Science.gov

Sample records for oxygen-enriched combustion air

  1. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    PubMed

    Fellner, Johann; Cencic, Oliver; Zellinger, Gnter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply. PMID:21382872

  2. REDUCTION OF NOx EMISSION FROM COAL COMBUSTION THROUGH OXYGEN ENRICHMENT

    SciTech Connect

    Western Research Institute

    2006-07-01

    BOC Process Gas Solutions and Western Research Institute (WRI) conducted a pilot-scale test program to evaluate the impact of oxygen enrichment on the emissions characteristics of pulverized coal. The combustion test facility (CTF) at WRI was used to assess the viability of the technique and determine the quantities of oxygen required for NOx reduction from coal fired boiler. In addition to the experimental work, a series of Computational Fluid Dynamics (CFD) simulations were made of the CTF under comparable conditions. A series of oxygen enrichment test was performed using the CTF. In these tests, oxygen was injected into one of the following streams: (1) the primary air (PA), (2) the secondary air (SA), and (3) the combined primary and secondary air. Emission data were collected from all tests, and compared with the corresponding data from the baseline cases. A key test parameter was the burner stoichiometry ratio. A series of CFD simulation models were devised to mimic the initial experiments in which secondary air was enriched with oxygen. The results from these models were compared against the experimental data. Experimental evidence indicated that oxygen enrichment does appear to be able to reduce NOx levels from coal combustion, especially when operated at low over fire air (OFA) levels. The reductions observed however are significantly smaller than that reported by others (7-8% vs. 25-50%), questioning the economic viability of the technique. This technique may find favor with fuels that are difficult to burn or stabilize at high OFA and produce excessive LOI. While CFD simulation appears to predict NO amounts in the correct order of magnitude and the correct trend with staging, it is sensitive to thermal conditions and an accurate thermal prediction is essential. Furthermore, without development, Fluent's fuel-NO model cannot account for a solution sensitive fuel-N distribution between volatiles and char and thus cannot predict the trends seen in the experiment.

  3. Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces

    SciTech Connect

    Arvind Atreya

    2007-02-16

    This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

  4. Utilization of oxygen-enriched air in diesel engines: Fundamental considerations

    SciTech Connect

    Lahiri, D.; Mehta, P.S.; Poola, R.B.; Sekar, R.

    1997-09-01

    Utilization of oxygen-enriched air in diesel engines holds potential for low exhaust smoke and particulate emissions. The majority of the oxygen-enriched-air combustion-related studies so far are experimental in nature, where the observed results are understood on an overall basis. This paper deals with the fundamental considerations associated with the oxygen-enriched air-fuel combustion process to enhance understanding of the concept. The increase in adiabatic flame temperature, the composition of exhaust gases at equilibrium, and also the changes in thermodynamic and transport properties due to oxygen-enrichment of standard intake air are computed. The effects of oxygen-enrichment on fuel evaporation rate, ignition delay, and premixed burnt fraction are also evaluated. Appropriate changes in the ignition delay correlation to reflect the effects of oxygen-enrichment are proposed. The notion of oxygen-enrichment of standard intake air as being akin to leaning of the fuel-air mixture is refuted on the basis of the fundamentally different requirements for the oxygen-enriched combustion process.

  5. Combustion of coal chars in oxygen-enriched atmospheres

    SciTech Connect

    Bejarano, P.A.; Levendis, Y.A.

    2007-07-01

    This work pertains to the high-temperature combustion of pulverized coal chars under oxygen-enriched atmospheres. Single char particles were burned in a drop-tube furnace, electrically-heated to 1300-1500 K, in 21%, 50% and 100% O{sub 2}, in a balance of N{sub 2}. Their luminous combustion histories were observed with two-color ratio pyrometry. A solution of the Planckian ratio-pyrometry equation for temperature was implemented, extending on Wien's approximation. The temperature and time histories for 45-53 {mu}m bituminous chars experienced wide particle-to-particle disparity, and varied depending on oxygen mole fraction and furnace temperature. Average char surface temperatures increased from 1600-1800 K in air, to 2100-2300 K in 50% O-2, to 2300-2400 K in 100% O{sub 2}, at gas temperatures of 1300-1500 K, respectively. Combustion durations decreased from 25-45 ms in air, to 8-17 ms in 50% O{sub 2}, to 6-13 in 100% O{sub 2}. Thus, average particle temperatures increased by up to 45%, whereas burnout times decreased by up to 87% as combustion was progressively enriched in O{sub 2} until 100% was attained. The apparent and intrinsic reactivity of the chars burning at 1500 K gas temperature were found to increase by factors of to 8 and 35, respectively, as the oxygen mole fraction increased by a factor of five, from 21% to 100%.

  6. Kinetics of Coal Char Combustion in Oxygen-Enriched Environment

    NASA Astrophysics Data System (ADS)

    Czakiert, T.; Nowak, W.

    The influence of oxygen-enriched gaseous atmosphere on coal char combustion was studied. Two different coals, i.e. lignite and bituminous coal, were used as a basic fuel and the reacting gases of oxygen & CO2 were used to simulate flue gas recirculation. Moreover, a broad range of in-furnace conditions, i.e. five temperatures of 873, 973, 1073, 1173, 1273K and five oxygen concentrations of 20, 40, 60, 80, 100%vol., was investigated. Thermogravimetric method of measurement was employed to obtain the processing data on fuel conversion rate under foregoing investigated conditions. For further calculations, simplified Shrinking-Core Model was introduced. Finally, fundamental kinetic parameters, i.e. pre-exponential factor, activation energy and reaction order, were established and then on the basis of their values reaction-controlling regime for coal char combustion in oxygen-enriched environment was predicted. The investigations, financially supported by Polish Government, are a part of Framework Project "Supercritical Coal-fired Power Units".

  7. Oxygen-enriched air production for MHD power plants

    NASA Astrophysics Data System (ADS)

    1980-05-01

    An analysis of several of the cryogenic air separation process cycle variations and compression schemes designed to minimize net system power requirements for supplying pressurized, oxygen-enriched air to the combustor of a 2000 MWt (coal input) baseload MHD power plant is presented.

  8. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  9. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    SciTech Connect

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  10. Experimental Research of the Oxygen-Enriched Combustion of Sewage Sludge and Coal in CFB

    NASA Astrophysics Data System (ADS)

    Xin, S. W.; Lu, X. F.; Liu, H. Z.

    Sewage sludge is the by-products of sewage treatment, and it is a fuel of high moisture, high ash and low caloric. Oxygen-enriched combustion technology is one of the new and clean coal combustion technologies that can control pollutant emission, which makes CO2 separation, SO2 treatment become easier, and NOx emission reduced. In this paper, we carried out the experimental research on the advantages of oxygen-enriched combustion and the characteristics of sewage sludge in a CFB incinerator that the diameter of the furnace is 100 mm, It is an important foundation for the industrialized application of the oxygen-enriched combustion of sewage sludge and coal in CFB. Experimental analyzed on the combustion characteristics of three conditions in the oxygen concentration of 21%35%, which were the weight ratio of coal and sludge were 1?1, 1?2 and also the coal was given. Furthermore, the change of gas composition along with the change of oxygen content and the temperature of dense phase region was analyzed. The results showed that the combustion characteristics differ from the different mixing rate between coal and sludge in different oxygen atmosphere, when the fluidized air velocity was 1.56 m/s1.88 m/s, the combustion stability; When the amount of the fuel was constant, as the increase of the oxygen contents in the experimental atmosphere, the total air volume decreased, the furnace temperature increased gradually, the concentration of SO2 and NOx showed increasing trend, which is beneficial to the removal of SO2; The concentration of NOx was increased gradually as temperature of the fluidized bed increased.

  11. Diesel cogeneration plant using oxygen enriched air and emulsified fuels

    SciTech Connect

    Marciniak, T.J.; Cole, R.L.; Sekar, R.R.; Stodolsky, F. ); Eustis, J.N. )

    1990-01-01

    The investigation of oxygen-enriched combustion of alternative fuels in diesel engines at Argonne National Laboratory (ANL) is based on information gathered from two previous Department of Energy programs. The first was the slow-speed diesel engine program which used fuels such as coal-water slurry and coal derived liquid fuels in a slow speed diesel engine. The second was the development of membrane oxygen separation equipment. The results of these programs indicated that using the new membrane oxygen enrichment technology with medium- and high-speed diesel engines would do two things. First, oxygen enrichment could reduce some emissions from stationary diesel engines, particularly smoke, particulates and hydrocarbons while significantly increasing power output. The second, was that it might be possible to use less expensive liquid fuels such as No. 4, No. 6 and residual oil emulsified with water in medium- to high-speed diesel engines. The water would (1) help to eliminate the undesirable increase in nitrogen oxide production when enriched oxygen is used, and (2) by reducing the viscosity of the heavier liquid fuels, make them easier to use in smaller industrial cogeneration applications. This program consists of four steps: preliminary feasibility study, exploratory experiments, system development, and demonstration and commercialization of an industrial cogeneration system. 3 refs., 13 figs.

  12. Utilizing intake-air oxygen-enrichment technology to reduce cold- phase emissions

    SciTech Connect

    Poola, R.B.; Ng, H.K.; Sekar, R.R.; Baudino, J.H.; Colucci, C.P.

    1995-12-31

    Oxygen-enriched combustion is a proven, serious considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engineout and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the US Environmental Protection Agency`s (EPA`s) ``Off-Cycle`` test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen-enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NO{sub x}) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NO, emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (NUR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen-enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NO{sub x}, emissions were much higher than those with the ambient air.

  13. Modeling the effects of late cycle oxygen enrichment on diesel engine combustion and emissions.

    SciTech Connect

    Mather, D. K.; Foster, D. E.; Poola, R. B.; Longman, D. E.; Chanda, A.; Vachon, T. J.

    2002-02-28

    A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NO{sub x} emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NO{sub x} emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NO{sub x} through controlled enhancement of in-cylinder mixing. These studies have shown that this window occurs during the late combustion cycle, from 20 to 60 crank angle degrees after top-dead-center. During this time, the combustion chamber temperatures are sufficiently high that soot oxidation increases in response in increased mixing, but the temperature is low enough that NO{sub x} reactions are quenched. The effect of the oxygen composition of the injected air is studied for the range of compositions between 21% and 30% oxygen by volume. This is the range of oxygen enrichment that is practical to produce from an air separation membrane. Simulations showed that this level of oxygen enrichment is insufficient to provide an additional benefit by either increasing the level of soot oxidation or prolonging the window of opportunity for increasing soot oxidation through enhanced mixing.

  14. Demonstration of oxygen-enriched combustion system on a light-duty vehicle to reduce cold-start emissions

    SciTech Connect

    Sekar, R.; Poola, R.B.

    1997-08-01

    The oxygen content in the ambient air drawn by combustion engines can be increased by polymer membranes. The authors have previously demonstrated that 23 to 25% (concentration by volume) oxygen-enriched intake air can reduce hydrocarbons (HC), carbon monoxide (CO), air toxics, and ozone-forming potential (OFP) from flexible-fueled vehicles (FFVs) that use gasoline or M85. When oxygen-enriched air was used only during the initial start-up and warm-up periods, the emission levels of all three regulated pollutants [CO, nonmethane hydrocarbons (NMHC), and NO{sub x}] were lower than the U.S. EPA Tier II (year 2004) standards (without adjusting for catalyst deterioration factors). In the present work, an air separation membrane module was installed on the intake of a 2.5-L FFV and tested at idle and free acceleration to demonstrate the oxygen-enrichment concept for initial start-up and warm-up periods. A bench-scale, test set-up was developed to evaluate the air separation membrane characteristics for engine applications. On the basis of prototype bench tests and from vehicle tests, the additional power requirements and module size for operation of the membrane during the initial period of the cold-phase, FTP-75 cycle were evaluated. A prototype membrane module (27 in. long, 3 in. in diameter) supplying about 23% oxygen-enriched air in the engine intake only during the initial start-up and warm-up periods of a 2.5-L FFV requires additional power (blower) of less than one horsepower. With advances in air separation membranes to develop compact modules, oxygen enrichment of combustion air has the potential of becoming a more practical technique for controlling exhaust emissions from light-duty vehicles.

  15. Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.

    1997-01-01

    An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

  16. Experimental study on improving cement quality with oxygen- enriched combustion technology

    NASA Astrophysics Data System (ADS)

    Liu, Y. Q.; Zhang, A. M.; Qing, S.; Li, F. S.; Yang, S. P.; Yang, Z. F.

    2015-12-01

    With the intensification of the global energy crisis, the production cost of enterprises is continuously increasing because of the rising fuel prices and high requirements for environmental protection. As result, energy savings and environmental protection are vital considerations for a variety of enterprises. As a practical energy-saving technology, oxygen- enriched combustion has played a major role in energy saving and emissions reduction as its application in industrial furnaces has been popularized in recent years. This experiment was conducted in a cement rotary kiln with a capacity of 4000 t/d in a factory in China. Based on measured data in the oxygen-enriched combustion experiment, we determined the patterns of variation in the main parameters of the cement rotary kiln under oxygen-enriched production conditions. The results provide important theoretical and practical base for the cement building materials industry in energy saving and emissions reduction.

  17. The balance model of oxygen enrichment of atmospheric air

    NASA Astrophysics Data System (ADS)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted as 1, annually from 60 to 100 % of the plant litter could arrive to the soil; coefficients of humification of both plant litter and DOM were 0.1 (10 %); DOM is formed as a result of hydrolytic destruction of plant litter, newly formed humic substances (HS) and humus; coefficient of possible absorption of DOM by plants - 0.1 (10 %); it was considered that all organic compounds affiliated into DOM had positive physiological effect on green plants; it was accepted that 1 % DOM absorbed by plants increases phytomass on 10 % (for example, at the expense of photosynthesis acceleration); Eh value was changed from 300 to 800 mV; depending on Eh (i) the coefficient of plant litter oxidation was in the range from 0.75 (75 %) to 0.8 (90 %), coefficient of oxidation of DOM and newly formed HS - from 0.85 (85 %) to 0.9 (90 %), and coefficient of humus oxidation from 0 (0 %) to 0.05 (5 %), and (ii) coefficient of hydrolytic destruction of plant litter and newly formed HS was in the range from 0.12 (12 %) to 0.07 (7 %), and coefficient of humus hydrolytic destruction from 0,05 (5 %) to 0 (0 %), accordingly; all dependences were quasilinear. The following conclusions have been made based on the modeling: (i) both phytomass and oxygen content in atmospheric air were increased with increase of DOM part absorbed by green vascular plants; (ii) the abundance of humus was increased with increase of DOM consumption by green plant (on 5 % at all Eh values) too; (iii) the increase of Eh with 300 to 800 mV led to reduction of oxygen in atmospheric air and to quadruple decrease of the abundance of humus.

  18. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  19. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: a pilot plant experiment.

    PubMed

    Chin, Sungmin; Jurng, Jongsoo; Lee, Jae-Heon; Hur, Jin-Huek

    2008-12-01

    Pilot-plant experiments were performed to evaluate the effect of oxygen enrichment on the co-incineration of MSW and organic sludge from a wastewater treatment facility. Combustion chamber temperatures, stack gas concentrations, i.e., CO(2) and CO, and the residual oxygen were measured. The maximum ratio of organic sludge waste to total waste input was 30 wt.%. Oxygen-enriched air, 22 vol.% (dry basis) oxygen, was used for stable combustion. As the co-incineration ratio of the sludge increased, the primary and secondary combustion chamber temperatures were decreased to 900 and 750 degrees C, respectively, approximately 100 degrees C below the proper incineration. However, if the supplied air was enriched with 22 vol.% (dry basis) oxygen content, the incinerator temperature was high enough to burn the waste mixture containing 30 wt.% moisture sludge, with an estimated heating value of 6.72 MJ/kg. There are two main benefits of using oxygen enrichment in the co-incineration. First, the sensible heat can be reduced as the quantity of nitrogen in the flue gas will be decreased. Second, the unburned carbon formation is reduced due to the oxygen-enriched burning of the waste, despite an increase in the sludge co-incineration ratio. PMID:18325752

  20. The combustion kinetics of coal chars in oxygen-enriched environments.

    SciTech Connect

    Shaddix, Christopher R.; Murphy, Jeffrey J.

    2004-09-01

    Oxygen-enhanced and oxygen-fired pulverized coal combustion is actively being investigated to achieve emission reductions and reductions in flue gas cleanup costs, as well as for coal-bed methane and enhanced oil recovery applications. To fully understand the results of pilot scale tests and to accurately predict scale-up performance through CFD modeling, accurate rate expressions are needed to describe coal char combustion under these unconventional combustion conditions. In the work reported here, the combustion rates of two pulverized coal chars have been measured in both conventional and oxygen-enriched atmospheres. A combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometry diagnostic and a rapid-quench sampling probe has been used for this investigation. Highvale subbituminous coal and a high-volatile eastern United States bituminous coal have been investigated, over oxygen concentrations ranging from 6 to 36 mol% and gas temperatures of 1320-1800 K. The results from these experiments demonstrate that pulverized coal char particles burn under increasing kinetic control in elevated oxygen environments, despite their higher burning rates in these environments. Empirical fits to the data have been successfully performed over the entire range of oxygen concentrations using a single-film oxidation model. Both a simple nth-order Arrhenius expression and an nth-order Langmuir-Hinshelwood kinetic equation provide good fits to the data. Local fits of the nth-order Arrhenius expression to the oxygen-enriched and oxygen-depleted data produce lower residuals in comparison to fits of the entire dataset. These fits demonstrate that the apparent reaction order varies from 0.1 under near-diffusion-limit oxygen-depleted conditions to 0.5 under oxygen-enriched conditions. Burnout predictions show good agreement with measurements. Predicted char particle temperatures tend to be low for combustion in oxygen-depleted environments.

  1. Demonstration of oxygen-enriched air staging at Owens-Brockway glass containers. Quarterly technical progress report for the period August 1, 1996--October 31, 1996

    SciTech Connect

    Rue, D.; Abbasi, H.

    1997-03-01

    The objective of the program is to demonstrate the use of a previously developed combustion modification technology to reduce NO, emissions from sideport regenerative container glass melters. This technology, known as oxygen-enriched air staging (OEAS), has been demonstrated, and is now being commercialized for endport container glass furnaces. This report focuses on full furnace parametric and long-term testing.

  2. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  3. Nonluminous diffusion flame of diluted acetylene in oxygen-enriched air

    SciTech Connect

    Sugiyama, G.

    1994-12-31

    A soot-reducing mechanism of fuel dilution and oxygen enrichment in laminar diffusion flames is suggested. Analysis using the Burke-Schumann theory for the shape of over ventilated diffusion flames has shown that there is a critical ratio of stoichiometric coefficients of the fuel and the oxidizer under which the gas flows from the fuel side to the oxidizer side throughout the flame. When this condition is satisfied, the soot growth region vanishes. A similar result is also found in a numerical simulation for diffusion flames that do not satisfy the Burke-Schumann assumption of uniform flow field. KIVA code is used for that purpose. The theoretically predicted direction of gas-flow across the flame sheet is verified in an experiment in a coaxial-flow diffusion flame. Soot cloud and velocity fields are visualized through a laser sheet method in the experiment. The fuel is a mixture of acetylene and nitrogen. The oxidizer is a mixture of oxygen and nitrogen. The compositions of the reactants are controlled so that the adiabatic flame temperature is kept constant to avoid the effect of temperature change. Experimental results show substantial reduction of scattered light intensity by fuel dilution and oxygen enrichment. When a sufficient amount of nitrogen is added to the fuel, nonluminous blue flames are obtained. At higher oxygen concentrations, blue flames are obtained at higher flame temperature region. When oxygen concentration in the oxidizer is 70 vol.%, blue flames are obtained up to 2,250 K. The critical condition of the reactants for nonluminous flames agrees with the theoretical prediction when the oxidizer is ordinary air. In oxygen-enriched conditions, the fuel must be diluted more, than theoretically predicted.

  4. Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air

    NASA Astrophysics Data System (ADS)

    He, Li; Li, Dan; Wang, Kun; Suresh, Akkihebbal K.; Bellare, Jayesh; Sridhar, Tam; Wang, Huanting

    2011-12-01

    Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50°C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications.

  5. Laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target.

    PubMed

    Li, Xiaohui; Yu, Xin; Fan, Rongwei; Yu, Yang; Liu, Chang; Chen, Deying

    2014-01-01

    We report the laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target. The minimum laser pulse energy (MPE) of the ablation ignition was obtained as 2-4 mJ, which was reduced by one order of magnitude compared with that of the direct laser-induced gas breakdown ignition. The ignition time of the ablation ignition was investigated for the first time, to our best knowledge, by measuring the emission signal profiles due to the successfully ignited flames, and an ignition time as short as ~50 μs was obtained. The reduction in MPE will promote the miniaturization and, thus, the practical applications of laser ignition systems. PMID:24365842

  6. Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air

    PubMed Central

    2011-01-01

    Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications. PMID:22209012

  7. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF

    NASA Astrophysics Data System (ADS)

    Kser, J.; Becker, L. G.; Vorobiev, N.; Schiemann, M.; Scherer, V.; Bhm, B.; Dreizler, A.

    2015-10-01

    This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90-125 m and a significant amount of volatiles (36 wt%) were injected along the burner's centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 m from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.

  8. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF

    NASA Astrophysics Data System (ADS)

    Köser, J.; Becker, L. G.; Vorobiev, N.; Schiemann, M.; Scherer, V.; Böhm, B.; Dreizler, A.

    2015-12-01

    This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90-125 µm and a significant amount of volatiles (36 wt%) were injected along the burner's centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.

  9. Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion

    SciTech Connect

    Jianzhong Lou; Shamsuddin Ilias

    2010-12-31

    North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

  10. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    SciTech Connect

    Ng, H.K.; Sekar, R.R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO{sub x} emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO{sub x} emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO{sub x} emissions could meet the 2004 Tier II emissions standards with 25%-oxygen-content air.

  11. OXYGEN-ENRICHED COAL COMBUSTION WITH CARBON DIOXIDE RECYCLE AND RECOVERY: SIMULATION AND EXPERIMENTAL STUDY

    SciTech Connect

    John M. Veranth; Gautham Krishnamoorthy

    2001-04-01

    This report examines coal combustion using oxygen feed with carbon dioxide recycle to control the adiabatic flame temperature. Computer simulations using an existing state-of-the-art 3-dimensional computer code for turbulent reacting flows with reacting particles were employed to study the effects of increased carbon dioxide mole fraction on the char burnout, radiant heat transfer, metal partitioning, and NOx formation.

  12. Carbon dioxide remediation via oxygen-enriched combustion using dense ceramic membranes

    DOEpatents

    Balachandran, Uthamalingam (Hinsdale, IL); Bose, Arun C. (Pittsburgh, PA); McIlvried, Howard G. (Pittsburgh, PA)

    2001-01-01

    A method of combusting pulverized coal by mixing the pulverized coal and an oxidant gas to provide a pulverized coal-oxidant gas mixture and contacting the pulverized coal-oxidant gas mixture with a flame sufficiently hot to combust the mixture. An oxygen-containing gas is passed in contact with a dense ceramic membrane of metal oxide material having electron conductivity and oxygen ion conductivity that is gas-impervious until the oxygen concentration on one side of the membrane is not less than about 30% by volume. An oxidant gas with an oxygen concentration of not less than about 30% by volume and a CO.sub.2 concentration of not less than about 30% by volume and pulverized coal is contacted with a flame sufficiently hot to combust the mixture to produce heat and a flue gas. One dense ceramic membrane disclosed is selected from the group consisting of materials having formulae SrCo.sub.0.8 Fe.sub.0.2 O.sub.x, SrCo.sub.0.5 FeO.sub.x and La.sub.0.2 Sr.sub.0.8 Co.sub.0.4 Fe.sub.0.6 O.sub.x.

  13. Demonstration of oxygen-enriched air staging at Owens-Brockway glass containers. Quarterly technical progress report, November 1, 1996--January 31, 1997

    SciTech Connect

    Rue, D.; Abbasi, H.

    1997-03-01

    The objective of the program is to demonstrate the use of a previously developed combustion modification technology to reduce NO, emissions from sideport regenerative container glass melters. This technology, known as oxygen-enriched air staging (OEAS), has been demonstrated, and is now being commercialized, for endport container glass furnaces. A 17-month development program has been established with specific objectives to: (1) acquire baseline operating data on the host sideport furnace in Vernon, California, (2) evaluate secondary oxidant injection strategies based on earlier endport furnace results and through modeling of a single port pair, (3) retrofit and test one port pair (the test furnace has six port pairs) with a flexible OEAS system, and select the optimal system configuration, (4) use the results from tests with one port pair to design, retrofit, and test OEAS on the entire furnace (six port pairs), and (5) analyze test results, prepare report, and finalize the business plan to commercialize OEAS for sideport furnaces. The host furnace for testing in this program is an Owens-Brockway 6-port pair sideport furnace in Vernon, California producing 325-ton/d of amber container glass. The baseline NO{sub x} level of this optimized furnace is about 4.0 lb/ton of glass. An anticipated NO{sub x}, reduction of 50% will lower the NO{sub x} production level to below 2 lb/ton. Secondary oxidant staging techniques being considered include oxygen-enriched ambient air staging (OEAS) and oxygen staging (OS).

  14. Demonstration of oxygen-enriched air staging at Owens-Brockway Glass Containers. Technical progress report, August 1, 1995--July 31, 1996

    SciTech Connect

    Rue, D.; Abbasi, H.

    1996-11-01

    The objective of the program is to demonstrate the use of a previously developed combustion modification technology to reduce NO, emissions from sideport regenerative container glass melters. This technology, known as oxygen-enriched air staging (OEAS), has been demonstrated, and is now being commercialized, for endport container glass furnaces. A 17-month development program has been established with specific objectives to: (1) acquire baseline operating data on the host sideport furnace in Vernon, California, (2) evaluate secondary oxidant injection strategies based on earlier endport furnace results and through modeling of a single port pair, (3) retrofit and test one port pair (the test furnace has six port pairs) with a flexible OEAS system, and select the optimal system configuration, (4) use the results from tests with one port pair to design, retrofit, and test OEAS on the entire furnace (six port pairs), and (5) analyze test results, prepare report, and finalize the business plan to commercialize OEAS for sideport furnaces. The host furnace for testing in this program is an Owens-Brockway 6-port pair sideport furnace in Vernon, California producing 325-ton/d of amber container glass. The baseline NO{sub x} level of this optimized furnace is about 4.0 lb/ton of glass. An anticipated NO{sub x}, reduction of 50% will lower the NO{sub x} production level to below 2 lb/ton. Secondary oxidant staging techniques being considered include oxygen-enriched ambient air staging (OEAS) and oxygen staging (OS).

  15. OXYGEN-ENRICHED COAL COMBUSTION WITH CARBON DIOXIDE RECYCLE AND RECOVERY: SIMULATION AND EXPERIMENTAL STUDY

    SciTech Connect

    John M. Veranth; Gautham Krishnamoorthy

    2002-01-01

    An accurate estimation of the CO/CO{sub 2} ratio at the surface of an ash inclusion in coal during combustion is necessary to predict the equilibrium partial pressure of volatile reduced metal species inside the burning particle and the rate of vaporization of metal oxides. Assumptions that have been made previously for the CO/CO{sub 2} ratio at the surface of mineral inclusions are compared to those obtained from a steady state detailed kinetics code for a single porous particle (SKIPPY). The detailed kinetic simulations from SKIPPY for varying particle sizes and bulk gas compositions were used to develop algebraic expressions for the CO/CO{sub 2} ratio that can be incorporated into metal vaporization sub-models run as a post processor to detailed furnace simulations.

  16. OXYGEN-ENRICHED COAL COMBUSTION WITH CARBON DIOXIDE RECYCLE AND RECOVERY: SIMULATION AND EXPERIMENTAL STUDY

    SciTech Connect

    John M. Veranth; Gautham Krishnamoorthy

    2002-02-28

    Two computational problems were worked on for this study. The first chapter examines the option of coal combustion using oxygen feed with carbon dioxide recycle to control the adiabatic flame temperature. Computer simulations using an existing state-of-the-art 3-dimensional computer code for turbulent reacting flows with reacting particles were employed to study the effects of increased carbon dioxide mole fraction on the char burnout, radiant heat transfer, metal partitioning, and NOx formation. The second chapter compares assumptions for the CO/CO{sub 2} ratio at the surface of mineral inclusions made in previous studies to predictions obtained from a pseudo-steady state kinetic model (SKIPPY) for a single porous particle. The detailed kinetic simulations from SKIPPY for varying particle sizes and bulk gas compositions were used to develop algebraic expressions for the CO/CO{sub 2} ratio that can be incorporated into metal vaporization sub-models run as a post processor to detailed furnace simulations. Vaporization rate controls the formation of metal-enriched sub-micron particles in pulverized coal fired power plants.

  17. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply.

    PubMed

    Davis, Reeta; Duane, Gearoid; Kenny, Shane T; Cerrone, Federico; Guzik, Maciej W; Babu, Ramesh P; Casey, Eoin; O'Connor, Kevin E

    2015-04-01

    High Cell Density (HCD) cultivation of bacteria is essential for the majority of industrial processes to achieve high volumetric productivity (g?L(-1) h(-1) ) of a bioproduct of interest. This study developed a fed batch bioprocess using glucose as sole carbon and energy source for the HCD of the well described biocatalyst Pseudomonas putida KT2440 without the supply of oxygen enriched air. Growth kinetics data from batch fermentations were used for building a bioprocess model and designing feeding strategies. An exponential followed by linearly increasing feeding strategy of glucose was found to be effective in maintaining biomass productivity while also delaying the onset of dissolved oxygen (supplied via compressed air) limitation. A final cell dry weight (CDW) of 102?g?L(-1) was achieved in 33?h with a biomass productivity of 3.1?g?L(-1) h(-1) which are the highest ever reported values for P. putida strains using glucose without the supply of pure oxygen or oxygen enriched air. The usefulness of the biomass as a biocatalyst was demonstrated through the production of the biodegradable polymer polyhydroxyalkanoate (PHA). When nonanoic acid (NA) was supplied to the glucose grown cells of P. putida KT2440, it accumulated 32% of CDW as PHA in 11?h (2.85?g?L(-1) h(-1) ) resulting in a total of 0.56?kg of PHA in 18?L with a yield of 0.56?g PHA g NA(-1) . PMID:25311981

  18. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

  19. Efficiency evaluation of oxygen enrichment in energy conversion processes

    SciTech Connect

    Bomelburg, H.J.

    1983-12-01

    The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

  20. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  1. How to cope with your sulfur problems. [COPE process; use of oxygen enriched air to increase capacity

    SciTech Connect

    Goar, B.G.; Hegarty, W.P.; Thew, T.W.

    1986-01-01

    COPE (Claus Oxygen-based Process Expansion) technology presents an improvement to the modified Claus process that replaces air with up to 100% oxygen to debottleneck Claus Sulphur Recovery Unit's (SRU's). The major equipment requirements of the COPE process are the installation of an acid gas recycle blower and a proprietary burner. The recycle stream acts as a coolant to moderate reaction furnace temperature, effectively replacing nitrogen as a diluent. The specially designed burner allows for the safe and effective handling of the four feed streams: air, oxygen, acid gas, and recycle gas. Co-licensed by Goar, Arrington and Associates, Inc. (GAA) and Air Products and Chemicals, Inc., the COPE process presents an economically attractive means of expanding the capacity of an SRU. The first two COPE units are in commercial operation at a major gulf Coast refinery in the USA and have demonstrated an 85% increase in capacity by enriching to the 55% O/sub 2/ level.

  2. Temperature moderation with water of an oxygen enriched Claus sulfur plant

    SciTech Connect

    Brian, B.W.

    1989-12-19

    This patent describes an improvement in a process for recovering sulfur from a feed gas stream containing 60-100 mole% hydrogen sulfide wherein the gas stream is partially combusted with oxygen-enriched air in a claus reaction furnace zone, a combustion effluent is cooled with the attendant condensation separation of sulfur in a condensation zone and the remaining effluent stream is further treated. The improvement comprising oxygen enriching the combustion in the range of 32-100 mole% oxygen and introducing a moderating stream of added liquid water into the reaction furnace zone in order to moderate the temperature of the reaction furnace zone in the range of 2400{degrees} to 2800{degrees}F.

  3. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    SciTech Connect

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-02-26

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing.

  4. Waste to energy operability enhancement under waste uncertainty via oxygen enrichment.

    PubMed

    Tsiliyannis, Christos Aristeides

    2014-08-19

    Waste to energy (WTE) performance is evaluated by maximization of electrical energy production and throughput, while maintaining low operational costs and complying with emission limits. Uncertainty in the quantities, composition and heating values of received wastes, pose severe operability problems and impair performance and emissions. The present work demonstrates and quantifies the possibility of improving WTE efficiency under feedstock uncertainty via oxygen enrichment of the combustion air. Acting essentially as a nitrogen depletion mechanism, oxygen enrichment has reverse effects compared to excess air (EA); synergistic use provides extended capabilities for performance improvement, without impairing final emissions, while satisfying capacity constraints. Increased oxygen enrichment is required at higher EA to maintain temperature. Lower charging rates of rich wastes (plastics, paper, etc.) or diminishing heating values, require higher oxygen enrichment or lower EA. The opposite holds for lower charging rates of poor wastes (biodegradables, biosludge, inerts, etc.) or rising heating values. The results establish the possibility of nominal designs to respond to feedstock variations and may be useful for low range excess air operation (low cost) or adiabatic operation (high EA, combustor temperature controlled by large fluegas volumes). The vector formulation facilitates digital coding for applications featuring multiple waste mixture variability. A 700000 tpa WTE facility in Athens, now under public-private-partnership contract tender is investigated. PMID:25036380

  5. Taguchi methods applied to oxygen-enriched diesel engine experiments

    SciTech Connect

    Marr, W.W.; Sekar, R.R.; Cole, R.L.; Marciniak, T.J.; Longman, D.E.

    1992-12-01

    This paper describes a test series conducted on a six-cylinder diesel engine to study the impacts of controlled factors (i.e., oxygen content of the combustion air, water content of the fuel, fuel rate, and fuel-injection timing) on engine emissions using Taguchi methods. Three levels of each factor were used in the tests. Only the main effects of the factors were examined; no attempt was made to analyze the interactions among the factors. It was found that, as in the case of the single-cylinder engine tests, oxygen in the combustion air was very effective in reducing particulate and smoke emissions. Increases in NO{sub x} due to the oxygen enrichment observed in the single-cylinder tests also occurred in the present six-cylinder tests. Water in the emulsified fuel was found to be much less effective in decreasing NO{sub x} emissions for the six-cylinder engine than it was for the single-cylinder engine.

  6. An oxygen enrichment device for lowlanders ascending to high altitude

    PubMed Central

    2013-01-01

    Background When ascending to the high altitude, people living in low altitude areas will suffer from acute mountain sickness. The aim of this study is to test the hypothesis that whether an oxygen concentration membrane can be made and used to construct a new portable oxygen enrichment device for individuals in acute exposure to the high altitude. Methods The membrane was fabricated using vinylsiloxane rubber, polyphenylene oxide hydrogen silicone polymers, chloroplatinic acid and isopropyl alcohol. The membrane was assembled in a frame and the performance was tested in terms of concentration of oxygen, flow rate of oxygen enriched air, pressure ratio across the membrane and ambient temperature. Furthermore, the oxygen concentration device was constructed using the membrane, a DC fan, vacuum pump and gas buffer. A nonrandomized preliminary field test was conducted, in which eight healthy male subjects were flown to Tibet (Lhasa, 3,700m). First, subjects wore the oxygen enrichment device and performed an incremental exercise on cycle ergometer. The test included heart rate (HR), saturation of peripheral oxygen (SpO2) and physical work capacity (PWC). Then, after a rest period of 4hours, the experimental protocol was repeated without oxygen enrichment device. Results The testing showed that the membrane could increase the oxygen concentration by up to 30%. Simulation test indicated that although the performance of the oxygen enrichment device decreased with altitudes, the oxygen concentration could still maintain 28% with flow rate of enriched air 110cm3/s at 5000m. The field test showed that higher SpO2, lower HR, and better PWC (measured by the PWC-170) were observed from all the subjects using oxygen enrichment device compared with non-using (P?oxygen enrichment device would be effective in improving exercise performance when ascending to the high altitude. PMID:24103365

  7. Demonstration of oxygen-enriched air staging at Owens-Brockway glass containers. Final technical report for the period April 1, 1995--February 28, 1997

    SciTech Connect

    Rue, D.; Abbasi, H.

    1997-10-01

    The overall objective of this program was to demonstrate the use of a previously developed combustion modification technology to reduce NO{sub x} emissions from sideport regenerative container glass melters. Specific objectives were to: acquire baseline operating data on the host sideport furnace, evaluate secondary oxidant injection strategies based on earlier endport furnace results and through modeling of a single port pair, retrofit and test one port pair (the test furnace has six port pairs) with a flexible OEAS system, and select the optimal system configuration, use the results from tests with one port pair to design, retrofit, and test OEAS on the entire furnace (six port pairs), and analyze test results, prepare report, and finalize the business plan to commercialize OEAS for sideport furnaces.

  8. Evaluation of oxygen-enrichment system for alternative fuel vehicles

    SciTech Connect

    Poola, R.B.; Sekar, R.R.; Ng, H.K.

    1995-12-01

    This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

  9. Bus application of oxygen-enrichment technology and diesel-electric hybrid systems

    SciTech Connect

    Sekar, R.R.; Marr, W.W.

    1993-10-01

    The amendments to the Clean Air Act (CAA) mandate very strict limits on particulate, smoke, and other emissions from city buses. The use of alternative fuels, such as compressed natural gas (CNG) or methanol, can help transit operators, such as the Chicago Transit Authority (CTA), meet the mandated limits. However, the capital investment needed to convert the fueling infrastructure and buses is large, as is the expense of training personnel. If a {open_quotes}clean diesel{close_quotes} bus can be implemented with the help of oxygen-enrichment technology or a diesel-electric hybrid system, this large investment could be postponed for many years. The Regional Transportation Authority (RTA) initiated this project to evaluate the possibility of applying these technologies to CTA buses. Argonne National Laboratory (ANL) conducted a limited number of engine tests and computer analyses and concluded that both concepts are practical and will help in a {open_quotes}clean diesel{close_quotes} bus that can meet the mandated limits of the CAA amendments. The oxygen enrichment of combustion air depends on the availability of a compact and economical membrane separator. Because the technology for this critical component is still under development, it is recommended that an actual bus demonstration be delayed until prototype membranes are available. The hybrid propulsion system is ready for the demonstration phase, and it is recommended that the CTA and RTA commence planning for a bus demonstration.

  10. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  11. A new test method for the assessment of the arc tracking properties of wire insulation in air, oxygen enriched atmospheres and vacuum

    NASA Technical Reports Server (NTRS)

    Koenig, Dieter

    1994-01-01

    Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.

  12. Fire extinguishment in oxygen enriched atmospheres

    NASA Technical Reports Server (NTRS)

    Robertson, A. F.; Rappaport, M. W.

    1973-01-01

    Current state-of-the-art of fire suppression and extinguishment techniques in oxygen enriched atmosphere is reviewed. Four classes of extinguishment action are considered: cooling, separation of reactants, dilution or removal of fuel, and use of chemically reactive agents. Current practice seems to show preference for very fast acting water spray applications to all interior surfaces of earth-based chambers. In space, reliance has been placed on fire prevention methods through the removal of ignition sources and use of nonflammable materials. Recommendations are made for further work related to fire suppression and extinguishment in oxygen enriched atmospheres, and an extensive bibliography is appended.

  13. Oxygen-enriched coincineration of MSW and sewage sludge: Final report

    SciTech Connect

    1994-01-01

    Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

  14. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  15. Dissolution of oxygen-enriched Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Oskarsson, M.; Ahlberg, E.; Pettersson, K.

    2001-10-01

    When metal is removed from oxidised Zircaloy specimens in order to study the morphology of the oxide at the metal-oxide interface needle-like features are frequently observed. Since similar features are not observed in cross-section TEM examinations it has been questioned whether or not the needles are a result of the dissolution process. In particular it has been proposed that reprecipitation of oxide may take place when the metal is enriched with oxygen. In the present work oxygen-enriched Zircaloy has been dissolved and the resulting structures examined. The results indicate that the needles are in fact artefacts of the specimen preparation procedure. However, there are no significant differences between oxygen-enriched and normal Zircaloy below an oxide layer grown in steam at about 400 C. In view of the differences between the needle structure observed after metal removal with bromine or by electropolishing and removal by HF-HNO 3 pickling solution it is speculated that the needles consist of a hydrous zirconium oxide which is unstable in the pickling solution.

  16. Turbulent Methane-Air Combustion

    NASA Technical Reports Server (NTRS)

    Yaboah, Yaw D.; Njokwe, Anny; James, LaShanda

    1996-01-01

    This study is aimed at enhancing the understanding of turbulent premixed methane-air combustion. Such understanding is essential since: (1) many industries are now pursuing lighter hydrocarbon alternative fuels and the use of premixed flames to reduce pollutant emissions, and (2) the characteristic dimensions and flow rates of most industrial combustors are often large for flows to be turbulent. The specific objectives of the study are: (1) to establish the effects of process variables (e.g., flow rate, fuel/air ratio, chlorinated hydro-carbons, and pressure) on the emissions and flow structure (velocity distribution, streamlines, vorticity and flame shape), and (2) to develop a mechanistic model to explain the observed trends. This includes the acquisition of Dantec FlowMap Particle Image Velocimeter. The design and fabrication of the premixed burner has also been completed. The study is now at the stage of testing of equipment and analytical instruments. The presentation will give details on the tasks completed and on the current and future plans. The project is progressing well and all activities are on schedule. The outlook for the success of the project is bright.

  17. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOEpatents

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, Lawrence E. (East Aurora, NY); Snyder, William J. (Ossining, NY)

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  18. Combustion air can become a problem

    SciTech Connect

    Not Available

    1982-01-01

    Improper air combustion in a well-sealed house can result in an inadequate supply of oxygen and dangerous or fatal carbon monoxide levels. An opening for outside combustion air can prevent ''air starvation'' and if properly located and sized, can save energy by improving the furnace efficiency. This opening will also keep cold outside air from entering when the furnace is not in use, and prevent a blockage when in use, if properly designed. Possible indicators of inadequate combustion air in oil-fueled homes are: chimney smoke is black-colored, fuel smell in house, soot accumulation, popping, banging, or late ignition in the furnace. In natural gas-fueled homes: excessive moisture collecting on windows and walls, frequent headaches, burning feeling in nose and eyes. (JMT)

  19. Air cell for an internal combustion engine

    SciTech Connect

    Fontichiaro, D.; Kabat, D.M.

    1992-05-12

    This patent describes an internal combustion engine having an air cell combustion system. It comprises a cylinder block having at least one bore, with a piston reciprocably housed therein; a cylinder head attached to the cylinder block and defining a primary combustion chamber with the cylinder block and piston; a reservoir for air compressed by the piston, with the reservoir being delimited by: a concentric counterbore in the deck surface of the cylinder block; and by a concentric annular space formed in the cylinder head and communicating with the counterbore; and by a compression seal interposed between the cylinder head and the cylinder block at the outer periphery of the counterbore, with the air cell further comprising passages extending from the reservoir into the combustion chamber.

  20. A simplified method for determining heat of combustion of natural gas

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Chegini, Hoshang; Mall, Gerald H.

    1987-01-01

    A simplified technique for determination of the heat of combustion of natural gas has been developed. It is a variation of the previously developed technique wherein the carrier air, in which the test sample was burnt, was oxygen enriched to adjust the mole fraction of oxygen in the combustion product gases up to that in the carrier air. The new technique eliminates the need for oxygen enrichment of the experimental mixtures and natural gas samples and has been found to predict their heats of combustion to an uncertainty of the order of 1 percent.

  1. A simplified method for determining heat of combustion of natural gas

    NASA Astrophysics Data System (ADS)

    Singh, Jag J.; Chegini, Hoshang; Mall, Gerald H.

    1987-04-01

    A simplified technique for determination of the heat of combustion of natural gas has been developed. It is a variation of the previously developed technique wherein the carrier air, in which the test sample was burnt, was oxygen enriched to adjust the mole fraction of oxygen in the combustion product gases up to that in the carrier air. The new technique eliminates the need for oxygen enrichment of the experimental mixtures and natural gas samples and has been found to predict their heats of combustion to an uncertainty of the order of 1 percent.

  2. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  3. NOX CONTROL BY COMBUSTION MODIFICATION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch has performed research and developed technologies for NOx reduction via combustion modification. Techniques such as low-excess air firing, staged combustion, flue gas recirculation, low NOx bu...

  4. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air...

  5. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air...

  6. Compact Analyzer/Controller For Oxygen-Enrichment System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Singh, Jag J.; Sprinkle, Danny R.

    1990-01-01

    System controls hypersonic air-breathing engine tests. Compact analyzer/controller developed, built, and tested in small-scale wind tunnel prototype of the 8' HTT (High-Temperature Tunnel). Monitors level of oxygen and controls addition of liquid oxygen to enrich atmosphere for combustion. Ensures meaningful ground tests of hypersonic engines in range of speeds from mach 4 to mach 7.

  7. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  8. Recycling of waste heat boiler effluent to an oxygen-enriched claus reaction furnace

    SciTech Connect

    Pendergraft, P.T.; Bond, G.M.

    1988-07-12

    A method of recovering sulfur from a feed gas stream containing hydrogen sulfide combusted with an oxygen-enriched gas in a Claus reaction furnace zone is described, comprising: dividing combustion effluent as it is received directly from a waste heat boiler associated with the Claus reaction furnace zone into a first and a second stream; introducing the first stream into a first condensation zone for cooling, and condensation and removal of sulfur; introducing effluent from the first condensation zone into at least one stage of sulfur formation and recovery in a catalytic Claus reaction zone; introducing the second stream into a second condensation zone for cooling, and condensation and removal of sulfur, wherein the temperature of the effluent of the second condensation zone is less than the temperature of the effluent of the first condensation zone; and introducing effluent from the second condensation zone into the Claus reaction furnace zone to moderate the temperatures therein.

  9. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  10. Air-fuel ratio control system for internal combustion engines

    SciTech Connect

    Kojima, S.; Nishiyama, R.; Wataya, S.

    1988-06-28

    An air-fuel ratio control system is described for internal combustion engines, comprising: an air-fuel ratio sensor mounted in an exhaust pipe of an internal combustion engine and adapted to produce an output indicative of the air-fuel ratio of a mixture supplied to the engine on the basis for the composition of exhaust gases in the exhaust pipe; heating means for heating the air-fuel ratio sensor; a temperature sensor for sensing the temperature of the internal combustion engine; an engine operation sensor adapted to sense whether the engine has been stopped; and control means for allowing, when the engine operation sensor has sensed that the internal combustion engine has been stopped while the engine temperature sensed by the temperature sensor is below a predetermined level, the heating means to operate for a predetermined time after the engine operation sensor has sensed that the internal combustion engine has been stopped.

  11. Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1957-01-01

    Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

  12. AIR EMISSIONS FROM COMBUSTION OF SOLVENT REFINED COAL

    EPA Science Inventory

    The report gives details of a Solvent Refined Coal (SRC) combustion test at Georgia Power Company's Plant Mitchell, March, May, and June 1977. Flue gas samples were collected for modified EPA Level 1 analysis; analytical results are reported. Air emissions from the combustion of ...

  13. 77 FR 33811 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines; Proposed Rule #0;#0;Federal Register / Vol. 77, No... Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion......

  14. Not adiabatic temperature of combustion gas-air mixture

    NASA Astrophysics Data System (ADS)

    Iovleva, O. V.

    2015-06-01

    In the present work was carried out thermodynamic analysis, the purpose of which was to determine the formula for calculating the temperature of combustion gas-air mixture in non-adiabatic conditions.

  15. Air-scavenged two-cycle internal combustion engine

    SciTech Connect

    Poehlman, A.G.

    1986-07-08

    A two-cycle internal combustion engine is described comprising a crankcase including a rotatable crankshaft, a cylinder extending from the crankcase and including a combustion chamber having a head end, an exhaust port in the cylinder communicating with the combustion chamber, a fuel intake port in the cylinder communicating with the combustion chamber, an air intake port in the cylinder communicating with the combustion chamber at a location closer to the exhaust port than the fuel intake port, a piston operably connected to the crankshaft and mounted for reciprocative movement in the cylinder through a compression stroke to cover all of the ports and through an expansion stroke to uncover all of the ports, an air inlet in the crankcase, a fuel inlet in the crankcase, dividing means located interiorly of the crankcase and defining an air crankcase portion which communicates with the crankcase air inlet and with the air intake port and further defining a separate fuel crankcase portion which communicates with the crankcase fuel inlet and with the fuel intake port, means for admitting a fuel-air mixture into the crankcase fuel inlet, and means for admitting air into the crankcase air inlet.

  16. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  17. Air-fuel ratio control system for internal combustion engines

    SciTech Connect

    Kojima, S.; Wataya, S.; Nishiyama, R.

    1988-08-23

    This patent describes an air-fuel ratio control system for internal combustion engines, comprising: an air-fuel ratio sensor mounted in an exhaust pipe of an internal combustion engine and adapted to produce an output indicative of the air-fuel ratio of a mixture supplied to the engine on the basis of the composition of exhaust gases in the exhaust pipe; heating means for heating the air-fuel ratio sensor; an engine operation sensor adapted to sense whether the engine has been stopped; and control means for controlling the heating means such that is operated for a predetermined time after the engine operation sensor has sensed that the internal combustion engine has been stopped.

  18. Fuel-Air Mixing and Combustion in Scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.

    2002-01-01

    Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.

  19. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  20. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  1. EMISIONES AL AIRE DE LA COMBUSTION DE LLANTAS USADAS (SPANISH VERSION)

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  2. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Source Performance Standards for Stationary Internal Combustion Engines'' (77 FR 33812). The June 7, 2012... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal......

  3. COMBUSTION CONTROL OF TRACE ORGANIC AIR POLLUTANTS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is considering the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion pr...

  4. Combustion performance evaluation of air staging of palm oil blends.

    PubMed

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber. PMID:22296110

  5. Indoor air quality environmental information handbook: Combustion sources

    SciTech Connect

    Not Available

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  6. Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions

    NASA Astrophysics Data System (ADS)

    Ruscio, Amanda Deanne

    Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions. The use of biomass as an energy source is another popular strategy to reduce carbon dioxide emissions as they are considered nearly carbon dioxide neutral. If the use of biomass is combined with oxy-fuel combustion, negative net emissions of carbon dioxide are possible. This work examined the particulate emissions from combustion of pulverized biomass residues burning in either conventional or oxy-fuel environments. Combustion of three biomasses (olive residue, corn residue, and torrefied pine sawdust) occurred in a laboratory-scale laminar-flow drop tube furnace (DTF) heated to 1400 K. The O2 mole fraction was increased from 20% to 60% in N2 environments while a range of 30% to 60% O2 mole fractions were used in CO2 environments to represent plausible dry oxy-fuel combustion conditions. Submicron particulate matter (PM1) emission yields of all three fuels were typically lower in O2/CO2 environments than in O2/N2 environments. When the oxygen mole fraction was increased, the PM1 yields typically increased. The mass fractions of submicron particulate matter (PM1/PM18) collected from biomass combustion were higher than those of coal combustion. PM 1 constituted approximately 50 wt% of the collected ash particles in PM18 in each environment, whereas the corresponding submicron emissions from coal constituted approximately 20 wt%. Changing the background gas had little effect on the chemical composition of the PM1 particles. Unlike the submicron particles collected from coal which contained high amounts of silicon and aluminum, high amounts of alkalis (potassium, calcium, and sodium) and chlorine were the major elements observed in PM1 from the biomasses. In addition, phosphorous and sulfur also existed in high amounts in PM1 of corn residue. Super-micron particles (PM1-18) yields exhibited no clear trend when the background gas was changed or when the oxygen mole fraction was increased. The composition of these particles reflected the bulk ash composition of the parent fuels. Olive residue resulted in by far the largest particulate yields, while torrefied pine sawdust had the lowest. The yields of these two biomasses were analogous with the ash contents of the parent fuels. The particulate yields of corn residue, however, were lower than expected when compared to the parent fuel's ash content. This was attributed to the high phosphorous and sulfur contents of this fuel which might have increased its deposition tendencies in the laboratory furnace.

  7. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  8. Fuel-Air Mixing and Combustion in Scramjets. Chapter 6

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

    2006-01-01

    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

  9. Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment

    NASA Astrophysics Data System (ADS)

    1980-04-01

    An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.

  10. Optimization of Microwave Roasting for Dechlorination of CuCl Residue under Oxygen-Enriched Condition

    NASA Astrophysics Data System (ADS)

    Zhanyong, Guo; Shaohua, Ju; Jinhui, Peng; Libo, Zhang; Ting, Lei

    2016-02-01

    The clean utilization of the residue containing chloride, such as zinc oxide dust and CuCl residue, produced from zinc hydrometallurgy is very important for the recycle of valuable metals. In this paper, a new technology for dechlorination of the CuCl residue through thermal treatment with application of microwave and oxygen-enriched air roasting is brought out. And the response surface methodology (RSM) based on five-level, three-variable and central composite design (CCD) was used to optimize the operation parameters for increasing the dechlorination efficiency. The effects of temperature, roasting time and oxygen consumption on the dechlorination efficiency were studied and the optimal process conditions were identified. In addition, X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy were used to characterize the dechlorination process under the optimum condition. The results showed that the experimental data were fitted to a second-order polynomial equation. The optimized process conditions are identified to be a roasting temperature of 451°, heating duration of 114 min and oxygen consumption of 2.4 times the theoretical oxygen demand. A dechlorination efficiency of 96.4% could be achieved at the optimal process conditions.

  11. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... air pollutants for reciprocating internal combustion engines and requesting public comment on one... the limitations on operation of emergency stationary engines to allow emergency engines to operate...

  12. Inhibiting the combustion of air-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Kopylov, S. N.; Gubina, T. V.

    2016-01-01

    The effect propane, methane, and a mixture of 18 vol % C3H6-40 vol % C3H8-42 vol % C4H10 have on the combustion of air-acetylene mixtures is investigated experimentally. The upper concentration limit of flame propagation, maximum explosion pressure, and maximum rate of rise of explosion pressure are determined. It is found that propane and a mixture of 18 vol % C3H6-40 vol % C3H8-42 vol % C4H10 are strong inhibitors of combustion of acetylene in its concentration ranges of 2-8 vol %. The inhibition effect becomes weaker as the acetylene content in the mixture increases. It disappears completely at C2H2 concentrations exceeding 15 vol %. The above experimental findings are explained using the proposed scheme of acetylene oxidation.

  13. Species measurements in a hypersonic, hydrogen-air, combustion wake

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  14. Method and apparatus for igniting a combustible mixture, especially gasoline-air in the combustion chamber of an internal combustion engine

    SciTech Connect

    Herden, W.

    1987-03-31

    In an internal combustion engine, an apparatus is described for igniting a combustible fuel-air mixture within the combustion space of the cylinder of the combustion engine. The engine comprises: a sparkplug having spark electrodes located in the combustion space; ignition spark generating apparatus coupled to the sparkplug; and means to enhance energy output from the sparkplug for ignition during the breakdown phase of sparking of the sparkplug comprising means for sensing air quantity being supplied to the engine and for providing an air quantity signal; means for sensing fuel quantity being supplied to the engine and for providing a fuel quantity signal; and a control unit controlling the number of breakdowns of spark flash-overs across electrodes of the sparkplug as a function of the output representative of the ratio of fuel to air.

  15. Growth behavior of oxide forming on a sputtered oxygen-enriched type 304 stainless steel

    SciTech Connect

    Zhou, L.; Lees, D.G. |; Arnell, R.D.; Johnson, D.; Chew, A.

    1995-06-01

    Type 304 stainless steel was deposited with and without added oxygen and then oxidized at 900 C in 0.1 atm oxygen. The oxidation rate of the oxygen-enriched steel was lower than that of the steel without added oxygen, and the oxide adhesion was better. Line scans on cross-sectioned scale on the oxygen-enriched steel showed that inward oxygen diffusion had occurred; however, this was not shown by any of the line scans on the steel without added oxygen. The diffusion rate of cations through chromia scale was reduced by the oxygen enrichment. A secondary ion mass microscopy study showed that sulfur segregation to the oxide scale occurred during oxidation. The extent of this segregation for the oxygen-enriched steel was much lower than that for the steel without added oxygen. The results are explained in terms of the sulfur effect theory by postulating that impurity sulfur segregated to oxide particles in the oxygen-enriched steel, resulting in a reduced sulfur level in the scale and at the oxide/metal interface.

  16. Experimental investigation on plasma-assisted combustion characteristics of premixed propane/air mixture

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Yu, Jinlu; Zeng, Hao; Jin, Tao

    2015-06-01

    A detailed study on the plasma-assisted combustion (PAC) characteristics of premixed propane/air mixture is presented. The PAC is measured electrically, as well as optically with a multichannel spectrometer. The characteristics are demonstrated by stable combustion temperature and combustion stability limits, and the results are compared with conventional combustion (CC). Stable combustion temperature measurements show that the introduction of PAC into combustion system can increase the stable combustion temperature, and the increment is more notable with an increase of discharge voltage. Besides, the rich and weak limits of combustion stability are both enlarged when plasma is applied into the combustion process and the increase of discharge voltage results in the expansion of combustion stability limits as well. The measurements of temperature head and emission spectrum illustrate that the kinetic enhancement caused by reactive species in plasma is the main enhancement pathway for current combustion system.

  17. RESEARCH AREA -- MUNICIPAL WASTE COMBUSTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...

  18. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. PMID:26894568

  19. Atmospheric pressure fluctuations and oxygen enrichment in waste tanks

    SciTech Connect

    Kurzeja, R.J.; Weber, A.H.

    1993-07-01

    During In-Tank Precipitation (ITP) processing radiolytic decomposition of tetraphenylborate and water can produce benzene and hydrogen, which, given sufficiently high oxygen concentrations, can deflagrate. To prevent accumulations of benzene and hydrogen and avoid deflagration, continuous nitrogen purging is maintained. If the nitrogen purging is interrupted by, for example, a power failure, outside air will begin to seep into the tank through vent holes and cracks. Eventually a flammable mixture of benzene, hydrogen, and oxygen will occur (deflagration). However, this process is slow under steady-state conditions (constant pressure) and mechanisms to increase the exchange rate with the outside atmosphere must be considered. The most important mechanism of this kind is from atmospheric pressure fluctuations in which an increase in atmospheric pressure forces air into the tank which then mixes with the hydrogen-benzene mixture. The subsequent decrease in atmospheric pressure causes venting from the tank of the mixture -- the net effect being an increase in the tank`s oxygen concentration. Thus, enrichment occurs when the atmospheric pressure increases but not when the pressure decreases. Moreover, this natural atmospheric {open_quotes}pumping{close_quotes} is only important if the pressure fluctuations take place on a time scale longer than the characteristic mixing time scale (CMT) of the tank. If pressure fluctuations have a significantly higher frequency than the CMT, outside air will be forced into the tank and then out again before any significant mixing can occur. The CMT is not known for certain, but is estimated to be between 8 and 24 hours. The purpose of this report is to analyze yearly pressure fluctuations for a five year period to determine their statistical properties over 8 and 24-hour periods. The analysis also includes a special breakdown into summer and winter seasons and an analysis of 15-minute data from the SRTC Climatology Site.

  20. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  1. A new approach to oxygen enriched high temperature blast generation

    SciTech Connect

    Queille, P.H.; Macauley, D.

    1996-12-31

    When increasing fuel injection in a blast furnace in order to reduce coke consumption and/or to increase production, the blast furnace operator tries to keep similar raceway conditions, for instance, an equivalent flame temperature. To compensate for the cooling effect due to the higher injection rate, two solutions can be selected or combined: to raise the temperature of the blast and/or to increase the level of oxygen in the blast. Whatever the choice, the Blast Furnace manager will certainly try to reduce the resulting investment and operating costs to a minimum. Air Liquide and Kvaerner Davy are trying to provide a new way to address these needs by offering a new technology for blast heating. A higher blast temperature will not only allow a higher fuel injection at tuyere level, a lower coke consumption, but also a lower oxygen consumption. Air Liquide and Kvaerner Davy are now able to offer a new heat regenerator with major advantages over conventional stoves. This new device can be used as a permanent substitute for a stove, or as a temporary one during repair, or stove improvement. It can also be added to an existing set of stoves to increase the average blast temperature.

  2. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  3. New Compressor Added to Glenn's 450- psig Combustion Air System

    NASA Technical Reports Server (NTRS)

    Swan, Jeffrey A.

    2000-01-01

    In September 1999, the Central Process Systems Engineering Branch and the Maintenance and the Central Process Systems Operations Branch, released for service a new high pressure compressor to supplement the 450-psig Combustion Air System at the NASA Glenn Research Center at Lewis Field. The new compressor, designated C-18, is located in Glenn s Central Air Equipment Building and is remotely operated from the Central Control Building. C-18 can provide 40 pounds per second (pps) of airflow at pressure to our research customers. This capability augments our existing system capacity (compressors C 4 at 38 pps and C-5 at 32 pps), which is generated from Glenn's Engine Research Building. The C-18 compressor was originally part of Glenn's 21-Inch Hypersonic Tunnel, which was transferred from the Jet Propulsion Laboratory to Glenn in the mid-1980's. With the investment of construction of facilities funding, the compressor was modified, new mechanical and electrical support equipment were purchased, and the unit was installed in the basement of the Central Air Equipment Building. After several weeks of checkout and troubleshooting, the new compressor was ready for long-term, reliable operations. With a total of 110 pps in airflow now available, Glenn is well positioned to support the high-pressure air test requirements of our research customers.

  4. A field study of combustion air intake systems for cold climates

    SciTech Connect

    Dale, J.D.; Wilson, D.J.; Ackerman, M.Y.; Fleming, N.P.

    1997-12-31

    An experimental study dealing with the passive supply of combustion air for appliances located in cold climates was carried out over two heating seasons. During that period more than 8,000 hours of hourly air exchange rate data were gathered in two test buildings. The study examined the performance of vents sized and located in accordance with the Uniform Mechanical Code. The study also examined the use of a mechanical system for the supply of combustion air. Passive combustion air supply systems sized according to codes can, on average, supply sufficient outdoor air to meet the combustion and space-conditioning requirements. Airflows of nearly 300% of the design rates were observed under environmental extremes--low temperature and high wind speed. Flow rate reduction through a reduction in vent cross-sectional area was experimentally evaluated. There was a small reduction in average flow rate, but the extremes in flow remained comparable to the full-sized vents, indicating that the problems of oversupply of air during environmental extremes cannot be solved through a reduction in vent area without the danger of inadequate supply when conditions are mild. Mechanical supply of the combustion air using a fan was observed to always supply adequate amounts of air. Proper design of the fan system will ensure that the room is not pressurized by the system but that adequate air will be supplied. The use of a mechanical system for the supply of combustion air means that space-conditioning and combustion air must be necessarily separated.

  5. Effect of air-staging on anthracite combustion and NOx formation

    SciTech Connect

    Weidong Fan; Zhengchun Lin; Youyi Li; Jinguo Kuang; Mingchuan Zhang

    2009-01-15

    Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the more NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.

  6. Intake air meter for an internal combustion engine

    SciTech Connect

    Tada, Y.; Abe, M.

    1989-03-28

    An intake air meter for an internal combustion engine is described, comprising: a Karman vortex shedder disposed in the main air intake passageway of the engine; means for generating and receiving ultrasonic waves and producing a corresponding electrical output signal, the means being disposed on opposite sides of the main air intake passageway downstream of the vortex shedder such that a Karman vortex street which is shed by the shedder will pass therebetween; means for driving the ultrasonic transmitter so as to generate the ultrasonic waves; means for shaping the output signal of the ultrasonic receiver; means for producing an output signal corresponding to the phase difference between a first input signal which is the output signal from the first waveform shaping means and a second input signal; means for removing unwanted frequency components from the output signal of the phase comparator; means for shifting the phase of the output signal from the oscillator means in accordance with the voltage of the output signal from the loop filter means and for providing a phase-shifted output as the second input signal to the phase comparator means; and means for removing a carrier frequency component from the output signal of the phase comparator means.

  7. Multiplex CARS measurements in supersonic H2/air combustion

    NASA Astrophysics Data System (ADS)

    Yang, S.-R.; Zhao, J.-R.; Sung, C.-J.; Yu, G.

    1999-02-01

    and O2 multiplex coherent anti-stokes Raman spectroscopy (CARS) employing a single dye laser has been explored to simultaneously determine the temperature and concentrations of H2 and O2 in a hydrogen-fueled supersonic combustor. Systematic calibrations were performed through a well-characterized H2/air premixed flat-flame burner. In particular, temperature measurement was accomplished using the intensity ratio of the H2 S(5) and S(6) rotational lines, whereas extraction of the H2 and O2 concentrations was obtained from the H2 S(6) and O2 Q-branch, respectively. Details of the calibration procedure and data reduction are discussed. Quantification of the supersonic mixing and combustion characteristics applying the present technique has been demonstrated to be feasible. The associated detection limits as well as possible improvements are also identified.

  8. ROTARY KILN INCINERATION: THE EFFECT OF OXYGEN ENRICHMENT ON FORMATION OF TRANSIENT PUFFS DURING BATCH INTRODUCTION OF HAZARDOUS WASTES

    EPA Science Inventory

    The paper discusses results of experiments on a 73 kW (250,000 Btu/hr) rotary kiln incinerator simulator equipped with a prototype oxygen enrichment burner, to determine the effect of oxygen enrichment on the magnitude and intensity of transient puffs emitted during batch introdu...

  9. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  10. The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1939-01-01

    The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.

  11. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  12. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  13. Longitudinal-mode combustion instabilities in air-breathing engines

    SciTech Connect

    Sterling, J.D.

    1987-01-01

    Self-excitation of low-frequency (100-600 Hz), longitudinal acoustic modes of a rearward-facing step combustor was studied. As in combustion instabilities of air-breathing propulsion systems, the pressure oscillations are excited by a fluctuating heat release from a flame stabilized in a recirculation zone. Flow-visualization results and flame radiation-intensity data reveal that large vortex structures are responsible for this fluctuating heat release. The vortices are shed at frequencies corresponding to longitudinal acoustic modes of the system or to the first subharmonic of one of the modes. A series of parametric studies were performed to determine the dependence of the vortex shedding frequency upon the step height, mean flow speed, and fuel type, and equivalence ratio. It was discovered that the vortex shedding frequency can shift between modes as a result of changes in the chemical reaction time of the reactants or as a result of changes in the mixing process of the cold reactants with the hot products. The mechanism of sustenance of the oscillations during instability was studied for several operating conditions. A one-dimensional linearized acoustic model is used to predict the natural modes of the system and a fluctuating volumetric source is used to model the oscillatory heat release. Finally, a velocity-sensitive volumetric source with a time delay is included as feedback to determine the linear-stability characteristics of the system.

  14. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  15. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  16. Test methods for determining the suitability of metal alloys for use in oxygen-enriched environments

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gunaji, Mohan V.

    1991-01-01

    Materials are more flammable in oxygen rich environments than in air. When the structural elements of a system containing oxygen ignite and burn, the results are often catastrophic, causing loss of equipment and perhaps even human lives. Therefore, selection of the proper metallic and non-metallic materials for use in oxygen systems is extremely important. While test methods for the selection of non-metallic materials have been available for years, test methods for the selection of alloys have not been available until recently. Presented here are several test methods that were developed recently at NASA's White Sands Test Facility (WSTF) to study the ignition and combustion of alloys, including the supersonic and subsonic speed particle impact tests, the frictional heating and coefficient of friction tests, and the promoted combustion test. These test methods are available for commercial use.

  17. Afterburner for combustion of starved-air combustor fuel gas containing suspended solid fuel and fly ash

    SciTech Connect

    Fitch, R.E.; Tucker, G.H.

    1982-06-01

    An afterburner for use as a secondary combustion chamber in a starved-air combustor system to further combust any combustible material in the combustion gas and entrained solid particle material discharge from the combustion chamber of the starved-air combustor system. The afterburner is lined with refractory and includes a diverter plate positioned transversely to the incoming flow of combustion gases. The afterburner is divided into a plurality of reaction zones, each of which has an associated reaction air supply. The diverter plate imparts a cyclonic flow to the combustion gas which is enhanced by air injected in the combustion zones. The temperature of the gas discharged from the afterburner is monitored and the flow of reaction air controlled responsive to changes in discharge gas temperature from a predetermined temperature.

  18. Experimental investigation of wood combustion in a fixed bed with hot air

    SciTech Connect

    Markovic, Miladin Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.

  19. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  20. Burning of CP Titanium (Grade 2) in Oxygen-Enriched Atmospheres

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Jeffers, Nathan; Gallus, Timothy D.

    2012-01-01

    The flammability in oxygen-enriched atmospheres of commercially pure (CP) titanium rods as a function of diameter and test gas pressure was determined. Test samples of varying diameters were ignited at the bottom and burned upward in 70% O2/balance N2 and in 99.5+% O2 at various pressures. The burning rate of each ignited sample was determined by observing the apparent regression rate of the melting interface (RRMI) of the burning samples. The burning rate or RRMI increased with decreasing test sample diameter and with increasing test gas pressure and oxygen concentration

  1. Use of fluidic oscillator to measure fuel-air ratios of combustion gases

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.

    1974-01-01

    A fluidic oscillator was investigated for use in measuring fuel-air ratios in hydrocarbon combustion processes. The oscillator was operated with dry exhaust gas from an experimental combustor burning ASTM A-1 fuel. Tests were conducted with fuel-air ratios between 0.015 and 0.031. Fuel-air ratios determined by oscillator frequency were within 0.001 of the values computed from separate flow measurements of the air and fuel.

  2. Flammability and sensitivity of materials in oxygen-enriched atmospheres; Proceedings of the Fourth International Symposium, Las Cruces, NM, Apr. 11-13, 1989. Volume 4

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (editor); Benz, Frank J. (editor); Stradling, Jack S. (editor)

    1989-01-01

    The present volume discusses the ignition of nonmetallic materials by the impact of high-pressure oxygen, the promoted combustion of nine structural metals in high-pressure gaseous oxygen, the oxygen sensitivity/compatibility ranking of several materials by different test methods, the ignition behavior of silicon greases in oxygen atmospheres, fire spread rates along cylindrical metal rods in high-pressure oxygen, and the design of an ignition-resistant, high pressure/temperature oxygen valve. Also discussed are the promoted ignition of oxygen regulators, the ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen, evolving nonswelling elastomers for high-pressure oxygen environments, the evaluation of systems for oxygen service through the use of the quantitative fault-tree analysis, and oxygen-enriched fires during surgery of the head and neck.

  3. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    NASA Astrophysics Data System (ADS)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air increases the energy release intensity, flame temperature, C2 concentration, and, presumably, NOx production. Our work is the first to consider preheated temperature/low-gravity combustion. The results of our experiments reveal new insights. Where as increasing the temperature of the combustion air reduces the laminar flame width under normal gravity, we find that, in a low-gravity environment, increasing the combustion air temperature causes a significant increase in the flame width.

  4. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  5. Investigation into Oxygen-Enriched Bottom-Blown Stibnite and Direct Reduction

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Luo, Honglin; Qing, Wenqing; Zheng, Yongxing; Yang, Kang; Han, Junwei

    2014-08-01

    The direct oxidation of stibnite (Sb2S3) using a gas mixture of nitrogen-oxygen was investigated in a pilot plant. Steady-state pilot operation of 5 and 10 t/d was normally observed during the pilot test of 100 days, and a cleaning experiment of high-antimony molten slag from oxygen-enriched bottom-blown was tested by direct reduction in a laboratory-scale electric furnace. Autogenous smelting was achieved without adding any other fuel, which guaranteed the feasibility and advantage of oxygen-enriched bottom-blown stibnite. Through analysis and calculation, the sulfur dioxide concentration in offgas was more than 8 pct, which meets the requirement for the preparation of sulfuric acid. In the reduction experiment, the effects of added CaO, the ratio of coal ( ? = actual weight of coal/theoretical weight of coal), and the slag type on the reduction procedure were considered. The residual slag obtained after reduction averaged less than 1 g/ton Au and less than 1 wt pct Sb. The metal phase contained iron less than 3 wt pct, and the recoveries of Au in the metal phase were more than 98 pct. This process shows significant environmental and economic benefits compared with previous processes.

  6. Air intake side secondary air supply system for an internal combustion engine using a linear-type solenoid valve

    SciTech Connect

    Kobayashi, H.; Kakimoto, K.; Tomobe, N.; Otobe, Y.; Yamabe, H.; Hasebe, H.

    1988-03-22

    An air intake side secondary air supply system for an internal combustion engine having an intake air passage with a carburetor and a throttle valve and an exhaust gas passage is described comprising: an air intake side secondary air supply passage leading to the intake air passage downstream from the throttle valve; a solenoid valve disposed in the air intake side secondary air supply passage; first sensor means disposed in the exhaust gas passage for sensing the concentration of an exhaust gas component of the engine and producing a sensor output signal indicative of the concentration; further sensor means for monitoring a plurality of parameters indicative of the operating state of the engine and operative to produce output signals indicative of the magnitude of the parameters; and control means connected to each of the sensor means for effecting feedback control of the air-fuel ratio of the mixture to be supplied to the engine.

  7. Waste combustion as a source of ambient air polybrominated diphenylesters (PBDEs)

    EPA Science Inventory

    The first comprehensive set of U.S. data on PBDE concentrations from waste combustion, with more than 40 BDE congeners reported, was compared to ambient air levels of bromodiphenylethers in the U.S. Concentrations of PBDEs were determined in the raw, pre-air pollution control sys...

  8. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  9. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers

    SciTech Connect

    Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga

    2007-07-01

    High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

  10. Apparatus for controlling the ratio of air to fuel quantity in internal combustion engines

    SciTech Connect

    Walz, L.; Wessel, W.

    1981-12-22

    An apparatus is proposed which serves to control the ratio of air to fuel quantity of the operational mixture to be introduced into the combustion chambers of an internal combustion engine. The actual fuel quantity supplied via an injection apparatus and the actual air quantity supplied via the intake manifold of the engine are measured and processed in a control apparatus into a correction adjusting variable. The apparatus further functions with exhaust recirculation, with the aspirated fresh air quantity being dosed and the remnant filling of the gaseous filling introduced into the combustion chambers of the engine is replaced by recirculated exhaust gas. For the purpose of dosing the fresh air, a symmetrical throttle valve is disposed in the intake manifold, whose position is transferred by means of pneumatic servomotor to a second throttle device, by means of which finally the quantity of the recirculated exhaust gas is determined.

  11. Air intake side secondary air supply system for an internal combustion engine with an improved operation for a large amount of the secondary air

    SciTech Connect

    Hibino, Y.; Fukuzawa, T.; Sato, H.; Asakura, M.

    1987-11-10

    An air intake side secondary air supply system for an internal combustion engine having an intake air passage with a carburetor and an exhaust gas passage is described comprising: a first air intake side secondary air supply passage leading to the intake air passage, downstream of a throttle valve of the carburetor; a second air intake side secondary air supply passage also leading to the intake air passage, downstream of the throttle valve of the carburetor; a first open-close valve disposed in the first air intake side secondary air supply passage; an oxygen concentration sensor disposed in the exhaust passage and producing an output signal; a second open-close valve disposed in the second air intake side secondary air supply passage; and duty control means responsive to the output signal of the oxygen concentration sensor and connected to the first and second open-close valves.

  12. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  13. Emission characteristics of kerosene-air spray combustion with plasma assistance

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Zeng, Hao; Jin, Tao; Chen, Yi; Zhang, Yihan; Liu, Pengfei

    2015-09-01

    A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  14. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  15. Analysis of fuel vaporization, fuel/air mixing, and combustion in lean premixed/prevaporized combustors

    SciTech Connect

    Deur, J.M.; Penko, P.F.; Cline, M.C.

    1995-07-01

    Requirements to reduce pollutant emissions from gas turbines used in aircraft propulsion and ground-based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concepts. This paper describes a series of the LPP combustor analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. Modifications to KIVA-II`s boundary condition and chemistry treatments have been made to meet the needs of the present study. The study examines the relationships between fuel vaporization, fuel/air mixing, and combustion in a generic LPP combustor. Parameters considered include: mixer tube diameter, mixer tube length, mixer tube configuration (straight versus converging/diverging tubes), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases have been run with and without combustion to examine the variations in fuel/air mixing and potential for flashback due to the above parameters. The degree of fuel/air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state.

  16. Numerical Investigation of Hydrogen and Kerosene Combustion in Supersonic Air Streams

    NASA Technical Reports Server (NTRS)

    Taha, A. A.; Tiwari, S. N.; Mohieldin, T. O.

    1999-01-01

    The effect of mixing schemes on the combustion of both gaseous hydrogen and liquid kerosene is investigated. Injecting pilot gaseous hydrogen parallel to the supersonic incoming air tends to maintain the stabilization of the main liquid kerosene, which is normally injected. Also the maximum kerosene equivalence ratio that can maintain stable flame can be increased by increasing the pilot energy level. The wedge flame holding contributes to an increased kerosene combustion efficiency by the generation of shock-jet interaction.

  17. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  18. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    NASA Astrophysics Data System (ADS)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  19. [Experimental investigation on plasma assistant combustion actuator in argon/air].

    PubMed

    Du, Hong-liang; He, Li-ming; Ding, Wei; Zhao, Bing-bing; Wang, Feng

    2012-02-01

    In order to obtain the characteristics of argon/air plasma assistant combustion actuators, experiments of three different actuators with normal, paratactic and meshy electrode configurations were respectively performed in argon/air mixture firstly, the results showed that the shape of electrode has little influence on the discharge characteristics. Then normal electrode was applied to study spectrum and discharge characteristics under the condition of 100% air and 10% argon/90% air. The comparison showed that, though in mixture the law of discharge characteristic was the same as that of pure air, discharge current and emission spectrum were strengthened, and initial discharge voltage reduced from 27 to 24 kV. PMID:22512154

  20. Combustion control of trace organic air pollutants from municipal-waste combustors

    SciTech Connect

    Kilgroe, J.D.

    1989-01-01

    The paper discusses the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion practice (GCP) for controlling trace organics were initially published in June 1987. These recommendations provided key criteria for the design, operation, control, and verification (compliance testing) of three types of combustors: waterwall mass burn, refuse derived fuel, and modular starved air combustors. The paper summarizes the technical considerations on which the initial GCPs were based. It also discusses current activities in revising the initial GCPs and in developing GCPs for other classes of municipal waste combustors. GCP is one of the pollution control options being considered for MWC air pollution standards. Standards which are to apply to new MWC facilities (as well as emission guidelines which are to apply to existing MWC facilities) are to be proposed in November 1989 and promulgated in December 1990.

  1. A comparative assessment of alternative combustion turbine inlet air cooling system

    SciTech Connect

    Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

    1996-02-01

    Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

  2. The adsorption of NO on YSZ(1 1 1) and oxygen-enriched YSZ(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Breedon, M.; Spencer, M. J. S.; Miura, N.

    2014-02-01

    The reaction of NOx gases with yttria-stabilised zirconia (YSZ) surfaces, and in particular the oxygen enriched surfaces, is complex and of importance for gas sensing applications. In this letter the binding energy, vibrational frequencies, density of states, magnetic moments, electron localization, and charge transfer are presented for all stable configurations of NO on YSZ(1 1 1) and oxygen-enriched YSZ + O(1 1 1) surfaces, determined using density functional theory calculations. Complementary ab initio molecular dynamics simulations revealed the adsorption characteristics of NO at 298 and 773 K. Our findings can be used to assist in explaining the reactions of NOx gases that occur on electrochemical gas sensors.

  3. Technology Solutions Case Study: Combustion Safety for Appliances Using Indoor Air

    SciTech Connect

    2014-05-01

    This case study describes how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  4. Turbulent Combustion in Aluminum-air Clouds for Different Scale Explosion Fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen; Balakrishnan, Kaushik; Bell, John; Beckner, Vincent

    2015-06-01

    We have studied turbulent combustion effects in explosions, and proposed heterogeneous continuum models for the turbulent combustion fields. Also we have proposed an induction-time model for the ignition of Al particle clouds, based on Arrhenius fits to the shock tube data of Boiko. Here we explore scaling issues associated with Al particle combustion in such explosions. This is a non-premixed combustion system; the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. For similitude reasons, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of such scales. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime--where the burning rate decays a power law function of time, and a turbulent combustion regime--where the burning rate decays exponentially with time.

  5. Effect of Fuel-air Ratio Concentration in Combustion Zone on Combustion Performance of a 16-inch Ram-jet Engine

    NASA Technical Reports Server (NTRS)

    Dangle, E E; Cervenka, A J; Bahr, D W

    1953-01-01

    The results of fuel-air ratio and temperature surveys made in the flame stabilizing zone of a 16-inch ram-jet combustor indicated that the distribution of combustible mixture immediately downstream of a flame holder should be mechanically controlled if a preferred mixture composition is to be maintained in that zone. A sloping-baffle combustor configuration gave combustion efficiencies of 90 percent or greater over a range of fuel-air ratios from 0.010 to 0.045.

  6. Effect of combustion chamber shape on air flow field in a D. I. diesel engine

    SciTech Connect

    Bertoli, C.; Corcione, F.E.; Police, G.; Valentino, G.

    1987-01-01

    The behaviour of two combustion chambers, a toroidal and a turbulent one, has been compared. The engine performance in terms of imep and exhaust emissions were measured. Laser Doppler Anemometry technique was used to characterize the fluids dynamic aspect of combustion system. The axial asymmetry introduced in combustion chamber shape causes strong differences in the air flow field at the end of compression stroke. The tangential velocity profile is flattened to that obtained with toroidal chamber. Moreover the rms values of tangential velocity measured in turbulent combustion chamber are about three times higher than that measured in the toroidal chamber. At low engine speed the turbulent chamber allows to operate with low NO/sub x/ levels without penalties of smoke emissions and fuel consumption as happens by using conventional toroidal chamber.

  7. Device for admitting exhaust gases and fuel-air mixtures into the cylinders of an internal combustion engine

    SciTech Connect

    Eckert, K.; Britsch, H.; Linder, E.; Muller, K.; Polach, W.

    1984-10-09

    A device is proposed for the supply of operating air-fuel mixtures including exhaust gases to internal combustion engines. Between the opening periods of the inlet valves of an internal combustion engine, precisely dispensed quantities of recirculated exhaust gas are pre-stored in the intake channel directly upstream of the inlet valve whereby a stratification of exhaust gas and fuel-air mixture in the combustion chamber of the engine is obtained.

  8. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  9. Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Lancashire, Richard B.

    1961-01-01

    Thrust losses due to the inability of dissociated combustion gases to recombine in exhaust nozzles are of primary interest for evaluating the performance of hypersonic ramjets. Some results for the expansion of hydrogen-air combustion products are described. Combustion air was preheated up to 33000 R to simulate high-Mach-number flight conditions. Static-temperature measurements using the line reversal method and wall static pressures were used to indicate the state of the gas during expansion. Results indicated substantial departure from the shifting equilibrium curve beginning slightly downstream of the nozzle throat at stagnation pressures of 1.7 and 3.6 atmospheres. The results are compared with an approximate method for determining a freezing point using an overall rate equation for the oxidation of hydrogen.

  10. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  11. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) FORMATION UNDER PYROLYTIC AND STARVED AIR CONDITIONS

    EPA Science Inventory

    A comprehensive program of laboratory studies based on the non-flame mode of thermal decomposition produced much data on PIC (Products of Incomplete Combustion) formation, primarily under pyrolytic and starved air conditions. Most significantly, laboratory results from non-flame ...

  12. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  13. EPA'S STUDY OF THE GENERATION AND CONTROL OF AIR POLLUTANTS FROM THE COMBUSTION OF ORIMULSION

    EPA Science Inventory

    The paper discusses an EPA study of the grneration and control of air pollutants from the combustion of Orimulsion, a high-sulfur liquid petroleum fuel composed of approximately 70% Venezuelan bitumen, 30% water, and trace amounts of surfactant. (NOTE: It is being used as the pri...

  14. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  15. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  16. BATTERY POWERED PM-10 INDOOR AIR SAMPLERS APPLIED TO UNVENTED THIRD WORLD RESIDENTIAL COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses a battery-powered PM-10 indoor air sampler applied to unvented Third World residential combustion sources. (NOTE: Specialized PM-10 sampling systems have been developed and used in support of a joint U.S. EPA/People's Republic of China Institute of Environment...

  17. Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Berry, G.F.

    1990-01-01

    Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

  18. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  19. Internal combustion engine with compressed air collection system

    SciTech Connect

    Brown, P.W.

    1988-08-23

    This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting the storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.

  20. Experimental investigation of wood combustion in a fixed bed with hot air.

    PubMed

    Markovic, Miladin; Bramer, Eddy A; Brem, Gerrit

    2014-01-01

    Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented. PMID:24125795

  1. DNS of H2/Air Combustion using Complex Chemistry

    NASA Astrophysics Data System (ADS)

    Doom, Jeff; Mahesh, Krishnan

    2007-11-01

    Direct numerical simulation (DNS) is used to study reacting, laminar, vortex rings and turbulent diffusion flames. A novel, all--Mach number algorithm developed by Doom et al (J. Comput. Phys. 2007) is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H2 and Air from Mueller at el (Int. J. Chem. Kinet. 1999) and the extended Zel'dovich mechanism was used to account for the formation of NO. Simulations were performed for three dimensional vortex rings where diluted H2 at ambient temperature (300 K) is injected into hot air (1200 K). The effect of Damkohler number and stroke length will be discussed. Simulations of a three dimensional turbulent diffusion flames were performed. Isotropic turbulence is superimposed on an unstrained diffusion flame where diluted H2 at ambient temperature interacts with hot air. Results of the simulation will be discussed.

  2. GASEOUS EMISSIONS FROM EXCESS AIR COMBUSTION OF EXPLOSIVES AND PROPELLANTS

    EPA Science Inventory

    The purpose of this short-term project was to determine the levels of nitric oxide (NO), nitrogen dioxide (NO2), and carbon monoxide (CO) in the off-gases from the open burning of explosives in excess air. The ultimate goal is to reduce the level of NO(x), CO, and particulates em...

  3. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  4. Thermodynamic analysis of a seeded magnetogasdynamic combustion plasma

    NASA Astrophysics Data System (ADS)

    Bose, T. K.

    1986-06-01

    A Faraday type magnetogasdynamic (MGD) seeded combustion gas plasma generated by burning fuel gas in air with up to 50 percent oxygen enrichment in stoichiometric ratio to determine the sources of thermodynamic irreversibility has been studied. For preliminary determination of the adiabatic flame temperature at one bar, five different fuel gases are studied, out of which four are derivatives of coal: water gas, Lurgi gas, Koppers-Totzek gas, producer gas, and methane. As seed, cesium, potassium and sodium in seed to fuel gas mass ratio of 0.01 to 0.03 in appropriate compound form are used and the equilibrium composition is calculated at 1 bar and temperature from 1500 to 3000 K by considering 14 species in the mixture. Subsequently, a Mollier enthalpy-entropy chart is produced for water gas burning with 50 percent oxygen enriched air and one percent potassium seed to fuel gas mass ratio in the above temperature range and in the pressure range of 0.01 to 100 bars. Finally, from the thermodynamic analysis it is shown that the electrical power generation per unit length is more and irreversibility due to the ohmic heating is less if the temperature is high.

  5. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  6. OH(A,X) radicals in microwave plasma-assisted combustion of methane/air

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fuh, Che; Wang, Chuji; Laser Spectroscopy and Plasma Team

    2014-10-01

    A novel microwave plasma-assisted combustion (PAC) system, which consists of a microwave plasma-assisted combustor, a gas flow control manifold, and a set of optical diagnostic systems, was developed as a new test platform to study plasma enhancement of combustion. Using this system, we studied the state-resolved OH(A,X) radicals in the plasma-assisted combustion and ignition of a methane/air mixture. Experimental results identified three reaction zones in the plasma-assisted combustor: the plasma zone, the hybrid plasma-flame zone, and the flame zone. The OH(A) radicals in the three distinct zones were characterized using optical emission spectroscopy (OES). Results showed a surge of OH(A) radicals in the hybrid zone compared to the plasma zone and the flame zone. The OH(X) radicals in the flame zone were measured using cavity ringdown spectroscopy (CRDS), and the absolute number density distribution of OH(X) was quantified in two-dimension. The effect of microwave argon plasma on combustion was studied with two different fuel/oxidizer injection patterns, namely the premixed methane/air injection and the nonpremixed (separate) methane/air injection. Parameters investigated included the flame geometry, the lean flammability limit, the emission spectra, and rotational temperature. State-resolved OH(A,X) radicals in the PAC of both injection patterns were also compared. This work is supported by the National Science Foundation through the Grant No. CBET-1066486.

  7. Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m

    PubMed Central

    Liu, Guohui; Liu, Xiaopeng; Qin, Zhifeng; Gu, Zhao; Wang, Guiyou; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Luo, Yongchang; Xiao, Huajun

    2015-01-01

    Background: This study explores the responses of the cardiovascular system as humans exercise in an oxygen-enriched room at high altitude under various concentrations of CO2. Methods: The study utilized a hypobaric chamber set to the following specifications: 3800 m altitude with 25% O2 and different CO2 concentrations of 0.5% (C1), 3.0% (C2) and 5.0% (C3). Subjects exercised for 3 min three times, separated by 30 min resting periods in the above-mentioned conditions, at sea level (SL) and at 3800 m altitude (HA). The changes of heart rate variability, heart rate and blood pressure were analyzed. Results: Total power (TP) and high frequency power (HF) decreased notably during post-exercise at HA. HF increased prominently earlier the post-exercise period at 3800 m altitude with 25% O2 and 5.0% CO2 (C3), while low frequency power (LF) changed barely in all tests. The ratios of LF/HF were significantly higher during post-exercise in HA, and lower after high intensity exercise in C3. Heart rate and systolic blood pressure increased significantly in HA and C3. Conclusions: Parasympathetic activity dominated in cardiac autonomic modulation, and heart rate and blood pressure increased significantly after high intensity exercise in C3. PMID:26393634

  8. An Elementary Overview of the Selection of Materials for Service in Oxygen-Enriched Environments

    NASA Technical Reports Server (NTRS)

    Davis, Samuel Eddie

    2012-01-01

    The process for selecting materials for use in oxygen or oxygen-enriched environments is one that continues to be investigated by many industries due to the importance to those industries of oxygen systems. There are several excellent resources available to assist oxygen systems design engineers and end-users, with the most comprehensive being ASTM MNL-36, Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation and Maintenance, 2nd Edition. ASTM also makes available several standards for oxygen systems. However, the ASTM publications are extremely detailed, and typically designed for professionals who already possess a working knowledge of oxygen systems. No notable resource exists, whether an ASTM or other organizational publication, which can be used to educate engineers or technicians who have no prior knowledge of the nuances of oxygen system design and safety. This paper will fill the void for information needed by organizations that design or operate oxygen systems. The information in this paper is not new information, but is a concise and easily understood summary of selecting materials for oxygen systems. This paper will serve well as an employee s first introduction to oxygen system materials selection, and probably the employee s first introduction to ASTM.

  9. Oxygen enrichment and its application to life support systems for workers in high-altitude areas

    PubMed Central

    Li, Yongling; Liu, Yingshu

    2014-01-01

    Background: Workers coming from lowland regions are at risk of developing acute mountain sickness (AMS) when working in low oxygen high-altitude areas. Objectives: The aim of this study was to improve the conditions that lead to hypoxia and ensure the safety of the high-altitude workers. We analyzed the influence of low atmospheric pressure on the oxygen enrichment process in high-altitude areas using an engineering method called low-pressure swing adsorption (LPSA). Methods: Fourteen male subjects were screened and divided into three groups by type of oxygen supply system used: (1) oxygen cylinder group; (2) LPSA oxygen dispersal group; and (3) control group. These tests included arterial oxygen saturation (SaO2), pulse rate (PR), breaths per minute (BPM), and blood pressure (BP). Results: The results showed that after supplying oxygen using the LPSA method at the tunnel face, the SaO2 of workers increased; the incidence of acute mountain sickness, PR, and BPM significantly decreased. Conclusions: The LPSA life support system was found to be a simple, convenient, efficient, reliable, and applicable approach to ensure proper working conditions at construction sites in high-altitude areas. PMID:25000108

  10. Evaluation of environmentally acceptable coal combustion technology to increase coal use at CONUS Air Force Base

    SciTech Connect

    Beason, F.L. ); Schilling, R.M.; Thomas, J.F. )

    1991-01-01

    The purpose of this paper is to explain the findings of the investigative phase of the Air Force Coal Utilization Program. The objective of this program is to place the Air Force in compliance with the intent of the Defense Appropriations Act as it relates to using additional coal in Department of Defense (ODD) Continental United States (COINS) facilities. The topics that will be discussed include: (1) the background of the legislation relating to this program and how the Air Force has approached this program. (2) the findings and conclusions of the investigative phase of the program, and (3) the environmentally acceptable combustion technologies that we considered. 4 refs. 3 tabs.

  11. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  12. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  13. Apparatus for controlling the air-fuel quantity ratio in internal combustion engines

    SciTech Connect

    Stumpp, G.

    1981-08-18

    An apparatus is disclosed for controlling the ratio of air to fuel quantity of the operational mixture to be introduced into the combustion chambers of an internal combustion engine which includes an air flow rate meter moving under differential pressure against a constant hydraulic restoring force, which air flow rate meter adjusts a metering cross section in a supply line leading to a fuel injection pump, with the pressure drop at the metering cross section being maintained constant with the aid of a differential pressure valve. The air flow rate meter is part of a known apparatus which controls the fuel component in accordance with the quantity of aspirated air and also controls the component of exhaust gas to be fed back. The hydraulic restoring pressure for the air flow rate meter is drawn via a throttle from the supply side of a supply pump which supplies the injection pump with fuel under an rpm-dependent pressure and with a quantity of fuel intended for flushing and the pressure downstream of the throttle is maintained at a constant value by means of a pressure maintenance valve. The working chambers of the injection pump communicate only with either the injection lines or the fuel supply line controlled by the air flow rate meter, so that the control result is not adulterated by the flushing quantity or by a shutoff quantity. In this manner, the injection pump and the control device can be supplied with fuel and with pressure fluid by means of a single supply pump.

  14. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler

    SciTech Connect

    Changfu You; Xuchang Xu

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

  15. Effect of excess air on second-generation PFB combustion plant performance and economics

    SciTech Connect

    Robertson, A. ); Garland, R. ); Newby, R. ); Rehmat, A. ); Rubow, L. ); Bonk, D. )

    1990-01-01

    This paper presents a conceptual design of a 1.4-MPa (14-atm) coal-fired second-generation pressurized fluidized bed (PFB) combustion plant and identifies the performance and economic changes that result as the excess air and thus gas turbine-to-steam turbine power ratio, is changed. The performance of these plants, another second- generation PFB combustion plant, and a conventional pulverized-coal (PC)-fired plant with wet limestone flue gas desulfurization is compared. Depending upon the conditions selected, the PFB combustion plant can achieve a 45 percent efficiency (based on the higher heating value of the coal used as fuel) and a cost of electricity at least 20 percent lower than that of the conventional PC-fired plant.

  16. Premixed CH4/O2-enriched air combustion: Identification of thermal, chemical and aerodynamic effects

    NASA Astrophysics Data System (ADS)

    Most, J.-M.; Dahikar, S.; Pal, S.; Claverie, A.; Denis, D.; Pillier, L.; de Persis, S.

    2012-11-01

    This work contributes to the evaluation of a new innovative process focused on the reduction of the cost of a post-combustion capture of CO2 in a Carbon Capture and Storage system (CCS). The process based on the separation of dried fumes composed mainly by CO2 and N2 by using membranes, which should lead to a lower energetic separation cost than amines. But the membranes become efficient if the upstream CO2 concentration is higher than 30% at their entrance that requires enriching the oxidizer flow by O2. To maintain the exhaust temperature compatible with materials thermal resistance, the reactants are diluted by a recirculation of a part of the flue gases (like N2/O2/CO2). But, the chemical kinetic, the energetic efficiencies, the radiation transfer, the transport and thermal properties of the flow can be affected by CO2. The objective of this work will be to identify the behaviour of the combustion of premixed CH4/O2-enriched air, both diluted in N2 and CO2 and to determine the combustion parameters. This allows to recover the CH4/air conditions in terms of CO2 concentration in reactants, O2 excess, dilution rate, temperature of the reactants, etc. Experiments are performed on the laminar premixed flame using counterflow burner. To characterize the combustion behaviour, the flammability limits are determined and flame thickness and position are measured from PLIF-OH diagnostic. Further, CHEMKIN simulations are performed to check the validity of the GRI3.0 chemical kinetic mechanism for premixed CH4/air synthetic combustion and identify the leading phenomena.

  17. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines.'' The EPA... Internal Combustion Engines; New Source Performance Standards for Stationary......

  18. ABB`s investigations into air toxic emissions from fossil fuel and MSW combustion

    SciTech Connect

    Wesnor, J.D.

    1994-12-31

    Since passage of the Clean Air Act, Asea Brown Boveri (ABB) has been actively developing a knowledge base on the Title 3 hazardous air pollutants, more commonly called air toxics. As ABB is a multinational company, US operating companies are able to call upon work performed by European counterparts, who have faced similar legislation several years ago. In addition to the design experience and database acquired in Europe, ABB Inc. has been pursuing several other avenues to expand its air toxics knowledge. ABB Combustion Engineering (ABB CE) is presently studying the formation of organic pollutants within the combustion furnace and partitioning of trace metals among the furnace outlet streams. ABB Environmental Systems (ABBES) has reviewed available and near-term control technologies and methods. Also, both ABB CE and ABBES have conducted source sampling and analysis at commercial installations for hazardous air pollutants to determine the emission rates and removal performance of various types of equipment. Several different plants hosted these activities, allowing for variation in fuel type and composition, boiler configuration, and air pollution control equipment. This paper discusses the results of these investigations.

  19. Investigation on combustion characteristics and NO formation of methane with swirling and non-swirling high temperature air

    NASA Astrophysics Data System (ADS)

    Li, Xing; Jia, Li

    2014-10-01

    Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion. Speziale-Sarkar-Gatski (SSG) Reynolds stress model, Eddy-Dissipation Model (EDM), Discrete Ordinates Method (DTM) combined with Weighted-Sum-of-Grey Gases Model (WSGG) were employed for the numerical simulation. Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation. Temperature distribution, NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different. Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air. Furthermore, velocity fields, dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.

  20. Numerical study of shock-induced combustion in methane-air mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Rabinowitz, Martin J.

    1993-01-01

    The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.

  1. Catalytic Combustion of Propane/Air Mixtures on Platinum

    NASA Technical Reports Server (NTRS)

    Bruno, C.; Walsh, P. M.; Santavicca, D. A.; Sinha, N.; Bracco, F. V.; Yaw, Y.

    1983-01-01

    A honeycomb catalyst of platinum (4.2 kg/cu m loading) over cordierite, with gamma-alumina washcoat, a cross section of 2.4 x 2.4 sq cm, a length of 7.6 cm, and a characteristic channel diameter of 1.4 mm is used as a steady flow reactor. Measurements are made with C3H8/air mixtures at 650 to 800 K inlet temperatures, 110 KPa pressure, 10 to 40 m/s inlet velocity, 0.19 to 0.32 equivalence ratios, and approximately 1.5 mole percent water content. The measured quantities are the substrate tempeature at ten axial locations, the exhaust gas temperature, the exhaust concentrations of CO, CO2, O2, and total hydrocarbons, and the pressure drop across the monolith. The measured quantities are compared with those computed with a two-dimensional steady-state model for axial and radial convection and diffusion of mass, momentum, energy and homogeneous (three overall reactions) and heterogeneous (infinitely fast) reactions. It is found that, under the tested conditions, most of the fuel is converted to CO2 and H2O at the surface. Gas-phase reactions tend rapidly to become more important as the temperature and equivalence ratio are increased and the flow velocity is decreased. Surface fuel conversion is much more rapid than fuel diffusion, resulting in diffusion-controlled oxidation.

  2. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  3. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  4. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  5. Flatness-based embedded control of air-fuel ratio in combustion engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    A nonlinear controller is designed for air-fuel ratio control in combustion engines, making use of differential flatness theory and of the Derivative-free nonlinear Kalman Filter. It is proven that the air-fuel ratio system is a differentially flat one and admits dynamic feedback linearization. Using a change of variables that is based on differential flatness theory it is shown that the air-fuel ratio system can be transformed to the linear canonical form, for which the design of a state feedback controller is easier. Moreover, to compensate for modeling uncertainties and external disturbances the Derivative-free nonlinear Kalman Filter is designed as a disturbance observer. The estimation of the perturbations that effect the air-fuel systems enables their compensation through the inclusion of an additional term in the feedback control law. The efficiency of the proposed nonlinear feedback control scheme is tested through simulation experiments.

  6. SEM-EDX study of the crystal structure of the condensed combustion products of the aluminum nanopowder burned in air under the different pressures

    NASA Astrophysics Data System (ADS)

    Popenko, E. M.; Gromov, A. A.; Pautova, Yu. I.; Chaplina, E. A.; Ritzhaupt-Kleissl, H.-J.

    2011-02-01

    The experimental results of combustion of aluminum nanopowder (ANP) in air and AlN crystals formation process were studied. The air pressure during the combustion process significantly affected the crystals growth mechanism. Crystals with the different morphology (whiskers, hexagonal crystals, rods) were found in the condensed combustion products.

  7. Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers

    DOEpatents

    Tuttle, Kenneth L. (Federal Way, WA)

    1980-01-01

    A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

  8. Effect of supplementation of water vapor to the environmental characteristics of the combustion of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Iovleva, O. V.

    2014-11-01

    To improve the efficiency of combustion of fuel gas and air can be used additive steam. The article presents the results of an experimental study of the influence of water vapor on the combustion of propane-butane mixture with air. Combustion mixture produced in a modified Bunsen burner. Studies carried change of steam temperature of 180 to 260 degrees Celsius, and the change of the specific volume steam in the composition of the fuel mixture. Influence steam on combustion was estimated by the change of temperature of heating the quartz tube. It has been established that the increase of the steam temperature and increasing the specific volume of the heated vapor in the composition of the gaseous fuel increases the temperature of combustion.

  9. The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyond

    NASA Astrophysics Data System (ADS)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    Combustion processes have inherent characteristics that lead to the release in the environment of both gaseous and particulate pollutants that have primary and secondary impacts on air quality, human health, and climate. The emissions from the combustion of fossil fuels and biofuels and their atmospheric impacts are reviewed here with attention given to the emissions of the currently regulated pollutant gasses, primary aerosols, and secondary aerosol precursors as well as the emissions of non-regulated pollutants. Fuels ranging from coal, petroleum, liquefied petroleum gas (LPG), natural gas, as well as the biofuels; ethanol, methanol, methyl tertiary-butyl ether (MTBE), ethyl tertiary-butyl ether (ETBE), and biodiesel, are discussed in terms of the known air quality and climate impacts of the currently regulated pollutants. The potential importance of the non-regulated emissions of both gasses and aerosols in air quality issues and climate is also discussed with principal focus on aldehydes and other oxygenated organics, polycyclic aromatic hydrocarbons (PAHs), and nitrated organics. The connection between air quality and climate change is also addressed with attention given to ozone and aerosols as potentially important greenhouse species.

  10. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion. PMID:22439940

  11. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Ouyang, Ziqu; Lu, Qinggang

    2013-06-01

    High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.

  12. Theoretical studies of the ignition and combustion of silane-hydrogen-air mixtures

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1985-01-01

    A chemical kinetic mechanism is proposed for the combustion of silane-hydrogen-oxygen-nitrogen mixtures in the initial temperature range from 800K to 1250K and pressure range from 0.5 to 1.35 atm. The mechanism yields results which are in agreement with published ignition delay times obtained from shock tube experiments. Comparisons between the results obtained using the proposed mechanism and that of an alternative mechanism reveal that the former predicts appreciably shorter ignition delay times, but a flame blowout envelope which is shifted so as to decrease the stable flame region. Over much of the thermodynamic range examined, the mechanism predicts long reaction times. A three step global mechanism is proposed which closely models the ignition phase of SiH4 - H2 - air combustion; however, the reaction phase is less well reproduced by the global model. The necessity for additional experimental data to further assess the proposed models is stressed.

  13. Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery.

    PubMed

    Swarnalatha, S; Ramani, K; Karthi, A Geetha; Sekaran, G

    2006-09-01

    The high concentration of trivalent chromium along with organic/inorganic compounds in tannery sludge causes severe ground water contamination in the case of land disposal and chronic air pollution during incineration. In the present investigation, the sludge was subjected to flow-through column test to evaluate the concentration of leachable organics (tannin, COD and TOC) and heavy metal ions (Cr(3+), Fe(2+)) present in it. The dried sludge was incinerated at 800 degrees C in an incinerator under starved oxygen supply (starved-air combustion) to prevent the conversion of Cr(3+) to Cr(6+). The efficiency of starved air combustion was studied under different loading rates of sludge. The calcined sludge was solidified/stabilized using fly ash and Portland cement/gypsum. The solidified bricks were tested for unconfined compressive strength and heavy metal leaching. Unconfined compressive strength of the blocks was in the range of 83-156 kg/cm(2). The stabilization of chromium (III) in the cement gel matrix was confirmed with scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX). Leachability studies on solidified bricks were carried out to determine the metal fixation and dissolved organic (as COD) concentration in the leachate. PMID:16563614

  14. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  15. Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines

    NASA Astrophysics Data System (ADS)

    MacLeod, C.

    This paper describes some innovative methods for achieving enhanced fuel-air mixing and combustion in Scramjet-like spaceplane engines. A multimodal approach to the problem is discussed; this involves using several concurrent methods of forced mixing. The paper concentrates on Electromagnetic Activation (EMA) and Electrostatic Attraction as suitable techniques for this purpose - although several other potential methods are also discussed. Previously published empirical data is used to draw conclusions about the likely effectiveness of the system and possible engine topologies are outlined.

  16. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  17. Pyrolysis and combustion of tobacco in a cigarette smoking simulator under air and nitrogen atmosphere.

    PubMed

    Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf

    2012-04-01

    A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis. PMID:22392377

  18. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( ?=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  19. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.

    PubMed

    England, G C; McGrath, T P; Gilmer, L; Seebold, J G; Lev-On, M; Hunt, T

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. PMID:11219701

  20. Fuel-air mixing and combustion in a two-dimensional Wankel engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Schock, H. J.; Ramos, J. I.

    1987-01-01

    A two-equation turbulence model, an algebraic grid generalization method, and an approximate factorization time-linearized numerical technique are used to study the effects of mixture stratification at the intake port and gaseous fuel injection on the flow field and fuel-air mixing in a two-dimensional rotary engine model. The fuel distribution in the combustion chamber is found to be a function of the air-fuel mixture fluctuations at the intake port. It is shown that the fuel is advected by the flow field induced by the rotor and is concentrated near the leading apex during the intake stroke, while during compression, the fuel concentration is highest near the trailing apex and is lowest near the rotor. It is also found that the fuel concentration near the trailing apex and rotor is small except at high injection velocities.

  1. Megacity and country emissions from combustion sources-Buenos Aires-Argentina

    NASA Astrophysics Data System (ADS)

    Dawidowski, L.; Gomez, D.; Matranga, M.; D'Angiola, A.; Oreggioni, G.

    2010-12-01

    Historic time series (1970-2006) emissions of greenhouse gases and air pollutants arising from stationary and mobile combustion sources were estimated at national level for Argentina and at regional level for the metropolitan area of Buenos Aires (MABA). All emissions were estimated using a bottom-up approach following the IPCC good practice guidance. For mobile sources, national emissions include all transport categories. Regional emissions account thus far only for on-road. For national emissions, methodologies and guidance by the IPCC were employed, applying the highest possible tier and using: i)country-specific emission factors for carbon and sulphur and technology-based information for other species, ii)activity data from energy balance series (1970-2007), and iii)complementary information concerning the non-energy use of fuels. Regional emissions in 2006 were estimated in-depth using a technology-based approach for the city of Buenos Aires (CBA) and the 24 neighboring districts composing the MABA. A regional emissions factors database was developed to better characterize Latin American fleets and driving conditions employing COPERT III-IV algorithms and emission factors measured in dynamometers and circulating vehicles in Argentina, Brazil, Chile and Colombia. Past emissions were back estimated from 2005 to 1970 using the best available information, which differs greatly among categories, spatial disaggregation and time periods. The time series of stationary and mobile combustion sources at the national and regional level allowed the identification of distinct patterns. National greenhouse gas emissions in 2006 amounted to ~ 150 million ton CO2-equivalent, 70% of which were contributed by stationary sources. On-road transport was the major contributor within mobile sources (28.1 %). The increasing emissions trends are dominated by on-road transport, agriculture and residential categories while the variability is largely associated with energy industries. National emissions of air pollutants were in the order: CO > NOx > HCNM > SO2. The small decrease in CO emissions of ~3% is associated with fuel switching from gasoline to compressed natural gas in road-transport, while the marked increase in SO2 emissions of ~34% can be linked to fuel switching from liquid fuels to natural gas in stationary combustion. With regards to regional emissions, mobile sources constitute the ‘high’ emitter. Our estimates for on-road mobile emissions point out the role of MABA and of the City of Buenos Aires as a concentrated site of pollutant emissions (ton CO km-2, year 2000): 0.7 (country-wise) << 122 (MABA) < 815 (CBA), being traffic the main source of pollutants in urban agglomerations.

  2. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. This work was supported by KAKENHI (22340170).

  3. Plasma-assisted combustion in lean, high-pressure, preheated air-methane mixtures

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy; Herbon, John; Saddoughi, Seyed; Deminsky, Maxim; Potapkin, Boris

    2013-09-01

    We combine a simplified physical model with a detailed plasma-chemical reaction mechanism to analyze the use of plasmas to improve flame stability in a gas turbine used for electric power generation. For this application the combustion occurs in a lean mixture of air and methane at high pressure (18.6 atm) and at ``preheat'' temperature 700 K, and the flame zone is both recirculating and turbulent. The system is modeled as a sequence of reactors: a pulsed uniform plasma (Boltzmann), an afterglow region (plug-flow), a flame region (perfectly-stirred), and a downstream region (plug-flow). The plasma-chemical reaction mechanism includes electron-impact on the feedstock species, relaxation in the afterglow to neutral molecules and radicals, and methane combustion chemistry (GRI-Mech 3.0), with extensions to properly describe low-temperature combustion 700-1000 K [M Deminsky et al., Chem Phys 32, 1 (2013)]. We find that plasma treatment of the incoming air-fuel mixture can improve the stability of lean flames, expressed as a reduction in the adiabatic flame temperature at lean blow-out, but that the plasma also generates oxides of nitrogen at the preheat temperature through the reactions e + N2 --> N + N and N + O2 --> NO + O. We find that flame stability is improved with less undesirable NOx formation when the plasma reduced-electric-field E/ N is smaller. A portion of this work was supported by the US Dept of Energy under Award Number DE-FC26-08NT05868.

  4. Uncertainty for data with non-detects: Air toxic emissions from combustion

    SciTech Connect

    Zhao, Y.C.; Frey, H.C.

    2006-12-15

    Air toxic emission factor datasets often contain one or more points below a single or multiple detection limits and such datasets are referred to as 'censored.' Conventional methods used to deal with censored datasets include removing non-detects, replacing the censored points with zero, half of the detection limit, or the detection limit. However, the estimated means of the censored dataset by conventional methods are usually biased. Maximum likelihood estimation (MLE) and bootstrap simulation have been demonstrated as a statistically robust method to quantify variability and uncertainty of censored datasets and can provide asymptotically unbiased mean estimates. The MLE/bootstrap method is applied to 16 cases of censored air toxic emission factors, including benzene, formaldehyde, benzo(a)pyrene, mercury, arsenic, cadmium, total chromium, chromium VI and lead from coal, fuel oil, and/or wood waste external combustion sources. The proportion of censored values in the emission factor data ranges from 4 to 80%. Key factors that influence the estimated uncertainty in the mean of censored data are sample size and inter-unit variability. The largest range of uncertainty in the mean was obtained for the external coal combustion benzene emission factor, with 95 confidence interval of the mean equal to minus 93 to plus 411%.

  5. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  6. Review of the PDWA Concept for Combustion Enhancement in a Supersonic Air-Breathing Combustor Environment

    NASA Technical Reports Server (NTRS)

    Canbier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This paper reviews the design of the Pulsed Detonation Wave Augmentor (PDWA) concept and the preliminary computational fluid dynamics studies that supported it. The PDWA relies on the rapid generation of detonation waves in a small tube, which are then injected into the supersonic stream of the main combustor. The blast waves thus generated are used to stimulate the mixing and combustion inside the main combustor. The mixing enhancement relies on various forms of the baroclinic interaction, where misaligned pressure and density gradients combine to produce vortical flow. By using unsteady shock waves, the concept also uses the Richtmyer-Meshkov effect to further increase the rate of mixing. By carefully designing the respective configurations of the combustor and the detonation tubes, one can also increase the penetration of the fuel into the supersonic air stream. The unsteady shocks produce lower stagnation pressure losses than steady shocks. Combustion enhancement can also be obtained through the transient shock-heating of the fuel-air interface, and the lowering of the ignition delay in these regions. The numerical simulations identify these processes, and show which configurations give the best results. Engineering considerations are also presented, and discuss the feasibility of the concept. Of primary importance are the enhancements in performance, the design simplicity, the minimization of the power, cost, and weight, and the methods to achieve very rapid cycling.

  7. Microwave plasma jet assisted combustion of premixed methane-air: Roles of OH(A) and OH(X) radicals

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Wu, Wei

    2013-09-01

    Plasma assisted combustion (PAC) technology can enhance combustion performance by pre-heating combustion fuels, shortening ignition delay time, enhancing flame holding, or increasing flame volume and flame speed. PAC can also increase fuel efficiency by extending fuel lean flammability limit (LFL) and help reduce combustion pollutant emissions. Experiment results have shown that microwave plasma could modify flame structure, increase flame volume, flame speed, flame temperature, and flame stability, and could also extend the fuel lean flammability limit. We report on a novel microwave PAC system that allows us to study PAC using complicated yet well-controlled combinations of operating parameters, such as fuel equivalence ratio (?) , fuel mixture flow rate, plasma gas flow rate, plasma gases, plasma jet configurations, symmetric or asymmetric fuel-oxidant injection patterns, etc. We have investigated the roles of the stated-resolved OH(A, X) radicals in plasma assisted ignition and combustion of premixed methane-air fuel mixtures. Results suggest that that both the electronically excited state OH(A) and the electronic ground state OH(X) enhance the methane-air ignition process, i.e. extending the fuel LFL, but the flame stabilization and flame holding is primarily determined by the electronic ground state OH(X) as compared to the role of the OH(A). E-mail: cw175@msstate.edu. Supported by National Science Foundation through the grant of ``A quantitative survey of combustion intermediates toward understanding of plasma-assisted combustion mechanism'' (CBET-1066486).

  8. Influence of Two-Stage Air Injection Conditions on NOx and Unburned Carbon of Sub-Bituminous Coal Combustion

    NASA Astrophysics Data System (ADS)

    Ikeda, Michitaka; Makino, Hisao; Morinaga, Hideki; Higashiyama, Koichi

    Because of large recoverable reserves, sub-bituminous coal is an important energy resources. The disadvantage of sub-bituminous coal is that it contains more than 20% moisture. This makes ignition less efficient. And combustion flame became diffused. Both emissions of NOx and unburned carbon in fly ash become high. We have already shown that these emissions can be reduced by adjusting the air injection conditions from the burner to better suit sub-bituminous coal combustion. However, the reduction is insufficient compared with bituminous coal combustion. In this investigation, influence of two-stage air injection conditions on NOx and unburned carbon concentration in fly ash was studied and the optimum air injection conditions necessary in order to reduce those emissions were clarified.

  9. Calculating the parameters of self-oscillations in the vertical combustion chamber of the blast-furnace air heater during unstable combustion

    NASA Astrophysics Data System (ADS)

    Basok, B. I.; Gotsulenko, V. V.

    2015-01-01

    A procedure for simplified calculation of the parameters of self-oscillations excited during unstable (vibrating) combustion in the vertical combustion chambers of blast-furnace air heaters is developed. The proposed procedure is based on an independent nonlinear dynamic system similar to the equations from the theory of a blade supercharger stalling and surging mode. The head characteristic considered in the blade supercharger stalling and surging theory determines the part of the supercharger drive rotation energy that is converted into the head developed by the supercharger. In the considered system, the supercharger head characteristic is replaced by the combustion chamber head characteristic. Being a function of flow rate, this characteristic describes the part of heat supplied to flow that is converted to the flow head. Unlike the supercharger head characteristic, which is determined by experiment, the combustion chamber head characteristic is determined by calculation, due to which it becomes much easier to calculate the parameters of self-oscillations according to the proposed procedure. In particular, an analysis of the periodic solutions of the obtained dynamic system made it possible to determine the pattern in which the amplitude of considered self-oscillations depends on the surge impedance of the vertical combustion chamber.

  10. Interaction of the burning spherical droplets in oxygen-enriched turbulent environment

    SciTech Connect

    Cho, Chong Pyo; Kim, Ho Young; Yoon, Sam S.

    2009-01-15

    Three-dimensional numerical studies on the interaction of vaporizing and burning droplets were conducted to understand the burning characteristics of multiple droplets in a turbulent environment. The burning droplets characteristics, such as lifetime, surface temperature, vaporization, reaction, and burning rate were examined for various oxygen mole-fractions and geometrical arrangements of droplets. Results from a single droplet combustion test were first verified and validated against existing experimental data. Results indicate that turbulent intensity has a moderate effect on droplet burning rate, but not as prominent an effect as the oxygen mole-fraction. At high oxygen mole-fractions, droplet lifetime was short due to enhanced burning. It is shown that evaporation processes of multiple droplets are notably affected by the inter-space distance between droplets both in streamwise and spanwise directions. The burning rate as a function of oxygen mole-fraction and inter-space distance is determined and can be used as a guideline for future studies on spray combustion. (author)

  11. Promoted Combustion Test Data Re-Examined

    NASA Astrophysics Data System (ADS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-09-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technology has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the burn criterion from 15 cm(6 in.) to 3 cm(1.2 in.). This new burn criterion was adopted for American Society for Testing and Materials(ASTM) G124, Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-burn thresholds of metal alloys will also be presented.

  12. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  13. Effect of air-staging on mercury speciation in pulverized fuel co-combustion: part 2

    SciTech Connect

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff

    2007-08-15

    The concerns regarding global warming and need for new energy resources brought the concept of biomass and waste as secondary fuels to the power industry. Mercury emissions in cases of cofiring of chicken manure, olive residue, and B-wood with a high volatile bituminous coal blend are studied in the first part of this paper. The use of secondary fuels significantly affects NOx emissions due to different types of nitrogen present in the fuel matrix. Air-staging is a proven in-furnace NOx reduction technology. The present work mainly involves bench scale studies to investigate the effect of air-staging on partitioning of mercury in pulverized fuel co-combustion. The combustion experiments are carried out in an entrained flow reactor at 1300{sup o}C with a 20%th share of secondary fuels. Elemental and total gaseous mercury from the reactor is measured on-line, and ash is analyzed for particulate mercury along with elemental and surface properties. Reducing the air stoichiometry in the primary zone of the combustor increases unburnt carbon which in turn reduces mercury emissions in the gas phase. Ash analysis shows the effect of surface area, particle size, and unburnt carbon on mercury capture. Calcium variation in the ash was observed due to formation of different slag in reducing and oxidizing conditions and might have affected the mercury capture in combination with the above parameters. A low iron concentration of ash does not seem to affect the capture of mercury. The results will help in predicting different forms of mercury emitted from the furnace at desired operating conditions which will eventually form the basis for the design of the control strategies for mercury emissions. 22 refs., 3 figs., 1 tab.

  14. Assessment of exposure to indoor air contaminants from combustion sources: methodology and application

    SciTech Connect

    Leaderer, B.P.; Zagraniski, R.T.; Berwick, M.; Stolwijk, J.A.

    1986-08-01

    A methodology for assessing indoor air pollutant exposures is presented, with specific application to unvented combustion by-products. This paper describes the method as applied to a study of acute respiratory illness associated with the use of unvented kerosene space heaters in 333 residences in the New Haven, Connecticut, area from September 1982 to April 1983. The protocol serves as a prototype for a nested design of exposure assessment which could be applied to large-scale field studies of indoor air contaminant levels. Questionnaires, secondary records, and several methods of air monitoring offer a reliable method of estimating environmental exposures for assessing associations with health effects at a reasonable cost. Indoor to outdoor ratios of NO/sub 2/ concentrations were found to be 0.58 +/- 0.31 for residences without known sources of NO/sub 2/. Levels of NO/sub 2/ were found to be comparable for homes with a kerosene heater only and those with a gas cooking stove only. Homes with a kerosene heater and a gas stove had average two-week NO/sub 2/ levels approximately double those with only one source. Presence of tobacco smokers had a small but significant impact on indoor NO/sub 2/ levels. Two-week average levels of indoor NO/sub 2/ were found to be excellent predictors of total personal NO/sub 2/ exposure for a small sample of adults. Residences with kerosene space heaters had SO/sub 2/ levels corresponding to the number of hours of heater use and the sulfur content of the fuel. Formaldehyde levels were found to be low and not related to unvented combustion sources. NO/sub 2/, SO/sub 2/, and CO/sub 2/ levels measured in some of the residences were found to exceed those levels specified in current national health standards.

  15. Assessment of exposure to indoor air contaminants from combustion sources: methodology and application.

    PubMed

    Leaderer, B P; Zagraniski, R T; Berwick, M; Stolwijk, J A

    1986-08-01

    A methodology for assessing indoor air pollutant exposures is presented, with specific application to unvented combustion by-products. This paper describes the method as applied to a study of acute respiratory illness associated with the use of unvented kerosene space heaters in 333 residences in the New Haven, Connecticut, area from September 1982 to April 1983. The protocol serves as a prototype for a nested design of exposure assessment which could be applied to large-scale field studies of indoor air contaminant levels. Questionnaires, secondary records, and several methods of air monitoring offer a reliable method of estimating environmental exposures for assessing associations with health effects at a reasonable cost. Indoor to outdoor ratios of NO2 concentrations were found to be 0.58 +/- 0.31 for residences without known sources of NO2. Levels of NO2 were found to be comparable for homes with a kerosene heater only and those with a gas cooking stove only. Homes with a kerosene heater and a gas stove had average two-week NO2 levels approximately double those with only one source. Presence of tobacco smokers had a small but significant impact on indoor NO2 levels. Two-week average levels of indoor NO2 were found to be excellent predictors of total personal NO2 exposure for a small sample of adults. Residences with kerosene space heaters had SO2 levels corresponding to the number of hours of heater use and the sulfur content of the fuel. Formaldehyde levels were found to be low and not related to unvented combustion sources. NO2, SO2, and CO2 levels measured in some of the residences were found to exceed those levels specified in current national health standards. PMID:3088984

  16. Fuel-air ratio (Lambda) correcting apparatus for a rotor-type carburetor for integral combustion engines

    SciTech Connect

    Diener, R.

    1988-02-23

    This patent describes a fuel-air ratio correcting apparatus in a rotor-type carburetor for internal combustion engines with spark ignition for producing ingestion air with fuel-air ratios within a predetermined range defined by lean and rich limits matched to the requirements of the various operational points of the internal combustion engine. The rotor-type carburetor has a rotating element including a turbine which is driven by a turbine driving airstream which is induced by the engine and which becomes at least a portion of the ingested air stream, the rotating element containing a centrifugal pump for delivering a quantity of fuel which is in a substantially constant ratio to the rotational velocity of the rotating element. The fuel is delivered to a coaxial atomization means on the rotating element for broad-casting atomized fuel into the driving airstream. The centrifugal pump is sized to deliver a quantity of fuel to the driving airstream to establish a fuel-air ratio at one limit of the predetermined range, and means for sensing one or more parameters(s) affecting operation of the internal combustion engine and for selectively varying the volume of at least one of the constituents of the fuel-air mixture ingested by the engine for establishing a predetermined fuel-air ratio variable over the remainder of the range of fuel-air ratios in dependence on one or more measured operating parameter(s) of the internal combustion engine. The rotor-type carburetor has a rotor driven via an impeller by the ingested air stream, the rotor containing a centrifugal pump for delivering via at least one lateral fuel discharge bore a qantity of fuel which is in a constant ratio to the ingested air and which is dimensioned for a lean mixture.

  17. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    SciTech Connect

    Szpunar, C.B.

    1993-08-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

  18. Household Air Pollution Exposures of Pregnant Women Receiving Advanced Combustion Cookstoves in India: Implications for Intervention

    PubMed Central

    Balakrishnan, Kalpana; Sambandam, Sankar; Ghosh, Santu; Mukhopadhyay, Krishnendu; Vaswani, Mayur; Arora, Narendra K.; Jack, Darby; Pillariseti, Ajay; Bates, Michael N.; Smith, Kirk R.

    2016-01-01

    BACKGROUND Household air pollution (HAP) resulting from the use of solid cooking fuels is a leading contributor to the burden of disease in India. Advanced combustion cookstoves that reduce emissions from biomass fuels have been considered potential interventions to reduce this burden. Relatively little effort has been directed, however, to assessing the concentration and exposure changes associated with the introduction of such devices in households. OBJECTIVES The aim of this study was to describe HAP exposure patterns in pregnant women receiving a forced-draft advanced combustion cookstove (Philips model HD 4012) in the SOMAARTH Demographic Development & Environmental Surveillance Site (DDESS) Palwal District, Haryana, India. The monitoring was performed as part of a feasibility study to inform a potential large-scale HAP intervention (Newborn Stove trial) directed at pregnant women and newborns. METHODS This was a paired comparison exercise study with measurements of 24-hour personal exposures and kitchen area concentrations of carbon monoxide (CO) and particulate matter less than 2.5 ?m in aerodynamic diameter (PM2.5), before and after the cookstove intervention. Women (N = 65) were recruited from 4 villages of SOMAARTH DDESS. Measurements were performed between December 2011 and March 2013. Ambient measurements of PM2.5 were also performed throughout the study period. FINDINGS Measurements showed modest improvements in 24-hour average concentrations and exposures for PM2.5 and CO (ranging from 16% to 57%) with the use of the new stoves. Only those for CO showed statistically significant reductions. CONCLUSION Results from the present study did not support the widespread use of this type of stove in this population as a means to reliably provide health-relevant reductions in HAP exposures for pregnant women compared with open biomass cookstoves. The feasibility assessment identified multiple factors related to user requirements and scale of adoption within communities that affect the field efficacy of advanced combustion cookstoves as well as their potential performance in HAP intervention studies. PMID:26615072

  19. Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion

    SciTech Connect

    Jachimowski, C.J.

    1988-02-01

    A chemical kinetic mechanism for the combustion of hydrogen has been assembled and optimized by comparing the observed behavior as determined in shock tube and flame studies with that predicted by the mechanism. The reactions contained in the mechanism reflect the current state of knowledge of the chemistry of the hydrogen/air system, and the assigned rate coefficients are consistent with accepted values. It was determined that the mechanism is capable of satisfactorily reproducing the experimental results for a range of conditions relevant to scramjet combustion. Calculations made with the reaction mechanism for representative scramjet combustor conditions at Mach 8, 16, and 25 showed that chemical kinetic effects can be important and that combustor models which use nonequilibrium chemistry should be used in preference to models that assume equilibrium chemistry. For the conditions examined the results also showed the importance of including the HO/sub 2/ chemistry in the mechanism. For Mach numbers less than 16, the studies suggest that an ignition source will most likely be required to overcome slow ignition chemistry. At Mach 25, the initial temperature and pressure was high enough that ignition was rapid and the presence of an ignition source did not significantly affect reaction rates.

  20. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion

    NASA Technical Reports Server (NTRS)

    Jachimowski, Casimir J.

    1988-01-01

    A chemical kinetic mechanism for the combustion of hydrogen has been assembled and optimized by comparing the observed behavior as determined in shock tube and flame studies with that predicted by the mechanism. The reactions contained in the mechanism reflect the current state of knowledge of the chemistry of the hydrogen/air system, and the assigned rate coefficients are consistent with accepted values. It was determined that the mechanism is capable of satisfactorily reproducing the experimental results for a range of conditions relevant to scramjet combustion. Calculations made with the reaction mechanism for representative scramjet combustor conditions at Mach 8, 16, and 25 showed that chemical kinetic effects can be important and that combustor models which use nonequilibrium chemistry should be used in preference to models that assume equilibrium chemistry. For the conditions examined the results also showed the importance of including the HO2 chemistry in the mechanism. For Mach numbers less than 16, the studies suggest that an ignition source will most likely be required to overcome slow ignition chemistry. At Mach 25, the initial temperature and pressure was high enough that ignition was rapid and the presence of an ignition source did not significantly affect reaction rates.

  1. Indoor air quality scenario in India-An outline of household fuel combustion

    NASA Astrophysics Data System (ADS)

    Rohra, Himanshi; Taneja, Ajay

    2016-03-01

    Most of the research around the world has been on outdoor air pollution, but in India we have a more severe problem of Indoor Air Pollution (IAP). The foremost factor cited for is burning of fossil fuels for cooking. Among the 70% of the country's rural population, about 80% households rely on biomass fuel making India to top the list of countries with largest population lacking access to cleaner fuel for cooking. 4 million deaths and 5% disability-adjusted life-years is an upshot of exposure to IAP from unhealthy cooking making it globally the most critical environmental risk factor. India alone bears the highest burden (28% needless deaths) among developing countries. Moreover, about ¼ of ambient PM2.5 in the country comes from household cookfuels. These considerations have prompted the discussion of the present knowledge on the disastrous health effects of pollutants emitted by biomass combustion in India. Additionally, Particulate Matter as an indoor air pollutant is highlighted with main focus on its spatial temporal variation and some recent Indian studies are further explored. As there are no specific norms for IAP in India, urgent need has arisen for implementing the strategies to create public awareness. Moreover improvement in ventilation and modification in the pattern of fuel will also contribute to eradicate this national health issue.

  2. Opposed jet burner studies of hydrogen combustion with pure and N2, NO-contaminated air

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    A counterflow diffusion flame formed by an argon-bathed tubular-opposed jet burner (OJB) was used to determine the 'blowoff' and 'restore' combustion characteristics for jets of various H2/N2 mixtures and for jets of air contaminated by NO (which normally occurs in high-enthalpy airflows supplied to hypersonic test facilities for scramjet combustors). Substantial divergence of 'blowoff' and 'restore' limits occurred as H2 mass flux, M(H)2, increased, the H2 jet became richer, and the M(air)/M(H2 + N2) ratio increased from 1 to 3 (molar H2/O2 from 1 to 16). Both OJB limits were sensitive to reactant composition. One to six percent NO in air led to significant N2-corrected decreases in the M(H2) values for 'blowoff' (2-8 percent) and 'restore' (6-12 percent) for mole fractions of H2 ranging from 0.5 to 0.95. However, when H2/O2 was held constant, all N2-corrected changes in M(H2) were negligible.

  3. Ignition and extinction of flames near surfaces: Combustion of H[sub 2] in air

    SciTech Connect

    Vlachos, D.G.; Schmidt, L.D.; Aris, R. )

    1993-11-01

    The ignition and extinction characteristics in homogeneous combustion of H[sub 2] in air close to inert surfaces are studied with detailed chemistry involving 19 reversible reactions and 9 species. Flame structures for gases impinging on planar surfaces with stagnation point flow are computed using numerical bifurcation theory. Two-parameter bifurcation diagrams are constructed as functions of equivalence ratio and strain rate. It is shown that up to five multiple solutions can coexist for some conditions. When three steady states coexist, the species in abundance are HO[sub 2] and H[sub 2]O at ignition and H, O, and OH at extinction. Isothermal walls, heated (constant power) walls, adiabatic walls, and symmetric counterflow jets are compared to examine the role of different stagnation surfaces on ignition and extinction for planar and axisymmetric flow. Implications of heterogeneous catalytic processes on ignition and extinction are also considered by examining surfaces that are sinks or sources for particular intermediate species.

  4. Review of Air Vitiation Effects on Scramjet Ignition and Flameholding Combustion Processes

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Bruno, Claudio; Chinitz, W.

    2002-01-01

    This paper offers a detailed review and analysis of more than 100 papers on the physics and chemistry of scramjet ignition and flameholding combustion processes, and the known effects of air vitiation on these processes. The paper attempts to explain vitiation effects in terms of known chemical kinetics and flame propagation phenomena. Scaling methodology is also examined, and a highly simplified Damkoehler scaling technique based on OH radical production/destruction is developed to extrapolate ground test results, affected by vitiation, to flight testing conditions. The long term goal of this effort is to help provide effective means for extrapolating ground test data to flight, and thus to reduce the time and expense of both ground and flight testing.

  5. Computations of spray, fuel-air mixing, and combustion in a lean-premixed-prevaporized combustor

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Li, Z.; Shih, T. I.-P.; Kundu, K.; Deur, J. M.

    1993-01-01

    A code was developed for computing the multidimensional flow, spray, combustion, and pollutant formation inside gas turbine combustors. The code developed is based on a Lagrangian-Eulerian formulation and utilizes an implicit finite-volume method. The focus of this paper is on the spray part of the code (both formulation and algorithm), and a number of issues related to the computation of sprays and fuel-air mixing in a lean-premixed-prevaporized combustor. The issues addressed include: (1) how grid spacings affect the diffusion of evaporated fuel, and (2) how spurious modes can arise through modelling of the spray in the Lagrangian computations. An upwind interpolation scheme is proposed to account for some effects of grid spacing on the artificial diffusion of the evaporated fuel. Also, some guidelines are presented to minimize errors associated with the spurious modes.

  6. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  7. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems.

    PubMed

    Ochoa-Gonzlez, Raquel; Daz-Somoano, Mercedes; Martnez-Tarazona, M Rosa

    2014-07-15

    This paper evaluates the influence of the main constituents of flue gases from coal combustion (CO2, O2, N2 and water vapor), in air and oxy-fuel combustion conditions on the re-emission of Hg(0) in wet scrubbers. It was observed that the concentration of water vapor does not affect the re-emission of mercury, whereas O2 and CO2 have a notable influence. High concentrations of O2 in the flue gas prevent the re-emission of Hg(0) due to the reaction of oxygen with the metals present in low oxidation states. High concentrations of CO2, which cause a decrease in the pH and the redox potential of gypsum slurries, reduce the amount of Hg(0) that is re-emitted. As a consequence, the high content of CO2 in oxy-fuel combustion may decrease the re-emission of Hg(0) due to the solubility of CO2 in the suspension and the decrease in the pH. It was also found that O2 affects the stabilization of Hg(2+) species in gypsum slurries. The results of this study confirm that the amount of metals present in limestone as well as the redox potential and pH of the slurries in wet desulphurization plants need to be strictly controlled to reduce Hg(0) re-emissions from power plants operating under oxy-fuel combustion conditions. PMID:24887118

  8. Analytical Model for the Diffusion Process in a In-Situ Combustion Tube

    NASA Astrophysics Data System (ADS)

    Gutierrez, Patricia; Reyes, Adrian

    2015-03-01

    The in-situ combustion process (ISC) is basically an air or oxygen enriched gas injection oil recovery process, inside an extraction well. In contrast to a conventional gas injection process, an ISC process consists in using heat to create a combustion front that raises the fuel temperature, decreasing its viscosity, making extraction easier. The oil is taken toward the productor by means of a vigorous gas thrust as well as a water thrust. To improve and enhance this technique in the field wells, it has been widely perform experimental laboratory tests, in which an in-situ combustion tube is designed to simulate the extraction process. In the present work we propose to solve analytically the problem, with a parabolic partial differential equation associated to the convection-diffusion phenomenon, equation which describes the in-situ combustion process. The whole mathematical problem is established by completing this equation with the correspong boundary and initial conditions, the thickness of the combustion zone, flow velocity, and more parameters. The theoretically obtained results are compared with those reported in literature. We further, fit the parameter of our model to the mentioned data taken from the literature.

  9. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule document 2013-01288, appearing on pages 6674-6724 in the issue of...

  10. 75 FR 37732 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... internal combustion engines. The amendments inadvertently removed paragraphs from the regulation. EPA is... combustion engines. 40 CFR 63.6590 was amended by revising paragraphs (b)(1) and (3)....

  11. 75 FR 75937 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... ignition (CI) reciprocating internal combustion engines (RICE) (75 FR 9648). The final NESHAP for... Stationary Spark Ignition Internal Combustion Engines. 75 FR 32612 (June 8, 2010). In that action, EPA... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...

  12. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    PubMed

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. PMID:24486615

  13. Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region.

    PubMed

    Junninen, Heikki; Mønster, Jacob; Rey, Maria; Cancelinha, Jose; Douglas, Kevin; Duane, Matthew; Forcina, Victtorio; Müller, Anne; Lagler, Fritz; Marelli, Luisa; Borowiak, Annette; Niedzialek, Joanna; Paradiz, Bostian; Mira-Salama, Daniel; Jimenez, Jose; Hansen, Ute; Astorga, Covadonga; Stanczyk, Krzysztof; Viana, Mar; Querol, Xavier; Duvall, Rachelle M; Norris, Gary A; Tsakovski, Stefan; Wåhlin, Peter; Horák, Jiri; Larsen, Bo R

    2009-10-15

    The present investigation, carried out as a case study in a typical major city situated in a European coal combustion region (Krakow, Poland), aims at quantifying the impact on the urban air quality of residential heating by coal combustion in comparison with other potential pollution sources such as power plants, industry, and traffic. Emissions were measured for 20 major sources, including small stoves and boilers, and the particulate matter (PM) was analyzed for 52 individual compounds together with outdoor and indoor PM10 collected during typical winter pollution episodes. The data were analyzed using chemical mass balance modeling (CMB) and constrained positive matrix factorization (CMF) yielding source apportionments for PM10, B(a)P, and other regulated air pollutants namely Cd, Ni, As, and Pb. The results are potentially very useful for planning abatement strategies in all areas of the world, where coal combustion in small appliances is significant. During the studied pollution episodes in Krakow, European air quality limits were exceeded with up to a factor 8 for PM10 and up to a factor 200 for B(a)P. The levels of these air pollutants were accompanied by high concentrations of azaarenes, known markers for inefficient coal combustion. The major culprit for the extreme pollution levels was demonstrated to be residential heating by coal combustion in small stoves and boilers (>50% for PM10 and >90% B(a)P), whereas road transport (<10% for PM10 and <3% for B(a)P), and industry (4-15% for PM10 and <6% for B(a)P) played a lesser role. The indoor PM10 and B(a)P concentrations were at high levels similar to those of outdoor concentrations and were found to have the same sources as outdoors. The inorganic secondary aerosol component of PM10 amounted to around 30%, which for a large part may be attributed to the industrial emission of the precursors SO2 and NOx. PMID:19921921

  14. Influence of specimen size, tray inclination and air flow rate on the emission of gases from biomass combustion

    NASA Astrophysics Data System (ADS)

    Amorim, E. B.; Carvalho, J. A.; Soares Neto, T. G.; Anselmo, E.; Saito, V. O.; Dias, F. F.; Santos, J. C.

    2013-08-01

    Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 101 g kg-1 of CO2, 50 13 g kg-1 of CO, and 3.2 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO.

  15. Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1986-01-01

    The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.

  16. Two dimensional, transient catalytic combustion of CO-air on platinum

    NASA Technical Reports Server (NTRS)

    Sinha, N.; Bruno, C.; Bracco, F. V.

    1985-01-01

    The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.

  17. Experimental Behavior of Pentaborane-Air Combustion Products During Expansion in a Convergent Divergent Nozzle

    NASA Technical Reports Server (NTRS)

    Branstetter, J. R.; Setze, P. C.

    1958-01-01

    In order to evaluate the post combustion behavior of boric oxide, pentaborane-air mixtures, burned to completion at a combustor pressure of 3 atmospheres, were expanded through a 7.1-inch-long convergent-divergent nozzle having a 4-inch-diameter throat and an exit-to-throat area ratio of 1.68. The experimentally determined thrust performance was in good agreement with the ideal equilibrium performance at stagnation temperatures of 3300 deg R and lower. The boric oxide vapor at the combustor exit required about 400 F deg supercooling before any condensed phase was observed. For a given thrust, fuel consumption was as much as 20 percent greater than predicted from vapor-pressure data for combustor outlet temperatures i n the vicinity of 3600 deg R. A similar result could be expected in full-scale engines, since the test combustor provided an unusually long dwell time and a highly turbulent environment. During the expansion process, the vapor (when present) did not condense to the extent predicted for an equilibrium expansion process. Moreover, condensation was observed only i n the form of small, abrupt phase changes i n the subsonic flow near the throat. Friction, due to liquid boric oxide films on the nozzle surfaces, was negligible when the surface temperature was above 800 F.

  18. Device for regulating the fuel-air ratio in internal combustion engines

    SciTech Connect

    Drews, U.; Mohrle, W.; Werner, P.

    1983-07-19

    A device is proposed for regulating the fuel-air ratio in the operating mixture of an internal combustion engine and for monitoring the operational readiness of a lambda sensor controlling the regulating device and functioning by the principle of ion conduction in solid electrolytes. The lambda sensor has an adjustable, constant reference voltage switched opposite to it. The reference voltage approximately equals the average sensor output voltage. The level of the resultant voltage, which is established with the aid of the resultant current and has values located symmetrically with respect to the reference voltage, is monitored by comparator devices. The output signal of the comparator devices is logically processed and furnishes a signal as to the operational readiness of the sensor. In order to generate the reference voltage, a voltage divider branch having high resistance is disposed parallel to a voltage divider branch of relatively low resistance; the latter voltage divider branch further serves to establish the threshold values of the comparator devices. Because it is independent of the current draw of the comparator devices, the desired reference voltage can be adhered to very precisely, and thus the desired regulating point at which closed-loop control or regulation begins of the regulating device can also be adhered to very precisely.

  19. Method and apparatus for regulating the fuel-air ratio in internal combustion engines

    SciTech Connect

    Drews, U.; Mohrle, W.; Werner, P.

    1982-08-24

    A method and an apparatus for regulating the fuel-air ratio of the operational mixture of an internal combustion engine and for monitoring the operational readiness of a lambda sensor controlling the regulating apparatus and functioning according to the principle of ionic conduction in fixed electrolytes. A constant reference voltage which approximately corresponds to the average sensor output voltage is connected opposite to the lambda sensor. The level of the resultant voltage thus established, the values of which are disposed symmetrically relative to the reference voltage, is utilized, along with the cooperation of a resultant electric current which causes a voltage drop across the temperature-dependent internal resistance of the lambda sensor as a gauge for the operational readiness of the lambda sensor. The pickup of the resultant voltage is accomplished by two comparison devices, whose logically evaluatable output signals are transformed via a logical linkage circuit into an operational readiness or unreadiness signal. A third comparison device serves the purpose of controlling the regulating apparatus. The third comparison device output is switched when the lambda sensor is not under the influence of any resultant electric current; as a result, no temperature dependent shift of the switchover point relative to the internal sensor voltage occurs and regulation can be effected with the regulating apparatus in a temperature in dependent manner to a desired point in the sensor voltage curve or to a desired lambda value.

  20. A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors.

    PubMed

    Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping

    2016-02-17

    In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10 000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion. PMID:26815316

  1. Simultaneous removal of SO{sub 2} and NO from flue gas using 'oxygen-enriched' highly reactive absorbent

    SciTech Connect

    Zhao, Y.; Sun, X.J.; Fang, H.; Liu, F.

    2007-04-15

    Fly ash, industry-grade lime, and an additive, MnO{sub 2} (M), were used to prepare an 'oxygen-enriched' highly reactive absorbent. Experiments of simultaneous desulfurization and denitrification were carried in a flue gas circulating fluidized bed (CFB). The effects of influencing factors were also investigated on the removal efficiencies of desulfurization and denitrification. Removal efficiencies of 95.5% for SO{sub 2} and 64.8% for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods. The results indicated that more nitrogen species appeared in the spent absorbent except sulfur species. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer (EDS) were used to observe microproperties of the samples, including fly ash, oxidizing highly reactive absorbent, and spent absorbent. The simultaneous removal mechanism of SO{sub 2} and NO based on this absorbent was proposed according to the experimental results.

  2. Ab initio atomistic thermodynamics study on the sulfur tolerance mechanism of the oxygen-enriched yttria-stabilized zirconia surface

    NASA Astrophysics Data System (ADS)

    Chu, Xingli; Zhang, Yanxing; Li, Shasha; Yang, Zongxian

    2014-04-01

    The first-principles method based on density functional theory (DFT) is used to investigate the reaction mechanism for the adsorption of H2S on the oxygen-enriched yttria-stabilized zirconia (YSZ + O) (111) surface. It is found that the H2S dissociation processes have low energy barriers (< 0.5 eV) and high exothermicities (2.5 eV), and the dissociative S atoms may result in the poisoning of the YSZ + O surface by forming the SO and the hyposulfite (SO22 -) species with very strong bonds to the surface. In addition, using the ab initio atomistic thermodynamics method, the surface regeneration or de-sulfurization process of a sulfur-poisoned (i.e. sulfur-covered) YSZ + O(111) surface is studied. According to the phase diagram, the adsorbed atomic sulfur can be oxidized to SO2 and removed from the YSZ + O surface by introducing oxidizing reagents, e.g. O2 and H2O.

  3. Commercialization of Turbulent Combustion Code CREBCOM for Chemical Industry Safety

    SciTech Connect

    Rohatgi, Upendra

    2007-06-30

    This program developed the Kurchatov Institutes CREBCOM (CRiteria and Experimentally Based COMbustion) code to the point where it could be commercialized and marketed for the special applications described above, as well as for general purpose combustion calculations. The CREBCOM code uses a different approach to model the explosion phenomenon. The code models, with full 3D gas dynamics, the development of an explosion in three characteristics regimes: a) slow flames, b) fast flames, and c) detonation. The transition from one regime to another is governed by a set of empirical criteria and correlations. As part of the commercialization, the code was validated with the use of experimental data. The experimental data covered a range of thermodynamic initial conditions and apparatus scale. Proprietary experimental data were provided to the Kurchatov Institute by the DuPont for this purpose. The flame acceleration and detonation data was obtained from experiments in methane and oxygen enriched air mixtures carried out in two vessels with diameters of 20 and 27 cm. The experimental data covers a wide spectrum of initial temperature (20-525C) and pressure (1-3 atm). As part of this program, the Kurchatov Institute performed experiments in a 52 cm vessel in mixtures of methane-air at room temperature and pressure to be used in the validation of the code. The objective of these tests was to obtain frame acceleration data at a scale close to that found in actual industrial processes. BNL was responsible for managing the DOE/IPP portion of the program, and for satisfying DOE reporting requirements. BNL also participated in an independent assessment of the CREBOM code. DuPont provided proprietary experimental data to the Kurchatov Institute on flame acceleration and detonation in high temperature methane and oxygen enriched air mixtures in addition to the matching fund. In addition, DuPont also supplied to KI instrumentation for pressure and temperature measurement. Kurchatov (KI) performed experiments at close to full-scale in mixtures of room temperature methane and air to develop the CREBCOM code which was used for explosion simulation in confined geometrics, such as chemical reactors and converters. The code was validated by comparison of the code simulations with experimental data obtained under prototypic reactor mixture conditions.

  4. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  5. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  6. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 2: Compositions corresponding to Kelvin temperature schedules in part 1

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    The equilibrium compositions that correspond to the thermodynamic and transport combustion properties for a wide range of conditions for the reaction of hydrocarbons with air are presented. Initially 55 gaseous species and 3 coin condensed species were considered in the calculations. Only 17 of these 55 gaseous species had equilibrium mole fractions greater than 0.000005 for any of the conditions studied and therefore these were the only ones retained in the final tables.

  7. Waste combustion as a source of ambient air polybrominated diphenylethers (PBDEs)

    NASA Astrophysics Data System (ADS)

    Wyrzykowska-Ceradini, Barbara; Gullett, Brian K.; Tabor, Dennis; Touati, Abderrahmane

    2011-08-01

    The first comprehensive set of U.S. data on polybrominated diphenylether (PBDE) concentrations from municipal waste combustion (MWC), with more than 40 PBDE congeners reported, was compared to ambient air levels of PBDEs in the U.S. The PBDE profiles in the raw MWC flue gas reflected the historical production and usage pattern of PBDE-based flame retardants in North America, which favored Penta- and Deca- BDE formulations. The pattern of selected, routinely measured in the environment, PBDEs (TeBDE-47, PeBDE-99, PeBDE-100, HxBDE-153 and DcBDE-209) was similar in the MWC emissions and profiles most commonly reported for the U.S. atmosphere. The mean ? PBDE concentrations in the clean flue gases collected from the stack were 0.13 and 1.7 ng dscm -1 during the steady state and transients of MWC, respectively (which was 98.6% reduction compare to the levels in the raw flue gases). The major PBDE congeners in the MWC flue gases were those typically found in PBDE technical mixes (TeBDE-47, PeBDE-99, PeBDE-100, HxBDE-153, HpBDE-183, OcBDE-197, NoBDE-206, NoBDE-207, NoBDE-208, DcBDE-209). The profile of the PBDEs in the raw flue gas was dominated by heavier congeners, especially DcBDE-209, while the profile of the stack flue gases profile was dominated by the lighter congeners (TeBDE-47, PeBDE-99, PeBDE-100 accounted for around 80% of total stack emissions). Some of the MWC flue gas samples exhibited enrichment of lower brominated congeners that are minor or not present in the technical mixtures, suggesting that debromination occurs during combustion. Congeners substituted in non- and mono- ortho positions (TeBDE-77, PeBDE-126, HxBDE-156 and -169) were detected mostly during the transients of MWC.

  8. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

  9. NO{sub x} emissions of a jet diffusion flame which is surrounded by a shroud of combustion air

    SciTech Connect

    Tran, P.X.; White, F.P.; Mathur, M.P.; Ekmann, J.M.

    1996-08-01

    The present work reports an experimental study on the behavior of a jet flame surrounded by a shroud of combustion air. Measurements focussed on the flame length and the emissions of NO{sub x}, total unburned hydrocarbons, CO{sub 2}, and O{sub 2}. Four different fuel flow rates (40.0, 78.33, 138.33, and 166.6 cm/s), air flow rates up to 2500 cm{sup 3}/s and four different air injector diameters (0.079 cm, 0. 158 cm, 0.237 cm, and 0.316 cm) were used. The shroud of combustion air causes the flame length to decrease by a factor proportional to 1/[p{sub a}/p{sub f} + C{sub 2}({mu}{sub a}Re,a/{mu}{sub f}Re,f){sup 2}]{sup {1/2}}. A substantial shortening of the flame length occurred by increasing the air injection velocity keeping fuel rate fixed or conversely by lowering the fuel flow rate keeping air flow rate constant. NO{sub x} emissions ranging from 5 ppm to 64 ppm were observed and the emission of NO{sub x} decreased strongly with the increased air velocity. The decrease of NO{sub x} emissions was found to follow a similar scaling law as does the flame length. However, the emission of the total hydrocarbons increased with the increased air velocity or the decreased fuel flow rate. A crossover condition where both NO{sub x} and unburned- hydrocarbon emissions are low, was identified. At an air-to-fuel velocity ratio of about 1, the emissions of NO{sub x} and the total hydrocarbons were found to be under 20 ppm.

  10. Analytical chemical kinetic investigation of the effects of oxygen, hydrogen, and hydroxyl radicals on hydrogen-air combustion

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.

    1974-01-01

    Quantitative values were computed which show the effects of the presence of small amounts of oxygen, hydrogen, and hydroxyl radicals on the finite-rate chemical kinetics of premixed hydrogen-air mixtures undergoing isobaric autoignition and combustion. The free radicals were considered to be initially present in hydrogen-air mixtures at equivalence ratios of 0.2, 0.6, 1.0, and 1.2. Initial mixture temperatures were 1100 K, 1200 K, and 1500 K, and pressures were 0.5, 1.0, 2.0, and 4.0 atm. Of the radicals investigated, atomic oxygen was found to be the most effective for reducing induction time, defined as the time to 5 percent of the total combustion temperature rise. The reaction time, the time between 5 percent and 95 percent of the temperature rise, is not decreased by the presence of free radicals in the initial hydrogen-air mixture. Fuel additives which yield free radicals might be used to effect a compact supersonic combustor design for efficient operation in an otherwise reaction-limited combustion regime.

  11. Simulating Combustion

    NASA Astrophysics Data System (ADS)

    Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F.

    The content spans from simple thermodynamics of the combustion engine to complex models for the description of the air/fuel mixture, ignition, combustion and pollutant formation considering the engine periphery of petrol and diesel engines. Thus the emphasis of the book is on the simulation models and how they are applicable for the development of modern combustion engines. Computers can be used as the engineers testbench following the rules and recommendations described here.

  12. CHARACTERIZATION OF AIR EMISSIONS FROM THE SIMULATED OPEN COMBUSTION OF FIBERGLASS MATERIALS

    EPA Science Inventory

    The report identifies and quantifies a broad range of pollutants that are discharged during small-scale, simulated, open combustion of fiberglass, and reports these emissions relative to the mass of fiberglass material combusted. Two types of fiberglass materials (representing t...

  13. CHARACTERIZATION OF AIR EMISSIONS FROM THE SIMULATED OPEN COMBUSTION OF FIBERGLASS MATERIALS

    EPA Science Inventory

    The report identifies and quantifies a broad range of pollutants that are discharged during small-scale, simulated, open combustion of fiberglass, and reports these emissions relative to the mass of fiberglass material combusted. wo types of fiberglass materials (representing the...

  14. Hybrid membrane--PSA system for separating oxygen from air

    DOEpatents

    Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  15. Nonequilibrium Sulfur Capture and Retention in an Air cooled Slagging Coal Combustion.

    SciTech Connect

    Zauderer, B.

    1997-04-14

    Calcium oxide sorbents injected in a slagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. The last of the 16 tests planned for this project was completed in the present reporting period. This was the first test in this project that validated one of the primary hypothesis of this project, namely to retain substantial quantities of sulfur in slag requires high slag mass flow rate. Previous attempts to achieve high sulfur retention with artificial slag met limited success. In this, the 16th test, a high, 37%, ash Indian coal was injected into Coal Tech`s 20 MMBtu/hr air cooled, slagging combustor with gypsum, CaSO{sub 4} (2H{sub 2}O). The slag analysis showed that 20% of the sulfur in the gypsum remained in the slag. This is double the highest sulfur concentration in slag measured in numerous test operations with this combustor. While the test results to date have met the objectives of this project, further high slag mass flow rate tests are planned with the Indian coal to optimize sulfur retention in slag.

  16. Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions

    PubMed Central

    Sulaeman, Sheiam; Hernould, Mathieu; Schaumann, Annick; Coquet, Laurent; Bolla, Jean-Michel; D, Emmanuelle; Tresse, Odile

    2012-01-01

    Campylobacter jejuni is responsible for the major foodborne bacterial enteritis in humans. In contradiction with its fastidious growth requirements, this microaerobic pathogen can survive in aerobic food environments, suggesting that it must employ a variety of protection mechanisms to resist oxidative stress. For the first time, C. jejuni 81176 inner and outer membrane subproteomes were analyzed separately using two-dimensional protein electrophoresis (2-DE) of oxygen-acclimated cells and microaerobically grown cells. LC-MS/MS analyses successfully identified 42 and 25 spots which exhibited a significantly altered abundance in the IMP-enriched fraction and in the OMP-enriched fraction, respectively, in response to oxidative conditions. These spots corresponded to 38 membrane proteins that could be grouped into different functional classes: (i) transporters, (ii) chaperones, (iii) fatty acid metabolism, (iv) adhesion/virulence and (v) other metabolisms. Some of these proteins were up-regulated at the transcriptional level in oxygen-acclimated cells as confirmed by qRT-PCR. Downstream analyses revealed that adhesion of C. jejuni to inert surfaces and swarming motility were enhanced in oxygen-acclimated cells or paraquat-stressed cells, which could be explained by the higher abundance of membrane proteins involved in adhesion and biofilm formation. The virulence factor CadF, over-expressed in the outer membrane of oxygen-acclimated cells, contributes to the complex process of C. jejuni adhesion to inert surfaces as revealed by a reduction in the capability of C. jejuni 81176 ?CadF cells compared to the isogenic strain. Taken together, these data demonstrate that oxygen-enriched conditions promote the over-expression of membrane proteins involved in both the biofilm initiation and virulence of C. jejuni. PMID:23029510

  17. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  18. Experimental study on premixed CH{sub 4}/air mixture combustion in micro Swiss-roll combustors

    SciTech Connect

    Zhong, Bei-Jing; Wang, Jian-Hua

    2010-12-15

    Excess enthalpy combustion is a promising approach to stabilize flame in micro-combustors. Using a Swiss-roll combustor configuration, excess enthalpy combustion can be conveniently achieved. In this work, three types of Swiss-roll combustors with double spiral-shaped channels were designed and fabricated. The combustors were tested using methane/air mixtures of various equivalence ratios. Both temperature distributions and extinction limits were determined for each combustor configuration at different methane mass flow rates. Results indicate that the Swiss-roll combustors developed in the current study greatly enhance combustion stability in center regions of the combustors. At the same time, excess enthalpy combustors of the Swiss-roll configuration significantly extend the extinction limits of methane/air mixtures. In addition, the effects of combustor configurations and thermal insulation arrangements on temperature distributions and extinction limits were evaluated. With heat losses to the environment being significant, the use of thermal insulations further enhances the flame stability in center regions of the Swiss-roll combustors and extends flammable ranges. (author)

  19. Visualization of turbulent combustion of TNT detonation products in a steel vessel

    NASA Astrophysics Data System (ADS)

    Wola?ski, P.; Gut, Z.; Trzci?ski, W. A.; Szyma?czyk, L.; Paszula, J.

    Mixing and afterburning of TNT detonation products in a steel vessel are recorded by the use of the Schlieren visualization system and high speed photography. The vessel is filled with air or 50% oxygen enriched air. Overpressure histories at the vessel wall are also recorded by using pressure transducers. In these experiments nitrogen, air or 50% oxygen enriched air are used as vessel fillers. The Oppenheim-Kuhl theory of thermodynamics of closed systems is applied to estimate the released energy on the basis of pressure histories.

  20. 78 FR 6673 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... spark ignition (generally natural gas-fueled) stationary reciprocating internal combustion engines....melanie@epa.gov . SUPPLEMENTARY INFORMATION: Background Information Document. On June 7, 2012 (77 FR 33812... amendments. 48621 transmission, or distribution. Medical and surgical hospitals. Natural gas...

  1. Modification of NASA Langley 8 Foot High Temperature Tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  2. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  3. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  4. Rotary internal combustion engine

    SciTech Connect

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  5. Development of the utilization of combustible gas produced in existing sanitary landfills: Investigation of effects of air inclusion

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The effects of nitrogen and oxygen on landfill gas operations are discussed. A combustible gas mixture composed of methane and carbon dioxide is generated in municipal solid waste landfills. A consequence of the collection of this fuel gas is the inclusion of some air in the collected product. The effects include increased collected and purification costs, reduction in the quality of the fuel gas produced, corrosion, explosion hazards, and interference with odorant systems. The scope of such effects was determined by using landfill data of a gas recovery site as a basis. Useful supplemental fuel gas may be recovered despite the inclusion of air. Recommendations are made for establishing limits for nitrogen and oxygen content and minimizing the costs associated with their presence.

  6. Effects of percentage of blockage and flameholder downstream counterbores on lean combustion limits of premixed, prevaporized propane-air mixture

    NASA Technical Reports Server (NTRS)

    Fernandez, M. A. B.

    1983-01-01

    Lean combustion limits were determined for a premixed prevaporized propane air mixture with flat plate flame stabilizers. Experiments were conducted in a constant area flame tube combustor utilizing flameholders of varying percentages of blockage and downstream counterbores. Combustor inlet air velocity at ambient conditions was varied from 4 to 9 meters per second. Flameholders with a center hole and four half holes surrounding it were tested with 63, 73, and 85 percent blockage and counterbore diameters of 112 and 125 percent of the thru hole diameter, in addition to the no counterbore configuration. Improved stability was obtained by using counterbore flameholders and higher percentages of blockage. Increases in mixture velocity caused the equivalence ratio at blowout to increase in all cases.

  7. ENVIRONMENTAL CONTROL OF TOXIC METAL AIR EMISSIONS FROM THE COMBUSTION OF COAL AND WASTES

    EPA Science Inventory

    The paper is concerned with the partitioning of toxic metals (e.g., arsenic, selenium, mercury, chromium, lead, and cadmium) during combustion, and with the mitigation of their effect on the environment using high-temperature sorbents. The paper is divided into three parts: (1) t...

  8. Mobile Source Air Toxics (MSATs) from High Efficiency Clean Combustion: Catalytic Exhaust Treatment Effects

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Parks, II, James E; Barone, Teresa L; Prikhodko, Vitaly Y

    2008-01-01

    High Efficiency Clean Combustion (HECC) strategies such as homogenous charge compression ignition (HCCI) and pre-mixed charge compression ignition (PCCI) offer much promise for the reduction of NOx and PM from diesel engines. While delivering low PM and low NOx, these combustion modes often produce much higher levels of CO and HC than conventional diesel combustion modes. In addition, partially oxygenated species such as formaldehyde (an MSAT) and other aldehydes increase with HECC modes. The higher levels of CO and HCs have the potential to compromise the performance of the catalytic aftertreatment, specifically at low load operating points. As HECC strategies become incorporated into vehicle calibrations, manufacturers need to avoid producing MSATs in higher quantities than found in conventional combustion modes. This paper describes research on two different HECC strategies, HCCI and PCCI. Engine-out data for several MSAT species (formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, xylenes, naphthalene, PAHs, diesel PM) as well as other HC species are presented and compared when possible with conventional operation. In addition, catalyst-out values were measured to assess the destruction of individual MSATs over the catalyst. At low engine loads, MSATs were higher and catalyst performance was poorer. Particle sizing results identify large differences between PM from conventional and HECC operation.

  9. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... standards of performance (``NSPS'') for stationary internal combustion engines (ICE) (78 FR 6674). Following... stationary RICE on March 3, 2010, (75 FR 9648) and August 20, 2010 (75 FR 51570). The EPA received petitions... amendments to the RICE NESHAP on January 30, 2013, (78 FR 6674) to address certain issues raised in...

  10. 76 FR 12923 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... internal combustion generation, engine. transmission, or distribution. 622110 Medical and surgical... Executive Order 12866, Regulatory Planning and Review (58 FR 51735, October 4, 1993), this action is not a.... Executive Order 13132: Federalism Executive Order 13132 (64 FR 43255, August 10, 1999) requires EPA...

  11. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    PubMed

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown. PMID:19079454

  12. Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India

    NASA Astrophysics Data System (ADS)

    Bhargava, Anuj; Khanna, R. N.; Bhargava, S. K.; Kumar, Sushil

    In India, a vast majority of rural household burns unprocessed biomass, as an energy source, to cook food. The biomass is burnt indoors in conventionally homemade clay-stoves, called 'Chulha', which results in the generation of a variety of airborne products along with polycyclic aromatic hydrocarbons (PAHs) in an uncontrolled manner. We report here the concentrations and profile of carcinogenic PAHs, co-sampled with respirable suspended particulate matter, in rural indoors during burning of biomass vis-à-vis liquified petroleum gas as the energy source. There is a limited data on the subject in the literature. The seasonal variation has also been studied. Sampling was done in breathing zone and in surrounding areas concurrent with cooking on chulha. PAHs were extracted in methylene chloride and analyzed over HPLC after column clean up on silica gel. Our study revealed that the concentrations of carcinogenic PAHs were fairly high in breathing zone and in surrounding areas while cooking over chulha in rural India. PAHs concentrations increased substantially during biomass combustion. Concentrations were high during CDC combustion and low during LPG combustion or the non-cooking period. This trend was conserved in both the seasons. Concentrations of total PAHs were greater in winter as compared to summer and greatest in the breathing zone. Di-benz( a,h)anthracene, benzo( k)-fluoranthene and chrysene contributed maximum. Benzo( a)pyrene contributed moderately. Maximum concentrations of indoor air benzo( a)pyrene (>1.5 μg/m 3) were found in breathing zone in winter. The daily exposure to high concentrations of carcinogenic PAHs in indoor air environment while cooking food could be impacting for chronic pulmonary illnesses in rural Indian women.

  13. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  14. Quantitative Analysis of Spectral Interference of Spontaneous Raman Scattering in High-Pressure Fuel-Rich H2-Air Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.

  15. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    SciTech Connect

    Wesnor, J.D.

    1993-10-26

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessment of Toxic By-Product Control Technologies; and Test Protocol Definition.

  16. Cold start fuel/air mixture supply device for spark ignition internal combustion engines

    SciTech Connect

    Ross, G.E.D.

    1984-06-05

    A combined accelerator pump and cold start fuel/air mixture supply device has an automatic throttle valve in a mixture supply passage, a fuel control valve controlling flow of fuel drawn into the passage through an inlet upstream of the throttle valve, and an air valve upstream of the fuel inlet. A primary spring tends to seat the air valve. A light, secondary spring urges a plunger against the air valve to augment the load of the primary spring for a predetermined time interval after the engine begins to run under its own power. A valve in a pipe opens automatically at the end of the predetermined time interval to apply engine inlet manifold depression to the end of the plunger remote from the air valve and thereby to separate the plunger from the air valve so that only the primary spring acts on the air valve.

  17. Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage

    SciTech Connect

    Yang, L.H.

    2008-07-01

    The technology of a pushing-through gallery with oxygen-enriched fire-seepage combustion was studied during shaft-free UCG in this article, and the main experiment parameters were probed. The test results were analyzed in depth. The patterns of variation and development were pointed out for the fire source moving speed, temperature field, leakage rate, the expanding diameter for the gasification gallery, and blasting pressure. Test results showed that, with the increase in the wind-blasting volume, the moving velocity for the fire source speeded up, and the average temperature for the gallery continuously rose. Under the condition of oxygen-enriched air blasting, when O{sub 2} contents stood at 90%, the moving speed for the fire source was 4-5 times that of air blasting. In the push-through process, the average leakage rate for the blasting was 82.23%, with the average discharge volume of 3.43 m{sup 3}/h and average gallery diameter of 7.87 cm. With the proceeding of firepower seepage, the extent of dropping for the leakage rate increased rapidly, and the drop rate for the blasting pressure gradually heightened.

  18. High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005

    SciTech Connect

    Soupos, V.; Zelepouga, S.; Rue, D.

    2005-06-30

    GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

  19. CONTROL OF AIR EMISSIONS FROM HAZARDOUS WASTE COMBUSTION SOURCES: FIELD EVALUATIONS OF PILOT-SCALE AIR POLLUTION CONTROL DEVICES

    EPA Science Inventory

    Pilot scale air pollution control devices supplied by Hydro-Sonic Systems, ETS, Inc., and Vulcan Engineering Company were installed at the ENSCO, Inc. Incinerator in El Dorado, Arkansas, in the spring of 1984. Each of these units treated an uncontrolled slipstream of the incinera...

  20. Influence of air-staging on the concentration profiles of NH{sub 3} and HCN in the combustion chamber of a CFB boiler burning coal

    SciTech Connect

    Kassman, H.; Karlsson, M.; Aamand, L.E.

    1999-07-01

    The characterization of the concentration profiles of NH{sub 3} and HCN are of great importance for increasing the knowledge of the formation and destruction pathways of NO and N{sub 2}O in a fluidized bed boiler. Further improvements of the sampling methods for the determination of both NH{sub 3} and HCN in the combustion chamber in full-scale CFB boilers are also needed. A gas-sampling probe connected to a Fourier Transform Infrared (FTIR) instrument and a gas-quenching (GQ) probe in which the sample is quenched directly in the probe tip by a circulating trapper solution were used. The FTIR technique is based on analysis of hot combustion gases, whereas the trapper solutions from the GQ probe were analyzed by means of wet chemistry. The tests were performed during coal combustion in a 12 MW CFB boiler, which was operated at three air-staging cases with the addition of limestone for sulfur capture. The concentration profiles of NH{sub 3} and HCN in the combustion chamber showed a different pattern concerning the influence of air-staging. The highest levels of NH{sub 3} were observed during reducing condition (severe air-staging), and the lowest were found under oxidizing conditions (no air-staging). The levels of HCN were much lower than those measured for NH{sub 3}. The highest levels of HCN were observed for reversed air-staging and severe air-staging showed almost no HCN. The potential reactors involving NH{sub 3} and HCN in the combustion chamber as well as the potential measurement errors in each sampling technique are discussed for the three air-staging cases.

  1. Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women.

    PubMed

    Agrawal, S; Yamamoto, S

    2015-06-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005-2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39,657 women aged 15-49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26-3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings. PMID:25039812

  2. Effect of Indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women

    PubMed Central

    Agrawal, S; Yamamoto, S

    2015-01-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005–2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39 657 women aged 15–49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26–3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings. PMID:25039812

  3. Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Hassan, H. A.

    1993-01-01

    Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.

  4. Combustion Tests of Rocket Motor Washout Material: Focus on Air toxics Formation Potential and Asbestos Remediation

    SciTech Connect

    G. C. Sclippa; L. L. Baxter; S. G. Buckley

    1999-02-01

    The objective of this investigation is to determine the suitability of cofiring as a recycle / reuse option to landfill disposal for solid rocket motor washout residue. Solid rocket motor washout residue (roughly 55% aluminum powder, 40% polybutadiene rubber binder, 5% residual ammonium perchlorate, and 0.2-1% asbestos) has been fired in Sandia's MultiFuel Combustor (MFC). The MFC is a down-fired combustor with electrically heated walls, capable of simulating a wide range of fuel residence times and stoichiometries. This study reports on the fate of AP-based chlorine and asbestos from the residue following combustion.

  5. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.

    PubMed

    Wang, Jingxian; Xie, Ping; Kettrup, Antonius; Schramm, Karl-Werner

    2005-10-15

    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. PMID:16198674

  6. Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

    SciTech Connect

    Richardson, E.S.; Grout, R.W.; Chen, J.H.; Sankaran, R.

    2010-03-15

    The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damkoehler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame-turbulence interactions which modify the flamelet based representation are analyzed. (author)

  7. Study of the Influence of a Paraxial Porous Insert on Combustion of a Swirling Flow of a Mixture of Methane and Air

    NASA Astrophysics Data System (ADS)

    Matvienko, O. V.; Baigulova, A. I.

    2015-07-01

    A study has been carried out on the influence of a paraxial porous insert on physical processes arising during the combustion of a swirling flow of a mixture of methane and air. With decrease of the porosity the role of conductive heat exchange in the porous layer grows. As a result, heat release in the peripheral combustion zone is transferred to the porous insert, causing ignition of the gas in the axial part of the channel. The combustion zone approaches the entrance to the channel, whereupon the flame front becomes less curved. The high thermal conductivity of the frame of the setup ensures stable combustion in the immediate vicinity of the entrance to the channel.

  8. The promising chemical kinetics for the simulation of propane-air combustion with KIVA-II code

    NASA Technical Reports Server (NTRS)

    Ying, S. J.; Gorla, Rama S. R.; Kundu, Krishna P.

    1993-01-01

    The development of chemical kinetics for the simulation of propane-air combustion with the use of computer code KIVA-II since 1989 is summarized here. In order to let readers understand the general feature well, a brief description of the KIVA-II code, specially related with the chemical reactions is also given. Then the results of recent work with 20 reaction mechanism is presented. It is also compared with the 5 reaction mechanism. It may be expected that the numerical stability of the 20 reaction mechanism is better as compared to that of 5 reaction mechanism, but the CPU time of the CRAY computer is much longer. Details are presented in the paper.

  9. Parametric study of shock-induced combustion in a hydrogen air system

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, Surendra N.

    1994-01-01

    A numerical parametric study is conducted to simulate shock-induced combustion under various free-stream conditions and varying blunt body diameter. A steady combustion front is established if the free-stream Mach number is above the Chapman-Jouguet speed of the mixture, whereas an unsteady reaction front is established if the free-stream Mach number is below or at the Chapman-Jouguet speed of the mixture. The above two cases have been simulated for Mach 5.11 and Mach 6.46 with a projectile diameter of 15 mm. Mach 5.11, which is an underdriven case, shows an unsteady reaction front, whereas Mach 6.46, which is an overdriven case, shows a steady reaction front. Next for Mach 5. 11 reducing the diameter to 2.5 mm causes the instabilities to disappear, whereas, for Mach 6.46 increasing the diameter of the projectile to 225 mm causes the instabilities to reappear, indicating that Chapman-Jouguet speed is not the only deciding factor for these instabilities to trigger. The other key parameters are the projectile diameter, induction time, activation energy and the heat release. The appearance and disappearance of the instabilities have been explained by the one-dimensional wave interaction model.

  10. VITRIFICATION OF MUNICIPAL SOLID WASTE COMBUSTION AIR POLLUTION CONTROL RESIDUES USING CORNING, INC. PROCESS

    EPA Science Inventory

    A demonstration was conducted to vitrify municipal solid waste (MSW) combustor air pollution control residue (APC) under the USEPA Municipal Waste Innovative Technology Evaluation Program. uplicate demonstration was conducted using a process developed by Corning Inc. in a cold cr...

  11. Mapping the time-averaged distribution of combustion-derived air pollutants in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zinniker, D. A.; Moldowan, J.

    2010-12-01

    Urban air pollution is an ongoing and complicated problem for both residents and policy makers. This study aims to provide a better understanding of the geographic source and fate of organic pollutants in a dynamic urban environment. Natural and artificial hydrophobic substrates were employed for the passive monitoring and mapping of ground-level organic pollutants in the San Francisco Bay area. We focused specifically on volatile and semi-volatile polycyclic aromatic hydrocarbons (PAHs). These compounds are proxies for a broad range of combustion related air pollutants derived from local, regional, and global combustion sources. PAHs include several well-studied carcinogens and can be measured easily and accurately across a broad range of concentrations. Estimates of time-integrated vapor phase and particle deposition were made from measuring accumulated PAHs in the leaves of several widely distributed tree species (including the Quercus agrifolia and Sequoia sempervirens) and an artificial wax film. Samples were designed to represent pollutant exposure over a period of one to several months. The selective sampling and analysis of hydrophobic substrates providess insight into the average geographic distribution of ground-level air pollutants in a simple and inexpensive way. However, accumulated organics do not directly correlated with human exposure and the source signature of PAHs may be obscured by transport, deposition, and flux processes. We attempted to address some of these complications by studying 1) PAH accumulation rates within substrates in a controlled microcosm, 2) differences in PAH abundance in different substrate types at the same locality, and 3) samples near long-term high volume air sampling stations. We also set out to create a map of PAH concentrations based on our measurements. This map can be directly compared with interpolated data from high-volume sampling stations and used to address questions concerning atmospheric heterogeneity of these pollutants (i.e. due to both source localization and dominant wind patterns). Our initial results indicate that exposure to PAHs in the bay area is geographically heterogeneous and individual exposure may vary by more than two orders of magnitude. The signatures of PAH contamination also varies considerably, indicating different sources and differing transportation mechanisms may be important at different sites and times.

  12. Combustion physics

    NASA Astrophysics Data System (ADS)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  13. INDOOR AIR SAMPLING AND MUTAGENICITY STUDIES OF EMISSIONS FROM UNVENTED COAL COMBUSTION (JOURNAL VERSION)

    EPA Science Inventory

    The purpose of the study is to develop sampling strategies and bioassay methods for indoor air in homes, the authors developed a medium-volume sampler to collect the <10 - micrometers particulate matter and semivolatile organics, and used high-volume particulate sampler for compa...

  14. INDOOR AIR SAMPLING AND MUTAGENICITY STUDIES RELATED TO EMISSIONS FROM UNVENTED COAL COMBUSTION

    EPA Science Inventory

    The purpose of the study is to develop sampling strategies and bioassay methods for indoor air in homes. The work reported here was conducted to prepare for a joint U.S.-China field study in Xuan Wei County, Yunnan Province, southern China, where the residents traditionally burn ...

  15. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    EPA Science Inventory

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most expos...

  16. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.

    PubMed

    Shen, Guofeng

    2015-11-01

    Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide (CO), total suspended particles (TSPs), PM2.5, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%-88% CO, 74%-99% TSP, 73%-76% PM2.5, 64%-98% OC, 92%-99% EC and 80%-83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%-97% CO, 73%-87% TSP, 79%-88% PM2.5, 94%-96% OC, 91%-99% EC and 63%-96% PAH reduction compared to biomass burning. The adoption of gas fuels (i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves. PMID:26574082

  17. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  18. Indoor air exposure to coal and wood combustion emissions associated with a high lung cancer rate in Xuan Wei, China

    SciTech Connect

    Mumford, J.L.; Chapman, R.S.; Harris, D.B.; He, X.Z.; Cac, S.R.

    1989-01-01

    Residents of Xuan Wei County in China have unusually high lung cancer mortality that cannot be attributed to tobacco use or occupational exposure. They are exposed to smoke from unvented, open pit coal or wood fires (often used for cooking and heating). The variation in lung cancer rates among communes within the county suggests that indoor combustion of smoky coal may be the prime determinant of lung cancer. To characterize the air in Xuan Wei homes, samples of the air particles and semivolatile organic compounds were collected from homes located in two communes; one commune has a high rate of lung cancer, and the other has a low rate. Samples collected in the commune where the lung cancer rate is high and where smoky coal is the predominant fuel contained high concentrations of small particles with high organic content; organic extracts of these samples were mutagenic. Samples from homes in the wood-burning commune, which has a low rate of lung cancer, consisted mostly of larger particles of lower organic content and mutagenicity. The smoky coal sample was a mouse skin carcinogen and was a more potent initiator of skin tumors in comparison to the wood or smokeless coal sample.

  19. Indoor air exposure to coal and wood combustion emissions associated with a high lung cancer rate in Xuan Wei, China

    SciTech Connect

    Mumford, J.L.; Chapman, R.S.; Harris, D.B. ); He, X.Z.; Cao, S.R.; Xian, Y.L.; Li, X.M. )

    1989-01-01

    Residents of Xuan Wei County in China have unusually high lung cancer mortality that cannot be attributed to tobacco use or occupational exposure. They are exposed to smoke from unvented, open pit coal or wood fires (often used for cooking and heating). The variation in lung cancer rates among communes within the county suggests that indoor combustion of smoky coal may be the prime determinant of lung cancer. To characterize the air in Xuan Wei homes, samples of air particles and semivolatile organic compounds were collected from homes located in two communes; one commune has a high rate of lung cancer, and the other has a low rate. Samples collected in the commune where the lung cancer rate is high and where smoky coal is the predominant fuel contained high concentrations of small particles with high organic content; organic extracts of these samples were mutagenic. Samples from homes in the wood-burning commune, which has a low rate of lung cancer, consisted mostly of larger particles of lower organic content and mutagenicity. The smoky coal sample was a mouse skin carcinogen and was a more potent initiator of skin tumors in comparison to the wood or smokeless coal sample.

  20. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    PubMed

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen. PMID:26217332

  1. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    PubMed Central

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen. PMID:26217332

  2. Estimation of air motion kinetic energy dissipation rates in a D.I. diesel combustion system

    SciTech Connect

    Smith, W.J.

    1996-09-01

    This paper sets out to investigate the relationship between air-motion kinetic energy and mixing rates in D.I. diesel engines, without resort to computational fluid dynamics (CFD). Particular attention is focused on the rate at which bulk flow kinetic energy decays into turbulence. A relatively simple phenomenological model of in-cylinder air motion is used. Turbulence production and decay associated with intake flows, with compression with inward and outward squish, and with decay of swirl are considered. In the latter case, the effects of wall friction and of the braking or drag caused by radially-injected fuel sprays are considered. The results of these calculations are compared with heat release rates derived from experimental cylinder pressure data, and provide some modest theoretical support for a novel interpretation of the observed trends.

  3. Combustion oscillation control

    SciTech Connect

    Richards, G.A.; Janus, M.C.

    1996-12-31

    Premixing of fuel and air can avoid high temperatures which produce thermal NOx, but oscillating combustion must be eliminated. Combustion oscillations can also occur in Integrated Gasification Combined Cycle turbines. As an alternative to design or operating modifications, METC is investigating active combustion control (ACC) to eliminate oscillations; ACC uses repeated adjustment of some combustion parameter to control the variation in heat release that drives oscillations.

  4. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  5. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.

    PubMed

    Xin, Mei; Gustin, Mae S; Ladwig, Kenneth; Pflughoeft-Hassett, Debra F

    2006-08-01

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods. PMID:16933649

  6. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    PubMed

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the furnace should be considered to improve the deep-air-staging combustion configuration. PMID:24274316

  7. Characterization of flame front surfaces in turbulent premixed methane/air combustion

    SciTech Connect

    Smallwood, G.J.; Guelder, Oe.L.; Snelling, D.R.; Deschamps, B.M.; Goekalp, I.

    1995-06-01

    A detailed experimental investigation of the application of fractal geometry concepts in determining the turbulent burning velocity in the wrinkled flame regime of turbulent premixed combustion was conducted. The fractal dimension and cutoff scales were determined for six different turbulent flames in the wrinkled flame regime, where the turbulence intensity, turbulent length scale, and equivalence ratio were varied. Unlike previous reports, it has proved possible to obtain the fractal dimension and inner and outer cutoffs from individual flame images. From this individual data, the pdf distributions of all three fractal parameters, along with the distribution of the predicted increase in surface area, may be determined. The analysis of over 300 flame images for each flame condition provided a sufficient sample size to accurately define the pdf distributions and their means. However, the predicted S{sub T}/S{sub L}, calculated using fractal parameters, was significantly below the measured values. For conical flames, a geometrical modification factor was employed to predict S{sub T}/S{sub L}, however, this did little to improve the predictions. There appeared to be no dependence of the predicted S{sub T}/S{sub L} on the approach flow turbulence. The cutoffs did not seem to vary significantly with any of the length scales in the approach flow turbulence, although the fractal dimension did appear to have a weak dependence on u{prime}/S{sub L} and Re{sub {lambda}}. The probable reasons that fractal geometry does not correctly predict S{sub T}/S{sub L} are that S{sub T}/S{sub L} = A{sub w}/A{sub 0} does not hold in wrinkled turbulent premixed flames, that the flame front surface cannot be described by a single scaling exponent, or that these are not wrinkled flames. S{sub T} = turbulent burning velocity, S{sub L} = laminar burning velocity, A{sub w} = wrinkled flame surface area, and A{sub 0} = flow cross section area.

  8. Atomization and combustion characteristics of antimisting fuels using JT8D and air-boost injectors

    NASA Technical Reports Server (NTRS)

    Kennedy, J. B.; Florentino, A. J.

    1986-01-01

    The atomization levels of antimisting fuels are presently determined for a JT8D fuel injector, a low emission airblast JT8D injector, and an air-boost injector, at operating conditions simulating engine operating conditions. The effects of the use of antimisting kerosene (AMK) on component performance are also studied in the case of an in-service JT8D engine. The use of the AMK fuel causes a decline in the quality of the spray, most notably as a large increase in the Sauter mean diameter for all three injector types. In addition, the idle patternation data obtained indicate that the low emission injector fuel distribution changed from a hollow cone Jet A spray having no fuel at its center to a semihollow spray cone in the case of AMK; this change could disrupt the combustor primary zone recirculation pattern.

  9. Advection fog formation and aerosols produced by combustion-originated air pollution

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1980-01-01

    The way in which pollutants produced by the photochemical reaction of NO(X) and SO(X) affect the quality of the human environment through such phenomena as the formation of advection fog is considered. These pollutants provide the major source of condensation nuclei for the formation of fog in highways, airports and seaports. Results based on the monodisperse, multicomponent aerosol model show that: (1) condensation nuclei can grow and form a dense fog without the air having attained supersaturation; (2) the mass concentration range for NO(X) is one-third that of SO(X); and (3) the greater the mass concentration, the particle concentration, and the radius of condensation nuclei, the denser the fog that is formed.

  10. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    SciTech Connect

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  11. Thermochemical nonequilibrium and radiative interactions in supersonic hydrogen-air combustion

    NASA Technical Reports Server (NTRS)

    Chandrasekhar, R.; Tiwari, S. N.

    1992-01-01

    The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. The specific problem considered is the premixed, expanding flow in a supersonic nozzle. The reacting flow consists of seven species, one of which is the inert N2 molecule. The thermal state of the gas is modeled with one translational-rotational temperature and five vibrational temperatures. The harmonic oscillator model is used in the formulation for vibrational relaxation. The tangent slab approximation is used in the radiative flux formulation. A pseudo-gray model is used to represent the absorption-emission characteristics of the participating species. Results obtained for specific conditions indicate the presence of nonequilibrium in the expansion region. This reduces the radiative interactions and can have a significant influence on the flowfield.

  12. The effect of low-NO{sub x} combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    SciTech Connect

    Pedersen, K.H.; Jensen, A.D.; Dam-Johansen, K.

    2010-02-15

    Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NO{sub x} combustion technologies. In this work, pulverized fuel has been combusted in an entrained flow reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NO{sub x} formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA adsorption capacity based on measurements on a carbon black. The NO{sub x} formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NO{sub x} formation. The type of fuel had high impact on the AEA adsorption behavior of the ash. Ashes produced from a Columbian and a Polish coal showed similar AEA requirements, but the specific AEA adsorptivity of the carbon in the Columbian coal ash was up to six times higher. The AEA requirements of a South African coal ash was unaffected by the applied operating conditions and showed up to 12 times higher AEA adsorption compared to the two other coal ashes. This may be caused by larger particles formed by agglomeration of the primary coal particles in the feeding phase or during the combustion process, which gave rise to increased formation of soot. (author)

  13. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  14. Experiment investigations on the performance of a centrally fuel rich swirl coal combustion burner: Influence of primary air ratio - article no. A39

    SciTech Connect

    Chen, Z.C.; Li, Z.Q.; Jing, J.P.; Wei, H.D.; Chen, L.Z.; Wu, S.H.; Yao, Y.

    2008-07-01

    A three-component particle-dynamics anemometer is used to measure, in the near-burner region, the influence of the primary air ratio on the gas/particle two phase characteristics for a centrally fuel rich swirl coal combustion burner, on a gas/particle two phase test facility. Velocities, particle volume flux profiles and particle relative number concentrations were obtained. With a low primary air ratio, the axial velocities for gas and particles on the chamber axis are always small and easily reach the negative, and the central recirculation zone is easily formed and much closer to the outlet of the burner. In each cross-section, in the radius range from Rair ratio is higher than that with a low primary air ratio. The influence of gas/particle flow characteristics with a different primary air ratio on combustion has been analyzed.

  15. MUNICIPAL WASTEWATER SLUDGE COMBUSTION TECHNOLOGY

    EPA Science Inventory

    The publication describes and evaluates the various municipal sludge combustion systems. It also emphasizes the necessity for considering and evaluating the costs involved in the total sludge management train, including dewatering, combustion, air pollution control, and ash dispo...

  16. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment

    PubMed Central

    Topaz, Moris

    2012-01-01

    Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review. PMID:23162229

  17. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment.

    PubMed

    Topaz, Moris

    2012-05-01

    Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review. PMID:23162229

  18. Chemical characterization of air masses transported to the Arctic during the ARCTAS-A spring deployment: biomass burning versus fossil fuel combustion signatures

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Sachse, G. W.; Burkhart, J. F.

    2009-12-01

    A major research objective of the ARCTAS-A field campaign was to obtain in-situ data on the nature and the extent of atmospheric pollution in the Arctic during spring. We deployed a PTR-MS instrument aboard the NASA DC-8 research aircraft to measure a series of volatile organic compounds (VOCs) including acetonitrile, methanol, acetone and benzene. The VOCs serve as tracers for mid-latitude pollution of different nature (biomass burning vs. fossil fuel combustion) and age. For air mass classification, we additionally use the DACOM dataset for carbon monoxide (CO) which is a general long-lived tracer for incomplete combustion. According to our analysis, strongly biomass-burning impacted air was encountered during the second half of the campaign at altitudes between 1.8 and 7.4 km, with the maximum impact being observed at altitudes between 3.5 and 5 km. A pronounced signature of fossil fuel combustion-derived pollution was observed at altitudes mostly above 1 km including some strongly polluted layers at high altitudes between 6 and 8.5 km. Furthermore, our markers indicate the omnipresence of aged background pollution of anthropogenic origin. In our ongoing analysis, we are comparing the experimental results with the output from the FLEXPART chemical tracer transport model which will allow us to locate the geographic source regions of the observed pollution tracers.

  19. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion.

    PubMed

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Tao, Shu

    2013-09-01

    Controlled combustion experiments were conducted to investigate the influence of fuel charge size, moisture, air ventilation and feeding rate on the emission factors (EFs) of carbonaceous particulate matter, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives from residential wood combustion in a typical brick cooking stove. Measured EFs were found to be independent of fuel charge size, but increased with increasing fuel moisture. Pollution emissions from the normal burning under an adequate air supply condition were the lowest for most pollutants, while more pollutants were emitted when an oxygen deficient atmosphere was formed in the stove chamber during fast burning. The impacts of these factors on the size distribution of emitted particles was also studied. Modified combustion efficiency and the four investigated factors explained 68%, 72%, and 64% of total variations in EFs of PM, organic carbon, and oxygenated PAHs, respectively, but only 36%, 38% and 42% of the total variations in EFs of elemental carbon, pPAHs and nitro-PAHs, respectively. PMID:24520723

  20. The Influence of Fuel Moisture, Charge Size, Burning Rate and Air Ventilation Conditions on Emissions of PM, OC, EC, Parent PAHs, and Their Derivatives from Residential Wood Combustion

    PubMed Central

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Lv, Yan; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; TAO, Shu

    2014-01-01

    Controlled combustion experiments were conducted to investigate the influence of fuel charge size, moisture, air ventilation and burning rate on the emission factors (EFs) of carbonaceous particulate matter, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives from residential wood combustion in a typical brick cooking stove. Measured EFs were found to be independent of fuel charge size, but increased with increasing fuel moisture. Pollution emissions from a normal burning under an adequate air supply condition were the lowest for most pollutants, while more pollutants were emitted when the oxygen deficient atmosphere was formed in stove chamber during fast burning. The impact of these 4 factors on particulate matter size distribution was also studied. Modified combustion efficiency and the four investigated factors explained 68, 72, and 64% of total variations in EFs of PM, organic carbon, and oxygenated PAHs, respectively, but only 36, 38 and 42% of the total variations in EFs of elemental carbon, pPAHs and nitro-PAHs, respectively. PMID:24520723

  1. Method and apparatus for obtaining a control variable for the closed-loop control of the fuel-air ratio in the operating mixture of internal combustion engines

    SciTech Connect

    Dietz, H.; Linder, E.; Maurer, H.; Muller, K.; Reber, H.; Rieger, F.

    1982-10-26

    A method and apparatus is proposed for obtaining a control variable for the closed-loop control of the fuel-air ratio of the operating mixture of internal combustion engines, in which a threshold-current sensor of known structure is used. By means of varying the measurement voltage present at the threshold-current sensor by voltage amounts which correspond to a change in oxygen concentration to be expected in association with a change in operational state, the time behavior of the threshold-current sensor, which is essentially sluggish, is compensated for and it becomes possible to use it for rapidly-functioning closed-loop control systems in internal combustion engines.

  2. Air

    MedlinePLUS

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. Hazardous air pollutants from the combustion of an emulsified heavy fuel oil in a firetube boiler. Final report, May-November 1995

    SciTech Connect

    Miller, C.A.

    1996-02-01

    The report gives results of measuring emissions of hazardous air pollutants (HAPS) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose determining the impacts of the emulsifier on HAP emissions. The boiler flue gases were sampled and analyzed for both metal and organic HAPs, and the effects of the emulsification on criteria emissions such as carbon dioxide (CO), nitrogen oxides (NOx), and particulate matter (PM) were also measured.

  4. Research on ignition and combustion in oxygen systems

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1973-01-01

    The work on ignition and combustion research in oxygen systems under the sponsorship of NASA's Aerospace Safety Research and Data Institute is described. Preliminary results of ignition of nonmetallic materials by electric arc and mechanical impact are presented. Ignition by a resonant process involving repeated shock waves has been demonstrated and some of the results included. In addition, results of studies concerned with ignition due to the rapid rupture of metal films and diaphragms are reviewed. Burning rate studies of three nonmetallic materials in oxygen enriched environments were completed and the results presented. A brief description of these combustion studies under zero gravity is also included. These results are compared to combustion under one gravity.

  5. Diesel engine combustion processes

    SciTech Connect

    1995-12-31

    Diesel Engine Combustion Processes guides the engineer and research technician toward engine designs which will give the ``best payoff`` in terms of emissions and fuel economy. Contents include: Three-dimensional modeling of soot and NO in a direct-injection diesel engine; Prechamber for lean burn for low NOx; Modeling and identification of a diesel combustion process with the downhill gradient search method; The droplet group micro-explosions in W/O diesel fuel emulsion sprays; Combustion process of diesel spray in high temperature air; Combustion process of diesel engines at regions with different altitude; and more.

  6. Mixing in combustion

    NASA Astrophysics Data System (ADS)

    Dimotakis, Paul

    2013-11-01

    Mixing of reactants represents an important element in both non-premixed and premixed turbulent combustion. In non-premixed combustion, molecular mixing is a necessary first step that brings reactants together. In premixed combustion with local flame extinction and reignition, turbulent mixing of hot products with as-yet unburnt fluid is important to combustion behavior. The discussion on mixing will cover the role of entrainment, effects of Reynolds number and the mixing transition, effects of Schmidt number and gas- vs. liquid-phase reacting flows, heat release, Damkoehler-number (finite kinetic-rate) effects, and Mach-number effects. Support by the Air Force Office of Scientific Research.

  7. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect

    Selle, L.; Ferret, B.; Poinsot, T.

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  8. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  9. Opportunities in pulse combustion

    SciTech Connect

    Brenchley, D.L.; Bomelburg, H.J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  10. Combustion of Micropowdered Biomass

    NASA Astrophysics Data System (ADS)

    Geil, Ethan; Thorne, Robert

    2009-03-01

    Combustion of finely powdered biomass has the potential to replace heating oil, which accounts for a significant fraction of US oil consumption, in heating, cooling and local power generation applications. When ground to 30-150 micron powders and dispersed in air, wood and other biomass can undergo deflagrating combustion, as occurs with gaseous and dispersed liquid fuels. Combustion is very nearly complete, and in contrast to sugar/starch or cellulose-derived ethanol, nearly all of the available plant mass is converted to usable energy so the economics are much more promising. We are exploring the fundamental combustion science of biomass powders in this size range. In particular, we are examining how powder size, powder composition (including the fraction of volatile organics) and other parameters affect the combustion regime and the combustion products.

  11. Fuel-Rich Catalytic Combustion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Olson, Sandra L.

    1987-01-01

    Two-stage combustion system reduces particulate emissions. Program on catalytic oxidation of iso-octane demonstrates feasibility of two-stage combustion system for reducing particulate emissions. With fuel-rich (fuel/air equivalence ratios of 4.8 to 7.8) catalytic-combustion preburner as first stage, combustion process free of soot at reactor-outlet temperatures of 1,200 K or less.

  12. A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report

    SciTech Connect

    Abbasi, H.

    2004-01-01

    A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include technical and economic analyses, energy savings and waste reduction predictions, evaluation of environmental effects, and outline issues concerning manufacturing, marketing, and financing. Combustion Tec, Owens Corning, and GTI will all take active roles in defining this Plan. During Phase I, the first three objectives were addressed and completed along with the design component of the fourth objective. In Phase II, the fabrication component of the fourth objective was completed along with objectives five and six. Results of the Phase I work were reported in the Phase I Final Report and are summarized in this Final Technical Report. Work for Phase II was divided in four specific Tasks. Results of the Phase II work were reported in the Phase II Final Report and are also summarized in this Final Technical Report. No Phase III Final Report was prepared, so this Final Technical Report presents the results of Phase III commercial demonstration efforts. A description of each Task in Phases I, II, and III is presented in this report.

  13. NO.sub.x reduction method

    DOEpatents

    Sekar, Ramanujam R. (Naperville, IL); Hoppie, Lyle O. (West Bloomfield, MI)

    1996-01-01

    A method of reducing oxides of nitrogen (NO.sub.X) in the exhaust of an internal combustion engine includes producing oxygen enriched air and nitrogen enriched air by an oxygen enrichment device. The oxygen enriched air may be provided to the intake of the internal combustion engine for mixing with fuel. In order to reduce the amount of NO.sub.X in the exhaust of the internal combustion engine, the molecular nitrogen in the nitrogen enriched air produced by the oxygen enrichment device is subjected to a corona or arc discharge so as to create a plasma and as a result, atomic nitrogen. The resulting atomic nitrogen then is injected into the exhaust of the internal combustion engine causing the oxides of nitrogen in the exhaust to be reduced into nitrogen and oxygen. In one embodiment of the present invention, the oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  14. Internal combustion engine system

    SciTech Connect

    Nam, C.W.

    1987-01-27

    This patent describes an internal combustion engine system comprising: an engine body including a main combustion engine for transmitting the power generated by explosion pressure to a pumping piston and a power transmission apparatus for transmitting to a power crank shaft power that is increased by the ratio of the cross-sectional area of a combustion chamber piston to a power piston. The stroke distance of the combustion chamber piston is equal to that of the power piston; a swash plate-type stirling engine coupled to an exhaust gas outlet of the main combustion engine to be driven by exhaust heat therefrom; a one-stage screw-type compressor coupled by a driving shaft to the swash plate-type stirling engine, thereby generating a great amount of compressed air; a turbo-charger mounted adjacent to a gas outlet of the stirling engine to force a supply of fresh air into the combustion chamber of the main combustion engine; a booster being mounted between a compressed air source and the power transmission apparatus to amplify the air pressure derived from the compressed air source and then provide the amplified air pressure to the power transmission apparatus by operation of a cam in accordance with the rotation of the first crankshaft; compressed air sources being mounted between the compressor and the booster for storing a great amount of compressed air from the compressor; and an accumulator in communication with the power transmission apparatus through a fluid oil pipe, thereby maintaining constant control of the oil pressure in the power transmission apparatus.

  15. Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries.

    PubMed Central

    Ezzati, M; Kammen, D M

    2001-01-01

    Acute respiratory infections (ARI) are the leading cause of burden of disease worldwide and have been causally linked with exposure to pollutants from domestic biomass fuels in developing countries. We used longitudinal health data coupled with detailed monitoring and estimation of personal exposure from more than 2 years of field measurements in rural Kenya to estimate the exposure-response relationship for particulates < 10 microm diameter (PM(10)) generated from biomass combustion. Acute respiratory infections and acute lower respiratory infections are concave, increasing functions of average daily exposure to PM(10), with the rate of increase declining for exposures above approximately 1,000-2,000 microg/m(3). This first estimation of the exposure-response relationship for the high-exposure levels characteristic of developing countries has immediate and important consequences for international public health policies, energy and combustion research, and technology transfer efforts that affect more than 2 billion people worldwide. PMID:11401759

  16. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor

    SciTech Connect

    Scarpa, A.; Pirone, R.; Russo, G.; Vlachos, D.G.

    2009-05-15

    The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

  17. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  18. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  19. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. PMID:26495830

  20. Membrane-based air composition control for light-duty diesel vehicles : a benefit and cost assessment.

    SciTech Connect

    Poola, R.; Stork, K.

    1998-11-09

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM2.5). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles. For nearly a decade, Argonne has been evaluating membrane-based methods to control the composition of air used in combustion. Membranes are the only practical method of modifying air composition for on-board use. The applicability of the technique depends strongly on both the technical and economic feasibility of implementing it on a vehicle. Over the past 10 years, significant technical advances have been made in the development of air-separation membranes. Researchers have developed and commercialized novel membrane materials that can efficiently separate air at the concentrations required for vehicle applications and have developed compact membrane modules that can be incorporated into vehicle design. Previous analysis by Argonne and others has demonstrated the effectiveness of oxygen enrichment at reducing PM, smoke, hydrocarbon (HC), and carbon monoxide (CO) emissions while increasing engine power output. Under appropriate oxygen-enriched operating conditions, diesel engines have achieved a net increase of 10-20% in power density and a decrease of 30-60% in PM emissions. Nitrogen-enriched air can be used as an alternative to exhaust gas recirculation to control NO{sub x} emissions and can also be used to generate a monatomic nitrogen plasma for exhaust post-treatment to reduce emissions of NO{sub x}. Argonne has recently identified an operating regime that can simultaneously reduce NO{sub x} and PM while increasing power output when oxygen-enriched combustion air is used. This promising technique, which will be verified by additional experimental work at Argonne (using a range of engine sizes), will require the use of membranes similar to those analyzed in this study.

  1. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  2. Method and apparatus for determining the proportions of the constituents of the air-fuel mixture supplied to an internal combustion engine

    SciTech Connect

    Peter, C.

    1980-11-04

    A method and apparatus are described for determining the proportions of the air-fuel mixture constituents supplied to an internal combustion engine from a mixture preparing device such as a carburator, a fuel injection device or other suitable mixture preparing device. The method according to the invention serves to simplify the processing of output signals that are supplied to a mixture preparing device having at least two lambda sensors. The invention is especially suitable for use with large engines with several exhaust conduit systems, such as so-called v-engines, in which generally there is an unequal mixture distribution between the two rows of cylinders. By employing at least two lambda sensors in the exhaust gas conduit system for monitoring the exhaust gas composition, one succeeds in determining the mixture composition of the air-fuel mixture applied to all cylinders, and in influencing the air-fuel mixture in a suitable supplementary manner by a feed back of the actual value signals generated by the lambda sensors to the fuel preparation device, so that a desirable overall exhaust gas average value can be achieved. The apparatus employs two integrators and suitable logic circuitry for applying the lambda sensor signals to the integrators in such a manner that one integrator regulates the entire mixture in the desired direction, according to the sensor signals supplied to it, while the other integrator sets the amplitude of the oscillation fluctuations at a value that corresponds to the lambda differential.

  3. Regulating low-NOx and high-burnout deep-air-staging combustion under real-furnace conditions in a 600 MWe down-fired supercritical boiler by strengthening the staged-air effect.

    PubMed

    Kuang, Min; Wang, Zhihua; Zhu, Yanqun; Ling, Zhongqian; Li, Zhengqi

    2014-10-21

    A 600 MW(e) down-fired pulverized-coal supercritical boiler, which was equipped with a deep-air-staging combustion system for reducing the particularly high NOx emissions, suffered from the well-accepted contradiction between low NOx emissions and high carbon in fly ash, in addition to excessively high gas temperatures in the hopper that jeopardized the boiler's safe operations. Previous results uncovered that under low-NOx conditions, strengthening the staged-air effect by decreasing the staged-air angle and simultaneously increasing the staged-air damper opening alleviated the aforementioned problems to some extent. To establish low-NOx and high-burnout circumstances and control the aforementioned hopper temperatures, a further staged-air retrofit with horizontally redirecting staged air through an enlarged staged-air slot area was performed to greatly strengthen the staged-air effect. Full-load industrial-size measurements were performed to confirm the availability of this retrofit. The present data were compared with those published results before the retrofit. High NOx emissions, low carbon in fly ah, and high hopper temperatures (i.e., levels of 1036 mg/m(3) at 6% O2, 3.72%, and about 1300 °C, respectively) appeared under the original conditions with the staged-air angle of 45° and without overfire air (OFA) application. Applying OFA and reducing the angle to 20° achieved an apparent NOx reduction and a moderate hopper temperature decrease while a sharp increase in carbon in fly ash (i.e., levels of 878 mg/m(3) at 6% O2, about 1200 °C, and 9.81%, respectively). Fortunately, the present staged-air retrofit was confirmed to be applicable in regulating low-NOx, high-burnout, and low hopper temperature circumstances (i.e., levels of 867 mg/m(3) at 6% O2, 5.40%, and about 1100 °C, respectively). PMID:25256210

  4. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGESBeta

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  5. N-Decane Droplet Combustion in the NASA-Lewis 5 Second Zero-Gravity Facility - Results in Test Gas Environments Other than Air

    NASA Technical Reports Server (NTRS)

    Haggard, John B.; Borowski, Brian A.; Dryer, Frederick L.; Choi, Mun Y.; Williams, Forman A.

    1991-01-01

    The burning rate of single droplets of n-decane in a microgravity environment of the NASA-Lewis 5 Second Zero-Gravity Facility was investigated as a function of time, together with the flame diameter/droplet diameter ratio, for a wide range of test environments other than normal air conditions, using an engineering model of the flight experiment. Oxygen mole fractions were varied from 18 to 50 percent, the total test chamber pressure was varied from 0.5 to 2 atmospheres, and the initial droplet diameter was varied from 0.98 to 2.41 mm. Measurements showed that the average burning rates for n-decane droplets exhibited the same qualitative trends as are found in two current models. Temporal analysis of the local burning rates showed variable rates of change in local burning as the droplet combustion progressed. The causes and implications of these findings are discussed.

  6. INHALABLE PARTICLES AND PULMONARY HOST DEFENSE: 'IN VIVO' AND 'IN VITRO' EFFECTS OF AMBIENT AIR AND COMBUSTION PARTICLES

    EPA Science Inventory

    The ability of particulate air pollutants (and possible constituents) to alter pulmonary host defenses was examined using an in vitro alveolar macrophage cytotoxicity assay and an in vivo bacterial infectivity screening test which employed intratracheal injection of the particles...

  7. Mock-up tests on the combustion of hydrogen air mixture in the vertical tube simulating the CNS channel of the CARR

    NASA Astrophysics Data System (ADS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Xu, Jian

    2007-01-01

    A two-phase thermo-siphon loop for removing nuclear heating and maintaining the stable liquid level in the moderator cell was adopted for the cold neutron source (CNS) of the China advanced research reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon loop consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The main feature of the loop is that the moderator cell is covered by the helium sub-cooling system. The cold helium gas from the helium refrigerator is firstly introduced into the helium sub-cooling system and then flows up through the tube covering the moderator transfer tube into the condenser. The main part of this system is installed in the CNS vertical channel made of aluminum alloy 6061 T6 (Al-6061-T6) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS channel, the combustion tests using a tube compatible with the CNS channel were carried out using the hydrogen-air mixture under which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.14 MPa G. This condition is involved with the maximum design basis accident of the CARR-CNS. The peak pressure due to combustion was 1.09 MPa, and the design pressure of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the maximum design basis accident occurs. The pressure and stress distributions along the axial direction and the displacement of the tube were also measured.

  8. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  9. Reduction of gas phase air toxics from combustion and incineration sources using the GE-Mitsui-BG activated coke process

    SciTech Connect

    Olson, D.G.; Tsuji, K.; Shiraishi, I.

    1998-04-01

    The dry desulfurization, denitification and air toxics removal process using activated coke (AC) was originally researched and developed during the 1960`s by Bergbau Forschung (BF), now called Deutsche Montan Technologies. Mitsui Mining Company (MMC) signed a licensing agreement with BF in 1982 to investigate, test and adapt the system to facilities in Japan. Japanese regulations are stricter than in the United States toward SOx/NOx pollutants, as well as flyash emissions from the utility industry, oil refineries and other industries. This process is installed on four coal-fired boilers and Fluidized Catalytic Cracker (FCC) units. These plants were constructed by MMC in Japan and Uhde GmbH in Germany. General Electric Environmental Services, Inc. (GEESI) signed a license agreement in 1992 with MMC and Mitsui and Company, Ltd. of Tokyo. Under this agreement, GEESI will market, design, fabricate and install the Mitsui-BF process for flue gas cleaning applications in North America. MMC also developed a technology to produce AC used in the dry DeSOx/DeNOx/Air Toxics removal process based on their own metallurgical coke manufacturing technology. This paper provides information on the details of MMC`s AC used in the dry DeSOx/DeNOx/Air Toxics removal process and of the DeSOx/DeNOx/Air Toxics removal process itself.

  10. Rotational level-dependent collisional broadening and line shift of the A2Sigma(+)-X2Pi (1,0) band of OH in hydrogen-air combustion gases

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Allen, M. G.; Davis, S. J.

    1993-01-01

    Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.

  11. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  12. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  13. Rotary fluidized bed combustion system

    SciTech Connect

    David, C.V.

    1987-07-28

    A method is described for burning fuel in the form of solid particles in a rotary fluidized bed combustion system comprising the steps of: introducing solid fuel in particulate form; introducing air for burning the fuel; enclosing by and containing within walls the mixture of air and fuel thus introduced in a combustion region where fuel and air chemically interact (burning process) in a fluidized bed generated by the manner in which the air and the fuel are introduced in the combustion region; generating an artificial gravity field substantially stronger than the earth gravitational field, the artificial gravity field being created by rotating the air/fuel mixture around an axis substantially orthogonal to the general direction followed by the combusted gases on their way out of the combustion region; preventing the fuel particles from contacting the walls surrounding the fuel burning process by means of balancing the centrifugal forces acting on the particles and caused by the artificially created gravity field against the opposing aerodynamic forces also acting on the particles and which are caused by the means for introducing some of the air for burning the fuel; segregating the fuel burning along the path followed by the particles as they burn and proceed toward the combustion system exhaust, and away from the walls around the combustion region; elongating the pathway generally followed by the particles during the burning process, thereby increasing their residence time in the combustion region until their burning is generally completed before the particles leave the combustion system; and exhausting the combusted gases.

  14. Modelling inhalation exposure to combustion-related air pollutants in residential buildings: Application to health impact assessment.

    PubMed

    Milner, James; Vardoulakis, Sotiris; Chalabi, Zaid; Wilkinson, Paul

    2011-01-01

    Buildings in developed countries are becoming increasingly airtight as a response to stricter energy efficiency requirements. At the same time, changes are occurring to the ways in which household energy is supplied, distributed and used. These changes are having important impacts on exposure to indoor air pollutants in residential buildings and present new challenges for professionals interested in assessing the effects of housing on public health. In many circumstances, models are the most appropriate way with which to examine the potential outcomes of future environmental and/or building interventions and policies. As such, there is a need to consider the current state of indoor air pollution exposure modelling. Various indoor exposure modelling techniques are available, ranging from simple statistical regression and mass-balance approaches, to more complex multizone and computational fluid dynamics tools that have correspondingly large input data requirements. This review demonstrates that there remain challenges which limit the applicability of current models to health impact assessment. However, these issues also present opportunities for better integration of indoor exposure modelling and epidemiology in the future. The final part of the review describes the application of indoor exposure models to health impact assessments, given current knowledge and data, and makes recommendations aimed at improving model predictions in the future. PMID:20875687

  15. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  16. Control of air emissions from hazardous-waste combustion sources: field evaluations of pilot-scale air-pollution-control devices

    SciTech Connect

    Westbrook, C.W.; Tatsch, C.E.; Cottone, L.

    1986-01-01

    Pilot-scale air-pollution control devices supplied by Hydro-Sonic Systems, ETS, Inc., and Vulcan Engineering Company were installed at the ENSCO, Inc. Incinerator in El Dorado, Arkansas, in the spring of 1984. Each of these units treated an uncontrolled slipstream of the incinerator exhaust gas. Simultaneous measurement of the total particulate and HCl in the gas streams were made at the inlet to and exit from the units using an EPA Method 5 sampling train. Particle sizing at both locations using Andersen impactors was also done. The units supplied by Hydro-Sonics Systems and ETS, Inc. exhibited a high degree of HCl and particulate matter control. The Hydro-Sonic Tandem Nozzle SuperSub Model 100 gave the best overall performance for HCl and particulate control and ability to accommodate the variable composition of the exhaust gas.

  17. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  18. Rotary internal combustion engine

    SciTech Connect

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  19. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  20. The 33rd JANNAF Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1996-01-01

    This volume, the second of four volumes, is a collection of 48 unclassified/unlimited papers which were presented at the 33rd Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee Meeting conjunction with the Propulsion Systems Hazards Subcommittee held 4-8 November 1996 at the Naval Postgraduate School, Monterey, CA. The JANNAF papers contained in this volume review many areas of solid propellant combustion to include combustion fundamentals, combustion instability fundamentals and combustion instability applied to motors, AP combustion, Nitramine combustion, metal combustion, kinetics and spectroscopy and combustion topics of broad general interest.

  1. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  2. Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations. Progress report, 1 December 1985-31 May 1986

    SciTech Connect

    Chitsomboon, T.; Tiwari, S.N.

    1986-08-01

    The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.

  3. Oxy-combustion of pulverized coal : modeling of char combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  4. APTI Course 427, Combustion Evaluation. Student Workbook.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    Presented are exercises intended to supplement course work in air pollution control, specifically as they relate to combustion. Chapters offered in this workbook include: (1) Combustion Calculations, (2) Combustion System Design Problems, (3) Emission Calculations I, (4) Emission Calculations II, (5) Afterburner Design Problems, and (6) Cumbustion

  5. APTI Course 427, Combustion Evaluation. Student Workbook.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    Presented are exercises intended to supplement course work in air pollution control, specifically as they relate to combustion. Chapters offered in this workbook include: (1) Combustion Calculations, (2) Combustion System Design Problems, (3) Emission Calculations I, (4) Emission Calculations II, (5) Afterburner Design Problems, and (6) Cumbustion…

  6. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  7. Combustion 2000

    SciTech Connect

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has sought to develop and implement these HIPPS designs is outlined below.

  8. The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion

    SciTech Connect

    Chen, J.H.; Echekki, T.; Kollmann, W.

    1999-01-01

    The mechanism of unburnt pocket formation in an unsteady two-dimensional premixed lean methane-air flame is investigated using direct numerical simulations. Theoretical results for nonlinear diffusion equations combined with analytical examples are used to interpret some of the results. Flame structure and propagation show three distinct stages of pocket formation: (1) flame channel closing involving head-on quenching of flames, (2) cusp recovery, and (3) pocket burnout. The flame channel closing and subsequent pocket burnout are mutual annihilation events that feature curvature, diffusion normal to the flame front, unsteady strain rate effects, and singularities in flame propagation and stretch rate. The results show that during channel closing and pocket burnout thermo-diffusive and chemical interactions result in the acceleration of the flames prior to annihilation; the time scales associated with the final stage of mutual annihilation and the initial stage of cusp recovery are significantly smaller than diffusive and convective time scales. Peak radical concentrations resulting from flame channel closing and pocket burnout exceed peak laminar values by as much as 25%. After the merging of the fuel consumption layers, radical production and flame structure shifts more towards an H{sub 2}/CO/O{sub 2} system at the expense of hydrocarbon reactions. Species thermodiffusive interaction times are shorter than the unstrained one-dimensional counterpart due to unsteady strain and convection. Curvature effects on the flame propagation are prominent during pocket burnout and cusp recovery. The recovery stage shows strong dependence on diffusion of radicals left from the channel closing stage. This diffusion is amplified by the strong curvature of the flame cusp.

  9. Exposure to Household Air Pollution from Wood Combustion and Association with Respiratory Symptoms and Lung Function in Nonsmoking Women: Results from the RESPIRE Trial, Guatemala

    PubMed Central

    Diaz, Esperanza; Smith-Sivertsen, Tone; Lie, Rolv T.; Bakke, Per; Balmes, John R.; Smith, Kirk R.; Bruce, Nigel G.

    2014-01-01

    Background With 40% of the worlds population relying on solid fuel, household air pollution (HAP) represents a major preventable risk factor for COPD (chronic obstructive pulmonary disease). Meta-analyses have confirmed this relationship; however, constituent studies are observational, with virtually none measuring exposure directly. Objectives We estimated associations between HAP exposure and respiratory symptoms and lung function in young, nonsmoking women in rural Guatemala, using measured carbon monoxide (CO) concentrations in exhaled breath and personal air to assess exposure. Methods The Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) Guatemala study was a trial comparing respiratory outcomes among 504 women using improved chimney stoves versus traditional cookstoves. The present analysis included 456 women with data from postintervention surveys including interviews at 6, 12, and 18 months (respiratory symptoms) and spirometry and CO (ppm) in exhaled breath measurements. Personal CO was measured using passive diffusion tubes at variable times during the study. Associations between CO concentrations and respiratory health were estimated using random intercept regression models. Results: Respiratory symptoms (cough, phlegm, wheeze, or chest tightness) during the previous 6 months were positively associated with breath CO measured at the same time of symptom reporting and with average personal CO concentrations during the follow-up period. CO in exhaled breath at the same time as spirometry was associated with lower lung function [average reduction in FEV1 (forced expiratory volume in 1 sec) for a 10% increase in CO was 3.33 mL (95% CI: 0.86, 5.81)]. Lung function measures were not significantly associated with average postintervention personal CO concentrations. Conclusions: Our results provide further support for the effects of HAP exposures on airway inflammation. Further longitudinal research modeling continuous exposure to particulate matter against lung function will help us understand more fully the impact of HAP on COPD. Citation: Pope D, Diaz E, Smith-Sivertsen T, Lie RT, Bakke P, Balmes JR, Smith KR, Bruce NG. 2015. Exposure to household air pollution from wood combustion and association with respiratory symptoms and lung function in nonsmoking women: results from the RESPIRE Trial, Guatemala. Environ Health Perspect 123:285292;?http://dx.doi.org/10.1289/ehp.1408200 PMID:25398189

  10. REFERENCE GUIDELINE FOR INDUSTRIAL BOILER MANUFACTURERS TO CONTROL POLLUTION WITH COMBUSTION MODIFICATION

    EPA Science Inventory

    The report describes combustion modification methods that are available to boiler manufacturers for controlling air pollutant emissions from industrial size fossil-fuel-fired steam boilers. The methods discussed include reduction of excess air, staged combustion, air register adj...

  11. Coal combustion system

    DOEpatents

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  12. Device for improved combustion

    SciTech Connect

    Polomchak, R.W.; Yacko, M.

    1988-03-08

    A device for improved combustion is described comprising: a tubular housing member having a first end and a second end, the first and second ends each having a circular opening therethrough; a combustion chamber disposed about the second end of the-tubular-housing member; a first conduit member extending from the first end of the tubular housing member and in fluid communication with the circular opening in the first end of the tubular housing member so as to allow the passage of air therethrough; a second conduit member axially disposed within the first conduit member and extending through the first conduit member and through the tubular housing member to the circular opening the second end of the tubular housing member so as to allow the passage of fuel therethrough; means for effecting turbulence in the air passing through the tubular housing member; means for effecting turbulence in the fuel passing through the second conduit member; means for intermixing and emitting the turbulent air and the fuel in a mushroom shaped configuration with the turbulent air surrounding the mushroom shaped configuration so as to substantially eliminate noxious waste gases as by-product of combustion of the air and fuel mixture.

  13. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  14. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  15. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  16. Catalytic combustion with steam injection

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Tacina, R. R.

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  17. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  18. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  19. Study of flame quenching and near-wall combustion of lean burn fuel-air mixture in a catalytically activated spark-ignited lean burn engine

    SciTech Connect

    Nedunchezhian, N.; Dhandapani, S.

    2006-01-01

    A study of the catalytic activation of charge near the combustion chamber wall and of the flame quenching phenomenon was carried out to identify whether flame quenches due to catalytic activation or due to thermal quenching. It was found that (1) the diffusion rate of fuel into the boundary sublayer limits the catalytic surface reaction rate during combustion; (2) the results of the present flame quench model indicate that the flame quenches due to the heat loss to walls, and the depletion of fuel due to the catalyst coated on the combustion chamber walls does not affect flame quenching; (3) the catalysts coated on the combustion chamber surface do not contribute increased hydrocarbon emissions, but actually reduce them; (4) each catalyst has a specific surface temperature, at which the Damkoehler number for surface reaction is unity.

  20. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  1. Discussion of and reply to ``The achievement of good combustion by improvement of secondary air injection at the Montgomery County waste to energy facility``

    SciTech Connect

    Hasselriis, F.; Bette, M.; Schaefers, W.; Kirschner, H.; Schuetzenduebel, W.G.

    1995-11-01

    This paper by M. Bette, et al. indicates a willingness of a WTE system vendor to carry out fundamental research and publish the results so that all can benefit from it. It is timely because it emphasizes the importance of optimizing primary measures to obtain good combustion practice, as opposed to imposing the burden of removing the products of incomplete combustion, only to increase the organic materials in the collected flyash. This article also contains the original authors` reply to the comments.

  2. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure-risk functions

    NASA Astrophysics Data System (ADS)

    Bruce, Nigel; Pope, Dan; Rehfuess, Eva; Balakrishnan, Kalpana; Adair-Rohani, Heather; Dora, Carlos

    2015-04-01

    Background: 2.8 billion people use solid fuels as their primary cooking fuel; the resulting high levels of household air pollution (HAP) were estimated to cause more than 4 million premature deaths in 2012. The people most affected are among the world's poorest, and past experience has shown that securing adoption and sustained use of effective, low-emission stove technologies and fuels in such populations is not easy. Among the questions raised by these challenges are (i) to what levels does HAP exposure need to be reduced in order to ensure that substantial health benefits are achieved, and (ii) what intervention technologies and fuels can achieve the required levels of HAP in practice? New WHO air quality guidelines are being developed to address these issues. Aims: To address the above questions drawing on evidence from new evidence reviews conducted for the WHO guidelines. Methods: Discussion of key findings from reviews covering (i) systematic reviews of health risks from HAP exposure, (ii) newly developed exposure-response functions which combine combustion pollution risk evidence from ambient air pollution, second-hand smoke, HAP and active smoking, and (iii) a systematic review of the impacts of solid fuel and clean fuel interventions on kitchen levels of, and personal exposure to, PM2.5 and carbon monoxide (CO). Findings: Evidence on health risks from HAP suggest that controlling this exposure could reduce the risk of multiple child and adult health outcomes by 20-50%. The new integrated exposure-response functions (IERs) indicate that in order to secure these benefits, HAP levels require to be reduced to the WHO IT-1 annual average level (35 μg/m3 PM2.5), or below. The second review found that, in practice, solid fuel 'improved stoves' led to large percentage and absolute reductions, but post-intervention kitchen levels were still very high, at several hundreds of μg/m3 of PM2.5, although most solid fuel stove types met the WHO 24-hr average guideline for CO of 7 mg/m3. Clean fuel user studies were few, but also did not meet IT-1 for PM2.5, likely due to a combination of continuing multiple stove and fuel use, other sources in the home (e.g. kerosene lamps), and pollution from neighbours and other outdoor sources. Conclusions: Together, this evidence implies there needs to be a strategic shift towards more rapid and widespread promotion of clean fuels, along with efforts to encourage more exclusive use and control other sources in and around the home. For households continuing to rely on solid fuels, the best possible low-emission solid fuel stoves should be promoted, backed up by testing and in-field evaluation.

  3. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    SciTech Connect

    1995-12-01

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates that such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.

  4. Internal combustion engine and kit therefore

    SciTech Connect

    Powell, R.C.

    1991-11-19

    This patent describes an engine assembly. It comprises an internal combustion engine in which fuel is burned in air; an air filter having a primary port for directing a supply of air to the internal combustion engine; and, an adjustable humidifier having, an evaporative pad, a portion of the surface of the evaporative pad located in an air stream to the air filter, adjustment means for selectively increasing or decreasing the surface area of the evaporative pad exposed to the air stream, a reservoir for storage of purified liquid water, and, a water pump for recirculating purified liquid water from the reservoir over the evaporative pad.

  5. Promoted Combustion of Metals in a High-Pressure, Flowing Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Maes, M. J.; Stoltzfus, J. M.

    2001-01-01

    Traditional promoted combustion testing has used 0.125 inch diameter samples that are ignited in a pressurized, oxygen-enriched environment. Many years of testing this sample size have yielded useful data regarding threshold pressure, or the minimum oxygen pressure required to support self-sustained combustion. However, when a material is tested in a flowing system, the threshold pressure changes. White Sands Test Facility has developed a test system to burn samples in flowing gaseous oxygen. Current sample configurations are 0.5 inch diameter rods and 1.25 inch diameter pipes with pressures ranging up to 2000 psi and gas velocities reaching 200 ft/s. This paper describes the test apparatus, modifications made as the result of a fire, and a description of the tests currently being performed.

  6. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  7. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean (Lacon, IL)

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  8. Combustion detector

    NASA Technical Reports Server (NTRS)

    Trimpi, R. L.; Nealy, J. E.; Grose, W. L. (Inventor)

    1973-01-01

    A device has been developed for generating a rapid response signal upon the radiation-emitting combustion reaction of certain gases in order to provide a means for the detection and identification of such reaction and concurrently discriminate against spurious signals. This combustion might be the first stage of a coal mine explosion process, and thereby this device could provide a warning of the impending explosion in time to initiate quenching action. This device has the capability of distinguishing between the light emitted from a combustion reaction and the light emitted by miners' lamps, electric lamps, welding sparks or other spurious events so that the quenching mechanism is triggered only when an explosion-initiating combustion occurs.

  9. Oxygen enhanced switching to combustion of lower rank fuels

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  10. Difference Between IR Radiation Spectra of Ethanol in Free Diffusion Combustion Regime and Regime Influenced by an Air Flow in Modeling of a Fire Tornado

    NASA Astrophysics Data System (ADS)

    Sherstobitov, M. V.; Tsvyk, R. Sh.

    2013-06-01

    Results of experimental investigations of liquid fuel combustion in the regime of a twisted jet (model of a fire tornado) are presented. Flame radiation spectra were registered. In the chosen spectral range of registration (2.2-4.8 ?m), six spectral intervals were clearly traced in which the main portion of radiated energy was concentrated. Using the ratio of the sums of spectral intensities in the vicinities of the 6th and 3rd maxima, we successfully distinguished the regimes of modeled fire tornado and free diffusion fuel combustion.

  11. Simultaneous measurements of OH(A) and OH(X) radicals in microwave argon plasma assisted combustion of methane/air mixtures using optical emission spectroscopy and cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Wang, Chuji; Laser Spectroscopy; Plasma Team

    2013-09-01

    We developed a new plasma assisted combustion system employing a continuous atmospheric argon microwave plasma jet to enhance combustion of methane/air mixtures in different fuel equivalence ratios (?) . The combustor has three distinct reaction zones of pure plasma zone, the hybrid plasma-flame zone and pure flame zone which were well defined by their emission spectra. Optical emission spectroscopy (OES) was used to exam the excited species including OH(A) and results showed that OH(A) intensities gradually increased in plasma zone and rapidly increased in hybrid zone and then dramatically decreased to a very low level in flame zone. In addition to OES, pulsed cavity ringdown spectroscopy (CRDS) was utilized to measure the absolute number density of OH(X) in the flame zone at ? = 0.51, 0.87, 1.10 and 1.45. Different OH(X) number densities and density profiles were observed comparing rich and lean combustions. At ? = 0.51, the OH(X, V'' = 0, J'' = 0.5) number density increased from 2.29 1015 molecule cm-3 at the combustor nozzle to maximum 3.13 105 molecule cm-3 at 2 mm downstream, and then gradually decreased to the lowest detectable level of 0.12 1015 molecule cm-3 in the far downstream. Supported by NSF through No. CBET-1066486.

  12. Carburetor for internal combustion engines

    SciTech Connect

    Peterson, R.W.

    1986-09-23

    This patent describes a carburetor for an internal combustion engine which includes a source of fuel and combustion chambers, the carburetor including a body surrounding an air passage, a venturi section in the air passage and throttle means for controlling the passage of air through the air passage, the carburetor further comprising a primary fuel circuit having a first metering valve for introducing fuel from the fuel source directly into the air passage to produce a relatively lean fuel-to-air mixture, first operating means for operating the first metering valve in conjunction with the throttle means whereby each incremental movement of the throttle means produces a proportional incremental operation of the first metering valve, a secondary fuel circuit having a second metering valve for introducing additional fuel from the fuel source directly into the air passage for enriching the fuel-to-air mixture, and second operating means for operating the second metering valve in conjunction with the air pressure in the venturi section in the air passage, the second operating means being adapted to be responsive to the air pressure in the venturi section and to produce a proportional incremental operation of the second metering valve in response to incremental changes in the air pressure in the venturi section.

  13. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers. PMID:20050661

  14. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of the combustion cloud decayed due to enstrophy overline{ω 2} and dilatation overline{Δ 2}.

  15. Survey of Hydrogen Combustion Properties

    NASA Technical Reports Server (NTRS)

    Drell, Isadore L; Belles, Frank E

    1958-01-01

    This literature digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.

  16. Calculation of gas temperature at the outlet of the combustion chamber and in the air-gas channel of a gas-turbine unit by data of acceptance tests in accordance with ISO

    NASA Astrophysics Data System (ADS)

    Kostyuk, A. G.; Karpunin, A. P.

    2016-01-01

    This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.

  17. Combustion, 2nd edition

    SciTech Connect

    Glassman, I.

    1987-01-01

    The uniqueness of this book centers on the presentation of physical insights that are essential to understanding combustion. The approach is to reduce complexity by stressing physical aspects. The second edition has added, in addition to selective material in each chapter, problem sets which makes the book more suitable for the classroom. The book is divided into nine chapters. Chapter 1 is devoted to fundamental thermodynamic concepts. Chemical kinetics are covered in Chapter 2. The general oxidation characteristics of fuels and explosions are covered in Chapter 3. Chapter 4 covers flame phenomena in premixed combustible gases. Detonation is covered in Chapter 5. Chapter 6 deals with diffusion flames. Ignition is covered in Chapter 7. Chapter 8 deals with environmental considerations in combustion processes. The combustion in nonvolatile fuels is presented in Chapter 9. The Appendices of the book include: thermochemical data; reaction rate constants; dissociation energies of various hydrocarbons; laminar flame speeds; flammability limits in air; spontaneous ignition temperature data; and minimum spark ignition energies and quenching distances.

  18. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  19. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly. PMID:23298249

  20. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  1. Spontaneous ignition characteristics of gaseous hydrocarbon-air mixtures

    NASA Technical Reports Server (NTRS)

    Freeman, G.; Lefebvre, A. H.

    1984-01-01

    Experiments are conducted to determine the spontaneous ignition delay times of gaseous propane, kerosine vapor, and n-heptane vapor in mixtures with air, and oxygen-enriched air, at atmospheric pressure. Over a range of equivalence ratios from 0.2 to 0.8 it is found that ignition delay times are sensibly independent of fuel concentration. However, the results indicate a strong dependence of delay times on oxygen concentration. The experimental data for kerosine and propane demonstrate very close agreement with the results obtained previously by Mullins and Lezberg respectively.

  2. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  3. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  4. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  5. APTI Course 427, Combustion Evaluation. Student Manual.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    This student manual supplements a course designed to present fundamental and applied aspects of combustion technology which influence air pollutant emissions. Emphasis is placed on process control of combustion rather than on gas cleaning. The course is intended to provide engineers, regulatory and technical personnel, and others with familiarity…

  6. Method and system for controlled combustion engines

    DOEpatents

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  7. Turbulent Combustion in SDF Explosions

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  8. Putting combustion optimization to work

    SciTech Connect

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  9. Combustion modeling in waste tanks

    SciTech Connect

    Mueller, C.; Unal, C.; Travis, J.R. |

    1997-08-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

  10. Theoretical nitric oxide production incidental to autoignition and combustion of several fuels homogeneously dispersed in air under some typical hypersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1974-01-01

    A reaction package of 100 chemical reactions and attendant reaction rate constants defined for the autoignition and combustion of four carbonaceous fuels, CH4, CH3OH, C2H6, and C2H5OH. Definition of the package was made primarily by means of comparison between trial calculations and experimental data for the autoignition of CH4. Autoignition and combustion of each of these four fuels was calculated under three sets of conditions realistic for hypersonic flight applications, for comparison to hydrogen fuel, particularly with respect to formation of nitric oxide. Results show that, for all of the fuels including hydrogen, if NO production is a significant problem, compromise must be made between approaching equilibrium heat release and approaching equilibrium NO concentration.

  11. Turbulent combustion

    SciTech Connect

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  12. Method of reducing the oxides of nitrogen in fossil fuels combustion and combustion effluents using amine compounds

    SciTech Connect

    Turchan, O.C.

    1990-07-24

    This patent describes a process for the reduction of oxides of nitrogen formed in the combustion of fossil fuels, within a fuel combustion reaction zone of a fossil fuels fired combustion apparatus or combustion device. The oxides of nitrogen reduction process comprises: the step of interjecting an admixture of oxides of nitrogen reducing agents consisting essentially of methylamine, ethylamine, ethylenediamine, diethylenetriamine, aniline, monoethylaniline, toluidine and xylidine, interjected individually or in any combination into the the fuel combustion reaction zone containing combustion fuel, combustion air and products of fuel combustion, including the oxides of nitrogen generated in the combustion of the fossil fuels, wherein the the admixture of oxides of nitrogen reducing agents react with the the oxides of nitrogen generated within the the fuel combustion reaction zone.

  13. Furnace combustion zone temperature control method

    SciTech Connect

    McIntyre, G.C.; Lacombe, R.J.; Forbess, R.G.

    1991-05-28

    This patent describes a method for controlling temperature in a combustion zone in a furnace, independent of flue gas oxygen content. It comprises: supplying combustion air to the furnace for combustion of a fuel therein; providing a plurality of low volume gas flow entry ports to the combustion zone in the furnace with carrier gas continuously flowing through the ports into the combustion zone; selecting a set point value for the combustion zone temperature which, upon the temperature exceeding the set point value, commences generation of a fine water mist external the combustion zone by mist generating means within the carrier gas, the mist flowing into the combustion zone with the carrier gas and reducing temperature within the combustion zone by vaporization therein; and adding a proportionately greater amount of water mist to the carrier gas as the temperature of the combustion zone deviates above the set point value, the amount of water mist added limited by the capacity of the mist generating means, and ceasing the water mist generation upon the combustion zone temperature falling to or below the set point value.

  14. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  15. INDUCED SECONDARY COMBUSTION IN WOODSTOVES

    EPA Science Inventory

    The paper provides information useful for woodstove designers concerned with reducing emissions. A dual-chamber woodstove was modified to induce secondary combustion by utilizing an ignition source and forced flow of secondary air. The ignition source was an electric glow plug in...

  16. Catalyzing the Combustion of Coal

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Dokko, W.

    1982-01-01

    Reaction rate of coal in air can be increased by contacting or coating coal with compound such as calcium acetate. The enhanced reaction rate generates more heat, reducing furnace size. Increase in combustion rate is about 26 percent, and internal pollutants in powerplant are reduced.

  17. Hydrogen combustion in tomorrow's energy technology

    NASA Astrophysics Data System (ADS)

    Peschka, W.

    The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.

  18. Liquid propellant combustion waves

    NASA Astrophysics Data System (ADS)

    Yoon, W. S.; Chung, T. J.

    1991-06-01

    Design of efficient and stable combustors depends on accurate analysis of flowfields. This study examines combustion waves arising from hydrogen-air reactions in the scramjet flame holders with various ramp angles. Two-step Taylor-Galerkin finite element methods are used to solve the Navier-Stokes system of equations. Fluctuation quantities are calculated from the Navier-Stokes solution as a function of time. From these data the energy growth rate parameters and energy growth factors using the entropy-controlled instability method are determined.

  19. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  20. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  1. Preparation and characterization of nano- and non-nanoscale Co?O? spinels obtained from different methods and study of their performance in combustion of aromatics from polluted air-A comparison with Pt/?-Al?O? performance.

    PubMed

    Hosseini, Seyedali; Niaei, Aligholi; Salari, Dariush

    2012-01-01

    This article reports the development of oxidative precipitation (OP) method for synthesis of Co(3)O(4) as an environmental catalyst and comparison of its performance with that of obtained from conventional sol gel combustion (SG) method and industrial Pt/?-Al(2)O(3) in remediation of toluene from air. Catalytic studies were carried out in a fixed bed reactor at 100-350C under atmospheric pressure. Co(3)O(4) (OP) showed the highest activity in combustion of toluene. The half conversion temperature of toluene (T(50%)) was 160, 258, and 229C on Co(3)O(4) (OP), Co(3)O(4) (SG) and Pt/?-Al(2)O(3), respectively. The higher activity of Co(3)O(4) (OP) was ascribed to nanostructure and reducibility of catalytic sites at lower temperatures, approved by TPR results. The study confirmed that preparation method has a large influence on the chemical-physical properties and activity of the catalyst. The study indicated that oxidative precipitation method could be a promising method to synthesize environmental catalysts considering the simplicity and needless to calcine catalyst at higher temperatures. PMID:22755518

  2. Effects of secondary air swirling on the lift-off and combustion characteristics of a burning Jet-A fuel spray

    SciTech Connect

    Aref, A.A.; Gollahalli, S.R.

    1995-12-31

    This paper describes an experimental study of the flame characteristics of a twin-fluid atomizer spray burning in a swirling flow field of secondary air. Commercial Jet-A fuel was atomized producing a solid spray whose lift-off characteristics are compared with those of a spray flame in quiescent surroundings that have been reported earlier. The secondary-air flow velocity and the swirl number were the independent variables. Swirling secondary air flow was generated by a cyclone chamber with four tangential air entries. The parameters studied include lift off height, droplet size and number density distribution in the flame anchoring region, flame radiation, and the concentrations of pollutants in the exhaust.

  3. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  4. Assessment of Literature Related to Combustion Appliance Venting Systems

    SciTech Connect

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  5. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  6. APPLICATION OF COMBUSTION MODIFICATIONS TO INDUSTRIAL COMBUSTION EQUIPMENT (DATA SUPPLEMENT B)

    EPA Science Inventory

    The supplement provides raw data from a study of the effects of combustion modifications on air pollutant emissions from a variety of industrial combustion equipment. Tested were 22 units, including refinery process heaters; clay and cement kilns; steel and aluminum furnaces; boi...

  7. APPLICATION OF COMBUSTION MODIFICATIONS TO INDUSTRIAL COMBUSTION EQUIPMENT (DATA SUPPLEMENT A)

    EPA Science Inventory

    The supplement provides raw data from a study of the effects of combustion modifications on air pollutant emissions from a variety of industrial combustion equipment. Tested were 22 units, including refinery process heaters; clay and cement kilns; steel and aluminum furnaces; boi...

  8. Combustion in porous media

    SciTech Connect

    Dillon, J.

    1999-09-01

    A 2.8-liter tube-shaped combustion vessel was constructed to study flame propagation and quenching in porous media. For this experiment, hydrogen-air flames propagating horizontally into abed of 6 mm diameter glass beads were studied. Measurements of pressure and temperature along the length of the tube were used to observe flame propagation of quenching. The critical hydrogen concentration for Hz-air mixtures was found to be 11.5%, corresponding to a critical Peclet number of Pe* = 37. This value is substantially less than the value of Pe* = 65 quoted in the literature, for example Babkin et al. (1991). It is hypothesized that buoyancy and a dependence of Pe on the Lewis number account for the discrepancy between these two results.

  9. 29th JANNAF Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Gannaway, Mary T. (Editor)

    1992-01-01

    This volume, the second of five volumes, is a collection of 38 unclassified/unlimited papers which were presented at the 29th Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee Meeting, 19-23 October 1992, at NASA Langley Research Center, Hampton, Virginia. Specific subjects discussed include combustion phenomena in air breathing, liquid and solid systems, energetic materials in solids, and combustion instability in solid rocket motors.

  10. MONITORING STRATEGIES FOR FLUIDIZED BED COMBUSTION COAL PLANTS

    EPA Science Inventory

    Air and water monitoring strategies for commercial-size Fluidized Bed Combustion (FBC) coal plants are presented. This is one of five reports developing air and water monitoring strategies for advanced coal combustion (FBC), coal conversion (coal gasification and liquefaction), a...

  11. EMISSION REDUCTION ON TWO INDUSTRIAL BOILERS WITH MAJOR COMBUSTION MODIFICATIONS

    EPA Science Inventory

    The report gives results of a study of the effects on pollutant emissions of extensive combustion modifications on two industrial boilers. Staged combustion, variable excess air, and variable air preheat were evaluated while firing natural gas or No. 6 fuel oil in a watertube boi...

  12. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  13. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  14. Oscillating combustion from a premix fuel nozzle

    SciTech Connect

    Richards, G.A.; Yip, M.J.

    1995-08-01

    Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

  15. Combustion Limits and Efficiency of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  16. Combustibility of titanium powders

    NASA Technical Reports Server (NTRS)

    Popov, Ye. I.; Poyarkov, V. G.; Finayev, Yu. A.

    1989-01-01

    The combustion of compact samples was studied; the mechanism of autoignition is defined. Several studies are made of the combustibility of titanium using 50 samples. The data provide a clear idea of the combustibility of titanium powders.

  17. The reduction of gas phase air toxics from combustion and incineration sources using the GE-Mitsui-BF activated coke process

    SciTech Connect

    Olson, D.G.; Tsuji, K.; Shiraishi, I.

    1998-07-01

    The dry desulfurization, denitrification and air toxics removal process using activated coke (AC) was originally researched and developed during the 1960's by Bergbau Forschung (BF), now called Deutsche Montan Technologies. Mitsui Mining Company (MMC) signed a licensing agreement with BF in 1982 to investigate, test and adapt the system to facilities in Japan. Japanese regulations are stricter than in the US toward SOx/NOx pollutants, as well as flyash emissions from the utility industry, oil refineries and other industries. This process is installed on four coal-fired boilers and Fluidized Catalytic Cracker (FCC) units. These plants were constructed by MMC in Japan and Uhde GmbH in Germany. General Electric Environmental Services, Inc. (GEESI) signed a license agreement in 1992 with MMC and Mitsui and Company, Ltd. Of Tokyo. Under this agreement, GEESI will market, design, fabricate and install the Mitsui-BF process for flue gas cleaning applications in North America. MMC also developed a technology to produce AC used in the dry DeSOx/DeNOx/Air Toxics removal process based on their own metallurgical coke manufacturing technology. This paper provides information on the details of MMC's AC used in the dry DeSOx/DeNOx/Air Toxics removal process and of the DeSOx/DeNOx/Air Toxics removal process itself.

  18. Uncontrolled combustion of shredded tires in a landfill - Part 2: Population exposure, public health response, and an air quality index for urban fires

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Spak, Scott N.; Stone, Elizabeth A.; Downard, Jared; Bullard, Robert L.; Pooley, Mark; Kostle, Pamela A.; Mainprize, Matthew W.; Wichman, Michael D.; Peters, Thomas M.; Beardsley, Douglas; Stanier, Charles O.

    2015-03-01

    The Iowa City Landfill in eastern Iowa, United States, experienced a fire lasting 18 days in 2012, in which a drainage layer of over 1 million shredded tires burned, generating smoke that impacted the surrounding metropolitan area of 130,000 people. This emergency required air monitoring, risk assessment, dispersion modeling, and public notification. This paper quantifies the impact of the fire on local air quality and proposes a monitoring approach and an air quality index (AQI) for use in future tire fires and other urban fires. Individual fire pollutants are ranked for acute and cancer relative risks using hazard ratios, with the highest acute hazard ratios attributed to SO2, particulate matter, and aldehydes. Using a dispersion model in conjunction with the new AQI, we estimate that smoke concentrations reached unhealthy outdoor levels for sensitive groups out to distances of 3.1 km and 18 km at 24-h and 1-h average times, respectively. Modeled and measured concentrations of PM2.5 from smoke and other compounds such as VOCs and benzo[a]pyrene are presented at a range of distances and averaging times, and the corresponding cancer risks are discussed. Through reflection on the air quality response to the event, consideration of cancer and acute risks, and comparison to other tire fires, we recommend that all landfills with shredded tire liners plan for hazmat fire emergencies. A companion paper presents emission factors and detailed smoke characterization.

  19. Uncontrolled combustion of shredded tires in a landfill -Part 2: Population exposure, public health response, and an air quality index for urban fires

    PubMed Central

    Singh, Ashish; Spak, Scott N.; Stone, Elizabeth A.; Downard, Jared; Bullard, Robert; Pooley, Mark; Kostle, Pamela A.; Mainprize, Matthew W.; Wichman, Michael D.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.

    2015-01-01

    The Iowa City Landfill in eastern Iowa, United States, experienced a fire lasting 18 days in 2012, in which a drainage layer of over 1 million shredded tires burned, generating smoke that impacted the surrounding metropolitan area of 130,000 people. This emergency required air monitoring, risk assessment, dispersion modeling, and public notification. This paper quantifies the impact of the fire on local air quality and proposes a monitoring approach and an Air Quality Index (AQI) for use in future tire fires and other urban fires. Individual fire pollutants are ranked for acute and cancer relative risks using hazard ratios, with the highest acute hazard ratios attributed to SO2, particulate matter, and aldehydes. Using a dispersion model in conjunction with the new AQI, we estimate that smoke concentrations reached unhealthy outdoor levels for sensitive groups out to distances of 3.1 km and 18 km at 24-h and 1-h average times, respectively. Modeled and measured concentrations of PM2.5 from smoke and other compounds such as VOCs and benzo[a]pyrene are presented at a range of distances and averaging times, and the corresponding cancer risks are discussed. Through reflection on the air quality response to the event, consideration of cancer and acute risks, and comparison to other tire fires, we recommend that all landfills with shredded tire liners plan for hazmat fire emergencies. A companion paper presents emission factors and detailed smoke characterization. PMID:25624787

  20. In situ investigation of laser-induced ignition and the early stages of methane-air combustion at high pressures using a rapidly tuned diode laser at 2.55 ?m

    NASA Astrophysics Data System (ADS)

    Lackner, Maximilian; Forsich, Christian; Winter, Franz; Kopecek, Herbert; Wintner, Ernst

    2003-11-01

    The laser-induced ignition of methane/air-mixtures at elevated pressures was investigated by an absorption spectroscopic technique. A room temperature continuous wave InGaAsSb/AlGaAsSb quantum well ridge diode laser was wavelength tuned around 2.55 ?m by periodically modulating the injection current from 0 to 174 mA at a 5 kHz repetition rate. The laser heat sink temperature was fixed at 291 K. The infrared laser beam was sent through the pressurized combustion vessel perpendicularly to the igniting laser beam (Nd:YAG laser, 10 ns pulse duration, 20 mJ) at the position of the ignition spark. Fuel-rich to fuel-lean mixtures of methane/air (air equivalence ratio 0.89, 1.06, 1.42, 2.50) were investigated at initial pressures of up to 3 MPa. The initial temperature was 473 K, the volume of the combustion vessel 0.910 -3 m 3. The formation of water vapor in the vicinity of the laser spark was tracked by the diode laser. The time resolution of the measurements was 0.2 ms for a total continuous measurement time of up to 1 s. In this way, the laser-induced ignition and its accompanying effects could be investigated on a time scale spanning four orders of magnitude. Apart from the absorbance of water vapor which could be determined semi-quantitatively (due to the effects of severe pressure broadening at high pressures and the ignorance of the exact temperature distribution after ignition), the emissions from the flame (broadband, 1-10 ?m) and a gas inhomogeneity index were recorded. The gas inhomogeneity index was obtained by extracting a frequency variable from the time-dependent fluctuations of the transmitted laser intensities and calculating its derivation. The absorbance of water vapor, the emissions from the flame and the gas inhomogeneity index were found to be a powerful tool to characterize laser-induced ignition. Major implications of in situ species concentration measurements at high pressures for the design and development of high-load combustors are presented.

  1. Emissions, combustion dynamics, and control of a multiple swirl combustor

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang

    To achieve single digit NOx emission from gas turbine combustors and prevent the combustion dynamics encountered in Lean Premixed Combustion, it is essential to understand the correlations among emission characteristics, combustion dynamics, and dynamics and characteristics of swirling flow field. The focus of this dissertation is to investigate the emission characteristics and combustion dynamics of multiple swirl dump combustors either in premixing or non-premixed combustion (e.g. Lean Direct Injection), and correlate these combustion characteristics (emissions, combustion instability and lean flammability) to the fluids dynamics (flow structures and its evolution). This study covers measurement of velocity flow field, temperature field, and combustion under effects of various parameters, including inlet flow Reynolds number, inlet air temperature, swirl configurations, downstream exhaust nozzle contraction ratios, length of mixing tube. These parameters are tested in both liquid and gaseous fuel combustions. Knowledge obtained through this comprehensive study is applied to passive and active controls for improving gas turbine combustion performance in the aid of novel sensor and actuator technologies. Emissions and combustion characteristics are shown closely related to the shape and size of central recirculation zone (CRZ), the mean and turbulence velocity and strain rate, and dynamics of large vortical structures. The passive controls, mostly geometry factors, affect the combustion characteristics and emissions through their influences on flow fields, and consequently temperature and radical fields. Air assist, which is used to adjust the momentum of fuel spray, is effective in reducing NOx and depress combustion oscillation without hurting LBO. Fuel distribution/split is also one important factor for achieving low NOx emission and control of combustion dynamics. The dynamics of combustion, including flame oscillations close to LBO and acoustic combustion instability, can be characterized by OH*/CH* radical oscillations and phase-locked chemiluminescence imaging. The periodic fluctuation of jet velocity and formation of large vortical structures within CRZ are responsible for combustion instability in multiple swirl combustors.

  2. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G. (San Diego, CA)

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  3. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  4. Municipal-waste combustion assessment: Combustion control at existing facilities

    SciTech Connect

    Schindler, P.J.

    1989-08-01

    The EPA's Office of Air Quality Planning and Standards (OAQPS) is developing emission standards and guidelines for new and existing municipal waste combustors (MWCs) under the authority of Sections 111(b) and 111(d) of the Clean Air Act (CAA). The EPA's Office is providing support in developing the technical basis for good combustion practice (GCP), which is included as a regulatory alternative in the standards and guidelines. The report provides the supporting data and rationale used to establish baseline emission levels for model plants that represent portions of the existing population of MWCs. The baseline emissions were developed using the existing MWC data base or, in cases where no data existed, engineering judgement. The baseline emmissions represent performance levels against which the effectiveness and costs of emission control alternatives can be evaluated. The report provides the rationale used to estimate the emission reductions associated with each combustion retrofit.

  5. Polycyclic Aromatic Hydrocarbon Exposure in Household Air Pollution from Solid Fuel Combustion among the Female Population of Xuanwei and Fuyuan Counties, China

    PubMed Central

    2015-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) from burning “smoky” (bituminous) coal has been implicated as a cause of the high lung cancer incidence in the counties of Xuanwei and Fuyuan, China. Little is known about variations in PAH exposure from throughout the region nor how fuel source and stove design affects exposure. Indoor and personal PAH exposure resulting from solid fuel combustion in Xuanwei and Fuyuan was investigated using repeated 24 h particle bound and gas-phase PAH measurements, which were collected from 163 female residents of Xuanwei and Fuyuan. 549 particle bound (283 indoor and 266 personal) and 193 gas phase (all personal) PAH measurements were collected. Mixed effect models indicated that PAH exposure was up to 6 times higher when burning smoky coal than smokeless coal and varied by up to a factor of 3 between different smoky coal geographic sources. PAH measurements from unventilated firepits were up to 5 times that of ventilated stoves. Exposure also varied between different room sizes and season of measurement. These findings indicate that PAH exposure is modulated by a variety of factors, including fuel type, coal source, and stove design. These findings may provide valuable insight into potential causes of lung cancer in the area. PMID:25393345

  6. Treating chemistry in combustion with detailed mechanisms -- In situ adaptive tabulation in principal directions -- Premixed combustion

    SciTech Connect

    Yang, B.; Pope, S.B.

    1998-01-01

    A new method to treat chemical reactions in combustion problems with detailed mechanisms is developed. The method is called in situ adaptive tabulation in principal directions (ISATPD). The tabulation is done in situ during combustion calculations and is made in the first few principal directions of the composition space. The integration of the governing equations of chemical reactions is made using detailed mechanisms. Test calculations of the premixed pairwise mixing stirred reactor (PPMSR) are performed for methane/air combustion with a skeletal mechanism consisting of 16 species and 40 reactions, and for natural gas combustion with the GRI 2.11 mechanism consisting of 49 species and 279 reactions. Results show that this method has excellent accuracy (for all species) and efficiency. A speedup in performing chemistry of 1,665 is obtained for the methane/air combustion system with the skeletal mechanism. The speedup will increase as the calculation continues since less integrations will be performed.

  7. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  8. Research on oxidation by air and tempering of Raney nickel electrocatalysts for the H2 anodes of alkali combustion materials cells. Thesis - Braunschweig Technische Univ., 1982

    NASA Technical Reports Server (NTRS)

    Selbach, H. J.

    1984-01-01

    The controlled oxidation in air of Raney nickel electrocatalysts was studied, with special attention paid to the quantitative analysis of nickel hydroxide. The content of the latter was determined through X-ray studies, thermogravimetric measurements, and spectral photometric examinations. The dependence of the content on the drying of activated catalyst is determined. The influence of nickel hydroxide on the electrochemical parameters of the catalyst, such as diffusion polarization, is studied, including a measurement of the exchange current density using the potential drop method. Conservation by oxidation in air with ancillary stabilization of the oxide in an H2 flow at 300 C is explored, including reduction by H2, the influence of tempering time, and structural studies on conserved and stabilized catalyst, long term research on the catalyst, including the influence of aging on the reduced catalyst, and the results of impedance measurements are presented.

  9. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration.

    PubMed

    Caldern-Garcidueas, Lilian; Vojdani, Aristo; Blaurock-Busch, Eleonore; Busch, Yvette; Friedle, Albrecht; Franco-Lira, Maricela; Sarathi-Mukherjee, Partha; Martnez-Aguirre, Xavier; Park, Su-Bin; Torres-Jardn, Ricardo; D'Angiulli, Amedeo

    2015-01-01

    Millions of children are exposed to concentrations of air pollutants, including fine particulate matter (PM2.5), above safety standards. In the Mexico City Metropolitan Area (MCMA) megacity, children show an early brain imbalance in oxidative stress, inflammation, innate and adaptive immune response-associated genes, and blood-brain barrier breakdown. We investigated serum and cerebrospinal fluid (CSF) antibodies to neural and tight junction proteins and environmental pollutants in 139 children ages 11.91 4.2 y with high versus low air pollution exposures. We also measured metals in serum and CSF. MCMA children showed significantly higher serum actin IgG, occludin/zonulin 1 IgA, IgG, myelin oligodendrocyte glycoprotein IgG and IgM (p < 0.01), myelin basic protein IgA and IgG, S-100 IgG and IgM, and cerebellar IgG (p < 0.001). Serum IgG antibodies to formaldehyde, benzene, and bisphenol A, and concentrations of Ni and Cd were significantly higher in exposed children (p < 0.001). CSF MBP antibodies and nickel concentrations were higher in MCMA children (p = 0.03). Air pollution exposure damages epithelial and endothelial barriers and is a robust trigger of tight junction and neural antibodies. Cryptic 'self' tight junction antigens can trigger an autoimmune response potentially contributing to the neuroinflammatory and Alzheimer and Parkinson's pathology hallmarks present in megacity children. The major factor determining the impact of neural antibodies is the integrity of the blood-brain barrier. Defining the air pollution linkage of the brain/immune system interactions and damage to physical and immunological barriers with short and long term neural detrimental effects to children's brains ought to be of pressing importance for public health. PMID:25147109

  10. Measurement of air toxic emissions from a coal-fired boiler equipped with a tangentially-fired low NOx combustion system

    SciTech Connect

    Dismukes, E.B.; Clarkson, R.J.; Hardman, R.R.; Elia, G.G.

    1993-11-01

    This paper presents the results of measurements of chemical emissions from a coal-burning, tangentially-fired, utility boiler equipped with a hot-side electrostatic precipitator and a low NOx firing system. The tests were conducted in response to Title III of the 1990 Amendments to the Clean Air Act which lists 189 chemicals to be evaluated as {open_quotes}Air Toxics.{close_quotes} The project was jointly funded by the Electric Power Research Institute and the US Department of Energy under an existing Innovative Clean Coal Technology Cooperative Agreement managed by Southern Company Services. Field chemical emissions monitoring was conducted in two phases: a baseline {open_quotes}pre-low NOx burner{close_quotes} condition in September 1991 and in the LNCFS Level III low NOx firing condition in January 1992. In addition to stack emissions measurements of both organic and inorganic chemicals, plant material balance evaluations were performed to determine the efficiency of the hot-side ESP at controlling emissions of air toxics and to determine the fate of the target chemicals in various plant process streams.

  11. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances. PMID:25594282

  12. JANNAF 37th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 59 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 37th Combustion Subcommittee (CS) meeting held jointly with the 25th Airbreathing Propulsion Subcommittee (APS), 19th Propulsion Systems Hazards Subcommittee (PSHS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the CS meeting include: a keynote address on the Future Combat Systems, and review of a new JANNAF Modeling and Simulation Subcommittee, and technical papers on gun propellant burning rate, gun tube erosion, advanced gun propulsion concepts, ETC guns, novel gun propellants; liquid, hybrid and novel propellant combustion; solid propellant combustion kinetics, GAP, ADN and RDX combustion, sandwich combustion, metal combustion, combustion instability, and motor combustion instability.

  13. Solid waste combustion for alpha waste incineration

    SciTech Connect

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials.

  14. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  15. Combustion mode switching with a turbocharged/supercharged engine

    SciTech Connect

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  16. 31st JANNAF Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Gannaway, Mary T. (Editor)

    1994-01-01

    This volume, the second of four volumes, is a collection of 36 unclassified/unlimited papers which were presented at the 31st Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee Meeting in conjunction with the Exhaust Plume Technology Subcommittee and SPIRITS User Group Meeting held 17-21 October 1994 at the Lockheed Missiles and Space Company, Sunnyvale, California. Specific subjects discussed include solid propellant combustion instability and unsteady combustion, rocket motors, guns and marine combustion characteristics, solid propellant formulation and solid and gas phase combustion kinetics.

  17. JANNAF 36th Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 11, the second of three volumes is a compilation of 33 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24 Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include gun solid propellant ignition and combustion, Electrothermal Chemical (ETC) propulsion phenomena, liquid propellant gun combustion and barrel erosion, gas phase propellant combustion, kinetic and decomposition phenomena and liquid and hybrid propellant combustion behavior.

  18. 31st JANNAF Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Gannaway, Mary T. (Editor)

    1994-01-01

    This volume, the first of our volumes, is a collection of 32 unclassified/unlimited papers which were presented at the 31st Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee Meeting in conjunction with the Exhaust Plume Technology Subcommittee and SPIRITS User Group Meeting held 17-21 October 1994 at the Lockheed Missiles and Space Company, Sunnyvale, California. Specific subjects discussed include: combustion characteristics of metallized solids in nozzles and plumes; airbreathing propulsion; advanced and electrothermal-chemical guns; gun propellant ignition and interior ballistics; liquid propellant guns; liquid propellant combustion and combustion oscillation and liquid rocket engine combustion.

  19. On-line measurement of heat of combustion

    NASA Technical Reports Server (NTRS)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  20. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  1. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  2. Test Would Quantify Combustion Oxygen From Different Sources

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.

    1993-01-01

    Proposed isotope-enrichment scheme enables determination of contributions of dual sources of oxygen for combustion. Liquid oxygen or other artificial stream enriched with O(18) to about 1 percent by weight. Combustion products analyzed by mass spectrometer to measure relative abundances of H2O(18) and H2O(16). From relative abundances of water products measured, one computes relative contribution of oxygen extracted from stream compared to other source of oxygen in combustion process. Used to determine contributions of natural oxygen in air and liquid oxygen supplied in separate stream mixed with air or sent directly into combustion chamber.

  3. Parallel Processing in Combustion Analysis

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.

    2000-01-01

    The objective of this research is to demonstrate the application of the Flow-field Dependent Variation (FDV) method to a problem of current interest in supersonic chemical combustion. Due in part to the stiffness of the chemical reactions, the solution of such problems on unstructured three dimensional grids often dictates the use of parallel computers. Preliminary results for the injection of a supersonic hydrogen stream into vitiated air are presented.

  4. Homogeneous catalysts in hypersonic combustion

    SciTech Connect

    Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

    1989-01-01

    Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

  5. Internal combustion engine and method for control

    SciTech Connect

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  6. Combustion. Second edition

    SciTech Connect

    Glassman, I.

    1986-01-01

    This book describes the fundamental physical and chemical phenomena underlying the basic aspects of combustion. Major topics include: hydrocarbon oxidation processes; diffusion flames and surface combustion; premixed laminar and turbulent flame phenomena; environmental combustion considerations-NO/sub x/, SO/sub x/, and soot; and combustion thermodynamics and kinetics.

  7. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1996-12-31

    This publication contains technical papers published as they were presented at a recent specialty conference sponsored by the Air & Waste Management Association, titled Waste Combustion in Boilers and Industrial Furnaces, held March 26-27, 1996, in Kansas City, Missouri. Papers touch on compilance concerns for air pollution, air monitoring methodologies, risk assessment, and problems related to public anxiety. Separate abstracts have been indexed into the database from this proceedings.

  8. Sensing combustion intermediates by femtosecond filament excitation.

    PubMed

    Li, He-Long; Xu, Huai-Liang; Yang, Bo-Si; Chen, Qi-Dai; Zhang, Tao; Sun, Hong-Bo

    2013-04-15

    Simultaneous monitoring of multiple combustion intermediates using femtosecond filament-induced nonlinear spectroscopy is demonstrated. Clean fluorescence emissions from free radicals CH, CN, NH, OH, and C(2), as well as atomic C and H, are observed when a femtosecond filament is formed in the laminar ethanol/air flame on an alcohol burner. The fluorescence signals of these species are found to vary as functions of the position of interaction of the filament with the flame along the vertical axis of the central combusting flow, opening up a possibility for remote combustion diagnostic in engines by the excitation of femtosecond laser filament. PMID:23595448

  9. Combustion driven oscillations

    NASA Astrophysics Data System (ADS)

    Mugridge, B. D.

    1980-06-01

    Combustion driven oscillations can occur when a turbulent flame is enclosed in a tube or cavity. Interaction between heat fluctuations and the internal standing wave field at one of the natural frequencies of the air column produces strong organ pipe tones. The sound power emitted by this thermal-acoustic interaction depends on the impedance either side of the combustion zone and on a transfer function defining the response of the flame to sound wave disturbances. If this power exceeds the rate at which energy is dissipated at the cavity boundaries then there is a growth of the internal pressure field and an increase in the radiated sound. Plane wave theory is used to calculate the flame transfer function and adjacent impedances for a simple gas fired tube assembly. The predicted instability frequencies are then compared with experimental data. The results indicate that the flame transfer function plays a dominant role in determining the acoustic stability of the cavity and that insufficient data is available for accurately predicting unsteady flame front behavior.

  10. Effect of Oxyfuel Combustion on Superheater Corrosion

    SciTech Connect

    Covino, B.S., Jr.; Matthes, S.A.; Bullard, S.J.

    2008-03-16

    Combustion of coal in an oxygen environment (as opposed to air) will facilitate the sequestering of carbon dioxide by minimizing the amount of nitrogen in the exit gas stream. The presence of higher levels of certain gases associated with oxyfuel combustion (eg, CO2, SO2, and H2O) may impact the corrosion of waterwalls, superheaters, headers, reheaters, and other boiler components. Research is being conducted on bare and ash-embedded boiler tube materials in simulated oxyfuel- combustion and air-combustion environments at a superheater temperature of 675°C. Alloys were exposed at temperature to two different gaseous environments. Preliminary results show: (1) an increase in corrosion rate of bare K02707, K11547, K21590, K91560, K92460, S30409, S34700, and N06617 exposed to the oxyfuel combustion environment when compared to the air combustion environment; (2) an increase in corrosion rate of alloys K21590, K92460, S34700, and N06617, when embedded in ash in comparison to bare exposure; and (3) no effect of gaseous environment on alloy corrosion rate when embedded in ash.

  11. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  12. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  13. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  14. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  15. Mechanisms and kinetics of granulated sewage sludge combustion.

    PubMed

    Kijo-Kleczkowska, Agnieszka; ?roda, Katarzyna; Kosowska-Golachowska, Monika; Musia?, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. PMID:26306758

  16. Counter-gradient transport in the combustion of a premixed CH{sub 4}/air annular jet by combined PIV/OH-LIF

    SciTech Connect

    Troiani, G.; Marrocco, M.; Giammartini, S.; Casciola, C.M.

    2009-03-15

    A combination of PIV/OH laser induced fluorescence technique is used to measure the conditional - burned and unburned - gas velocity in a turbulent premixed CH{sub 4}/air annular bluff-body stabilized burner. By changing the equivalence ratio from lean to almost stoichiometric, the energy budget of the recirculating region anchoring the flame is altered in such a way to increasingly lift the flame away from the jet exit. The overall turbulence intensity interacting with each flame is thus systematically varied in a significant range, allowing for a parametric study of its effect on turbulent scalar transport under well controlled conditions, always well within the flamelet regime. The component of the flux normal to the average front is found to reverse its direction, confirming the Bray number as a good indicator of gradient/counter-gradient behavior, once the actual incoming turbulence level felt locally by the flame is assumed as the proper control parameter. (author)

  17. Mercury and air toxic element impacts of coal combustion by-product disposal and utilization. Final report (for the period January 23, 2003 - December 31, 2006)

    SciTech Connect

    Hassett, D.; Heebink, L.V.; Pflughoeft-Hassett, D.

    2007-10-15

    The air toxic elements (ATEs) evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Results of laboratory evaluations indicated that: mercury and sometimes selenium are collected with activated carbon (AC) used for mercury emission control and, therefore present at higher concentrations than samples collected without mercury emission controls present. Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls. Field experiments vapor-phase releases at a CCB disposal site. Results indicated low-level vapor-phase mercury releases, as was generally noted in laboratory experiments for lignite fly ash samples. Laboratory methods were developed to evaluate the potential for mercury releases under several release mechanicals. 48 refs., 21 figs., 76 tabs., 21 apps.

  18. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  19. Research program on reduced combustion chamber heat loss effects on alternative fuel combustion

    SciTech Connect

    Daby, E.E.; Garwin, I.J.; Havstad, P.H.; Hunter, C.E.

    1988-10-01

    A research program was conducted to determine the effects of thermal barriers in the combustion chamber of a diesel engine on the combustion and emissions of selected alternative fuels. Comparison of steady state fuel economy, exhaust emissions, and combustion data of heat insulated, baseline water-cooled, and high compression ratio engines were made using three fuels. Fuels believed to be representative of the year 2000 fuel were selected for the study. In fact, the light cycle oil fuel used was similar to CAPE.32 fuel (No. 6). Ceramic coatings and solid ceramic inserts were used to insulate the combustion chamber of the heat insulated, uncooled engine. Fuel economy and NOx emissions were generally lower for the heat insulated, uncooled engine than for the baseline engine and high compression water-cooled engine. Light load hydrocarbons were lower for the high compression ratio engine than for those of the baseline engine; however, hydrocarbon emissions for the heat insulated engine were higher than those of the baseline engine over the complete range of engine operating conditions tested. Heat insulating the combustion chamber and operating the water-cooled engine at elevated intake air temperature and high compression ratio reduced ignition delay and premixed combustion while increasing the amount of diffusion combustion. Further optimization of the combustion chamber, air motion, and the injection system of the heat insulated, uncooled engine may result in additional reductions in exhaust emissions not observed during this study. 59 figs., 2 tabs.

  20. Combustion instability modeling and analysis

    SciTech Connect

    Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  1. Combustion 2000

    SciTech Connect

    2000-06-30

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  2. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and methane release, some of the water from the dissociated zone needs to be drained. The results

  3. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  4. A laboratory scale supersonic combustive flow system

    SciTech Connect

    Sams, E.C.; Zerkle, D.K.; Fry, H.A.; Wantuck, P.J.

    1995-02-01

    A laboratory scale supersonic flow system [Combustive Flow System (CFS)] which utilizes the gaseous products of methane-air and/or liquid fuel-air combustion has been assembled to provide a propulsion type exhaust flow field for various applications. Such applications include providing a testbed for the study of planar two-dimensional nozzle flow fields with chemistry, three-dimensional flow field mixing near the exit of rectangular nozzles, benchmarking the predictive capability of various computational fluid dynamic codes, and the development and testing of advanced diagnostic techniques. This paper will provide a detailed description of the flow system and data related to its operation.

  5. Plasma igniter for internal combustion engine

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  6. Combustion 2000

    SciTech Connect

    1999-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  7. Relationship between pulmonary function and indoor air pollution from coal combustion among adult residents in an inner-city area of southwest China

    PubMed Central

    Jie, Y.; Houjin, H.; Xun, M.; Kebin, L.; Xuesong, Y.; Jie, X.

    2014-01-01

    Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke. PMID:25296361

  8. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  9. Optical fiber system for combustion quality analysis in power boilers

    NASA Astrophysics Data System (ADS)

    Wojcik, Waldemar; Surtel, Wojciech; Smolarz, Andrzej; Kotyra, Andrzej; Komada, Pawel

    2001-06-01

    The introduction of low emission techniques of combustion caused side-effects like oxygen lean corrosion. It also enforced more precise management of technological air, better coal milling and application of devices for combustion process monitoring. In the article authors presented their own solution of optical fiber system for combustion quality evaluation, already operating on power boiler type OP-650. Its functionality was described together with selected results of measurements. Directions of further development of the system were also indicated.

  10. Combustion intensity and distribution relation to noise generation

    NASA Technical Reports Server (NTRS)

    Plett, E. G.; Leshner, M. D.; Summerfield, M.

    1975-01-01

    Experiments with several different flame holder geometries were conducted to investigate the degree to which combustion roughness can be altered by altering the flame intensity and flame distribution in a ducted combustion system. The effect of admitting primary air through a plane-slotted or a slotted-swirl vane flame holder was compared and the combustion roughness and noise was contrasted with that obtained with a closed front-end perforated can. The slotted front-end burners produced much smoother burning and less noise than the closed front-end can. No advantage was apparent with swirl vs nonswirl when approximately the same inlet flow distribution was maintained. Preheated inlet air provided somewhat smoother combustion as compared with ambient temperature air. The combustion roughness with methyl alcohol was briefly compared with that of isooctane; indications are that it burns more smoothly, but more detailed studies are needed to substantiate these indications.

  11. Modeling the internal combustion engine

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  12. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  13. CFD-simulation of hydrogen combustion in internal combustion engines

    SciTech Connect

    Bludszuweit, S.; Schmidt, H.; Britsch, M.; Holzapfel, J.

    1996-12-31

    The globally recognized importance of hydrogen in meeting the future energy demand of mankind is broadly based on its non-polluting incorporation into the general nature cycle. Simultaneously, the use of hydrogen can mitigate and even reverse the dangerous perturbation of the equilibrium in the earth`s atmosphere. However, high costs and safety risks prevent its wider use. Optimization of the combustion process and the elimination of potential risks are therefore of obvious importance. Sophisticated CFD software packages provide an effective approach to the solution of these complex problems. This paper describes numerical flow simulations of the mixing process and chemical reactions between oxygen and air. The simulation results were validated by experiment. The studies also revealed that powerful simulation tools can be used to improve combustion process efficiency. This can significantly reduce the load on the environment.

  14. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  15. Fundamentals of Gas Turbine combustion

    NASA Technical Reports Server (NTRS)

    Gerstein, M.

    1979-01-01

    Combustion problems and research recommendations are discussed in the areas of atomization and vaporization, combustion chemistry, combustion dynamics, and combustion modelling. The recommendations considered of highest priority in these areas are presented.

  16. DEMONSTRATION BULLETIN: THE PYRETRON OXYGEN BURNER, AMERICAN COMBUSTION TECHNOLOGIES, INC.

    EPA Science Inventory

    The Pyretron is a burner which is designed to allow for the injection of oxygen into the combustion air stream for the purpose of increasing the efficiency of a hazardous waste incinerator. The SITE demonstration of the Pyretron took place at the U.S. EPA's Combustion Re...

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... malfunction of the heater or its associated components; and (2) No combustion air duct may restrict the prompt... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...

  18. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... malfunction of the heater or its associated components; and (2) No combustion air duct may restrict the prompt... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...

  19. Free-radicals aided combustion with scramjet applications

    NASA Technical Reports Server (NTRS)

    Yang, Yongsheng; Kumar, Ramohalli

    1992-01-01

    Theoretical and experimental investigations aimed at altering 'nature-prescribed' combustion rates in hydrogen/hydrocarbon reactions with (enriched) air are presented. The intent is to anchor flame zones in supersonic streams, and to ensure proper and controllable complete combustion in scramjets. The diagnostics are nonintrusive through IR thermograms and acoustic emissions in the control and free-radicals altered flame zones.

  20. Stoichiometric Experiments with Alkane Combustion: A Classroom Demonstration

    ERIC Educational Resources Information Center

    Zhilin, Denis M.

    2012-01-01

    A simple, effective demonstration of the concept of limiting and excess reagent is presented. Mixtures of either air/methane (from a gas line) or air/butane (from a disposable cigarette lighter) contained in a plastic 2 L soda bottles are ignited. The mixtures combust readily when air/fuel ratios are stoichiometric, but not at a 2-fold excess of…