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3-6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes. PMID:25403738

  15. In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng

    2014-11-01

    In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr0.95Ti0.9Nb0.1O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr0.95Ti0.9Nb0.1O3.00 to reduced Sr0.95Ti0.9Nb0.1O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr0.95Ti0.8Nb0.1M0.1O3.00 (M = Mn, Cr) to Sr0.95Ti0.8Nb0.1M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3-6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes.

  16. Molecular Diversity of Denitrifying Genes in Continental Margin Sediments within the Oxygen-Deficient Zone off the Pacific Coast of Mexico

    PubMed Central

    Liu, Xueduan; Tiquia, Sonia M.; Holguin, Gina; Wu, Liyou; Nold, Stephen C.; Devol, Allan H.; Luo, Kuan; Palumbo, Anthony V.; Tiedje, James M.; Zhou, Jizhong

    2003-01-01

    To understand the composition and structure of denitrifying communities in the oxygen-deficient zone off the Pacific coast of Mexico, the molecular diversity of nir genes from sediments obtained at four stations was examined by using a PCR-based cloning approach. A total of 50 operational taxonomic units (OTUs) for nirK and 82 OTUs for nirS were obtained from all samples. Forty-four of the nirS clones and 31 of the nirK clones were sequenced; the levels of similarity of the nirS clones were 52 to 92%, and the levels of similarity of the nirS clones were 50 to 99%. The percentages of overlapping OTUs between stations were 18 to 30% for nirS and 5 to 8% for nirK. Sequence analysis revealed that 26% of the nirS clones were related to the nirS genes of Alcaligenes faecalis (80 to 94% similar) and Pseudomonas stutzeri (80 to 99%), whereas 3 to 31% of the nirK clones were closely related to the nirK genes of Pseudomonas sp. strain G-179 (98 to 99%), Bradyrhizobium japonicum (91%), Blastobacter denitrificans (83%), and Alcaligenes xylosoxidans (96%). The rest of the clones, however, were less than 80% similar to nirS and nirK sequences available in sequence databases. The results of a principal-component analysis (PCA) based on the percentage of OTUs and biogeochemical data indicated that the nitrate concentration and oxygen have an effect on the denitrifying communities. The communities at the stations in oxygen-deficient zones were more similar than the communities at the stations in the oxygenated zone. The denitrifying communities were more similar at the stations that were closer together and had similar nitrate levels. Also, the results of PCA based on biogeochemical properties suggest that geographic location and biogeochemical conditions, especially the nitrate and oxygen levels, appear to be the key factors that control the structure of denitrifying communities. PMID:12788762

  17. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    PubMed

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface. PMID:27127984

  18. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts.

    PubMed

    Kang, Lixing; Hu, Yue; Liu, Lili; Wu, Juanxia; Zhang, Shuchen; Zhao, Qiuchen; Ding, Feng; Li, Qingwen; Zhang, Jin

    2015-01-14

    For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, techniques to obtain horizontally aligned semiconducting SWNTs (s-SWNTs) with higher densities are still in their infancy. We reported herein a rational approach for the preferential growth of densely packed and well-aligned s-SWNTs arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Using this approach, a suitable concentration of oxygen vacancies in TiO2 nanoparticles could form by optimizing the flow rate of hydrogen and carbon sources during the process of SWNT growth, and then horizontally aligned SWNTs with the density of ∼ 10 tubes/μm and the s-SWNT percentage above 95% were successfully obtained on ST-cut quartz substrates. Theoretical calculations indicated that TiO2 nanoparticles with a certain concentration of oxygen vacancies have a lower formation energy between s-SWNT than metallic SWNT (m-SWNT), thus realizing the preferential growth of s-SWNT arrays. Furthermore, this method can also be extended to other semiconductor oxide nanoparticles (i.e., ZnO, ZrO2 and Cr2O3) for the selective growth of s-SWNTs, showing clear potential to the future applications in nanoelectronics. PMID:25539021

  19. Intact polar lipids of Thaumarchaeota and anammox bacteria as indicators of N-cycling in the Eastern Tropical North Pacific oxygen deficient zone

    NASA Astrophysics Data System (ADS)

    Sollai, M.; Hopmans, E. C.; Schouten, S.; Keil, R. G.; Sinninghe Damsté, J. S.

    2015-03-01

    In the last decade our understanding of the marine nitrogen cycle has improved considerably thanks to the discovery of two novel groups of microorganisms: ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. Both groups are important in oxygen deficient zones (ODZs), where they substantially affect the marine N-budget. These two groups of microbes are also well known for producing specific membrane lipids, which can be used as biomarkers to trace their presence in the environment. We investigated the occurrence and distribution of AOA and anammox bacteria in the water column of the Eastern Tropical North Pacific (ETNP) ODZ, one of the most prominent ODZs worldwide. Suspended particulate matter (SPM) was collected at different depths of the water column in high resolution, at both a coastal and an open ocean setting. The SPM was analyzed for AOA- and anammox bacteria-specific intact polar lipids (IPLs), i.e. hexose-phosphohexose (HPH)-crenarchaeol and phosphatidylcholine (PC)-monoether ladderane. Comparison with oxygen profiles reveals that both the microbial groups are able to thrive at low (<1 μM) concentrations of oxygen. Our results indicate a clear niche segregation of AOA and anammox bacteria in the coastal waters of the ETNP, but a partial overlap of the two niches of these microbial species in the open water setting. The latter distribution suggests the potential for an interaction between the two microbial groups at the open ocean site, either as competition or cooperation.

  20. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Altmeyer, Michaela; Jeschke, Harald O.; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F.; Rozenberg, Marcelo J.; Valentí, Roser; Gabay, Marc

    2016-04-01

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO3, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ˜100 meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t2 g itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  1. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  2. Unusual magnetic and transport properties of oxygen deficient Sr2Fe1-xCoxMoO6-d

    NASA Astrophysics Data System (ADS)

    Chang, Hong; García-Hernández, Mar; Alonso, Jose Antonio

    2006-10-01

    In the title compounds the oxygen voids have a significant influence over the transport properties, compared with the parent stoichiometric compounds (Sr2FeMoO6 and Sr2CoMoO6) where the oxygen defects have little impact on the crystallographic and magnetic properties. For Sr2FeMoO6-d and Sr2Fe0.95Co0.05MoO6-d, the oxygen voids simply decrease the magnetoresistance (MR) without altering the contours, and for x ⩾0.1 at the expense of the decreased low field MR, the oxygen voids enhance MR at high applied field, which is 6%-8% larger than the parent compounds for 0.2⩽x⩽0.7. Remarkably enough, the antiferromagnetic Sr2Fe0.1Co0.9MoO6-d exhibits record negative magnetoresistance ratio MR =((R(H,T)-R(0,T))/R(0,T))×100% as high as 99%.

  3. Malting revisited: Germination of barley (Hordeum vulgare L.) is inhibited by both oxygen deficiency and high carbon dioxide concentrations.

    PubMed

    Kleinwächter, Maik; Meyer, Ann-Kathrin; Selmar, Dirk

    2012-05-01

    During malting, barley (Hordeum vulgare L.) seeds are germinated to promote the mobilisation of storage compounds. Germination is strongly influenced by O2 and CO2; however, any distinction between the particular effects is missing. Since, in this study, the ambient O2 concentration was maintained when high CO2 concentrations were applied, for the first time the impacts of CO2 and of O2 deficiency could be distinguished unambiguously. Germination was inhibited by both O2 deficiency and high CO2 (80%) concentrations, documented by the lack of any growth of coleoptiles and any increase of α-amylase and β-glucanase activity. In contrast, the related impacts of O2 starvation and high CO2 on fermentation differ strongly, demonstrated by quite different patterns of ethanol emission. Additionally, the stress metabolism - monitored by the means of GABA accumulation - was also differently impacted. The elucidation of the underlying, so far unknown, mechanisms will provide novel opportunities to improve malting. PMID:26434318

  4. Senescence Marker Protein-30 (SMP30) Deficiency Impairs Myocardium-Induced Dilation of Coronary Arterioles Associated with Reactive Oxygen Species

    PubMed Central

    Mizukami, Hiroyuki; Saitoh, Shu-ichi; Machii, Hirofumi; Yamada, Shinya; Hoshino, Yasuto; Misaka, Tomofumi; Ishigami, Akihito; Takeishi, Yasuchika

    2013-01-01

    Senescence marker protein-30 (SMP30) decreases with aging. Mice with SMP30 deficiency, a model of aging, have a short lifespan with increased oxidant stress. To elucidate SMP30’s effect on coronary circulation derived from myocytes, we measured the changes in the diameter of isolated coronary arterioles in wild-type (WT) mice exposed to supernatant collected from isolated paced cardiac myocytes from SMP30 KO or WT mice. Pacing increased hydrogen peroxide in myocytes, and hydrogen peroxide was greater in SMP30 KO myocytes compared to WT myocytes. Antimycin enhanced and FCCP (oxidative phosphorylation uncoupler in mitochondria) decreased superoxide production in both groups. Addition of supernatant from stimulated myocytes, either SMP30 KO or WT, caused vasodilation. The degree of the vasodilation response to supernatant was smaller in SMP30 KO mice compared to WT mice. Administration of catalase to arterioles eliminated vasodilation in myocyte supernatant of WT mice and converted vasodilation to vasoconstriction in myocyte supernatant of SMP30 KO mice. This vasoconstriction was eliminated by olmesartan, an angiotensin II receptor antagonist. Thus, SMP30 deficiency combined with oxidant stress increases angiotensin and hydrogen peroxide release from cardiac myocytes. SMP30 plays an important role in the regulation of coronary vascular tone by myocardium. PMID:23629672

  5. In situ observation of oxygen deficiency occurring during electron irradiation in high Tc superconductor YBa2Cu3Oy.

    PubMed

    Akase, Z; Tomokiyo, Y; Watanabe, M

    2001-07-01

    The decreasing process of oxygen in YBa2Cu3Oy is investigated through high resolution electron microscopy (HREM) and convergent beam electron diffraction (CBED). Measurements of the axial length in HREM images show that oxygen content y decreases faster near a twin boundary than at the inner part of a twin lamella. The transformation from an orthorhombic to a tetragonal phase starts at a twin boundary and the transformed region propagates to an inner region of lamella. Lattice strains are observed near boundaries between transformed and non-transformed regions. The transformation is almost complete within 30 s during observation of HREM images at 400 kV and at room temperature. A value of y was quantitatively measured by analysing observed intensities of energy-filtered CBED patterns with the dynamical theory. The value of y decreases from 6.9 to 6.5 when 200 kV electrons are irradiated for 160 s in a microscope at 108 K. More precise analysis of the intensities provides information on charge distribution along the c-axis as well as local oxygen content at a spatial resolution of several nanometres. PMID:11454148

  6. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    SciTech Connect

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reduced BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.

  7. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  8. Water conditions and geochemistry in northern Adriatic anoxia-prone areas and response of benthic faunas to oxygen deficiencies

    NASA Astrophysics Data System (ADS)

    Zuschin, Martin; Riedel, Bettina; Stachowitsch, Michael; Cermelj, Branko

    2010-05-01

    One predicted effect of global climate change, specifically global warming, is the increase in the temperatures and stratification of shallow coastal and estuarine systems. This, coupled with ongoing anthropogenic eutrophication, will exacerbate hypoxia and benthic mortalities, significantly damaging these critical marine ecosystems. These phenomena are particularly severe on sublitoral soft-bottoms such as the poorly sorted silty sands at the study site in the northern Adriatic Sea. We deployed a specially developed underwater chamber to artificially induce anoxia in situ. Our Experimental Anoxia Generating Unit (EAGU) is a large plexiglass chamber that combines a digital camera with oxygen/hydrogen sulphide/pH sensors along with flashes and battery packs. The unit can be deployed for up to five days to autonomously generate oxygen crises and quantify both physico-chemical parameters and benthic responses. The system is initially positioned in an "open" configuration (open-sided aluminium frame) over the benthic fauna ("control" experiment). After 24 h the EAGU is switched to its "closed" configuration (plexiglass enclosure) and repositioned over the same assemblage. In this contribution, we focus on the natural oxygen content, temperature and pH of bottom waters during summer, the course of oxygen decrease during our experiments and the onset of H2S development. Oxygen content of the bottom water, a few centimetres above the sediment-water interface, ranges from ~3.5-8 but is mostly between 4-6 ml l-1 during July to September of the study periods (2005 and 2006) and decreases to zero within ~1-3 days after initiation of our experiments. In parallel, H2S starts to develop at the onset of anoxia. Water temperatures at the bottom were stable during experiments and ranged from 18.5°C to 21.4°C, but pH decreased from 8.3 to 8.1 at the beginning to 7.9 to 7.7 at the end of the experiments. Sediment profiling indicates that the diffusive benthic boundary layer is

  9. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  10. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less