Science.gov

Sample records for oxygen species regulation

  1. KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    PubMed Central

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-01-01

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the

  2. Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    PubMed Central

    Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing

    2013-01-01

    Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827

  3. Reactive Oxygen Species in the Regulation of Stomatal Movements1[OPEN

    PubMed Central

    Sierla, Maija; Waszczak, Cezary; Vahisalu, Triin

    2016-01-01

    Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca2+ concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells. PMID:27208297

  4. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species.

    PubMed

    Niles, Brad J; Powers, Ted

    2014-12-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells. PMID:25253719

  5. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    PubMed Central

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M.G.E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2016-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signaling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signaling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly-recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identifies mROS as a putative homeostatic signaling molecule coupling cellular metabolism to the strength of inhibitory transmission. PMID:24430741

  6. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  7. Reactive oxygen species: physiological roles in the regulation of vascular cells.

    PubMed

    Vara, D; Pula, G

    2014-01-01

    Reactive oxygen species (ROS) are now appreciated to play several important roles in a number of biological processes and regulate cell physiology and function. ROS are a heterogeneous chemical class that includes radicals, such as superoxide ion (O2(•-)), hydroxyl radical (OH(•)) and nitric oxide (NO(•)), and non-radicals, such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2), hypochlorous acid (HOCl), and peroxynitrite (NO3 (-)). In the cardiovascular system, besides playing a critical role in the development and progression of vasculopathies and other important pathologies such as congestive heart failure, atherosclerosis and thrombosis, ROS also regulate physiological processes. Evidence from a wealth of cardiovascular research studies suggests that ROS act as second messengers and play an essential role in vascular homeostasis by influencing discrete signal transduction pathways in various systems and cell types. They are produced throughout the vascular system, regulate differentiation and contractility of vascular smooth muscle cells, control vascular endothelial cell proliferation and migration, mediate platelet activation and haemostasis, and significantly contribute to the immune response. Our understanding of ROS chemistry and cell biology has evolved to the point of realizing that different ROS have distinct and important roles in cardiovascular physiology. This review will outline sources, functions and molecular mechanisms of action of different ROS in the cardiovascular system and will describe their emerging role in healthy cardiovascular physiology and homeostasis. PMID:24894168

  8. Mechanisms that Regulate Production of Reactive Oxygen Species by Cytochrome P450

    SciTech Connect

    Zangar, Richard C.; Davydov, Dmitri R.; Verma, Seema

    2004-09-15

    Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle results in continuous production of reactive oxygen species (ROS), which affect signaling pathways and other cellular functions. P450 generation of ROS is tightly controlled by regulation of gene transcription, as well as by modulation of interactions between protein constituents of the monooxygenase that affects its activity, coupling and stability. Malfunction of these mechanisms may result in a burst of ROS production, which can cause lipid peroxidation and oxidative stress. In turn, oxidative stress downregulates P450 levels by a variety of feedback mechanisms. This review provides an overview of recent advances in our understanding of these feedback mechanisms that serve to limit P450 production of ROS. Some of the more likely physiological and cellular effects of P450 generation of ROS are also discussed.

  9. Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression

    PubMed Central

    Nickenig, Georg; Strehlow, Kerstin; Bäumer, Anselm T; Baudler, Stefanie; Waßmann, Sven; Sauer, Heinrich; Böhm, Michael

    2000-01-01

    Free radicals as well as the AT1 receptor are involved in the pathogenesis of cardiovascular disease. Both the intracellular mechanisms of AT1 receptor regulation and the effect of free radicals on AT1 receptor expression are currently unknown. This study investigates the role of free radicals in the modulation of AT1 receptor expression and in the angiotensin II-induced AT1 receptor regulation. AT1 receptor mRNA was assessed by Northern blotting and AT1 receptor density by radioligand binding assays, respectively, in vascular smooth muscle cells (VSMC). Free radical release was measured by confocal laser scanning microscopy. AT1 receptor mRNA transcription rate was determined by nuclear run-on assays and AT1 receptor mRNA half-life was measured under transcriptional blockade. Angiotensin II caused a time-dependent decrease of AT1 receptor mRNA expression in rat VSMC in culture (30±6% at 4 h with 100 nM angiotensin II). This was followed by a consistent decrease in AT1 receptor density. Angiotensin II caused release of reactive oxygen species in VSMC which was abolished by preincubation with 100 μM diphenylene iodonium (DPI). DPI inhibited partially the down-regulating effect of angiotensin II on the AT1 receptor. Incubation of VSMC with either hydrogen peroxide or xanthine/xanthine oxidase caused a dose-dependent decrease in AT1 receptor mRNA expression which was not mediated by a decreased rate of transcription but rather through destabilization of AT1 receptor mRNA. Experiments which included preincubation of VSMC with various intracellular inhibitors suggested that free radicals caused AT1 receptor downregulation through activation of p38-MAP kinase and intracellular release of calcium. However, angiotensin II-induced AT1 receptor expression was not inhibited by blockade of p38-MAP kinase activation or intracellular calcium release. Free radicals may at least in part mediate angiotensin II-induced AT1 receptor regulation through direct post

  10. The LIKE SEX FOUR2 regulates root development by modulating reactive oxygen species homeostasis in Arabidopsis.

    PubMed

    Zhao, Pingzhi; Sokolov, Lubomir N; Ye, Jian; Tang, Cheng-Yi; Shi, Jisen; Zhen, Yan; Lan, Wenzhi; Hong, Zhi; Qi, Jinliang; Lu, Gui-Hua; Pandey, Girdhar K; Yang, Yong-Hua

    2016-01-01

    Maintaining reactive oxygen species (ROS) homeostasis plays a central role in plants, and is also critical for plant root development. Threshold levels of ROS act as signals for elongation and differentiation of root cells. The protein phosphatase LIKE SEX FOUR2 (LSF2) has been reported to regulate starch metabolism in Arabidopsis, but little is known about the mechanism how LSF2 affect ROS homeostasis. Here, we identified that LSF2 function as a component modulating ROS homeostasis in response to oxidative stress and, thus regulate root development. Compared with wild type Arabidopsis, lsf2-1 mutant exhibited reduced rates of superoxide generation and higher levels of hydrogen peroxide upon oxidative stress treatments. The activities of several antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase, were also affected in lsf2-1 mutant under these oxidative stress conditions. Consequently, lsf2-1 mutant exhibited the reduced root growth but less inhibition of root hair formation compared to wild type Arabidopsis plants. Importantly, protein phosphatase LSF2 interacted with mitogen-activated protein kinase 8 (MPK8), a known component of ROS homeostasis pathways in the cytoplasm. These findings indicated the novel function of LSF2 that controls ROS homeostasis to regulate root development. PMID:27349915

  11. The LIKE SEX FOUR2 regulates root development by modulating reactive oxygen species homeostasis in Arabidopsis

    PubMed Central

    Zhao, Pingzhi; Sokolov, Lubomir N.; Ye, Jian; Tang, Cheng-Yi; Shi, Jisen; Zhen, Yan; Lan, Wenzhi; Hong, Zhi; Qi, Jinliang; Lu, Gui-Hua; Pandey, Girdhar K.; Yang, Yong-Hua

    2016-01-01

    Maintaining reactive oxygen species (ROS) homeostasis plays a central role in plants, and is also critical for plant root development. Threshold levels of ROS act as signals for elongation and differentiation of root cells. The protein phosphatase LIKE SEX FOUR2 (LSF2) has been reported to regulate starch metabolism in Arabidopsis, but little is known about the mechanism how LSF2 affect ROS homeostasis. Here, we identified that LSF2 function as a component modulating ROS homeostasis in response to oxidative stress and, thus regulate root development. Compared with wild type Arabidopsis, lsf2-1 mutant exhibited reduced rates of superoxide generation and higher levels of hydrogen peroxide upon oxidative stress treatments. The activities of several antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase, were also affected in lsf2-1 mutant under these oxidative stress conditions. Consequently, lsf2-1 mutant exhibited the reduced root growth but less inhibition of root hair formation compared to wild type Arabidopsis plants. Importantly, protein phosphatase LSF2 interacted with mitogen-activated protein kinase 8 (MPK8), a known component of ROS homeostasis pathways in the cytoplasm. These findings indicated the novel function of LSF2 that controls ROS homeostasis to regulate root development. PMID:27349915

  12. Reactive oxygen species regulate alkaloid metabolism in undifferentiated N. tabacum cells.

    PubMed

    Sachan, Nita; Rogers, Dennis T; Yun, Kil-Young; Littleton, John M; Falcone, Deane L

    2010-05-01

    Plants produce an immense number of natural products and undifferentiated cells from various plant tissues have long been considered an ideal source for their synthesis. However, undifferentiated plant cells often either lose their biosynthetic capacity over time or exhibit immediate repression of the required pathways once dedifferentiated. In this study, freshly prepared callus tissue was employed to further investigate the regulation of a natural product pathway in undifferentiated tobacco cells. Putrescine N-methyltransferase (PMT) is a pathway-specific enzyme required in nicotinic alkaloid production in Nicotiana species. Callus derived from transgenic Nicotiana tabacum plants harboring PMT promoter-GUS fusions were used to study factors that influence PMT expression. Under normal callus growth conditions in the presence of light and auxin, PMT promoter activity was strongly repressed. Conversely, dark conditions and the absence of auxin were found to upregulate PMT promoter activity, with light being dominant to the repressive effects of auxin. Since reactive oxygen species (ROS) are known by-products of photosynthesis and have been implicated in signaling, their involvement was investigated in transgenic callus by treatment with the ROS scavenger, dimethylthiourea, or catalase. Under highly repressive conditions for alkaloid synthesis, including normal culture conditions in the light, both ROS scavengers resulted in significant induction of PMT promoter activity. Moreover, treatment of callus with catalase resulted in the upregulation of PMT promoter activity and alkaloid accumulation in this tissue. These results suggest that ROS impact the regulation of the alkaloid pathway in undifferentiated cells and have implications for regulation of the pathway in other plant tissues. PMID:20217418

  13. Alkbh8 Regulates Selenocysteine-Protein Expression to Protect against Reactive Oxygen Species Damage

    PubMed Central

    Endres, Lauren; Dziergowska, Agnieszka; Małkiewicz, Andrzej; Melendez, J. Andres; Dedon, Peter C.; Begley, Thomas J.

    2015-01-01

    Environmental and metabolic sources of reactive oxygen species (ROS) can damage DNA, proteins and lipids to promote disease. Regulation of gene expression can prevent this damage and can include increased transcription, translation and post translational modification. Cellular responses to ROS play important roles in disease prevention, with deficiencies linked to cancer, neurodegeneration and ageing. Here we detail basal and damage-induced translational regulation of a group of oxidative-stress response enzymes by the tRNA methyltransferase Alkbh8. Using a new gene targeted knockout mouse cell system, we show that Alkbh8-/- embryonic fibroblasts (MEFs) display elevated ROS levels, increased DNA and lipid damage and hallmarks of cellular stress. We demonstrate that Alkbh8 is induced in response to ROS and is required for the efficient expression of selenocysteine-containing ROS detoxification enzymes belonging to the glutathione peroxidase (Gpx1, Gpx3, Gpx6 and likely Gpx4) and thioredoxin reductase (TrxR1) families. We also show that, in response to oxidative stress, the tRNA modification 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um) increases in normal MEFs to drive the expression of ROS detoxification enzymes, with this damage-induced reprogramming of tRNA and stop-codon recoding corrupted in Alkbh8-/- MEFS. These studies define Alkbh8 and tRNA modifications as central regulators of cellular oxidative stress responses in mammalian systems. In addition they highlight a new animal model for use in environmental and cancer studies and link translational regulation to the prevention of DNA and lipid damage. PMID:26147969

  14. Neuroprotection by Polynitrogen Manganese Complexes: Regulation of Reactive Oxygen Species-Related Pathways.

    PubMed

    Chen, Chunxia; Cao, Jing; Ma, Xiaoyan; Wang, Xiaobo; Chen, Qiuyun; Yan, Shihai; Zhao, Ningwei; Geng, Zhirong; Wang, Zhilin

    2016-01-01

    Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied preconditioning with two polynitrogen manganese complexes (1 and 2) to regulate intracellular ROS levels in the protection of both the differentiated rat pheochromocytoma cell line (PC12 cells) and neurons against H2O2-induced apoptosis. Pre-treatment with the two complexes attenuated the cell apoptosis caused by H2O2. And the ROS-related neuroprotective mechanisms were explored. Both complexes activate the hypoxia inducible factor-related pathways and increase the cell adaptation to oxidative stress. Pre-treatment with complex 1 eliminated intracellular ROS, which also activated antioxidase system, while short-term incubation of complex 2, generated low levels of ROS leading to cell survival. PMID:26857964

  15. Negative Regulation of Autophagy by Sulfide Is Independent of Reactive Oxygen Species.

    PubMed

    Laureano-Marín, Ana M; Moreno, Inmaculada; Romero, Luis C; Gotor, Cecilia

    2016-06-01

    Accumulating experimental evidence in mammalian, and recently plant, systems has led to a change in our understanding of the role played by hydrogen sulfide in life processes. In plants, hydrogen sulfide mitigates stress and regulates important plant processes such as photosynthesis, stomatal movement, and autophagy, although the underlying mechanism is not well known. In this study, we provide new experimental evidence that, together with our previous findings, demonstrates the role of hydrogen sulfide in regulating autophagy. We used green fluorescent protein fluorescence associated with autophagic bodies and immunoblot analysis of the ATG8 protein to show that sulfide (and no other molecules such as sulfur-containing molecules or ammonium) was able to inhibit the autophagy induced in Arabidopsis (Arabidopsis thaliana) roots under nitrogen deprivation. Our results showed that sulfide was unable to scavenge reactive oxygen species generated by nitrogen limitation, in contrast to well-established reducers. In addition, reducers were unable to inhibit the accumulation of autophagic bodies and ATG8 protein forms to the same extent as sulfide. Therefore, we conclude that sulfide represses autophagy via a mechanism that is independent of redox conditions. PMID:27208225

  16. Ethylene Response Factor 6 Is a Regulator of Reactive Oxygen Species Signaling in Arabidopsis

    PubMed Central

    Sewelam, Nasser; Kazan, Kemal; Thomas-Hall, Skye R.; Kidd, Brendan N.; Manners, John M.; Schenk, Peer M.

    2013-01-01

    Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses. PMID:23940555

  17. Neuroprotection by Polynitrogen Manganese Complexes: Regulation of Reactive Oxygen Species-Related Pathways

    PubMed Central

    Chen, Chunxia; Cao, Jing; Ma, Xiaoyan; Wang, Xiaobo; Chen, Qiuyun; Yan, Shihai; Zhao, Ningwei; Geng, Zhirong; Wang, Zhilin

    2016-01-01

    Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied preconditioning with two polynitrogen manganese complexes (1 and 2) to regulate intracellular ROS levels in the protection of both the differentiated rat pheochromocytoma cell line (PC12 cells) and neurons against H2O2-induced apoptosis. Pre-treatment with the two complexes attenuated the cell apoptosis caused by H2O2. And the ROS-related neuroprotective mechanisms were explored. Both complexes activate the hypoxia inducible factor-related pathways and increase the cell adaptation to oxidative stress. Pre-treatment with complex 1 eliminated intracellular ROS, which also activated antioxidase system, while short-term incubation of complex 2, generated low levels of ROS leading to cell survival. PMID:26857964

  18. Regulation of Rac1 and Reactive Oxygen Species Production in Response to Infection of Gastrointestinal Epithelia

    PubMed Central

    Ablack, Amber; Hall, Emily H.; Butcher, Lindsay D.; Bhattacharyya, Asima; Eckmann, Lars; Harris, Paul R.; Das, Soumita; Ernst, Peter B.; Crowe, Sheila E.

    2016-01-01

    Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections. PMID:26761793

  19. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death.

    PubMed

    Schenk, B; Fulda, S

    2015-11-19

    Necroptosis represents a key programmed cell death pathway involved in various physiological and pathophysiological conditions. However, the role of reactive oxygen species (ROS) in necroptotic signaling has remained unclear. In the present study, we identify ROS as critical regulators of BV6/tumor necrosis factor-α (TNFα)-induced necroptotic signaling and cell death. We show that BV6/TNFα-induced cell death depends on ROS production, as several ROS scavengers such as butylated hydroxyanisole, N-acetylcysteine, α-tocopherol and ethyl pyruvate significantly rescue cell death. Before cell death, BV6/TNFα-stimulated ROS generation promotes stabilization of the receptor-interacting protein kinase 1 (RIP1)/RIP3 necrosome complex via a potential positive feedback loop, as on the one hand radical scavengers attenuate RIP1/RIP3 necrosome assembly and phosphorylation of mixed lineage kinase domain like (MLKL), but on the other hand silencing of RIP1 or RIP3 reduces ROS production. Although MLKL knockdown effectively decreases BV6/TNFα-induced cell death, it does not affect RIP1/RIP3 interaction and only partly reduces ROS generation. Moreover, the deubiquitinase cylindromatosis (CYLD) promotes BV6/TNFα-induced ROS generation and necrosome assembly even in the presence of BV6, as CYLD silencing attenuates these events. Genetic silencing of phosphoglycerate mutase 5 or dynamin-related protein 1 (Drp1) fails to protect against BV6/TNFα-induced cell death. By demonstrating that ROS are involved in regulating BV6/TNFα-induced necroptotic signaling, our study provides new insights into redox regulation of necroptosis. PMID:25867066

  20. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  1. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination. PMID:24811898

  2. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment.

    PubMed

    Chen, Xinfeng; Song, Mengjia; Zhang, Bin; Zhang, Yi

    2016-01-01

    Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity. PMID:27547291

  3. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment

    PubMed Central

    Chen, Xinfeng; Song, Mengjia

    2016-01-01

    Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity. PMID:27547291

  4. Reactive Oxygen Species Regulate Innate But Not Adaptive Inflammation in ZAP70-Mutated SKG Arthritic Mice.

    PubMed

    Guerard, Simon; Holmdahl, Rikard; Wing, Kajsa

    2016-09-01

    Polysaccharides from Saccharomyces cerevisiae can induce arthritis, ileitis, and interstitial pneumonitis in BALB/c ZAP70 (W163C)-mutant (SKG) mice via T helper 17-cell-dependent pathways. However, little is known regarding the factors influencing disease severity. We investigated mannan-induced arthritis in SKG mice and how NADPH oxidase 2-derived reactive oxygen species (ROS) regulate disease. SKG mice were highly susceptible to both IL-17-mediated T-cell-driven arthritis and T-cell-independent acute psoriasis-like dermatitis. In vivo imaging revealed more ROS in joints of arthritic SKG mice compared to wild-type mice, which links ROS and joint inflammation. Still, ROS deficiency in SKG.Ncf1(m1j/m1j) mice greatly increased severity of arthritis and dermatitis, a difference that could not be attributed to increased T-cell activation, thymic selection, or antibody production. However, when ROS production was restored in CD68(+) macrophages, inflammation reverted to baseline, demonstrating a regulatory role of macrophage-derived ROS in autoimmunity. Thus, arthritis in SKG mice is a useful model to study the role of ROS in innate-driven chronic inflammation independently of adaptive immunity. PMID:27427418

  5. Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis.

    PubMed

    Liu, Nan; Lin, Zhifang; Guan, Lanlan; Gaughan, Gerald; Lin, Guizhu

    2014-01-01

    Previous research has focused on the involvement of reactive oxygen species (ROS) in cell wall loosening and cell extension in plant vegetative growth, but few studies have investigated ROS functions specifically in plant reproductive organs. In this study, ROS levels and antioxidant enzyme activities were assessed in Pisum sativum and Brassica chinensis pods at five developmental stages. In juvenile pods, the high levels of O2.- and .OH indicates that they had functions in cell wall loosening and cell elongation. In later developmental stages, high levels of .OH were also related to increases in cell wall thickness in lignified tissues. Throughout pod development, most of the O2.- was detected on plasma membranes of parenchyma cells and outer epidermis cells of the mesocarp, while most of the H2O2 was detected on plasma membranes of most cells throughout the mesocarp. This suggests that these sites are presumably the locations of ROS generation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) apparently contributed to ROS accumulation in pod wall tissues. Furthermore, specifically SOD and POD were found to be associated with pod growth through the regulation of ROS generation and transformation. Throughout pod development, O2.- decreases were associated with increased SOD activity, while changes in H2O2 accumulation were associated with changes in CAT and POD activities. Additionally, high POD activity may contribute to the generation of(.)OH in the early development of pods. It is concluded that the ROS are produced in different sites of plasma membranes with the regulation of antioxidant enzymes, and that substantial ROS generation and accumulation are evident in cell elongation and cell wall loosening in pod wall cells. PMID:24503564

  6. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis.

    PubMed

    Kim, Do-Kyun; Beaven, Michael A; Kulinski, Joseph M; Desai, Avanti; Bandara, Geethani; Bai, Yun; Prussin, Calman; Schwartz, Lawrence B; Komarow, Hirsh; Metcalfe, Dean D; Olivera, Ana

    2016-01-01

    Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage. PMID:27611333

  7. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake

    PubMed Central

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders. PMID:25759638

  8. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  9. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology.

    PubMed

    Oliveira, Matheus P; Correa Soares, Juliana B R; Oliveira, Marcus F

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  10. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  11. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis

    PubMed Central

    Liu, Rui-Ming; Desai, Leena P.

    2015-01-01

    Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  12. Endothelial GRK2 regulates vascular homeostasis through the control of free radical oxygen species

    PubMed Central

    Ciccarelli, Michele; Sorriento, Daniela; Franco, Antonietta; Fusco, Anna; Giudice, Carmine Del; Annunziata, Roberto; Cipolletta, Ersilia; Monti, Maria Gaia; Dorn, Gerald W; Trimarco, Bruno; Iaccarino, Guido

    2014-01-01

    Objective The role of endothelial GRK2 was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2fl/fl). Approach and Results Aortas from Tie2-CRE/GRK2fl/fl presented functional and structural alterations as compared to control GRK2fl/fl mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species (ROS) was increased, leading to expression of cytokines. Chronic treatment with a ROS scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities and reducing macrophage infiltration. Conclusions These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial ROS production. PMID:23950144

  13. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function.

    PubMed

    Birket, Matthew J; Casini, Simona; Kosmidis, Georgios; Elliott, David A; Gerencser, Akos A; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G; Elefanty, Andrew G; Stanley, Ed G; Mummery, Christine L

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  14. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    PubMed Central

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  15. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

    PubMed Central

    Liu, Jiang; Kennedy, David J.; Yan, Yanling; Shapiro, Joseph I.

    2012-01-01

    The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption. PMID:22518311

  16. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  17. Reactive Oxygen Species and Cellular Oxygen Sensing

    PubMed Central

    Cash, Timothy P; Pan, Yi; Simon, M. Celeste

    2008-01-01

    Many organisms activate adaptive transcriptional programs to help them cope with decreased oxygen levels, or hypoxia, in their environment. These responses are triggered by various oxygen sensing systems in bacteria, yeast and metazoans. In metazoans, the hypoxia inducible factors (HIFs) mediate the adaptive transcriptional response to hypoxia by upregulating genes involved in maintaining bioenergetic homeostasis. The HIFs in turn are regulated by HIF-specific prolyl hydroxlase activity, which is sensitive to cellular oxygen levels and other factors such as tricarboxylic acid cycle metabolites and reactive oxygen species (ROS). Establishing a role for ROS in cellular oxygen sensing has been challenging since ROS are intrinsically unstable and difficult to measure. However, recent advances in fluorescence energy transfer resonance (FRET)-based methods for measuring ROS are alleviating some of the previous difficulties associated with dyes and luminescent chemicals. In addition, new genetic models have demonstrated that functional mitochondrial electron transport and associated ROS production during hypoxia are required for HIF stabilization in mammalian cells. Current efforts are directed at how ROS mediate prolyl hydroxylase activity and hypoxic HIF stabilization. Progress in understanding this process has been enhanced by the development of the FRET-based ROS probe, an vivo prolyl hydroxylase reporter and various genetic models harboring mutations in components of the mitochondrial electron transport chain. PMID:17893032

  18. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia.

    PubMed

    Niecknig, Helene; Tug, Suzan; Reyes, Buena Delos; Kirsch, Michael; Fandrey, Joachim; Berchner-Pfannschmidt, Utta

    2012-06-01

    The function and survival of eukaryotic cells depends on a constant and sufficient oxygen supply. Cells recognize and respond to hypoxia by accumulation of the transcription factor hypoxia-inducible factor 1 (HIF-1), composed of an oxygen-sensitive HIF-1α and a constitutive HIF-1β subunit. Besides physiology, HIF-1 induction is involved in major pathological processes such as cardiovascular disease, inflammation and cancer, which are associated with the formation of reactive oxygen species (ROS). ROS have been reported to affect HIF-1 activity but the role for ROS in regulating HIF-1 has not been definitely settled. In order to shed light on the redox-regulation of HIF-1 by ROS, we studied the impact of exogenous ROS treatment (H(2)O(2)) on HIF-1α and HIF-1 regulatory protein prolyl hydroxylase 2 (PHD2) in the human osteosarcoma cell line U2OS. At early reaction periods, H(2)O(2) induced HIF-1α but at prolonged observation phases the opposite occurred. Herein, modulation of PHD activity appeared to be the key element, because knockdown and inhibition of the PHD2 prevented reduction of HIF-1α. However, H(2)O(2) treatment constantly suppressed HIF-1 transactivation at all time-points. Our data indicate a dual redox regulation of HIF-1α protein amount with a constant suppression of HIF-1 target gene expression by ROS. PMID:22360728

  19. NRROS Negatively Regulates Osteoclast Differentiation by Inhibiting RANKL-Mediated NF-κB and Reactive Oxygen Species Pathways

    PubMed Central

    Kim, Jung Ha; Kim, Kabsun; Kim, Inyoung; Seong, Semun; Kim, Nacksung

    2015-01-01

    Negative regulator of reactive oxygen species (NRROS) is known to repress ROS generation in phagocytes. In this study, we examined the roles of NRROS in both osteoclasts and osteoblasts. Our results demonstrate that NRROS negatively regulates the differentiation of osteoclasts, but not osteoblasts. Further, overexpression of NRROS in osteoclast precursor cells attenuates RANKL-induced osteoclast differentiation. Conversely, osteoclast differentiation is enhanced upon siRNA-mediated knockdown of NRROS. Additionally, NRROS attenuates RANKL-induced NF-κB activation, as well as degradation of the NOX1 and NOX2 proteins, which are required for ROS generation. Based on our observations, we present NRROS as a novel negative regulator of RANKL-induced osteoclastogenesis. PMID:26442864

  20. Role of reactive oxygen species in regulation of glucose transport in skeletal muscle during exercise.

    PubMed

    Katz, Abram

    2016-06-01

    Glucose derived from extracellular sources serves as an energy source in virtually all eukaryotic cells, including skeletal muscle. Its contribution to energy turnover increases with exercise intensity up to moderately heavy workloads. However, at very high workloads, the contribution of extracellular glucose to energy turnover is negligible, despite the high rate of glucose transport. Reactive oxygen species (ROS) are involved in the stimulation of glucose transport in isolated skeletal muscle preparations during intense repeated contractions. Consistent with this observation, heavy exercise is associated with significant production of ROS. However, during more mild to moderate stimulation or exercise conditions (in vitro, in situ and in vivo) antioxidants do not affect glucose transport. It is noteworthy that the production of ROS is limited or not observed under these conditions and that the concentration of the antioxidant used was extremely low. The results to date suggest that ROS involvement in activation of glucose transport occurs primarily during intense short-term exercise and that other mechanisms are involved during mild to moderate exercise. What remains puzzling is why ROS-mediated activation of glucose transport would occur under conditions where glucose transport is highest and utilization (i.e. phosphorylation of glucose by hexokinase) is low. Possibly ROS production is involved in priming glucose transport during heavy exercise to accelerate glycogen biogenesis during the initial recovery period after exercise, as well as altering other aspects of intracellular metabolism. PMID:26791627

  1. Mitochondrial regulation of reactive oxygen species (ROS) production-Unexpected observations in early postnatal cerebral vasculature.

    PubMed

    Wolf, S; Mattheis, A; Laufs, U; Meier, C; Tschernig, T

    2016-07-01

    Nicotinamide-nucleotide-transhydrogenase (Nnt) is a mitochondrial protein. It is altered and functionally lacking in the C57BL/6J sub-strain. This leads to the generation of more radical oxygen species than in the C57BL/6N sub-strain. During studies on the effect of Nnt in perinatal hypoxia the cerebral vasculature was investigated in postnatal day 9 mice using post mortem arterial filling with silicone rubber compounds. Surprisingly, the tiny vessels were no longer uniformly filled and a bleb-like pattern occurred in both sub-strains. Furthermore, considerably more bleb-like spots were observed in the C57Bl/6J sub-strain than in the C57Bl/6N sub-strain. These blebs might be the result of feathery vessels bursting. It remains unclear how the mechanisms in the used strains differ. Nnt might influence the vascular structure or its development and mechanisms and should be investigated further. PMID:26724498

  2. Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes.

    PubMed

    Audzeyenka, Irena; Rogacka, Dorota; Piwkowska, Agnieszka; Rychlowski, Michal; Bierla, Joanna Beata; Czarnowska, Elżbieta; Angielski, Stefan; Jankowski, Maciej

    2016-06-01

    Autophagy is an intracellular defense mechanism responsible for the turnover of damaged or non-functional cellular constituents. This process provides cells with energy and essential compounds under unfavorable environmental conditions-such as oxidative stress and hyperglycemia, which are both observed in diabetes. The most common diabetes complication is diabetic nephropathy (DN), which can lead to renal failure. This condition often includes impaired podocyte function. Here we investigated autophagic activity in rat podocytes cultured with a high insulin concentration (300nM). Autophagy was activated after 60min of insulin stimulation. Moreover, this effect was abolished following pharmacological (apocynin) or genetic (siRNA) inhibition of NAD(P)H oxidase activity, indicating that insulin-dependent autophagy stimulation involved reactive oxygen species (ROS). We also observed a continuous and time-dependent increase of podocyte albumin permeability in response to insulin, and this process was slightly improved by autophagy inhibition following short-term insulin exposure. Our results suggest that insulin may be a factor affecting the development of diabetic nephropathy. PMID:27026581

  3. Lanthanum regulates the reactive oxygen species in the roots of rice seedlings

    PubMed Central

    Liu, Dongwu; Zheng, Shengnan; Wang, Xue

    2016-01-01

    In this study, the effects of La3+ on the reactive oxygen species (ROS) and antioxidant metabolism were studied in the roots of rice (Oryza sativa L. cv Shengdao 16) exposed to increasing concentrations of La3+ (0.05, 0.1, 0.5, 1.0, and 1.5 mM). The level of hydrogen peroxide, superoxide anion, and malondialdehyde was increased by 0.5, 1.0 and 1.5 mM La3+, and the activity of catalase and peroxidase was increased by 0.05 and 0.1 mM La3+. However, La3+ treatments stimulated superoxide dismutase activity in the roots of rice seedlings at all tested concentrations. In addition, the probe 2′,7′-dichlorofluorescein diacetate (H2DCF-DA) was used to investigate the instantaneous change of ROS in the root cells with the laser-scanning confocal microscopy. The result indicated that ROS level was declined after treated with 0.05 mM La3+. The results showed that the appropriate concentration of La3+ decreased the level of ROS, and hormetic effects on the antioxidant metabolism were found in the roots of rice exposed to 0.05, 0.1, 0.5, 1.0, and 1.5 mM La3+. PMID:27546334

  4. Reactive Oxygen Species Affect Transglutaminase Activity and Regulate Hematopoiesis in a Crustacean.

    PubMed

    Junkunlo, Kingkamon; Söderhäll, Kenneth; Söderhäll, Irene; Noonin, Chadanat

    2016-08-19

    Reactive oxygen species (ROS) serve as a prime signal in the commitment to hematopoiesis in both mammals and Drosophila In this study, the potential function of ROS during hematopoiesis in the crayfish Pacifastacus leniusculus was examined. The antioxidant N-acetylcysteine (NAC) was used to decrease ROS in both in vivo and in vitro experiments. An increase in ROS was observed in the anterior proliferation center (APC) after LPS injection. In the absence of NAC, the LPS-induced increase in ROS levels resulted in the rapid restoration of the circulating hemocyte number. In the presence of NAC, a delay in the recovery rate of the hemocyte number was observed. NAC treatment also blocked the spread of APC and other hematopoietic tissue (HPT) cells, maintaining these cells at an undifferentiated stage. Extracellular transglutaminase (TGase) has been shown previously to play a role in maintaining HPT cells in an undifferentiated form. In this study, we show that extracellular TGase activity increased when the ROS level in HPT or APC cells was reduced after NAC treatment. In addition, collagen, a major component of the extracellular matrix and a TGase substrate were co-localized on the HPT cell surface. Taken together, the results of this study show that ROS are involved in crayfish hematopoiesis, in which a low ROS level is required to maintain hematopoietic progenitor cells in the tissue and to reduce hemocyte release. The potential roles of TGase in this process are investigated and discussed. PMID:27339892

  5. The Anopheles gambiae Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive Oxygen Species

    PubMed Central

    Jaramillo-Gutierrez, Giovanna; Molina-Cruz, Alvaro; Kumar, Sanjeev; Barillas-Mury, Carolina

    2010-01-01

    Background OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. Methodology/Principal Findings OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. Conclusion The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection. PMID:20567517

  6. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-01

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression. PMID:25957768

  7. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate.

    PubMed

    Movafagh, Shahrzad; Crook, Sean; Vo, Kim

    2015-05-01

    Hypoxia-Inducible Factor-1 (HIF-1) has been largely studied for its role in cell survival in hypoxic conditions. The regulation of HIF-1 is a complex process and involves a number of molecules and pathways. Among these mechanisms a direct regulatory role of reactive oxygen species (ROS) on HIF-1 alpha subunit has received a great deal of attention and the existing body of literature includes many contradictory findings. Other intermediates such as nitric oxide (NO), specific microRNAs (miR), and transcriptional and post-translational modification have also been implicated as players in ROS mediated HIF-1a regulation. The focus of this review is to present the past conflicting evidence along with more recent findings in order to relate various aspects of this complex process. Aside from the direct role of ROS on HIF-1a regulation under hypoxia and normoxia, we analyzed the effect of different sources and concentrations of NO and the interplay between superoxide (SO) and NO in this process. We also present findings on transcriptional and translational regulation of HIF-1a via ROS and the interplay with microRNAs in this process. This review further provides insight on ERK and PI3K/AKT signaling as a common mechanism relating several pathways of ROS mediated HIF-1a regulation. Ultimately further research and discovery regarding HIF-1 regulation by oxidative stress is warranted for better understanding of disease development and potential therapeutics for pathologies such as cancer, inflammatory diseases, and ischemia-reperfusion injury. PMID:25546605

  8. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans.

    PubMed

    Bessler, Waylan K; Hudson, Farlyn Z; Zhang, Hanfang; Harris, Valerie; Wang, Yusi; Mund, Julie A; Downing, Brandon; Ingram, David A; Case, Jamie; Fulton, David J; Stansfield, Brian K

    2016-08-01

    Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions. PMID:27266634

  9. Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension.

    PubMed

    Zhang, Lixin; Ma, Cui; Zhang, Chen; Ma, Mingfei; Zhang, Fengying; Zhang, Linlin; Chen, Yingli; Cao, Fangyuan; Li, Shuzhen; Zhu, Daling

    2016-07-01

    The high level of reactive oxygen species and up-regulation of mitochondrial fission protein dynamin-related protein-1, both of which involved in pulmonary artery smooth muscle cells (PASMCs) apoptosis, have been detected in the lungs of rodent pulmonary arterial hypertension models. However, the regulatory mechanisms between ROS and DRP1 are poorly understood. In this study, ROS inhibitor, hypoxic rodent PAH models, small interfering RNA, polymerase chain reaction, Western blot, flow cytometry, immunohistochemistry and immunofluorescence were used. We determined that ROS, mainly derive from mitochondria, mediate mitochondria fission of PASMCs contributing to pulmonary vascular remodeling. Meanwhile, we also observed that hypoxia-induced DRP1 expression depends on ROS generation, especially mitochondrial ROS (mROS). Moreover, the levels of ROS and mROS evoked by hypoxia were regulated by DRP1. Furthermore, we verified the apoptosis suppression of PASMCs under hypoxia due to the interaction between ROS/mROS and DRP1. Our study reveals a novel mechanism of hypoxia-induced pulmonary vascular remodeling, suggesting a new therapeutic strategy which is targeting on the positive feedback of ROS/mROS-DRP1 for the treatment of PAH. PMID:27010815

  10. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    SciTech Connect

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  11. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening.

    PubMed

    Huan, Chen; Jiang, Li; An, Xiujuan; Yu, Mingliang; Xu, Yin; Ma, Ruijuan; Yu, Zhifang

    2016-07-01

    The roles of reactive oxygen species (ROS) as both toxic by-products and as signaling molecules have been reported in fruit development and ripening. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) play important roles in balancing the induction and removal of ROS in plants, and are respectively encoded by families of closely homologous genes. In the present study, we investigated the roles of ROS and the above-mentioned antioxidant genes during the development and ripening of peach fruit. The experimental results indicated that O2(-) and H2O2 acted as potential signaling molecules in the middle stage of fruit development, and only H2O2 might function as a main toxic molecule to stimulate lipid peroxidation and oxidative stress in the late stage of fruit ripening. PpaCu/Zn-SODs were the most abundant members in the PpaSOD gene family and they expressed steadily in peach fruit development and ripening. Low temperature (4 °C) postponed and suppressed the climacteric peaks of respiration and ethylene, significantly enhanced the activities of CAT and GPX, and up-regulated the expression of PpaCAT1 and PpaGPX6 in the late stage of fruit ripening. PpaCAT1 and PpaGPX6 were two key genes in alleviating oxidative stress in the late stage of fruit ripening. PMID:27208820

  12. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis

    PubMed Central

    Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Sun, Yan; Zhu, Haiyan; Chai, Li; Silberstein, Leslie E.; Cheng, Tao; Luo, Hongbo R.

    2015-01-01

    Summary The cellular mechanisms controlling infection-induced emergency granulopoiesis are poorly defined. Here we found that reactive oxygen species (ROS) concentrations in the bone marrow (BM) were elevated during acute infection in a phagocytic NADPH oxidase-dependent manner in myeloid cells. Gr1+ myeloid cells were uniformly distributed in the BM, and all c-Kit+ progenitor cells were adjacent to Gr1+ myeloid cells. Inflammation-induced ROS production in the BM played a critical role in myeloid progenitor expansion during emergency granulopoiesis. ROS elicited oxidation and deactivation of phosphatase and tensin homolog (PTEN), resulting in up-regulation of PtdIns(3,4,5)P3 signaling in BM myeloid progenitors. We further revealed that BM myeloid cell-produced ROS stimulated proliferation of myeloid progenitors via a paracrine mechanism. Taken together, our results establish that phagocytic NADPH oxidase-mediated ROS production by BM myeloid cells plays a critical role in mediating emergency granulopoiesis during acute infection. PMID:25579427

  13. Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants[W][OPEN

    PubMed Central

    Suzuki, Nobuhiro; Miller, Gad; Salazar, Carolina; Mondal, Hossain A.; Shulaev, Elena; Cortes, Diego F.; Shuman, Joel L.; Luo, Xiaozhong; Shah, Jyoti; Schlauch, Karen; Shulaev, Vladimir; Mittler, Ron

    2013-01-01

    Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal–spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned. PMID:24038652

  14. Allicin attenuates H₂O₂-induced cytotoxicity in retinal pigmented epithelial cells by regulating the levels of reactive oxygen species.

    PubMed

    Tu, Gerile; Zhang, Yu-Feng; Wei, Wei; Li, Langen; Zhang, Yanmei; Yang, Jia; Xing, Yiqiao

    2016-03-01

    Retinal pigmented epithelial cell (RPE) oxidative stress is known to have a vital role in the etiology of age‑related macular degeneration (AMD). The present study aimed to investigate whether allicin, a natural product with antioxidant activity, was able to protect RPEs (ARPE‑19) from hydrogen peroxide (H2O2)‑induced damage, and to determine the underlying mechanisms. The 3-(4,5-dimethylthiazol-2-yl)-2,5‑diphenyl tetrazolium bromide assay was used to determine cellular viability, and reactive oxygen species (ROS) were detected using a ROS Assay kit. The results demonstrated that allicin was able to protect ARPE‑19 cells from H2O2‑induced damage in a dose‑dependent manner. In addition, allicin attenuated oxidative stress by reducing the levels of intracellular ROS and malondialdehyde (MDA), and enhancing the glutathione/glutathione disulfide (GSSG) ratio. With regards to the underlying mechanism, allicin was able to markedly modulate the expression levels of ROS‑associated enzymes, including superoxide dismutase, NADPH oxidase 4 and NAD(P)H dehydrogenase quinone 1, and elevate the activity of nuclear factor erythroid 2‑related factor 2 in the H2O2‑stimulated ARPE‑19 cells. These results suggested that allicin may exert protective effects against H2O2‑induced cytotoxicity in RPEs via ROS regulation. PMID:26781848

  15. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  16. Mitochondrial Reactive Oxygen Species Regulate Adipocyte Differentiation of Mesenchymal Stem Cells in Hematopoietic Stress Induced by Arabinosylcytosine

    PubMed Central

    Wang, Weimin; Zhang, Yao; Lu, Wenyi; Liu, Kaiyan

    2015-01-01

    Objective The increase in adipocytes induced by chemotherapeutic drugs may play a negative role in hematopoietic recovery. However, the mechanism underlying adipocyte differentiation of mesenchymal stem cells (MSCs) in hematopoietic stress is still unknown. Hence, the involvement of reactive oxygen species (ROS) in adipocyte differentiation under hematopoietic stress was investigated in vitro and in vivo. Methods The roles of cellular ROS in adipogenesis were investigated in vivo through an adipocyte hyperplasia marrow model under hematopoietic stress induced by arabinosylcytosine (Ara-C) and in vitro via adipocyte differentiation of human MSCs. ROS levels were detected using the CM-H2DCFDA probe and Mito-SOX dye. Adipogenesis was evaluated by histopathology and oil red O staining, whereas detection of mRNA levels of antioxidant enzymes and adipogenesis markers was performed using quantitative real-time polymerase chain reaction analysis. Results ROS were found to play an important role in regulating adipocyte differentiation of MSCs by activating peroxisome proliferator-activated receptor gamma (PPARγ,) while the antioxidant N-acetyl-L-cysteine acts through ROS to inhibit adipocyte differentiation. The elevated ROS levels induced by Ara-C were caused by both over-generation of mitochondrial ROS and reduction of antioxidant enzymes (Cu/Zn Superoxide dismutase and catalase). Our findings suggest that a mitochondrial-targeted antioxidant could diminish adipocyte differentiation. PMID:25768922

  17. β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion

    PubMed Central

    Robson-Doucette, Christine A.; Sultan, Sobia; Allister, Emma M.; Wikstrom, Jakob D.; Koshkin, Vasilij; Bhatacharjee, Alpana; Prentice, Kacey J.; Sereda, Samuel B.; Shirihai, Orian S.; Wheeler, Michael B.

    2011-01-01

    OBJECTIVE The role of uncoupling protein 2 (UCP2) in pancreatic β-cells is highly debated, partly because of the broad tissue distribution of UCP2 and thus limitations of whole-body UCP2 knockout mouse models. To investigate the function of UCP2 in the β-cell, β-cell–specific UCP2 knockout mice (UCP2BKO) were generated and characterized. RESEARCH DESIGN AND METHODS UCP2BKO mice were generated by crossing loxUCP2 mice with mice expressing rat insulin promoter-driven Cre recombinase. Several in vitro and in vivo parameters were measured, including respiration rate, mitochondrial membrane potential, islet ATP content, reactive oxygen species (ROS) levels, glucose-stimulated insulin secretion (GSIS), glucagon secretion, glucose and insulin tolerance, and plasma hormone levels. RESULTS UCP2BKO β-cells displayed mildly increased glucose-induced mitochondrial membrane hyperpolarization but unchanged rates of uncoupled respiration and islet ATP content. UCP2BKO islets had elevated intracellular ROS levels that associated with enhanced GSIS. Surprisingly, UCP2BKO mice were glucose-intolerant, showing greater α-cell area, higher islet glucagon content, and aberrant ROS-dependent glucagon secretion under high glucose conditions. CONCLUSIONS Using a novel β-cell–specific UCP2KO mouse model, we have shed light on UCP2 function in primary β-cells. UCP2 does not behave as a classical metabolic uncoupler in the β-cell, but has a more prominent role in the regulation of intracellular ROS levels that contribute to GSIS amplification. In addition, β-cell UCP2 contributes to the regulation of intraislet ROS signals that mediate changes in α-cell morphology and glucagon secretion. PMID:21984579

  18. Trolox-Sensitive Reactive Oxygen Species Regulate Mitochondrial Morphology, Oxidative Phosphorylation and Cytosolic Calcium Handling in Healthy Cells

    PubMed Central

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G.; Rodenburg, Richard J.T.; Verwiel, Eugène T.P.; Smeitink, Jan A.M.; Willems, Peter H.G.M.

    2012-01-01

    Abstract Aims: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca2+) handling in healthy human skin fibroblasts. Results and Innovation: Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydro-fluorescein (CM-H2DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O2 consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca2+ transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Conclusions: Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders. Antioxid. Redox Signal. 17, 1657–1669. PMID:22559215

  19. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  20. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells

    PubMed Central

    Zhou, X; Chen, M; Zeng, X; Yang, J; Deng, H; Yi, L; Mi, M-t

    2014-01-01

    Mitochondrial reactive oxygen species (mtROS) homeostasis plays an essential role in preventing oxidative injury in endothelial cells, an initial step in atherogenesis. Resveratrol (RSV) possesses a variety of cardioprotective activities, however, little is known regarding the effects of RSV on mtROS homeostasis in endothelial cells. Sirt3 is a mitochondrial deacetylase, which plays a key role in mitochondrial bioenergetics and is closely associated with oxidative stress. The goal of the study is to investigate whether RSV could attenuate oxidative injury in endothelial cells via mtROS homeostasis regulation through Sirt3 signaling pathway. We found that pretreatment with RSV suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in human umbilical vein endothelial cells (HUVECs) by increasing cell viability, inhibiting cell apoptosis, repressing collapse of mitochondrial membrane potential and decreasing mtROS generation. Moreover, the enzymatic activities of isocitrate dehydrogenase 2 (IDH2), glutathione peroxidase (GSH-Px) and manganese superoxide dismutase (SOD2) as well as deacetylation of SOD2 were increased by RSV pretreatment, suggesting RSV notably enhanced mtROS scavenging in t-BHP-induced endothelial cells. Meanwhile, RSV remarkably reduced mtROS generation by promoting Sirt3 enrichment within the mitochondria and subsequent upregulation of forkhead box O3A (FoxO3A)-mediated mitochondria-encoded gene expression of ATP6, CO1, Cytb, ND2 and ND5, thereby leading to increased complex I activity and ATP synthesis. Furthermore, RSV activated the expressions of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and Sirt3, as well as estrogen-related receptor-α (ERRα)-dependent Sirt3 mRNA transcription, which were abolished in the presence of AMPK inhibitor and AMPK, PGC-1α or Sirt3 siRNA transfection, indicating the effects of RSV on mt

  1. Nitric Oxide and Reactive Oxygen Species Coordinately Regulate the Germination of Puccinia striiformis f. sp. tritici Urediniospores

    PubMed Central

    Yin, Shuining; Gao, Zhijuan; Wang, Chenfang; Huang, Lili; Kang, Zhensheng; Zhang, Hongchang

    2016-01-01

    Nitric oxide (NO) and reactive oxygen species (ROS) function as signaling molecules in a number of critical signal transduction pathways in plants, including plant biotic interactions. In addition to the role of plant-derived NO and ROS in plant resistance, which has been well documented, pathogen-produced NO and ROS have recently emerged as important players in fungal development and pathogenesis. However, the effects of pathogenic fungi-derived NO and ROS on signaling pathways during fungal pre-infection development remain unknown. Here, using a combination of pharmacological approaches and confocal microscopy, we investigated the roles of NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst) the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial germination. The scavengers of NO and ROS delayed spore germination and decreased the lengths of germ tubes. A similar phenotype was produced after treatment with the promoter. However, the spores germinated and grew normally when the levels of NO and ROS were simultaneously elevated by the application of a promoter of NO and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS preferentially localized at the germ pores and apexes of growing germ tubes when the ROS/NO ratio in the spores was maintained in a specific range. We concluded that both NO and ROS are critical signaling molecules in the pre-infection development of Pst and that the polar growth of the germ tube is coordinately regulated by NO and ROS. PMID:26941716

  2. Reactive Oxygen Species Are Involved in Regulating Hypocontractility of Mesenteric Artery to Norepinephrine in Cirrhotic Rats with Portal Hypertension

    PubMed Central

    Chen, Wei; Liu, De-Jun; Huo, Yan-Miao; Wu, Zhi-Yong; Sun, Yong-Wei

    2014-01-01

    Background: Oxidative stress is involved in the hypocontractility of visceral artery to vasoconstrictors and formation of hyperdynamic circulation in cirrhosis with portal hypertension. In the present study, we investigated the effect of reactive oxygen species (ROS) on the mesenteric artery contractility in CCl4-induced cirrhotic rats, and the roles of G protein-coupled receptors (GPCRs) desensitization and RhoA /Rho associated coiled-coil forming protein kinase (ROCK) pathways. Methods: The mesenteric artery contraction to norepinephrine (NE) was determined by vessel perfusion system following treatments with apocynin, tempol or PEG-catalase. The protein expression of α1 adrenergic receptor, β-arrestin-2, ROCK-1, moesin and p-moesin was measured by western blot. The interaction between α1 adrenergic receptor and β-arrestin-2 was assessed by co-immunoprecipitation. Results: Pretreatment with apocynin or PEG-catalase in cirrhotic rats, the hydrogen peroxide level in the mesenteric arteriole was significantly decreased, and the dose-response curve of mesenteric arteriole to NE moved to the left with EC50 decreased. There was no significant change for the expression of α1 adrenergic receptor. However, the protein expression of β-arrestin-2 and its affinity with α1 adrenergic receptor were significantly decreased. The ROCK-1 activity and anti- Y-27632 inhibition in cirrhotic rats increased significantly with the protein expression unchanged. Such effects were not observed in tempol-treated group. Conclusion: The H2O2 decrease in mesenteric artery from rats with cirrhosis resulted in down regulation of the β-arrestin-2 expression and its binding ability with α1 adrenergic receptor, thereby affecting the agonist-induced ROCK activation and improving the contractile response in blood vessels. PMID:24719556

  3. Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment

    PubMed Central

    Ludin, Aya; Gur-Cohen, Shiri; Golan, Karin; Kaufmann, Kerstin B.; Itkin, Tomer; Medaglia, Chiara; Lu, Xin-Jiang; Ledergor, Guy; Kollet, Orit

    2014-01-01

    Abstract Significance: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. Recent Advances: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROShigh short-term repopulating stem cells, and ROSlow quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. Critical Issues: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. Future Directions: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development. Antioxid. Redox Signal. 21, 1605–1619. PMID:24762207

  4. Nitric Oxide and Reactive Oxygen Species Coordinately Regulate the Germination of Puccinia striiformis f. sp. tritici Urediniospores.

    PubMed

    Yin, Shuining; Gao, Zhijuan; Wang, Chenfang; Huang, Lili; Kang, Zhensheng; Zhang, Hongchang

    2016-01-01

    Nitric oxide (NO) and reactive oxygen species (ROS) function as signaling molecules in a number of critical signal transduction pathways in plants, including plant biotic interactions. In addition to the role of plant-derived NO and ROS in plant resistance, which has been well documented, pathogen-produced NO and ROS have recently emerged as important players in fungal development and pathogenesis. However, the effects of pathogenic fungi-derived NO and ROS on signaling pathways during fungal pre-infection development remain unknown. Here, using a combination of pharmacological approaches and confocal microscopy, we investigated the roles of NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst) the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial germination. The scavengers of NO and ROS delayed spore germination and decreased the lengths of germ tubes. A similar phenotype was produced after treatment with the promoter. However, the spores germinated and grew normally when the levels of NO and ROS were simultaneously elevated by the application of a promoter of NO and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS preferentially localized at the germ pores and apexes of growing germ tubes when the ROS/NO ratio in the spores was maintained in a specific range. We concluded that both NO and ROS are critical signaling molecules in the pre-infection development of Pst and that the polar growth of the germ tube is coordinately regulated by NO and ROS. PMID:26941716

  5. Reactive Oxygen Species Differentially Regulate Bone Turnover in an Age-Specific Manner in Catalase Transgenic Female Mice.

    PubMed

    Alund, Alexander W; Mercer, Kelly E; Suva, Larry J; Pulliam, Casey F; Chen, Jin-Ran; Badger, Thomas M; Van Remmen, Holly; Ronis, Martin J J

    2016-07-01

    Chronic ethyl alcohol (EtOH) consumption results in reactive oxygen species (ROS) generation in bone and osteopenia due to increased bone resorption and reduced bone formation. In this study, transgenic C57Bl/6J mice overexpressing human catalase (TgCAT) were used to test whether limiting excess hydrogen peroxide would protect against EtOH-mediated bone loss. Micro-computed tomography analysis of the skeletons of 6-week-old female chow-fed TgCAT mice revealed a high bone mass phenotype with increased cortical bone area and thickness as well as significantly increased trabecular bone volume (P < 0.05). Six-week-old wild-type (WT) and TgCAT female mice were chow fed or pair fed (PF) liquid diets with or without EtOH, approximately 30% of calories, for 8 weeks. Pair feeding of WT had no demonstrable effect on the skeleton; however, EtOH feeding of WT mice significantly reduced cortical and trabecular bone parameters along with bone strength compared with PF controls (P < 0.05). In contrast, EtOH feeding of TgCAT mice had no effect on trabecular bone compared with PF controls. At 14 weeks of age, there was significantly less trabecular bone and cortical cross-sectional area in TgCAT mice than WT mice (P < 0.05), suggesting impaired normal bone accrual with age. TgCAT mice expressed less collagen1α and higher sclerostin mRNA (P < 0.05), suggesting decreased bone formation in TgCAT mice. In conclusion, catalase overexpression resulted in greater bone mass than in WT mice at 6 weeks and lower bone mass at 14 weeks. EtOH feeding induced significant reductions in bone architecture and strength in WT mice, but TgCAT mice were partially protected. These data implicate ROS signaling in the regulation of bone turnover in an age-dependent manner, and indicate that excess hydrogen peroxide generation contributes to alcohol-induced osteopenia. PMID:27189961

  6. Autophagy-related Gene 7 (ATG7) and Reactive Oxygen Species/Extracellular Signal-regulated Kinase Regulate Tetrandrine-induced Autophagy in Human Hepatocellular Carcinoma*

    PubMed Central

    Gong, Ke; Chen, Chao; Zhan, Yao; Chen, Yan; Huang, Zebo; Li, Wenhua

    2012-01-01

    Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 μm) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent. PMID:22927446

  7. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava

    PubMed Central

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  8. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.

    PubMed

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  9. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits.

    PubMed

    Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto

    2015-12-01

    Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. 'Superficial scald' of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. PMID:26428066

  10. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits

    PubMed Central

    Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto

    2015-01-01

    Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. ‘Superficial scald’ of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. PMID:26428066

  11. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes.

    PubMed

    Park, Youngjin; Stanley, David W; Kim, Yonggyun

    2015-08-01

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoids mediate ROS production by activating NADPH-dependent oxidase (NOX) and tested the idea in the model insect, Spodoptera exigua. A NOX gene (we named SeNOX4) was identified and cloned, yielding a full open reading frame encoding 547 amino acid residues with a predicted molecular weight of 63,410Da and an isoelectric point at 9.28. A transmembrane domain and a large intracellular domain containing NADPH and FAD-binding sites were predicted. Phylogenetic analysis indicated SeNOX4 clusters with other NOX4 genes. SeNOX4 was expressed in all life stages except eggs, and exclusively in hemocytes. Bacterial challenge and, separately, arachidonic acid (AA, a precursor of eicosanoid biosynthesis) injection increased its expression. The internalization step was assessed by counting hemocytes engulfing fluorescence-labeled bacteria. The phagocytic behavior was inhibited by dsRNA suppression of SeNOX4 expression and, separately by dexamethasone (DEX, a specific inhibitor of eicosanoid biosynthesis) treatments. However, injecting AA to dsSeNOX4-treated larvae did not rescue the phagocytic activity. Hemocytic ROS production increased following bacterial challenge, which was sharply reduced in dsSeNOX4-treated, and separately, in DEX-treated larvae. AA partially reversed the suppressed ROS production in dsSeNOX4-treated larvae. Treating larvae with either the ROS-suppressing dsSeNOX4 construct or DEX rendered experimental larvae unable to inhibit bacterial proliferation in their hemocoels. We infer that eicosanoids mediate ROS production during phagocytosis by inducing expression of SeNOX4. PMID:26071791

  12. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.).

    PubMed

    Sasaki, Mina; Kajiya, Hiroshi; Ozeki, Satoru; Okabe, Koji; Ikebe, Tetsuro

    2014-09-26

    Reactive oxygen species (ROS) can cause severe damage to DNA, proteins and lipids in normal cells, contributing to carcinogenesis and various pathological conditions. While cellular senescence arrests the early phase of cell cycle without any detectable telomere loss or dysfunction. ROS is reported to contribute to induction of cellular senescence, as evidence by its premature onset upon treatment with antioxidants or inhibitors of cellular oxidant scavengers. Although cellular senescence is known to be implicated in tumor suppression, it remains unknown whether ROS initially contributed to be cellular senescence in normal human epidermal keratinocytes (NHEK) and their malignant counterparts. To clarify whether ROS induce cellular senescence in NHEKs, we examined the effect of hydrogen peroxide (H2O2) on the expression of cellular senescence-associated molecules in NHEKs, compared to in squamous carcinoma cells (SCCs). Hydrogen peroxide increased the number of cells positive in senescence associated-β-galactosidase (SA-β-Gal) activity in NHEKs, but not SCCs. The expression of cyclin-dependent kinase (CDK) inhibitors, especially p16(INK4a) was upregulated in NHEKs treated with H2O2. Interestingly, H2O2 suppressed the methylation of p16(INK4a), promoter region in NHEKs, but not in SCCs. Hydrogen peroxide also suppressed the expression of phosphorylated Rb and CDK4, resulting in arrest in G0/G1 phase in NHEKs, but not SCCs. Our results indicate that the ROS-induced cellular senescence in NHEKs was caused by the upregulation p16(INK4a) through demethylation in its promoter region, which is not detected in SCCs, suggesting that ROS-induced cellular senescence contributes to tumor suppression of NHEKs. PMID:25181340

  13. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging.

    PubMed

    Cheng, Xiang-Xu; Yu, Min; Zhang, Nan; Zhou, Zhu-Qing; Xu, Qiu-Tao; Mei, Fang-Zhu; Qu, Liang-Huan

    2016-03-01

    Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm. PMID:25854793

  14. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  15. Cucurbitacin L 2-O-β-Glucoside Demonstrates Apoptogenesis in Colon Adenocarcinoma Cells (HT-29): Involvement of Reactive Oxygen and Nitrogen Species Regulation.

    PubMed

    Abdelwahab, Siddig Ibrahim; Hassan, Loiy Elsir Ahmed; Abdul Majid, Amin M S; Yagi, Sakina M Ahmed; Mohan, Syam; Elhassan Taha, Manal Mohamed; Ahmad, Syahida; Chuen, Cheah Shiau; Narrima, Putri; Rais, Mohd Mustafa; Syam, Suvitha; Moharam, Bushra Abdulkarim; Hadi, A Hamid A

    2012-01-01

    Emerging evidence suggests that reactive oxygen (ROS) and nitrogen (RNS) species can contribute to diverse signalling pathways of inflammatory and tumour cells. Cucurbitacins are a group of highly oxygenated triterpenes. Many plants used in folk medicine to treat cancer have been found to contain cucurbitacins displaying potentially important anti-inflammatory actions. The current study was designed to investigate the anti-ROS and -RNS effects of cucurbitacin L 2-O-β-glucoside (CLG) and the role of these signaling factors in the apoptogenic effects of CLG on human colon cancer cells (HT-29). This natural cucurbitacin was isolated purely from Citrullus lanatus var. citroides (Cucurbitaceae). The results revealed that CLG was cytotoxic to HT-29. CLG increased significantly (P < 0.05) RNA and protein levels of caspase-3 in HT-29 cells when verified using a colorimetric assay and realtime qPCR, respectively. The results showed that lipopolysaccharide/interferon-gamma (LPS/INF-γ) increased nitrous oxide (NO) production inR AW264.7macrophages, whereas N(G)-nitro-L-argininemethyl ester (L-NAME) and CLG curtailed it. This compound did not reveal any cytotoxicity on RAW264.7 macrophages and human normal liver cells (WRL-68) when tested using the MTT assay. Findings of ferric reducing antioxidant power (FRAP) and oxygen radical absorption capacity (ORAC) assays demonstrate the antioxidant properties of CLG. The apoptogenic property of CLG on HT-29 cells is thus related to inhibition of reactive nitrogen and oxygen reactive species and the triggering of caspase-3-regulated apoptosis. PMID:22685485

  16. Cucurbitacin L 2-O-β-Glucoside Demonstrates Apoptogenesis in Colon Adenocarcinoma Cells (HT-29): Involvement of Reactive Oxygen and Nitrogen Species Regulation

    PubMed Central

    Abdelwahab, Siddig Ibrahim; Hassan, Loiy Elsir Ahmed; Abdul Majid, Amin M. S.; Yagi, Sakina M. Ahmed; Mohan, Syam; Elhassan Taha, Manal Mohamed; Ahmad, Syahida; Chuen, Cheah Shiau; Narrima, Putri; Rais, Mohd Mustafa; Syam, Suvitha; Moharam, Bushra Abdulkarim; Hadi, A. Hamid A.

    2012-01-01

    Emerging evidence suggests that reactive oxygen (ROS) and nitrogen (RNS) species can contribute to diverse signalling pathways of inflammatory and tumour cells. Cucurbitacins are a group of highly oxygenated triterpenes. Many plants used in folk medicine to treat cancer have been found to contain cucurbitacins displaying potentially important anti-inflammatory actions. The current study was designed to investigate the anti-ROS and -RNS effects of cucurbitacin L 2-O-β-glucoside (CLG) and the role of these signaling factors in the apoptogenic effects of CLG on human colon cancer cells (HT-29). This natural cucurbitacin was isolated purely from Citrullus lanatus var. citroides (Cucurbitaceae). The results revealed that CLG was cytotoxic to HT-29. CLG increased significantly (P < 0.05) RNA and protein levels of caspase-3 in HT-29 cells when verified using a colorimetric assay and realtime qPCR, respectively. The results showed that lipopolysaccharide/interferon-gamma (LPS/INF-γ) increased nitrous oxide (NO) production inR AW264.7macrophages, whereas N(G)-nitro-L-argininemethyl ester (L-NAME) and CLG curtailed it. This compound did not reveal any cytotoxicity on RAW264.7 macrophages and human normal liver cells (WRL-68) when tested using the MTT assay. Findings of ferric reducing antioxidant power (FRAP) and oxygen radical absorption capacity (ORAC) assays demonstrate the antioxidant properties of CLG. The apoptogenic property of CLG on HT-29 cells is thus related to inhibition of reactive nitrogen and oxygen reactive species and the triggering of caspase-3-regulated apoptosis. PMID:22685485

  17. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.).

    PubMed

    Zhang, Hongbo; Li, Ang; Zhang, Zhijin; Huang, Zejun; Lu, Pingli; Zhang, Dingyu; Liu, Xinmin; Zhang, Zhong-Feng; Huang, Rongfeng

    2016-01-01

    The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance. Here, we report our findings regarding the roles of TERF1 in ROS scavenging. In this study, we revealed that the transcription of TERF1 is regulated by upstream EIN3-like (EIN3, ethylene-insensitive 3) regulators LeEIL3 and LeEIL4 in tomato (Solanum lycopersicum), and is also inducible by exogenous applied ROS-generating reagents. Ectopic expression of TERF1 in tobacco promoted the expression of genes involved in oxidative stress responses, including carbonic anhydrase functioning in hypersensitive defense, catalase and glutathione peroxidase catalyzing oxidative reactions, and GDP-D-mannose pyrophosphorylase functioning in ascorbic acid biosynthesis, reduced the ROS content induced by ethylene treatment, and enhanced stress tolerance of tobacco seedlings to hydrogen peroxide (H2O2). Cumulatively, these findings suggest that TERF1 is an ethylene inducible factor regulating ROS scavenging during stress responses. PMID:27435661

  18. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.)

    PubMed Central

    Zhang, Hongbo; Li, Ang; Zhang, Zhijin; Huang, Zejun; Lu, Pingli; Zhang, Dingyu; Liu, Xinmin; Zhang, Zhong-Feng; Huang, Rongfeng

    2016-01-01

    The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance. Here, we report our findings regarding the roles of TERF1 in ROS scavenging. In this study, we revealed that the transcription of TERF1 is regulated by upstream EIN3-like (EIN3, ethylene-insensitive 3) regulators LeEIL3 and LeEIL4 in tomato (Solanum lycopersicum), and is also inducible by exogenous applied ROS-generating reagents. Ectopic expression of TERF1 in tobacco promoted the expression of genes involved in oxidative stress responses, including carbonic anhydrase functioning in hypersensitive defense, catalase and glutathione peroxidase catalyzing oxidative reactions, and GDP-D-mannose pyrophosphorylase functioning in ascorbic acid biosynthesis, reduced the ROS content induced by ethylene treatment, and enhanced stress tolerance of tobacco seedlings to hydrogen peroxide (H2O2). Cumulatively, these findings suggest that TERF1 is an ethylene inducible factor regulating ROS scavenging during stress responses. PMID:27435661

  19. CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis.

    PubMed

    Zhou, Xiao Feng; Jin, Yin Hua; Yoo, Chan Yul; Lin, Xiao-Li; Kim, Woe-Yeon; Yun, Dae-Jin; Bressan, Ray A; Hasegawa, Paul M; Jin, Jing Bo

    2013-06-01

    Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE Ds (CDKDs) phosphorylate the C-terminal domain of the largest subunit of RNA polymerase II. Arabidopsis CYCLIN H;1 (CYCH;1) interacts with and activates CDKDs; however, the physiological function of CYCH;1 has not been determined. Here, we report that CYCH;1, which is localized to the nucleus, positively regulates blue light-induced stomatal opening. Reduced-function cych;1 RNA interference (cych;1 RNAi) plants exhibited a drought tolerance phenotype. CYCH;1 is predominantly expressed in guard cells, and its expression was substantially down-regulated by dehydration. Transpiration of intact leaves was reduced in cych;1 RNAi plants compared with the wild-type control in light but not in darkness. CYCH;1 down-regulation impaired blue light-induced stomatal opening but did not affect guard cell development or abscisic acid-mediated stomatal closure. Microarray and real-time polymerase chain reaction analyses indicated that CYCH;1 did not regulate the expression of abscisic acid-responsive genes or light-induced stomatal opening signaling determinants, such as MYB60, MYB61, Hypersensitive to red and blue1, and Protein phosphatase7. CYCH;1 down-regulation induced the expression of redox homeostasis genes, such as LIPOXYGENASE3 (LOX3), LOX4, ARABIDOPSIS GLUTATHIONE PEROXIDASE 7 (ATGPX7), EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), and ELIP2, and increased hydrogen peroxide production in guard cells. Furthermore, loss-of-function mutations in CDKD;2 or CDKD;3 did not affect responsiveness to drought stress, suggesting that CYCH;1 regulates the drought stress response in a CDKD-independent manner. We propose that CYCH;1 regulates blue light-mediated stomatal opening by controlling reactive oxygen species homeostasis. PMID:23656895

  20. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation

    PubMed Central

    He, Jun; Xu, Qing; Jing, Yi; Agani, Faton; Qian, Xu; Carpenter, Richard; Li, Qi; Wang, Xin-Ru; Peiper, Stephen S; Lu, Zhimin; Liu, Ling-Zhi; Jiang, Bing-Hua

    2012-01-01

    Overexpression of ERBB2 or ERBB3 is associated with cancer development and poor prognosis. In this study, we show that reactive oxygen species (ROS) induce both ERBB2 and ERBB3 expression in vitro and in vivo. We also identify that miR-199a and miR-125b target ERBB2 and/or ERBB3 in ovarian cancer cells, and demonstrate that ROS inhibit miR-199a and miR-125b expression through increasing the promoter methylation of the miR-199a and miR-125b genes by DNA methyltransferase 1. These findings reveal that ERBB2 and ERBB3 expression is regulated by ROS via miR-199a and miR-125b downregulation and DNA hypermethylation. PMID:23146892

  1. Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway.

    PubMed

    Yu, Zhiqi; Zhang, Chang; Wang, Hao; Xing, Junjie; Gong, Haifeng; Yu, Enda; Zhang, Wei; Zhang, Xiaoqing; Cao, Guangwen; Fu, Chuangang

    2014-10-28

    This study aimed to clarify the role of multidrug resistance-associated protein 3 (MRP3) in resistance to neoadjuvant chemoradiotherapy and long-term prognosis of advanced rectal cancer. Immunohistochemistry was used to measure MRP3 expression in biopsy specimens of 144 stage II-III rectal cancer patients who received preoperative chemoradiotherapy. The effect of MRP3 expression on short-term pathological response and postoperative long-term prognosis were assessed using the Cox proportional hazards model. Short interfering RNAs targeting MRP3 were synthesized and used to transfect human colorectal carcinoma cell lines. The effect of MRP3 down-regulation on cell proliferation and apoptosis in response to 5-fluorouracil and/or irradiation were examined in vitro and in xenograft mouse models, respectively. The content of intracellular reactive oxygen species and the activity of caspase-3-dependent apoptotic pathway in response to irradiation were further evaluated. High expression (immunoreactive score > 6) of MRP3 significantly predicted poor pathological response to chemoradiotherapy (tumor regression grade ≤ 2 vs. ≥3, p = 0.002) in univariate analysis and unfavorable long-term prognosis (5-year overall survival: HR = 1.612, 95% CI, 1.094-2.375, p = 0.016; 5-year disease-free survival: HR = 1.513, 95% CI, 1.041-2.200, p = 0.030) in multivariate Cox analysis. MRP3 down-regulation significantly increased 5-fluorouracil or irradiation-induced cell apoptosis and attenuated tumor growth following irradiation in animal models. MRP3 inhibition significantly reduced intracellular reactive oxygen species exporting from cells following irradiation, and increased expression of cleaved poly ADP-ribose polymerase and caspase-3. Aberrant expression of MRP3 in rectal cancer confers chemo-radioresistance. MRP3 might be a predictive factor and an attractive target in treating advanced rectal cancer. PMID:25088576

  2. Platycodin D induces reactive oxygen species-mediated apoptosis signal-regulating kinase 1 activation and endoplasmic reticulum stress response in human breast cancer cells.

    PubMed

    Yu, Ji Sun; Kim, An Keun

    2012-08-01

    Platycodin D (PD), a natural compound found in Platycodon grandiflorum, induces apoptotic cell death in various carcinoma cells. One mechanism of PD-mediated cell death is by activation of mitogen-activated protein kinases, as suggested in a recent report. In this study, we further examined upstream signal pathways and the relationship between these signals and reactive oxygen species (ROS). Using immunoblotting assays, we found that PD activated apoptosis signal-regulating kinase 1 (ASK1) through phosphorylation of ASK1 at threonine and dephosphorylation of ASK1 at serine. We also showed that PD caused activation of the endoplasmic reticulum (ER) stress response. This was supported by observations showing that treatment with PD induces phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor 2 α (eIF 2α), up-regulating expression of glucose-regulated protein 78/immunoglobulin heavy chain binding protein (GRP78/Bip) and CCAAT/enhancer-binding protein homologous protein/growth arrest and DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-4. Furthermore, PD-induced ASK1 and ER stress responses were inhibited by the antioxidant N-acetyl-l-cysteine. These results suggest that ROS play a critical role for activation of ASK1 and ER stress in PD-treated cancer cells. PMID:22784044

  3. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells.

    PubMed

    Rossi, Soledad P; Windschüttl, Stefanie; Matzkin, María E; Rey-Ares, Verónica; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo S; Mayerhofer, Artur; Frungieri, Mónica B

    2016-10-15

    Reactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival. ROS and specially H2O2 may act as second messengers regulating signal transduction pathways and gene expression. We describe a stimulatory effect of PGD2 on lactate dehydrogenase (LDH) expression via DP1/DP2 receptors, which is prevented by the antioxidant N-acetyl-L-cysteine and the PI3K/Akt pathway inhibitor LY 294002. PGD2 also enhances Akt and CREB/ATF-1 phosphorylation. Our results provide evidence for a role of PGD2 in the regulation of the oxidant/antioxidant status in Sertoli cells and, more importantly, in the modulation of LDH expression which takes place through ROS generation and the Akt-CREB/ATF-1 pathway. PMID:27329155

  4. Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    PubMed Central

    Fink, Karin; Martel, Alexis; Jouan, Loubna; Nzengue, Yves; Lamarre, Daniel; Vande Velde, Christine; Grandvaux, Nathalie

    2010-01-01

    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. PMID:20532218

  5. Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione

    PubMed Central

    Munemasa, Shintaro; Muroyama, Daichi; Nagahashi, Hiroki; Nakamura, Yoshimasa; Mori, Izumi C.; Murata, Yoshiyuki

    2013-01-01

    The phytohormone abscisic acid (ABA) induces stomatal closure in response to drought stress, leading to reduction of transpirational water loss. A thiol tripeptide glutathione (GSH) is an important regulator of cellular redox homeostasis in plants. Although it has been shown that cellular redox state of guard cells controls ABA-mediated stomatal closure, roles of GSH in guard cell ABA signaling were largely unknown. Recently we demonstrated that GSH functions as a negative regulator of ABA signaling in guard cells. In this study we performed more detailed analyses to reveal how GSH regulates guard cell ABA signaling using the GSH-deficient Arabidopsis mutant cad2-1. The cad2-1 mutant exhibited reduced water loss from rosette leaves. Whole-cell current recording using patch clamp technique revealed that the cad2-1 mutation did not affect ABA regulation of S-type anion channels. We found enhanced activation of Ca2+ permeable channels by hydrogen peroxide (H2O2) in cad2-1 guard cells. The cad2-1 mutant showed enhanced H2O2-induced stomatal closure and significant increase of ROS accumulation in whole leaves in response to ABA. Our findings provide a new understanding of guard cell ABA signaling and a new strategy to improve plant drought tolerance. PMID:24312112

  6. Apoptosis Induction of Human Bladder Cancer Cells by Sanguinarine through Reactive Oxygen Species-Mediated Up-Regulation of Early Growth Response Gene-1

    PubMed Central

    Han, Min Ho; Park, Cheol; Jin, Cheng-Yun; Kim, Gi-Young; Chang, Young-Chae; Moon, Sung-Kwon; Kim, Wun-Jae; Choi, Yung Hyun

    2013-01-01

    Although the effects of sanguinarine, a benzophenanthridine alkaloid, on the inhibition of some kinds of cancer cell growth have been established, the underlying mechanisms are not completely understood. This study investigated possible mechanisms by which sanguinarine exerts its anticancer action in cultured human bladder cancer cell lines (T24, EJ, and 5637). Sanguinarine treatment resulted in concentration-response growth inhibition of the bladder cancer cells by inducing apoptosis. Sanguinarine-induced apoptosis was correlated with the up-regulation of Bax, the down-regulation of Bid and XIAP, the activation of caspases (-3, -8, and -9), and the generation of increased reactive oxygen species (ROS). The ROS scavenger N-acetyl cysteine (NAC) completely reversed the sanguinarine-triggered apoptotic events. In addition, sanguinarine effectively increased the activation of the c-Jun N-terminal kinase (JNK) and the expression of the early growth response gene-1 (Egr-1), which was recovered by pretreatment with NAC. Furthermore, knockdown of Egr-1 expression by small interfering RNA attenuated sanguinarine-induced apoptosis, but not the JNK inhibitor, indicating that the interception of ROS generation blocked the sanguinarine-induced apoptotic effects via deregulation of the expression of Egr-1 proteins. Taken together, the data provide evidence that sanguinarine is a potent anticancer agent, which inhibits the growth of bladder cancer cells and induces their apoptosis through the generation of free radicals. PMID:23717422

  7. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage

    PubMed Central

    Zhang, Na; Sun, Qianqian; Li, Hongfei; Li, Xingsheng; Cao, Yunyun; Zhang, Haijun; Li, Shuangtao; Zhang, Lei; Qi, Yan; Ren, Shuxin; Zhao, Bing; Guo, Yang-Dong

    2016-01-01

    In this work, we found, that exogenous melatonin pretreatment improved anthocyanin accumulation (1- to 2-fold) in cabbage. To verify the relationship with melatonin and anthocyanin, an Arabidopsis mutant, snat, which expresses a defective form of the melatonin biosynthesis enzyme SNAT (Serotonin N-acetyl transferase), was employed. Under cold conditions, the foliage of wild-type Arabidopsis exhibited a deeper red color than the snat mutant. This finding further proved, that exogenous melatonin treatment was able to affect anthocyanin accumulation. To gain a better understanding of how exogenous melatonin upregulates anthocyanin, we measured gene expression in cabbage samples treated with melatonin and untreated controls. We found that the transcript levels of anthocyanin biosynthetic genes were upregulated by melatonin treatment. Moreover, melatonin treatment increased the expression levels of the transcription factors MYB, bHLH, and WD40, which constitute the transcriptional activation complex responsible for coordinative regulation of anthocyanin biosynthetic genes. We found, that free radical generation was downregulated, whereas the osmotic adjustment and antioxidant capacities were upregulated in exogenous melatonin-treated cabbage plants. We concluded, that melatonin increases anthocyanin production and benefits cabbage growth. PMID:27047496

  8. Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2

    PubMed Central

    Chen, Guan-Hong; Liu, Chia-Ping; Chen, Shu-Chen Grace; Wang, Long-Chi

    2012-01-01

    Leaf senescence is a highly regulated developmental process that is coordinated by several factors. Many senescence-associated genes (SAGs) have been identified, but their roles during senescence remain unclear. A sweet potato (Ipomoea batatas) SAG, named SPA15, whose function was unknown, was identified previously. To understand the role of SPA15 in leaf senescence further, the orthologue of SPA15 in Arabidopsis thaliana was identified and characterized, and it was named ARABIDOPSIS A-FIFTEEN (AAF). AAF was expressed in early senescent leaves and in tissues with highly proliferative activities. AAF was localized to the chloroplasts by transient expression in Arabidopsis mesophyll protoplasts. Overexpression of AAF (AAF-OX) in Arabidopsis promoted, but the T-DNA insertion mutant (aaf-KO), delayed age-dependent leaf senescence. Furthermore, stress-induced leaf senescence caused by continuous darkness was enhanced in AAF-OX but suppressed in aaf-KO. Transcriptome analysis of expression profiles revealed up-regulated genes related to pathogen defence, senescence, and oxidative stress in 3-week-old AAF-OX plants. Indeed, elevated levels of reactive oxygen species (ROS) and enhanced sensitivity to oxidative and dark stress were apparent in AAF-OX but reduced in aaf-KO. ETHYLENE INSENSITIVE2 (EIN2) was required for the dark- and ROS-induced senescence phenotypes in AAF-OX and the induction of AAF expression by treatment with the immediate precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid. The results indicate the functional role of AAF is an involvement in redox homeostasis to regulate leaf senescence mediated by age and stress factors during Arabidopsis development. PMID:21940719

  9. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells.

    PubMed

    Aharoni-Simon, Michal; Shumiatcher, Rose; Yeung, Anthony; Shih, Alexis Z L; Dolinsky, Vernon W; Doucette, Christine A; Luciani, Dan S

    2016-06-01

    In pancreatic β-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal β-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress β-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of β-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional β-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of β-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in β-cells. These noncanonical roles of Bcl-2 may be important for β-cell function and survival under conditions of high metabolic demand. PMID:27070098

  10. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    SciTech Connect

    Shishido, Tetsuro . E-mail: Tetsuro_Shishido@URMC.Rochester.edu; Nozaki, Naoki; Takahashi, Hiroki; Arimoto, Takanori; Niizeki, Takeshi; Koyama, Yo; Abe, Jun-ichi; Takeishi, Yasuchika; Kubota, Isao

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.

  11. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings

    PubMed Central

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C.; Barroso, Juan B.; del Río, Luis A.; Palma, José M.; Corpas, Francisco J.

    2015-01-01

    Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO–) was investigated using confocal laser scanning microscopy. Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling

  12. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.

    PubMed

    Mustilli, Anna-Chiara; Merlot, Sylvain; Vavasseur, Alain; Fenzi, Francesca; Giraudat, Jérôme

    2002-12-01

    During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed. PMID:12468729

  13. Downregulation of Reactive Oxygen Species in Apoptosis

    PubMed Central

    Jeong, Chul-Ho; Joo, Sang Hoon

    2016-01-01

    Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the cellular components in modulating ROS in apoptotic cancer cells. PMID:27051644

  14. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate.

    PubMed

    Nomura, Michiyo; Takagi, Hiroshi

    2004-08-24

    The MPR1 gene, which is found in the Sigma1278b strain but is not present in the sequenced laboratory strain S288C, of the budding yeast Saccharomyces cerevisiae encodes a previously uncharacterized N-acetyltransferase that detoxifies the proline analogue azetidine-2-carboxylate (AZC). However, it is unlikely that AZC is a natural substrate of Mpr1 because AZC is found only in some plant species. In our search for the physiological function of Mpr1, we found that mpr1-disrupted cells were hypersensitive to oxidative stresses and contained increased levels of reactive oxygen species (ROS). In contrast, overexpression of MPR1 leads to an increase in cell viability and a decrease in ROS level after oxidative treatments. These results indicate that Mpr1 can reduce intracellular oxidation levels. Because put2-disrupted yeast cells lacking Delta(1)-pyrroline-5-carboxylate (P5C) dehydrogenase have increased ROS, we examined the role of Mpr1 in put2-disrupted strains. When grown on media containing urea and proline as the nitrogen source, put2-disrupted cells did not grow as well as WT cells and accumulated intracellular levels of P5C that were first detected in yeast cells and ROS. On the other hand, put2-disrupted cells that overexpressed MPR1 had considerably lower ROS levels. In vitro studies with bacterially expressed Mpr1 demonstrated that Mpr1 can acetylate P5C, or, more likely, its equilibrium compound glutamate-gamma-semialdehyde, at neutral pH. These results suggest that the proline catabolism intermediate P5C is toxic to yeast cells because of the formation of ROS, and Mpr1 regulates the ROS level under P5C-induced oxidative stress. PMID:15308773

  15. Physical exercise, reactive oxygen species and neuroprotection.

    PubMed

    Radak, Zsolt; Suzuki, Katsuhiko; Higuchi, Mitsuru; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2016-09-01

    Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation. PMID:26828019

  16. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway.

    PubMed

    Lin, Chien-Ju; Chen, Ta-Liang; Tseng, Yuan-Yun; Wu, Gong-Jhe; Hsieh, Ming-Hui; Lin, Yung-Wei; Chen, Ruei-Ming

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. PMID:27236003

  17. IL-1β and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model.

    PubMed

    Yan, Bo; Han, Peidong; Pan, Lifeng; Lu, Wei; Xiong, Jingwei; Zhang, Mingjie; Zhang, Wenqing; Li, Li; Wen, Zilong

    2014-06-15

    During inflammation, the proper inflammatory infiltration of neutrophils is crucial for the host to fight against infections and remove damaged cells and detrimental substances. IL-1β and NADPH oxidase-mediated reactive oxygen species (ROS) have been implicated to play important roles in this process. However, the cellular and molecular basis underlying the actions of IL-1β and ROS and their relationship during inflammatory response remains undefined. In this study, we use the zebrafish model to investigate these issues. We find that, similar to that of NADPH oxidase-mediated ROS signaling, the Il-1β-Myd88 pathway is required for the recruitment of neutrophils, but not macrophages, to the injury-induced inflammatory site, whereas it is dispensable for bacterial-induced inflammation. Interestingly, the Il-1β-Myd88 pathway is independent of NADPH oxidase-mediated ROS signaling and critical for the directional migration, but not the basal random movement, of neutrophils. In contrast, the NADPH oxidase-mediated ROS signaling is required for both basal random movement and directional migration of neutrophils. We further document that ectopic expression of Il-1β in zebrafish induces an inflammatory disorder, which can be suppressed by anti-inflammatory treatment. Our findings reveal that the Il-1β-Myd88 axis and NADPH oxidase-mediated ROS signaling are two independent pathways that differentially regulate neutrophil migration during sterile inflammation. In addition, Il-1β overexpressing Tg(hsp70:(m)il-1β_eGFP;lyz:DsRed2)hkz10t;nz50 transgenic zebrafish provides a useful animal model for the study of chronic inflammatory disorder and for anti-inflammatory drug discovery. PMID:24835391

  18. Reactive Oxygen Species and Neutrophil Function.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J; Hampton, Mark B

    2016-06-01

    Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling. PMID:27050287

  19. Skin, Reactive Oxygen Species, and Circadian Clocks

    PubMed Central

    Ndiaye, Mary A.; Nihal, Minakshi; Wood, Gary S.

    2014-01-01

    Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982–2996. PMID:24111846

  20. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  1. Reactive oxygen species and anti-proteinases.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Rehman, Ahmed Abdur; Ahsan, Haseeb; Khan, Fahim Halim

    2016-01-01

    Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases. PMID:26699123

  2. Reactive Oxygen Species in Cancer Stem Cells

    PubMed Central

    Shi, Xiaoke; Zhang, Yan; Zheng, Junheng

    2012-01-01

    Abstract Significance: Reactive oxygen species (ROS), byproducts of aerobic metabolism, are increased in many types of cancer cells. Increased endogenous ROS lead to adaptive changes and may play pivotal roles in tumorigenesis, metastasis, and resistance to radiation and chemotherapy. In contrast, the ROS generated by xenobiotics disturb the redox balance and may selectively kill cancer cells but spare normal cells. Recent Advances: Cancer stem cells (CSCs) are integral parts of pathophysiological mechanisms of tumor progression, metastasis, and chemo/radio resistance. Currently, intracellular ROS in CSCs is an active field of research. Critical Issues: Normal stem cells such as hematopoietic stem cells reside in niches characterized by hypoxia and low ROS, both of which are critical for maintaining the potential for self-renewal and stemness. However, the roles of ROS in CSCs remain poorly understood. Future Directions: Based on the regulation of ROS levels in normal stem cells and CSCs, future research may evaluate the potential therapeutic application of ROS elevation by exogenous xenobiotics to eliminate CSCs. Antioxid. Redox Signal. 16, 1215–1228. PMID:22316005

  3. Ovarian toxicity from reactive oxygen species.

    PubMed

    Luderer, Ulrike

    2014-01-01

    Oxidative stress occurs when cellular mechanisms to regulate levels of reactive oxygen species (ROS) are overwhelmed due to overproduction of ROS and/or deficiency of antioxidants. This chapter describes accumulating evidence that oxidative stress is involved in ovarian toxicity caused by diverse stimuli, including environmental toxicants. There is strong evidence that ROS are involved in initiation of apoptosis in antral follicles caused by several chemical and physical agents. Although less attention has been focused on the roles of ROS in primordial and primary follicle death, several studies have shown protective effects of antioxidants and/or evidence of oxidative damage, suggesting that ROS may play a role in these smaller follicles as well. Oxidative damage to lipids in the oocyte has been implicated as a cause of persistently poor oocyte quality after early life exposure to several toxicants. Developing germ cells in the fetal ovary have also been shown to be sensitive to toxicants and ionizing radiation, which induce oxidative stress. Recent studies have begun to elucidate the mechanisms by which ROS mediate ovarian toxicity. PMID:24388188

  4. Reactive oxygen species formed in organic lithium-oxygen batteries.

    PubMed

    Schwager, Patrick; Dongmo, Saustin; Fenske, Daniela; Wittstock, Gunther

    2016-04-20

    Li-oxygen batteries with organic electrolytes are of general interest because of their theoretically high gravimetric energy density. Among the great challenges for this storage technology is the generation of reactive oxygen species such as superoxides and peroxides that may react with the organic solvent molecules and other cell components. The generation of such species has been assumed to occur during the charging reaction. Here we show that superoxide is formed also during the discharge reaction in lithium ion-containing dimethyl sulfoxide electrolytes and is released into the solution. This is shown independently by fluorescence microscopy after reaction with the selective reagent 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and by local detection using a microelectrode of a scanning electrochemcial microscope positioned in a defined distance of 10 to 90 μm above the gas diffusion electrode. PMID:26911793

  5. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  6. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential.

    PubMed

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K(+) loss, decreased Na(+) accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na(+) and K(+) homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  7. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  8. Nanoparticles up-regulate tumor necrosis factor-{alpha} and CXCL8 via reactive oxygen species and mitogen-activated protein kinase activation

    SciTech Connect

    Lee, Hye-Mi; Shin, D.-M.; Song, Hwan-Moon; Yuk, Jae-Min; Lee, Zee-Won; Lee, Sang-Hee; Hwang, Song Mei; Kim, Jin-Man; Lee, Chang-Soo Jo, Eun-Kyeong

    2009-07-15

    Evaluating the toxicity of nanoparticles is an integral aspect of basic and applied sciences, because imaging applications using traditional organic fluorophores are limited by properties such as photobleaching, spectral overlaps, and operational difficulties. This study investigated the toxicity of nanoparticles and their biological mechanisms. We found that nanoparticles, quantum dots (QDs), considerably activated the production of tumor necrosis factor (TNF)-{alpha} and CXC-chemokine ligand (CXCL) 8 through reactive oxygen species (ROS)- and mitogen-activated protein kinases (MAPKs)-dependent mechanisms in human primary monocytes. Nanoparticles elicited a robust activation of intracellular ROS, phosphorylation of p47phox, and nicotinamide adenine dinucleotide phosphate oxidase activities. Blockade of ROS generation with antioxidants significantly abrogated the QD-mediated TNF-{alpha} and CXCL8 expression in monocytes. The induced ROS generation subsequently led to the activation of MAPKs, which were crucial for mRNA and protein expression of TNF-{alpha} and CXCL8. Furthermore, confocal and electron microscopy analyses showed that internalized QDs were trapped in cytoplasmic vesicles and compartmentalized inside lysosomes. Finally, several repeated intravenous injections of QDs caused an increase in neutrophil infiltration in the lung tissues in vivo. These results provide novel insights into the QD-mediated chemokine induction and inflammatory toxic responses in vitro and in vivo.

  9. Senescence, Stress, and Reactive Oxygen Species

    PubMed Central

    Jajic, Ivan; Sarna, Tadeusz; Strzalka, Kazimierz

    2015-01-01

    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. PMID:27135335

  10. Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species.

    PubMed

    Liu, Rong-Rong; Lv, Ya-Su; Tang, Yue-Xiao; Wang, Yan-Fang; Chen, Xiao-Ling; Zheng, Xiao-Xiao; Xie, Shang-Zhi; Cai, Ying; Yu, Jun; Zhang, Xian-Ning

    2016-04-26

    Eukaryotic translation initiation factor 5A2 (eIF5A2) has been identified as a critical gene in tumor metastasis. Research has suggested that reactive oxygen species (ROS) serve as signaling molecules in cancer cell proliferation and migration. However, the mechanisms linking eIF5A2 and ROS are not fully understood. Here, we investigated the effects of ROS on the eIF5A2-induced epithelial-mesenchymal transition (EMT) and migration in six hepatocellular carcinoma (HCC) cell lines. Western hybridization, siRNA transfection, transwell migration assays, wound-healing assays, and immunofluorescence analysis were used. The protein levels of eIF5A2 in tumor and adjacent tissue samples from 90 HCC patients with detailed clinical, pathological, and clinical follow-up data were evaluated. Overexpression of eIF5A2 was found in cancerous tissues compared with adjacent tissues. We found that eIF5A2 overexpression in HCC was associated with reduced overall survival. Knockdown of eIF5A2 and intracellular reduction of ROS significantly suppressed the invasion and metastasis of HCC cells. Interestingly, N1-guanyl-1, 7-diaminoheptane (GC7) suppressed the intracellular ROS levels. After blocking the EMT, administration of GC7 or N-acetyl-L-cysteine did not reduce cell migration further. Based on the experimental data, we concluded that inhibition of eIF5A2 alters progression of the EMT to decrease the invasion and metastasis of HCC cells via ROS-related pathways. PMID:27028999

  11. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2016-07-01

    Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST. PMID:27068062

  12. Reactive oxygen species and hydrogen peroxide generation in cell migration

    PubMed Central

    Rudzka, Dominika A; Cameron, Jenifer M; Olson, Michael F

    2015-01-01

    Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although the identities of key proteins regulated by hydrogen peroxide are largely unknown. We recently showed that oxidation of cofilin1 is elevated in migrating cells relative to stationary cells, and that the effect of this post-translational modification is to reduce cofilin1-actin binding and to inhibit filamentous-actin severing by cofilin1. These studies revealed that cofilin1 regulation by hydrogen peroxide contributes to directional cell migration, and established a template for discovering additional proteins that are regulated in an analogous manner. PMID:27066166

  13. Secretoglobin 1A1 and 1A1A Differentially Regulate Neutrophil Reactive Oxygen Species Production, Phagocytosis and Extracellular Trap Formation

    PubMed Central

    Côté, Olivier; Clark, Mary Ellen; Viel, Laurent; Labbé, Geneviève; Seah, Stephen Y. K.; Khan, Meraj A.; Douda, David N.; Palaniyar, Nades; Bienzle, Dorothee

    2014-01-01

    Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases. PMID:24777050

  14. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells. PMID:26608462

  15. [The two faces of reactive oxygen species].

    PubMed

    Zabłocka, Agnieszka; Janusz, Maria

    2008-01-01

    Oxidative stress has been implicated in playing a crucial role in aging and in the pathogeneses of a number of diseases, including neurodegenerative disorders such as Alzheimer's disease. Oxidative stress occurs due to an imbalance in prooxidant and antioxidant levels. Reactive oxygen species (ROS) are highly reactive and may modify and inactivate proteins, lipids, DNA, and RNA and induce cellular dysfunctions. To prevent free radical-induced cellular damage, the organism has developed a defense mechanism, the antioxidative system. This system includes antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), and glutathione reductase (GSSGR) and low-molecular antioxidants such as glutathion and plasma proteins. Glutathion plays a key role in maintaining the physiological balance between prooxidants and antioxidants. Plasma proteins can inhibit ROS generation and lipid peroxidation by chelating free transition metals. The major exogenous antioxidants are vitamins E, C, and A. PMID:18388851

  16. REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER

    PubMed Central

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    Several agents used for treatment of colon and other cancers induce reactive oxygen species (ROS) and this plays an important role in their anticancer activities. In addition to the well-known proapoptotic effects of ROS inducers, these compounds also decrease expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several pro-oncogenic Spregulated genes important for cancer cell proliferation, survival and metastasis. The mechanism of these responses involve ROS-dependent downregulation of microRNA-27a (miR-27a) or miR-20a (and paralogs) and induction of two Sp-repressors, ZBTB10 and ZBTB4 respectively. This pathway significantly contributes to the anticancer activity of ROS inducers and should be considered in development of drug combinations for cancer chemotherapy. PMID:25584043

  17. Reactive oxygen species in abiotic stress signaling.

    PubMed

    Jaspers, Pinja; Kangasjärvi, Jaakko

    2010-04-01

    Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS. PMID:20028478

  18. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  19. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  20. Cellular reactive oxygen species inhibit MPYS induction of IFNβ.

    PubMed

    Jin, Lei; Lenz, Laurel L; Cambier, John C

    2010-01-01

    Many inflammatory diseases, as well as infections, are accompanied by elevation in cellular levels of Reactive Oxygen Species (ROS). Here we report that MPYS, a.k.a. STING, which was recently shown to mediate activation of IFNβ expression during infection, is a ROS sensor. ROS induce intermolecular disulfide bonds formation in MPYS homodimer and inhibit MPYS IFNβ stimulatory activity. Cys-64, -148, -292, -309 and the potential C₈₈xxC₉₁ redox motif in MPYS are indispensable for IFNβ stimulation and IRF3 activation. Thus, our results identify a novel mechanism for ROS regulation of IFNβ stimulation. PMID:21170271

  1. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression.

    PubMed

    Han, Min Ae; Woo, Seon Min; Min, Kyoung-jin; Kim, Shin; Park, Jong-Wook; Kim, Dong Eun; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu

    2015-02-25

    6-Shogaol, a potent bioactive compound in ginger (Zingiber officinale Roscoe), has been reported for anti-inflammatory and anti-cancer activity. In this study, we investigated the effect of 6-shogaol to enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. The combined treatment with 6-shogaol and TRAIL markedly induces apoptosis in various cancer cells (renal carcinoma Caki cells, breast carcinoma MDA-MB-231 cells and glioma U118MG cells), but not in normal mesangial cells and normal mouse kidney cells. 6-Shogaol reduced the mitochondrial membrane potential (MMP) and released cytochrome c from mitochondria to cytosol via Bax activation. Furthermore, we found that 6-shogaol induced down-regulation of c-FLIP(L) expression at the post-translational levels and the overexpression of c-FLIP(L) markedly inhibited 6-shogaol plus TRAIL-induced apoptosis. Moreover, 6-shogaol increased reactive oxygen species (ROS) production in Caki cells. Pretreatment with ROS scavengers attenuated 6-shogaol plus TRAIL-induced apoptosis through inhibition of MMP reduction and down-regulation of c-FLIP(L) expression. In addition, 6-gingerol, another phenolic alkanone isolated from ginger, did not enhance TRAIL-induced apoptosis and down-regulate c-FLIP(L) expression. Taken together, our results demonstrated that 6-shogaol enhances TRAIL-mediated apoptosis in renal carcinoma Caki cells via ROS-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. PMID:25619640

  2. [Reactive oxygen species and fibrosis in tissues and organs - review].

    PubMed

    Meng, Juan-Xia; Zhao, Ming-Feng

    2012-10-01

    Reactive oxygen species (ROS) is a kind of molecules derived by oxygen in the metabolic process of aerobic cells, which mainly includes superoxide, hydroxyl radicals, alkoxyl, hydrogen peroxide, hypochlorous acid, ozone, etc. They can destroy the structure and function of cells through the damage of biological macromolecules such as DNA, proteins and the lipid peroxidation. ROS also can regulate the proliferation, differentiation and apoptosis of cells through several signaling pathways and participate in fibrogenesis of many organs including hepatic and pulmonary fibrosis. Recent study shows that ROS might have an important effect on the forming of myelofibrosis. Consequently, ROS plays a significant role in the fibrogenesis of tissues and organs. In this review, the relevance between ROS and common tissues and organs fibrosis is summarized. PMID:23114165

  3. Up-regulation of cytosolic phospholipase A{sub 2}{alpha} expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide

    SciTech Connect

    Akiyama, Nobuteru; Nabemoto, Maiko; Hatori, Yoshio; Nakamura, Hiroyuki; Hirabayashi, Tetsuya; Fujino, Hiromichi; Saito, Takeshi; Murayama, Toshihiko . E-mail: murayama@p.chiba-u.ac.jp

    2006-09-01

    Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the {alpha} type of cytosolic phospholipase A{sub 2} (cPLA{sub 2}{alpha}) in PC12 cells. Treatment with 80-120 {mu}M DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA{sub 2}{alpha} mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N {sup G} nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA{sub 2}{alpha} expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA{sub 2}. Furthermore, DDC treatment of the cells enhanced Ca{sup 2+}-ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA{sub 2}{alpha} expression by DDC treatment in neuronal cells.

  4. Reactive oxygen species as glomerular autacoids.

    PubMed

    Baud, L; Fouqueray, B; Philippe, C; Ardaillou, R

    1992-04-01

    There is considerable evidence suggesting that reactive oxygen species (ROS; superoxide anion, hydrogen peroxide, hydroxyl radical, hypochlorous acid) are implicated in the pathogenesis of toxic, ischemic, and immunologically mediated glomerular injury. The capacity of glomerular cells, especially mesangial cells, to generate ROS in response to several stimuli suggests that these autacoids may play a role in models of glomerular injury that are independent of infiltrating polymorphonuclear leukocytes and monocytes. The mechanisms whereby ROS formation results in morphologic lesions and in modifications of glomerular permeability, blood flow, and filtration rate have been inferred from in vitro studies. They involve direct and indirect injury to resident cells (mesangiolysis) and glomerular basement membrane (in concert with metalloproteases) and alteration of both the release and binding of vasoactive substances, such as bioactive lipids (e.g., prostaglandin E2, prostacyclin, thromboxane), cytokines (e.g., tumor necrosis factor alpha), and possibly endothelium-derived relaxing factor. The importance of such processes appears to be modulated by the intrinsic antioxidant defenses of the glomeruli. Further studies are needed to address the role of ROS in human glomerular diseases. PMID:1600128

  5. Reactive oxygen species in leaf abscission signaling

    PubMed Central

    Sakamoto, Masaru; Munemura, Ikuko; Tomita, Reiko

    2008-01-01

    Reactive oxygen species (ROS) are produced in response to many environmental stresses, such as UV, chilling, salt and pathogen attack. These stresses also accompany leaf abscission in some plants, however, the relationship between these stresses and abscission is poorly understood. In our recent report, we developed an in vitro abscission system that reproduces stress-induced pepper leaf abscission in planta. Using this system, we demonstrated that continuous production of hydrogen peroxide (H2O2) is involved in leaf abscission signaling. Continuous H2O2 production is required to induce expression of the cell wall-degrading enzyme, cellulase and functions downstream of ethylene in abscission signaling. Furthermore, enhanced production of H2O2 occurs at the execution phase of abscission, suggesting that H2O2 also plays a role in the cell-wall degradation process. These data suggest that H2O2 has several roles in leaf abscission signaling. Here, we propose a model for these roles. PMID:19704438

  6. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  7. Reactive Oxygen Species in Combustion Aerosols

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; See, S.

    2007-12-01

    Research on airborne particulate matter (PM) has received increased concern in recent years after it was identified as a major component of the air pollution mix that is strongly associated with premature mortality and morbidity. Particular attention has been paid to understanding the potential health impacts of fine particles (PM2.5), which primarily originate from combustion sources. One group of particulate-bound chemical components of health concern is reactive oxygen species (ROS), which include molecules such as hydrogen peroxide (H2O2), ions such as hypochlorite ion (OCl-), free radicals such as hydroxyl radical (·OH) and superoxide anion (·O2-) which is both an ion and a radical. However, the formation of ROS in PM is not clearly understood yet. Furthermore, the concentration of ROS in combustion particles of different origin has not been quantified. The primary objective of this work is to study the effect of transition metals on the production of ROS in PM2.5 by determining the concentrations of ROS and metals. Both soluble and total metals were measured to evaluate their respective associations with ROS. PM2.5 samples were collected from several outdoor and indoor combustion sources, including those emitted from on-road vehicles, food cooking, incense sticks, and cigarette smoke. PM2.5 samples were also collected from the background air in both the ambient outdoor and indoor environments to assess the levels of particulate-bound transition metals and ROS with no combustion activities in the vicinity of sampling locations. Results obtained from this comprehensive study on particulate-bound ROS will be presented and discussed.

  8. Reactive oxygen species and boar sperm function.

    PubMed

    Awda, Basim J; Mackenzie-Bell, Meghan; Buhr, Mary M

    2009-09-01

    Boar spermatozoa are very susceptible to reactive oxygen species (ROS), but ROS involvement in damage and/or capacitation is unclear. The impact of exposing fresh boar spermatozoa to an ROS-generating system (xanthine/xanthine oxidase; XA/XO) on sperm ROS content, membrane lipid peroxidation, phospholipase (PL) A activity, and motility, viability, and capacitation was contrasted to ROS content and sperm function after cryopreservation. Exposing boar sperm (n = 4-5 ejaculates) to the ROS-generating system for 30 min rapidly increased hydrogen peroxide (H2O2) and lipid peroxidation in all sperm, increased PLA in dead sperm, and did not affect intracellular O2- (flow cytometry of sperm labeled with 2',7'-dichlorodihydrofluorscein diacetate, BODIPY 581/591 C11, bis-BODIPY-FL C11, hydroethidine, respectively; counterstained for viability). Sperm viability remained high, but sperm became immotile. Cryopreservation decreased sperm motility, viability, and intracellular O2- significantly, but did not affect H2O2. As expected, more sperm incubated in capacitating media than Beltsville thawing solution buffer underwent acrosome reactions and protein tyrosine phosphorylation (four proteins, 58-174 kDa); which proteins were tyrosine phosphorylated was pH dependent. Pre-exposing sperm to the ROS-generating system increased the percentage of sperm that underwent acrosome reactions after incubation in capacitating conditions (P < 0.025), and decreased capacitation-dependent increases in two tyrosine-phosphorylated proteins (P < or = 0.035). In summary, H2O2 is the major free radical mediating direct ROS effects, but not cryopreservation changes, on boar sperm. Boar sperm motility, acrosome integrity, and lipid peroxidation are more sensitive indicators of oxidative stress than viability and PLA activity. ROS may stimulate the acrosome reaction in boar sperm through membrane lipid peroxidation and PLA activation. PMID:19357363

  9. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  10. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species

    PubMed Central

    Yang, Wei; Shen, Yueming; Wei, Jing; Liu, Fenju

    2015-01-01

    Glioma stem cells (GSCs) exhibit stem cell properties and high resistance to radiotherapy. The main aim of our study was to determine the roles of ROS in radioresistance and stemness of GSCs. We found that microRNA (miR)-153 was down-regulated and its target gene nuclear factor-erythroid 2-related factor-2 (Nrf-2) was up-regulated in GSCs compared with that of non-GSCs glioma cells. The enhanced Nrf-2 expression increased glutathione peroxidase 1 (GPx1) transcription and decreased ROS level leading to radioresistance of GSCs. MiR-153 overexpression resulted in increased ROS production and radiosensitization of GSCs. Moreover, miR-153 overexpression led to decreased neurosphere formation capacity and stem cell marker expression, and induced differentiation through ROS-mediated activation of p38 MAPK in GSCs. Nrf-2 overexpression rescued the decreased stemness and radioresistance resulting from miR-153 overexpression in GSCs. In addition, miR-153 overexpression reduced tumorigenic capacity of GSCs and increased survival in mice bearing human GSCs. These findings demonstrated that miR-153 overexpression decreased radioresistance and stemness of GSCs through targeting Nrf-2/GPx1/ROS pathway. PMID:26124081

  11. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen.

    PubMed

    Gao, Xin-Qi; Liu, Chang Zhen; Li, Dan Dan; Zhao, Ting Ting; Li, Fei; Jia, Xiao Na; Zhao, Xin-Ying; Zhang, Xian Sheng

    2016-07-01

    Pollen-stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen-stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen-stigma interactions during pollination. PMID:27472382

  12. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen

    PubMed Central

    Zhao, Ting Ting; Li, Fei; Jia, Xiao Na; Zhao, Xin-Ying; Zhang, Xian Sheng

    2016-01-01

    Pollen–stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen–stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen–stigma interactions during pollination. PMID:27472382

  13. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  14. Role of reactive oxygen species (ROS) in Mycobacterium bovis bacillus Calmette Guérin-mediated up-regulation of the human cathelicidin LL-37 in A549 cells.

    PubMed

    Méndez-Samperio, Patricia; Pérez, Aline; Torres, Laura

    2009-11-01

    The human cathelicidin LL-37 is one of the major antimicrobial peptides of the non-specific innate immune system in Mycobacterium tuberculosis infection. Its expression has been reported in epithelial cells infected with mycobacteria. However, the underlying molecular mechanisms by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) triggers gene transcription of cathelicidin have not been elucidated. The objective of this study was to investigate the role of reactive oxygen species (ROS) in the M. bovis BCG-mediated up-regulation of the antimicrobial peptide cathelicidin LL-37 in human epithelial cells. Infection of A549 cells with M. bovis BCG led to a rapid ROS production. Importantly, blockade of ROS by preincubation of cells with the general ROS scavenger N-acetyl-l-cysteine (NAC) or the NADPH oxidase inhibitor DPI significantly reduced M. bovis BCG-induced up-regulation of cathelicidin LL-37 mRNA expression as determined by semi-quantitative RT-PCR or real-time PCR. In contrast, the xanthine oxidase inhibitor allopurinol did not affect M. bovis BCG-mediated up-regulation of cathelicidin LL-37 mRNA. Moreover, M. bovis BCG-mediated cathelicidin LL-37 mRNA expression was significantly blocked by the effect of the mitochondrial electron transfer chain subunit I inhibitor rotenone and H(2)O(2) scavenging enzyme catalase. In addition, M. bovis BCG-induced cathelicidin LL-37 protein secretion was inhibited by the addition of NAC, DPI, and the selective inhibitor of NADPH oxidase apocynin. Our results collectively indicate that M. bovis BCG-mediated up-regulation of cathelicidin is influenced by NADPH/ROS signaling pathways. In conclusion, these findings demonstrate a novel regulatory mechanism for the expression of cathelicidin LL-37 in human epithelial cells stimulated with M. bovis BCG. PMID:19729059

  15. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species.

    PubMed

    Ishiga, Yasuhiro; Ishiga, Takako; Ikeda, Yoko; Matsuura, Takakazu; Mysore, Kirankumar S

    2016-01-01

    Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs), and NADPH-dependent thioredoxin reductase C (NTRC). However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD) accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA) and jasmonic acid (JA)-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens. PMID:27168965

  16. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species

    PubMed Central

    Ishiga, Takako; Ikeda, Yoko; Matsuura, Takakazu; Mysore, Kirankumar S.

    2016-01-01

    Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs), and NADPH-dependent thioredoxin reductase C (NTRC). However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD) accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA) and jasmonic acid (JA)-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens. PMID:27168965

  17. Regulation of autophagy in oxygen-dependent cellular stress.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K

    2013-01-01

    Oxidative stress caused by supraphysiological production of reactive oxygen species (ROS), can cause cellular injury associated with protein and lipid oxidation, DNA damage, and mitochondrial dysfunction. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of cell survival or cell death pathways. Recent studies suggest that autophagy, a cellular homeostatic process that governs the turnover of damaged organelles and proteins, may represent a general cellular and tissue response to oxidative stress. The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy may play multifunctional roles in cellular adaptation to stress, by maintaining mitochondrial integrity, and removing damaged proteins. Additionally, autophagy may play important roles in the regulation of inflammation and immune function. Modulation of the autophagic pathway has been reported in cell culture models of oxidative stress, including altered states of oxygen tension (i.e., hypoxia, hyperoxia), and exposure to oxidants. Furthermore, proteins that regulate autophagy may be subject to redox regulation. The heme oxygenase- 1 (HO)-1 enzyme system may have a role in the regulation of autophagy. Recent studies suggest that carbon monoxide (CO), a reaction product of HO activity which can alter mitochondrial function, may induce autophagy in cultured epithelial cells. In conclusion, current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. PMID:23092322

  18. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  19. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  20. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity.

    PubMed

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  1. The Role of Reactive Oxygen Species in Microvascular Remodeling

    PubMed Central

    Staiculescu, Marius C.; Foote, Christopher; Meininger, Gerald A.; Martinez-Lemus, Luis A.

    2014-01-01

    The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed. PMID:25535075

  2. Reactive oxygen species production and discontinuous gas exchange in insects.

    PubMed

    Boardman, Leigh; Terblanche, John S; Hetz, Stefan K; Marais, Elrike; Chown, Steven L

    2012-03-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  3. Balancing the generation and elimination of reactive oxygen species

    USGS Publications Warehouse

    Rodriguez, Rusty; Redman, Regina

    2005-01-01

    Fossil records suggest that bacteria developed the ability to photosynthesize ≈3,500 million years ago (mya), initiating a very slow accumulation of atmospheric oxygen (1). Recent geochemical models suggest that atmospheric oxygen did not accumulate to levels conducive for aerobic life until 500–1,000 mya (2, 3). The oxygenation of Earth's atmosphere resulted in the emergence of aerobic organisms followed by a great diversification of biological species and the eventual evolution of humans.

  4. The oxygen isotope equilibrium fractionation between sulfite species and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  5. KCa3.1/IK1 Channel Regulation by cGMP-Dependent Protein Kinase (PKG) via Reactive Oxygen Species and CaMKII in Microglia: An Immune Modulating Feedback System?

    PubMed

    Ferreira, Roger; Wong, Raymond; Schlichter, Lyanne C

    2015-01-01

    The intermediate conductance Ca(2+)-activated K(+) channel, KCa3.1 (IK1/SK4/KCNN4) is widely expressed in the innate and adaptive immune system. KCa3.1 contributes to proliferation of activated T lymphocytes, and in CNS-resident microglia, it contributes to Ca(2+) signaling, migration, and production of pro-inflammatory mediators (e.g., reactive oxygen species, ROS). KCa3.1 is under investigation as a therapeutic target for CNS disorders that involve microglial activation and T cells. However, KCa3.1 is post-translationally regulated, and this will determine when and how much it can contribute to cell functions. We previously found that KCa3.1 trafficking and gating require calmodulin (CaM) binding, and this is inhibited by cAMP kinase (PKA) acting at a single phosphorylation site. The same site is potentially phosphorylated by cGMP kinase (PKG), and in some cells, PKG can increase Ca(2+), CaM activation, and ROS. Here, we addressed KCa3.1 regulation through PKG-dependent pathways in primary rat microglia and the MLS-9 microglia cell line, using perforated-patch recordings to preserve intracellular signaling. Elevating cGMP increased both the KCa3.1 current and intracellular ROS production, and both were prevented by the selective PKG inhibitor, KT5823. The cGMP/PKG-evoked increase in KCa3.1 current in intact MLS-9 microglia was mediated by ROS, mimicked by applying hydrogen peroxide (H2O2), inhibited by a ROS scavenger (MGP), and prevented by a selective CaMKII inhibitor (mAIP). Similar results were seen in alternative-activated primary rat microglia; their KCa3.1 current required PKG, ROS, and CaMKII, and they had increased ROS production that required KCa3.1 activity. The increase in current apparently did not result from direct effects on the channel open probability (P o) or Ca(2+) dependence because, in inside-out patches from transfected HEK293 cells, single-channel activity was not affected by cGMP, PKG, H2O2 at normal or elevated intracellular Ca(2+). The

  6. KCa3.1/IK1 Channel Regulation by cGMP-Dependent Protein Kinase (PKG) via Reactive Oxygen Species and CaMKII in Microglia: An Immune Modulating Feedback System?

    PubMed Central

    Ferreira, Roger; Wong, Raymond; Schlichter, Lyanne C.

    2015-01-01

    The intermediate conductance Ca2+-activated K+ channel, KCa3.1 (IK1/SK4/KCNN4) is widely expressed in the innate and adaptive immune system. KCa3.1 contributes to proliferation of activated T lymphocytes, and in CNS-resident microglia, it contributes to Ca2+ signaling, migration, and production of pro-inflammatory mediators (e.g., reactive oxygen species, ROS). KCa3.1 is under investigation as a therapeutic target for CNS disorders that involve microglial activation and T cells. However, KCa3.1 is post-translationally regulated, and this will determine when and how much it can contribute to cell functions. We previously found that KCa3.1 trafficking and gating require calmodulin (CaM) binding, and this is inhibited by cAMP kinase (PKA) acting at a single phosphorylation site. The same site is potentially phosphorylated by cGMP kinase (PKG), and in some cells, PKG can increase Ca2+, CaM activation, and ROS. Here, we addressed KCa3.1 regulation through PKG-dependent pathways in primary rat microglia and the MLS-9 microglia cell line, using perforated-patch recordings to preserve intracellular signaling. Elevating cGMP increased both the KCa3.1 current and intracellular ROS production, and both were prevented by the selective PKG inhibitor, KT5823. The cGMP/PKG-evoked increase in KCa3.1 current in intact MLS-9 microglia was mediated by ROS, mimicked by applying hydrogen peroxide (H2O2), inhibited by a ROS scavenger (MGP), and prevented by a selective CaMKII inhibitor (mAIP). Similar results were seen in alternative-activated primary rat microglia; their KCa3.1 current required PKG, ROS, and CaMKII, and they had increased ROS production that required KCa3.1 activity. The increase in current apparently did not result from direct effects on the channel open probability (Po) or Ca2+ dependence because, in inside-out patches from transfected HEK293 cells, single-channel activity was not affected by cGMP, PKG, H2O2 at normal or elevated intracellular Ca2+. The regulation

  7. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  8. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    PubMed

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry

    2015-12-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  9. Tamoxifen reduces fat mass by boosting reactive oxygen species

    PubMed Central

    Liu, L; Zou, P; Zheng, L; Linarelli, L E; Amarell, S; Passaro, A; Liu, D; Cheng, Z

    2015-01-01

    As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4–5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study. PMID:25569103

  10. PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Cl− Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells1[W][OPEN

    PubMed Central

    Wang, Yizhou; Chen, Zhong-Hua; Zhang, Ben; Hills, Adrian; Blatt, Michael R.

    2013-01-01

    The discovery of the START family of abscisic acid (ABA) receptors places these proteins at the front of a protein kinase/phosphatase signal cascade that promotes stomatal closure. The connection of these receptors to Ca2+ signals evoked by ABA has proven more difficult to resolve, although it has been implicated by studies of the pyrbactin-insensitive pyr1/pyl1/pyl2/pyl4 quadruple mutant. One difficulty is that flux through plasma membrane Ca2+ channels and Ca2+ release from endomembrane stores coordinately elevate cytosolic free Ca2+ concentration ([Ca2+]i) in guard cells, and both processes are facilitated by ABA. Here, we describe a method for recording Ca2+ channels at the plasma membrane of intact guard cells of Arabidopsis (Arabidopsis thaliana). We have used this method to resolve the loss of ABA-evoked Ca2+ channel activity at the plasma membrane in the pyr1/pyl1/pyl2/pyl4 mutant and show the consequent suppression of [Ca2+]i increases in vivo. The basal activity of Ca2+ channels was not affected in the mutant; raising the concentration of Ca2+ outside was sufficient to promote Ca2+ entry, to inactivate current carried by inward-rectifying K+ channels and to activate current carried by the anion channels, both of which are sensitive to [Ca2+]i elevations. However, the ABA-dependent increase in reactive oxygen species (ROS) was impaired. Adding the ROS hydrogen peroxide was sufficient to activate the Ca2+ channels and trigger stomatal closure in the mutant. These results offer direct evidence of PYR/PYL/RCAR receptor coupling to the activation by ABA of plasma membrane Ca2+ channels through ROS, thus affecting [Ca2+]i and its regulation of stomatal closure. PMID:23899646

  11. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    PubMed Central

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-01-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2′,7′ -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  12. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis.

    PubMed

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-08-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2',7' -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  13. Regulation of cyclooxygenase-2 and cytosolic phospholipase A2 gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases

    PubMed Central

    Lin, Wei-Ning; Lin, Chih-Chung; Cheng, Hsin-Yi; Yang, Chuen-Mao

    2011-01-01

    BACKGROUND AND PURPOSE Lipopolysaccharide (LPS)-induced expression of cyclooxygenase-2 (COX-2) and cytosolic phospholipase A2 (cPLA2) has been implicated in several respiratory diseases. HuR is known to enhance the expression of genes by binding to 3′-untranslated region (3′-UTR) of mRNA and stabilizing mRNA. However, the exact mechanisms by which HuR affects the stability of mRNA and modulates LPS-induced COX-2 and cPLA2 expression in human tracheal smooth muscle cells (HTSMCs) are not known. EXPERIMENTAL APPROACH The expression of prostaglandin E2 (PGE2) was measured by ELISA, and pro-inflammatory proteins were determined by use of a promoter assay, PCR or Western blot analysis. Overexpression of siRNAs to knock down the target components was used to manipulate the expression of HuR. Release of reactive oxygen species (ROS) was detected by fluorescence dye. The activation of signalling components was assessed by comparing phosphorylation levels, localization of protein kinases or coimmunoprecipitation assay. KEY RESULTS LPS induced COX-2 and cPLA2 expression via post-translational regulation of mRNA stabilization, which were attenuated by transfection with HuR siRNA in HTSMCs. In addition, LPS-stimulated NADPH oxidase activation and ROS generation were attenuated by the NADPH oxidase inhibitors diphenyleneiodonium chloride (DPI) and apocynin (APO). Generation of ROS induced phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK and JNK1/2, which was attenuated by DPI and APO and the ROS scavenger N-acetylcysteine. CONCLUSIONS AND IMPLICATIONS These results suggested that in HTSMCs, LPS-induced COX-2 and cPLA2 expression is mediated through NADPH oxidase/ROS-dependent MAPKs associated with HuR accumulation in the cytoplasm. Activated MAPKs may regulate the nucleocytoplasmic shuttling of HuR, and thus induce the cytoplasmic accumulation of HuR. PMID:21391979

  14. Comparison of two strategies for detection of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Gao, Weidong; Zhou, Yuanshu; Gu, Yueqing

    2014-09-01

    Photodynamic therapy (PDT) is a clinically approved treatment that was applied to oncology , dermatology, and ophthalmology. Reactive oxygen species (ROS) play a important role in the efficacy of PDT. Online monitoring of reactive oxygen species is the key to understand effect of PDT treatment. We used Fluorescence probes DPBF and luminescent probe luminal to measure the ROS in cells. And we revaluate the relationship between the amount of light and cell survival. There is strongly correlated between the amount of light and cell kill.

  15. Reactive oxygen species production by catechol stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-11-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants. Electronic supplementary information (ESI) available: Details of the synthesis of dopamine linkers and Cu NPs, peroxidase activity tests, H2O2 calibration and degradation tests for resorufin, RB and MB. See DOI: 10.1039/c3nr03563h

  16. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  17. Mechanisms for regulating oxygen toxicity in phytophagous insects.

    PubMed

    Ahmad, S; Pardini, R S

    1990-01-01

    The antioxidant enzymatic defense of insects for the regulation of oxygen toxicity was investigated. Insect species examined were lepidopterous larvae of the cabbage looper (Trichoplusia ni), southern armyworm (Spodoptera eridania), and black swallowtail (Papilio polyxenes). These phytophagous species are subject to both endogenous and exogenous sources of oxidative stress from toxic oxygen radicals, hydrogen peroxide (H2O2) and lipid peroxides (LOOH). In general, the constitutive levels of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GT), and its peroxidase activity (GTpx), and glutathione reductase (GR), correlate well with natural feeding habits of these insects and their relative susceptibility to prooxidant plant allelochemicals, quercetin (a flavonoid), and xanthotoxin (a photoactive furanocoumarin). Induction of SOD activity which rapidly destroys superoxide radicals, appears to be the main response to dietary prooxidant exposure. A unique observation includes high constitutive activity of CAT and a broader subcellular distribution in all three insects than observed in most mammalian species. These attributes of CAT appear to be important in the prevention of excessive accumulation of cytotoxic H2O2. Unlike mammalian species, insects possess very low levels of a GPOX-like activity toward H2O2. Irrefutable proof that this activity is due to a selenium-dependent GPOX found in mammals, is lacking at this time. However, the activity of selenium-independent GTpx is unusually high in insects, suggesting that GTpx and not GPOX plays a prominent role in scavenging deleterious LOOHs. The GSSG generated from the GPOX and GTpx reactions may be reduced to GSH by GR activity. A key role of SOD in protecting insects from prooxidant toxicity was evident when its inhibition resulted in enhanced toxicity towards prooxidants. The role of antioxidant compounds in protecting these insects from toxic forms of oxygen has not been explored in

  18. Living without Oxygen: Anoxia-Responsive Gene Expression and Regulation.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2009-04-01

    Many species of marine mollusks demonstrate exceptional capacities for long term survival without oxygen. Analysis of gene expression under anoxic conditions, including the subsequent translational responses, allows examination of the functional mechanisms that support and regulate natural anaerobiosis and permit noninjurious transitions between aerobic and anoxic states. Identification of stress-specific gene expression can provide important insights into the metabolic adaptations that are needed for anoxia tolerance, with potential applications to anoxia-intolerant systems. Various methods are available to do this, including high throughput microarray screening and construction and screening of cDNA libraries. Anoxia-responsive genes have been identified in mollusks; some have known functions in other organisms but were not previously linked with anoxia survival. In other cases, completely novel anoxia-responsive genes have been discovered, some that show known motifs or domains that hint at function. Selected genes are expressed at different times over an anoxia-recovery time course with their transcription and translation being actively regulated to ensure protein expression at the optimal time. An examination of transcript status over the course of anoxia exposure and subsequent aerobic recovery identifies genes, and the proteins that they encode, that enhance cell survival under oxygen-limited conditions. Analysis of data generated from non-mainstream model systems allows for insight into the response by cells to anoxia stress. PMID:19794879

  19. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems

    PubMed Central

    Maulucci, Giuseppe; Bačić, Goran; Bridal, Lori; Schmidt, Harald H.H.W.; Tavitian, Bertrand; Viel, Thomas; Utsumi, Hideo; Yalçın, A. Süha

    2016-01-01

    Abstract Significance: Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. Recent Advances: Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. Critical Issues: An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. Future Directions: None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939–958. PMID:27139586

  20. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed Central

    Görlach, Agnes; Dimova, Elitsa Y.; Petry, Andreas; Martínez-Ruiz, Antonio; Hernansanz-Agustín, Pablo; Rolo, Anabela P.; Palmeira, Carlos M.; Kietzmann, Thomas

    2015-01-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  1. Reactive oxygen species at the crossroads of inflammasome and inflammation

    PubMed Central

    Harijith, Anantha; Ebenezer, David L.; Natarajan, Viswanathan

    2014-01-01

    Inflammasomes form a crucial part of the innate immune system. These are multi-protein oligomer platforms that are composed of intracellular sensors which are coupled with caspase and interleukin activating systems. Nod-like receptor protein (NLRP) 3, and 6 and NLRC4 and AIM2 are the prominent members of the inflammasome family. Inflammasome activation leads to pyroptosis, a process of programmed cell death distinct from apoptosis through activation of Caspase and further downstream targets such as IL-1β and IL-18 leading to activation of inflammatory cascade. Reactive oxygen species (ROS) serves as important inflammasome activating signals. ROS activates inflammasome through mitogen-activated protein kinases (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Dysregulation of inflammasome plays a significant role in various pathological processes. Viral infections such as Dengue and Respiratory syncytial virus activate inflammasomes. Crystal compounds in silicosis and gout also activate ROS. In diabetes, inhibition of autophagy with resultant accumulation of dysfunctional mitochondria leads to enhanced ROS production activating inflammasomes. Activation of inflammasomes can be dampened by antioxidants such as SIRT-1. Inflammasome and related cascade could serve as future therapeutic targets for various pathological conditions. PMID:25324778

  2. Reactive Oxygen Species and the Brain in Sleep Apnea

    PubMed Central

    Wang, Yang; Zhang, Shelley XL; Gozal, David

    2010-01-01

    Rodents exposed to intermittent hypoxia (IH), a model of obstructive sleep apnea (OSA), manifest impaired learning and memory and somnolence. Increased levels of reactive oxygen species (ROS), oxidative tissue damage, and apoptotic neuronal cell death are associated with the presence of IH-induced CNS dysfunction. Furthermore, treatment with antioxidants or overexpression of antioxidant enzymes is neuroprotective during IH. These findings mimic clinical cases of OSA and suggest that ROS may play a key causal role in OSA-induced neuropathology. Controlled production of ROS occurs in multiple subcellular compartments of normal cells and de-regulation of such processes may result in excessive ROS production. The mitochondrial electron transport chain, especially complexes I and III, and the NADPH oxidase in the cellular membrane are the two main sources of ROS in brain cells, although other systems, including xanthine oxidase, phospholipase A2, lipoxygenase, cyclooxygenase, and cytochrome P450, may all play a role. The initial evidence for NADPH oxidase and mitochondrial involvement in IH-induced ROS production and neuronal injury unquestionably warrants future research efforts. PMID:20833273

  3. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.

    PubMed

    Cordeiro, Rodrigo M

    2014-01-01

    Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated. PMID:24095673

  4. Redox signaling regulated by electrophiles and reactive sulfur species.

    PubMed

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-03-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  5. Redox signaling regulated by electrophiles and reactive sulfur species

    PubMed Central

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-01-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  6. Oxygen chemistry of shocked interstellar clouds. III - Sulfur and oxygen species in dense clouds

    NASA Technical Reports Server (NTRS)

    Leen, T. M.; Graff, M. M.

    1988-01-01

    The chemical evolution of oxygen and sulfur species in shocked dense clouds is studied. Reaction rate constants for several important neutral reactions are examined, and revised values are suggested. The one-fluid magnetohydrodynamic shock structure and postshock chemical evolution are calculated for shocks of velocity v(s) = 10 km/s through clouds of initial number density n(0) = 100,000/cu cm and of molecule/atom ratios H2/H = 10, 1000, and 100,000 with most sulfur contained initially in molecules SO2 and SO. Abundances of SO2, SO, CS, and OCS remain near their preshock values, except in clouds containing substantial amounts of atomic hydrogen, where significant destruction of sulfur-oxygen species occurs. Abundances of shock-enhanced molecules HS and H2O are sensitive to the molecule/atom ratio. Nonthermal oxygen-hydrogen chemistry has a minor effect on oxygen-sulfur molecules in the case H2/H = 10.

  7. Role of reactive oxygen species in low level light therapy

    NASA Astrophysics Data System (ADS)

    Chen, Aaron Chi-Hao; Huang, Ying-Ying; Arany, Praveen R.; Hamblin, Michael R.

    2009-02-01

    This review will focus on the role of reactive oxygen species in the cellular and tissue effects of low level light therapy (LLLT). Coincidentally with the increase in electron transport and in ATP, there has also been observed by intracellular fluorescent probes and electron spin resonance an increase in intracellular reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, singlet oxygen and hydroxyl radical. ROS scavengers, antioxidants and ROS quenchers block many LLLT processes. It has been proposed that light between 400-500- nm may produce ROS by a photosensitization process involving flavins, while longer wavelengths may directly produce ROS from the mitochondria. Several redox-sensitive transcription factors are known such as NF-kB and AP1, that are able to initiate transcription of genes involved in protective responses to oxidative stress. It may be the case that LLLT can be pro-oxidant in the short-term, but anti-oxidant in the long-term.

  8. NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair

    PubMed Central

    Fu, Xiu-Jun; Peng, Ying-Bo; Hu, Yi-Ping; Shi, You-Zhen; Yao, Min; Zhang, Xiong

    2014-01-01

    Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair. PMID:24669283

  9. BIOMONITORING OF REACTIVE OXYGEN SPECIES IN BIOLOGICAL FLUIDS

    EPA Science Inventory

    Elevated levels of reactive oxygen species (ROS) are associated with several disease processes in humans, including cancer, asthma, diabetes, and cardiac disease. We have explored whether ROS can be measured directly in human fluids, and their value as a biomarker of exposure an...

  10. Reactive oxygen species in cancer: a dance with the devil.

    PubMed

    Schumacker, Paul T

    2015-02-01

    Reactive oxygen species (ROS) can initiate cancer, but oxidant generation in tumors leaves them vulnerable to further stresses. In this issue of Cancer Cell, Harris and colleagues show that augmenting oxidant stress in normal cells limits tumor initiation and progression. Hence, strategic targeting of antioxidant systems may undermine survival of new tumor cells. PMID:25670075

  11. Adipose dysfunction, interaction of reactive oxygen species, and inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This American Society for Nutrition sponsored symposium summary contains information about the symposium focus and the general content of speaker presentation. The focus of the symposium was to delineate the significance of obesity-associated reactive oxygen species (ROS), inflammation, and adipose ...

  12. A role for reactive oxygen species in postharvest biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play an important role in plant defense responses against pathogens. There is evidence that microbial biocontrol agents also induce a transient production of ROS in a host plant which triggers local and systemic defense responses. In this study, we explored the abilit...

  13. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  14. The formation of metal--oxygen species at low temperatures

    SciTech Connect

    Qiu, S.L.; Lin, C.L.; Chen, J.; Strongin, M. )

    1990-05-01

    The interaction of solid molecular oxygen with Li, Cs, K, La, Ag, Cu, and Ba has been studied at 35 K or below using photoemission. A feature near 535 eV in the O 1{ital s} core-level spectra was observed when Li, Cs, K, and La were deposited on solid oxygen. This feature was identified with one electron being donated to an oxygen molecule, i.e., the superoxide species, which as far as we know has not been previously reported for La and Li. A feature at about 531.5--533 eV was identified as a peroxide species where two electrons were donated to an oxygen molecule. Finally, features at about 528--530.5 eV were identified as oxide phases where the molecular oxygen was dissociated into atomic O with formal oxidation state of {minus}2. These identifications are crucial in the determinations of the exotic features in the x-ray photoelectron spectroscopy (XPS) O 1{ital s} spectra of the high {ital T}{sub {ital c}} superconductors.

  15. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  16. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

  17. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  18. Chemical pathway analysis of Titan's upper atmosphere: Oxygen species

    NASA Astrophysics Data System (ADS)

    Stock, J. W.; Lara, L. M.; Lehmann, R.

    2014-04-01

    CO, CO2, and H2O are the only oxygen bearing species in Titan's atmosphere which have been clearly detected so far. Their abundances are controlled by the interaction of external and internal sources, photochemistry and condensation. In this contribution, we determine all significant chemical pathways responsible for the production and consumption of CO, CO2, and H2O. Furthermore, we investigate the effects of different oxygen sources on the efficiencies of the pathways. In order to achieve this, we apply a unique algorithm, called the Pathway Analysis Program - PAP to the results of a 1D photochemical model of Titan's atmosphere.

  19. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  20. Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Ono, Reoto; Shiratani, Masaharu; Yonesu, Akira

    2015-06-01

    The growth regulation characteristics of plants are investigated when plant seeds are irradiated with atmospheric discharge plasma. Enhancement of the germination and lengths of the stem and root of plants are observed after seeding. The total length of the stem and root increases approximately 1.6 times after a cultivation period of 72 h. The growth regulation effect is found to be maintained for 80 h of cultivation after seeding. The growth regulation originates from the change in the antioxidative activity of plant cells induced by active oxygen species generated in the oxygen plasma, which leads to the production of growth factor in plants.

  1. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVIE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES. CAUSE RELEASE OF IRON , FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). R...

  2. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  3. Combinatorial Cis-regulation in Saccharomyces Species

    PubMed Central

    Spivak, Aaron T.; Stormo, Gary D.

    2016-01-01

    Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs) controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1) chromatin immunoprecipitation data for colocalization of transcription factors, (2) gene expression data for coexpression of predicted regulatory targets, and (3) gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF) occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1) combinatorial cis-regulation can be inferred by multi-genome analysis and (2) combinatorial cis-regulation can explain differences in gene expression between species. PMID:26772747

  4. Combinatorial Cis-regulation in Saccharomyces Species.

    PubMed

    Spivak, Aaron T; Stormo, Gary D

    2016-01-01

    Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs) controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1) chromatin immunoprecipitation data for colocalization of transcription factors, (2) gene expression data for coexpression of predicted regulatory targets, and (3) gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF) occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1) combinatorial cis-regulation can be inferred by multi-genome analysis and (2) combinatorial cis-regulation can explain differences in gene expression between species. PMID:26772747

  5. Natural antioxidants as inhibitors of oxygen species induced mutagenicity.

    PubMed

    Minnunni, M; Wolleb, U; Mueller, O; Pfeifer, A; Aeschbacher, H U

    1992-10-01

    A ternary antioxidant vitamin mix consisting of ascorbic acid, alpha-tocopherol and lecithin as well as a rosemary extract with carnosic acid and carnosol as the two major active ingredients were shown to exhibit strong antimutagenic effects in Ames tester strain TA102. This strain has been shown to be highly sensitive to reactive oxygen species. Mutagenicity was induced by the generation of oxygen radicals by tert-butyl-hydroperoxide (tBOOH) or hydrogen peroxide (H2O2); therefore, the antimutagenic property of the above substances was attributed to their antioxidant properties. In the case of the vitamin mix, ascorbic acid was held responsible for this inhibitory property, whereas for the rosemary extract carnosic acid was identified as the antimutagenic agent. Since oxygen radicals are known to be involved in the multiprocess of carcinogenicity, it is concluded that these antioxidants might exhibit anticarcinogenic properties. PMID:1383702

  6. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria.

    PubMed

    Misra, Hari S; Khairnar, Nivedita P; Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Apte, Shree K

    2004-12-01

    Transgenic Escherichia coli expressing pyrroloquinoline-quinone (PQQ) synthase gene from Deinococcus radiodurans showed superior survival during Rose Bengal induced oxidative stress. Such cells showed significantly low levels of protein carbonylation as compared to non-transgenic control. In vitro, PQQ reacted with reactive oxygen species with rate constants comparable to other well known antioxidants, producing non-reactive molecular products. PQQ also protected plasmid DNA and proteins from the oxidative damage caused by gamma-irradiation in solution. The data suggest that radioprotective/oxidative stress protective ability of PQQ in bacteria may be consequent to scavenging of reactive oxygen species per se and induction of other free radical scavenging mechanism. PMID:15581610

  7. Reactive oxygen species and antioxidant vitamins: mechanisms of action.

    PubMed

    Frei, B

    1994-09-26

    This article is a brief overview of the mechanisms of production of reactive oxygen species in biologic systems, and the various antioxidant defense systems that provide protection against oxidative damage to biologic macromolecules. The mechanisms of lipid peroxidation and antioxidant protection are explained using a specific example, viz., oxidative modification of human low density lipoprotein and its prevention by vitamin C, vitamin E, and beta-carotene. PMID:8085584

  8. Reactive oxygen species: The good, the bad, and the enigma

    PubMed Central

    Ogrunc, Müge

    2014-01-01

    Work carried out primarily in the laboratory of Fabrizio d’Adda di Fagagna unveils the mitogenic properties of Ras-induced reactive oxygen species (ROS) and their relationship with the DNA damage response. Combined data from studies of cultured cells, zebrafish models, and clinical material consistently support a role of the RAS-RAC1-NOX4 axis in ROS induction, hyperproliferation, and senescence. PMID:27308352

  9. Fires and the rise and regulation of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Lenton, T. M.

    2012-04-01

    When did oxygen first approach 21% of the atmosphere, and what regulates it there? These are enduring puzzles in Earth system science, and fire science provides a key part of the answers. The results of ignition experiments with natural fuels indicate that to start a fire requires at least 17% oxygen in the atmosphere. Thus, the appearance of charcoal in the fossil record around 420 million years ago in the Silurian Period indicates atmospheric oxygen was >17% then. Here we hypothesise that the first non-vascular plants, which began colonising the land surface around 50 million years beforehand (in the Ordovician Period), caused a rise in atmospheric oxygen concentration to a level >17% sufficient to support fires. We base this on weathering experiments with an analogue for the first non-vascular plants, and modelling with the COPSE model of the coupled phosphorus, carbon and oxygen biogeochemical cycles. The experiments reveal that a non-vascular plant (the moss Physcomitrella patens) hugely amplifies phosphorus weathering by a factor of up to 60. The modelling shows that early plant colonisation could hence have increased phosphorus supply to the ocean, fuelling photosynthetic production and organic carbon burial, which is the long-term source of oxygen to the atmosphere. Atmospheric oxygen is predicted to have risen through the late Ordovician and into the Silurian. Since 370 million years ago, the nearly continuous record of charcoal indicates that oxygen has remained above 17% of the atmosphere. At the same time, the continued persistence of forests means fires have never been so frequent as to prevent trees from regenerating, setting a contested upper limit on oxygen of around 30%. The restriction of oxygen variation within a factor of two suggests remarkable regulation, because the whole oxygen reservoir has been replaced over 100 times in this interval. Fires are a prime candidate for forming part of the regulating mechanism, and giving it a 'set point', as

  10. Reactive oxygen species and energy machinery: an integrated dynamic model.

    PubMed

    Korla, Kalyani

    2016-08-01

    The role of several important reactive oxygen species (ROS) on the Krebs cycle, the electron transport chain (ETC) and the two important shuttles has been modelled. Major part of the ROS is produced during oxygen reduction in the ETC, which has been kinetically simulated, and the changes in the final concentrations of several important metabolites were found. The simulation is based on chemical kinetics equation, and the associated set of differential equations was solved by the ordinary differential equation package in Octave. The validity of the model is checked by comparing the experimental results available in the literature with the simulations when a part of the ETC is blocked (80%) in the script. The present approach is versatile and flexible and has potential applications in various simulations. It is easy to study the change in concentrations of various metabolites when a particular enzyme or pathway is blocked (say by a drug). The Octave script is presented in the text. PMID:26309069

  11. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis.

    PubMed

    Khan, Saeed R

    2014-09-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall's plaques (RPs) or Randall's plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall's plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles at

  12. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis

    PubMed Central

    2014-01-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall’s plaques (RPs) or Randall’s plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall’s plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles

  13. Implications for reactive oxygen species in schizophrenia pathogenesis.

    PubMed

    Koga, Minori; Serritella, Anthony V; Sawa, Akira; Sedlak, Thomas W

    2016-09-01

    Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases. PMID:26589391

  14. Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species

    PubMed Central

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable. PMID:23730253

  15. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    PubMed Central

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells. PMID:10618438

  16. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  17. Scavenging of reactive oxygen species by silibinin dihemisuccinate.

    PubMed

    Mira, L; Silva, M; Manso, C F

    1994-08-17

    Silibinin dihemisuccinate (SDH) is a flavonoid of plant origin with hepatoprotective effects which have been partially attributed to its ability to scavenge oxygen free radicals. In the present paper the antioxidant properties of SDH were evaluated by studying the ability of this drug to react with relevant biological oxidants such as superoxide anion radical (O2-), hydrogen peroxide (H2O2), hydroxyl radical (HO.) and hypochlorous acid (HOCl). In addition, its effect on lipid peroxidation was investigated. SDH is not a good scavenger of O2- and no reaction with H2O2 was detected within the sensitivity limit of our assay. However, it reacts rapidly with HO. radicals in free solution at approximately diffusion-controlled rate (K = (1.0-1.2) x 10(10)/M/sec) and appears to be a weak iron ion chelator. SDH at concentrations in the micromolar range protected alpha 1-antiproteinase against inactivation by HOCl, showing that it is a potent scavenger of this oxidizing species. Luminol-dependent chemiluminescence induced by HOCl was also inhibited by SDH. The reaction of SDH with HOCl was monitored by the modification of the UV-visible spectrum of SDH. The studies on rat liver microsome lipid peroxidation induced by Fe(III)/ascorbate showed that SDH has an inhibitory effect, which is dependent on its concentration and the magnitude of lipid peroxidation. This work supports the reactive oxygen species scavenger action ascribed to SDH. PMID:8080448

  18. Singlet Oxygen Is the Major Reactive Oxygen Species Involved in Photooxidative Damage to Plants1[W

    PubMed Central

    Triantaphylidès, Christian; Krischke, Markus; Hoeberichts, Frank Alfons; Ksas, Brigitte; Gresser, Gabriele; Havaux, Michel; Van Breusegem, Frank; Mueller, Martin Johannes

    2008-01-01

    Reactive oxygen species act as signaling molecules but can also directly provoke cellular damage by rapidly oxidizing cellular components, including lipids. We developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry-based quantitative method that allowed us to discriminate between free radical (type I)- and singlet oxygen (1O2; type II)-mediated lipid peroxidation (LPO) signatures by using hydroxy fatty acids as specific reporters. Using this method, we observed that in nonphotosynthesizing Arabidopsis (Arabidopsis thaliana) tissues, nonenzymatic LPO was almost exclusively catalyzed by free radicals both under normal and oxidative stress conditions. However, in leaf tissues under optimal growth conditions, 1O2 was responsible for more than 80% of the nonenzymatic LPO. In Arabidopsis mutants favoring 1O2 production, photooxidative stress led to a dramatic increase of 1O2 (type II) LPO that preceded cell death. Furthermore, under all conditions and in mutants that favor the production of superoxide and hydrogen peroxide (two sources for type I LPO reactions), plant cell death was nevertheless always preceded by an increase in 1O2-dependent (type II) LPO. Thus, besides triggering a genetic cell death program, as demonstrated previously with the Arabidopsis fluorescent mutant, 1O2 plays a major destructive role during the execution of reactive oxygen species-induced cell death in leaf tissues. PMID:18676660

  19. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    An acute reduction in oxygen (O2) delivery to a tissue is generally associated with a decrease in phosphocreatine, increases in ADP, NADH/NAD, and inorganic phosphate, increased rates of glycolysis and lactate production, and reduced rates of pyruvate and fatty acid oxidation. However, given the complexity of the human bioenergetic system and its components, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in tissue O2 availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics to provide a physicochemical framework that permits quantitative understanding of O2 as a metabolic regulator. Specifically, the enhancement permits studying the effects of variations in tissue oxygenation and in parameters controlling the rate of cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The whole body is described as a bioenergetic system consisting of metabolically distinct tissue/organ subsystems that exchange materials with the blood. In order to study the dynamic response of each subsystem to stimuli, we solve the ordinary differential equations describing the temporal evolution of metabolite levels, given the initial concentrations. The solver used in the present study is the packaged code LSODE, as implemented in the NASA Lewis kinetics and sensitivity analysis code, LSENS. A major advantage of LSENS is the efficient procedures supporting systematic sensitivity analysis, which provides the basic methods for studying parameter sensitivities (i.e., changes in model behavior due to parameter variation

  20. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. PMID:26950921

  1. Reactive oxygen species in organ-specific autoimmunity.

    PubMed

    Di Dalmazi, Giulia; Hirshberg, Jason; Lyle, Daniel; Freij, Joudeh B; Caturegli, Patrizio

    2016-12-01

    Reactive oxygen species (ROS) have been extensively studied in the induction of inflammation and tissue damage, especially as it relates to aging. In more recent years, ROS have been implicated in the pathogenesis of autoimmune diseases. Here, ROS accumulation leads to apoptosis and autoantigen structural changes that result in novel specificities. ROS have been implicated not only in the initiation of the autoimmune response but also in its amplification and spreading to novel epitopes, through the unmasking of cryptic determinants. This review will examine the contribution of ROS to the pathogenesis of four organ specific autoimmune diseases (Hashimoto thyroiditis, inflammatory bowel disease, multiple sclerosis, and vitiligo), and compare it to that of a better characterized systemic autoimmune disease (rheumatoid arthritis). It will also discuss tobacco smoking as an environmental factor endowed with both pro-oxidant and anti-oxidant properties, thus capable of differentially modulating the autoimmune response. PMID:27491295

  2. Reactive oxygen species-activated nanomaterials as theranostic agents.

    PubMed

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  3. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  4. Reactive oxygen species in eradicating acute myeloid leukemic stem cells

    PubMed Central

    Zhang, Hui; Fang, Hai

    2014-01-01

    Leukemic stem cells (LSCs) have been proven to drive leukemia initiation, progression and relapse, and are increasingly being used as a critical target for therapeutic intervention. As an essential feature in LSCs, reactive oxygen species (ROS) homeostasis has been extensively exploited in the past decade for targeting LSCs in acute myeloid leukemia (AML). Most, if not all, agents that show therapeutic benefits are able to alter redox status by inducing ROS, which confers selectivity in eradicating AML stem cells but sparing normal counterparts. In this review, we provide the comprehensive update of ROS-generating agents in the context of their impacts on our understanding of the pathogenesis of AML and its therapy. We anticipate that further characterizing these ROS agents will help us combat against AML in the coming era of LSC-targeting strategy.

  5. Reactive oxygen species, ageing and the hormesis police.

    PubMed

    Ludovico, Paula; Burhans, William C

    2014-02-01

    For more than 50 years, the free radical theory served as the paradigm guiding most investigations of ageing. However, recent studies in a variety of organisms have identified conceptual and practical limitations to this theory. Some of these limitations are related to the recent discovery that caloric restriction and other experimental manipulations promote longevity by inducing hormesis effects in association with increased reactive oxygen species (ROS). The beneficial role of ROS in lifespan extension is consistent with the essential role of these molecules in cell signalling. However, the identity of specific forms of ROS that promote longevity remains unclear. In this article, we argue that in several model systems, hydrogen peroxide plays a crucial role in the induction of hormesis. PMID:23965186

  6. Reactive Oxygen Species Driven Angiogenesis by Inorganic Nanorods

    PubMed Central

    Patra, Chitta Ranjan; Kim, Jong Ho; Pramanik, Kallal; d’Uscio, Livius V.; Patra, Sujata; Pal, Krishnendu; Ramchandran, Ramani; Strano, Michael S; Mukhopadhyay, Debabrata

    2011-01-01

    The exact mechanism of angiogenesis by europium hydroxide nanorods was unclear. In this study we have showed that formation of reactive oxygen species (H2O2 and O2•−) are involved in redox signaling pathways during angiogenesis, important for cardiovascular and ischemic diseases. Here we used single-walled carbon nanotube (SWNT) sensor array to measure the single-molecule efflux of H2O2 and a HPLC method for the determination of O2•− from endothelial cells in response to pro-angiogenic factors. Additionally, ROS-mediated angiogenesis using inorganic nanorods was observed in transgenic (fli1a:EGFP) zebrafish embryos. PMID:21967244

  7. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  8. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  9. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    PubMed Central

    Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection. PMID:22815925

  10. Reactive oxygen species in development and infection processes.

    PubMed

    Marschall, Robert; Tudzynski, Paul

    2016-09-01

    Reactive oxygen species (ROS) are important signaling molecules that affect vegetative and pathogenic processes in pathogenic fungi. There is growing evidence that ROS are not only secreted during the interaction of host and pathogen but also involved in tightly controlled intracellular processes. The major ROS producing enzymes are NADPH oxidases (Nox). Recent investigations in fungi revealed that Nox-activity is responsible for the formation of infection structures, cytoskeleton architecture as well as interhyphal communication. However, information about the localization and site of action of the Nox complexes in fungi is limited and signaling pathways and intracellular processes affected by ROS have not been fully elucidated. This review focuses on the role of ROS as signaling molecules in fungal "model" organisms: it examines the role of ROS in vegetative and pathogenic processes and gives special attention to Nox complexes and their function as important signaling hubs. PMID:27039026

  11. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation

    PubMed Central

    Sovari, Ali A.; Dudley, Samuel C.

    2012-01-01

    Atrial fibrillation (AF) is the most common arrhythmia that requires medical attention, and its incidence is increasing. Current ion channel blockade therapies and catheter ablation have significant limitations in treatment of AF, mainly because they do not address the underlying pathophysiology of the disease. Oxidative stress has been implicated as a major underlying pathology that promotes AF; however, conventional antioxidants have not shown impressive therapeutic effects. A more careful design of antioxidant therapies and better selection of patients likely are required to treat effectively AF with antioxidant agents. Current evidence suggest inhibition of prominent cardiac sources of reactive oxygen species (ROS) such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and targeting subcellular compartments with the highest levels of ROS may prove to be effective therapies for AF. Increased serum markers of oxidative stress may be an important guide in selecting the AF patients who will most likely respond to antioxidant therapy. PMID:22934062

  12. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  13. Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2015-01-01

    Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondrial oxidative phosphorylation and increases or decreases in ROS-related enzymes. Although apoptotic cell death pathways are mostly activated by ROS production, there are other pathways involved in hearing loss that do not depend on ROS production. Further studies of other pathways, such as endoplasmic reticulum stress and necrotic cell death, are required. PMID:25874222

  14. Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis.

    PubMed

    Vallyathan, V; Shi, X; Castranova, V

    1998-10-01

    Occupational exposures to mineral particles cause pneumoconiosis and other diseases, including cancer. Recent studies have suggested that reactive oxygen species (ROS) may play a key role in the mechanisms of disease initiation and progression following exposure to these particles. ROS-induced primary stimuli result in the increased secretion of proinflammatory cytokines and other mediators, promoting events that appear to be important in the progression of cell injury and pulmonary disease. We have provided evidence supporting the hypothesis that inhalation of insoluble particles such as asbestos, agricultural dusts, coal, crystalline silica, and inorganic dust can be involved in facilitating multiple pathways for persistent generation of ROS, which may lead to a continuum of inflammation leading to progression of disease. This article briefly summarizes some of the recent findings from our laboratories with emphasis on the molecular events by which ROS are involved in promoting pneumoconiosis and carcinogenesis. PMID:9788890

  15. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  16. Reactive oxygen species mediate growth and death in submerged plants

    PubMed Central

    Steffens, Bianka; Steffen-Heins, Anja; Sauter, Margret

    2013-01-01

    Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS. PMID:23761805

  17. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy.

    PubMed

    Durantini, Andrés M; Greene, Lana E; Lincoln, Richard; Martínez, Sol R; Cosa, Gonzalo

    2016-02-01

    Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain. PMID:26789198

  18. Generation of reactive oxygen species and radiation response in lymphocytes and tumor cells.

    PubMed

    Shankar, Bhavani; Kumar, S Santosh; Sainis, K B

    2003-10-01

    Several types of lymphoid and myeloid tumor cells are known to be relatively resistant to radiation-induced apoptosis compared to normal lymphocytes. The intracellular generation of reactive oxygen species was measured in irradiated spleen cells from C57BL/6 and BALB/c mice and murine tumor cells (EL-4 and P388) by flow cytometry using dichlorodihydrofluoresceindiacetate and dihydrorhodamine 123 as fluorescent probes. The amount of reactive oxygen species generated per cell was low in the tumor cells compared to spleen cells exposed to 1 to 10 Gy of gamma radiation. This could be due to the higher total antioxidant levels in tumor cells compared to normal cells. Further, the changes in mitochondrial membrane potential and cytoplasmic Ca2+ content were appreciable in lymphocytes even at a dose of 1 Gy. In EL-4 cells, no such changes were observed at any of the doses used. About 65% of spleen cells underwent apoptosis 24 h after 1 Gy irradiation. However, under the same conditions, EL-4 and P388 cells failed to undergo apoptosis, but they accumulated in G2/M phase. Thus the intrinsic radioresistance of tumor cells may be due to a decreased generation of reactive oxygen species after irradiation and down-regulation of the subsequent events leading to apoptosis. PMID:12968927

  19. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome.

    PubMed

    Fink, Mitchell P

    2002-02-01

    Reactive oxygen species are reactive, partially reduced derivatives of molecular oxygen (O 2 ). Important reactive oxygen species in biologic systems include superoxide radical anion, hydrogen peroxide, and hydroxyl radical. Closely related species include the hypohalous acids, particularly hypochlorous acid; chloramine and substituted chloramines; and singlet oxygen. Reactive nitrogen species are derived from the simple diatomic gas, nitric oxide. Peroxynitrite and its protonated form, peroxynitrous acid, are the most significant reactive nitrogen species in biologic systems. A variety of enzymatic and nonenzymatic processes can generate reactive oxygen species and reactive nitrogen species in mammalian cells. An extensive body of experimental evidence from studies using animal models supports the view that reactive oxygen species and reactive nitrogen species are important in the pathogenesis of acute respiratory distress syndrome. This view is further supported by data from clinical studies that correlate biochemical evidence of reactive oxygen species-mediated or reactive nitrogen species-mediated stress with the development of acute respiratory distress syndrome. Despite these data, pharmacologic strategies directed at minimizing reactive oxygen species-mediated or reactive nitrogen species-mediated damage have yet to be successfully introduced into clinical practice. The most extensively studied compound in this regard is N -acetylcysteine; unfortunately, clinical trials with this compound in patients with acute respiratory distress syndrome have yielded disappointing results. PMID:12205400

  20. Reactive oxygen species in bovine embryo in vitro production.

    PubMed

    Dalvit, G C; Cetica, P D; Pintos, L N; Beconi, M T

    2005-08-01

    Oxidative modifications of cell components due to the action of reactive oxygen species (ROS) is one of the most potentially damaging processes for proper cell function. However, in the last few years it has been observed that ROS participate in physiological processes. The aim of this work was to determine ROS generation during in vitro production of bovine embryos. Cumulus-oocyte complexes were recovered by aspiration of antral follicles from ovaries obtained from slaughtered cows and cultured in medium 199 for 22 h at 39 degrees C in 5% CO2: 95% humidified air. In vitro fertilization was carried out in IVF-mSOF with frozen-thawed semen in the same culture conditions and embryo in vitro culture in IVC-mSOF at 90% N2: 5% CO2: 5% O2. ROS was determined in denuded oocytes and embryos at successive stages of development by the 2',7'-dichlorodihydrofluorescein diacetate fluorescent assay. ROS production was not modified during oocyte maturation. However, a gradual increase in ROS production was observed up to the late morula stage during embryo in vitro culture (P < 0.05). In expanded blastocysts, ROS level decreased to reach values similar to the corresponding in oocytes. In the bovine species, the variation in ROS level during the complete process of embryo in vitro production was determined for the first time. PMID:16187501

  1. Effects of reactive oxygen species on sperm function.

    PubMed

    Guthrie, H D; Welch, G R

    2012-11-01

    Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum. PMID:22704396

  2. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  3. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review.

    PubMed

    Atashi, Fatemeh; Modarressi, Ali; Pepper, Michael S

    2015-05-15

    Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs. PMID:25603196

  4. The Role of Reactive Oxygen Species in Mesenchymal Stem Cell Adipogenic and Osteogenic Differentiation: A Review

    PubMed Central

    Atashi, Fatemeh; Modarressi, Ali

    2015-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs. PMID:25603196

  5. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    PubMed Central

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C.; Zhong, Jia; Ye, Keqiang; Chang, Christopher J; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    Summary The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils. PMID:23159440

  6. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  7. A quantitative study of oxygen as a metabolic regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    2003-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bioenergetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement--sensitivity analysis--permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  8. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.

    2000-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  9. Oxygen compatibility of pressure regulators for gas cylinders

    NASA Astrophysics Data System (ADS)

    Barthelemy, Herve; Delode, Georges; Vagnard, Gerard

    Violent ignitions which have been reported in oxygen pressure regulators upon opening of gas cylinder valves may be attributed to oil contamination, particle impact, or adiabatic compression. Attention is presently given to adiabatic compression, whose conditions have been investigated in laboratory tests with a view to the influence of the metallic and nonmetallic materials used. The influence of material type is noted to be strongly affected by the internal design of the pressure regulator. Also discussed are the test methods thus far formulated for this phenomenon by European and international standards authorities.

  10. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  11. Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels

    PubMed Central

    Veit, Florian; Pak, Oleg; Brandes, Ralf P.

    2015-01-01

    Abstract Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537–552 PMID:25545236

  12. An oxygen-regulated switch in the protein synthesis machinery

    PubMed Central

    Uniacke, James; Holterman, Chet E.; Lachance, Gabriel; Franovic, Aleksandra; Jacob, Mathieu D.; Fabian, Marc R.; Payette, Josianne; Holcik, Martin; Pause, Arnim; Lee, Stephen

    2016-01-01

    SUMMARY Protein synthesis involves the translation of ribonucleic acid information into proteins, the building blocks of life. The initial step of protein synthesis consists of the eukaryotic translation initiation factor 4E (eIF4E) binding to the 7-methylguanosine (m7-GpppG) 5′cap of mRNAs1,2. Low oxygen tension (hypoxia) represses cap-mediated translation by sequestering eIF4E through mammalian target of rapamycin (mTOR)-dependent mechanisms3–6. While the internal ribosome entry site is an alternative translation initiation mechanism, this pathway alone cannot account for the translational capacity of hypoxic cells7,8. This raises a fundamental question in biology as to how proteins are synthesized in periods of oxygen scarcity and eIF4E inhibition9. Here, we uncover an oxygen-regulated translation initiation complex that mediates selective cap-dependent protein synthesis. Hypoxia stimulates the formation of a complex that includes the oxygen-regulated hypoxia-inducible factor 2α (HIF-2α), the RNA binding protein RBM4 and the cap-binding eIF4E2, an eIF4E homologue. PAR-CLIP10 analysis identified an RNA hypoxia response element (rHRE) that recruits this complex to a wide array mRNAs, including the epidermal growth factor receptor (EGFR). Once assembled at the rHRE, HIF-2α/RBM4/eIF4E2 captures the 5′cap and targets mRNAs to polysomes for active translation thereby evading hypoxia-induced repression of protein synthesis. These findings demonstrate that cells have evolved a program whereby oxygen tension switches the basic translation initiation machinery. PMID:22678294

  13. Endophytic Bacterium-Triggered Reactive Oxygen Species Directly Increase Oxygenous Sesquiterpenoid Content and Diversity in Atractylodes lancea

    PubMed Central

    Zhou, Jia-Yu; Yuan, Jie; Li, Xia; Ning, Yi-Fan

    2015-01-01

    Oxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. A. lancea is a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authentic A. lancea produces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization by Pseudomonas fluorescens ALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation in A. lancea occur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulation in planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced by P. fluorescens ALEB7B. Further in vitro oxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2 or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity in A. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesis in planta and an essential complementarity to enzymatic oxidation reactions. PMID:26712554

  14. Endophytic Bacterium-Triggered Reactive Oxygen Species Directly Increase Oxygenous Sesquiterpenoid Content and Diversity in Atractylodes lancea.

    PubMed

    Zhou, Jia-Yu; Yuan, Jie; Li, Xia; Ning, Yi-Fan; Dai, Chuan-Chao

    2016-03-01

    Oxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. A. lancea is a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authentic A. lancea produces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization by Pseudomonas fluorescens ALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation in A. lancea occur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulation in planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced by P. fluorescens ALEB7B. Further in vitro oxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2 or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity in A. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesis in planta and an essential complementarity to enzymatic oxidation reactions. PMID:26712554

  15. Plasma-generated reactive oxygen species for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  16. REACTIVE OXYGEN AND NITROGEN SPECIES IN PULMONARY HYPERTENSION

    PubMed Central

    Tabima, Diana M.; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or as a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5,000 patients in the U.S., the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of anti-apoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This manuscript will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies

  17. Pharmacological modulation of reactive oxygen species in cancer treatment.

    PubMed

    Ribas, Judit; Mattiolo, Paolo; Boix, Jacint

    2015-01-01

    Aerobic metabolism of mammalian cells leads to the generation of reactive oxygen species (ROS). To cope with this toxicity, evolution provided cells with effective antioxidant systems like glutathione. Current anticancer therapies focus on the cancer dependence on oncogenes and non-oncogenes. Tumors trigger mechanisms to circumvent the oncogenic stress and to escape cell death. In this context we have studied 2-phenylethinesulfoxamine (PES), which disables the cell protective mechanisms to confront the proteotoxicity of damaged and unfolded proteins. Proteotoxic stress is increased in tumor cells, thus providing an explanation for the anticancer selectivity of PES. In addition, we have found that PES induces a severe oxidative stress and the activation of p53. The reduction of the cell content in glutathione by means of L-buthionine-sulfoximine (BSO) synergizes with PES. In conclusion, we have found that ROS constitutes a central element in a series of positive feed-back loops in the cell. ROS, p53, proteotoxicity, autophagy and mitochondrial dynamics are interconnected with the mechanisms leading to cell death, either apoptotic or necrotic. This network of interactions provides multiple targets for drug discovery and development in cancer. PMID:25395102

  18. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases.

    PubMed

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475

  19. Are Reactive Oxygen Species Always Detrimental to Pathogens?

    PubMed Central

    Bozza, Marcelo T.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037. PMID:23992156

  20. Reactive oxygen species delay control of lymphocytic choriomeningitis virus

    PubMed Central

    Lang, P A; Xu, H C; Grusdat, M; McIlwain, D R; Pandyra, A A; Harris, I S; Shaabani, N; Honke, N; Kumar Maney, S; Lang, E; Pozdeev, V I; Recher, M; Odermatt, B; Brenner, D; Häussinger, D; Ohashi, P S; Hengartner, H; Zinkernagel, R M; Mak, T W; Lang, K S

    2013-01-01

    Cluster of differentiation (CD)8+ T cells are like a double edged sword during chronic viral infections because they not only promote virus elimination but also induce virus-mediated immunopathology. Elevated levels of reactive oxygen species (ROS) have been reported during virus infections. However, the role of ROS in T-cell-mediated immunopathology remains unclear. Here we used the murine lymphocytic choriomeningitis virus to explore the role of ROS during the processes of virus elimination and induction of immunopathology. We found that virus infection led to elevated levels of ROS producing granulocytes and macrophages in virus-infected liver and spleen tissues that were triggered by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Lack of the regulatory subunit p47phox of the NADPH oxidase diminished ROS production in these cells. While CD8+ T cells exhibited ROS production that was independent of NADPH oxidase expression, survival and T-cell function was elevated in p47phox-deficient (Ncf1−/−) mice. In the absence of p47phox, enhanced T-cell immunity promoted virus elimination and blunted corresponding immunopathology. In conclusion, we find that NADPH-mediated production of ROS critically impairs the immune response, impacting elimination of virus and outcome of liver cell damage. PMID:23328631

  1. Reactive oxygen species in diabetic nephropathy: friend or foe?

    PubMed

    Bondeva, Tzvetanka; Wolf, Gunter

    2014-11-01

    Based on the numerous cellular and animal studies over the last decades, it has been postulated that reactive oxygen species (ROS) are important secondary messengers for signalling pathways associated with apoptosis, proliferation, damage and inflammation. Their adverse effects were considered to play a leading role in the onset and progression of type 1 and type 2 diabetes mellitus as well as in the complication of diabetic disease leading to vascular-, cardiac-, neuro-degeneration, diabetic retinopathy and diabetic nephropathy. All these complications were mostly linked to the generation of the superoxide anion, due to a prolonged hyperglycaemia in diabetes, and this anion was almost 'blamed for everything', despite the fact that its measurement and detection in life systems is extremely complicated due to the short lifespan of the superoxide anion. Therefore, a tremendous amount of research has been focused on finding ways to suppress ROS production. However, a recent report from Dugan et al. shed new insights into the life detection of superoxide generation in diabetes and raised the question of whether we treat the diabetes-related complications correctly or the target is somewhat different as thought. This review will focus on some aspects of this novel concept for the role of ROS in diabetic nephropathy. PMID:24589719

  2. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  3. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  4. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species.

    PubMed

    Ghosh, Rajeshwary; Alajbegovic, Azra; Gomes, Aldrin V

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD. PMID:26457127

  5. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    SciTech Connect

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  6. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  7. Reactive oxygen species a double-edged sword for mesothelioma

    PubMed Central

    Catalani, Simona; Galati, Rossella

    2015-01-01

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10–15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display ‘asbestos-like’ pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  8. Male infertility testing: reactive oxygen species and antioxidant capacity.

    PubMed

    Ko, Edmund Y; Sabanegh, Edmund S; Agarwal, Ashok

    2014-12-01

    Reactive oxygen species (ROS) are an integral component of sperm developmental physiology, capacitation, and function. Elevated ROS levels, from processes such as infection or inflammation, can be associated with aberrations of sperm development, function, and fertilizing capacity. We review the impact of ROS on sperm physiology, its place in infertility evaluation, the implications for reproductive outcomes, and antioxidant therapy. Our systematic review of PubMed literature from the last 3 decades focuses on the physiology and etiology of ROS and oxidative stress (OS), evaluation of ROS, and antioxidants. ROS is normally produced physiologically and is used to maintain cellular processes such as sperm maturation, capacitation, and sperm-oocyte interaction. When ROS production exceeds the buffering capacity of antioxidants, OS occurs and can have a negative impact on sperm and fertility. ROS and antioxidant capacity testing can potentially add additional prognostic information to standard laboratory testing for the infertile male, although its role as standard part of an evaluation has yet to be determined. Elevated ROS levels have been implicated with abnormal semen parameters and male infertility, but the impact of ROS on fertilization rates and pregnancy is controversial. This is partly because of the lack of consensus on what type of patients may be suitable for ROS testing and assay standardization. Routine ROS testing for the infertile male is not currently recommended. PMID:25458618

  9. Reactive oxygen species: players in the cardiovascular effects of testosterone.

    PubMed

    Tostes, Rita C; Carneiro, Fernando S; Carvalho, Maria Helena C; Reckelhoff, Jane F

    2016-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238

  10. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases

    PubMed Central

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475