Science.gov

Sample records for oxygenated pure water

  1. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    GENG, Ming; DUAN, Zhenhao

    2010-10-01

    A thermodynamic model is presented to calculate the oxygen solubility in pure water (273-600 K, 0-200 bar) and natural brines containing Na +, K +, Ca 2+, Mg 2+, Cl -, SO 42-, over a wide range of temperature, pressure and ionic strength with or close to experimental accuracy. This model is based on an accurate equation of state to calculate vapor phase chemical potential and a specific particle interaction model for liquid phase chemical potential. With this approach, the model can not only reproduce the existing experimental data, but also extrapolate beyond the data range from simple aqueous salt system to complicated brine systems including seawater. Compared with previous models, this model covers much wider temperature and pressure space in variable composition brine systems. A program for this model can be downloaded from the website: http://www.geochem-model.org.

  2. Pure Water From a Pure Genius

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ammonium perchlorate is widely used throughout the aerospace, munitions, and pyrotechnics industries as a primary ingredient in solid rocket and missile propellants, fireworks, and explosive charges. This highly soluble salt has tainted soils and water sources all over the world, and is believed to be an endocrine disrupter, adversely affecting the growth patterns of a fetus or a young child. UMPQUA Research Company (URC), once a small drinking water testing laboratory and a research and development contractor for NASA's manned spaceflight applications, has evolved to become a leader in water purification and analysis. With a total of 11 patents issued for new technologies created by URC under NASA SBIR contracts and a 25-year commitment to water recycling, the company clearly possessed the qualifications necessary to tackle the presence of perchlorate in water. An SBIR contract with NASA's Marshall Space Flight Center that concentrated on the stringent water quality requirements of long-term, manned spaceflight was the source for URC's process and catalyst to facilitate the destruction of perchlorate and nitrate in water. URC licensed the rights of its unique reduction reaction process to Calgon Carbon Corporation for use with the company's perchlorate/nitrate remediation process, otherwise known as ISEP(R).

  3. Water Broadening of Oxygen

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Mlawer, Eli

    2013-06-01

    A need for precise air-mass retrievals utilizing the near-infrared O_2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data, especially in the near-infrared where pressure broadened linewidth must compete with the relatively large thermal linewidth. Existing water broadening data^a for the O_2 A-band is of insufficient precision for application to the atmospheric data. Because of the nature of scattering processes, it is believed that broadening parameters for O_2 from one spectral region may be transferable to other spectral regions - so we investigated the O_2 60 GHz magnetic dipole Q branch which is also used prominently in remote sensing. Atmospheric retrievals of air-mass and temperature that use the 60 GHz magnetic dipole Q branch incorporate a water-broadening parameter that is scaled to self-broadened values, but there is only high temperature data that directly supports this hypothesis.^b We present precise O_2-H_2O broadening measurements for the magnetic dipole Q-branch and the pure-rotational band, measured at room temperature with a Zeeman-modulated absorption cell and a frequency-multiplier spectrometer. Here we will describe the apparatus and the measurement analysis. Inter-comparisons of these and other O_2 broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measurements. Finally, we encourage the application of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band. ^a E.M. Vess et al. J. Phys. Chem. A 116, 4069-4073 (2012). ^b G. Fanjoux et al. J. Chem. Phys. 101(2) 1061-1071 (1994).

  4. Laser ignition of bulk 1018 carbon steel in pure oxygen

    NASA Technical Reports Server (NTRS)

    Nguyen, K.; Branch, M. C.

    1986-01-01

    Experiments were undertaken to study the ignition characteristics of bulk 1018 carbon steel in a pure oxygen environment. Cylindrical 1018 carbon steel specimens 5 mm in diameter and 5 mm high were ignited by a focused CW CO2 laser beam in a cool, static, pure oxygen environment at oxygen pressures ranging from 0.103 to 6.895 MPa. A two-color pyrometer was designed and used to measure the ignition temperatures of the specimens. The temperature history of a spot approximately 0.5 mm in diameter located at the center of the specimen top surface was recorded with a maximum time resolution of 25 microsec, and with an accuracy of a few percent. Ignition temperature of bulk 1018 carbon steel was identified from the temperature history curve with the aid of the light intensity curve. Results show that 1018 carbon steel specimens ignite at temperatures between 1388 and 1450 K, which are below the melting range of the alloy (1662-1685 K). The ignition temperature of 1018 carbon steel is mildly dependent on oxygen pressure over the range of oxygen pressure investigated in this study.

  5. Femtosecond pulses propagation through pure water

    NASA Astrophysics Data System (ADS)

    Naveira, Lucas; Sokolov, Alexei; Byeon, Joong-Hyeok; Kattawar, George

    2007-10-01

    Recently, considerable attention has been dedicated to the field of optical precursors, which can possibly be applied to long-distance underwater communications. Input beam intensities have been carefully adjusted to keep experiments in the linear regime, and some experiments have shown violation of the Beer-Lambert law. We are presently carrying out experiments using femtosecond laser pulses propagating through pure water strictly in the linear regime to study this interesting and important behavior. We are also employing several new and innovative schemes to more clearly define the phenomena.

  6. SINGLET OXYGEN IN NATURAL WATERS

    EPA Science Inventory

    Singlet oxygen is a reactive, electronically excited form of molecular oxygen that rapidly oxidizes a wide variety of organic substances, such as the polycyclic aromatics in petroleum hydrocarbon and the amino acids, histidine, tryptophan, and methionine. Studies of water samples...

  7. Calibration of sound velocimeter in pure water

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Zhang, Baofeng; Li, Tao; Zhu, Junchao; Xie, Ziming

    2016-01-01

    Accurate measurement of sound speed is important to calibrate a sound velocity profiler which provides real-time sound velocity to the sonar equipment in oceanographic survey. The sound velocity profiler calculates the sound speed by measuring the time-of-flight of a 1 MHz single acoustic pulse to travel over about 300 mm path. A standard sound velocimeter instrument was invited to calibrate the sound velocity profiler in pure water at temperatures of 278,283, 288, 293, 298, 303 and 308K in a thermostatic vessel at one atmosphere. The sound velocity profiler was deployed in the thermostatic vessel alongside the standard sound velocimeter instrument and two platinum resistance thermometers (PRT) which were calibrated to 0.002k by comparison with a standard PRT. Time of flight circuit board was used to measure the time-of-flight to 22 picosecond precision. The sound speed which was measured by the sound velocity profiler was compared to the standard sound speed calculated by UNESCO to give the laboratory calibration coefficients and was demonstrated agreement with CTD-derived sound speed using Del Grosso's seawater equation after removing a bias.

  8. Evaluation of the persistence of micropollutants through pure-oxygen activated sludge nitrification and denitrification

    USGS Publications Warehouse

    Levine, A.D.; Meyer, M.T.; Kish, G.

    2006-01-01

    The persistence of pharmaceuticals, hormones, and household and industrial chemicals through a pure-oxygen activated sludge, nitrification, denitrification wastewater treatment facility was evaluated. Of the 125 micropollutants that were tested in this study, 55 compounds were detected in the untreated wastewater, and 27 compounds were detected in the disinfected effluent. The persistent compounds included surfactants, fire-retardant chemicals, pesticides, fragrance compounds, hormones, and one pharmaceutical. Physical-chemical properties of micropollutants that affected partitioning onto wastewater solids included vapor pressure and octanol-water partition coefficients.

  9. Pure-oxygen radiative shocks with electron thermal conduction

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Shull, J. Michael

    1990-01-01

    Steady state radiative shock models in gas composed entirely of oxygen are calculated with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich SNRs. Models with electron thermal conduction differ significantly from models in which conduction is neglected. Conduction reduces postshock electron temperatures by a factor of 7-10 and flattens temperature gradients. The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 km/s. The electron temperature in the O III forbidden line formation region is 30,000 K, in agreement with the 20,000 K derived from observations. All models with conduction have extensive warm (T above 4000 K) photoionization zones, which provides better agreement with observed optical O I line strengths.

  10. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%. PMID:17251012

  11. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    NASA Astrophysics Data System (ADS)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  12. Electrical Conduction in Pure Water - Trapping and Scattering of Positive Protons and Negative Proton Holes

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    2015-03-01

    Water has been characterized by hydronium (H3O)1+ and hydroxide (HO)1- ions, which fail to explain the electrical conductivity of even pure water. Experimental formulas of pure water versus temperature (0-100C) have employed 39 empirical parameters to fit 3 measured properties: ion concentration, and electrical conductance of pure water and (H3O)1+ ion. We have shown (4 invited talks, 3 articles in 14 months) that electrical conduction in pure water can be represented by 5 quasi-particles in the many-body water lattice: the mobile positively charged protons p+ and negatively charged proton holes p-, and the 3 charge states of the immobile water molecule as amphoteric protonic trap, V+ = (H3O)1+, V0+/- = (H2O)0+/-, and V- = (HO)1-; and as few as 6 physics parameters: 3 binding energies, 1 protonic density of state, and 2 Coulombic scattering strengths. Protons in water are strongly coupled to the protonic-phonons, oxygen-phonons and protonic-local modes. Impuritons and affinitons may be present in the hexagonal tunnels of the water lattices.

  13. Comparison of the macroscopic properties of field-accelerated electrons in dry air and in pure oxygen

    NASA Astrophysics Data System (ADS)

    Fournier, G.; Bonnet, J.; Pigache, D.

    1980-06-01

    The numerical solution of the Boltzmann equation for an ionized gas yields the macroscopic properties of electrons accelerated by an electric field in dry air and in pure oxygen. For the purpose of ozone generation, the stronger the field, the better the efficiency of oxygen dissociation. In air, the oxygen dissociation is found to be much less easy than that at the same amount of pure oxygen.

  14. Super-Maxwellian helium evaporation from pure and salty water

    NASA Astrophysics Data System (ADS)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L.; Nathanson, Gilbert M.

    2016-01-01

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  15. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  16. Pure and aerated water entry of a flat plate

    NASA Astrophysics Data System (ADS)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  17. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band

    NASA Astrophysics Data System (ADS)

    AL-Jalali, Muhammad A.; Aljghami, Issam F.; Mahzia, Yahia M.

    2016-03-01

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG- 1) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  18. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. PMID:26709019

  19. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  20. OH in Rutile: an Oxygen and Water Barometer

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Manning, C. E.; Antignano, A.; Tropper, P.

    2005-12-01

    Dehydration of the subducting lithosphere induces oxidation and partial melting in the mantle wedge above subduction zones, and storage of water in the form of hydroxyl in high-pressure mineral phases may be an important mechanism for transfer of water to the mantle. It is therefore important to quantify water content of fluids and oxygen fugacity in subduction zones, but these variables can be difficult to measure or infer in many rocks. This study investigates the possibility of determining oxygen fugacity or water activity based on OH concentration measurements in rutile. The solubility of OH in pure rutile has been determined using rutile grains from aqueous fluid solubility experiments (Tropper and Manning 2005, Am Min, 90, 502). In pure rutile, H+ is stoichiometrically incorporated into the structure via reduction of Ti4+ to Ti3+, resulting in a change in color from pale yellow to deep blue. Synthetic rutile crystals were equilibrated in pure H2O or a H2O-NaCl solution at 1-2 GPa and 600-1100°C. The runs were unbuffered with respect to oxygen fugacity but were close to the NNO buffer (Newton and Manning 2005, J Petr, 46, 701). Rutile OH concentrations were determined using FTIR spectroscopy and the calibration of Maldener (2001, Min Pet, 71, 21). At a constant pressure of 1 GPa, OH concentrations of rutile in equilibrium with pure H2O increase exponentially from 600 to 1100°C. The data are fit with the equation [OH] = 17.7exp(4.00×10-3T) (R=0.998), where [OH] is in ppm H2O wt. and T is in °C. Increasing pressure from 1 to 2 GPa at 1100°C results in an increase in OH solubility from 1540 to 2220 ppm H2O. OH solubility in rutile decreases from 2220 to 1290 ppm H2O by lowering the water activity of the fluid from 1 to 0.49 at P = 2 GPa and T = 1100°C. Using the solubility data and the exchange reaction, Ti3+O(OH) + O2 = Ti4+O2 + <

  1. Electrical Mobility of Protons and Proton-Holes in Pure Water Characterized by Physics-Based Water Model

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    Pure water has been characterized empirically for nearly a century, as dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. Last March, we reported that the ~40 year experimental industrial standard of chemical equilibrium reaction constant, the ion product, can be accounted for by a statistical-physics-based concentration product of two electrical charge carriers, the positively charged protons, p+, and the negatively charged proton holes or prohols, p-, with a thermal activation energy or proton trapping well depth of Ep + / p - = 576 meV, in the 0-100OC pure liquid water. We now report that the empirically fitted industrial standard experimental data (1985, 1987, 2005) of the two dc ion mobilities in liquid water, can also be accounted for by trapping-limited drift of protons and prohols through proton channels of lower proton electrical potential valleys, Ep+/0 <= Ep-/0 <(Ep + / p -/3), in the tetrahedrally-directed electron-pair-bonded oxygen ions, O2-, in hexagonal lattice based on the 1935 Pauling statistical model using the 1933 Bernal-Fowler water rule.

  2. A water-soluble luminescence oxygen sensor.

    PubMed

    Castellano, F N; Lakowicz, J R

    1998-02-01

    We developed a water-soluble luminescent probe for dissolved oxygen. This probe is based on (Ru[dpp(SO3Na)2]3) cl2, which is a sulfonated analogue of the well-known oxygen probe (Ru[dpp]3)cl2. The compound dpp is 4,7-diphenyl-1,10-phenanthroline and dpp(SO3Na)2 is a disulfonated derivative of the same ligand. In aqueous solution in the absence of oxygen (Ru[dpp(SO3Na)2]3)cl2 displays a lifetime of 3.7 microseconds that decreases to 930 ns on equilibrium with air and 227 ns on equilibrium with 100% oxygen. The Stern-Volmer quenching constant is 11,330 M-1. This high oxygen-quenching constant means that the photoluminescence of Ru(dpp[SO3Na]2)3cl2 is 10% quenched at an oxygen concentration of 8.8 x 10(-6) M, or equilibration with 5.4 torr of oxygen. The oxygen probe dissolved in water displays minimal interactions with lipid vesicles composed of dipalmityl-L-alpha-phosphatidyl glycerol but does appear to interact with human serum albumin. The absorption maximum near 480 nm, long lifetime and large Stokes' shift allow this probe to be used with simple instrumentation based on a light-emitting diode light source, allowing low-cost oxygen sensing in aqueous solutions. To the best of our knowledge this is the first practical water-soluble oxygen sensor. PMID:9487796

  3. Module for Oxygenating Water without Generating Bubbles

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia; Sidik, Reyimjan; Kim, Jinseong

    2004-01-01

    A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one

  4. Comparison of dissolved-organic-carbon residuals from air- and pure-oxygen-activated-sludge sequencing-batch reactors.

    PubMed

    Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

    2006-03-01

    Literature shows that full-scale pure-oxygen activated sludge (O2-AS) wastewater treatment plants (WWTPs) generate effluents with higher dissolved-organic carbon (DOC) concentrations and larger high-molecular-weight fractions compared to air-activated-sludge (Air-AS) WWTP effluents. The purpose of this paper was to evaluate how gas supplied (air vs. pure oxygen) to sequencing-batch reactors affected DOC transformations. The main conclusions of this paper are (a) O2-AS effluent DOC is more refractory than air-AS effluent DOC; and (b) O2-AS systems may have higher five-day biochemical oxygen demand removals than air-AS systems; however, in terms of COD and DOC removal, air-AS systems are better than O2-AS systems. Analysis of a database from side-by-side O2- and air-AS pilot tests from literature supported these observations. PMID:16629273

  5. Solid State Physics View of Liquid State Chemistry III. Electrical Conductance of Pure and Impure Water

    NASA Astrophysics Data System (ADS)

    Binbin, Jie; Chihtang, Sah

    2014-04-01

    The ‘abnormally’ high electrical conductivity of pure water was recently studied by us using our protonic bond, trap and energy band model, with five host particles: the positive and negative protons, and the amphoteric protonic trap in three charge states, positive, neutral and negative. Our second report described the electrical charge storage capacitance of pure and impure water. This third report presents the theory of particle density and electrical conductance of pure and impure water, including the impuritons, which consist of an impurity ion bonded to a proton, proton-hole or proton trap and which significantly affect impure waters' properties.

  6. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys.

    PubMed

    Nakagawa, Masaharu; Matsuya, Shigeki; Udoh, Koichi

    2002-06-01

    The effects of dissolved-oxygen concentration and fluoride concentration on the corrosion behaviors of commercial pure titanium, Ti-6Al-4V and Ti-6Al-7Nb alloys and experimentally produced Ti-0.2Pd and Ti-0.5Pt alloys were examined using the corrosion potential measurements. The amount of dissolved Ti was analyzed by inductively coupled plasma mass spectroscopy. A decrease in the dissolved-oxygen concentration tended to reduce the corrosion resistance of Ti and Ti alloys. If there was no fluoride, however, corrosion did not occur. Under low dissolved-oxygen conditions, the corrosion of pure Ti and Ti-6Al-4V and Ti-6Al-7Nb alloys might easily take place in the presence of small amounts of fluoride. They were corroded by half or less of the fluoride concentrations in commercial dentifrices. The Ti-0.2Pd and Ti-0.5Pt alloys did not corrode more, even under the low dissolved-oxygen conditions and a fluoride-containing environment, than pure Ti and Ti-6Al-4V and Ti-6Al-7Nb alloys. These alloys are expected to be useful as new Ti alloys with high corrosion resistance in dental use. PMID:12238790

  7. A discovery of an ultra-pure water detection method based on water mark

    NASA Astrophysics Data System (ADS)

    Cao, Hui-Wen; Jing, Yu-Peng; Zhao, Shi-Rui; Xu, Xin-Wei; Tian, He; Xin, Xin; Li, Xiao-Ning; Liu, Bo; Liu, Rui-Tao; Wang, Gang; Ge, Jie; Cai, Hua-Lin; Yang, Yi; Ren, Tian-Ling

    2015-02-01

    The purity evaluation of deionized (DI) water is highly desirable for VLSI or ULSI industry, as the traditional "reverse osmosis filter" cannot always meet the requirement towards the DI water. The filtered DI water may still contain many contaminations which are not up to the standard for the wet cleaning of wafer surface. A novel method is presented by analyzing the residues of a water droplet after the low-temperature evaporation. The contamination contained in the water will remain during the gasification. By analyzing the residual contamination's morphology, the purity of the DI water can be estimated by employing merely a 3D laser microscope. Compared to the traditional fluorescence detecting system for water quality monitoring, it is simpler and has a lower cost. The paper describes an excellent water detection method which is meaningful for preparing ultra-pure water. Experimental results have shown that the deionized distilled (DID) water can repeatedly get a higher purity using this detection method. The DID water can be applied to the wet cleaning of wafer surface, preparation of chemical reagents and many other aspects.

  8. Determination of pure neutron radiolysis yields for use in chemical modeling of supercritical water

    NASA Astrophysics Data System (ADS)

    Edwards, Eric J.

    This work has determined pure neutron radical yields at elevated temperature and pressure up to supercritical conditions using a reactor core radiation. The data will be necessary to provides realistic conditions for material corrosion experiments for the supercritical water reactor (SCWR) through water chemistry modeling. The work has been performed at the University of Wisconsin Nuclear Reactor using an apparatus designed to transport supercritical water near the reactor core. Low LET yield data used in the experiment was provided by a similar project at the Notre Dame Radiation Lab. Radicals formed by radiolysis were measured through chemical scavenging reactions. The aqueous electron was measured by two methods, a reaction with N2O to produce molecular nitrogen and a reaction with SF6 to produce fluoride ions. The hydrogen radical was measured through a reaction with ethanol-D6 (CD3CD2OD) to form HD. Molecular hydrogen was measured directly. Gaseous products were measured with a mass spectrometer and ions were measured with an ion selective electrode. Radiation energy deposition was calibrated for neutron and gamma radiation separately with a neutron activation analysis and a radiolysis experiment. Pure neutron yields were calculated by subtracting gamma contribution using the calibrated gamma energy deposition and yield results from work at the Notre Dame Radiation Laboratory. Pure neutron yields have been experimentally determined for aqueous electrons from 25°C to 400°C at 248 bar and for the hydrogen radical from 25°C to 350°C at 248 bar, Isothermal data has been acquired for the aqueous electron at 380°C and 400°C as a function of density. Molecular hydrogen yields were measured as a function of temperature and pressure, although there was evidence that chemical reactions with the walls of the water tubing were creating molecular hydrogen in addition to that formed through radiolysis. Critical hydrogen concentration behavior was investigated but a

  9. Water oxygenation by fluidic microbubble generator

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Peszynski, K.

    2014-03-01

    Oxygenation of water by standard means in waste water processing, in particular to improve the conditions for the micro-organisms that decompose organic wastes is rather ineffective. The classical approach to improvements - decreasing the size of the aerator exits - have already reached their limits. A recent new idea is to decrease the size of the generated air bubbles by oscillating the supplied air flow using fluidic oscillators. Authors made extensive performance measurements with an unusual high-frequency fluidic oscillator, designed to operate within the submersed aerator body. The performance was evaluated by the dynamic method of recording the oxygen concentration increase to saturation in the aerated water. Experiments proved the fluidic generator can demonstrably increase the aeration efficiency 4.22-times compared with the aeration from a plain end of a submerged air supply tube. Despite this significant improvement, the behaviour of the generator still provides an opportunity for further improvements.

  10. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  11. Structural and electrical properties of pure and Cu doped NiO films deposited at various oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Reddy, A. Mallikarjuna; Reddy, A. Sivasankar; Reddy, P. Sreedhara

    2013-02-01

    Pure and Cu doped NiO thin films were successfully deposited by dc reactive magnetron sputtering technique at various oxygen partial pressures in the range 9 × 10-5 to 6 × 10-4 mbar. It was observed that oxygen partial pressure influence the structural and electrical properties. All the deposited films were polycrystalline and exhibited cubic structure with preferential growth along (220) plane for NiO films and (111) and (220) planes for Cu doped NiO films. All the deposited films exhibited p-type conductivity. The electrical resistivity decreased from 62.24 to 9.94 Ω cm and the mobility and carrier concentration were increased with oxygen partial pressure.

  12. Destruction of Trace Organics in Otherwise Ultra Pure Water

    SciTech Connect

    Prairie, M. R.; Stange, B. M.; Showalter, S. K.; Magrini, K. A.

    1995-12-01

    A number of experiments were conducted to determine the economic viability of applying various ultraviolet (UV) oxidation processes to a waste water stream containing approximately 12 mg/L total organic carbon (TOC), predominately ethylene glycol. In all experiments, a test solution was illuminated with either near-UV or a far-UV light alone or in combination with a variety of photocatalysts and oxidants. Based upon the outcomes of this project, both UV/photocatalysis and UV/ozone processes are capable of treating the water sample to below detection capabilities of TOC. However, the processes are fairly energy intensive; the most efficient case tested required 11 kWh per order of magnitude reduction in TOC per 1000 L. If energy consumption rates of 5-10 kWh/1000 L are deemed reasonable, then further investigation is recommended.

  13. Destruction of trace organics in otherwise ultra pure water

    SciTech Connect

    Prairie, M.R.; Stange, B.M.; Showalter, S.K.; Magrini, K.A.

    1995-12-01

    A number of experiments were conducted to determine the economic viability of applying various ultraviolet (UV) oxidation processes to a waste water stream containing approximately 12 mg/L total organic carbon (TOC), predominately ethylene glycol. In all experiments, a test solution was illuminated with either near-UV or a far-UV light alone or in combination with a variety of photocatalysts and oxidants. Based upon the outcomes of this project, both UV/photocatalysis and UV/ozone processes are capable of treating the water sample to below detection capabilities of TOC. However, the processes are fairly energy intensive; the most efficient case tested required 11 kWh per order of magnitude reduction in TOC per 1000 L. If energy consumption rates of 5-10 kWh/1000 L are deemed reasonable, then further investigation is recommended.

  14. Ab-initio study of oxygen defects in pure ThO2

    NASA Astrophysics Data System (ADS)

    Ghosh, Partha S.; Gupta, S. K.; Ali, K.; Arya, A.; Dey, G. K.

    2016-05-01

    First principles calculations using projector augmented wave potentials and generalized gradient approximations predicts the structural relaxations due to neutral and positively charged oxygen defects (+1 and +2) in bulk thoria leads to symmetric distortion around the vacancy site. Electronic Density of states (DOS) analysis shows presence of defects states mainly contributed by Th d and f states near the conduction band minima for the double positively charged oxygen vacancy which is having lowest energy of formation.

  15. Near-infrared spectroscopic assessment of oxygen delivery to free flaps on monkeys following vascular occlusions and inhalation of pure oxygen

    NASA Astrophysics Data System (ADS)

    Tian, Fenghua; Ding, Haishu; Cai, Zhigang; Wang, Guangzhi; Zhao, Fuyun

    2002-04-01

    In recent studies, near-infrared spectroscopy (NIRS) has been considered as a potentially ideal noninvasive technique for the postoperative monitoring of plastic surgery. In this study, free flaps were raised on rhesus monkeys' forearms and oxygen delivery to these flaps was monitored following vascular occlusions and inhalation of pure oxygen. Optical fibers were adopted in the probe of the oximeter so that the detection could be performed in reflectance mode. The distance between emitter and detector can be adjusted easily to achieve the best efficacy. Different and repeatable patterns of changes were measured following vascular occlusions (arterial occlusion, venous occlusion and total occlusion) on flaps. It is clear that the near-infrared spectroscopy is capable of postoperatively monitoring vascular problems in flaps. NIRS showed high sensitivity to detect the dynamic changes in flaps induced by inhalation of pure oxygen in this study. The experimental results indicated that it was potential to assess tissue viability utilizing the dynamic changes induced by a noninvasive stimulation. It may be a new assessing method that is rapid, little influenced by other factors and brings less discomfort to patients.

  16. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Remote Sensing of Dissolved Oxygen and Nitrogen in Water using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    De Young, R.; Ganoe, R.

    2013-12-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle experiment has demonstrated the ability to remotely detect dissolved oxygen and nitrogen in pure water (also Chesapeake Bay water) using a 355nm Nd:YAG laser and a simple monochromater to detect the shifted Raman oxygen and nitrogen backscattered signals at 376.2 and 387.5 nm respectively. The theoretical basis for the research, components of the experimental system, and key findings are presented. A 1.3-m water cell had an attached vertical column to house a Troll 9500 dissolved oxygen in-situ monitor (In-Situ Inc Troll 9500). The Raman oxygen signal could be calibrated with this devise. While Raman backscattered water signals are low a potential aircraft remote system was designed and will be presented.

  18. The influence of oxygen exchange between sulfite and water on the oxygen isotope composition of sulfate

    NASA Astrophysics Data System (ADS)

    Müller, I. A.; Brunner, B.

    2012-12-01

    Sulfate does not exchange oxygen with the water under most environmental conditions. Therefore, its oxygen isotope composition serves as an archive of past oxidative sulfur cycling. Studies on the oxygen isotope signature of sulfate produced from reduced sulfur compounds show varying relative contributions of two possible oxygen sources; molecular oxygen and water, and variable isotope fractionations relative to these two compounds. These discrepancies could be due to differences in the production and consumption of sulfuroxy intermediates which exchange oxygen with water. Thereby, the rate of oxygen exchange as well as the rate of oxidation depends on the pH. Studies on the oxygen isotope exchange effects between sulfuroxy intermediates and water and on the oxygen isotope effects during the oxidation of sulfuroxy intermediates are scarce, severely limiting the interpretability of oxygen isotope signatures in sulfate. Sulfite is often considered to be the last/final sulfuroxy intermediate in the oxidation of reduced sulfur compounds to sulfate and may, therefore, be pivotal in shaping the oxygen isotope signature of sulfate. We determined the oxygen isotope equilibrium fractionation between sulfite and water and used the obtained equilibrium value to determine the oxygen isotope effects in abiotic sulfite oxidation experiments. Our results demonstrate that natural variations in the oxygen isotope composition of sulfate produced by oxidative processes can be explained by differences in the interplay of the sulfite oxidation rate and oxygen isotope exchange rate between sulfite and water which both depend on pH conditions and availability of oxidizing agents (e.g. molecular oxygen or ferric iron). Our findings contribute to a more detailed mechanistic understanding of the oxidation of reduced sulfur compounds and underline the importance of sulfite as the final sulfuroxy intermediate in oxidative sulfur cycling.

  19. Water Processor and Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    Bedard, John

    1997-01-01

    This report documents the results of the tasks which initiated efforts on design issues relating to the Water Processor (WP) and the Oxygen Generation Assembly (OGA) Flight Hardware for the International Space Station. This report fulfills the Statement of Work deliverables requirement for contract H-29387D. The following lists the tasks required by contract H-29387D: (1) HSSSI shall coordinate a detailed review of WP/OGA Flight Hardware program requirements with personnel from MSFC to identify requirements that can be eliminated without affecting the technical integrity of the WP/OGA Hardware; (2) HSSSI shall conduct the technical interchanges with personnel from MSFC to resolve design issues related to WP/OGA Flight Hardware; (3) HSSSI will initiate discussions with Zellwegger Analytics, Inc. to address design issues related to WP and PCWQM interfaces.

  20. Water ICE: Ion Exclusion Chromatography of Very Weak Acids with a Pure Water Eluent.

    PubMed

    Liao, Hongzhu; Shelor, C Phillip; Dasgupta, Purnendu K

    2016-05-01

    Separation of ions or ionizable compounds with pure water as eluent and detecting them in a simple fashion has been an elusive goal. It has been known for some time that carbonic acid can be separated from strong acids by ion chromatography in the exclusion mode (ICE) using only water as the eluent. The practice of water ICE was shown feasible for very weak acids like silicate and borate with a dedicated element specific detector like an inductively coupled plasma mass spectrometer (ICPMS), but this is rarely practical in most laboratories. Direct conductometric detection is possible for H2CO3 but because of its weak nature, not especially sensitive; complex multistep ion exchange methods do not markedly improve this LOD. It will clearly be impractical in acids that are weaker still. By using a permeative amine introduction device (PAID, Anal. Chem. 2016 , 88 , 2198 - 2204 ) as a conductometric developing agent, we demonstrate that a variety of weak acids (silicate, borate, arsenite, cyanide, carbonate, and sulfide) cannot only be separated on an ion exclusion column, they can be sensitively detected (LODs 0.2-0.4 μM). We observe that the elution order is essentially the same as that on a nonfunctionalized poly(styrene-divinylbenzene) column using 1-10% acetonitrile as eluent and follows the reverse order of the polar surface area (PSA) of the analyte molecules. PSA values have been widely used to predict biological transport of pharmaceuticals across a membrane but never to predict chromatographic behavior. We demonstrate the application of the technique by measuring the silicate and borate depth profiles in the Pacific Ocean; the silicate results show an excellent match with results from a reference laboratory. PMID:27075932

  1. The infrared continuum of pure water vapor - Calculations and high-temperature measurements

    NASA Technical Reports Server (NTRS)

    Hartmann, J. M.; Perrin, M. Y.; Ma, Q.; Tippings, R. H.

    1993-01-01

    Results of experimental and theoretical studies of medium infrared absorption by pure water vapor are reported. The experiments were performed in the 1900-2600/cm and 3900-4600/cm regions for temperatures and pressures of 500-900 K and 0-70 atm, respectively. The results are consistent with data in the literature and enable the determination of continuous absorption parameters.

  2. Oxygen isotope correlation of cetacean bone phosphate with environmental water

    NASA Astrophysics Data System (ADS)

    Yoshida, Naohiro; Miyazaki, Nobuyuki

    1991-01-01

    The variation with time in the oxygen isotope ratio of the oceans is of prime interest in a variety of research fields. An excellent correlation between oxygen isotope ratios of cetacean (whales, dolphins, and porpoises) bone phosphate and their environmental water is found in this study. Bone phosphate samples of dolphins living in fresh waters are more depleted in oxygen 18 than those of cetaceans living in the oceans, reflecting the clear difference in the isotope composition of water. Cetaceans distributed in the higher latitudes in the oceans are more depleted in oxygen 18 than those distributed in the lower latitudes where seawater is slightly enriched in oxygen 18 relative to that in the higher latitudes. The present results provide a promising tool for estimating the oxygen isotope ratio of the oceanic water of the past without assuming water temperature.

  3. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes. PMID:25746652

  4. Concentration determination of oxygen nanobubbles in electrolyzed water.

    PubMed

    Kikuchi, Kenji; Ioka, Aoi; Oku, Takeo; Tanaka, Yoshinori; Saihara, Yasuhiro; Ogumi, Zempachi

    2009-01-15

    Water electrolysis is well known to produce solutions supersaturated with oxygen. The oxygen in electrolyzed solutions was analyzed with a dissolved oxygen meter and the Winkler method of chemical analysis. The concentration of oxygen measured with the dissolved oxygen meter agreed with that obtained using the Winkler method. However, measurements using a 10-fold dilution method showed a larger concentration of dissolved oxygen compared to the above methods. We developed a modified Winkler method to measure total oxygen concentration more accurately, which agreed with the results obtained from the 10-fold dilution experiment. The difference in measurements is due to the existence of oxygen nanobubbles, as confirmed by the observation of dynamic light scattering using a laser. Further analysis of the oxygen nanobubbles demonstrated that the stability of the nanobubbles was sufficient for chemical reaction and solvation to bulk solution. PMID:18977493

  5. Pure oxygen ventilation during general anaesthesia does not result in increased postoperative respiratory morbidity but decreases surgical site infection. An observational clinical study

    PubMed Central

    Suksompong, Sirilak; Weiler, Jürgen; Zander, Rolf

    2014-01-01

    Background. Pure oxygen ventilation during anaesthesia is debatable, as it may lead to development of atelectasis. Rationale of the study was to demonstrate the harmlessness of ventilation with pure oxygen. Methods. This is a single-centre, one-department observational trial. Prospectively collected routine-data of 76,784 patients undergoing general, gynaecological, orthopaedic, and vascular surgery during 1995–2009 were retrospectively analysed. Postoperative hypoxia, unplanned ICU-admission, surgical site infection (SSI), postoperative nausea and vomiting (PONV), and hospital mortality were continuously recorded. During 1996 the anaesthetic ventilation for all patients was changed from 30% oxygen plus 70% nitrous oxide to 100% oxygen in low-flow mode. Therefore, in order to minimize the potential of confounding due to a variety of treatments being used, we directly compared years 1995 (30% oxygen) and 1997 (100%), whereas the period 1998 to 2009 is simply described. Results. Comparing 1995 to 1997 pure oxygen ventilation led to a decreased incidence of postoperative hypoxic events (4.3 to 3.0%; p < 0.0001) and hospital mortality (2.1 to 1.6%; p = 0.088) as well as SSI (8.0 to 5.0%; p < 0.0001) and PONV (21.6 to 17.5%; p < 0.0001). There was no effect on unplanned ICU-admission (1.1 to 0.9; p = 0.18). Conclusions. The observed effects may be partly due to pure oxygen ventilation, abandonment of nitrous oxide, and application of low-flow anesthesia. Pure oxygen ventilation during general anaesthesia is harmless, as long as certain standards are adhered to. It makes anaesthesia simpler and safer and may reduce clinical morbidity, such as postoperative hypoxia and surgical site infection. PMID:25320681

  6. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    PubMed

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR. PMID:19246069

  7. Highly efficient photocatalytic oxygenation reactions using water as an oxygen source

    NASA Astrophysics Data System (ADS)

    Fukuzumi, Shunichi; Kishi, Takashi; Kotani, Hiroaki; Lee, Yong-Min; Nam, Wonwoo

    2011-01-01

    The effective utilization of solar energy requires photocatalytic reactions with high quantum efficiency. Water is the most abundant reactant that can be used as an oxygen source in efficient photocatalytic reactions, just as nature uses water in an oxygenic photosynthesis. We report that photocatalytic oxygenation of organic substrates such as sodium p-styrene sulfonate occurs with nearly 100% quantum efficiency using manganese(III) porphyrins as an oxygenation catalyst, [RuII(bpy)3]2+ (bpy = 2,2‧-bipyridine) as a photosensitized electron-transfer catalyst, [CoIII(NH3)5Cl]2+ as a low-cost and weak one-electron oxidant, and water as an oxygen source in a phosphate buffer solution (pH 7.4). A high-valent manganese-oxo porphyrin is proposed as an active oxidant that effects the oxygenation reactions.

  8. Improving Settling Characteristics of Pure Oxygen Activated Sludge by Stripping of Carbon Dioxide.

    PubMed

    Kundral, Somshekhar; Mudragada, Ratnaji; Coro, Ernesto; Moncholi, Manny; Mora, Nelson; Laha, Shonali; Tansel, Berrin

    2015-06-01

    Increased microbial activity at high ambient temperatures can be problematic for secondary clarifiers and gravity concentrators due to carbon dioxide (CO2) production. Production of CO2 in gravity concentrators leads to septic conditions and poor solids separation. The CO2 production can also be corrosive for the concrete surfaces. Effectiveness of CO2 stripping to improve solids settling was investigated using the sludge volume index (SVI) as the indicator parameter. Carbon dioxide was stripped by aeration from the sludge samples. Results from the study show that aeration also increased the pH values in the mixed liquor while removing CO2 and improving sludge settling. After 10 minutes of aeration at a rate of 0.37 m3 air/m3 water/min, 90% CO2 stripping was achieved. Based on the 30 min settling tests, the SVI increased by 26±1% after CO2 stripping while the pH increased by 0.8±0.1 pH units. PMID:26459818

  9. The Anoxic Corrosion of Copper in Pure Water and Chloride Rich Brines

    NASA Astrophysics Data System (ADS)

    Ilic, Emilija

    The Nuclear Waste Management Organization (NWMO) is developing an approach for the permanent geological disposal of nuclear waste. The waste will be encased in copper coated used fuel containers (UFCs) and placed in a deep geological repository (DGR). To support the NWMO in their investigations on the long-term corrosion of copper a lab scale simulation of the DGR environment was created. Copper wires were placed in glass electrochemical cells and exposed to one of two environments; pure anoxic water or chloride-rich anoxic brine. The systems were allowed to freely corrode and accumulate hydrogen within their headspaces over extended durations at 30 to 75 °C. The hydrogen was periodically purged and subsequently analyzed using a highly sensitive amperometric sensor; these measurements were utilized to calculate the corresponding copper corrosion rates. Corrosion with hydrogen evolution was demonstrated in both pure water and brines at slow rates below 1 and 10 nm/year, respectively.

  10. The oxygen isotope equilibrium fractionation between sulfite species and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  11. Generation of Radio Frequency Plasmas in Pure Water within Hole in Insulating Plate

    NASA Astrophysics Data System (ADS)

    Maehara, Tsunehiro; Matsutomo, Shinya; Yamamoto, Shin; Mukasa, Shinobu; Tanaka, Ayaka; Kawashima, Ayato

    2015-09-01

    Recently, various types of plasmas in water have been investigated. In some cases, it has been observed that plasmas in water are not in contact with the metal electrodes. In these systems, no metal electrodes contaminate water. Our research group has carried out experimental investigations on RF plasma enclosed in a bubble within a hole in an insulating plate. RF power was applied between two electrodes, and an insulating plate was placed between them. RF plasmas in pure water (0.2mS/m) and 1 wt% NaCl solution can be generated within the hole, apart from the electrodes. When hole diameter is 3-10 mm, the plasmas can be maintained stably. From finite element method, the electric field and heat density before breakdown were estimated, and on the basis of those calculations it was shown that bubble formation is a key factor for plasma generation, that is, in both the cases, the existence of a bubble increases the electric field at the side of the bubble increases. These facts suggest plasma generation occurs at around the side of the bubble. However, solution can be treated as a conductor in 1 wt% NaCl solution. On the other hand, in pure water, water behaves as an insulator. Therefore, different mechanisms lead to the plasma generation.

  12. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    NASA Astrophysics Data System (ADS)

    Kim, Jinseon; Kwon, Sanghyuk; Cho, Dae-Hyun; Kang, Byunggil; Kwon, Hyukjoon; Kim, Youngchan; Park, Sung O.; Jung, Gwan Yeong; Shin, Eunhye; Kim, Wan-Gu; Lee, Hyungdong; Ryu, Gyeong Hee; Choi, Minseok; Kim, Tae Hyeong; Oh, Junghoon; Park, Sungjin; Kwak, Sang Kyu; Yoon, Suk Wang; Byun, Doyoung; Lee, Zonghoon; Lee, Changgu

    2015-09-01

    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.

  13. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    PubMed Central

    Kim, Jinseon; Kwon, Sanghyuk; Cho, Dae-Hyun; Kang, Byunggil; Kwon, Hyukjoon; Kim, Youngchan; Park, Sung O.; Jung, Gwan Yeong; Shin, Eunhye; Kim, Wan-Gu; Lee, Hyungdong; Ryu, Gyeong Hee; Choi, Minseok; Kim, Tae Hyeong; Oh, Junghoon; Park, Sungjin; Kwak, Sang Kyu; Yoon, Suk Wang; Byun, Doyoung; Lee, Zonghoon; Lee, Changgu

    2015-01-01

    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials. PMID:26369895

  14. Monitoring of glucose, salt and pure water in human whole blood: An in vitro study.

    PubMed

    Imran, Muhammad; Ullah, Hafeez; Akhtar, Munir; Sial, Muhammad Aslam; Ahmed, Ejaz; Durr-E-Sabeeh; Ahmad, Mukhtar; Hussain, Fayyaz

    2016-07-01

    Designing and implementation of non-invasive methods for glucose monitoring in blood is main focus of biomedical scientists to provide a relief from skin puncturing of diabete patient. The objective of this research work is to investigate the shape deformations and the aggregation of red blood cells (RBCs) in the human blood after addition of three different analytes i) (0mM-400mM: Range) of glucose (C(6)H(12)O(6)), ii) (0mM-400mM: range) of pure salt (NaCl) and iii) (0mM- 350mM: range) of pure water (H(2)O). We have observed that the changes in the shape of individual cells from biconcave discs to spherical shapes and eventually the lysis of the cells at optimum concentration of glucose, salts and pure water. This demonstration also provides a base line to facilitate diabetes during partial diagnosis and monitoring of the glucose levels qualitatively both in research laboratories and clinical environment. PMID:27393437

  15. Deep oxygenated ground water: Anomaly or common occurrence?

    USGS Publications Warehouse

    Winograd, I.J.; Robertson, F.N.

    1982-01-01

    Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge. Copyright ?? 1982 AAAS.

  16. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

    PubMed Central

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu SM; Blandin, Pierre; Chon, James WM; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew HA; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. PMID:23888114

  17. High-LET ion radiolysis of water: oxygen production in tracks.

    PubMed

    Meesungnoen, Jintana; Jay-Gerin, Jean-Paul

    2009-03-01

    It is known that molecular oxygen is a product of the radiolysis of water with high-linear energy transfer (LET) radiation, a result that is of particular significance in radiobiology and of practical relevance in radiotherapy. In fact, it has been suggested that the radiolytic formation of an oxygenated microenvironment around the tracks of high-LET heavy ions is an important factor in their enhanced biological efficiency in the sense that this may be due to an "oxygen effect" by O(2) produced by these ions in situ. Using Monte Carlo track simulations of pure, deaerated water radiolysis by 4.8 MeV (4)He(2+) (LET approximately 94 keV/microm) and 24 MeV (12)C(6+) (LET approximately 490 keV/microm) ions, including the mechanism of multiple ionization of water, we have calculated the yields and concentrations of O(2) in the tracks of these irradiating ions as a function of time between approximately 10(-12) and 10(-5) s at 25 and 37 degrees C. The track oxygen concentrations obtained compare very well with O(2) concentrations estimated from the "effective" amounts of oxygen that are needed to produce the observed reduction in oxygen enhancement ratio (OER) with LET (assuming this decrease is attributable to the sole radiolytic formation of O(2) in the tracks). For example, for 24 MeV (12)C(6+) ions, the initial track concentration of O(2) is estimated to be more than three orders of magnitude higher than the oxygen levels present in normally oxygenated and hypoxic tumor regions as well as in normal human cells. Such results, which largely plead in favor of the "oxygen in the heavy-ion track" hypothesis, could explain at least in part the greater efficiency of high-LET radiation for cell inactivation (at equal radiation dose). PMID:19267566

  18. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE PAGESBeta

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  19. A pathway of nanocrystallite fabrication by photo-assisted growth in pure water

    PubMed Central

    Jeem, Melbert; bin Julaihi, Muhammad Rafiq Mirza; Ishioka, Junya; Yatsu, Shigeo; Okamoto, Kazumasa; Shibayama, Tamaki; Iwasaki, Tomio; Kato, Takahiko; Watanabe, Seiichi

    2015-01-01

    We report a new production pathway for a variety of metal oxide nanocrystallites via submerged illumination in water: submerged photosynthesis of crystallites (SPSC). Similar to the growth of green plants by photosynthesis, nanocrystallites shaped as nanoflowers and nanorods are hereby shown to grow at the protruded surfaces via illumination in pure, neutral water. The process is photocatalytic, accompanied with hydroxyl radical generation via water splitting; hydrogen gas is generated in some cases, which indicates potential for application in green technologies. Together with the aid of ab initio calculation, it turns out that the nanobumped surface, as well as aqueous ambience and illumination are essential for the SPSC method. Therefore, SPSC is a surfactant-free, low-temperature technique for metal oxide nanocrystallites fabrication. PMID:26076674

  20. Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion

    NASA Astrophysics Data System (ADS)

    Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier

    2014-12-01

    We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25, 061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt crystals, and even cells.

  1. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. PMID:26886302

  2. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:27478281

  3. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:26773287

  4. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water.

    PubMed

    Schöfberger, Wolfgang; Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A A W; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero; Dey, Abhishek

    2016-02-12

    Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H(+)/4 e(-) process, while oxygen can be fully reduced to water by a 4 e(-)/4 H(+) process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2(-). We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:26773287

  5. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  6. Regeneration of oxygen from carbon dioxide and water.

    NASA Technical Reports Server (NTRS)

    Weissbart, J.; Smart, W. H.; Wydeven, T.

    1972-01-01

    In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.

  7. Oxygen Isotopic Analyses of Water Extracted from Lunar Samples

    NASA Astrophysics Data System (ADS)

    Nunn Martinez, M.; Thiemens, M. H.

    2014-12-01

    Oxygen exists in lunar materials in distinct phases having unique sources and equilibration histories. The oxygen isotopic composition (δ17O, δ18O) of various components of lunar materials has been studied extensively, but analyses of water in these samples are relatively sparse [1-3]. Samples collected on the lunar surface reflect not only the composition of their source reservoirs but also contributions from asteroidal and cometary impacts, interactions with solar wind and cosmic radiation, among other surface processes. Isotopic characterization of oxygen in lunar water could help resolve the major source of water in the Earth-Moon system by revealing if lunar water is primordial, asteroidal, or cometary in origin [1]. Methods: A lunar rock/soil sample is pumped to high vacuum to remove physisorbed water before heating step-wise to 50, 150, and 1000°C to extract extraterrestrial water without terrestrial contamination. The temperature at which water is evolved is proportional to the strength with which the water is bound in the sample and the relative difficulty of exchanging oxygen atoms in that water. This allows for the isolated extraction of water bound in different phases, which could have different source reservoirs and/or histories, as evidenced by the mass (in)dependence of oxygen compositions. A low blank procedure was developed to accommodate the low water content of lunar material [4]. Results: Oxygen isotopic analyses of lunar water extracted by stepwise heating lunar basalts and breccias with a range of compositions, petrologic types, and surface exposure ages will be presented. The cosmic ray exposure age of these samples varies by two orders of magnitude, and we will consider this in discussing the effects of solar wind and cosmic radiation on the oxygen isotopic composition (Δ17O). I will examine the implications of our water analyses for the composition of the oxygen-bearing reservoir from which that water formed, the effects of surface

  8. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  9. Evaluation of Pure Oxygen Systems at the Umatilla Hatchery: Task 1-Review and Evaluation of Supplemental O2 Systems, Final Report.

    SciTech Connect

    Fish Factory

    1991-03-01

    The Northwest Power Planning Council has established a goal of doubling the size of salmon runs in the Columbia River Basin. The achievement of this important goal is largely dependent upon expanding the production of hatchery fish. Pure oxygen has been commonly used to increase the carrying capacity of private sector salmonid hatcheries in the Pacific Northwest. The use of supplemental oxygen to increase hatchery production is significantly less expensive than the construction of new hatcheries and might save up to $500 million in construction costs.

  10. A New Approach to Reconstruct Ancient Bottom Water Oxygen Levels

    NASA Astrophysics Data System (ADS)

    Rathburn, A. E.; Willingham, J.; Corliss, B. H.; Burkett, A. M.; Ziebis, W.

    2014-12-01

    Oxygen availability controls many biological and geochemical processes, and serves as an important indicator of paleoceanographic characteristics. Recent work has demonstrated a direct relationship between oxygen acquisition and pores on benthic foraminiferal tests. Epifaunal foraminifera (living near or above the sediment-water interface) are directly exposed to bottom water, and can occur in abundance in a wide range of seafloor environments. In this study, a novel approach using ArcGIS and image analysis techniques was used to determine the percentage of test chamber surface area covered by pores in living and recently living (Rose Bengal stained) epifaunal taxa (Cibicides, Cibicidoides and Planulina). Analyses of Scanning Electron Microscope images of 97 specimens collected from 20 deep-sea locations having different bottom water oxygen concentrations (0.04 to 6.20 ml/L) revealed a robust (R2= 0.729; p < 0.001), negative relationship between pore surface area on test chambers and ambient bottom water oxygen concentration. The resulting calibration curve serves as new, quantitative proxy to assess bottom water oxygen of ancient oceans.

  11. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets

    NASA Astrophysics Data System (ADS)

    Faubel, Manfred; Steiner, Björn; Toennies, J. Peter

    1997-06-01

    The recently developed technique of accessing volatile liquids in a high vacuum environment by using a very thin liquid jet is implemented to carry out the first measurements of photoelectron spectra of pure liquid water, methanol, ethanol, 1-propanol, 1-butanol, and benzyl alcohol as well as of liquid n-nonane. The apparatus, which consists of a commercial hemispherical (10 cm mean radius) electron analyzer and a hollow cathode discharge He I light source is described in detail and the problems of the sampling of the photoelectrons in such an environment are discussed. For water and most of the alcohols up to six different electronic bands could be resolved. The spectra of 1-butanol and n-nonane show two weakly discernable peaks from which the threshold ionization potential could be determined. A deconvolution of the photoelectron spectra is used to extract ionization potentials of individual molecular bands of molecules near the surface of the liquid and shifts of the order of 1 eV compared to the gas phase are observed. A molecular orientation for water molecules at the surface of liquid water is inferred from a comparison of the relative band strengths with the gas phase. Similar effects are also observed for some of the alcohols. The results are discussed in terms of a simple "Born-solvation" model.

  12. Oxygen isotope fractionation between analcime and water - An experimental study

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.

  13. Treatment of real coal gasification wastewater using a novel integrated system of anoxic hybrid two stage aerobic processes: performance and the role of pure oxygen microbubble.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Shan, Shengdao

    2016-06-01

    A novel integrated system of anoxic-pure oxygen microbubble-activated sludge reactor-moving bed biofilm reactor was employed in treatment of real coal gasification wastewater. The results showed the integrated system had efficient performance of pollutants removal in short hydraulic retention time. While pure oxygen microbubble with the flow rate of 1.5 L/h and NaHCO3 dosage ratio of 2:1 (amount NaHCO3 to NH4 (+)-N ratio, mol: mol) were used, the removal efficiencies of COD, total phenols (TPh) and NH4 (+)-N reached 90, 95, and 95 %, respectively, with the influent loading rates of 3.4 kg COD/(m(3) d), 0.81 kg TPh/(m(3) d), and 0.28 kg NH4 (+)-N/(m(3) d). With the recycle ratio of 300 %, the concentrations of NO2 (-)-N and NO3 (-)-N in effluent decreased to 12 and 59 mg/L, respectively. Meanwhile, pure oxygen microbubble significantly improved the enzymatic activities and affected the effluent organic compositions and reduced the foam expansion. Thus, the novel integrated system with efficient, stable, and economical advantages was suitable for engineering application. PMID:26961523

  14. DNA-catalyzed Henry reaction in pure water and the striking influence of organic buffer systems.

    PubMed

    Häring, Marleen; Pérez-Madrigal, Maria M; Kühbeck, Dennis; Pettignano, Asja; Quignard, Françoise; Díaz, David Díaz

    2015-01-01

    In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde) and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding β-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated. PMID:25749682

  15. Fluorescent asymmetric bis-ureas for pyrophosphate recognition in pure water.

    PubMed

    Casula, Arianna; Bazzicalupi, Carla; Bettoschi, Alexandre; Cadoni, Enzo; Coles, Simon J; Horton, Peter N; Isaia, Francesco; Lippolis, Vito; Mapp, Lucy K; Marini, Giada M; Montis, Riccardo; Scorciapino, Mariano Andrea; Caltagirone, Claudia

    2016-02-21

    Three fluorescent asymmetric bis-urea receptors (L1-L3) have been synthesised. The binding properties of L1-L3 towards different anions (fluoride, acetate, hydrogencarbonate, dihydrogen phosphate, and hydrogen pyrophosphate HPpi(3-)) have been studied by means of (1)H-NMR, UV-Vis and fluorescence spectroscopy, single crystal X-ray diffraction, and theoretical calculations. In particular, a remarkable affinity for HPpi(3-) has been observed in the case L1 (DMSO-d6/0.5% H2O) which also acts as a fluorimetric chemosensor for this anion. Interestingly, when L1 is included in cetyltrimethylammonium (CTAB) micelles, hydrogen pyrophosphate recognition can also be achieved in pure water. PMID:26765955

  16. Pure water injection into porous rock with superheated steam and salt in a solid state

    NASA Astrophysics Data System (ADS)

    Montegrossi, G.; Tsypkin, G.; Calore, C.

    2012-04-01

    Most of geothermal fields require injection of fluid into the hot rock to maintain pressure and productivity. The presence of solid salt in porous space may cause an unexpected change in the characteristics of the reservoir and produced fluids, and dramatically affect the profitability of the project. We consider an injection problem of pure water into high temperature geothermal reservoir, saturated with superheated vapour and solid salt. Pure water moves away from injection point and dissolves solid salt. When salty water reaches the low-pressure hot domain, water evaporation occurs and, consequently, salt precipitates. We develop a simplified analytical model of the process and derive the similarity solutions for a 1-D semi-infinite reservoir. These solutions are multi-valued and describe the reduction in permeability and porosity due to salt precipitation at the leading boiling front. If the parameters of the system exceed critical values, then similarity solution ceases to exist. We identify this mathematical behaviour with reservoir sealing in the physical system. The TOUGH2-EWASG code has been used to verify this hypothesis and investigate the precipitate formation for an idealized bounded 1-D geothermal system of a length of 500 m with water injection at one extreme and fluid extraction at the other one. Both boundaries are kept at constant pressure and temperature. The result for the semi-infinite numerical model show that the monotonic grow of the solid salt saturation to reach asymptotic similarity solution generally occurs over a very large length starting from the injection point. Reservoir sealing occurs if solid salt at the initial state occupies a considerable part of the porous space. Numerical experiments for the bounded 500 m system demonstrate that a small amount of salt is enough to get reservoir sealing. Generally, salt tend to accumulate near the production well, and salt plug forms at the elements adjacent to the extraction point. This type

  17. Preparation of ultra-pure water and acids and investigation of background of an ICP-MS laboratory.

    PubMed

    Yuan, H; Hu, S; Tong, J; Zhao, L; Lin, S; Gao, S

    2000-09-01

    Ultra-pure water is prepared by distillation, and followed by ion exchange and passing through an E-PURE water purifier. The resulting ultra-pure water has an electrical conductivity of 18 MOmega. Ultra-pure nitric, hydrochloric, hydrofluoric and perchloric acids are prepared by sub-boiling distillation. Spectra for mass range 3-240 amu are scanned by inductively coupled plasma mass spectrometry for tap, distilled, deionized and ultra-pure waters, and extra- and ultra-pure acids. The results show that the sub-boiling distillation greatly improves the quality of all the four acids under investigation. Metal impurities such as 75, 93, 121, 123, 134-138, 181 and 206-209 amu were remarkably reduced (sub-ppb level) after sub-boiling distillation. Configuration of peaks due to the formation of polyatomic ions was similar to the literature values reported elsewhere (S.H. Tan, G. Horlick, Appl. Spectrosc. 40 (4) (1986) 445). PMID:18968057

  18. Chemical Processing of Pure Ammonia and Ammonia-Water Ices Induced by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Bordalo, V.; da Silveira, E. F.; Lv, X. Y.; Domaracka, A.; Rothard, H.; Seperuelo Duarte, E.; Boduch, P.

    2013-09-01

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH3) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H2O). FTIR spectroscopy is used to monitor pure NH3 and NH3-H2O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N2H4), diazene (N2H2 isomers), molecular hydrogen (H2), and nitrogen (N2) were identified after irradiation of pure NH3 ices. Nitrous oxide (N2O), nitrogen oxide (NO), nitrogen dioxide (NO2), and hydroxylamine (NH2OH) are some of the products of the NH3-H2O ice radiolysis. The spectral band at 6.85 μm was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH_{4}^{+}) and amino (NH2) radicals, data suggest a small contribution of NH2OH to this band profile after high fluences of irradiation of NH3-H2O ices. The spectral shift of the NH3 "umbrella" mode (9.3 μm) band is parameterized as a function of NH3/H2O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH3-H2O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H2O in the ice and a power law relationship between stopping power and NH3 destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  19. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    SciTech Connect

    Dahl, T.A.; Midden, W.R. ); Hartman, P.E. )

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  20. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  1. Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil.

    PubMed

    Ray, Phoebe Z; Chen, Huan; Podgorski, David C; McKenna, Amy M; Tarr, Matthew A

    2014-09-15

    In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid-liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O5), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O2). Higher-order oxygen classes (O5-O9) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N1) concurrent with an increased abundance of N1Ox classes after irradiation. The predominance of higher-order oxygen classes indicates that multiple photochemical pathways exist that result in oxidation of petroleum compounds. PMID:25222929

  2. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    PubMed

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. PMID:25984919

  3. Habitability of Waterworlds: Runaway Greenhouses, Atmospheric Expansion, and Multiple Climate States of Pure Water Atmospheres

    PubMed Central

    2015-01-01

    Abstract There are four different stable climate states for pure water atmospheres, as might exist on so-called “waterworlds.” I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts⪅245 K), cold and damp (270⪅Ts⪅290 K), hot and moist (350⪅Ts⪅550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290⪅Ts ⪅350 K or 550⪅Ts⪅900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m−2 higher for Mars, 10 W m−2 higher for Earth or Venus, but only a few W m−2 higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m−2 higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. Key Words

  4. Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium

    NASA Astrophysics Data System (ADS)

    Verkhovtsev, Alexey; McKinnon, Sally; de Vera, Pablo; Surdutovich, Eugene; Guatelli, Susanna; Korol, Andrei V.; Rosenfeld, Anatoly; Solov'yov, Andrey V.

    2015-04-01

    The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dominant role. Electron yield from a solid carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated to be several times higher than that from liquid water. Decay of plasmon excitations in carbon-based nanosystems thus represents a mechanism of increase of the low-energy electron yield, similar to the case of sensitizing metal nanoparticles. This observation gives a hint for investigation of novel types of sensitizers to be composed of metallic and organic parts. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo García and Eugene Surdutovich.

  5. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts.

    PubMed

    Shiraishi, Yasuhiro; Kanazawa, Shunsuke; Kofuji, Yusuke; Sakamoto, Hirokatsu; Ichikawa, Satoshi; Tanaka, Shunsuke; Hirai, Takayuki

    2014-12-01

    Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons. PMID:25293501

  6. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  7. SteamTablesGrid: An ActiveX control for thermodynamic properties of pure water

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2011-04-01

    An ActiveX control, steam tables grid ( StmTblGrd) to speed up the calculation of the thermodynamic properties of pure water is developed. First, it creates a grid (matrix) for a specified range of temperature (e.g. 400-600 K with 40 segments) and pressure (e.g. 100,000-20,000,000 Pa with 40 segments). Using the ActiveX component SteamTables, the values of selected properties of water for each element (nodal point) of the 41×41 matrix are calculated. The created grid can be saved in a file for its reuse. A linear interpolation within an individual phase, vapor or liquid is implemented to calculate the properties at a given value of temperature and pressure. A demonstration program to illustrate the functionality of StmTblGrd is written in Visual Basic 6.0. Similarly, a methodology is presented to explain the use of StmTblGrd in MS-Excel 2007. In an Excel worksheet, the enthalpy of 1000 random datasets for temperature and pressure is calculated using StmTblGrd and SteamTables. The uncertainty in the enthalpy calculated with StmTblGrd is within ±0.03%. The calculations were performed on a personal computer that has a "Pentium(R) 4 CPU 3.2 GHz, RAM 1.0 GB" processor and Windows XP. The total execution time for the calculation with StmTblGrd was 0.3 s, while it was 60.0 s for SteamTables. Thus, the ActiveX control approach is reliable, accurate and efficient for the numerical simulation of complex systems that demand the thermodynamic properties of water at several values of temperature and pressure like steam flow in a geothermal pipeline network.

  8. Substantial Oxygen Flux in Dual-Phase Membrane of Ceria and Pure Electronic Conductor by Tailoring the Surface.

    PubMed

    Joo, Jong Hoon; Yun, Kyong Sik; Kim, Jung-Hwa; Lee, Younki; Yoo, Chung-Yul; Yu, Ji Haeng

    2015-07-15

    The oxygen permeation flux of dual-phase membranes, Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC/LSM), has been systematically studied as a function of their LSM content, thickness, and coating material. The electronic percolation threshold of this GDC/LSM membrane occurs at about 20 vol % LSM. The coated LSM20 (80 vol % GDC, 20 vol % LSM) dual-phase membrane exhibits a maximum oxygen flux of 2.2 mL·cm(-2)·min(-1) at 850 °C, indicating that to enhance the oxygen permeation flux, the LSM content should be adjusted to the minimum value at which electronic percolation is maintained. The oxygen ion conductivity of the dual-phase membrane is reliably calculated from oxygen flux data by considering the effects of surface oxygen exchange. Thermal cycling tests confirm the mechanical stability of the membrane. Furthermore, a dual-phase membrane prepared here with a cobalt-free coating remains chemically stable in a CO2 atmosphere at a lower temperature (800 °C) than has previously been achieved. PMID:26083529

  9. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    SciTech Connect

    Bordalo, V.; Da Silveira, E. F.; Seperuelo Duarte, E.

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  10. Bioinspired molecular adhesive for water-resistant oxygen indicator films.

    PubMed

    Vu, Chau Hai Thai; Won, Keehoon

    2013-01-01

    Mussels can attach themselves to nearly all types of hard surfaces in wet environments. Such attractive adhesive ability of mussels is believed to rely on the amino acid composition of proteins found near the plaque-substrate interface. Dopamine (DA) is identified as a simplified mimic of mussel proteins, which are rich in 3,4-dihydroxy-L-phenylalanine and lysine, because it contains both catechol and amine functional groups. In this work, we have first applied this bioinspired adhesive to tackle a dye leaching problem of colorimetric oxygen indicator films, which are widely used to ensure the absence of oxygen inside the package of oxygen-sensitive materials. Simple immersion of packaging films into a DA solution resulted in poly(DA) deposition, decreasing the water contact angle of the films from 105° to 65°. The poly(DA) coating could reduce the thionine leakage of the UV-activated oxygen indicator film. The effects of poly(DA) coating were found to be dependent on the DA solution pH, the coating time, and the DA concentration. The film resistant to dye leaching lost its dye color by 5 min UVB irradiation and regained the color in the presence of oxygen, demonstrating that it functioned successfully as UV-activated oxygen indicators. PMID:23335471

  11. Effect of water on carbon monoxide-oxygen flame velocity

    NASA Technical Reports Server (NTRS)

    Mcdonald, Glen E

    1954-01-01

    The flame velocities were measured of 20 percent oxygen and 80 percent carbon monoxide mixtures containing either light water or heavy water. The flame velocity increased from 34.5 centimeters per second with no added water to about 104 centimeters per second for a 1.8 percent addition of light water and to 84 centimeters per second for an equal addition of heavy water. The addition of heavy water caused greater increases in flame velocity with equilibrium hydrogen-atom concentration than would be predicted by the Tanford and Pease square-root relation. The ratio of the flame velocity of a mixture containing light water to that of a mixture containing heavy water was found to be 1.4. This value is the same as the ratio of the reaction rate of hydrogen to that of deuterium and oxygen. A ratio of reaction rates of 1.4 would also be required for the square-root law to give the observed ratio of flame-velocity changes.

  12. Water Formation and Oxygen Chemistry on Dust Grains

    NASA Astrophysics Data System (ADS)

    Vidali, Gianfranco; He, Jiao

    Water plays an important role in space. As ice on cold dust grains, it provides the medium for a rich chemistry; in the gas-phase, it gives information on the particular environment it is in. It is understood that the formation of water occurs both in the gas-phase and on grains. While the importance of water formation on dust grain surfaces has been recognized for a long time (1) , it is only recently that laboratory investigations have been undertaken to characterize the network of reactions (2) . Closely connected to this work on water formation, is the study of oxygen chemistry on dust grains. Of particular importance is the characterization of the energetics of adsorption, diffusion and desorption of oxygen-containing molecules. I will present data from recent experiments on the interaction of oxygen and hydroxyls with silicate surfaces and on the formation of water on warm (T>30K) amorphous silicates. Such results provide new values to parameters used in simulation codes of the chemical evolution of interstellar space environments. 1. A.G.G.M Tielens & W. Hagen, Astron. & Astrophys. 114, 245 (1982). 2. G. Vidali, J. Low Temp. Phys. 170,1 (2013). This work is supported by the NSF, Astronomy & Astrophysics Division (Grants No. 0908108 and 1311958), and NASA (Grant No. NNX12AF38G). We thank Dr. J.Brucato of the Astrophysical Observatory of Arcetri for providing the samples used in these experiments.

  13. Leaf water oxygen isotope measurement by direct equilibration.

    PubMed

    Song, Xin; Barbour, Margaret M

    2016-08-01

    The oxygen isotope composition of leaf water imparts a signal to a range of molecules in the atmosphere and biosphere, but has been notoriously difficult to measure in studies requiring a large number of samples as a consequence of the labour-intensive extraction step. We tested a method of direct equilibration of water in fresh leaf samples with CO2 , and subsequent oxygen isotope analysis on an optical spectrometer. The oxygen isotope composition of leaf water measured by the direct equilibration technique was strongly linearly related to that of cryogenically extracted leaf water in paired samples for a wide range of species with differing anatomy, with an R(2) of 0.95. The somewhat more enriched values produced by the direct equilibration method may reflect lack of full equilibration with unenriched water in the vascular bundles, but the strong relationship across a wide range of species suggests that this difference can be adequately corrected for using a simple linear relationship. PMID:27147584

  14. Routine analysis of ultra pure water by ICP-MS in the low- and sub-ng/L level.

    PubMed

    Hoelzl, R; Fabry, L; Kotz, L; Pahlke, S

    2000-01-01

    The chemical analysis with inductively coupled plasma-mass spectrometry (ICP-MS) can help to examine the purity of ultra pure water (UPW) down to 10 part per trillion (ng/L) and lower. For a proper determination of a high number of samples per week the analysis must be divided into two parts: the routine analysis and the reference water analysis. The routine analysis is done by direct measurement of the ultra pure water samples. Applying a standard addition method under particular clean conditions, the reference water analysis leads to the definition of the accurate zero. A quick evaluation scheme is also presented for the reference water analysis. The method is tested for its fitness for application by examining LOD (for relevant element < 2 ng/L), reproducibility and linearity of calibration. The ICP-MS was optimized according to the methodology of G. Taguchi to improve reproducibility and LOD. PMID:11225818

  15. Thermochemical generation of hydrogen and oxygen from water

    DOEpatents

    Robinson, Paul R.; Bamberger, Carlos E.

    1982-01-01

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  16. Thermochemical generation of hydrogen and oxygen from water

    DOEpatents

    Robinson, Paul R.; Bamberger, Carlos E.

    1981-01-01

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  17. The water catalysis at oxygen cathodes of lithium–oxygen cells

    PubMed Central

    Li, Fujun; Wu, Shichao; Li, De; Zhang, Tao; He, Ping; Yamada, Atsuo; Zhou, Haoshen

    2015-01-01

    Lithium–oxygen cells have attracted extensive interests due to their high theoretical energy densities. The main challenges are the low round-trip efficiency and cycling instability over long time. However, even in the state-of-the-art lithium–oxygen cells the charge potentials are as high as 3.5 V that are higher by 0.70 V than the discharge potentials. Here we report a reaction mechanism at an oxygen cathode, ruthenium and manganese dioxide nanoparticles supported on carbon black Super P by applying a trace amount of water in electrolytes to catalyse the cathode reactions of lithium–oxygen cells during discharge and charge. This can significantly reduce the charge overpotential to 0.21 V, and results in a small discharge/charge potential gap of 0.32 V and superior cycling stability of 200 cycles. The overall reaction scheme will alleviate side reactions involving carbon and electrolytes, and shed light on the construction of practical, rechargeable lithium–oxygen cells. PMID:26206379

  18. Ultra Pure Water Cleaning Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Burkett, P. J.; Allton, J. H.; Allen, C. C.

    2013-01-01

    Future sample return missions will require strict protocols and procedures for reducing inorganic and organic contamination in isolation containment systems. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs [1, 2]. As part of this in-depth organic study, the current curatorial technical support procedure (TSP) 23 was used for cleaning the gloveboxes with ultra pure water (UPW) [3-5]. Particle counts and identification were obtained that could be used as a benchmark for future mission designs that require glovebox decontamination. The UPW baseline study demonstrates that TSP 23 works well for gloveboxes that have been thoroughly degreased. However, TSP 23 could be augmented to provide even better glovebox decontamination. JSC 03243 could be used as a starting point for further investigating optimal cleaning techniques and procedures. DuPont Vertrel XF or other chemical substitutes to replace Freon- 113, mechanical scrubbing, and newer technology could be used to enhance glovebox cleanliness in addition to high purity UPW final rinsing. Future sample return missions will significantly benefit from further cleaning studies to reduce inorganic and organic contamination.

  19. Recovery of an oscillatory mode of batch yeast growth in water for a pure culture.

    PubMed

    Vadasz, A S; Vadasz, P; Abashar, M E; Gupthar, A S

    2001-12-30

    New experiments that we conducted show an oscillatory mode of batch yeast growth in water, for a pure culture of the T206 strain of Saccharomyces cerevisiae. The oscillations are damped over time, allowing the cell concentration to stabilize at the stationary equilibrium. A new proposed model that includes the complete cell growth dynamics is introduced and showed to recover the experimental oscillatory results. In addition the proposed model recovers effects that are frequently encountered in experiments such as a "Lag Phase" as well as an inflection point in the "ln curve" of the cell concentration. The proposed model recovers also the Logistic Growth Curve as a special case. For purposes of providing some interesting contrast we present additional experimental as well as computational results for the growth of the VIN7 strain of S. cerevisiae in a 5% grape juice medium. The latter indicates even stronger oscillations during the growth process. In order to capture experimentally the oscillatory growth behavior, very frequent readings are required (every 15-30 min) and the measurement process needs to be extended to longer than usual periods (over 250 h). PMID:11789940

  20. Ultra-Pure Water and Extremophilic Bacteria interactions with Germanium Surfaces

    NASA Astrophysics Data System (ADS)

    Sah, Vasu R.

    Supported by a consortium of semiconductor industry sponsors, an international "TIE" project among 5 National Science Foundation (NSF) Industry/university Cooperative Research Centers discovered that a particular extremophilic microbe, Pseudomonas syzygii, persists in the UltraPure Water (UPW) supplies of chip fabrication facilities (FABs) and can bio-corrode germanium wafers to produce microbe-encased optically transparent crystals. Considered as potentially functional "biochips", this investigation explored mechanisms for the efficient and deliberate production of such microbe-germania adducts as a step toward later testing of their properties as sensors or switches in bioelectronic or biophotonic circuits. Recirculating UPW (Ultra-Pure Water) and other purified water, laminar-flow loops were developed across 50X20x1mm germanium (Ge) prisms, followed by subsequent examination of the prism surfaces using Multiple Attenuated Internal Reflection InfraRed (MAIR-IR) spectroscopy, Contact Potential measurements, Differential Interference Contrast Light Microscopy (DICLM), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDS), and Electron Spectroscopy for Chemical Analysis (ESCA; XPS). P. syzygii cultures originally obtained from a working FAB at University of Arizona were successfully grown on R2A minimal nutrient media. They were found to be identical to the microbes in stored UPW from the same facility, such microbes routinely capable of nucleation and entrapment within GeO2 crystals on the Ge flow surfaces. Optimum flow rates and exposure times were 1 ml/minute (3.2 s-1 shear rate) for 4 days at room temperature, producing densest crystal arrays at the prism central zones 2-3 cm from the flow inlets. Other flow rates and exposure times have higher shear rate which induces a different nucleation mechanism and saturation of crystal formation. Nucleation events began with square and circular oxide deposits surrounding active attached bacteria

  1. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    SciTech Connect

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; Davis, B.

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  2. Water mass pathways to the North Atlantic oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Peña-Izquierdo, Jesús; van Sebille, Erik; Pelegrí, Josep L.; Sprintall, Janet; Mason, Evan; Llanillo, Pedro J.; Machín, Francisco

    2015-05-01

    The water mass pathways to the North Atlantic Oxygen Minimum Zone (naOMZ) are traditionally sketched within the cyclonic tropical circulation via the poleward branching from the eastward flowing jets that lie south of 10°N. However, our water mass analysis of historic hydrographic observations together with numerical Lagrangian experiments consistently reveal that the potential density level of σθ = 26.8 kg m-3 (σ26.8, approximately 300 m depth) separates two distinct regimes of circulation within the Central Water (CW) stratum of the naOMZ. In the upper CW (above σ26.8), and in agreement with previous studies, the supply of water mainly comes from the south with a predominant contribution of South Atlantic CW. In the lower CW (below σ26.8), where minimal oxygen content is found, the tropical pathway is instead drastically weakened in favor of a subtropical pathway. More than two thirds of the total water supply to this lower layer takes place north of 10°N, mainly via an eastward flow at 14°N and northern recirculations from the northern subtropical gyre. The existence of these northern jets explains the greater contribution of North Atlantic CW observed in the lower CW, making up to 50% of the water mass at the naOMZ core. The equatorward transfer of mass from the well-ventilated northern subtropical gyre emerges as an essential part of the ventilation of the naOMZ.

  3. Potentiating Effect of Pure Oxygen on the Enhancement of Respiration by Ethylene in Plant Storage Organs: A Comparative Study 1

    PubMed Central

    Theologis, Athanasios; Laties, George G.

    1982-01-01

    A number of fruits and bulky storage organs were studied with respect to the effect of pure O2 on the extent and time-course of the respiratory rise induced by ethylene. In one group, of which potato (Solanum tuberosum var. Russet) and carrot (Daucus carota) are examples, the response to ethylene in O2 is much greater than in air. In a second group, of which avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii Lambert var. Valery) are examples, air and O2 are equally effective. When O2-responsive organs are peeled, air and O2 synergize the ethylene response to the same extent in parsnip (Pastinaca sativa), whereas O2 is more stimulatory than air in carrots. In the latter instance, carrot flesh is considered to contribute significantly to diffusion resistance. The release of CO2, an ethylene antagonist, is recognized as another element in the response to peeling. The potentiating effect of O2 is considered to be primarily on ethylene action in the development of the respiratory rise rather than on the respiration process per se. On the assumption that diffusion controls O2 movement into bulky organs and the peel represents the major diffusion barrier, simple calculations indicate that the O2 concentration in untreated organs in air readily sustains respiration. Furthermore, in ethylene-treated organs in pure O2, the internal O2 concentration is more than enough to maintain the high respiration rates. Skin conductivity to O2 is the fundamental parameter differentiating O2-responsive from O2-nonresponsive fruits and bulky storage organs. The large preceding the earliest response to ethylene, as well as the magnitude of the ethylene-induced respiratory rise, is also controlled by permeability characteristics of the peel. PMID:16662339

  4. Ab initio and semiempirical studies of the adsorption and dissociation of water on pure, defective, and doped MgO (001) surfaces

    NASA Astrophysics Data System (ADS)

    Almeida, A. L.; Martins, João B. L.; Taft, C. A.; Longo, E.; Lester, W. A.

    1998-09-01

    Ab initio and semiempirical calculations of large cluster models have been performed in order to study water adsorption and dissociation on pure, defective (vacancies) and doped (Li, Na, K, Ca, Fe) MgO (001) surfaces. The geometries of the adsorbed and dissociated molecules have been optimized preparatory to analysis of binding energies, stretching frequencies, charge transfers, preferential sites of interaction, and bond distances. We have used Mulliken, natural bond order, and electrostatic-derived atomic and overlap populations to analyze charge distributions in the clusters. We have also investigated transition structures, activation energies, energy gaps, HOMO, density of states, SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment, interpreted in the framework of various analytical models, and correlated with site coordination numbers, corner and edge site preferential locations, and direction of charge transfer. A thorough charge analysis indicates substantial charge redistribution in the magnesium oxide crystal as a result of water adsorption and dissociation in pure, defective, and doped MgO crystals. The introduction of heavier impurities and vacancies could produce substantial changes in the physical and chemical properties of the catalyst and increase the binding and dissociation energies. Some of the largest changes originate from the introduction of vacancies. Two and three-dimensional potential energy surfaces are used to investigate activation energies of hydroxylation on the MgO surface. Stretching frequencies are correlated with magnesium and oxygen coordination numbers.

  5. Anaerobic glycolysis and specific gravity of the red blood cells of rats exposed to pure oxygen at 600 torr.

    NASA Technical Reports Server (NTRS)

    Sabine, J. C.; Leon, H. A.

    1971-01-01

    Rats were exposed to 100% oxygen at 600 torr for up to 8 days. Highly significant increases in RBC anaerobic glycolysis occurred during the first 4 days of exposure and then subsided. Two significant peaks were found, one on days 1 and 2 and one on day 4. The first peak is attributed to reticulocytosis, which was maximal after 90 minutes and had disappeared by day 3. A second mechanism must account for the peak on day 4. An interpretation of the second peak is provided by existing evidence that selective removal of older RBCs occurs during the first few days of exposure to hypobaric oxygen, with maximum effect on day 4. Results in splenectomized, sham-operated and intact animals were indistinguishable from each other. A significant decrease in RBC specific gravity was found in exposed animals with spleens intact, but not in splenectomized animals. Theoretical aspects of age-related parameters as an aid to continuous detection and evaluation of changes in RBC populations are discussed.

  6. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light

    PubMed Central

    Jo, Won Jun; Kang, Hyun Joon; Kong, Ki-Jeong; Lee, Yun Seog; Park, Hunmin; Lee, Younghye; Buonassisi, Tonio; Gleason, Karen K.; Lee, Jae Sung

    2015-01-01

    Through phase transition-induced band edge engineering by dual doping with In and Mo, a new greenish BiVO4 (Bi1-XInXV1-XMoXO4) is developed that has a larger band gap energy than the usual yellow scheelite monoclinic BiVO4 as well as a higher (more negative) conduction band than H+/H2 potential [0 VRHE (reversible hydrogen electrode) at pH 7]. Hence, it can extract H2 from pure water by visible light-driven overall water splitting without using any sacrificial reagents. The density functional theory calculation indicates that In3+/Mo6+ dual doping triggers partial phase transformation from pure monoclinic BiVO4 to a mixture of monoclinic BiVO4 and tetragonal BiVO4, which sequentially leads to unit cell volume growth, compressive lattice strain increase, conduction band edge uplift, and band gap widening. PMID:26508636

  7. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  8. Thermochemistry of substellar atmospheres: Water, oxygen, sulfur, and phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon Wayne

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to investigate atmospheric chemistry in substellar objects: giant planets, extrasolar giant planets (EGPs), and brown dwarfs. These studies include an assessment of the water and total oxygen inventories in the interiors of Jupiter and Saturn, and detailed modeling of sulfur and phosphorus chemistry in the atmospheres of substellar objects. In the first part of the dissertation, the water and total oxygen abundances in the deep atmospheres of Jupiter and Saturn are determined by considering the effects of H 2 O and O on the chemistry of CO, PH 3 , and SiH 4 . On Jupiter, the observed CO abundance indicates a water abundance of 0.4--1.4 times the protosolar H 2 O/H 2 ratio (8.96 × 10 -4 ). On Saturn, a combination of CO and PH 3 chemical constraints requires a water abundance of 1.9--6.1 times the protosolar abundance. Combining these results with Si mass balance considerations gives a total oxygen abundance of 0.7--1.7 and 3.2--6.4 times the protosolar O/H 2 ratio (1.16 × 10 -3 ) on Jupiter and Saturn, respectively. In both planets, oxygen is less enriched than other heavy elements (such as carbon) relative to hydrogen and the solar system composition. These results provide important constraints for giant planet formation mechanisms and models of tropospheric chemistry. The second part of the dissertation is a detailed study of sulfur and phosphorus chemistry in substellar atmospheres. The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of temperature, total pressure, and metallicity. Aside from minor amounts of sulfur removed by metal sulfide cloud formation, H 2 S is approximately representative of the sulfur inventory throughout substellar atmospheres. Silicon sulfide (SiS) is a potential tracer of weather in EGPs and L dwarfs. Phosphorus chemistry is considerably more complex than that of sulfur. Disequilibrium abundances of PH 3 approximately

  9. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water.

    PubMed

    Schlesinger, Daniel; Wikfeldt, K Thor; Skinner, Lawrie B; Benmore, Chris J; Nilsson, Anders; Pettersson, Lars G M

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K. PMID:27586931

  10. Observation of hydroxymethyl hydroperoxide in a reaction system containing CH2OO and water vapor through pure rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Masakazu; Endo, Yasuki

    2015-10-01

    Pure rotational transitions of hydroxymethyl hydroperoxide (HMHP) were observed in the discharged plasma of a CH2I2/O2/water gas mixture, where the water complex with the simplest Criegee intermediate CH2OO has been identified [M. Nakajima and Y. Endo, J. Chem. Phys. 140, 134302 (2014)]. Isotope experiments using heavy water support that the currently observed HMHP molecule was produced by the reaction of CH2OO with water vapor. The observed species was identified as the most stable conformer with the help of quantum chemical calculations. We also clarified that productions of formic acid and dioxirane are promoted by the existence of water vapor in the discharged reaction system.

  11. The action of humidified gas on the pulmonary lining layer. Ultrastructural observations after administration of pure oxygen and of various mixtures of oxygen and carbon dioxide.

    PubMed

    Baratta, L; Baratta, B; Castellani, P; Strazzer, F

    1979-10-15

    The study concerns the action of dehumidified or humidified gas on the pulmonary lining layer. The results of our research suggest that water vapor used in artificial ventilation may be an important determining factor of the respiratory problems reported by clinicians in man. Important modifications of the lining layer of the alveolar epithelium occur, accompanied by more important alterations, including those of the content of the alveolus, all of which contribute to the pulmonary edema observed. PMID:122059

  12. Isomers and Energy Landscapes of Perchlorate-Water Clusters and a Comparison to Pure Water and Sulfate-Water Clusters.

    PubMed

    Hey, John C; Smeeton, Lewis C; Oakley, Mark T; Johnston, Roy L

    2016-06-16

    Hydrated ions are crucially important in a wide array of environments, from biology to the atmosphere, and the presence and concentration of ions in a system can drastically alter its behavior. One way in which ions can affect systems is in their interactions with proteins. The Hofmeister series ranks ions by their ability to salt-out proteins, with kosmotropes, such as sulfate, increasing their stability and chaotropes, such as perchlorate, decreasing their stability. We study hydrated perchlorate clusters as they are strongly chaotropic and thus exhibit different properties than sulfate. In this study we simulate small hydrated perchlorate clusters using a basin-hopping geometry optimization search with empirical potentials. We compare topological features of these clusters to data from both computational and experimental studies of hydrated sulfate ions and draw some conclusions about ion effects in the Hofmeister series. We observe a patterning conferred to the water molecules within the cluster by the presence of the perchlorate ion and compare the magnitude of this effect to that observed in previous studies involving sulfate. We also investigate the influence of the overall ionic charge on the low-energy structures adopted by these clusters. PMID:27223243

  13. Polymerized complex synthesis of a pure 93 K Y2Ba4Cu7O(15-d) superconductor without the need of high oxygen pressure and additive catalysts

    NASA Astrophysics Data System (ADS)

    Berastegui, Pedro; Kakihana, Masato; Yoshimura, Masahiro; Mazaki, Hiromasa; Yasuoka, Hiroshi; Johansson, Lars-Gunnar; Eriksson, Sten; Borjesson, Lars; Kall, Mikael

    1993-03-01

    High-purity ceramic material of the superconducting phase Y2Ba4Cu7O(14.82) (247) has been synthesized at 870 C by the polymerized complex method using neither high oxygen pressure nor additive catalysts. The method is based on the formation of a polymer-metal complex precursor which is prepared through polyesterification between metal citrate complexes and ethylene glycol. Apart from obviating high oxygen pressure, the present preparation technique offers easier fabrication of highly pure 247 material compared with other 'wet' chemical routes, since it eliminates many steps (centrifugation, filtration, aging, and pH control). XRD and Raman scattering analyses show that the material is single-phase without any indication of secondary phases. Zero-resistance has been achieved at 88.0 K with a transition width narrower than 4 K. Complex ac magnetic susceptibility measurements confirm the presence of a single bulk superconducting 247 phase with Tc (onset) = 93.0 K and Delta-Tc (10-90 percent) = 4.5 K.

  14. Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment.

    PubMed

    Bae, Wookeun; Won, Hosik; Hwang, Byungho; de Toledo, Renata Alves; Chung, Jinwook; Kwon, Kiwook; Shim, Hojae

    2015-04-28

    Refractory pollutants in raw and treated dyeing wastewaters were characterized using fractional molecular weight cut-off, Ultraviolet-vis spectrophotometry, and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI/MS). Significant organics and color compounds remained after biological (pure-oxygen activated sludge) and chemical (Fenton) treatments at a dyeing wastewater treatment plant (flow rate ∼100,000m(3)/d). HPLC-ESI/MS analysis revealed that some organic compounds disappeared after the biological treatment but reappeared after the chemical oxidation process, and some of that were originally absent in the raw dyeing wastewater was formed after the biological or chemical treatment. It appeared that the Fenton process merely impaired the color-imparting bonds in the dye materials instead of completely degrading them. Nevertheless, this process did significantly reduce the soluble chemical oxygen demand (SCOD, 66%) and color (73%) remaining after initial biological treatment which reduced SCOD by 53% and color by 13% in raw wastewater. Biological treatment decreased the degradable compounds substantially, in such a way that the following Fenton process could effectively remove recalcitrant compounds, making the overall hybrid system more economical. In addition, ferric ion inherent to the Fenton reaction effectively coagulated particulate matters not removed via biological and chemical oxidation. PMID:25682369

  15. Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement

    PubMed Central

    Liu, Wan-Cang; Gong, Ting; Wang, Qing-Hua; Liang, Xiao; Chen, Jing-Jing; Zhu, Ping

    2016-01-01

    Scaling-up of high-cell-density fermentation (HCDF) of Pichia pastoris from the lab or pilot scale to the demonstration scale possesses great significance because the latter is the final technological hurdle in the decision to go commercial. However, related investigations have rarely been reported. In this paper, we study the scaling-up processes of a recombinant P. pastoris from the pilot (10 to 100-L) to the demonstration (1,000-L) scales, which can be used to convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol by the β-xylosidase for semi-synthesis of Taxol. We demonstrated that a pure oxygen supplement can be omitted from the HCDF if the super atmospheric pressure was increased from 0.05 to 0.10 ± 0.05 MPa, and we developed a new methanol feeding biomass-stat strategy (0.035 mL/g/h) with 1% dissolved oxygen and 100 g/L initial induction biomass (dry cell weight). The scaling-up was reproducible, and the best results were obtained from the 1,000-L scale, featuring a shorter induction time and the highest enzyme activities and productions, respectively. The specific growth and specific production rates were also determined. This study lays a solid foundation for the commercial preparation of 10-deacetyltaxol through the recombinant yeast. It also provides a successful paradigm for scaling-up HCDF of P. pastoris to the demonstration scale. PMID:26790977

  16. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Colman, Albert; Olack, Gerard; Waniek, Joanna J.; Hodell, David

    2015-06-01

    Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 δ18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (δ18O: -0.1 to 0.5‰; δD: -1 to 4‰) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0

  17. Oxygen-18 Content of Atmospheric Oxygen Does Not Affect the Oxygen Isotope Relationship between Environmental Water and Cellulose in a Submerged Aquatic Plant, Egeria densa Planch 1

    PubMed Central

    Cooper, Lee W.; DeNiro, Michael J.

    1989-01-01

    We determined that the oxygen isotopic composition of cellulose synthesized by a submerged plant, Egeria densa Planch., is related to the isotopic composition of environmental water by a linear function, δ18O cellulose = 0.48 δ18O water + 24.1%‰. The observation of a slope of less than 1 indicates that a portion of cellulose oxygen is derived from an isotopically constant source other than water. We tested whether this source might be molecular oxygen by growing plants in the presence of high concentrations of 18O in the form of O2 bubbled into the bottom of an aquarium. Cellulose synthesized during this experiment did not have significantly different oxygen isotope ratios than that synthesized by control plants exposed to O2 of normal 18O abundance. We propose that oxygen in organic matter recycled from senescent portions of the plant is incorporated into cellulose. Our findings indicate that paleoclimatic models linking the oxygen isotope composition of environmental water to cellulose from fossil plants will have to be modified to account for contributions of oxygen from this or other sources besides water. PMID:16667066

  18. Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.

    2009-01-01

    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.

  19. SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)

    EPA Science Inventory

    The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...

  20. Photocatalytic pure water splitting activities for ZnGa{sub 2}O{sub 4} synthesized by various methods

    SciTech Connect

    Zeng, Chunmei; Hu, Tao; Hou, Nianjun; Liu, Siyao; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2015-01-15

    Highlights: • High temperature solid state reaction, hydrothermal, sol-gel methods were applied. • All ZnGa{sub 2}O{sub 4} samples show UV-light catalytic activities on pure water splitting. • Bulk ZnGa{sub 2}O{sub 4} has a good photocatalytic activity per specific surface area. • Sol-gel is a superior method to prepare nanosized ZnGa{sub 2}O{sub 4} with a high activity. • The AQY for SG-ZnGa{sub 2}O{sub 4} is 2.6% for pure water splitting under 313 nm irradiation. - Abstract: We studied and compared the photocatalytic water splitting performances for ZnGa{sub 2}O{sub 4} prepared by high temperature solid state reaction (HTSSR), hydrothermal (HY) and sol-gel (SG) methods. HTSSR-ZnGa{sub 2}O{sub 4} has a relative large photocatalytic activity per surface area (1.6 μmol/h/m{sup 2}) in pure water by UV irradiation due to its high crystallinity. The HY- and SG-samples both have small particle sizes (20∼30 nm) and therefore high surface area (20 and 29 m{sup 2}/g, respectively), which leads to superior photocatalytic H{sub 2} evolution rates per unit mass (11.5 and 28.5 μmol/h/g). The apparent quantum yield of SG-ZnGa{sub 2}O{sub 4} for pure water splitting under 313 nm irradiation is 2.6%. The existence of substantial surface defects is the major problem for HY- and SG-ZnGa{sub 2}O{sub 4}. Consequently, the usage of sacrificial agents could greatly enhance the activities and indeed the H{sub 2} evolution rates in 20 Vol. % methanol aqueous solution increase to 100 and 142 μmol/h/g for HY- and SG-ZnGa{sub 2}O{sub 4}, respectively.

  1. Plants for water recycling, oxygen regeneration and food production.

    PubMed

    Bubenheim, D L

    1991-10-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat. PMID:11537696

  2. The triple isotopic composition of oxygen in leaf water

    NASA Astrophysics Data System (ADS)

    Landais, A.; Barkan, E.; Yakir, D.; Luz, B.

    2006-08-01

    The isotopic composition of atmospheric O 2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O 2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O 2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln( δ17O + 1) vs. ln( δ18O + 1) plots are characterized by very high precision (˜0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity ( h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.

  3. Plants for water recycling, oxygen regeneration and food production

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  4. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P., Jr.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  5. Quantitative self-assembly of a purely organic three-dimensional catenane in water

    NASA Astrophysics Data System (ADS)

    Li, Hao; Zhang, Huacheng; Lammer, Aaron D.; Wang, Ming; Li, Xiaopeng; Lynch, Vincent M.; Sessler, Jonathan L.

    2015-12-01

    Self-assembly by means of coordinative bond formation has opened up opportunities for the high-yield synthesis of molecules with complex topologies. However, the preparation of purely covalent molecular architectures in aqueous media has remained a challenging task. Here, we present the preparation of a three-dimensional catenane through a self-assembly process that relies on the formation of dynamic hydrazone linkages in an acidic aqueous medium. The quantitative synthesis process and the mechanically interlocked structure of the resulting catenane were established by NMR spectroscopy, mass spectrometry, X-ray crystallography and HPLC studies. In addition, the labile hydrazone linkages of the individual [2]catenane components may be ‘locked’ by increasing the pH of the solution, yielding a relatively kinetically stable molecule. The present study thus details a simple approach to the creation and control of complex molecular architectures under reaction conditions that mimic biological milieux.

  6. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording

  7. A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation

    PubMed Central

    Liu, Na; Lin, Xin; Zhang, Weifeng; Cao, Yingze; Chen, Yuning; Feng, Lin; Wei, Yen

    2015-01-01

    The earth's environmental problems, especially for water remediation, need effective methods to solve. Materials with special wettability are developed for the separation of oil/water mixtures. However, the separation of emulsified oil/water mixtures can be a real challenge. There is still much deficiencies, on account of the surfactant, which could link water molecules and oil molecules to form a stabilized system. Here we report a pure inorganic ZnO-Co3O4 overlapped membrane to give a brand new solution to emulsified oil/water mixture separation. Fabricated by an easy and cost-efficient way, such a membrane combines the properties of under-water superoleophobicity and under-oil superhydrophobicity, which can be successfully used for the efficient separation of both surfactant-free and surfactant-stabilized emulsions, solely driven by gravity. This ZnO-Co3O4 overlapped membrane shows great potential applications to industrial wastewater treatment, domestic sewage purification and other water remediation. PMID:25900797

  8. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  9. Processes controlling mid-water column oxygen minima over the Texas-Louisiana shelf

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Hetland, Robert D.; DiMarco, Steven F.; Fennel, Katja

    2015-04-01

    We investigate distributions of dissolved oxygen over the Texas-Louisiana shelf using spatially highly resolved observations in combination with a regional circulation model with simple oxygen dynamics. The observations were collected using a towed, undulating CTD during the Mechanisms Controlling Hypoxia (MCH) program. Mid-water oxygen minimum layers (dissolved oxygen lower than 3.2 mL L-1) were detected in many transects. These oxygen minimum layers are connected with the bottom boundary layer and follow the pycnocline seaward as a tongue of low oxygen into the mid-water column. T-S diagrams highlighting the low oxygen minima in both observations and simulations imply direct connections between low-oxygen bottom water and the oxygen minimum layer. The dynamics of these oxygen minimum layers in the mid-water column are examined using a three-dimensional hydrodynamic model, based on the Regional Ocean Modeling System (ROMS). Convergence within the bottom boundary layer relative to density surfaces is calculated, results show that there is a convergence in the bottom boundary layer at the location where the pycnocline intersects the bottom. Buoyancy advection forced by bottom Ekman transport creates this convergent flow, and the corresponding low-oxygen intrusion. Similar intrusions of near-bottom water into the pycnocline are observed in other regions. The presence of hypoxia within the bottom boundary layer in the northern Gulf of Mexico creates a unique situation in which these intrusions are also associated with low dissolved oxygen.

  10. Environmental enhancement of creep crack growth in Inconel 718 by oxygen and water vapor

    SciTech Connect

    Valerio, P.; Gao, M.; Wei, R.P. . Dept. of Mechanical Engineering and Mechanics)

    1994-05-15

    Inconel 718 alloy is widely used in high temperature applications. Because of its sensitivity to environmentally enhanced crack growth at high temperatures, its use has been limited to modest temperatures (i.e., below 973 K). To improve its performance and to better predict its service life, it is important to develop a better understanding of the processes of crack growth at high temperatures in this alloy. It has been shown that the creep crack growth rates (CCGR) in air are at least two orders of magnitude faster than those in vacuum or inert environments. CCGR were also found to depend strongly on temperature. Fractographic studies showed that crack growth was intergranular in air and in vacuum with brittle appearing grain boundary separation in air and extensive cavity formation in vacuum. The increased CCGR in air has been attributed to the enhancement by oxygen; principally through enhanced cavity nucleation and growth by high-pressure carbon monoxide/dioxide formed by the reactions of oxygen that diffused into the material with the grain boundary carbides. The appropriateness of this mechanism, however, may be questioned by the absence of cavitation on the crack surfaces produced in air. As such the mechanism for crack growth needs to be re-examined. Because of the presence of moisture in air, the possible influence of hydrogen needs to be considered as well. In this study, preliminary experiments were conducted to examine the process of environmentally enhanced creep crack growth in Inconel 718 alloy in terms of possible mechanisms and rate controlling processes. Creep crack growth experiments were carried out in air, oxygen (from 2.67 to 100 kPa), moist argon (water vapor) and pure argon at temperatures from 873 to 973 K.

  11. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability

    NASA Astrophysics Data System (ADS)

    Aulin, Christian; Salazar-Alvarez, German; Lindström, Tom

    2012-09-01

    A novel, technically and economically benign procedure to combine vermiculite nanoplatelets with nanocellulose fibre dispersions into functional biohybrid films is presented. Nanocellulose fibres of 20 nm diameters and several micrometers in length are mixed with high aspect ratio exfoliated vermiculite nanoplatelets through high-pressure homogenization. The resulting hybrid films obtained after solvent evaporation are stiff (tensile modulus of 17.3 GPa), strong (strength up to 257 MPa), and transparent. Scanning electron microscopy (SEM) shows that the hybrid films consist of stratified nacre-like layers with a homogenous distribution of nanoplatelets within the nanocellulose matrix. The oxygen barrier properties of the biohybrid films outperform commercial packaging materials and pure nanocellulose films showing an oxygen permeability of 0.07 cm3 μm m-2 d-1 kPa-1 at 50% relative humidity. The oxygen permeability of the hybrid films can be tuned by adjusting the composition of the films. Furthermore, the water vapor barrier properties of the biohybrid films were also significantly improved by the addition of nanoclay. The unique combination of excellent oxygen barrier behavior and optical transparency suggests the potential of these biohybrid materials as an alternative in flexible packaging of oxygen sensitive devices such as thin-film transistors or organic light-emitting diode displays, gas storage applications and as barrier coatings/laminations in large volume packaging applications.

  12. RESEARCH STRATEGY FOR OXYGENATES IN WATER (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Oxygenates are chemicals added to fuels (oxyfuels) to increase the oxygen content and thereby reduce certain emissions from use of the fuel. Of the several ethers and alcohols that may serve as oxygenates, methyl tertiary butyl ether (MTBE) is the most commonly used. Altho...

  13. Investigations on optimizing the energy transmission of ultrafast optical pulses in pure water

    NASA Astrophysics Data System (ADS)

    Lukofsky, David

    Many of today's communication and imaging technologies share the common challenge of signal deterioration due to water's large absorption coefficient. As an example, it is water molecules that contaminate the fused silica of optical fibers and account for most of the absorption they exhibit at communication wavelengths. It is also water (in the form of vapor) that makes it challenging to devise practical THz spectroscopic systems. As such, this thesis examines how the transmission of electromagnetic radiation through water could be improved as a stepping stone towards bettering a wide array of communication and imaging applications. Recent time-domain approaches have noted the connection between pulse rise-time and precursor waveform absorption. This thesis represents the first in-depth analysis of precursors using an intuitive frequency-domain approach. It was shown with well-known physical metrics that precursors are a linear effect resulting from the temporal representation of a Beer's law of absorption for broadband pulses. Experimental validation was achieved with a spatial light modulator used in conjunction with Frequency-Resolved-Optical-Gating (FROG) to obtain the first measurement of the amplitude and phase of an optical precursor. The semi-classical two-level atom model was used to infer the transitional dipole moments of the 1447 nm and 2:94 mum vibrational resonances of the medium. These values supported finite-difference-time-domain simulations suggesting how 52 fs sech2 pulses of 220 GW/cm2 peak intensity could propagate with negligible attenuation over 15 absorption lengths when tuned to the 2:94 mum transition of water. Extensive use of 1550 nm lasers in communication systems and the presence of the second vibrational overtone resonance of water at 1447 nm were the motivation for transmission experiments completed at the Naval Research Laboratory (Washington, DC) at this transition. As much as a 500% increase in absolute transmission was observed

  14. Preliminary evaluation of oxygen isotopic exchange between chlorite and water

    SciTech Connect

    Cole, D.R.

    1985-01-01

    Variations in the oxygen isotopic composition of biotites altering to chlorite have been monitored as a function of time from 16 hydrothermal granite-water experiments conducted at the following conditions: T = 170/sup 0/ - 300/sup 0/C; P = 100-300 bars; mNaCl = 0.1-1.0; water/biotite mass ratio = 1-60 for periods up to 900 hours. The magnitude of delta/sup 18/O depletion in biotite increased with increasing temperature and time. Detailed thin section, x-ray and SEM studies demonstrated that biotite is altered exclusively to chlorite in 11 of the 16 experiments. The amounts of chlorite formed in these experiments increased with increasing temperature as well as time. The isotopic compositions of chlorite were calculated from mass balance, and compared with the final measured delta/sup 18/O of the fluids. These fractionations (..delta..Ch1-w) average 0.26, 0.77, and 3.74 per thousand for T = 300/sup 0/, 250/sup 0/, and 200/sup 0/C, respectively. Several lines of evidence will be discussed that suggest these data may represent equilibrium values. A least-squares regression of the data yields the following preliminary equation: 1000 ln ..cap alpha../sub/ Chl-W/ = 08.38 (10/sup 3//T) + 4.81 (10/sup 6//T/sup 2/). The error about this curve is at least +/-0.5 per thousand at 250/sup 0/ and 300/sup 0/C, and +/- 1 per thousand at 200/sup 0/C. There is excellent agreement between this curve and the curve given by Wenner and Taylor (1971) for the temperature range of 250/sup 0/ to 300/sup 0/C. However, below 250/sup 0/C, the new chloride-water results predict consistently higher temperatures compared to previous estimates.

  15. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water

    SciTech Connect

    Petrik, Nikolay G.; Kavetski, Alexandre G.; Kimmel, Greg A.

    2006-02-16

    The low-energy, electron-stimulated production of molecular oxygen from pure amorphous solid water (ASW) films and ASW films co-dosed with H2O2 is investigated. Layered films of H216O and H218O are used to determine the spatial profile of the reactions in the films leading to O2. The O2 yield is dose-dependent, indicating that precursors are involved in the O2 production. For temperatures below {approx}80 K, the O2 yield at steady state is relatively low and nearly independent of temperature. At higher temperatures, the yield increases rapidly. The O2 yield is enhanced from H2O2-dosed water films, but the experiments show that H2O2 is not the final precursor in the reactions leading to O2. Instead, a stable precursor for O2 is produced through a multi-step reaction sequence probably involving the reactions of OH radicals to produce H2O2 and then HO2. The O2 is produced in a non-thermal reaction from the HO2. For relatively thick films, the reactions leading to O2 occur at or near the ASW/vacuum interface. However, the electronic excitations which initiate the reactions occur over a larger range in the film. A kinetic model which qualitatively accounts for all of the observations is presented.

  16. Steam tables for pure water as an ActiveX component in Visual Basic 6.0

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2003-11-01

    The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.

  17. Oxygen consumption and evaporative water loss in infants with congenital heart disease.

    PubMed Central

    Kennaird, D L

    1976-01-01

    The relation between environmental temperature, heat production, oxygen consumption, and evaporative water loss was studied in 67 infants with congenital heart disease. The majority of the cyanosed infants had a low minimum oxygen consumption, a low evaporative water loss, and a diminished metabolic response to cold stress. Minimum oxygen consumption and evaporative water loss rose in 6 of these infants after the construction of a surgical shunt. Many of the ill acyanotic infants had an abnormally high minimum oxygen consumption, and those in cardiac failure often continued to sweat in an environment below the thermoneutral temperature zone. PMID:942228

  18. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    SciTech Connect

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO/sub 2/ + H/sub 2/O right reversible H/sup +/ + SHO/sub 3//sup -/. The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO/sub 3//sup -/) and the other with the proton bonded to an oxygen (SO/sub 3/H/sup -/). (The symbol SHO/sub 3//sup -/ in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO/sub 3/H/sup -/, exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum.

  19. Water-soluble naphthalene diimides as singlet oxygen sensitizers.

    PubMed

    Doria, Filippo; Manet, Ilse; Grande, Vincenzo; Monti, Sandra; Freccero, Mauro

    2013-08-16

    Bromo- and/or alkylamino-substituted and hydrosoluble naphthalene diimides (NDIs) were synthesized to study their multimodal photophysical and photochemical properties. Bromine-containing NDIs (i.e., 11) behaved as both singlet oxygen ((1)O2) photosensitizers and fluorescent molecules upon irradiation at 532 nm. Among the NDIs not containing Br, only 12 exhibited photophysical properties similar to those of Br-NDIs, by irradiation above 610 nm, suggesting that for these NDIs both singlet and triplet excited-state properties are strongly affected by length, structure of the solubilizing moieties, and pH of the solution. Laser flash photolysis confirmed that the NDI lowest triplet excited state was efficiently populated, upon excitation at both 355 and 532 nm, and that free amine moieties quenched both the singlet and triplet excited states by intramolecular electron transfer, with generation of detectable radical anions. Time-resolved experiments, monitoring the 1270 nm (1)O2 phosphorescence decay generated upon laser irradiation at 532 nm, allowed a ranking of the NDIs as sensitizers, based on their (1)O2 quantum yields (ΦΔ). The tetrafunctionalized 12, exhibiting a long-lived triplet state (τ ~ 32 μs) and the most promising absorptivity for photodynamic therapy application, was tested as efficient photosensitizers in the photo-oxidations of 1,5-dihydroxynaphthalene and 9,10-anthracenedipropionic acid in acetonitrile and water. PMID:23869544

  20. Proficiency test sample media for single and mixed pure cultures of water pollution indicator bacteria.

    PubMed Central

    Toombs, R W; Connor, D A

    1980-01-01

    Two transport media, NYSDH-1 and NYSDH-2, were developed for use in a split bacteriological water sample program. The media maintained 88% viability of inoculated organisms for at least 48 h, and the samples do not require special handling or reconstitution. Procedures for preparing and shipping the samples to participating laboratories were developed. A reference set of samples was analyzed in laboratories certified by either New York State or the Environmental Protection Agency. A statistical analysis was performed, and the results indicate that the media are suitable for integration into a laboratory quality control program. PMID:6778391

  1. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  2. Improved detection of added water in orange juice by simultaneous determination of the oxygen-18/oxygen-16 isotope ratios of water and ethanol derived from sugars.

    PubMed

    Jamin, Eric; Guérin, Régis; Rétif, Mélinda; Lees, Michèle; Martin, Gérard J

    2003-08-27

    A procedure for the analysis of the oxygen-18/oxygen-16 isotope ratio of ethanol derived from the sugars of orange juice using the preparation steps of the SNIF-NMR method followed by pyrolysis-isotope ratio mass spectrometry is presented. The isotopic fractionation induced by the isotope effects of fermentation and distillation have been investigated, and it is shown that reproducible results can be obtained when appropriate analytical conditions are used. It is also shown that the oxygen isotope distribution in the water and organic matter pools of fruits remains quite stable during the harvest period and is not altered by the precipitation rate within the last few days before the fruits are picked. Due to the robustness of the method and the fact that most of the oxygen-18 enrichment from the initial sugars is still present in the end-product, ethanol appears as a convenient internal reference to circumvent the spatial and temporal variability observed for the oxygen-18/oxygen-16 isotope ratio of water. A very strong correlation is observed between the isotopic deviations of ethanol and water, which is altered in the event of a water addition, even at a low level. Combining the information brought by these two parameters leads to a more efficient authenticity testing tool, which avoids false positive cases and provides a lower detection limit for added water in juices not made from concentrate, whatever the origin of the sample tested. PMID:12926859

  3. [Separation of bases, phenols and pharmaceuticals on ionic liquid-modified silica stationary phase with pure water as mobile phase].

    PubMed

    Wang, Xusheng; Qiu, Hongdeng; Liu, Xia; Jiang, Shengxiang

    2011-03-01

    N-methylimidazolium ionic liquid (IL) -modified silica was prepared with the reaction of 3-chloropropyl modified silica and N-methylimidazole using toluene as solvent. Based on the multiple interactions between N-methylimidazolium IL-modified silica and analytes such as hydrophobic interaction, electrostatic attraction, repulsion interaction, hydrogen-bonding, etc., the bases (cytosine, thymine, 2-aminopyrimidine and 6-chloroguanine), phenols (m-aminophenol, resorcinol and m-nitrophenol) and three pharmaceuticals (moroxydine hydrochloride, acyclovir and cephalexin hydrate) were separated successfully with only pure water as the mobile phase. These chromatographic separations are environmental friendly, economical and convenient, without any organic solvent or buffer additive. The retention mechanism of these samples on the stationary phase was also investigated. PMID:21657060

  4. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    SciTech Connect

    Veirs, Douglas K.; Berg, John M.; Crowder, Mark L.

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  5. Graphene Jet Nanomotors in Remote Controllable Self-Propulsion Swimmers in Pure Water.

    PubMed

    Akhavan, Omid; Saadati, Maryam; Jannesari, Marziyeh

    2016-09-14

    A remote controllable working graphite nanostructured swimmer based on a graphene jet nanomotor has been demonstrated for the first time. Graphite particles with pyramidal-like morphologies were fabricated by the creation of suitable defects in wide high-purity graphite flakes followed by a severe sonication. The particles were able to be self-exfoliated in water after Na intercalation between the graphene constituents. The self-exfoliation resulted in jet ejection of graphene flakes from the end of the swimmers (with speeds as high as ∼7000 m/s), producing a driving force (at least ∼0.7 L (pN) where L (μm) is swimmer size) and consequently the motion of the swimmer (with average speed of ∼17-40 μm/s). The jet ejection of the graphene flakes was assigned to the explosion of H2 nanobubbles produced between the Na intercalated flakes. The direction of motion of the swimmers equipped with TiO2 nanoparticles (NPs) can be controlled by applying a magnetic field in the presence of UV irradiation (higher UV intensity, lower radius of rotation). In fact, the negative surface charge of the graphene flakes of the swimmers increased by UV irradiation due to transferring the photoexcited electrons of TiO2 NPs into the flakes. Because of higher production of H2 nanobubbles under UV irradiation, the speed of swimmers exposed to UV light significantly increased. In contrast, UV irradiation with various intensities could not affect total distance traversed by the self-exfoliated swimmers having the same initial sizes. These confirmed the mass ejection mechanism for motion of the swimmers. The self-exfoliation of swimmers (and so their motion) occurred only in water (and not, e.g., in organic solutions). Such swimmers promise the design of remote controllable nanovehicles with the capability of initiating and/or improving their operations in response to environmental changes in order to realize broad ranges of versatile and fantastic nanotechnology-based applications. PMID

  6. Oxygen vacancies and intense luminescence in manganese loaded Zno microflowers for visible light water splitting

    NASA Astrophysics Data System (ADS)

    Sambandam, Balaji; Michael, Robin Jude Vimal; Manoharan, Periakaruppan T.

    2015-08-01

    ZnO nanorods and Mn/ZnO microflowers with nano-sized petals exhibit singly ionized oxygen vacancies, V+O. This is strongly supported by a green photoluminescence emission at 2.22 eV and an EPR g value of 1.953, both of which are suppressed greatly after annealing in an oxygen atmosphere. A strong red emission observed during exposure to X-rays reveals the presence of F+ centres as a consequence of the V+O. Mn/ZnO displayed enhanced H2 generation with visible light exposure, when compared to pure ZnO and annealed Mn/ZnO in the visible region, which directly correlated with the oxygen vacancy concentration. There is an interesting correlation between the intensities of the EPR lines at the g-value of 1.953 due to the oxygen vacancies, the intensity of light emitted from the exposure to X-rays, the intensity of the photoluminescence due to oxygen vacancies and the quantity of H2 produced by the photocatalytic effect when comparing the three different nanomaterials, viz. pure ZnO, Mn/ZnO before and after annealing, all having been made exactly by the same methodologies.ZnO nanorods and Mn/ZnO microflowers with nano-sized petals exhibit singly ionized oxygen vacancies, V+O. This is strongly supported by a green photoluminescence emission at 2.22 eV and an EPR g value of 1.953, both of which are suppressed greatly after annealing in an oxygen atmosphere. A strong red emission observed during exposure to X-rays reveals the presence of F+ centres as a consequence of the V+O. Mn/ZnO displayed enhanced H2 generation with visible light exposure, when compared to pure ZnO and annealed Mn/ZnO in the visible region, which directly correlated with the oxygen vacancy concentration. There is an interesting correlation between the intensities of the EPR lines at the g-value of 1.953 due to the oxygen vacancies, the intensity of light emitted from the exposure to X-rays, the intensity of the photoluminescence due to oxygen vacancies and the quantity of H2 produced by the

  7. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  8. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    NASA Astrophysics Data System (ADS)

    Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter

    2012-01-01

    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).

  9. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188-258 GHz range.

    PubMed

    Serov, E A; Koshelev, M A; Odintsova, T A; Parshin, V V; Tretyakov, M Yu

    2014-12-21

    New experimental results regarding "warm" water dimer spectra under equilibrium conditions are presented. An almost equidistant series of six peaks corresponding to the merged individual lines of the bound dimer with consecutive rotational quantum numbers is studied in the 188-258 GHz frequency range in water vapour over a broad range of pressures and temperatures relevant to the Earth's atmosphere. The series is a continuation of the sequence detected earlier at lower frequencies at room temperature. The signal-to-noise ratio of the observed spectra allowed investigating their evolution, when water vapour was diluted by atmospheric air with partial pressure from 0 up to 540 Torr. Analysis of the obtained spectra permitted determining the dimerization constant as well as the hydrogen bond dissociation energy and the dimer spectral parameters, including the average coefficient of collisional broadening of individual lines by water vapour and air. The manifestation of metastable states of the dimer in the observed spectra is assessed. The contribution of three possible pair states of water molecules to the second virial coefficient is evaluated over the broad range of temperatures. The work supports the significant role of the water dimer in atmospheric absorption and related processes. PMID:25363156

  10. Effect of hyperbaric oxygen conditions on the ordering of interfacial water.

    PubMed

    Ypma, Rolf E; Pollack, Gerald H

    2015-01-01

    Hyperbaric oxygen (HBO2) conditions are applied clinically to treat diverse conditions. There is a lack of a unifying consensus as to how HBO2 acts effectively against a broad range of medical conditions, and numerous differing biological explanations have been offered. The possibility of a mechanism dependent on the extensive ordering of interfacial water has not yet been investigated. We examined the hypothesis that zones of ordered water, dubbed "exclusion zones" or "EZ," are expanded under hyperbaric oxygen conditions. Specifically, we tested whether there are significant quantitative differences in EZ size at steady state under high-pressure and/or high-oxygen conditions, compared to normal atmospheric conditions. Oxygen concentration and mechanical pressure were examined separately and in combination. Statistically significant increases in EZ size were seen at elevated air pressures and at high oxygen concentrations. These experimental results suggest the possibility of an ordered water-mediated mechanism of action for hyperbaric oxygen therapy. PMID:26152107

  11. Coupled Oxygen and Hydrogen Isotope Analysis of Water Along the Soil-Plant- Atmosphere Continuum

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Webb, E. A.; Longstaffe, F. J.

    2008-12-01

    The oxygen and hydrogen isotope compositions of water within a plant vary with transpiration rates and the isotopic composition of soil water. Both of these parameters are affected by temperature and relative humidity. A controlled-temperature, growth-chamber experiment was conducted to determine the relationships among temperature, relative humidity, soil water evaporation and plant-water isotope composition in cattails and horsetails. Typha, a cattail species that grows in wetland conditions, and Equisetum, a horsetail species that prefers dry soils, were each grown in four chambers at 15, 20, 25 and 30 degrees Celsius. The oxygen and hydrogen isotope compositions of watering water, soil water, vapour in the growth chambers and plant water from the leaves and stems were analyzed throughout the eight-month long artificial growing season. Although the oxygen isotope composition of the watering water remained constant, the soil water, atmospheric vapour and plant water were progressively enriched in oxygen-18 and deuterium in each of the four chambers from low to high temperatures as a result of increasing evaporation. The oxygen isotope composition of plant water along the length of a single stem or leaf was increasingly enriched in the heavier isotopes towards the apex. There was no significant difference in the magnitude of this trend between species. These results indicate that the isotopic composition of plant water is primarily controlled by environmental conditions. The oxygen isotope composition of the water vapour in the growing chamber increased with temperature, consistent with equilibration between the vapour and the oxygen-18 enriched soil and plant water reservoirs. The magnitude and interaction of these variables, as measured for these modern samples of cattails and horsetails, should be useful in calibrating paleoclimate proxies based on fossilized plant materials (e.g., cellulose, phytoliths).

  12. Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: A benthic foraminiferal perspective

    NASA Astrophysics Data System (ADS)

    Shibahara, Akihiko; Ohkushi, Ken'ichi; Kennett, James P.; Ikehara, Ken

    2007-09-01

    A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-Ållerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. The lowest oxygen conditions, marked by dysoxic taxa and laminated sediments in one core, occurred during the B/A and the Preboreal intervals. Suboxic taxa dominated mainly during the last glacial, the Younger Dryas, and most of the Holocene. Dysoxic conditions during the B/A and Preboreal intervals in this region were possibly caused by high surface water productivity at times of reduced intermediate ventilation in the northwestern Pacific. Remarkable similarities are evident in the late Quaternary sequence of benthic

  13. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  14. Water Induced Surface Reconstruction of the Oxygen (2x1) covered Ru(0001)

    SciTech Connect

    Maier, Sabine; Cabrera-Sanfelix, Pepa; Stass, Ingeborg; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2010-08-06

    Low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the ~;;200 meV water-water H-bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260K.

  15. Dynamic Fracture of Borosilicate Glass with Plasma Confinement geometry in Pure Water by Laser-induced Shock Wave

    NASA Astrophysics Data System (ADS)

    Saito, Fumikazu; Kishimura, Hiroaki; Suzuki, Takanori

    2013-06-01

    In order to characterize dynamic fracture of borosilicate glass, we performed laser-shock-experiments of both an aluminum-ablator mounted glass and a glass with plasma confinement geometry in pure water by Q-switched Nd3+:YAG laser. The incident beam with 440 mJ were focused onto the target approximately 300 μm in diameter. The dynamic fracture of the glass targets is observed with high-speed digital framing-camera photography. For the aluminum-ablator mounted glass, propagation of the shock wave in water was observed, and the shock-wave velocity is obtained to be 1.65 +/- 0.02 km/s using image processing. Shock-pressure applied the target is estimated to be 180 MPa by Hugoniot relation. For the glass with plasma confinement geometry, generation of the micro-fragments from the rear side of the target was observed. This result indicates that shock-induced fragmentation by laser irradiation is enhanced by the plasma confinement effect. The soft-recovered fragments are separated according the size with PET mesh having deferent mesh size. As a result, the glass with plasma confinement geometry generated smaller fragment than the aluminum-ablator mounted glass.

  16. Oxygen consumption in the water column and sediments of the northern Gulf of Mexico hypoxic zone

    NASA Astrophysics Data System (ADS)

    McCarthy, Mark J.; Carini, Stephen A.; Liu, Zhanfei; Ostrom, Nathaniel E.; Gardner, Wayne S.

    2013-05-01

    Hypoxia is a global problem resulting from excessive nutrient inputs to coastal regions, but the biogeochemical mechanisms of hypoxia development are not well understood. The primary location of oxygen consumption (i.e., sediments versus water column) is still debated and may depend on the analytical approach used. In this study, oxygen respiration was measured using incubations combined with membrane inlet mass spectrometry in sediments, water overlying sediments, and the water column in the Gulf of Mexico hypoxic zone. Water column respiration ranged from 0.09 to 4.42 μmol O2 l-1 h-1 (mean = 0.77 ± 0.07 (standard error)) and was significantly higher shortly after two hurricanes. Overlying water respiration ranged from 0.31 to 2.46 μmol O2 l-1 h-1 (mean = 0.70 ± 0.09) and accounted for 3.7 ± 0.8% of total below-pycnocline respiration. Sediment oxygen consumption, measured using a continuous-flow incubation technique, was lowest after the two hurricanes and ranged from 408 to 1800 μmol O2 m-2 h-1 (mean = 834 ± 83.8 μmol O2 m-2 h-1). Sediments accounted for 25 ± 5.3% of total below-pycnocline respiration, and sediment oxygen consumption was related negatively to ambient bottom-water oxygen concentration. This negative relationship contradicts previous literature and suggests that high sediment oxygen consumption is driven by abundant, fresh organic material and regulates bottom-water oxygen concentration, rather than the common assumption that bottom-water oxygen concentration determines sediment oxygen consumption. The results from this study suggest that storms and mixing events may lead to conditions suitable for hypoxia redevelopment in as little as two days after disturbances, with the water column playing a critical role in system hypoxia development and maintenance.

  17. Roles of Oxygen and Water Vapor in the Oxidation of Halogen Terminated Ge(111) Surfaces

    SciTech Connect

    Sun, Shiyu; Sun, Yun; Liu, Zhi; Lee, Dong-Ick; Pianette, Piero; /SLAC, SSRL

    2006-12-18

    The initial stage of the oxidation of Cl and Br terminated Ge(111) surfaces is studied using photoelectron spectroscopy. The authors perform controlled experiments to differentiate the effects of different factors in oxidation, and find that water vapor and oxygen play different roles. Water vapor effectively replaces the halogen termination layers with the hydroxyl group, but does not oxidize the surfaces further. In contrast, little oxidation is observed for Cl and Br terminated surfaces with dry oxygen alone. However, with the help of water vapor, oxygen oxidizes the surface by breaking the Ge-Ge back bonds instead of changing the termination layer.

  18. One-Step Preparation of Oxygen/Fluorine Dual Functional MWCNTs with Good Water Dispersibility by the Initiation of Fluorine Gas.

    PubMed

    Liu, Yang; Wang, Xu; Wang, Weimiao; Li, Baoyin; Wu, Peng; Ren, Mengmeng; Cheng, Zheng; Chen, Teng; Liu, Xiangyang

    2016-03-01

    It is still a challenge to prepare water-dispersible carbon nanotubes which are proved to have great potential in numerous applications. In this present work, as low as 2% fluorine gas was used as initiator to prepare oxygen/fluorine dual functional MWCNTs (OF-MWCNTs) with good water dispersibility through a one-step method under oxygen atmosphere. The aromatic structure of OF-MWCNTs is reserved to some extent resulting in better electrical conductivity than pure fluorinated MWCNTs (F-MWCNTs). The amount of oxygen atoms and fluorine atoms (hereinafter referred to as "O-content" and "F-content") of OF-MWCNTs is up to 8.8% and 7.5%. Fourier transform infrared spectroscopy (FTIR) manifests that - COOH is covalently bonded onto the surface of OF-MWCNTs. In addition, the OF-MWCNTs sample is pH-sensitive, which further validates the successful introduction of -COOH. The successful covalent attachment of -COOH onto MWCNTs dramatically improves the hydrophilia of MWCNTs which always present hydrophobic character. It is deduced that fluorine creates reactive sites for oxygen, increases the oxygen content, and eventually results in the dispersibility of OF-MWCNTs in water. The corresponding hydrophilic OF-MWCNTs film shows good performance for separating oil-in-water emulsions. Meanwhile, the good dispersibility of OF-MWCNTs in organic solvents also makes it possible to be applied in various composites. PMID:26950382

  19. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

    PubMed Central

    Perito, Brunella; Giorgetti, Emilia; Marsili, Paolo

    2016-01-01

    Summary Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a

  20. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution.

    PubMed

    Perito, Brunella; Giorgetti, Emilia; Marsili, Paolo; Muniz-Miranda, Maurizio

    2016-01-01

    Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by "activating" the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a restricted

  1. Oxygen and hydrogen isotopes in thermal waters at Zunil, Guatemala

    SciTech Connect

    Fournier, R.O.; Hanshaw, B.B.; Urrutia Sole, J.F.

    1982-10-01

    Enthalpy-chloride relations suggest that a deep reservoir exists at Zunil with a temperature near 300/sup 0/C. Water from that reservoir moves to shallower and cooler local reservoirs, where it mixes with diluted water and then attains a new water-rock chemical equilibrium. This mixed water, in turn, generally is further diluted before being discharged from thermal springs. The stable-isotopic composition of the thermal water indicates that recharge for the deep water at Zunil comes mainly from local sources. The presence of measurable tritium, which suggests that the deep water has been underground about 20 to 30 years, also indicates a local source for the recharge.

  2. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.

    PubMed

    Zhu, Changqing; Li, Changli; Zheng, Maojun; Delaunay, Jean-Jacques

    2015-10-14

    The incorporation of oxygen vacancies in hematite has been investigated as a promising route to improve oxygen evolution reaction activity of hematite photoanodes used in photoelectrochemical water oxidation. However, introducing oxygen vacancies intentionally in α-Fe2O3 for active solar water splitting through facile and effective methods remains a challenge. Herein, air plasma treatment is shown to produce oxygen vacancies in α-Fe2O3, and ultrathin α-Fe2O3 nanoflakes are used to investigate the effect of oxygen vacancies on the performance of photoelectrochemical oxygen oxidation. Increasing the plasma treatment duration and power is found to increase the density of oxygen vacancies and leads to a significant enhancement of the photocurrent response. The nanoflake photoanode with the optimized plasma treatment yields an incident photo-to-current conversion efficiency of 35.4% at 350 nm under 1.6 V vs RHE without resorting to any other cocatalysts, an efficiency far exceeding that of the pristine α-Fe2O3 nanoflakes (∼2.2%). Evidence for the presence of high density of oxygen vacancies confined in nanoflakes is clarified by X-ray photoelectron spectroscopy. The increased number of oxygen vacancies after plasma treatment resulting in an increased carrier density is interpreted as the main cause for the enhanced oxygen evolution reaction activity. PMID:26400020

  3. Effect of in-water recompression with oxygen to 6 msw versus normobaric oxygen breathing on bubble formation in divers.

    PubMed

    Blatteau, Jean-Eric; Pontier, Jean-Michel

    2009-07-01

    It is generally accepted that the incidence of decompression sickness (DCS) from hyperbaric exposures is low when few or no bubbles are present in the circulation. To date, no data are available on the influence of in-water oxygen breathing on bubble formation following a provocative dive in man. The purpose of this study was to compare the effect of post-dive hyperbaric versus normobaric oxygen breathing (NOB) on venous circulating bubbles. Nineteen divers carried out open-sea field air dives at 30 msw depth for 30 min followed by a 9 min stop at 3 msw. Each diver performed three dives: one control dive, and two dives followed by 30 min of hyperbaric oxygen breathing (HOB) or NOB; both HOB and NOB started 10 min after surfacing. For HOB, divers were recompressed in-water to 6 msw at rest, whereas NOB was performed in a dry room in supine position. Decompression bubbles were examined by a precordial pulsed Doppler. Bubble count was significantly lower for post-dive NOB than for control dives. HOB dramatically suppressed circulating bubble formation with a bubble count significantly lower than for NOB or controls. In-water recompression with oxygen to 6 msw is more effective in removing gas bubbles than NOB. This treatment could be used in situations of "interrupted" or "omitted" decompression, where a diver returns to the water in order to complete decompression prior to the onset of symptoms. Further investigations are needed before to recommend this protocol as an emergency treatment for DCS. PMID:19424716

  4. Nanosized IrxRu1-xO2 electrocatalysts for oxygen evolution reaction in proton exchange membrane water electrolyzer

    NASA Astrophysics Data System (ADS)

    Hanh Pham, Hong; Nguyen, Ngoc Phong; Linh Do, Chi; Thang Le, Ba

    2015-01-01

    Normally in proton exchange membrane water electrolysis (PEMWE), the anode has the largest overpotential at typical operating current densities. By development of the electrocatalytic material used for the oxygen evolving electrode, great improvements in efficiency can be performed. In electrochemistry, rare metallic oxides RuO2 and IrO2 exhibit the best catalytic properties for the oxygen evolution reaction (OER) in acid electrolytes compared to other noble metals. RuO2 is the most active catalyst and IrO2 is the most stable catalyst. An oxide containing both elements is therefore expected to be a good catalyst for the OER. In this study IrxRu1-xO2 nanosized powder electrocatalysts for oxygen evolution reaction is synthesized by hydrolysis method. Cyclic voltammetry, anodic polarization and galvanostatic measurements were conducted in solution of 0.5 M H2SO4 to investigate electrocatalytic behavior and stability of the electrocatalyst. The mechanisms of the thermal decomposition process of RuCl3.nH2O and IrCl3.mH2O precursors to form oxide powders were studied by means of thermal gravity analysis (TGA). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used analysis for determination of the crystallographic structure, morphology and catalysts particle size. Based on the given results, the IrxRu1-xO2 (x = 0.5 0.7) compounds were found to be more active than pure IrO2 and more stable than pure RuO2.

  5. Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective

    SciTech Connect

    Park, Seh Kyu; Shao, Yuyan; Liu, Jun; Wang, Yong

    2012-11-01

    Hydrogen production by electrochemical water electrolysis has received great attention as an alternative technology for energy conversion and storage. The oxygen electrode has a substantial effect on the performance and durability in water electrolyzers and reversible fuel cells because of its intrinsically slow kinetics for oxygen evolution/reduction and poor durability under harsh operating environments. To improve oxygen kinetics and durability of the electrode, extensive studies for highly active and stable oxygen electrocatalyst have been performed. However, due to the thermodynamic instability of transition metals in acidic media, noble metal compounds have been primarily utilized as electrocatalysts in water electrolyzers and reversible fuel cells. For water electrolyzer applications, single noble metal oxides such as ruthenium oxide and iridium oxide have been studied, and binary or ternary metal oxides have been developed to take synergestic effects of each component. On the other hand, a variety of bifunctional electrocatalysts with a combination of monofunctional electrocatalysts such as platinum for oxygen reduction and iridium oxide for oxygen evolution for reversible fuel cell applications have been mainly proposed. Practically, supported iridium oxide-on-platinum, its reverse type, and non-precious metal-supported platinum and iridium bifunctional electrocatalysts have been developed. Recent theoretical calculations and experimental studies in terms of water electrolysis and fuel cell technology suggest effective ways to cope with current major challenges of cost and durability of oxygen electrocatalysts for technical applications.

  6. Bottom-Water Oxygenation in the Central Gulf of California for the Last 16 kyrs

    NASA Astrophysics Data System (ADS)

    Karlin, R. E.; Harris, A.

    2006-12-01

    Laminated sediment records from the central Gulf of California reveal changes in oxygen-related microfabric, which can be directly related to variations in the intensity and location of the oxygen-minimum zone (OMZ) for the last 16,000 years. The intensity and location of the OMZ depends on the interaction of primary productivity and bottom water oxygen availability created by compositional variations and replenishment speed of Pacific Intermediate Water (PIW). Seven cores recovered from water depths ranging from 525 to 820 meters directly sample changes in the extent of the OMZ and PIW. Chronologies for six Atlantis II cores are based on independent radiocarbon ages, stratigraphic correlation, oxygen-isotope stratigraphy, and lamina counts from x-radiograph images. At DSDP Site 480, the varve chronology, when compared to an independent age model based on radiocarbon ages and secular variation curves, indicates that the Site 480 record is continuous and has an age error comparable to that of ice core and tree ring records. Bottom-water oxygenation was relatively higher from 17 to ~15.5 cal kyrs BP and ~12.3 to ~11.9 cal kyrs BP, was lower from ~15.5 to ~12.3 cal kyrs BP and ~11.6 to 7 cal kyrs and began increasing again after 7 cal kyrs. Changes in microfabric and, hence, bottom water oxygenation were not synchronous in the central Gulf. The change from oxic to more anoxic conditions near the end of the last glacial and the Younger Dryas began at depth and progressively shallowed with time. The transition to more oxic conditions in the Younger Dryas also began at depth and shallowed with time. The relationships between proxies for PIW oxygenation, primary productivity, and sediment flux suggest that productivity controlled bottom-water oxygenation from 17 to 11.6 cal kyrs BP. Lower oxygen availability due to less PIW input appears to have controlled bottom-water oxygenation from 11.6 to ~10 cal kyrs BP. No clear basin-wide relationship is found between productivity

  7. Corrosion of Alloy 625 and pure chromium in Cl{sup {minus}} containing fluids during supercritical water oxidation (SCWO)

    SciTech Connect

    Wagner, M.; Kolarik, V.; Michelfelder, B.; Juez-Lorenzo, M.; Hirth, T.; Eisenreich, N.; Eyerer, P.

    1999-11-01

    Supercritical water oxidation (SCWO) is an efficient procedure for complete degradation of hazardous residues, converting them into acids, salts, and carbon dioxide. The reactor material, however, is subjected to a highly corrosive fluid and to high pressures at high temperatures. An experimental set-up was designed that allows corrosion studies under these conditions. Alloy 625 and chromium of high purity were studied at 500 C and 46.5 MPa up to 300 h with a model fluid consisting of HCl + H{sub 2}O + NaCl + methanol using H{sub 2}O{sub 2} as oxidant. Alloy 625 forms complex layers with alternating scales consisting of Cr-Mo-Nb-O mixed oxides, and layers containing chlorides, mainly NiCl{sub 2}. Additionally pitting corrosion and local intergranular corrosion were observed. The analysis of the fluid phase by ICP-AES as a function of time showed periods with a strong transition of Ni into the fluid phase and alternating time periods with high Mo and Cr concentrations indicating that alternating mechanisms are controlling the corrosion procedure. On pure chromium, Cr{sub 2}O{sub 3} scales composed of several layers were formed and in wide regions spallation was observed. The reduction of sample thickness and mass changes indicate greater corrosion rates of Cr than Alloy 625.

  8. Particle control challenges in process chemicals and ultra-pure water for sub-10nm technology nodes

    NASA Astrophysics Data System (ADS)

    Rastegar, Abbas; Samayoa, Martin; House, Matthew; Kurtuldu, Hüseyin; Eah, Sang-Kee; Morse, Lauren; Harris-Jones, Jenah

    2014-04-01

    Particle contamination in ultra-pure water (UPW) and chemicals will eventually end up on the surface of a wafer and may result in killer defects. To improve the semiconductor processing yield in sub-10 nm half pitch nodes, it is necessary to control particle defectivity. In a systematic study of all major techniques for particle detection, counting, and sizing in solutions, we have shown that there is a gap in the required particle metrology which needs to be addressed by the industry. To reduce particles in solutions and improve filter retention for sub-10 nm particles with very low densities (<10 particles/mL), liquid particle counters that are able to detect small particles at low densities are required. Non-volatile residues in chemicals and UPW can result in nanoparticles. Measuring absolute non-volatile residues in UPW with concentrations in the ppb range is a challenge. However, by using energy-dispersive spectroscopy (EDS) analysis through transmission electron microscopy (TEM) of non-volatile residues we found silica both in dissolved and colloidal particle form which is present in one of the cleanest UPW that we tested. A particle capture/release technique was developed at SEMATECH which is able to collect particles from UPW and release them in a controlled manner. Using this system we showed sub-10 nm particles are present in UPW. In addition to colloidal silica, agglomerated carbon containing particles were also found in UPW.

  9. The oxygen isotope partition function ratio of water and the structure of liquid water

    USGS Publications Warehouse

    O'Neil, J.R.; Adami, L.H.

    1969-01-01

    By means of the CO2-equilibration technique, the temperature dependence and absolute values of the oxygen isotope partition function ratio of liquid water have been determined, often at 1?? intervals, from -2 to 85??. A linear relationship between In (Q2/Q1) (H2O) and T-1 was obtained that is explicable in terms of the Bigeleisen-Mayer theory of isotopic fractionation. The data are incompatible with conventional, multicomponent mixture models of water because liquid water behaves isotopically as a singly structured homogeneous substance over the entire temperature range studied. A two-species model of water is proposed in which approximately 30% of the hydrogen bonds in ice are broken on melting at 0?? and in which this per cent of monomer changes by only a small amount over the entire liquid range. Because of the high precision and the fundamental property determined, the isotopic fractionation technique is particularly well suited to the detection of thermal anomalies. No anomalies were observed and those previously reported are ascribed to under-estimates of experimental error.

  10. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  11. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes. PMID:25338365

  12. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. PMID:27267721

  13. Using permeable membranes to produce hydrogen and oxygen from water

    NASA Technical Reports Server (NTRS)

    Sanders, A. P.; Williams, R. J.; Downs, W. R.; Mcbryar, H.

    1975-01-01

    Concept may make it profitable to obtain hydrogen fuel from water. Laboratory tests have demonstrated that method enables decomposition of water several orders of magnitude beyond equilibrium state where only small amounts of free hydrogen are present.

  14. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce

    2007-01-01

    In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.

  15. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  16. Apollo 11 ilmenite revisited. [lunar resources of oxygen and water

    NASA Technical Reports Server (NTRS)

    Cameron, E. N.

    1992-01-01

    An account is given of the problems associated with beneficiation of the high-Ti regolith represented by Apollo 11's ilmenite sample. Magnetic and electrostatic separation, combined with sizing to reject all but the best fractions of the lunar regolith, will be essential; the production of high-grade ilmenite concentrates on the scale required for lunar oxygen production may still, however, be unachievable. These findings suggest that ilmenite production directly from high-Ti-content basalt may be a superior alternative.

  17. Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth.

    PubMed

    Brandt, Timothy D; Spiegel, David S

    2014-09-16

    The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component's presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds. PMID:25197095

  18. Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth

    PubMed Central

    Brandt, Timothy D.; Spiegel, David S.

    2014-01-01

    The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component’s presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds. PMID:25197095

  19. [Clinical evaluation of an oxygen concentrator and humidifier that does not require additional reservoir water].

    PubMed

    Burioka, Naoto; Nakamoto, Sachiko; Fukuoka, Yasushi; Shimizu, Eiji

    2011-02-01

    A conventional humidifier with a reservoir of water for humidification can produce micro-aerosols contaminated with bacteria. The present study was undertaken to determine the clinical efficiency of a membrane humidifier that does not require additional reservoir water. We analyzed relative room air humidity and oxygen levels obtained from 2 pressure-swing adsorption (PSA)-type oxygen concentrators with membrane humidifiers. A significant correlation was found between relative room air humidity and that of oxygen moistened by a membrane humidifier. Several patients with chronic respiratory failure experienced improvements in subjectively reported nasal dryness using an oxygen concentrator with a membrane humidifier. This device avoids the need to change reservoir water, and may improve patient quality of life in the home. PMID:21400902

  20. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  1. Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy.

    PubMed

    Chesson, Lesley A; Bowen, Gabriel J; Ehleringer, James R

    2010-11-15

    Hydrogen (δ(2)H) and oxygen (δ(18)O) stable isotope analysis is useful when tracing the origin of water in beverages, but traditional analytical techniques are limited to pure or extracted waters. We measured the isotopic composition of extracted beverage water using both isotope ratio infrared spectroscopy (IRIS; specifically, wavelength-scanned cavity ring-down spectroscopy) and isotope ratio mass spectrometry (IRMS). We also analyzed beer, sodas, juices, and milk 'as is' using IRIS. For IRIS analysis, four sequential injections of each sample were measured and data were corrected for sample-to-sample memory using injections (a) 1-4, (b) 2-4, and (c) 3-4. The variation between δ(2)H and δ(18)O values calculated using the three correction methods was larger for unextracted (i.e., complex) beverages than for waters. The memory correction was smallest when using injections 3-4. Beverage water δ(2)H and δ(18)O values generally fit the Global Meteoric Water Line, with the exception of water from fruit juices. The beverage water stable isotope ratios measured using IRIS agreed well with the IRMS data and fit 1:1 lines, with the exception of sodas and juices (δ(2)H values) and beers (δ(18)O values). The δ(2)H and δ(18)O values of waters extracted from beer, soda, juice, and milk were correlated with complex beverage δ(2)H and δ(18)O values (r = 0.998 and 0.997, respectively) and generally fit 1:1 lines. We conclude that it is possible to analyze complex beverages, without water extraction, using IRIS although caution is needed when analyzing beverages containing sugars, which can clog the syringe and increase memory, or alcohol, a known spectral interference. PMID:20941769

  2. Influence of water on the reaction path of the oxygen reduction reaction in fuel cells

    NASA Astrophysics Data System (ADS)

    Malardier-Jugroot, Cecile; Groves, Michael; Jugroot, Manish

    2015-04-01

    The development of fuel cell technology has been limited in part due to the cost of the catalyst used in the cell and the rate limiting oxygen reduction reaction. We will present a molecular modelling study focus toward the prediction of improved durability and catalytic efficiency of the Platinum catalyst using doped graphene and doped single walled carbon nanotube surface. The most promising carbon supports - active centre systems were then studied in the gas phase and with explicit water molecules to model the oxygen reduction reaction and tailor the catalytic centres to improve the efficiency of this reaction while reducing the probability of occurrence of side reactions. Two major conclusions have been drawn from this analysis of the oxygen reduction reaction with and without water present. The doping of the carbon surface leads to a stronger platinum-surface interaction and does help the breaking of the oxygen-oxygen bond. These two are interrelated since the stronger surface-platinum bond allows for the same orbitals to interact with the oxygen-oxygen orbital. In addition, the dopants could make the surfaces more polar thus retaining water which might help catalyze the reaction, this property could be very promising to increase the effectiveness of fuel cell cathodes.

  3. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    SciTech Connect

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I; Jampani, Prashanth H; Chung, Sung Jae; Poston, James A; Manivannan, Ayyakkannu; Kumta, Prashant N

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.

  4. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    NASA Astrophysics Data System (ADS)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  5. Novel water-resistant UV-activated oxygen indicator for intelligent food packaging.

    PubMed

    Vu, Chau Hai Thai; Won, Keehoon

    2013-09-01

    For the first time, alginate polymer has been applied to prevent dyes from leaching out of colorimetric oxygen indicator films, which enable people to notice the presence of oxygen in the package in an economic and simple manner. The dye-based oxygen indicator film suffers from dye leaching upon contact with water. In this work, UV-activated visual oxygen indicator films were fabricated using thionine, glycerol, P25 TiO2, and zein as a redox dye, a sacrificial electron donor, UV-absorbing semiconducting photocatalyst, and an encapsulation polymer, respectively. When this zein-coated film was immersed in water for 24h, the dye leakage was as high as 80.80±0.45%. However, introduction of alginate (1.25%) as the coating polymer considerably diminished the dye leaching to only 5.80±0.06%. This is because the ion-binding ability of alginate could prevent the cation dye from leaching into water. This novel water-resistant UV-activated oxygen indicator was also successfully photo-bleached and regained colour fast in the presence of oxygen. PMID:23578614

  6. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  7. Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  8. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  9. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  10. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    PubMed Central

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  11. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    PubMed

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  12. Water may inhibit oxygen binding in hemoprotein models

    PubMed Central

    Collman, James P.; Decréau, Richard A.; Dey, Abhishek; Yang, Ying

    2009-01-01

    Three distal imidazole pickets in a cytochrome c oxidase (CcO) model form a pocket hosting a cluster of water molecules. The cluster makes the ferrous heme low spin, and consequently the O2 binding slow. The nature of the rigid proximal imidazole tail favors a high spin/low spin cross-over. The O2 binding rate is enhanced either by removing the water, increasing the hydrophobicity of the gas binding pocket, or inserting a metal ion that coordinates to the 3 distal imidazole pickets. PMID:19246375

  13. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  14. Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water

    NASA Astrophysics Data System (ADS)

    Khorolskaya, S. V.; Polyanskii, L. N.; Kravchenko, T. A.; Konev, D. V.

    2014-06-01

    The kinetics of the reduction of molecular oxygen dissolved in water with nanocomposites consisting of an ion-exchange matrix and copper nanoparticles deposited in it in various amounts was studied. As the metal content in the polymer increased, the amount of reduced oxygen initially increased and then reached the limiting value. At a certain metal content, ionization of individual particles with formation of metal counterions changes to the oxidation of particles assembly giving layers of oxide products. The mechanism changes at the percolation threshold of the electron conductivity of the nanocomposite and determines the maximum amount of absorbed oxygen.

  15. Oxygen Isotopic Analyses of Water Extracted from the Martian Meteorite NWA 7034

    NASA Astrophysics Data System (ADS)

    Nunn, M.; Agee, C. B.; Thiemens, M. H.

    2012-12-01

    Introduction: The NWA 7034 meteorite has been identified as Martian, but it is distinct from the Shergottite-Nakhlite-Chassignite (SNC) grouping of meteorites in its petrology (it is the only known Martian basaltic breccia) and bulk silicate oxygen isotopic composition (Δ17O = 0.56 ± 0.06 ‰, where Δ17O = δ17O - 0.528 x δ18O, compared to the average SNC Δ17O ≈ 0.3 ‰) [e.g., 1-2]. We report here measurements of the oxygen isotopic composition of water extracted from NWA 7034 by stepwise heating. Methods: A piece (~1.2g) of NWA 7034 was pumped to vacuum until outgassing had stopped before heating to 50, 150, 320, 500, and 1000°C. The sample was maintained at each temperature step for at least one hour while collecting evolved volatiles in a liquid nitrogen cold trap. Water was selectively converted to molecular oxygen, the oxygen isotopic composition of which was then measured on a double collecting isotope ratio mass spectrometer. Results: Our stepwise heating experiments indicate NWA 7034 contains 3330ppm water, and this water has an average oxygen isotopic composition of Δ17O = 0.330 ± 0.011‰. The oxygen isotopic composition of water in NWA 7034 is unlike that of the silicates from which it is extracted (Δ17O = 0.56 ± 0.06 ‰) but is comparable to the average SNC silicate composition (Δ17O ≈ 0.3 ‰). However, there is no consensus on the oxygen isotopic composition of water in SNCs because aliquots of water extracted from different samples (separate pieces of a single meteorite or from different meteorites) have different oxygen isotopic compositions [3]. Furthermore, carbonates and sulfates extracted from SNCs also possess distinct oxygen isotopic compositions [4]. The variation in oxygen isotopic composition among these phases most likely results from the existence of isotopically distinct oxygen reservoirs on Mars that were not equilibrated. On Earth, interaction of ozone (O3) and carbon dioxide (CO2) leads to a mass independent oxygen

  16. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes.

    PubMed

    Wu, Xiao-Yu; Chang, Le; Uddi, Mruthunjaya; Kirchen, Patrick; Ghoniem, Ahmed F

    2015-04-21

    Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface morphology changes and

  17. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  18. Sulfur transformations at the hydrogen sulfide/oxygen interface in stratified waters and in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.

  19. Oxygen isotope diffusion and zoning in diopside: The importance of water fugacity during cooling

    SciTech Connect

    Edwards, K.J.; Valley, J.W.

    1998-07-01

    The oxygen isotope ratio of diopside correlates with crystal size in many high grade marbles, permitting the intracrystalline self-diffusion rate of oxygen in diopside to be empirically evaluated. Small (75--300 {micro}m) and large (1.2--1.5 mm) diopside grains were analyzed in bulk for their oxygen isotope ratios by laser extraction. Cooling histories were calculated using the Fast Grain Boundary diffusion model, assuming equilibrium at peak metamorphic temperatures (700--800 C), slow cooling of 1.5--4 C/Ma, and experimentally determined diffusion coefficients for oxygen in minerals. Measurements and calculations to predict differences in {delta}{sup 18}O between large and small diopside grains lead to the following conclusions. (1) Natural diopsides in this study exhibit variations in oxygen isotope ratios between grains of different size, which are related to the peak temperature, cooling rate, and water fugacity during cooling. Diffusion distances are properly modeled by the size of an entire grain; there is no evidence for subdomains. (2) In slowly cooled high grade metamorphic terrains, water fugacity can be highly variable from rock to rock during cooling. For many rocks, water fugacity is the most important constraint on the degree of oxygen isotope retrograde exchange.

  20. Effects of Cold Water Immersion on Muscle Oxygenation During Repeated Bouts of Fatiguing Exercise

    PubMed Central

    Yeung, Simon S.; Ting, Kin Hung; Hon, Maurice; Fung, Natalie Y.; Choi, Manfi M.; Cheng, Juno C.; Yeung, Ella W.

    2016-01-01

    Abstract Postexercise cold water immersion has been advocated to athletes as a means of accelerating recovery and improving performance. Given the effects of cold water immersion on blood flow, evaluating in vivo changes in tissue oxygenation during cold water immersion may help further our understanding of this recovery modality. This study aimed to investigate the effects of cold water immersion on muscle oxygenation and performance during repeated bouts of fatiguing exercise in a group of healthy young adults. Twenty healthy subjects performed 2 fatiguing bouts of maximal dynamic knee extension and flexion contractions both concentrically on an isokinetic dynamometer with a 10-min recovery period in between. Subjects were randomly assigned to either a cold water immersion (treatment) or passive recovery (control) group. Changes in muscle oxygenation were monitored continuously using near-infrared spectroscopy. Muscle performance was measured with isokinetic dynamometry during each fatiguing bout. Skin temperature, heart rate, blood pressure, and muscle soreness ratings were also assessed. Repeated measures ANOVA analysis was used to evaluate treatment effects. The treatment group had a significantly lower mean heart rate and lower skin temperature compared to the control group (P < 0.05). Cold water immersion attenuated a reduction in tissue oxygenation in the second fatiguing bout by 4% when compared with control. Muscle soreness was rated lower 1 day post-testing (P < 0.05). However, cold water immersion had no significant effect on muscle performance in subsequent exercise. As the results show that cold water immersion attenuated decreased tissue oxygenation in subsequent exercise performance, the metabolic response to exercise after cold water immersion is worthy of further exploration. PMID:26735552

  1. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere

    PubMed Central

    Lin, Ying; Clayton, Robert N.; Huang, Lin; Nakamura, Noboru; Lyons, James R.

    2013-01-01

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003−2005 at Alert station, Canada (82°30′N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ17O and δ18O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003−2005. An oxygen isotopic anomaly of Δ17O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ17O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930−1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ17O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had 17Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  2. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere.

    PubMed

    Lin, Ying; Clayton, Robert N; Huang, Lin; Nakamura, Noboru; Lyons, James R

    2013-09-24

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003-2005 at Alert station, Canada (82°30'N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ(17)O and δ(18)O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003-2005. An oxygen isotopic anomaly of Δ(17)O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ(17)O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930-1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ(17)O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had (17)Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  3. The dead zones: oxygen-starved coastal waters.

    PubMed

    Joyce, S

    2000-03-01

    After the great Mississippi River flood of 1993, the hypoxic (or low-oxygen) "dead zone" in the Gulf of Mexico more than doubled its size, reaching an all-time high of over 7,700 square miles in July of 1999. Scientists attribute the Gulf of Mexico dead zone largely to nutrient runoff from agriculture in the Mississippi River basin. During the warm months, these nutrients fuel eutrophication, or high organic production, causing large algal blooms. When the algae decay, the result is hypoxia. Reports of such hypoxic events around the world have been increasing since the mid 1960s. Eutrophication and hypoxia have resulted in mortality of bottom-dwelling life in dozens of marine ecosystems and have stressed fisheries worldwide. Some algal blooms can alter the function of coastal ecosystems or, potentially, threaten human health. Anthropogenic nutrient loading from sources such as agriculture, fossil fuel emissions, and climate events is believed to be related to the global increase in frequency, size, and duration of certain algal blooms. PMID:10706539

  4. Improving singlet oxygen resistance during photochemical water oxidation by cobalt porphyrin catalysts.

    PubMed

    Nakazono, Takashi; Parent, Alexander R; Sakai, Ken

    2015-04-27

    Enabling the production of solar fuels on a global scale through artificial photosynthesis requires the development of water oxidation catalysts with significantly improved stability. The stability of photosystems is often reduced owing to attack by singlet oxygen, which is produced during light harvesting. Here, we report photochemical water oxidation by CoFPS, a fluorinated Co-porphyrin designed to resist attack by singlet oxygen. CoFPS exhibits significantly improved stability relative to its non-fluorinated analogue, as shown by a large increase in turnover numbers. This increased stability results from resistance of CoFPS to attack by singlet oxygen, the formation of which was monitored in situ by using 9,10-diphenylanthracene as a chemical probe. Dynamic light scattering (DLS) confirms that CoFPS remains homogeneous, proving its stability during water oxidation catalysis. PMID:25808406

  5. Oats may grow better in water depleted in oxygen 18 and deuterium

    USGS Publications Warehouse

    Gleason, J.D.; Friedman, I.

    1975-01-01

    WHILE growing oats at different temperatures in water of different 18O and deuterium (D) abundances, we noticed that oats grown in Antarctic water in which is depleted in 18O and D by -49??? and -400???, relative to standard mean ocean water (SMOW used as a comparative reference in hydrogen and oxygen isotope studies), showed initial growth 1-2 weeks sooner than did oats grown in water containing greater 18O and D concentrations. The oats seemed to grow better in water which was most depleted in the stable isotopes throughout the growth period. ?? 1975 Nature Publishing Group.

  6. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  7. Investigation of processes in system {open_quotes}uranium-water-oxygen-hydrogen{close_quotes}

    SciTech Connect

    Borisov, V.N.; Laptev, N.N.; Akhlyustin, M.A.

    1996-12-31

    The solutions of some kinetic equations of Uranium corrosion in Hydrogen, Oxygen and Water media are obtained. Corrosion processes on a surface of components made of uranium and its alloys depend not only by the surface state (degree of mechanical purity, chemical state, presence and nature of technological or hygienic covers, etc.) but also by presence and parameters of gaseous medium. A lot of interdependent reactions proceed in the system {open_quotes}uranium - hydrogen - water - oxygen{close_quotes}, and their depth and direction depend on initial gaseous medium, temperature, pressure, etc.

  8. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg 2+ concentration

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Tae; O'Neil, James R.; Hillaire-Marcel, Claude; Mucci, Alfonso

    2007-10-01

    Aragonite was precipitated in the laboratory at 0, 5, 10, 25, and 40 °C to determine the temperature dependence of the equilibrium oxygen isotope fractionation between aragonite and water. Forced CO 2 degassing, passive CO 2 degassing, and constant addition methods were employed to precipitate aragonite from supersaturated solutions, but the resulting aragonite-water oxygen isotope fractionation was independent of the precipitation method. In addition, under the experimental conditions of this study, the effect of precipitation rate on the oxygen isotope fractionation between aragonite and water was almost within the analytical error of ±˜0.13‰ and thus insignificant. Because the presence of Mg 2+ ions is required to nucleate and precipitate aragonite from Na-Ca-Cl-HCO 3 solutions under these experimental conditions, the influence of the total Mg 2+ concentration (up to ˜0.9 molal) on the aragonite-water oxygen isotope fractionation was examined at 25 °C. No significant Mg 2+ ion effect, or oxygen isotope salt effect, was detected up to 100 mmolal total Mg 2+ but a noticeable isotope salt effect was observed at ˜0.9 molal total Mg 2+. On the basis of results of the laboratory synthesis experiments, a new expression for the aragonite-water fractionation is proposed over the temperature range of 0-40 °C: 1000lnα=17.88±0.13(103/T)-31.14±0.46 where αaragonite-water is the fractionation factor between aragonite and water, and T is in kelvins. Given the analytical and statistical errors associated with this and previous determinations, the new relation reveals that many biogenic aragonites are precipitated at and or very near oxygen isotope equilibrium with their ambient water. When the new aragonite-water expression is combined with the calcite-water calibration published by Kim and O 'Neil [Kim S. -T., and O'Neil J. R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta61, 3461-3475], a positive

  9. Electrothermal atomization-laser induced fluorescence determination of iridium, rhodium, palladium, platinum and gold at the ng/l level in pure water

    NASA Astrophysics Data System (ADS)

    Masera, Eric; Mauchien, Patrick; Lerat, Yannick

    1996-04-01

    Trace determination of Au, Rh, Ir, Pd and Pt in pure water solution has been performed by electrothermal atomization-laser induced fluorescence (ETA-LIF). Limits of detection obtained are in the ng/l -1 range, improving previously published absolute limits of detection by one or two orders of magnitude. The day to day reproducibility for iridium is around 8%. Thus, the ETA-LIF technique can be used routinely for the determination of precious metals at ultratrace concentrations.

  10. NMR Study of Phase Transitions in Pure Water and Binary H(2)O/HNO(3) Films Adsorbed on Surface of Pyrogenic Silica.

    PubMed

    Bogdan; Kulmala; Gorbunov; Kruppa

    1996-01-15

    Pyrogenic silica (aerosil) was employed as host within which the phase transitions in the adsorbed pure water and binary H(2)O/HNO(3) films have been studied with NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The molar concentration of nitric acid in the adsorbed films was found to be very small, on the order of 10(-3)-10(-2) (M/liter). The concentration was found to be greater in the layers adjacent to the surface of silica and sharply decreases with distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. PMID:10479419

  11. Dissolved oxygen and its response to eutrophication in a tropical black water river.

    PubMed

    Rixen, Tim; Baum, Antje; Sepryani, Harni; Pohlmann, Thomas; Jose, Christine; Samiaji, Joko

    2010-08-01

    The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between approximately 100 and 140 micromol l(-1). Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by approximately 20 micromol l(-1) during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 micromol l(-1), which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 micromol l(-1). PMID:20435403

  12. Oxygen-deficient waters along the Japanese coast and their effects upon the estuarine ecosystem.

    PubMed

    Suzuki, T

    2001-01-01

    Development of hypoxia in Japan has been confirmed in the inner part of almost every major bay of Japan on the Pacific Coast from Tokyo southward. This paper presents multiple aspects (present condition, hydraulic mechanism, effect upon fisheries, historical progress and nutrient budget between sediment and water) using Mikawa Bay, where Japan's most serious hypoxia occurs, as an example. Although hypoxia basically results from the increase of nutrient load input from domestic and livestock sources, the intense reclamation of shallows (including tidal flats) and the large reduction in river flow due to farmland irrigation drastically accelerated dissolved oxygen deficiency. Oxygen-deficient waters in Mikawa Bay are large enough to strip the water purification capacity of the remaining shallows. Unfortunately, the shallows have turned from a purifier to a source of nutrient load. These conditions are more or less common in all bays where the dissolved oxygen-deficient waters have been reported. To break this cycle, dissolved oxygen deficiency must be contained to the extent that the purification capacity of the shallows can be restored to an efficient level. For this purpose, the first thing to do is to restore tidal flats over an extensive area and to recover sufficient water flow, which may be a more urgent imperative than reducing the nutrient load input. PMID:11285889

  13. Observation of hydroxymethyl hydroperoxide in a reaction system containing CH{sub 2}OO and water vapor through pure rotational spectroscopy

    SciTech Connect

    Nakajima, Masakazu; Endo, Yasuki

    2015-10-28

    Pure rotational transitions of hydroxymethyl hydroperoxide (HMHP) were observed in the discharged plasma of a CH{sub 2}I{sub 2}/O{sub 2}/water gas mixture, where the water complex with the simplest Criegee intermediate CH{sub 2}OO has been identified [M. Nakajima and Y. Endo, J. Chem. Phys. 140, 134302 (2014)]. Isotope experiments using heavy water support that the currently observed HMHP molecule was produced by the reaction of CH{sub 2}OO with water vapor. The observed species was identified as the most stable conformer with the help of quantum chemical calculations. We also clarified that productions of formic acid and dioxirane are promoted by the existence of water vapor in the discharged reaction system.

  14. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  15. Oxygen Isotopic Analyses of Water in Bjurböle Matrix and Chondrules

    NASA Astrophysics Data System (ADS)

    Nunn, M.; Thiemens, M. H.

    2011-12-01

    Past oxygen isotopic analyses of the Bjurböle meteorite have been limited to whole rock and chondrule studies. We present here the first oxygen isotopic measurements of water contained in the matrix and chondrules of the L4 equilibrated ordinary chondrite Bjurböle. Water was extracted by vacuum pyrolysis from samples of separated matrix and chondrules from Bjurböle. A new, low volume, ultra low blank system was built specifically for these measurements. Each fraction was pumped overnight on a vacuum line to remove as much adsorbed terrestrial water as possible before heating step-wise to 150, 350, 600 and 1000°C. While heating, evaporated volatiles were collected in a liquid nitrogen cold trap. Water was quantitatively converted to molecular oxygen with bromine pentafluoride. Isotopic abundances were measured on a double-collecting isotope ratio mass spectrometer. The Δ 17O values obtained from direct fluorination of Bjurböle chondrules and whole rock and UV laser probe analyses of individual Bjurböle chondrules all cluster around one [1, 2]. Compared to these data, water extracted from the Bjurböle matrix and chondrules is isotopically light (Δ 17O = 0.5 and 0.7, respectively), presumably reflecting different equilibration histories of water and oxygen-bearing minerals in each component. Additionally, the proximity of Δ 17O values of water extracted at lower temperatures to zero indicates low-temperature heating is necessary to remove all adsorbed terrestrial water and obtain the true isotopic signature of extraterrestrial water.

  16. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  17. Effect of Oxygen Gas on the Decomposition of Dye by Pulsed Discharge in Water Droplet Spray

    NASA Astrophysics Data System (ADS)

    Nose, Taisuke; Yokoyama, Yuzo; Nakamura, Akira; Minamitani, Yasushi

    Effect of O2 on the decolorization of indigo carmine and on the production of dissolved species such as NO2-, NO3-, O3 and H2O2 in the treatment water by pulsed discharge in water droplet spray was investigated by controlling the O2/N2 ratios as carrier gases in the reactor. The decolorization rate gradually increased with rise in O2 ratio, which reached a constant value in the range of 50% to 90% O2 ratio and decreased in pure O2. The maximum value was about 2 times as high as that of 20% O2 ratio. The decolorization efficiency was not affected by gas flow rate in the range of 4 L/min to 50 L/min. NO2- in the treatment water was only detected in pure N2, but NO3- was produced in O2/N2. NO2- added to the treatment water was not oxidized in pure N2, but was perfectly converted to NO3- in O2/N2. These results implied that hydroxyl radical produced in gas phase does not directly contribute to the oxidation of substances in water. O3 concentration gradually increased with rise in O2 ratio, whereas H2O2 concentration decreased. In the range of 50 to 80% O2 ratio, O3 and H2O2 concentrations were approximately constant value, similar to the trend of decolorization rate. Moreover rate constants on various gas mixing ratio of O2/N2 were determined from the kinetics study. These results suggested that hydroxyl radical produced in the treatment water by the chain reactions of O3 and hydroperoxy radical (HO2·) plays an important role of the decomposition of molecules in water.

  18. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  19. Theoretical investigation of the injection and evaporation of water in a hydrogen/oxygen steam generator

    NASA Astrophysics Data System (ADS)

    Beer, Stefan

    1991-07-01

    Water is injected into the gas stream for the purpose of cooling the reaction products resulting from the stochiometric combustion of hydrogen with oxygen. The penetration of the jet decisively influences the temperature profile across the flow cross section in the water vapor. The penetration of the water jet into the stream is calculated using the jet shedding model and compared with the garden hose model. Models for the evaporation of water droplets in superheated steam are developed for calculating the evaporation paths. The parameters which influence the injection and evaporation process are subjected to variation and their effects in the evaporation paths are analyzed.

  20. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. PMID:23816955

  1. A unit for collection of dissolved oxygen and water column temperature at multiple depths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2004 field study conducted during actual channel catfish Ictalurus punctatus harvests, and a small-scale research study conducted in 2005, required continuous collection of dissolved oxygen concentration and temperature at two depths in the water column. The on-farm study required data collection...

  2. A Simplified and Inexpensive Method for Measuring Dissolved Oxygen in Water.

    ERIC Educational Resources Information Center

    Austin, John

    1983-01-01

    A modified Winkler method for determining dissolved oxygen in water is described. The method does not require use of a burette or starch indicator, is simple and inexpensive and can be used in the field or laboratory. Reagents/apparatus needed and specific procedures are included. (JN)

  3. A photocatalytic water splitting device for separate hydrogen and oxygen evolution.

    PubMed

    Selli, Elena; Chiarello, Gian Luca; Quartarone, Eliana; Mustarelli, Piercarlo; Rossetti, Ilenia; Forni, Lucio

    2007-12-21

    A two-compartment Plexiglas cell has been set up and tested for separate hydrogen and oxygen production from photocatalytic water splitting on a thin TiO2 layer deposited by magnetron sputtering on a flat Ti electrode inserted between the two cell compartments. PMID:18049740

  4. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  5. DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE

    EPA Science Inventory

    An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. The method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. Other permanent gases such as...

  6. Effects of oxygenated drinking water on gaseous emissions, rumen microorganisms and milk production in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cattle production systems contribute to greenhouse gas emissions, predominantly in the form of methane. Enteric methane is formed by methanogenic archaea (methanogens) that require anaerobic conditions to thrive. A water treatment system (Oxion, Hugoton, KS) increases the dissolved oxygen conc...

  7. Recrystallization-induced oxygen isotope changes in inclusion-hosted water of speleothems - paleoclimatological implications

    NASA Astrophysics Data System (ADS)

    Demény, Attila; Czuppon, György; Leél-Őssy, Szabolcs; Németh, Péter; Szabó, Máté; Tóth, Mária; Németh, Tibor

    2016-04-01

    Stable hydrogen and oxygen isotope data of water trapped in fluid inclusions were collected for recently forming stalagmites and flowstones in order to determine how dripwater compositions are reflected and preserved in the inclusion water compositions. The samples were collected from different cave sites (with temperatures around 10 ± 1 °C) from the central and north-eastern parts of Hungary. Hydrogen isotope compositions were found to reflect dripwater values, whereas the oxygen isotope data were increasingly shifted from the local dripwater compositions with the time elapsed after deposition. The δ18O data are correlated with X-Ray diffraction full width at half maximum values (related to crystal domain size and lattice strain), suggesting that the oxygen isotope shift is related to recrystallization of calcite. Transmission electron microscope analyses detected the presence of nanocrystalline (<50 nm) calcite, whose crystallization to coarser-grained calcite crystals (>200 nm) may have induced re-equilibration between the carbonate and the trapped inclusion water. Additional data indicated that amorphous calcium carbonate (ACC) may have formed as a precursor of nanocrystalline calcite. ACC-calcite transformation followed by Ostwald ripening process provides an explanation for unexpectedly low oxygen isotope compositions in the inclusion water, especially in cold caves where carbonate may form first as an amorphous phase. This research was supported by the National Office for Research and Technology of Hungary (GVOP-3.2.1-2004-04-0235/3.0), the Hungarian Scientific Research Fund (OTKA CK 80661 and OTKA NK 101664).

  8. COMPARISON OF PHOTOCHEMICAL BEHAVIOR OF VARIOUS HUMIC SUBSTANCES IN WATER: II. PHOTOSENSITIZED OXYGENATIONS

    EPA Science Inventory

    The photochemical oxygenation of 2, 5-dimethylfuran (DMF) in water was studied under a variety of reaction conditions employing various humic substances as photosensitizers. As predicted by theory, the reactions at low DMF concentrations were first order with respect to DMF, and ...

  9. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water.

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; Updegraff, D.M.; Bennett, J.L.

    1988-01-01

    Studies conducted in an aquifer contaminated by creosote suggest that quinoline is converted to 2(1H)quinolinone by an indigenous consortium of microorganisms. Laboratory microbial experiments using H218O indicate that water is the source of the oxygen atom for this hydroxylation reaction under aerobic and anaerobic conditions.

  10. DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE

    EPA Science Inventory

    An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. he method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. ther permanent gases such as n...

  11. Ammonia-oxidizing archaea in the low-oxygen water column of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Beman, J.; Popp, B. N.; Francis, C. A.

    2006-12-01

    Archaea constitute a ubiquitous and exceptionally abundant component of marine microbial assemblages, yet their role in ocean biogeochemistry has remained elusive. Several recent lines of evidence suggest that many mesophilic Crenarchaeota are capable of performing ammonia oxidation, the first and rate-limiting step of chemoautotrophic nitrification. However, associations between these organisms and ammonia oxidation in the marine water column have yet to be explored--as has their means of survival under low oxygen conditions, where, paradoxically, they appear to be remarkably successful. In this study, we examined AOA diversity and abundance throughout the water column of the Gulf of California, which is characterized by highly productive near-surface waters and a pronounced oxygen minimum layer (OML) at depths below about 300 meters. We examined AOA both in the near surface and the OML of the Gulf of California, comparing across the transition to low oxygen conditions in two separate basins. Our results suggest that these organisms may play a key role in oxidizing ammonia in the Gulf of California water column, yet their presence and abundance under low oxygen conditions remains unresolved.

  12. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water.

    PubMed

    Pereira, W E; Rostad, C E; Leiker, T J; Updegraff, D M; Bennett, J L

    1988-03-01

    Studies conducted in an aquifer contaminated by creosote suggest that quinoline is converted to 2(1H)quinolinone by an indigenous consortium of microorganisms. Laboratory microbial experiments using H218O indicate that water is the source of the oxygen atom for this hydroxylation reaction under aerobic and anaerobic conditions. PMID:3377494

  13. OXYGEN ISOTOPES IN ATMOSPHERIC SULFATES, SULFUR DIOXIDE, AND WATER VAPORS FIELD MEASUREMENTS, JULY 1975

    EPA Science Inventory

    Oxygen isotope ratios were determined for atmospheric samples of sulfate aerosols, sulfur dioxide, and water vapor collected simultaneously during a six-day period in July, 1975, at St. Louis, MO; Auburn, IL; and Glasgow, IL. The collection sites were located about 100km apart. C...

  14. BENTHIC AND WATER COLUMN PROCESSES IN A SUBTROPICAL ESTUARY: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Murrell, M.C., J.D. Hagy, J.G. Campbell and J.M. Caffrey. In press. Benthic and Water Column Processes in a Subtropical Estuary: Effects of Light on Oxygen Fluxes (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 ...

  15. On the subduction of oxygenated surface water in submesoscale cold filaments off Peru.

    NASA Astrophysics Data System (ADS)

    Thomsen, Soeren; Kanzow, Torsten; Colas, Francois; Echevin, Vincent; Krahmann, Gerd

    2015-04-01

    The Peruvian upwelling regime is characterized by pronounced submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting submesoscale processes. In this study the role of submesoscale processes for both the ventilation of the near-coastal oxygen minimum zone off Peru and the physical-biogeochemical coupling at these scales is investigated. For our study we use satellite based sea surface temperature measurements in combination with multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) are analysed. At the beginning of our observations a previously upwelled, productive and highly oxygenated body of water is found within the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found within the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of passive tracers and Lagrangian floats within several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The simulated temporal evolution of the tracers and floats support our interpretation that the subduction of previously upwelled water indeed occurs within cold filaments off Peru. Filaments are common features within eastern boundary upwelling systems, which all encompass large oxygen minimum zones. However, most state of-the-art large and regional scale physical

  16. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Loubere, Paul

    1994-10-01

    An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the usemame andGUEST as the password. Go to the right directory by typing CDAPEND. Type LS to see what files are available. Type GET and thename of the file to get it. Finally, type EXIT to leave the system.)(Paper 94PA01624, Quantitative estimation of surface oceanproductivity and bottom water concentration using benthicforaminifera, by P. Loubere). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, DC20009; $15.00. Payment must accompany order.Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6‰). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r² = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m-2 yr-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r

  17. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    Intracellular water is an important pool of oxygen and hydrogen atoms for biosynthesis. Intracellular water is usually assumed to be isotopically identical to extracellular water, but an unexpected experimental result caused us to question this assumption. Heme O isolated from Escherichia coli cells grown in 95% H218O contained only a fraction of the theoretical value of labeled oxygen at a position where the O atom was known to be derived from water. In fact, fewer than half of the oxygen atoms were labeled. In an effort to explain this surprising result, we developed a method to determine the isotope ratios of intracellular water in cultured cells. The results of our experiments showed that during active growth, up to 70% of the oxygen atoms and 50% of the hydrogen atoms in the intracellular water of E. coli are generated during metabolism and can be isotopically distinct from extracellular water. The fraction of isotopically distinct atoms was substantially less in stationary phase and chilled cells, consistent with our hypothesis that less metabolically-generated water would be present in cells with lower metabolic activity. Our results were consistent with and explained the result of the heme O labeling experiment. Only about 40% of the O atoms on the heme O molecule were labeled because, presumably, only about 40% of the water inside the cells was 18O water that had diffused in from the culture medium. The rest of the intracellular water contained 16O atoms derived from either nutrients or atmospheric oxygen. To test whether we could also detect metabolically-derived hydrogen atoms in cellular constituents, we isolated fatty acids from log-phase and stationary phase E. coli and determined the H isotope ratios of individual fatty acids. The results of these experiments showed that environmental water contributed more H atoms to fatty acids isolated in stationary phase than to the same fatty acids isolated from log-phase cells. Stable isotope analyses of

  18. Simulation of ion-induced water radiolysis in different conditions of oxygenation

    NASA Astrophysics Data System (ADS)

    Colliaux, Anthony; Gervais, Benoit; Rodriguez-Lafrasse, Claire; Beuve, Michaël

    2015-12-01

    We have investigated the production of free radicals induced by swift ions during the radiolysis of oxygenated water and analyzed the underlying mechanisms in detail. To this aim, we simulated, by Monte-Carlo, the irradiation of water by projectiles with LET values ranging from 1 to 300 keV/μm for a partial pressure of oxygen in air from 0 to 750 mmHg, and for times up to 10 μs after ion impact. For low-LET radiation, we observed an increase in production of (HO2rad + O2rad -) with oxygen pressure and a saturation. At 1 μs, the saturation occurred at a pressure of 20-30 mmHg and the maximal yield amounted to 0.3 μmol L-1 per Gray. For the same conditions, we observed similar trends for high-LET ions, but we observed a significant reduction in the yield values and an attenuation of the saturation behavior. By underlining similarities between the yield of (HO2rad + O2rad -) and the oxygen effect observed in radiobiology, we discuss the role of (HO2rad + O2rad -) in oxygen effect and suggest a general mechanism for this phenomenon.

  19. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison

    NASA Astrophysics Data System (ADS)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Friedrichs, Carl T.; Bever, Aaron J.; Hood, Raleigh R.; Lanerolle, Lyon W. J.; Li, Ming; Linker, Lewis; Scully, Malcolm E.; Sellner, Kevin; Shen, Jian; Testa, Jeremy; Wang, Hao; Wang, Ping; Xia, Meng

    2016-04-01

    As three-dimensional (3-D) aquatic ecosystem models are used more frequently for operational water quality forecasts and ecological management decisions, it is important to understand the relative strengths and limitations of existing 3-D models of varying spatial resolution and biogeochemical complexity. To this end, 2-year simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically compared to each other and to historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen concentrations about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, which may be possible with very simple oxygen parameterizations, in contrast to the more complex full biogeochemical models required for scenario-based forecasting. However, models have difficulty simulating correct density and oxygen mixed layer depths, which are important ecologically in terms of habitat compression. Observations indicate a much stronger correlation between the depths of the top of the pycnocline and oxycline than between their maximum vertical gradients, highlighting the importance of the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus depend more on the ability of models to reproduce the correct mean and variability of the depth of the physically driven surface mixed layer than the precise magnitude of the vertical density gradient.

  20. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison

    NASA Astrophysics Data System (ADS)

    Irby, I. D.; Friedrichs, M. A. M.; Friedrichs, C. T.; Bever, A. J.; Hood, R. R.; Lanerolle, L. W. J.; Scully, M. E.; Sellner, K.; Shen, J.; Testa, J.; Li, M.; Wang, H.; Wang, P.; Linker, L.; Xia, M.

    2015-12-01

    As three-dimensional (3-D) aquatic ecosystem models are becoming used more frequently for operational water quality forecasts and ecological management decisions, it is important to understand the relative strengths and limitations of existing 3-D models of varying spatial resolution and biogeochemical complexity. To this end, two-year simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically compared to each other and to historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen concentrations about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, which may be possible with very simple oxygen parameterizations, in contrast to the more complex full biogeochemical models required for scenario-based forecasting. However, models have difficulty simulating correct density and oxygen mixed layer depths, which are important ecologically in terms of habitat compression. Observations indicate a much stronger correlation between the depths of the top of the pycnocline and oxycline than between their maximum vertical gradients, highlighting the importance of the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus depend more on the ability of models to reproduce the correct mean and variability of the depth of the physically driven surface mixed layer than the precise magnitude of the vertical density

  1. The role of dams in the water stability and oxygenation of semi-enclosed bays

    NASA Astrophysics Data System (ADS)

    Zacharias, Ierotheos; Kountoura, Krystallia

    2013-04-01

    It is well known that dams were constructed in order to provide significant domestic and economic benefits. Apart from the advantages of these constructions, such as the hydroelectric power production, the flooding control and the storage of water for irrigation, there are also important impacts. Among the most serious of them upstream, is the conversion from a river system to a lake, the sediment transport and changes in the river's temperature and oxygen. However due to the irregular discharge resulting from the dams operation, there are also changes in biodiversity and in bio-geochemical cycle of carbon, oxygen, nitrogen and phosphorus thereby causing changes in temperature, turbidity, stratification, dissolved oxygen, nutrients and heavy metals, downstream. In order to determine how the existence of dams affects both the water stability and the dissolved oxygen conditions, we studied the enclosed bay of Amvrakikos Gulf in Western Greece. The gulf receives freshwater inputs from north by two rivers along which there are three dams. Before the dams, the maximum discharges into the Amvrakikos Gulf were during late winter and spring months. During autumn and early winter stratification was weak and mixing could take place within the entire gulf. After the dams construction, the rivers have been discharging large amounts of freshwater into the gulf in accordance to the Public Power Corporation's needs. Due to the fact that large volumes of fresh water discharged into the system during summer and autumn, much later than would occur without the presence of dams, the water column is characterized by stratification during those periods. As a consequence, the pycnocline which is characterized by high static stability, prevents both the mixing between the surface and the bottom layer and the oxygenation of the isolated water near the bottom. On the other hand due to the limited hydropower needs during spring, the volume of fresh water which discharged into the system is

  2. Seasonal Water Usage by Juniperus Ashei: Assessment With Stable Isotopes of Hydrogen and Oxygen

    NASA Astrophysics Data System (ADS)

    McCole, A. A.

    2003-12-01

    The recent expansion of Juniperus ashei (Ashe juniper) on the Edwards Plateau of Central Texas has important implications for the ecosystem structure, productivity and hydrology of the region. Ashe juniper expansion may negatively impact the ecology and hydrology of the Edwards Plateau. The Ashe juniper's morphology, rooting habit, and ability to photosynthesize throughout the year suggests greater water loss will occur in areas where Ashe juniper is prevalent compared to areas dominated by grasses. However, past studies have reached conflicting conclusions regarding Ashe juniper's effect on the water budget. A better understanding of the patterns of Ashe juniper's water use will aid in the understanding of how the Ashe juniper affects groundwater recharge, herbaceous productivity and evapotranspirational water loss. Stable isotopes of hydrogen and oxygen from precipitation, soil water, plant xylem water, and groundwater reveal the current ecosystem hydrology. A comparison of the isotopic compositions of potential water sources and juniper stem water indicates the source water utilized by the Ashe juniper. At the Honey Creek State Natural Area, Comal County, Texas the plant, soil and spring water as representative groundwater were sampled at approximately two month intervals over an annual cycle from two adjacent watersheds and analyzed for hydrogen and oxygen isotope composition. Soils were sampled at depth intervals of 5 to 10 cm and soil water content measured. Mass balance calculations using oxygen isotope data from the dry periods of the year, late summer and winter, indicate the Ashe juniper derives between 72% and 100% of it water from groundwater. In contrast, during the wet periods of the year, spring and fall, mass balance calculations indicate that between 45% and 100% of Ashe juniper's water is derived from soil water. Hydrogen isotope data from a subset of samples are consistent with these results. Bowens ratio measurements of evapotranspiration were

  3. Photophysical Properties and Singlet Oxygen Generation Efficiencies of Water-Soluble Fullerene Nanoparticles

    PubMed Central

    Stasheuski, Alexander S; Galievsky, Victor A; Stupak, Alexander P; Dzhagarov, Boris M; Choi, Mi Jin; Chung, Bong Hyun; Jeong, Jin Young

    2014-01-01

    As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water-soluble fullerene-based nanoparticles and polyhydroxylated fullerene as a representative water-soluble fullerene derivative. They show broad emission band arising from a wide-range of excitation energies. It is attributed to the optical transitions from disorder-induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06. PMID:24893622

  4. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  5. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones.

    PubMed

    Janssen, David J; Conway, Tim M; John, Seth G; Christian, James R; Kramer, Dennis I; Pedersen, Tom F; Cullen, Jay T

    2014-05-13

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals. PMID:24778239

  6. The effect of oxygen and water vapor on the thermally stimulated exoelectron emission of zinc selenide

    NASA Astrophysics Data System (ADS)

    Sotnikov, V. T.; Zhuk, V. A.; Dobrotvorskii, S. S.

    1984-11-01

    The methods of thermally stimulated exoelectron emission, thermoluminiscence, and differential thermal analysis are used to investigate the origin of the emission-active centers in ZnSe crystals at 190, 410, 480, and 530 K. It is found that oxygen and water vapor adsorption leads to the formation of surface emission centers due to the adsorption of OH(-), O(-), and H(-) ions by lattice defects and structural surface defects formed by chemisorbed oxygen particles. The high intensity of the exoelectron emission indicates that the surface of ZnSe is highly reactive.

  7. The triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    NASA Astrophysics Data System (ADS)

    Li, S.; Levin, N.; Soderberg, K.; Dennis, K. J.; Caylor, K. K.

    2013-12-01

    The triple oxygen isotopic composition of water is an emerging tool for investigating the hydrological environment. The δ18O-δ17O relationship differs during kinetic and equilibrium isotope fractionation, such that the 17O depletion can be sensitive to relative humidity (Rh) during kinetic fractionation, mixing among different pools, and to the specific mode of kinetic fractionation. It has been proposed that the δ18O-δ17O relationship during evapotranspiration, as characterized by the slope λ(stem-leaf) on a ln(δ17O+1) vs. ln(δ18O+1) plot, is mainly controlled by Rh but not affected by other environmental conditions or by plant species. In order to understand the sensitivity of λ(stem-leaf) to Rh and the utility of 17O-excess (the deviation of δ17O from a reference slope) in the terrestrial biosphere as a tracer of Rh conditions today and in the past, this study expands the triple oxygen isotope measurements of leaf waters to additional species in a semiarid environment. Paired stem and leaf waters of Acacia and grasses were collected in the Mpala Research Center in central Kenya and analyzed for their triple oxygen isotope composition. Leaf waters that were sampled diurnally (8 sampling intervals between 6 am and 5 pm) exhibit a range in δ18O and 17O-excess values of 11.2‰ and 107 per meg respectively for Acacia brevispica, and 14.4‰ and 147 per meg for the grass Panicum maximum. Except for one sample collected at 7am, the λ(stem-leaf) values for grasses are systematically lower (0.0012 to 0.0110) than Acacia λ(stem-leaf) values at the corresponding time of day; this might be explained by the progressive evaporative isotopic enrichment and mixing processes of leaf water along parallel veins of grass leaves. Most of the triple oxygen isotope composition of the Acacia leaf waters can be predicted using Craig-Gordon model. We built a mass balance model of an evolving leaf water system from nonsteady-state to steady-state conditions during

  8. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    PubMed

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles. PMID:25739908

  9. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  10. Combining benthic foraminiferal ecology and shell Mn/Ca to deconvolve past bottom water oxygenation and paleoproductivity

    NASA Astrophysics Data System (ADS)

    Koho, K. A.; de Nooijer, L. J.; Reichart, G. J.

    2015-09-01

    The Mn/Ca of carbonate tests of living deep-sea foraminifera (Hoeglundina elegans, Bulimina aculeata, Uvigerina peregrina and Melonis barleeanus) were determined together with pore water manganese along a bottom water oxygen gradient across the lower boundary of the Arabian Sea oxygen minimum zone. Although Mn has long been considered an indicator for contamination, new cleaning protocols and high-resolution laser ablation ICP-MS now allow the reliable analyses of test-associated Mn. Within locations, Mn incorporation between species varies as a function of their in-sediment depth preferences and associated pore water chemistry. Under well-oxygenated bottom water conditions, shallow infaunal species incorporate little Mn in their test, whereas the species collected from deeper habitats show elevated Mn concentrations. With decreasing oxygen contents pore water Mn concentrations and benthic foraminiferal in-sediment distribution change. Whereas Mn/Ca in shallow infaunal species responds moderately to bottom water oxygenation, Mn/Ca of the infaunal species M. barleeanus correlates well to oxygenation. Although high productivity results in a shallower redox cline within the sediment, pore water Mn is retained as long as the bottom water remains oxygenated. Under reduced bottom water oxygen conditions, Mn escapes to the overlying water column and test-associated Mn/Ca decreases also in the infaunal species. By combining pore water chemistry of Mn, calcitic Mn/Ca and foraminiferal ecology, a new conceptual model is presented (TROXCHEM3) that provides a framework for deconvolving past organic matter input and bottom water oxygenation.

  11. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    PubMed Central

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  12. The effect of water oxygen content on the production of greenhouse gases from shallow pond sediments

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Shallow lakes and ponds, including those commonly found in agricultural landscapes are often only a few metres deep, with surface areas <1ha. Despite this, landscapes may contain a high number of these ponds, amounting to a considerable cumulative surface area. Many of these features, both naturally formed and man-made, receive and trap runoff with high nutrient and sediment loadings. As such, the potential for the production of greenhouse gases (GHGs) through biogeochemical cycling in the pond sediments may be significant. Furthermore, the abundance of available nutrients coupled with the shallow physical characteristics of these systems, mean that short, irregular eutrophic episodes during the summer are common, causing large fluctuations in the oxygen content of the overlying water column. The oxygen content of the water column is often cited as key factor in the production of GHGs in large lake and reservoir systems. Given the limited research focusing on shallow ponds/lakes, and potential for these systems to be important sources of GHGs, the impacts of variable water oxygen content should be investigated. Here we present the results from a sediment microcosm experiment utilising sediment cores from an agricultural pond system in Cumbria, UK. Intact sediment cores were incubated in the dark at in-situ temperature and continuously fed with filtered pond water for 2 weeks. During this time the oxygen content of the water was manipulated between fully oxygenated and anaerobic. Measurements of GHG release were based on calculated dissolved gas concentrations present in the water columns of these cores. Results indicated that during times of water column anoxia, production of methane and carbon dioxide increased significantly, despite the presence of substantial quantities of nitrate in the water columns. No change in N2O production was detected. These results indicate that while representing a significant cumulative carbon store in agricultural landscapes, shallow

  13. Oxygen isotope fractionation factors between anhydrite and water from 100 to 550°C

    NASA Astrophysics Data System (ADS)

    Chiba, Hitoshi; Kusakabe, Minoru; Hirano, Shin-Ichi; Matsuo, Sadao; Somiya, Shigeyuki

    1981-03-01

    Oxygen isotope exchange between anhydrite and water was studied from 100 to 550°C, using the partial equilibrium method. The exchange rate was extremely low in NaCl solution. In the lower-temperature range, acid solutions were used to produce sufficient reaction to determine the oxygen isotope fractionation factors. The fractionation factors obtained in the present study are definitely different from those given by Lloyd [8]. They are similar to those for the HSO 4--water system studied by Mizutani and Rafter [19], and are consistently 2‰ higher than those of the barite-water system by Kusakabe and Robinson [5]. The temperature dependence of the oxygen isotope fractionation factors was calculated by the least squares method in which the weight was taken to be inversely proportional to the experimental error. The fractionation is given by: 10 3lnαanhydrite-water=3.21×(10 3/T) 2-4.72 Available δ 18O values of natural anhydrite were used to test the validity of this expression. It is shown that this newly revised geothermometer can be successfully applied to natural hydrothermal anhydrite.

  14. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  15. Interfacial self-assembly of water-soluble cationic porphyrins for the reduction of oxygen to water.

    PubMed

    Olaya, Astrid J; Schaming, Delphine; Brevet, Pierre-Francois; Nagatani, Hirohisa; Xu, Hai-Jun; Meyer, Michel; Girault, Hubert H

    2012-06-25

    Meet at the border: Assembly of the water-soluble cobalt tetrakis(N-methylpyridinium-4-yl)porphyrin [CoTMPyP](4+) at soft interfaces is enhanced and stabilized by its interfacial interaction with the lipophilic anion (C(6)F(5))(4)B(-). The supramolecular structure thus formed provides excellent catalytic activity in the four-electron reduction of oxygen. PMID:22615211

  16. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles

    NASA Astrophysics Data System (ADS)

    Hellman, Anders; Iandolo, Beniamino; Wickman, Björn; Grönbeck, Henrik; Baltrusaitis, Jonas

    2015-10-01

    The oxygen evolution reaction on hydroxyl- and oxygen-terminated hematite was investigated using first-principle calculations within a theoretical electrochemical framework. Both pristine hematite and hematite containing oxygen vacancies were considered. The onset potential was determined to be 1.79 V and 2.09 V vs. the reversible hydrogen electrode (RHE) for the pristine hydroxyl- and oxygen-terminated hematite, respectively. The presence of oxygen vacancies in the hematite surface resulted in pronounced shifts of the onset potential to 3.09 V and 1.83 V, respectively. Electrochemical oxidation measurements conducted on thin-film hematite anodes, resulted in a measured onset potential of 1.66 V vs. RHE. Furthermore, the threshold potential between the hydroxyl- and oxygen-terminated hematite was determined as a function of pH. The results indicate that electrochemical water oxidation on hematite occurs on the oxygen-terminated hematite, containing oxygen vacancies.

  17. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    NASA Astrophysics Data System (ADS)

    Boyarski, Adam M.

    2009-06-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  18. Oxygen depletion recorded in upper waters of the glacial Southern Ocean

    PubMed Central

    Lu, Zunli; Hoogakker, Babette A. A.; Hillenbrand, Claus-Dieter; Zhou, Xiaoli; Thomas, Ellen; Gutchess, Kristina M.; Lu, Wanyi; Jones, Luke; Rickaby, Rosalind E. M.

    2016-01-01

    Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ∼2.5 μmol mol−1 indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 μmol kg−1 during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earth's climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline. PMID:27029225

  19. Oxygen depletion recorded in upper waters of the glacial Southern Ocean.

    PubMed

    Lu, Zunli; Hoogakker, Babette A A; Hillenbrand, Claus-Dieter; Zhou, Xiaoli; Thomas, Ellen; Gutchess, Kristina M; Lu, Wanyi; Jones, Luke; Rickaby, Rosalind E M

    2016-01-01

    Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ∼2.5 μmol mol(-1) indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 μmol kg(-1) during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earth's climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline. PMID:27029225

  20. Oxygen depletion recorded in upper waters of the glacial Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lu, Zunli; Hoogakker, Babette A. A.; Hillenbrand, Claus-Dieter; Zhou, Xiaoli; Thomas, Ellen; Gutchess, Kristina M.; Lu, Wanyi; Jones, Luke; Rickaby, Rosalind E. M.

    2016-03-01

    Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ~2.5 μmol mol-1 indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 μmol kg-1 during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earth's climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline.

  1. Polymer Growth Rate in a Wire Chamber with Oxygen,Water, or Alcohol Gas Additives

    SciTech Connect

    Boyarski, Adam; /SLAC

    2008-07-02

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium-isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a SEM/EDX instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is stored in the polymer layer and that a high electric field is necessary to remove the charge.

  2. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings.

    PubMed

    Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C

    2016-06-01

    Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. PMID:27125888

  3. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.

    PubMed

    Tsuji, Akihiro; Rao, Kasanneni Tirumala Venkateswara; Nishimura, Shun; Takagaki, Atsushi; Ebitani, Kohki

    2011-04-18

    A hydrotalcite-supported platinum (Pt/HT) catalyst was found to be a highly active and selective heterogeneous catalyst for glycerol oxidation in pure water under atmospheric oxygen pressure in a high glycerol/metal molar ratio up to 3125. High selectivity toward glyceric acid (78 %) was obtained even at room temperature under air atmosphere. The Pt/HT catalyst selectively oxidized the primary hydroxyl group of 1,2-propandiol to give the corresponding carboxylic acid (lactic acid) as well as glycerol. The activity of the catalyst was greatly influenced by the Mg/Al ratio of hydrotalcite. Glycerol conversion increased with increasing the Mg/Al ratio of hydrotalcite (from trace to 56 %). X-ray absorption fine structure (XAFS) measurements indicated that the catalytic oxidation activity was proportional to the metallic platinum concentration, and more than 35 % of metallic platinum was necessary for this reaction. TEM measurements and titration analysis by using benzoic acid suggested that the solid basicity of hydrotalcite plays important roles in the precise control of platinum size and metal concentration as well as the initial promotion of alcohol oxidation. PMID:21271683

  4. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting waters of Hong Kong.

    PubMed

    Zhou, Weihua; Yuan, Xiangcheng; Long, Aimin; Huang, Hui; Yue, Weizhong

    2014-03-01

    The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l(−1)) and high bottom DO (>4 mg l(−1)), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l(−1) in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l(−1)) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season. PMID:24122158

  5. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen

    USGS Publications Warehouse

    Hitchon, B.; Friedman, I.

    1969-01-01

    Stable isotopes of hydrogen and oxygen, together with chemical analyses, were determined for 20 surface waters, 8 shallow potable formation waters, and 79 formation waters from oil fields and gas fields. The observed isotope ratios can be explained by mixing of surface water and diagenetically modified sea water, accompanied by a process which enriches the heavy oxygen isotope. Mass balances for deuterium and total dissolved solids in the western Canada sedimentary basin demonstrate that the present distribution of deuterium in formation waters of the basin can be derived through mixing of the diagenetically modified sea water with not more than 2.9 times as much fresh water at the same latitude, and that the movement of fresh water through the basin has redistributed the dissolved solids of the modified sea water into the observed salinity variations. Statistical analysis of the isotope data indicates that although exchange of deuterium between water and hydrogen sulphide takes place within the basin, the effect is minimized because of an insignificant mass of hydrogen sulphide compared to the mass of formation water. Conversely, exchange of oxygen isotopes between water and carbonate minerals causes a major oxygen-18 enrichment of formation waters, depending on the relative masses of water and carbonate. Qualitative evidence confirms the isotopic fractionation of deuterium on passage of water through micropores in shales. ?? 1969.

  6. Nitrogen cycling in shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Hu, Happy; Bourbonnais, Annie; Larkum, Jennifer; Bange, Hermann W.; Altabet, Mark A.

    2016-03-01

    O2 deficient zones (ODZs) of the world's oceans are important locations for microbial dissimilatory nitrate (NO3-) reduction and subsequent loss of combined nitrogen (N) to biogenic N2 gas. ODZs are generally coupled to regions of high productivity leading to high rates of N-loss as found in the coastal upwelling region off Peru. Stable N and O isotope ratios can be used as natural tracers of ODZ N-cycling because of distinct kinetic isotope effects associated with microbially mediated N-cycle transformations. Here we present NO3- and nitrite (NO2-) stable isotope data from the nearshore upwelling region off Callao, Peru. Subsurface oxygen was generally depleted below about 30 m depth with concentrations less than 10 µM, while NO2- concentrations were high, ranging from 6 to 10 µM, and NO3- was in places strongly depleted to near 0 µM. We observed for the first time a positive linear relationship between NO2-δ15N and δ18O at our coastal stations, analogous to that of NO3- N and O isotopes during NO3- uptake and dissimilatory reduction. This relationship is likely the result of rapid NO2- turnover due to higher organic matter flux in these coastal upwelling waters. No such relationship was observed at offshore stations where slower turnover of NO2- facilitates dominance of isotope exchange with water. We also evaluate the overall isotope fractionation effect for N-loss in this system using several approaches that vary in their underlying assumptions. While there are differences in apparent fractionation factor (ɛ) for N-loss as calculated from the δ15N of NO3-, dissolved inorganic N, or biogenic N2, values for ɛ are generally much lower than previously reported, reaching as low as 6.5 ‰. A possible explanation is the influence of sedimentary N-loss at our inshore stations which incurs highly suppressed isotope fractionation.

  7. [Characteristics of Hydrogen and Oxygen Isotopes of Soil Water in the Water Source Area of Yuanyang Terrace].

    PubMed

    Zhang, Xiao-juan; Song, Wei-feng; Wu, Jin-kui; Wang, Zhuo-juan

    2015-06-01

    Stable isotope techniques provide a new approach to study soil water movement. The precipitation and the soil water from 0 to 100 cm soil layer in 4 kinds of typical vegetation types (forest, shrub forest, grassland and non-forest land) over the water source area of Yuanyang terrace were sampled, and their isotope compositions were analyzed, aimed to understand the characteristics of stable isotopes in different depth of the soil water. The results showed that the meteoric water line in the water source area of Yuanyang terrace was δD = 6.838 4δ(18)O-5.6921 (R2 = 0.8787, n = 20), the slope and intercept were less than the global atmospheric precipitation. The hydrogen and oxygen stable isotopes in the soil water of the 4 kinds of typical types was lower than the local meteoric water line side and the fluctuation of isotope value on surface soil profile was greater. With the increasing soil depth, the fluctuation of delta 18O value was smaller and smaller, especially in the 80-100 cm soil layer which was the most obvious. The delta 18O values of the deep soil water in forest and grassland were higher than that in the surface soil. while it was on the contrary in shrub forest and non-forest land. PMID:26387313

  8. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  9. Status of the Node 3 Regenerative Environmental Cpntrol& Life Support System Water Recovery & Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.

    2003-01-01

    NASA s Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the lnternational Space Station s (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems lnternational (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are currently in the manufacturing and test phase and are to be completed and integrated into flight racks this year. This paper gives an overview of the technologies and system designs, technical challenges encountered and solved, and the current status.

  10. Status of the International Space Station Regenerative ECLSS Water Recovery and Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Cloud, Dale

    2005-01-01

    NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.

  11. Status of the Node 3 Regenerative ECLSS Water Recovery and Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.; Cloud, Dale; Bedard, Jake

    2004-01-01

    NASA's Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the International Space Station's (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are completing the manufacturing phase and are in various stages of ORU and system level testing, to be followed by integration into the flight racks. This paper gives a current status, along with technical challenges encountered and lessons learned.

  12. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    USGS Publications Warehouse

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "

  13. Oxygen Isotope Fractionation Effects in Soil Water via Cations Adsorbed to High-CEC Clays

    NASA Astrophysics Data System (ADS)

    Oerter, E.; Finstad, K.; Schaefer, J.; Goldsmith, G. R.; Dawson, T. E.; Amundson, R.

    2012-12-01

    In isotope-based approaches to hydrology, soil and sediment are implicitly considered to be an inert matrix in which water resides or moves. Yet, this assumption is inconsistent with the fact that soils contain a wide range of solutes, and highly variable concentrations of chemically reactive clay particles, all of which may react with bulk water and create pools of energetically differing water with varying isotope compositions. The empirical basis of this hypothesis is the work of Sofer and Gat (1972, EPSL, 15(3)), who showed that the formation of hydration spheres around cations in aqueous solutions fractionate oxygen isotopes of water in ways that appear to be dependent on the cation's ionic potential and concentration. Because soil solutions commonly have high solid to fluid ratios, the potential for solids to create substantial pools of low free energy water, with corresponding isotope fractionation of the free and low energy waters, may be a common process. The potential for this to create measurable isotopic effects would be most evident in soils with high Cation Exchange Capacity (CEC). In order to test this hypothesis, montmorillonite (CEC ≈ 100 meq/100g), kaolinite (CEC≈10) and quartz (CEC≈0) mineral powders were saturated with 3M MgCl2 and KCl solutions (separately), rinsed with methanol and dried to saturate all available CEC sites with either Mg or K cations. Triplicate sets of monominerallic-deionized water mixtures were created at 5, 25, 50, 75 and 95% gravimetric water content. Each set of samples was then subjected to one of three water extraction techniques designed to access specific "pools" of soil water: (1) direct equilibration with CO2 to sample the soil's "free water", i.e. water not adsorbed to cations via hydration spheres; (2) centrifugation to simulate permanent wilting point conditions, thereby yielding most micro-pore, macro-pore, and free water; and (3) cryogenic vacuum distillation to recover all the soil water (free, pore and

  14. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.

    PubMed

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2016-01-14

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. PMID:26661341

  15. In photosynthesis, oxygen comes from water: from a 1787 book for women by Monsieur De Fourcroy.

    PubMed

    Joliot, Pierre; Crofts, Antony R; Björn, Lars Olof; Yerkes, Christine T; Govindjee

    2016-07-01

    It is now well established that the source of oxygen in photosynthesis is water. The earliest suggestion previously known to us had come from René Bernard Wurmser (1930). Here, we highlight an earlier report by Monsieur De Fourcroy (1787), who had already discussed the broad outlines of such a hypothesis in a book on Chemistry written for women. We present here a free translation of a passage from this book, with the original text in French as an Appendix. PMID:27106571

  16. A highly efficient supramolecular photoswitch for singlet oxygen generation in water.

    PubMed

    Liu, Guoxing; Xu, Xiufang; Chen, Yong; Wu, Xianjing; Wu, Huang; Liu, Yu

    2016-06-28

    A series of water-soluble supramolecular assemblies were constructed from dithienylethene-modified permethyl-β-cyclodextrins and porphyrin derivatives, accompanied by a high FRET efficiency, and could be applied in the control of singlet oxygen generation in a 1% ethanol aqueous solution upon irradiation of different wavelength light. These findings will provide a feasible and convenient way to construct a potential photodynamic therapy material. PMID:27251874

  17. Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    PubMed Central

    Roegner, G. Curtis; Needoba, Joseph A.; Baptista, António M.

    2011-01-01

    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality. PMID:21533083

  18. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  19. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-05-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH-->Ni(OH)2) and an anodic OH- oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion.

  20. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH(-) oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  1. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  2. Cleaning Genesis Mission Payload for Flight with Ultra-Pure Water and Assembly in ISO Class 4 Environment

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.

    2012-01-01

    Genesis mission to capture and return to Earth solar wind samples had very stringent contamination control requirements in order to distinguish the solar atoms from terrestrial ones. Genesis mission goals were to measure solar composition for most of the periodic table, so great care was taken to avoid particulate contamination. Since the number 1 and 2 science goals were to determine the oxygen and nitrogen isotopic composition, organic contamination was minimized by tightly controlling offgassing. The total amount of solar material captured in two years is about 400 micrograms spread across one sq m. The contamination limit requirement for each of C, N, and O was <1015 atoms/sq cm. For carbon, this is equivalent to 10 ng/cm2. Extreme vigilance was used in pre-paring Genesis collectors and cleaning hardware for flight. Surface contamination on polished silicon wafers, measured in Genesis laboratory is approximately 10 ng/sq cm.

  3. Baboons, water, and the ecology of oxygen stable isotopes in an arid hybrid zone.

    PubMed

    Moritz, Gillian L; Fourie, Nicolaas; Yeakel, Justin D; Phillips-Conroy, Jane E; Jolly, Clifford J; Koch, Paul L; Dominy, Nathaniel J

    2012-01-01

    Baboons regularly drink surface waters derived from atmospheric precipitation, or meteoric water. As a result, the oxygen isotope (δ(18)O) composition of their tissues is expected to reflect that of local meteoric waters. Animal proxies of the oxygen isotope composition of meteoric water have practical applications as paleoenvironmental recorders because they can be used to infer aridity and temperature in historic and fossil systems. To explore this premise, we measured the δ(18)O values of hair from two baboon species, Papio anubis and Papio hamadryas, inhabiting Awash National Park, Ethiopia. The hybridizing taxa differ in their ranging behavior and physiological response to heat. Papio hamadryas ranges more widely in the arid thornbush and is inferred to ingest a greater proportion of leaf water that is enriched in (18)O as a result of evaporative fractionation. It is also better able to conserve body water, which reduces its dependence on meteoric waters depleted in (18)O. Taken together, these factors would predict relatively higher δ(18)O values in the hair (δ(18)O(hair)) of P. hamadryas. We found that the δ(18)O(hair) values of P. hamadryas were higher than those of P. anubis, yet the magnitude of the difference was marginal. We attribute this result to a common source of drinking water, the Awash River, and the longer drinking bouts of P. hamadryas. Our findings suggest that differences in δ(18)O values among populations of Papio (modern or ancient) reflect different sources of drinking water (which might have ecological significance) and, further, that Papio has practical value as a paleoenvironmental recorder. PMID:22902370

  4. Measurement of strontium isotope ratio in nitric acid extract of peanut testa by ICP-Q-MS after removal of Rb by extraction with pure water.

    PubMed

    Zhu, Yanbei; Hioki, Akiharu; Chiba, Koichi

    2014-02-01

    The difference in the distributions of Sr and Rb in peanut seeds was utilized to develop a precise method for Sr isotope ratio measurement by inductively coupled plasma quadruple mass spectrometry (ICP-Q-MS). The testa instead of the whole peanut seed was selected as the sample because apparent enrichment of Sr in comparison to Rb was found in the testa. Furthermore, Rb in the testa was removed by pure water extraction with the aid of sonication to remove the isobaric interference in Sr isotope ratio measurement. The testa taken from one peanut seed was treated as one sample for the analysis. After optimization of the operating conditions, pure water (10 mL for each sample) extraction in 30 min with sonication was able to remove over 95% of Rb in the testa, while after the Rb removal Sr could be completely extracted using 10 mL of 0.3 mol L(-1) HNO3 for each sample. The integration time in ICP-Q-MS measurement was optimized to achieve a lower measurement uncertainty in a shorter time; the results showed that 1s was required and enough for the precise measurement of Sr isotope ratios giving a relative standard uncertainty (n=10) of ca. 0.1%. The present method was applied to peanut seeds grown in Japan, China, USA, India, and South Africa. PMID:24401460

  5. An automated system for oxygen-18 water recovery and fluorine-18 delivery

    NASA Astrophysics Data System (ADS)

    Schueller, Michael J.; Ferrieri, Richard A.; Schlyer, David J.

    2005-12-01

    BNL has recently purchased an EBCO TR-19 cyclotron for routine isotope production. A system has been built to recover oxygen-18 enriched water from the fluorine-18 target, and then transport the F-18 a distance of 50 m to a shielded dose splitter. The remotized system provides the operator with feedback on flow rates and radiation levels during processing. Recovery of the 2.6 mL of enriched water and transport of the F-18 to the radiochemistry labs takes under 10 min, with more than 80% of the activity arriving in the chemistry lab.

  6. Relationship between a solar drying model of red pepper and the kinetics of pure water evaporation (1)

    SciTech Connect

    Passamai, V.; Saravia, L.

    1997-05-01

    Drying of red pepper under solar radiation was investigated, and a simple model related to water evaporation was developed. Drying experiments at constant laboratory conditions were undertaken where solar radiation was simulated by a 1,000 W lamp. In this first part of the work, water evaporation under radiation is studied and laboratory experiments are presented with two objectives: to verify Penman`s model of evaporation under radiation, and to validate the laboratory experiments. Modifying Penman`s model of evaporation by introducing two drying conductances as a function of water content, allows the development of a drying model under solar radiation. In the second part of this paper, the model is validated by applying it to red pepper open air solar drying experiments.

  7. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  8. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kubo, T.; Kirby, S.H.

    2005-01-01

    We selected two Europan-ice-shell candidate highly hydrated sulfate salts for a laboratory survey of ductile flow properties: MgSO4 ?? 7H2O (epsomite) and Na2SO4 ?? 10H2O (mirabilite), called MS7 and NS10, respectively. Polycrystalline samples in pure form and in mixtures with water ice I were tested using our cryogenic high-pressure creep apparatus at temperatures 232 ??? T ??? 294 K, confining pressures P = 50 and 100 MPa, and strain rates 4 ?? 10-8 ??? ???dot;e ??? 7 ?? 10-5 s-1. Grain size of NS10 samples was > 100 ??m. The flow strength ?? of pure MS7 was over 100 times that of polycrystalline ice I at comparable conditions; that of pure NS10 over 20 times that of ice. In terms of the creep law ???dot;e = A??n e-Q/RT, where R is the gas constant, we determine parameter values of A = 1012.1 MPa-ns-1, n = 5.4, and Q = 128 kJ/mol for pure NS10. Composites of ice I and NS10 of volume fraction ?? NS10 have flow strength ??c = [??NS10??NS10J + (1 - ?? NS10)??iceIJ]1/J where J ??? -0.5, making the effect on the flow of ice with low volume fractions of NS10 much like that of virtually undeformable hard rock inclusions. Being much stronger and denser than ice, massive sulfate inclusions in the warmer, ductile layer of the Europan ice shell are less likely to be entrained in convective ice flow and more likely to be drawn to the base of the ice shell by gravitational forces and eventually expelled. With only smaller, dispersed sulfate inclusions, at probable sulfate ?? < 0.2, the shell may be treated rheologically as pure, polycrystalline ice, with boundary conditions perhaps influenced by the high density and low thermal conductivity of the hydrated salts. Copyright 2005 by the American Geophysical Union.

  9. Thermoneutral water immersion and hyperbaric oxygen do not alter cortisol regulation.

    PubMed

    Conaty, Betsy J; Shykoff, Barbara E; Florian, John P

    2015-01-01

    Research documenting changes in cortisol concentration following hyperbaric exposures has been contradictory, possibly due to the inclusion of many confounding factors. Therefore, the aim of this study was to document short- and long-term cortisol responses following repeated water immersions arid/or exposure to raised partial pressure of oxygen under controlled conditions. Thirty-two Navy divers (31 ± 7 [19-44] years; mean ± SD) were exposed to one of three resting thermoneutral experimental conditions at a pressure of 1.35 atmospheres absolute (atm abs) for six hours on five consecutive days: (1) breathing air while immersed (air; n = 10); (2) breathing 100% oxygen in a hyperbaric chamber (dry; n = 12); or (3) breathing 100% oxygen while immersed (oxygen; n = 10). Divers were at rest for all conditions. Serum cortisol concentrations were measured one hour before and after each dive. The change in cortisol (ug/dL) after diving was similar for air (3.63 ± 5.56), dry (4.91 ± 3.68) and oxygen (3.50 ± 3.48) phases (p > 0.05). There were no differences in preor post-dive cortisol concentrations across dive days for any of the experimental conditions. This study provides evidence that repeated long-duration, thermoneutral immersions and/or hyperbaric oxygen exposures at 1.35 atm abs, under ideal conditions per se do not abnormally alter cortisol concentrations. Observed changes are likely the result of the natural circadian rhythm of cortisol. PMID:26152106

  10. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  11. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4

    NASA Astrophysics Data System (ADS)

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.

    2016-05-01

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ˜30–40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.

  12. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4.

    PubMed

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E

    2016-05-24

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition-including metabolic water produced as a byproduct of metabolism-based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the (18)O/(16)O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ∼30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered. PMID:27170190

  13. Relationship between a solar drying model of red pepper and the kinetics of pure water evaporation (2)

    SciTech Connect

    Passamai, V.; Saravia, L.

    1997-05-01

    In part one, a simple drying model of red pepper related to water evaporation was developed. In this second part the drying model is applied by means of related experiments. Both laboratory and open air drying experiments were carried out to validate the model and simulation results are presented.

  14. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.

    PubMed

    Pujadas, G; Palau, J

    2001-08-01

    Soybean beta-amylase (EC 3.2.1.2) has been crystallized both free and complexed with a variety of ligands. Four water molecules in the free-enzyme catalytic cleft form a multihydrogen-bond network with eight strategic residues involved in enzyme-ligand hydrogen bonds. We show here that the positions of these four water molecules are coincident with the positions of four potential oxygen atoms of the ligands within the complex. Some of these waters are displaced from the active site when the ligands bind to the enzyme. How many are displaced depends on the shape of the ligand. This means that when one of the four positions is not occupied by a ligand oxygen atom, the corresponding water remains. We studied the functional/structural role of these four waters and conclude that their presence means that the conformation of the eight side chains is fixed in all situations (free or complexed enzyme) and preserved from unwanted or forbidden conformational changes that could hamper the catalytic mechanism. The water structure at the active pocket of beta-amylase is therefore essential for providing the ligand recognition process with plasticity. It does not affect the protein active-site geometry and preserves the overall hydrogen-bonding network, irrespective of which ligand is bound to the enzyme. We also investigated whether other enzymes showed a similar role for water. Finally, we discuss the potential use of these results for predicting whether water molecules can mimic ligand atoms in the active center. PMID:11468361

  15. Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range

    SciTech Connect

    Skinner, Lawrie B.; Huang, Congcong; Schlesinger, Daniel; Pettersson, Lars G. M.; Nilsson, Anders; Benmore, Chris J.

    2013-02-21

    Four recent x-ray diffraction measurements of ambient liquid water are reviewed here. Each of these measurements represents a significant development of the x-ray diffraction technique applied to the study of liquid water. Sources of uncertainty from statistical noise, Q-range, Compton scattering, and self-scattering are discussed. The oxygen-hydrogen contribution to the measured x-ray scattering pattern was subtracted using literature data to yield an experimental determination, with error bars, of the oxygen-oxygen pair-distribution function, g{sub OO}(r), which essentially describes the distribution of molecular centers. The extended Q-range and low statistical noise of these measurements has significantly reduced truncation effects and related errors in the g{sub OO}(r) functions obtained. From these measurements and error analysis, the position and height of the nearest neighbor maximum in g{sub OO}(r) were found to be 2.80(1) A and 2.57(5) respectively. Numerical data for the coherent differential x-ray scattering cross-section I{sub X}(Q), the oxygen-oxygen structure factor S{sub OO}(Q), and the derived g{sub OO}(r) are provided as benchmarks for calibrating force-fields for water.

  16. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  17. A method for controlling hydrogen sulfide in water by adding solid phase oxygen.

    PubMed

    Chang, Yu-Jie; Chang, Yi-Tang; Chen, Hsi-Jien

    2007-01-01

    This work evaluates the addition of solid phase oxygen, a magnesium peroxide (MgO(2)) formulation manufactured by Regenesis (oxygen-releasing compounds, ORC), to inhibit the production of hydrogen sulfide (H(2)S) in an SRB-enriched environment. The initial rate of release of oxygen by the ORC was determined over a short period by adding sodium sulfite (Na(2)SO(3)), which was a novel approach developed for this study. The ability of ORCs to control H(2)S by releasing oxygen was evaluated in a bench-scale column containing cultured sulfate reducing bacteria (SRB). After a series of batch tests, 0.4% ORC was found to be able to inhibit the formation of H(2)S for more than 40 days. In comparison, the concentration of H(2)S dropped from 20 mg S/L to 0.05 mg S/L immediately after 0.1% hydrogen peroxide (H(2)O(2)) was added, but began to recover just four days later. Thus, H(2)O(2) does not seem to be able to inhibit the production of sulfide for an extended period of time. By providing long-term inhibition of the SRB population, ORC provides a good alternative means of controlling the production of H(2)S in water. PMID:16439114

  18. Water-Induced Decoupling of Tracer and Electrochemical Oxygen Exchange Kinetics on Mixed Conducting Electrodes.

    PubMed

    Nenning, Andreas; Navickas, Edvinas; Hutter, Herbert; Fleig, Jürgen

    2016-07-21

    Isotope exchange depth profiling and electrochemical impedance spectroscopy are usually regarded as complementary tools for measuring the surface oxygen exchange activity of mixed conducting oxides, for example used in solid oxide fuel cell (SOFC) electrodes. Only very few studies compared electrical (k(q)) and tracer (k*) exchange coefficients of solid-gas interfaces measured under identical conditions. The 1:1 correlation between k(q) and k* often made is thus more an assumption than experimentally verified. In this study it is shown that the measured rates of electrical and tracer exchange of oxygen may strongly differ. Simultaneous acquisition of k(q) and k* on La0.6Sr0.4FeO3-δ and SrTi0.3Fe0.7O3-δ thin film electrodes revealed that k* > 100 k(q) in humid oxidizing ((16)O2 + H2(18)O) and humid reducing (H2 + H2(18)O) atmospheres. These results are explained by fast water adsorption and dissociation on surface oxygen vacancies, forming two surface hydroxyl groups. Hence, interpreting experimentally determined k* values in terms of electrochemically relevant oxygen exchange is not straightforward. PMID:27389420

  19. Oxygen related recombination defects in Ta3N5 water splitting photoanode

    NASA Astrophysics Data System (ADS)

    Fu, Gao; Yan, Shicheng; Yu, Tao; Zou, Zhigang

    2015-10-01

    A key route to improving the performance of Ta3N5 photoelectrochemical film devices in solar driving water splitting to hydrogen is to understand the nature of the serious recombination of photo-generated carriers. Here, by using the temperature-dependent photoluminescence (PL) spectrum, we confirmed that for the Ta3N5 films prepared by nitriding Ta2O5 precursor, one PL peak at 561 nm originates from deep-level defects recombination of the oxygen-enriched Ta3N5 phases, and another one at 580 nm can be assigned to band recombination of Ta3N5 itself. Both of the two bulk recombination processes may decrease the photoelectrochemical performance of Ta3N5. It was difficult to remove the oxygen-enriched impurities in Ta3N5 films by increasing the nitriding temperatures due to their high thermodynamically stability. In addition, a broadening PL peak between 600 and 850 nm resulting from oxygen related surface defects was observed by the low-temperature PL measurement, which may induce the surface recombination of photo-generated carriers and can be removed by increasing the nitridation temperature. Our results provided direct experimental evidence to understand the effect of oxygen-related crystal defects in Ta3N5 films on its photoelectric performance.

  20. A Dissolved Oxygen Model to Help Manage Water Use in Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Binning, E. A.; White, D. M.; Kotlovenko, A.; Lilly, M. R.; Chambers, M. K.; Hilton, K. M.; Reichardt, D. A.

    2006-12-01

    Dissolved oxygen (DO) in arctic lakes is a key factor for winter survival of fish. Management of water use from lakes indirectly attempts to manage DO through volume limitations of water used on an annual basis, or during the winter ice-cover season. The relationship between water volume, DO budgets, and extraction of water through pumping has historically not been well understood or taken into account for managing water-extraction volumes and timing of extraction. DO budget modeling tools can be used to help predict the amount of DO available at the end of winter. Factors such as bathymetry, DO consumption in the water column and lake sediments, and timing of recharge should be taken into account in using a DO management model for regulating lake water use. The model being presented was developed to describe DO concentrations as they are affected by bacterial respiration, and freezing exclusion. Further development will include metals reduction and removal of water during periods of ice cover. The model was developed with data taken from 2 natural arctic thaw-lakes and 2 flooded gravel mine-site locations on the North Slope of Alaska.

  1. Water masses along the OVIDE 2010 section as identified by oxygen and hydrogen stable isotope values

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Thierry, Virginie

    2016-04-01

    The OVIDE transect between the western Iberian Peninsula and the southern tip of Greenland is one of the hydrographic sections in the North Atlantic that is measured regularly to identify changes in water mass formation and transport and thus to evaluate the state of the Atlantic Meridional Overturning Circulation (Mercier et al., 2015; García-Ibáñez et al., 2015; both in Progr. in Oceanography). During the OVIDE 2010 campaign seawater samples covering the complete water column were collected on the section between Portugal and the Reykjanes ridge for stable isotope analyses. Oxygen (δ18O) and hydrogen (δD) stable isotope values were measured simultaneously by cavity ring-down laser spectroscopy using a L1102-i Picarro water isotope analyser at the Godwin Laboratory for Paleoclimate Research (Univ. Cambridge, UK). Within the upper water column the stable isotope values clearly mark the positions of the Portugal Current (40.3°N 11°W), the North Atlantic Drift (46.2°N 19.4°W) and of the subarctic front (51°N 23.5°W). Up to Station 36 (47.7°N 20.6°W) an upper (around 600 m) and lower (around 1000 m) branch of the Mediterranean Outflow water (MOW) can clearly be distinguished by high oxygen (0.5-0.7‰) and hydrogen (3-5‰) values. At Station 28 (42.3°N 15.1°W) strong MOW influence is also indicated between 1400 and 1600 m. In the west European Basin, lower oxygen isotope values reveal the presence of Labrador Sea Water (LSW) below the MOW (down to 2200 m). Close to and west of the subarctic front this water mass shallows and occupies the complete interval between 1000 and 2000 m water depth. In the Iceland basin, two additional levels with lower oxygen isotope values are observed. The deeper level (2200-3500 m) marks Iceland Scotland Overflow Water (ISOW) that based on its distinct isotopic signature (δ18O ≤ 0.25‰) can be traced as far east as 18.5°W (down to at least 3500 m). Close to the Reykjanes ridge both, the ISOW and LSW, are also

  2. Effects of phytoplankton vertical migration on the formation of oxygen depleted water in a shallow coastal sea

    NASA Astrophysics Data System (ADS)

    Haraguchi, K.; Yamamoto, T.; Chiba, S.; Shimizu, Y.; Nagao, M.

    2010-02-01

    In this paper, oxygen budget was estimated for the lower layer of water column in a semi-enclosed bay, Ago Bay, Japan. Benthic oxygen consumption rates were measured directly with an in situ measurement device from 13 July to 16 August 2004. Oxygen budget was calculated based on physical, chemical and biological processes using the observed data. Along with the change of the water column structure at the time of a hit of typhoon, dominant phytoplankton species shifted from the diatom Skeletonema costatum to the dinoflagellate Heterocapsa circularisquama. During the diatom-dominating period, oxygen supply rate in the lower layer due to photosynthesis was comparable to or slightly lower than the sediment oxygen consumption rate. In contrast, during the dominance of the dinoflagellate, net oxygen budget was significantly negative in the lower layer while it was positive in the upper layer. This could be attributed to the migration behavior of the dominant dinoflagellate H. circularisquama that swim up to the upper layer and produce oxygen in daytime, and swim down to the lower layer and consume oxygen in nighttime. The results of the present study suggest that phytoplankton migration behavior can enhance the development of oxygen depleted water mass in the lower layer of eutrophic shallow coastal seas.

  3. Generating singlet oxygen bubbles: a new mechanism for gas-liquid oxidations in water.

    PubMed

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi; Lyons, Alan M; Greer, Alexander

    2012-02-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [(1)O(2) ((1)Δ(g))] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiberoptic receptacles loaded with 150 μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O(2) gas to the reactor chambers. In the presence of O(2), singlet oxygen was generated by illuminating the sensitizer particles with 669 nm light from an optical fiber coupled to the top of the reactor. The generated (1)O(2) was transported through the membrane by the O(2) stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, or N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that (1)O(2) transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow; it arose only from (1)O(2)-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves (1)O(2) mass transfer and solvation, where smaller bubbles provide better penetration of (1)O(2) into the flowing stream due to higher surface-to-volume contact between the probe molecules and (1)O(2). PMID:22260325

  4. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.

    PubMed

    Najah, A; El-Shafie, A; Karim, O A; El-Shafie, Amr H

    2014-02-01

    We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R (2)), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events. PMID:23949111

  5. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    SciTech Connect

    Mousis, Olivier; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  6. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  7. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  8. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Oka, A.; Gamo, T.

    2012-12-01

    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  9. Molecular Simulations of the Vapor-Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Celný, David; Planková, Barbora; Němec, Tomáš; Duška, Michal; Hrubý, Jan

    2016-03-01

    In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water. The maximum absolute deviation from the IAPWS standard for the surface tension of ordinary water is 10.4 mN · m-1 and 4.1 mN · m-1 over the temperature range from 275 K to 600 K in case of SPC/E and TIP4P/2005, respectively.

  10. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  11. Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner.

    PubMed

    Webb, A G

    2012-03-01

    MRI represents a unique method to visualize directly different resonant modes of arbitrarily-shaped dielectric resonators in the radiofrequency spectrum via construction of resonators filled with distilled, deionized water which has a low conductivity and high relative permittivity. The required dimensions, particularly for higher order modes, are large and so a high field whole-body MRI system is needed to visualize these modes. In this study, using a simple cylindrical geometry, many higher order modes were identified and confirmed using electromagnetic simulations. In addition, coupled modes between more than one resonator were investigated, with possible future applications including direct visualization of fields in metamaterials. PMID:22341210

  12. Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner

    NASA Astrophysics Data System (ADS)

    Webb, A. G.

    2012-03-01

    MRI represents a unique method to visualize directly different resonant modes of arbitrarily-shaped dielectric resonators in the radiofrequency spectrum via construction of resonators filled with distilled, deionized water which has a low conductivity and high relative permittivity. The required dimensions, particularly for higher order modes, are large and so a high field whole-body MRI system is needed to visualize these modes. In this study, using a simple cylindrical geometry, many higher order modes were identified and confirmed using electromagnetic simulations. In addition, coupled modes between more than one resonator were investigated, with possible future applications including direct visualization of fields in metamaterials.

  13. Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties.

    PubMed

    Fortunelli, Alessandro; Goddard, William A; Sementa, Luca; Barcaro, Giovanni

    2015-03-14

    Electrochemical water-based energy cycles provide a most promising alternative to fossil-fuel sources of energy. However, current electrocatalysts are not adequate (high overpotential, lack of selectivity toward O2 production, catalyst degradation). We propose here mechanistic guidelines for experimental examination of modified catalysts based on the dependence of kinetic rates on the solvent dielectric constant. To illustrate the procedure we consider the fcc(111) platinum surface and show that the individual steps for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) change systematically with the polarizability of the medium. Thus changing this environmental variable can be used to tune the rate determining steps and the barriers, providing a means for screening and validating new systems to optimize the rate determining steps for the ORR and OER reaction pathways. PMID:25682836

  14. Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties

    NASA Astrophysics Data System (ADS)

    Fortunelli, Alessandro; Goddard, William A., III; Sementa, Luca; Barcaro, Giovanni

    2015-02-01

    Electrochemical water-based energy cycles provide a most promising alternative to fossil-fuel sources of energy. However, current electrocatalysts are not adequate (high overpotential, lack of selectivity toward O2 production, catalyst degradation). We propose here mechanistic guidelines for experimental examination of modified catalysts based on the dependence of kinetic rates on the solvent dielectric constant. To illustrate the procedure we consider the fcc(111) platinum surface and show that the individual steps for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) change systematically with the polarizability of the medium. Thus changing this environmental variable can be used to tune the rate determining steps and the barriers, providing a means for screening and validating new systems to optimize the rate determining steps for the ORR and OER reaction pathways.

  15. HIGH ARSENIC CONCENTRATIONS AND ENRICHED SULFUR AND OXYGEN ISOTOPES IN A FRACTURED-BEDROCK GROUND-WATER SYSTEM

    EPA Science Inventory

    Elevated arsenic concentrations are coincident with enriched sulfur and oxygen isotopes of sulfate in bedrock ground water within Kelly's Cove watershed, Northport, Maine, USA. Interpretation of the data is complicated by the lack of correlations between sulfate concentrations an...

  16. The Effect of Water Vapor on Flame Velocity in Equivalent Carbon Monoxide and Oxygen Mixtures

    NASA Technical Reports Server (NTRS)

    Fiock, Ernest F; King, H Kendall

    1936-01-01

    This report presents the results of an investigation to study the effect of water vapor upon the spatial speed of flame in equivalent mixtures of carbon monoxide and oxygen at various total pressures from 100 to 780 mm.hg. These results show that, within this pressure range, an increase in flame speed is produced by increasing the mole fraction of water vapor at least as far as saturation at 25 degrees c., and that the rate of this increase is greater the higher the pressure. It is evident that water vapor plays an important part in the explosive oxidation of carbon monoxide; the need for further experimental evidence as to the nature of its action is indicated.

  17. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters

    SciTech Connect

    Esswein, AJ; Surendranath, Y; Reece, SY; Nocera, DG

    2011-02-01

    A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density together with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.

  18. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  19. Reactivity of perovskites with water: Role of hydroxylation in wetting and implications for oxygen electrocatalysis

    DOE PAGESBeta

    Stoerzinger, Kelsey A.; Hong, Wesley T.; Azimi, Gisele; Crumlin, Ethan J.; Biegalski, Michael D.; Bluhm, Hendrik; Varanasi, Kripa K.; Shao-Horn, Yang; Giordano, Livia; Lee, Yueh -Lin

    2015-07-15

    Oxide materials play an important role in technical applications such as gas sensing and catalysis, where they can react notably with water in vapor or liquid form. We find that the coverage of (*OH) measured at fixed relative humidity trends with the electron donor (basic) character of wetted perovskite oxide surfaces, corresponding to low contact angles when removing a droplet of water. We report for the first time that the affinity toward hydroxylation, coincident with strong adsorption energies calculated for dissociative and molecular adsorption of water, leads to strong H-bonding detrimental to catalysis of the oxygen reduction reaction (ORR). Furthermore,more » this suggests that hydrophobic oxides with low tendency to hydroxylate may demonstrate improved catalytic activity for the ORR.« less

  20. "Ene" Reactions of Singlet Oxygen at the Air-Water Interface.

    PubMed

    Malek, Belaid; Fang, William; Abramova, Inna; Walalawela, Niluksha; Ghogare, Ashwini A; Greer, Alexander

    2016-08-01

    Prenylsurfactants [(CH3)2C═CH(CH2)nSO3(-) Na(+) (n = 4, 6, or 8)] were designed to probe the "ene" reaction mechanism of singlet oxygen at the air-water interface. Increasing the number of carbon atoms in the hydrophobic chain caused an increase in the regioselectivity for a secondary rather than tertiary surfactant hydroperoxide, arguing for an orthogonal alkene on water. The use of water, deuterium oxide, and H2O/D2O mixtures helped to distinguish mechanistic alternatives to homogeneous solution conditions that include dewetting of the π bond and an unsymmetrical perepoxide transition state in the hydroperoxide-forming step. The prenylsurfactants and a photoreactor technique allowed a certain degree of interfacial control of the hydroperoxidation reaction on a liquid support, where the oxidant (airborne (1)O2) is delivered as a gas. PMID:27385423

  1. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hun; Jang, Youn Jeong; Kim, Jin Hyun; Jang, Ji-Wook; Choi, Sun Hee; Lee, Jae Sung

    2015-11-01

    A one-dimensional zinc ferrite (ZnFe2O4) nanorod photoanode was prepared by a simple solution method on the F-doped tin oxide glass substrate. Thermal treatment under a hydrogen or vacuum atmosphere improved the photoelectrochemical water oxidation activity up to 20 times. The various physical characterization techniques used revealed that oxygen vacancies were created by the treatments in the near surface region, which increased the donor density and passivated the surface states. Hydrogen treatment was more effective and it was important to find optimum treatment conditions to take advantage of the positive role of oxygen vacancy as a source of electron donors and avoid its negative effect as electron trap sites.A one-dimensional zinc ferrite (ZnFe2O4) nanorod photoanode was prepared by a simple solution method on the F-doped tin oxide glass substrate. Thermal treatment under a hydrogen or vacuum atmosphere improved the photoelectrochemical water oxidation activity up to 20 times. The various physical characterization techniques used revealed that oxygen vacancies were created by the treatments in the near surface region, which increased the donor density and passivated the surface states. Hydrogen treatment was more effective and it was important to find optimum treatment conditions to take advantage of the positive role of oxygen vacancy as a source of electron donors and avoid its negative effect as electron trap sites. Electronic supplementary information (ESI) available: XANES and EXAFS spectra, light harvesting efficiency, HR-SEM images, vacuum-treated ZnFe2O4, equivalent circuit model, Nyquist plots, and charge separation efficiencies. See DOI: 10.1039/c5nr05812k

  2. Direct and dissolved oxygen involved photodegradation of MeO-PBDEs in water.

    PubMed

    Xue, Weifeng; Chen, Jingwen; Xie, Qing

    2016-04-15

    Photodegradation has been proved to be a crucial way of elimination for polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs (HO-PBDEs). However, it is still unknown whether methoxylated PBDEs (MeO-PBDEs) can also undergo photodegradation. In this study, 4'-MeO-BDE-17, 5-MeO-BDE-47, 5'-MeO-BDE-99, 6-MeO-BDE-47 and 6-MeO-BDE-85 were selected as targets to investigate their photodegradation in water. Meanwhile, the effects of dissolved oxygen on the photoreactions of MeO-PBDEs were also unveiled. Simulated sunlight experiments indicate that 6-MeO-BDE-47 resisted photodegradation for 20h, while other MeO-PBDEs underwent relatively fast photodegradation, which was greatly susceptible to the substitution patterns of methoxyl and bromine. Photo-excited MeO-PBDEs (except 6-MeO-BDE-47) can sensitize dissolved oxygen to generate singlet oxygen ((1)O2) and superoxide anion radical (O2(-)). The generated (1)O2 cannot degrade the MeO-PBDEs, whereas O2(-) was reactive with MeO-PBDEs. The contribution of dissolved oxygen to the photodegradation of 4'-MeO-BDE-17 and 6-MeO-BDE-85 was negligible; while the negative contribution was observed for 5-MeO-BDE-47 and 5'-MeO-BDE-99. Hydrodebromination was a crucial photodegradation pathway for MeO-PBDEs (excluding 4'-MeO-BDE-17 and 6-MeO-BDE-47). Eventually, direct photolysis half-lives of MeO-PBDEs except 6-MeO-BDE-47 in the surface waters at 40 N latitude were calculated to be 1.35-3.46d in midsummer and 6.39-17.47d in midwinter. PMID:26802632

  3. Determination and application of the equilibrium oxygen isotope effect between water and sulfite

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Bradley, Alexander S.; Eldridge, Daniel L.; Johnston, David T.

    2014-01-01

    The information encoded by the two stable isotope systems in sulfate (δ34SSO4 and δ18OSO4) has been widely applied to aid reconstructions of both modern and ancient environments. Interpretation of δ18OSO4 records has been complicated by rapid oxygen isotope equilibration between sulfoxyanions and water. Specifically, the apparent relationship that develops between δ18OSO4 and δ18Owater during microbial sulfate reduction is thought to result from rapid oxygen isotope equilibrium between intracellular water and aqueous sulfite - a reactive intermediate of the sulfate reduction network that can back-react to produce sulfate. Here, we describe the oxygen equilibrium isotope effect between water and sulfite (referring to all the sum of all S(IV)-oxyanions including sulfite and both isomers and the dimer of bisulfite). Based on experiments conducted over a range of pH (4.5-9.8) and temperature (2-95 °C), where ε = 1000 * (α - 1), we find εSO3-H2O=13.61-0.299∗pH-0.081∗T °C. Thus, at a pH (7.0) and temperature (25 °C) typifying commonly used experimental conditions for sulfate reducing bacterial cultures, sulfite is enriched in 18O by 9.5‰ (±0.8‰) relative to ambient water. We examine the implication of these results in a sulfate reduction network that has been revised to reflect our understanding of the reactions involving oxygen. By evaluating previously published data within this new architecture, our results are consistent with previous suggestions of high reversibility of the sulfate reduction biochemical network. We also demonstrate that intracellular exchange rates between SO32- and water must be on average 1-3 orders of magnitude more rapid than intracellular fluxes of sulfate reduction intermediates and that kinetic isotope effects upstream of SO32- are required to explain previous laboratory and environmental studies of δ18OSO4 resulting as a consequence of sulfate reduction.

  4. Remarkable effect of Pt nanoparticles on visible light-induced oxygen generation from water catalysed by perovskite oxides.

    PubMed

    Gupta, Uttam; Naidu, B S; Rao, C N R

    2015-01-14

    Oxidation of water is a challenging process with a positive free energy change and it is purposeful to find good catalysts to facilitate the process. While the perovskite oxides, LaCoO3 and LaMnO3, are good electron transfer catalysts in artificial photosynthesis to produce oxygen by the oxidation of water, the electron transfer is further favoured by the presence of platinum nanoparticles, causing a substantial increase in oxygen evolution. PMID:25407344

  5. Facile and Chemically Pure Preparation of YVO4:Eu3+ Colloid with Novel Nanostructure via Laser Ablation in Water

    NASA Astrophysics Data System (ADS)

    Wang, Haohao; Odawara, Osamu; Wada, Hiroyuki

    2016-02-01

    A YVO4:Eu3+ colloid with an interesting nanostructure was formed by pulsed laser ablation in deionized water without any additives or surfactants. Analyses of particle morphology, composition and optical properties were accomplished by SEM, TEM, EDS PL and UV-vis. Ovoid-like particles formed by the agglomeration of numerous nanocrystals were observed by SEM and TEM, while EDS with area-mode analysis revealed that the content of dopant ion was well retained within the nanoparticles. In addition, the formation mechanism is deduced and discussed for the first time in this research. The findings of this study could provide new insights into the understanding of laser-induced oxide materials and offer an opportunity for other research groups to pursue red emitting nanophosphors with outstandingly purity.

  6. Facile and Chemically Pure Preparation of YVO4:Eu3+ Colloid with Novel Nanostructure via Laser Ablation in Water

    PubMed Central

    Wang, Haohao; Odawara, Osamu; Wada, Hiroyuki

    2016-01-01

    A YVO4:Eu3+ colloid with an interesting nanostructure was formed by pulsed laser ablation in deionized water without any additives or surfactants. Analyses of particle morphology, composition and optical properties were accomplished by SEM, TEM, EDS PL and UV-vis. Ovoid-like particles formed by the agglomeration of numerous nanocrystals were observed by SEM and TEM, while EDS with area-mode analysis revealed that the content of dopant ion was well retained within the nanoparticles. In addition, the formation mechanism is deduced and discussed for the first time in this research. The findings of this study could provide new insights into the understanding of laser-induced oxide materials and offer an opportunity for other research groups to pursue red emitting nanophosphors with outstandingly purity. PMID:26842419

  7. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  8. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Litao; Wang, Jianqiu

    2014-03-01

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  9. Rapid Method for the Determination of the Stable Oxygen Isotope Ratio of Water in Alcoholic Beverages.

    PubMed

    Wang, Daobing; Zhong, Qiding; Li, Guohui; Huang, Zhanbin

    2015-10-28

    This paper demonstrates the first successful application of an online pyrolysis technique for the direct determination of oxygen isotope ratios (δ(18)O) of water in alcoholic beverages. Similar water concentrations in each sample were achieved by adjustment with absolute ethyl alcohol, and then a fixed GC split ratio can be used. All of the organic ingredients were successfully separated from the analyte on a CP-PoraBond Q column and subsequently vented out, whereas water molecules were transferred into the reaction furnace and converted to CO. With the system presented, 15-30 μL of raw sample was diluted and can be analyzed repeatedly; the analytical precision was better than 0.4‰ (n = 5) in all cases, and more than 50 injections can be made per day. No apparent memory effect was observed even if water samples were injected using the same syringe; a strong correlation (R(2) = 0.9998) was found between the water δ(18)O of measured sample and that of working standards. There was no significant difference (p > 0.05) between the mean δ(18)O value and that obtained by the traditional method (CO2-water equilibration/isotope ratio mass spectrometry) and the newly developed method in this study. The advantages of this new method are its rapidity and straightforwardness, and less test portion is required. PMID:26373434

  10. Partitioning water and carbon fluxes in a Mediterranean oak woodland using stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra; Silva, Filipe Costa e.; Pereira, Joao; Werner, Christiane

    2014-05-01

    Water is a key factor driving ecosystem productivity, especially in water-limited ecosystems. A separation of the component fluxes is needed to gain a functional understanding on the development of net ecosystem water fluxes and their coupling with biogeochemical cycles. Oxygen isotope signatures are valuable tracers for water movements within the ecosystem because of the distinct isotopic compositions of water in soil and vegetation. In the past, determination of isotopic signatures of evaporative or transpirational fluxes has been challenging since measurements of water vapor isotopes were difficult to obtain using cold-trap methods, delivering data with low time resolution. Recent developments in laser spectroscopy now enable direct high frequency measurements of the isotopic composition of atmospheric water vapor (δv), evapotranspiration (δET), and its components and allow validations of common modeling approaches for estimating δE and δT based on Craig and Gordon (1965). Here, a novel approach was used, combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediteranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We aimed at 1) testing the Craig and Gordon equation for soil evaporation against directly measured δE and 2) quantifying the role of non-steady-state transpiration under natural conditions. Thirdly, we used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of

  11. The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Shoji, Tetsuo

    2015-06-01

    The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature water is studied by in situ monitoring corrosion potential (Ecorr), contact electric resistance (CER) and electrochemical impedance measurements (EIS), and ex situ scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The Ecorr and film resistance show large change when the environment is changed from hydrogenated water to oxygenated water and changeable with changing environment while the morphology and composition only show obvious distinction in the first cycle. The main factor controlling the electric/electrochemical properties of the oxide film is Ecorr.

  12. XPS studies of water and oxygen on iron-sputtered natural ilmenite

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.

    1985-01-01

    The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.

  13. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoying; Ning, Zhiyuan; Liu, Yang; Xu, Tingting; Guo, Yao; Zak, Alla; Zhang, Zhiyong; Wang, Sheng; Tenne, Reshef; Chen, Qing

    2012-09-01

    The electrical properties of WS2 nanotubes (NTs) were studied through measuring 59 devices. Important electrical parameters, such as the carrier concentration, mobility, and effective barrier height at the contacts, were obtained through fitting experimental non-linear I-V curves using a metal-semiconductor-metal model. The carrier mobility was found to be several orders of magnitude higher than that have been reported previously for WS2 NTs. Water absorption was found to decrease the conductivity and carrier mobility of the NTs, and could be removed when the sample was dried. Oxygen absorption also slightly decreased the conductivity of WS2 NTs.

  14. Hydrogen and oxygen isotopic compositions of waters from fumaroles at Kilauea summit, Hawaii

    USGS Publications Warehouse

    Hinkley, T.K.; Quick, J.E.; Gregory, R.T.; Gerlach, T.M.

    1995-01-01

    Condensate samples were collected in 1992 from a high-temperature (300?? C) fumarole on the floor of the Halemaumau Pit Crater at Kilauea. The emergence about two years earlier of such a hot fumarole was unprecedented at such a central location at Kilauea. The condensates have hydrogen and oxygen isotopic compositions which indicate that the waters emitted by the fumarole are composed largely of meteoric water, that any magmatic water component must be minor, and that the precipitation that was the original source to the fumarole fell on a recharge area on the slopes of Mauna Loa Volcano to the west. However, the fumarole has no tritium, indicating that it taps a source of water that has been isolated from atmospheric water for at least 40 years. It is noteworthy, considering the unstable tectonic environment and abundant local rainfall of the Kilauea and Mauna Loa regions, that waters which are sources to the hot fumarole remain uncontaminated from atmospheric sources over such long times and long transport distances. As for the common, boiling point fumaroles of the Kilauea summit region, their 18O, D and tritium concentrations indicate that they are dominated by recycling of present day meteoric water. Though the waters of both hot and boiling point fumaroles have dominantly meteoric sources, they seem to be from separate hydrological regimes. Large concentrations of halogens and sulfur species in the condensates, together with the location at the center of the Kilauea summit region and the high temperature, initially suggested that much of the total mass of the emissions of the hot fumarole, including the H2O, might have come directly from a magma body. The results of the present study indicate that it is unreliable to infer a magmatic origin of volcanic waters based solely on halogen or sulfur contents, or other aspects of chemical composition of total condensates. ?? 1995 Springer-Verlag.

  15. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene. PMID:23218246

  16. Laboratory Measurements Of Pure And Diluted Methanol In Water Ice In The Nir And Mir Wavelength Ranges.

    NASA Astrophysics Data System (ADS)

    Merlin, Frederic; Quirico, E.; Barucci, M. A.; Gourgeot, F.

    2012-10-01

    Observations performed in the mid infrared (MIR) show evidence of large amount of ices in the Galaxy. Water ice is the most abundant but other chemical compounds, such as carbon monoxide and methanol, can be present and be enriched in molecular clouds or protostellar disks (Garrod & Pauly 2011). Methanol forms mainly on ice-covered dust grain surfaces primarily through hydrogenation of CO or from an electron-irradiated H2O-CH4 icy mixture (see Moore & Hudson 1998 or Dartois et al. 1999). These compounds appear to be pristine in the minor bodies of the solar system (Merlin et al. 2012) and were found in comets (Bockelée-Morvan et al. 2004) and on the surface of Trans-Neptunian Objects and Centaurs (Barucci et al. 2012 for instance for methanol). Laboratory measurements are needed to constrain information on the physical and chemical properties of these objects and give constraint on the formation and evolution of the solar system. In the aim to give constraints on the physical properties of H2O and CH3OH from their spectral behavior, we performed laboratory measurements in the observable wavelength ranges accessible from the space and ground based observatories (in the MIR and in the near IR, respectively). We present new laboratory measurements depending on the ratio of each component and the ambient temperature (from 18 to 145K) for the amorphous and the crystalline phases. We focus our analyses on the effects of the dilution level of CH3OH in H2O and the phase changes, especially on the absorption bands located at 2,3 and 3,45 microns (associated to CH asymmetric stretch) and the possible formation of the mono hydrate CH3OH:H2O based on the 3,12 micron band (associated to the OH stretch).

  17. Reduction of chemical oxygen demand of industrial wastes using subcritical water oxidation

    SciTech Connect

    Lin, J.C.; Chang, C.J. )

    1992-10-01

    If wastes have strong toxicity, high organic content, and a deep hue, they are difficult to handle in the waste disposal. It is very practical that waste of this kind is treated by Subcritical Water Oxidation (SWO). In our work, caprolactum (CPL) waste, purged from a petrochemical plant, and dyeing waste, purged from a textile plant, were individually treated by a semi-batch SWO process. Within a one-hour treatment, Chemical Oxygen Demand (COD) reduction reached 89% for CPL waste (6.90 MPa, 260[degree]C) and 95% for dyeing waste (6.90 MPa, 240[degree]C). There is also a great improvement in hue, especially for the dyeing waste. When CPL wastewater was treated by the SWO process using a chromium metal powder as a catalyst, COD reduction improved further under the same operating conditions. A kinetic model was used to illustrate the oxidation mechanism and the effectiveness of the catalyst. The oxygen concentration in the effluent showed that oxygen consumption corresponded to COD reduction. With the monitoring of concentrations of total soluble chromium in the effluent, a suitable reaction period could be found in order to meet the standard of the Environmental Protection Agency (EPA). 12 refs., 11 figs., 2 tabs.

  18. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  19. Biogeochemical Control on the Flux of Trace Elements from Estuarine Sediments: Water Column Oxygen Concentrations and Benthic Infauna

    NASA Astrophysics Data System (ADS)

    Riedel, Gerhardt F.; Sanders, James G.; Osman, Richard W.

    1997-01-01

    Trace element (arsenic, copper and manganese) fluxes between sediment and water were examined for approximately 2 months in replicated sediment/water microcosms. Treatments consisted of three oxygen levels in the water column (saturated, 10% saturation and anaerobic) and three different organism treatments (control, Macoma balthicaand Nereis succinea). Both arsenic and manganese were released from the sediment in the anoxic treatment, while copper was lost from the water. With the water column either saturated or at 10% oxygen saturation, both arsenic and manganese fluxes were negligible. In contrast, copper fluxes out of the sediment increased with increasing oxygen concentrations. The effect of organisms on the trace element fluxes were greatest immediately after their introduction to the microcosms, and declined substantially thereafter. Nereiscaused a substantial initial increase in manganese fluxes, but caused a negative flux (out of the water column) for arsenic. Macomahad a much smaller effect on flux than Nereis. Neither organism had a substantial effect on copper fluxes. Porewater profiles gave good predictions of arsenic and manganese fluxes in the anoxic treatment, but not in the 10% or saturated-oxygen treatments. Porewater profiles underestimated copper fluxes in the oxygenated treatments somewhat, and predicted copper flux in the opposite direction in the anoxic treatment. These results suggest that the annual cycle of anoxia in systems like Chesapeake Bay, and the resulting annual cycle of organism death and recruitment, can significantly alter the cycling of trace elements between the sediment and water column.

  20. Oxygen related recombination defects in Ta{sub 3}N{sub 5} water splitting photoanode

    SciTech Connect

    Fu, Gao; Yu, Tao E-mail: yutao@nju.edu.cn; Zou, Zhigang; Yan, Shicheng E-mail: yutao@nju.edu.cn

    2015-10-26

    A key route to improving the performance of Ta{sub 3}N{sub 5} photoelectrochemical film devices in solar driving water splitting to hydrogen is to understand the nature of the serious recombination of photo-generated carriers. Here, by using the temperature-dependent photoluminescence (PL) spectrum, we confirmed that for the Ta{sub 3}N{sub 5} films prepared by nitriding Ta{sub 2}O{sub 5} precursor, one PL peak at 561 nm originates from deep-level defects recombination of the oxygen-enriched Ta{sub 3}N{sub 5} phases, and another one at 580 nm can be assigned to band recombination of Ta{sub 3}N{sub 5} itself. Both of the two bulk recombination processes may decrease the photoelectrochemical performance of Ta{sub 3}N{sub 5}. It was difficult to remove the oxygen-enriched impurities in Ta{sub 3}N{sub 5} films by increasing the nitriding temperatures due to their high thermodynamically stability. In addition, a broadening PL peak between 600 and 850 nm resulting from oxygen related surface defects was observed by the low-temperature PL measurement, which may induce the surface recombination of photo-generated carriers and can be removed by increasing the nitridation temperature. Our results provided direct experimental evidence to understand the effect of oxygen-related crystal defects in Ta{sub 3}N{sub 5} films on its photoelectric performance.

  1. Triple Oxygen Isotopic Variation in Continental Waters and Potential Applications to Paleoclimate Research

    NASA Astrophysics Data System (ADS)

    Levin, N. E.; Li, S.

    2014-12-01

    18O/16O ratios are widely used in paleoclimate studies as proxies for temperature, precipitation amount and hydrologic change, but interpretations of these records are often challenged by the multiple factors that can influence them. Variation in 17O/16O ratios of Earth materials have long been assumed to covary with 18O/16O ratios in predictable and uniform ways such that they were not considered useful in studies of Phanerozoic climate. However, recent advances in the ability to measure small differences in 17O-excess, the deviation from an expected relationship between 18O/16O and 17O/16O ratios, in both waters and low-temperature minerals and rocks (e.g., carbonates, bioapatites, silicates, oxides) present the opportunity to use triple oxygen isotope measurements in hydrological and paleoclimate studies. In particular, the sensitivity of 17O-excess to kinetic fractionation means that it can be used to constrain the influence of kinetic effects on variations in δ18O. Here we review recently generated datasets on the triple oxygen isotope composition of the hydrosphere and show that there is considerably more variation in 17O-excess of continental waters than initially proposed. A compilation of 17O-excess data from precipitation, which includes snow from polar regions, tropical storms and weekly precipitation collections from mid-latitudes, shows that the 17O-excess of precipitation can range from -0.06 to +0.07‰. A continent-wide survey of tap waters from the U.S. mirrors the variation observed in precipitation. Among leaf waters, 17O-excess values range from -0.28 to +0.04‰ and can vary by as much as 0.16‰ in a plant within a single day. The mass-dependent effects associated with kinetic fractionation are likely responsible for the majority of the observed variation in waters, either during re-evaporation of rainfall at warmer temperatures, snow formation at very cold temperatures, or evapotranspiration within leaf waters. In summary, the combination of

  2. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  3. Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Opila, Elizabeth J.; Nguyen, QuynhGiao; Humphrey, Donald L.; Lewton, Susan M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Three silicon nitride materials were exposed to dry oxygen flowing at 0.44 cm/s at temperatures between 1200 and 1400 C. Reaction kinetics were measured with a continuously recording microbalance. Parabolic kinetics were observed. When the same materials were exposed to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s, all three types exhibited paralinear kinetics. The material is oxidized by water vapor to form solid silica. The protective silica is in turn volatilized by water vapor to form primarily gaseous Si(OH)4. Nonlinear least squares analysis and a paralinear kinetic model were used to determine both parabolic and linear rate constants from the kinetic data. Volatilization of the protective silica scale can result in accelerated consumption of Si3N4. Recession rates under conditions more representative of actual combustors are compared to the furnace data.

  4. Heazlewoodite, Ni3S2: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions.

    PubMed

    Falkowski, Joseph M; Concannon, Nolan M; Yan, Bing; Surendranath, Yogesh

    2015-07-01

    Electrodeposited thin films and nanoparticles of Ni3S2 are highly active, poison- and corrosion-resistant catalysts for oxygen reduction to water at neutral pH. In pH 7 phosphate buffer, Ni3S2 displays catalytic onset at 0.8 V versus the reversible hydrogen electrode, a Tafel slope of 109 mV decade(-1), and high faradaic efficiency for four-electron reduction of O2 to water. Under these conditions, the activity and stability of Ni3S2 exceeds that of polycrystalline platinum and manganese, nickel, and cobalt oxides, illustrating the catalytic potential of pairing labile first-row transition metal active sites with a more covalent sulfide host lattice. PMID:26101848

  5. The role of metals and influence of oxygen on ceria supported copper-palladium bimetallic catalysts for the oxygen-assisted water-gas shift reaction

    NASA Astrophysics Data System (ADS)

    Fox, Elise Bickford

    This study was focused to investigate the roles of Cu and Pd in CuPd/CeO 2 bimetallic catalysts containing 30 wt% Cu and 1 wt% Pd used in the oxygen-assisted water-gas shift (OWGS) reaction employing combined bulk and surface characterization techniques such as X-ray diffraction (XRD), temperature programmed reduction (TPR), CO chemisorption, and in-situ X-ray photoelectron spectroscopy (XPS). The role of oxygen in aiding the water-gas shift reaction was also studied to determine an overall mechanism for the water-gas shift reaction. The catalytic activity for CO conversion and the stability of catalyst during on-stream operation increased upon adding Pd to Cu/CeO2 monometallic catalysts, especially when the OWLS reaction was performed under low temperatures. In-situ XPS studies of reduced catalysts showed the existence of Cu and Pd in their metallic states. The spectra also showed a shift in Cu 2p peaks toward lower binding energy with concommitant shift in the Pd 3d peaks toward higher BE. Addition of Pd decreased the surface Cu concentration while the concentration of Pd remained unaltered. The improved catalytic activity and stability of CuPd/CeO2 bimetallic catalyst was attributed to the Cu-Pd interaction. When the catalyst series was reduced in-situ under UHV conditions in the XPS chamber in order to better understand the metal-support interactions, it was found that the addition of 1%Pd to the Cu/CeO2 catalyst would greatly improve the reduction properties of the Cu and Ce under UHV conditions. When compared with results from the oxygen-assisted water-gas-shift reaction, it was found that the increased reduction from the addition of Pd aided in the reaction. When reaction kinetics of the water-gas shift and the oxygen-assisted water-gas shift reaction were examined, it was found that the addition of a small amount of air improved the overall reaction kinetics. In general, the activation energies decreased for the catalyst series when air was added to the

  6. Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi

    2012-01-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325

  7. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  8. Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation

    PubMed Central

    Codolà, Zoel; Gómez, Laura; Kleespies, Scott T.; Que, Lawrence; Costas, Miquel; Lloret-Fillol, Julio

    2016-01-01

    The non-haem iron complex α-[FeII(CF3SO3)2(mcp)] (mcp = (N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-cis-diaminocyclohexane) reacts with CeIV to oxidize water to O2, representing an iron-based functional model for the oxygen evolving complex of photosystem II. Here we trap an intermediate, characterized by cryospray ionization high resolution mass spectrometry and resonance Raman spectroscopy, and formulated as [(mcp)FeIV(O) (μ-O)CeIV(NO3)3]+, the first example of a well-characterized inner-sphere complex to be formed in cerium(IV)-mediated water oxidation. The identification of this reactive FeIV–O–CeIV adduct may open new pathways to validate mechanistic notions of an analogous MnV–O–CaII unit in the oxygen evolving complex that is responsible for carrying out the key O–O bond forming step. PMID:25609387

  9. Oxygen and hydrogen isotopes in deep thermal waters from the South Meager Creek geothermal area, British Columbia, Canada

    SciTech Connect

    Ghomshei, M.M. ); Clark, I.D. )

    1993-04-01

    Deuterium and oxygen-18 ([sup 18]O) have been measured in deep thermal, shallow thermal and non-thermal water samples collected at various times between 1982 and 1989 from the Meager Creek area, with the aim of assessing the origin of the thermal waters. The isotopic composition of the reservoir waters ([delta][sup 18]O = [minus]13[per thousand] and [delta]D= [minus]114.8[per thousand]) was calculated from data on post-flash deep thermal waters, using a two-stage steam loss model. The reservoir composition shows an oxygen shift of 2.4[per thousand] relative to the local meteoric water line. The composition of the recharge, obtained by removing the oxygen shift, is isotopically heavier than the average local meteoric waters, suggesting that the recharge may be from an area to the west of Mt Meager where isotopically heavier ground-waters are likely to be found. The small [delta][sup 18]O shift of the deep high-temperature waters is indicative of dominance of fracture-related permeability in the reservoir. Analyses of the chemistry and the temperature of the waters from hot springs and shallow thermal wells suggests that these waters have evolved from the deep geothermal waters through dilution by meteoric waters and about 40C adiabatic cooling (steam loss).

  10. Effect of tephra deposition and planting treatment on soil oxygen levels and water relations of newly planted seedlings

    SciTech Connect

    Schulte, P.J.; Teskey, R.O.; Hinckley, T.M.; Stevens, R.G.; Leslie, D.A.

    1985-03-01

    Seedlings planted in late June 1980 near Mount St. Helens, following the May 18 and 25 eruptions, continuously lost vigor. Studies on seedlings planted in April 1981 were conducted in 1981-82 on sites covered with 10 to 35 cm of tephra. Soil oxygen levels measured at 10 and 20 cm depths below the tephra surface decreased with increasing tephra thickness, tephra moisture, and sampling depth in the tephra. In addition, the method of planting appeared to affect soil oxygen levels. Holes dug into the tephra for planting seedlings in the mineral soil allowed water and fine particles to collect and possibly interfere with soil gas exchange. However, oxygen levels were never less than 11 percent and generally about 14 percent. Levels were never low enough to result in a root oxygen stress. Measurement of the oxygen diffusion coefficient in tephra and the physical characterization of the tephra failed to demonstrate the existence of any unusual features that might lead to the development of an oxygen stress. A controlled environment study was conducted to observe seedlings under conditions of tephra coverage of the soil. The water relations of these seedlings indicated no response due to a root oxygen stress. The lack of oxygen stress in the field corresponded with the maintenance of high vigor in seedlings planted in 1981.

  11. Interaction between water flow and oxygen deficiency on growth in the infaunal brittle star Amphiura filiformis (Echinodermata: Ophiuroidea)

    NASA Astrophysics Data System (ADS)

    Nilsson, H. C.

    2000-12-01

    Interactions between 'oxygen concentration' (normoxia: >80% oxygen saturation, and hypoxia: 18% oxygen saturation) and 'water flow velocity' (low: 0.1 cm s -1, and moderate: 0.5 cm s -1) were studied on growth rates in the brittle star Amphiura filiformis in a flow-through aquaria system. Effects of 'sublethal predation' on growth rates were investigated as 'number of amputated arms' (1 and 3 arms) and 'amputation of the disk'. A significant interaction between oxygen concentration and water flow velocity was observed in mean arm regeneration rate, but in both flow velocities higher mean arm regeneration rates were observed in normoxia compared to hypoxia. In hypoxia a positive response in arm regeneration rate was observed in moderate flow compared to low flow velocity. In normoxia, however, no response to flow velocity was observed. The latter observation indicates that Amphiura filiformis is able to maintain the ventilation of the burrow at low flow velocities, but in low oxygen concentrations hydrodynamic forces seem to affect growth. A significant interaction between oxygen concentration and disk amputation was observed in both arm and disk regeneration rates, indicating that the disk is the major organ for gas exchange in this species. The number of arms amputated, however, did not affect mean arm regeneration rate. The results obtained in this study suggest that the secondary production in subtidal infaunal populations could be negatively affected by low oxygen concentrations and that this response is even more negative in combination with low flow velocities in the near-bottom water.

  12. Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging

    NASA Astrophysics Data System (ADS)

    Nagase, Katsuya; Suga, Takeo; Nagumo, Yuzo; Uchida, Makoto; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2015-01-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) for elucidating the reaction distributions is expected to improve the performance, durability, and stability. An oxygen-sensitive film of a luminescent porphyrin was used to visualize the oxygen partial pressures in five straight gas-flow channels of a running PEFC with liquid-water blockages formed at the end of the channels. The blockage greatly lowered and unstabilized the cell voltage. The oxygen partial pressure decreased nearly to 0 kPa in the blocked channel. With a water blockage in a channel, the oxygen partial pressures in the adjacent channels were lowered due to an extra demand of oxygen consumption. When the number of the blocked channels increased, the oxygen partial pressure in the unblocked channels became much lowered. When the water blockages disappeared, the oxygen partial pressures quickly returned to the values before plugging. The influence of the cross flows of air through the gas diffusion layers in straight channels was much smaller than that in serpentine flow channels.

  13. Nanosized TiO[subscript 2] for Photocatalytic Water Splitting Studied by Oxygen Sensor and Data Logger

    ERIC Educational Resources Information Center

    Zhang, Ruinan; Liu, Song; Yuan, Hongyan; Xiao, Dan; Choi, Martin M. F.

    2012-01-01

    Photocatalytic water splitting by semiconductor photocatalysts has attracted considerable attention in the past few decades. In this experiment, nanosized titanium dioxide (nano-TiO[subscript 2]) particles are used to photocatalytically split water, which is then monitored by an oxygen sensor. Sacrificial reagents such as organics (EDTA) and metal…

  14. The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?

    PubMed Central

    Gessler, Arthur; Brandes, Elke; Keitel, Claudia; Boda, Sonja; Kayler, Zachary E; Granier, André; Barbour, Margaret; Farquhar, Graham D; Treydte, Kerstin

    2013-01-01

    The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data. PMID:23763637

  15. Carbon and oxygen dynamics on the Louisiana continental shelf: role of water column primary production and respiration

    EPA Science Inventory

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...

  16. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  17. Determination of photochemically-generated reactive oxygen species in natural water.

    PubMed

    Zhan, Manjun

    2009-01-01

    Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environment. ROS may participate in the indirect photolysis of trace organic pollutants, therefore resulting in changes in their environmental fates and ecological risks in natural water systems. Bisphenol A (BPA), an endocrine-disrupting chemical, exits widely in natural waters. The photodegradation of BPA promoted by ROS (*OH, 1O2, HO2*/O2(*-)), which were produced on the excitation of ubiquitous constituents (such as nitrate ion, humic substances and Fe(III)-oxalate complexes) in natural water under simulated solar radiation was investigated. Both molecular probe method and electron spin resonance (ESR) test were used for the characterization of the generated ROS. It was found that *OH was photochemically produced in the presence of nitrate ions, humic substances and Fe(III)-oxalate complexes and that 102 was produced with the presence of humic substances. The steady-state concentrations of *OH was 1.27x10(-14) mol/L in a nitrate solution, and the second-order rate constant of BPA with *OH was 1.01 x 10(10) L/(mol x s). PMID:19634440

  18. Rapid evaluation of oxygen and water permeation through microplate sealing tapes.

    PubMed

    Zimmermann, Hartmut F; John, Gernot T; Trauthwein, Harald; Dingerdissen, Uwe; Huthmacher, Klaus

    2003-01-01

    Eight commercially available microplate sealing tapes and 10 other suitable materials (transparent wound dressings) are compared qualitatively in terms of their ability to minimize water evaporation from a multiwell plate while maintaining the oxygen supply as high as possible, which is necessary for applications like aerobic growth. The transparency and sterility of the products are considered as well. All evaluated commercially available sealing tapes fall into one of the following two classes: (1) O(2) transfer is comparable to that of an unsealed plate, but water vapor retention is relatively low, or (2) O(2) transfer via the sealing is slower, but the water retention capability is comparably high. All but one of the evaluated wound dressings fall under the second class. That dressing, however, constitutes a compromise by showing both moderate O(2) permeability and medium water retention. But the estimated mass transport in a microtiter plate sealed with this dressing is about 5 times slower than that of an unsealed 96 well plate. The aim of this publication is to enable the reader to choose a microtiter plate sealing from the materials evaluated within this work and to use the rapid methods described herein to easily perform tests of additional sealing materials. PMID:12790681

  19. Facets of diazotrophy in the oxygen minimum zone waters off Peru

    PubMed Central

    Loescher, Carolin R; Großkopf, Tobias; Desai, Falguni D; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel M M; LaRoche, Julie; Schmitz, Ruth A

    2014-01-01

    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future. PMID:24813564

  20. Controls on water acidification and de-oxygenation in an estuarine waterway, eastern Australia

    NASA Astrophysics Data System (ADS)

    Lin, C.; Wood, M.; Haskins, P.; Ryffel, T.; Lin, J.

    2004-09-01

    The quality of soil and water was investigated in an estuarine floodplain system, eastern Australia. The backswamp portion of the floodplain is underlain by sulfidic sediments at depths about 0.5-0.9 m below the ground surface. Actual acid sulfate soils have developed due to sulfide oxidation as a consequence of land drainage since the early 1900s. These acid sulfate soils have a high measured total actual acidity (TAA, up to 500 mmol H +/kg). However, only a very small proportion (<2%) of this TAA occurs in a water-soluble form. Water quality monitoring in the creek (Rocky Mouth Creek) draining the estuarine embayment during the period from May 1998 to July 2000 shows that acidic flows (pH<4.5) of several months occurred intermittently in the upper reach of the creek. This may be attributed to the hydrolysis of Fe 3+ after the oxidation of Fe 2+ that is exported into the creek from acid sulfate soils through an artificial drain network. It is hypothesized that Fe 2+ is being generated by biological iron reduction, which consumes H + and thereby drives the conversion of retained acids to soluble acids. This allows the release of retained acids and subsequently the translocation of acids from soils to the adjacent waterway. Monitoring results also show clear responses of pH and dissolved oxygen (DO) to heavy rainfall events during the period of alternating high (>6) pH-dominated flows. Frequently, pH and DO levels in the creek water drop during flooding. Results from field investigation and experimental simulation suggest that DO depletion associated with organic matter decomposition takes place rapidly in the floodwater inundating the soils and this DO-depleted water has a significant capacity to further de-oxygenate any receiving water. However, the consumption of DO in floodwater is not clearly related to oxidation of Fe 2+. It is not certain what other DO consumers are involved in the process and further research is needed to fill this knowledge gap.

  1. Interannual to decadal oxygen variability in the mid-depth water masses of the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Stendardo, Ilaria; Kieke, Dagmar; Rhein, Monika; Gruber, Nicolas; Steinfeldt, Reiner

    2015-01-01

    The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10

  2. The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA

    NASA Astrophysics Data System (ADS)

    Gammons, Christopher H.; Poulson, Simon R.; Pellicori, Damon A.; Reed, Pamela J.; Roesler, Amber J.; Petrescu, Eugene M.

    2006-08-01

    SummaryThe isotopic composition of 42 samples of rain and snow collected in 2004 were used to construct a local meteoric water line (LMWL) for Butte, Montana. The derived equation (δD = 7.31δ 18O - 7.5, r2 = 0.987), represents one of the first published LMWLs based on direct precipitation for any location in the northern Rocky Mountains. Samples of underground and surface mine waters in Butte, including the Berkeley pit-lake and a nearby tailings pond, define a linear trend with a much lower slope and intercept than the LMWL (δD = 5.00δ 18O - 49.5, r2 = 0.991), consistent with non-equilibrium evaporation at an average relative humidity of roughly 65%. Detailed evaporation calculations are presented which indicate that the shallow Berkeley pit-lake was approximately 25% evaporated in October, 2003, whereas the surface of the tailings pond was at least 50% evaporated. The intersection of the LMWL and mine water evaporation trend was used to calculate the average composition of recharge water to the flooded mine complex (δD = -139‰, δ 18O = -18.0‰). These values are considerably lighter than the weighted total of precipitation for the 2004 calendar year (δD = -118‰, δ 18O = -15.3‰), which is partly explained by the unusually low snowfall that Montana experienced in 2004. Based on this study, the LMWL recently proposed by Kendall and Coplen (2001) [Kendall, C., Coplen, T.B., 2001. Distribution of oxygen-18 and deuterium in river waters across the United States, Hydrological Processes 15, 1363-1393] from regression of isotopic data from a number of Montana rivers is more accurately interpreted as an evaporation line. Isotopic trends based on river data should be treated with caution, particularly in a semi-arid region such as Montana where rivers are often influenced by dams and irrigation withdrawals.

  3. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  4. Extraction technique for the determination of oxygen-18 in water using preevacuated glass vials

    NASA Technical Reports Server (NTRS)

    Socki, R. A.; Karlsson, H. R.; Gibson, E. K. Jr; Gibson EK, J. r. (Principal Investigator)

    1992-01-01

    The need for a rapid, inexpensive technique for routine 18O/16O extraction from water has arisen recently through applications in the medical sciences and in hydrology. The traditional experimental technique for determining the oxygen isotope composition of water, the CO2-H2O equilibration method, is tedious, time consuming, and involves the use of custom-made glass apparatus. Furthermore, because of potential memory effects from one sample to the next, the glassware needs to be thoroughly cleaned between runs. A few attempts have been made to improve upon the method. Attempts to analyze water directly in the source of the mass spectrometer produced large memory effects and questionable results. Commercially available apparatus for automated extraction of 18O/16O from water is generally prohibitively expensive and often is designed to interface only with the manufacturer's own mass spectrometer. The method described in this paper utilizes inexpensive, off-the-shelf, preevacuated, glass vials. Preevacuated vials have been used by others for the isotopic analysis of breath CO2 and are well tested. The vials can be purchased in bulk from scientific apparatus suppliers at a relatively low cost. These are coupled with a simplified extraction line consisting of a stainless steel syringe needle and a glass cold trap. Vials are filled with CO2 and H2O and shaken in a constant-temperature water bath for at least 90 min. Since the vials are discarded after use, no cleaning is necessary, essentially eliminating any memory effect. Reproducibility is generally better than +/- 0.05%. The only reagents required are gaseous CO2 for equilibration, a dry ice/alcohol mixture for trapping water, and liquid nitrogen for transferring the CO2.

  5. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  6. Oxygen metabolism and water mass mixing in the northern Gulf of Mexico hypoxic zone in 2010

    NASA Astrophysics Data System (ADS)

    Ostrom, Nathaniel E.; Gandhi, Hasand; Kamphuis, Ben; DeCamp, Sam; Liu, Zhanfei; McCarthy, Mark J.; Gardner, Wayne S.

    2014-09-01

    We evaluated O2 metabolism and mixing of river and seawater in the northern Gulf of Mexico (NGOMEX) in May and August of 2010. A strong correlation between the δ2H and δ18O of water and salinity indicated simple mixing of the two water sources. The isotope values for the freshwater source suggested that Mississippi River water predominated over the Atchafalaya River water in at our study sites in both May and August. Knowledge of the δ18O of water is required for determination of the ratio of primary production to respiration (P:R) from the δ18O and concentration of O2. We observed a strong correlation between δ18O of water and salinity, which indicates that subsequent studies of P:R may simply be able to predict the isotopic composition of water from salinity in this region. P:R values were determined from the concentration and isotopic composition of O2 and varied from 0.88 to 1.10. The range in P:R and progression from high values in May to net heterotrophy in August is consistent with enhanced primary production in spring followed by respiration in excess of production in summer. Averages of -5.8‰ and -3.4‰ were observed for the isotopic enrichment factor, εobs, for sub-pycnocline respiration in May and August, respectively. In contrast to previous studies we found that εobs is not an effective indicator of the proportion of water column to sediment respiration, but rather reflects the total rate of sub-pycnocline respiration (water column plus sediment respiration). Nonetheless, as εobs is an indication of total sub-pycnocline respiration insight into oxygen-removal can be obtained without the need for incubation. Even though our research cruises occurred approximately three weeks after the initiation and one month after cessation of the Deepwater Horizon oil spill, P:R and εobs values were each within ranges reported previously in NGOMEX. Thus, a direct link between the oil spill and O2 metabolism or hypoxia development was not apparent.

  7. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  8. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  9. Titanium Dioxide Nanorods with Hydrogenated Oxygen Vacancies for Enhanced Solar Water Splitting.

    PubMed

    Sun, Bo; Shi, Tielin; Tan, Xianhua; Liu, Zhiyong; Wu, Youni; Liao, Guanglan

    2016-06-01

    We demonstrate that moderate hydrogen annealing is a simple and effective approach to substantially improve the photocatalytic activity of TiO2 nanorods via increasing oxygen vacancies in outer layer. Hydrogenated TiO2 nanorods are obtained by annealing in hydrogen atmosphere at various temperatures ranging from 200 degrees C to 350 degrees C. TEM images directly illustrate the disordered layer on the surface of nanorods induced by hydrogen annealing. The photoelectrochemical measurements reveal that the photocurrent is improved first as the temperature increases and reaches to the maximum value at an appropriate temperature (250 degrees C), corresponding to about 50% enhancement compared to the pristine TiO2. Incident photon-to-electron conversion efficiency spectra reveal that the photocurrent improvement is mainly attributed to the enhanced photocatalytic activity of TiO2 in ultraviolet region. Mott-Schottky plots further betray that hydrogen annealing can significantly enhance the electric conductivity, via increasing the oxygen vacancies density in the outer layer. In addition, time-dependent measurements indicate the hydrogenated TiO2 nanorods possess excellent chemical stability. Thus, we believe the hydrogenated TiO2 nanorods would be a promising candidate for photoanode in solar water splitting. PMID:27427684

  10. The role of water in the adsorption of oxygenated aromatics on Pt and Pd.

    PubMed

    Yang, Jin; Dauenhauer, Paul J; Ramasubramaniam, Ashwin

    2013-01-01

    Catalytic processing of biomass-derived oxygenates to valuable chemical products will contribute to a sustainable future. To provide insight into the conversion of processed sugars and lignin monomers, we present density functional theory studies of adsorption of phloroglucinol, a potentially valuable biomass derivative, on Pt(111) and Pd(111) surfaces. A comprehensive study of adsorption geometries and associated energies indicates that the bridge site is the most preferred adsorption site for phloroglucinol, with binding energies in the range of 2-3 eV in the vapor phase. Adsorption of phloroglucinol on these metal surfaces occurs via hybridization between the carbon p(z) orbitals and the metal d(z(2)) and d(yz) orbitals. With explicit solvent, hydrogen bonds are formed between phloroglucinol and water molecules thereby decreasing binding of phloroglucinol to the metal surfaces relative to the vapor phase by 20-25%. Based on these results, we conclude that solvent effects can significantly impact adsorption of oxygenated aromatic compounds derived from biomass and influence catalytic hydrogenation and hydrodeoxygenation reactions as well. PMID:22941861

  11. Seasonal oxygen-driven migration of mobile benthic fauna affected by natural water column stratification

    NASA Astrophysics Data System (ADS)

    Broszeit, Stefanie; Davenport, John; Bredendieck, Karl; Harman, Luke; McAllen, Rob

    2013-07-01

    Changes in mobile benthic fauna affected by a seasonal oxycline were studied at three-monthly intervals for one year at Lough Hyne, a marine reserve in county Cork, Ireland. This marine lake features regular seasonal anoxic conditions in the deepest part (the Western Trough). Building on previous studies of the effects of the oxycline on demersal fauna, a ROV was used to film the benthic assemblage. Transects above, within and below oxycline depth were filmed on each sampling occasion. Animals were identified and their sizes measured. Data on oxygen concentration of the water column were taken monthly during this period to correlate with the presence and absence of animals in the Trough. Most noteworthy was the establishment of a demersal fish assemblage during normoxic conditions in the deeper areas of the Trough. The goby Lesueurigobius friesii was the most abundant species and their population contained all size classes. They are territorial and build burrows into which they retreated when the ROV approached. The main factor influencing benthic fauna below oxycline depth was oxygen concentration, while the assemblage above the oxycline was never affected by hypoxia. This study shows that mobile animals make use of areas affected by hypoxia as soon as conditions improve, and can establish resident communities.

  12. Development of micellar reactive oxygen species assay for photosafety evaluation of poorly water-soluble chemicals.

    PubMed

    Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Onoue, Satomi

    2013-09-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety assessment; however, the phototoxic potential of some chemicals cannot be evaluated because of their limited aqueous solubility. The present study was undertaken to develop a new micellar ROS (mROS) assay system for poorly water-soluble chemicals using a micellar solution of 0.5% (v/v) Tween 20 for solubility enhancement. In repeated mROS assay, intra- and inter-day precisions (coefficient of variation) were found to be below 11%, and the Z'-factors for singlet oxygen and superoxide suggested a large separation band between positive and negative standards. The ROS and mROS assays were applied to 65 phototoxins and 18 non-phototoxic compounds for comparative purposes. Of all 83 chemicals, 25 were unevaluable in the ROS assay due to poor solubility, but only 2 were in the mROS assay. Upon mROS assay on these model chemicals, the individual specificity was 76.5%, and the positive and negative predictivities were found to be 93.9% and 86.7%, respectively. The mROS assay provided 2 false negative predictions, although negative predictivity for the ROS assay was found to be 100%. Considering the pros and cons of these assays, strategic combined use of the ROS and mROS assays might be efficacious for reliable photosafety assessment with high applicability and predictivity. PMID:23727251

  13. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  14. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory

    USGS Publications Warehouse

    Coplen, T.B.

    2007-01-01

    The ??18O of ground water (-13.54 ?? 0.05 ???) and inorganically precipitated Holocene vein calcite (+14.56 ?? 0.03 ???) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 ??C of 1.02849 ?? 0.00013 (1000 ln ??calcite-water = 28.09 ?? 0.13). Using the commonly accepted value of ???(??calcite-water)/???T of -0.00020 K-1, this corresponds to a 1000 ln ??calcite-water value at 25 ??C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 ??C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a ??18O of water, from which the calcite precipitated, that is too negative by 1.5 ??? using a temperature of 33.7 ??C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order. Assuming the Devils Hole oxygen isotopic value of ??calcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a ??18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.

  15. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  16. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 ‑, and NO3 ‑ are detected after plasma exposure and only NO3 ‑ after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 ‑ production and long-lifetime species in NO3 ‑ production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 ‑, and the off-gas sparging of the PB-DBD for the production of NO3 ‑.

  17. Leakage of Oxygen from Blood and Water Samples Stored in Plastic and Glass Syringes

    PubMed Central

    Scott, Peter V.; Horton, J. N.; Mapleson, W. W.

    1971-01-01

    Theory and experiment showed that samples of blood and water stored in 2-ml and 5-ml syringes made of polypropylene, polystyrene, or S.A.N. co-polymer exchanged oxygen with their surroundings. In the first hour the exchange was due mainly to equilibration with the plastic of the syringe and only in small degree to permeation through the plastic. With high initial tension or with blood of low haemoglobin concentration the exchange can result in errors in Po2 of up to 6% in two minutes and 16% in 30 to 60 minutes. With all-glass syringes the exchange was much slower but, even so, after 24 hours was important in all but a few of 18 interchangeable glass syringes. Therefore unless analysis can be started immediately all-glass syringes are to be preferred, and for prolonged storage even these should be selected. PMID:5565518

  18. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material

    USGS Publications Warehouse

    Friedman, I.; O'Neil, J.R.; Adami, L.H.; Gleason, J.D.; Hardcastle, K.

    1970-01-01

    The water content of the breccia is 150 to 455 ppm, with a ??D from -580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a ??D of -830 to -970 per mil. The CO2 is 290 to 418 ppm with S 13C = + 2.3 to + 5.1 per mil and ??18O = 14.2 to 19.1 per mil. Non-CO2 carbon is 22 to 100 ppm, ??18C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H2O (D = 80 ppm) and 188 ppm total carbon (??13C = -17.6 per mil). The 18O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100?? to 1300??C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  19. Highly Stable Operation of Metal Oxide Nanowire Transistors in Ambient Humidity, Water, Blood, and Oxygen.

    PubMed

    Lim, Taekyung; Bong, Jihye; Mills, Edmund M; Kim, Sangtae; Ju, Sanghyun

    2015-08-01

    The capability for robust operation of nanoscale transistors under harsh environments is equally important as their operating parameters such as high on-currents, high mobility, and high sensing selectivity. For electronic/biomedical applications, in particular, transistor operation must be stable under diverse conditions including ambient humidity, water, blood, and oxygen. Here we demonstrate the use of a self-assembled monolayer of octadecylphosphonic acid (OD-PA) to passivate a functionalized nanowire transistor, allowing the device to operate consistently in such environments. In contrast, without passivation, the characteristics (especially the threshold voltage) of identical nanowire transistors were dramatically altered under these conditions. Furthermore, the OD-PA-passivated transistor shows no signs of long-term stability deterioration and maintains equally high sensing selectivity to light under the harsh environments because of OD-PA's optical transparency. These results demonstrate the suitability of OD-PA passivation methods for fabricating commercial nanoelectronics. PMID:26200320

  20. Using Oxygen Isotopes in Fish Scale Apatite to Reconstruct Past Temperatures and Water Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Lambert, T. D.; Paytan, A.

    2009-12-01

    Oxygen isotope ratios (δ18O) of apatite phosphate in fish bones and teeth vary according to the temperature and δ18O of water during formation. Since isotope ratios in apatite are often well preserved over geologic timescales, fish bones and teeth have been used to determine past environmental conditions. Fish scales offer several advantages over bones and teeth: they are relatively common in certain sedimentary basins, and they are more easily identified to species level. Analysis of paired bone and scale samples will be presented. The data indicate that fish scale apatite similarly records environmental conditions during growth. Thus δ18O of apatite phosphate in fish scales may provide useful paleoecological information and also indicate past environmental conditions.

  1. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine.

    PubMed

    Zhou, Xuefei; He, Xiaohong; Wei, Shiliang; Jia, Kun; Liu, Xiaobo

    2016-11-15

    A novel cyano-terminated zinc phthalocyanine (ZnPc-CN) exhibiting visible near infrared (vis-NIR) emitting around 690nm in N,N-dimethylformamide (DMF) solvent has been synthesized. Furthermore, the peripheral cyano groups of newly synthesized zinc phthalocyanine were hydrolyzed in strong basic solution, leading to water soluble carboxylated zinc phthalocyanine (ZnPc-COOH) with completely quenched fluorescence in aqueous solution. Interestingly, we found that the NIR fluorescence of aqueous ZnPc-COOH was dramatically recovered in the presence of gold nanorods (Au NR), which was due to the alternation of ZnPc-COOH molecules self-assembling via electrostatic interaction between cetyltrimethylammonium bromide (CTAB) on the surface of Au NR and peripheral carboxyl of ZnPc-COOH. In addition, ZnPc-COOH/Au NR conjugates demonstrated an improved singlet oxygen generation, which could be served as potential bioimaging probe and photosensitizer for photodynamic therapy. PMID:27505278

  2. Jarosite-water oxygen and hydrogen isotope fractionations: preliminary experimental data

    USGS Publications Warehouse

    Rye, R.O.; Stoffregen, R.E.

    1995-01-01

    Stable isotope studies of alunite have added a powerful tool for understanding geochemical processes in the surficial environment. Jarosite [KFe3(SO4)2(OH)6], like alunite, is a common mineral in the weathered portions of many sulfide-bearing ore deposits and mine drainages where its formation reflects acidic conditions produced by the oxidation of sulfides. This paper describes oxygen and hydrogen isotope fractionations in jarosite-water experiments over a temperature range of 100?? to 250??C and the extrapolation of the results to surface conditions. It also includes some general observations on the exchange reaction mechanism that are important for evaluating how well natural samples of jarosite retain primary isotopic compositions. -from Authors

  3. Adsorption of Pure Nonionic Alkylethoxylated Surfactants down to Low Concentrations at a Silica/Water Interface as Determined Using a HPLC Technique

    PubMed

    Desbene; Portet; Treiner

    1997-06-15

    The adsorption of pure nonionic alkylethoxylated surfactants of the C12 En series at silica/water interface has been determined using a very precise HPLC technique. The number of ethoxylated groups was varied from 2 to 9. The adsorption isotherms were constructed with special attention to the very low surface coverage domain. It is shown that at very low concentration, the adsorption amounts are higher as the number of ethoxylated groups increases but the reverse trend is found at higher surfactant concentration and above the critical micelle concentration. It is shown that this behavior is the consequence of the interplay of the primary and secondary adsorption mechanisms depending upon the length of the ethoxylated chain. The maximum adsorption quantities is not a linear function of the number of ethoxylated groups. This and other observations confirm the viewpoint that the behavior of nonionic surfactant aggregates adsorbed at a hydrophilic surface carries many similarities with the properties of this class of nonionic surfactant aggregates in bulk aqueous solutions. PMID:9241177

  4. Aqueous Alteration on Ordinary Chondrite Parent Bodies- The Oxygen Isotopic Composition of Water.O

    NASA Astrophysics Data System (ADS)

    Baker, L.; Franchi, I. A.; Wright, I. P.; Pillinger, C. T.

    2003-04-01

    It has become increasingly apparent that aqueous alteration has been a major process on meteorite parent bodies. Understanding the details of such processes can be greatly improved by a knowledge of the isotopic composition of water taking part in aqueous alteration. Studies of the unequilibrated ordinary chondrites (1, 2) have identified the presence of phyllosilicates which necessarily require reaction with water in some form. Using the technique of (3) we have measured the oxygen isotopic composition of water extracted from Semarkona and Bishunpur from room temp to 900^oC. Water release profiles generally define large low temperature peaks that tail off to about 800^oC, with smaller releases superimposed. This is consistent with the main hydrated mineral present being a smectite but with contributions from other hydrated phases. Isotopic compositions at different temperatures allow identification of water originating from distinct reservoirs within the samples, including both terrestrial and extraterrestrial sources. That at low temperatures is dominated by terrestrial water while that released at high temperatures contains a large proportion indigenous to the meteorite. In Semarkona the highest temperature releases originating from O-H structural groups within hydrated minerals possesses a positive Δ17O of ˜+2.4 ppm, in excess of twice that measured in the silicate phases of these meteorites and greater than that measured in any carbonaceous chondrites. These results suggest that during reaction with solid phases water, originally with a Δ17O value equal to or in excess that measured in magnetites ˜+6 ppm (4), must have evolved to lower values after magnetite formation. However, the final water composition, represented by the structural O-H groups, did not achieve isotopic equilibrium with the surrounding phases. Refs: [1] Hutchison R. et al. (1987) GCA 51, 1875-1882. [2] Alexander C. M. O'D. et al. (1989) EPSL 95, 187-207. [3] Baker L. et al. (2002) Anal

  5. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  6. Intra-Renal Oxygenation in Rat Kidneys During Water-loading: Effects of COX Inhibition & NO Donation

    PubMed Central

    Ji, Lin; Li, Lu-Ping; Schnitzer, Thomas; Du, Hongyan; Prasad, Pottumarthi V.

    2010-01-01

    Purpose To evaluate intra-renal oxygenation by blood oxygenation level dependent magnetic resonance imaging (BOLD MRI) in rat kidneys during water-loading and to investigate if the nitric oxide donating moiety in naproxcinod could compensate the effect of cyclooxygenase inhibition of naproxen. Materials and Methods Nineteen male Sprague Dawley rats were divided into three groups and dosed with vehicle, naproxen or naproxcinod by gavage for two weeks. On the day of the experiment, hypotonic saline with glucose was infused intravenously to induce water diuresis. BOLD MRI data to monitor renal oxygenation and timed urine samples for estimation of prostaglandins and urine flow were obtained. Results The data in this study is consistent with previous experience in humans in that pre-treatment with naproxen abolished the improvement in medullary oxygenation during water-loading. In addition, the inhibition of prostaglandins by naproxcinod reached similar levels as naproxen but maintained the improvement in oxygenation in renal medulla during water-loading. Conclusion This suggests that naproxcinod may have less nephrotoxicity and that the nitric oxide donating moiety partially compensates for the hemodynamic effects of prostaglandin inhibition by naproxen. PMID:20677266

  7. A comparison of the stress corrosion cracking susceptibility of commercially pure titanium grade 4 in Ringer's solution and in distilled water: a fracture mechanics approach.

    PubMed

    Roach, Michael D; Williamson, R Scott; Thomas, Joseph A; Griggs, Jason A; Zardiackas, Lyle D

    2014-01-01

    From the results of laboratory investigations reported in the literature, it has been suggested that stress corrosion cracking (SCC) mechanisms may contribute to early failures in titanium alloys that have elevated oxygen concentrations. However, the susceptibility of titanium alloys to SCC in physiological environments remains unclear. In this study, a fracture mechanics approach was used to examine the SCC susceptibility of CP titanium grade 4 in Ringer's solution and distilled de-ionized (DI) water, at 37°C. The study duration was 26 weeks, simulating the non-union declaration of a plated fracture. Four wedge loads were used corresponding to 86-95% of the alloy's ligament yield load. The longest cracks were measured to be 0.18 mm and 0.10 mm in Ringer's solution and DI water, respectively. SEM analysis revealed no evidence of extensive fluting and quasi-cleavage fracture features which, in literature reports, were attributed to SCC. We thus postulate that the Ringer's solution accelerated the wedge-loaded crack growth without producing the critical stresses needed to change the fracture mechanism. Regression analysis of the crack length results led to a significant best-fit relationship between crack growth velocity (independent variable) and test electrolyte, initial wedge load, and time of immersion of specimen in electrolyte (dependent variables). PMID:23852924

  8. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  9. Simultaneous visualization of oxygen distribution and water blockages in an operating triple-serpentine polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Takada, Kenji; Ishigami, Yuta; Inukai, Junji; Nagumo, Yuzo; Takano, Hiroshi; Nishide, Hiroyuki; Watanabe, Masahiro

    2011-03-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) is important for elucidating reaction distributions to improve the performance and durability of the cells. An O2-sensitive porphyrin luminescent dye film was used to visualize oxygen partial pressures and water blockages simultaneously in triple-serpentine gas flow channels in an operating PEFC. Water droplets formed near the exit of a gas-flow channel lowered the oxygen partial pressure noticeably over the channel by blocking air flow near the entrance. Meanwhile, air was continuously supplied from the other channels through the gas diffusion layer, thus allowing power to be generated in the blocked channel. With water blockages, however, the catalyst layer under the channel became flooded by the water produced during the reaction, and the flooded state continued to exist in the catalyst and/or porous layers, even after blowing the water droplet out, so that the power generation was lowered along the channel.

  10. High-pressure thermal oxidation of n-GaAs in an atmosphere of oxygen and water vapor

    NASA Astrophysics Data System (ADS)

    Basu, Nandita; Bhat, K. N.

    1988-06-01

    A low-temperature (˜250 °C) high-pressure oxidation technique is used for the thermal oxidation of gallium arsenide in an ambient of oxygen and water vapor. It is shown that a uniform and chemically stable oxide with high band-gap energy can be grown on GaAs by this process. The role of water vapor and oxygen is studied in detail to obtain information on the oxidation mechanism. The electrical characteristics and the composition of this oxide are presented to demonstrate its suitability for surface passivation and metal-oxide-semiconductor devices.

  11. A comparative study of the triple oxygen analyses of dissolved oxygen in a fresh water system (Feitsui reservoir) and South China Sea at SEATS station

    NASA Astrophysics Data System (ADS)

    Jurikova, H.; Guha, T.; Liang, M. C.

    2014-12-01

    We report the first insight into the stable isotopic composition of dissolved O2 from the Feitsui Reservoir, which supplies drinking water for millions of people living in Taipei, Taiwan. In addition, first observations on 17Δ from a cruise to South China Sea (the long-term station SEATS) in 2013 were also included for comparison. A regular sampling effort for collection of water samples from the Feitsui Reservoir was initiated in May 2014. The 17Δ of dissolved O2 from water samples was assessed to examine its spatial variations, variability over time and to estimate the gross oxygen production rates (GOP). Primary productivity estimated from the dissolved O2 will be compared to that from 14C. Results and implications will be presented and discussed.

  12. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates

  13. Sediment Mobilization From Reservoirs Can Cause Short Term Oxygen Depletion In Downstream Receiving Waters

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Schenk, L.; Bragg, H.; Singer, M.; Hume, N.

    2013-12-01

    Reservoir management can cause incidences of short-term sediment mobilization, e.g. during dam removal or drawdown for maintenance or habitat purposes. Much of the associated planning focuses on predicting, quantifying, and mitigating the physical impacts of sediment mobilization, transport, and deposition. Sediment pulses can cause multiple regulatory and management concerns, such as turbidity or suspended sediment concentrations that may exceed State standards, geomorphic change and effects on property or infrastructure, or wildlife impacts such as stress to fish via gill abrasion or burial of critical habitat. Water-quality issues associated with sediment mobilization, including nutrient and contaminant transport, are often given less attention, presumably because their effects are less immediate or because of resource constraints. Recent experience with large pulses of sediment from several western reservoirs involving dam removals and temporary drawdowns indicates that oxygen demand, leading to depletion of downstream dissolved oxygen (DO), can also be a significant short-term concern. During the October 2011 Condit Dam removal on the White Salmon River in Washington, DO in receiving waters about 4.5 km downstream of the dam dropped to less than 1 mg/L within 2 hours of the demolition; in response, salmonids were observed to be in distress, apparently gulping for air at the water surface. DO remained low for at least 24 hours in this reach, and dead fish were observed. In December 2012, during a drawdown designed to aid juvenile-salmonid migration through Fall Creek Reservoir in Oregon, DO dropped precipitously about 1.5 km downstream as turbidity peaked, and a muted DO decrease was also observed approximately 14 miles further downstream despite a large dilution from unaffected sources. Laboratory experiments and modeling using sediments from reservoirs proposed for removal on the Klamath River, California, demonstrated the likelihood for downstream DO

  14. Solving the problem at the source: Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation.

    PubMed

    Bryant, Lee D; Hsu-Kim, Heileen; Gantzer, Paul A; Little, John C

    2011-12-01

    One of the primary goals of hypolimnetic oxygenation systems (HOx) from a drinking water perspective is to suppress sediment-water fluxes of reduced chemical species (e.g., manganese and iron) by replenishing dissolved oxygen (O(2)) in the hypolimnion. Manganese (Mn) in particular is becoming a serious problem for water treatment on a global scale. While it has been established that HOx can increase sediment O(2) uptake rates and subsequently enhance the sediment oxic zone via elevated near-sediment O(2) and mixing, the influence of HOx on sediment-water fluxes of chemical species with more complicated redox kinetics like Mn has not been comprehensively evaluated. This study was based on Mn and O(2) data collected primarily in-situ to characterize both the sediment and water column in a drinking-water-supply reservoir equipped with an HOx. While diffusive Mn flux out of the sediment was enhanced by HOx operation due to an increased concentration driving force across the sediment-water interface, oxygenation maintained elevated near-sediment and porewater O(2) levels that facilitated biogeochemical cycling and subsequent retention of released Mn within the benthic region. Results show that soluble Mn levels in the lower hypolimnion increased substantially when the HOx was turned off for as little as ∼48 h and the upper sediment became anoxic. Turning off the HOx for longer periods (i.e., several weeks) significantly impaired water quality due to sediment Mn release. Continual oxygenation maintained an oxic benthic region sufficient to prevent Mn release to the overlying source water. PMID:22000717

  15. Combining fluorescence imaging and neutron radiography to simultaneously record dynamics of oxygen and water content in the root zone

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Nagl, S.; Kardjilov, N.

    2010-12-01

    There is a growing need in non-destructive techniques able to measure life-controlling parameters such as oxygen and water dynamics in ecosystems. We use neutron radiography coupled with fluorescence imaging to map the dynamics of these two essential biogeochemical parameters in the root-zone of plants. Measuring the real-time distribution of water and oxygen concentration can enable us to better understand where the active parts of the roots are located in respect to uptake and respiration. Roots performance itself is a function of age and local conditions such as water and oxygen availability in soil. It is technically challenging to monitor these dynamics in small distances from the roots without disturbing them. Non-destructive imaging methods such as fluorescence and neutron imaging provide a unique opportunity to unravel some of these complex processes. Boron-free glass containers (inner size 10cm x 10cm x 1cm) were filled with fine sand of different grain sizes. A sensor foil for O2 (Borisov et al. 2006) was installed on one inner-side of the containers. We grew lupine plants in the container for two weeks under controlled conditions. We took neutron radiographs and fluorescence images of the samples for a range of water contents, and therefore a range of root activities and oxygen changes. We observed the consumption of oxygen induced by roots of lupine plants during 36 hours. Neutron radiography gives us the information about root development and water content. Due to the high water content, aeration from atmosphere is limited. By focusing on the initial conditions we observe that the fluorescence intensity increases in the lower and upper part, where roots are located. The respiration activity creates oxygen deficits close to the roots, and we observed a higher activity by the lateral roots than the tap root. Moreover, the oxygen consumption increases with increasing root growth or root age. After 24 hours the images indicates better aeration in the upper

  16. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.

    PubMed

    Scholz, Marek; Dědic, Roman; Breitenbach, Thomas; Hála, Jan

    2013-10-01

    Six common water-soluble singlet oxygen ((1)O2) photosensitizers - 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphine (TMPyP), meso-tetrakis(4-sulfonathophenyl)porphine (TPPS4), Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4), eosin Y, rose bengal, and methylene blue - were investigated in terms of their ability to produce delayed fluorescence (DF) in solutions at room temperature. All the photosensitizers dissolved in air-saturated phosphate buffered saline (PBS, pH 7.4) exhibit easily detectable DF, which can be nearly completely quenched by 10 mM NaN3, a specific (1)O2 quencher. The DF kinetics has a biexponential rise-decay character in a microsecond time domain. Therefore, we propose that singlet oxygen-sensitized delayed fluorescence (SOSDF), where the triplet state of a photosensitizer reacts with (1)O2 giving rise to an excited singlet state of the photosensitizer, is the prevailing mechanism. It was confirmed by additional evidence, such as a monoexponential decay of triplet-triplet transient absorption kinetics, dependence of SOSDF kinetics on oxygen concentration, absence of SOSDF in a nitrogen-saturated sample, or the effect of isotopic exchange H2O-D2O. Eosin Y and AlPcS4 show the largest SOSDF quantum yield among the selected photosensitizers, whereas rose bengal possesses the highest ratio of SOSDF intensity to prompt fluorescence intensity. The rate constant for the reaction of triplet state with (1)O2 giving rise to the excited singlet state of photosensitizer was estimated to be ~/>1 × 10(9) M(-1) s(-1). SOSDF kinetics contains information about both triplet and (1)O2 lifetimes and concentrations, which makes it a very useful alternative tool for monitoring photosensitizing and (1)O2 quenching processes, allowing its detection in the visible spectral region, utilizing the photosensitizer itself as a (1)O2 probe. Under our experimental conditions, SOSDF was up to three orders of magnitude more intense than the infrared (1)O2

  17. Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.

    PubMed

    Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin

    2013-06-01

    Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period. PMID:23473021

  18. Identification of oxygen-19 during in vivo neutron activation analysis of water phantoms.

    PubMed

    Tahir, Syed N A; Chettle, David R

    2015-12-01

    Hand bone equivalent phantoms (250 ml) carrying selenium in various amounts were irradiated and counted for in vivo neutron activation analysis (IVNAA) by employing a 4π NaI(TI) based detection system. During the analysis of counting data, a feature at a higher energy than the gamma ray peak from (77m)Se (0.162 MeV) was observed at 0.197 MeV. Further investigations were made by preparing water phantoms containing only de-ionized water in 250 ml and 1034 ml quantities. Neutrons were produced by the (7)Li(p,n)(7)Be reaction using the high beam current Tandetron accelerator. Phantoms were irradiated at a fixed proton energy of 2.3 MeV and proton currents of 400 μA and 550 μA for 30 s and 22 s respectively. The counting data saved using the 4π NaI(TI) detection system for 10 s intervals in anticoincidence, coincidence and singles modes of detection were analyzed. Areas under gamma peaks at energies 0.197 MeV and 1.357 MeV were computed and half-lives from the number of counts for the two peaks were established. It was concluded that during neutron activation of water phantoms, oxygen-18 is activated, producing short-lived radioactive (19)O having T1/2  =  26.9 s. Induced activity from (19)O may contribute spectral interference in the gamma ray spectrum. This effect may need to be taken into account by researchers while carrying out IVNAA of biological subjects. PMID:26502270

  19. Heat and dissolved oxygen exchanges between the sediment and water column in a shallow salty lagoon

    NASA Astrophysics Data System (ADS)

    Fuente, Alberto

    2014-04-01

    Dissolved oxygen (DO) and heat exchanges across the water-sediment interface (WSI) of a shallow lagoon are controlled by processes occurring on both sides of the WSI, particularly volumetric source and sink on the sediment side and turbulent transport on the waterside. This article presents and analyzes measurements of DO (Js) and heat (Hg) fluxes across the WSI in the extremely shallow lagoon of Salar del Huasco (20.274°S, 68.883°W, 3800 m above sea level), where volumetric source of DO and heat exists in the sediment layer, related to benthic primary production and absorption of solar radiation, respectively. Microprofiles of temperature and DO were measured, and they were used for measuring Js and Hg, and volumetric source/sink terms in the sediments. This information was used to propose and validate the simple theoretical framework to predict both the magnitude and direction of Js and Hg. On the one hand, Js can be predicted with a simple algebraic expression, where the diffusional mass transfer coefficient defines the magnitude of Js while the direction is controlled by the balance between DO production and consumption in the sediments. On the other hand, solar radiation is absorbed in the upper sediments, and this heat diffuses toward the water column and the sediments. The heat flux toward the water column also induces unstable convection that promotes vertical transport across the WSI. The theoretical framework proposed here will help to understand DO and heat budgets of shallow aquatic systems in which solar radiation reaches the WSI.

  20. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    NASA Technical Reports Server (NTRS)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  1. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    NASA Astrophysics Data System (ADS)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  2. Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping

    PubMed Central

    Ding, Jiule; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming

    2015-01-01

    Objective To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Materials and Methods Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2* mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Results Both medullary phase and medullary T2* values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2* changes (p > 0.05). Interobserver reliability was excellent for the T2* values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2* value (0.84). Conclusion Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2* mapping. PMID:26175582

  3. A nonheme manganese(IV)-oxo species generated in photocatalytic reaction using water as an oxygen source.

    PubMed

    Wu, Xiujuan; Yang, Xiaonan; Lee, Yong-Min; Nam, Wonwoo; Sun, Licheng

    2015-03-01

    A nonheme manganese(IV)-oxo complex, [Mn(IV)(O)(BQCN)](2+), was generated in the photochemical and chemical oxidation of [Mn(II)(BQCN)](2+) with water as an oxygen source, respectively. The photocatalytic oxidation of organic substrates, such as alcohol and sulfide, by [Mn(II)(BQCN)](2+) has been demonstrated in both neutral and acidic media. PMID:25658677

  4. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Betts, J. N.; Holland, H. D.

    1991-01-01

    Data for the burial efficiency of organic carbon with marine sediments have been compiled for 69 locations. The burial efficiency as here defined is the ratio of the quantity of organic carbon which is ultimately buried to that which reaches the sediment-water interface. As noted previously, the sedimentation rate exerts a dominant influence on the burial efficiency. The logarithm of the burial efficiency is linearly related to the logarithm of the sedimentation rate at low sedimentation rates. At high sedimentation rates the burial efficiency can exceed 50% and becomes nearly independent of the sedimentation rate. The residual of the burial efficiency after the effect of the sedimentation rate has been subtracted is a weak function of the O2 concentration in bottom waters. The scatter is sufficiently large, so that the effect of the O2 concentration in bottom waters on the burial efficiency of organic matter could be either negligible or a minor but significant part of the mechanism that controls the level of O2 in the atmosphere.

  5. Rhizon sampler alteration of deep ocean sediment interstitial water samples, as indicated by chloride concentration and oxygen and hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Miller, Madeline D.; Adkins, Jess F.; Hodell, David A.

    2014-06-01

    their potential to inform past ocean salinity, δ18O, and temperature, high-resolution depth profiles of interstitial water chloride concentration and hydrogen and oxygen isotopes exist in very few locations. One of the primary limitations to the recovery of these depth profiles is that traditional interstitial water sampling requires 5-10 cm whole rounds of the sediment core, which has the potential to interfere with stratigraphic continuity. The Rhizon sampler, a nondestructive tool developed for terrestrial sediment interstitial water extraction, has been proposed for efficient and nondestructive sampling of ocean sediment pore waters. However, there exists little documentation on the reliability and performance of Rhizon samplers in deep ocean sediments, particularly in regard to their effect on chloride concentration and oxygen and hydrogen isotopic measurements. We perform an intercomparison of chloride concentration and oxygen and hydrogen isotopic composition in samples taken using traditional squeezing versus those taken with Rhizon samplers. We find that samples taken with Rhizons have positive biases in both chloride concentration and stable isotopic ratios relative to those taken by squeezing water from sediments in a hydraulic press. The measured offsets between Rhizon and squeeze samples are consistent with a combination of absorption by and diffusive fractionation through the hydrophilic membrane of the Rhizon sampler. These results suggest caution is needed when using Rhizons for sampling interstitial waters in any research of processes that leave a small signal-to-noise ratio in dissolved concentrations or isotope ratios.

  6. Determining the Spatial Influence of Imported and Local Water Sources to Municipal Tap Water Systems in the Southwestern United States Using Stable Isotopes of Oxygen and Hydrogen

    NASA Astrophysics Data System (ADS)

    Stalker, J. C.; Kennedy, C. D.; Bowen, G. J.

    2010-12-01

    In arid and semi-arid parts of the southwestern USA, imported waters derived from large canal systems like the Colorado River Aqueduct, Los Angeles Aqueduct, and the California Aqueduct service a significant component of the regional water needs. These waters are sourced primarily from high altitude snowmelt runoff and have relatively low annually averaged stable isotope ratios of hydrogen and oxygen (δD, δ18O) (-99 to -127‰, -10 to -13‰,) when compared to water derived from local rainfall and surface river sources (-35 to -42 ‰, -5 to -7‰) in southern California, western Arizona, and southern Nevada. The distinct isotope signatures of these two waters can be used to differentiate the two sources in tap water from municipal systems. In this study, samples of tap water, aqueduct water, and surface water were collected throughout the Southwest to produce a series of maps of the spatial influence of imported water in municipal tap water. This data was then be used to develop mixing models to determine the relative importance of imported water regionally, and track the prominence of the movement of these imported waters after initial use and addition to a system. The use of isotopes to trace this anthropogenically introduced water is of interest to water management, resolving water rights issues and disputes, as well as environmental applications in ecological studies. Additionally these tracing methods may be applied worldwide in areas where the movement and dynamics of hydrologic systems are either unclear or unknown.

  7. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney.

    PubMed

    Hirose, Yasuhiko; Yasui, Takahiro; Taguchi, Kazumi; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Okada, Atsushi; Kubota, Yasue; Kawai, Noriyasu; Itoh, Yasunori; Tozawa, Keiichi; Sasaki, Shoichi; Kohri, Kenjiro

    2013-08-01

    Renal tubular cell injury induced by oxalate plays an important role in kidney stone formation. Water containing oxygen nano-bubbles (nanometer-sized bubbles generated from oxygen micro-bubbles; ONB) has anti-inflammatory effects. Therefore, we investigated the inhibitory effects of ONB water on kidney stone formation in ethylene glycol (EG)-treated rats. We divided 60 rats, aged 4 weeks, into 5 groups: control, the water-fed group; 100 % ONB, the 100 % ONB water-fed group; EG, the EG treated water-fed group; EG + 50 % ONB and EG + 100 % ONB, water containing EG and 50 % or 100 % ONB, respectively. Renal calcium oxalate (CaOx) deposition, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG), and renal expression of inflammation-related proteins, oxidative stress biomarkers, and the crystal-binding molecule hyaluronic acid were compared among the 5 groups. In the control and 100 % ONB groups, no renal CaOx deposits were detected. In the EG + 50 % ONB and EG + 100 % ONB groups, ONB water significantly decreased renal CaOx deposits, urinary NAG excretion, and renal monocyte chemoattractant protein-1, osteopontin, and hyaluronic acid expression and increased renal superoxide dismutase-1 expression compared with the EG group. ONB water substantially affected kidney stone formation in the rat kidney by reducing renal tubular cell injury. ONB water is a potential prophylactic agent for kidney stones. PMID:23754513

  8. Bottom water oxygenation changes in the northern Okinawa Trough since the last 88ka: Controlled by local hydrology and climate

    NASA Astrophysics Data System (ADS)

    Zou, Jianjun; Shi, Xuefa; Zhu, Aimei; Bai, Yazhi; Selvaraj, Kandasamy

    2014-05-01

    Dissolved oxygen content in oceanic bottom water is closely related to the surface organic carbon export and subsurface water stratification, regulating the biogeochemical cycles of some key nutrients and trace elements in intermediate and deep water columns. Further, the rate of organic carbon flux to sediments and bottom water oxygen concentration together determine the intensity of reducing conditions in sediments. In this study, we obtain high-resolution geochemical elements (TOC, TN, TS, CaCO3, Cd, U, Mn and Mo) in a radiocarbon (14C) and δ18O dated, sediment core CSH1 collected from the northern Okinawa Trough to reconstruct the history of bottom water redox conditions over 88 ka. Our data revealed the presence of hypoxic bottom water in the northern Okinawa Trough during late MIS5a-early MIS4, Last Glacial Maximum, and the early Last Deglacial intervals. During the Holocene and the early MIS5a, the dissolved oxygen content in bottom water has increased with decreasing water stratification, which was probably caused by the increased upwelling from the bottom in tandem with the climbing of Kuroshio Current and subdued freshwater effect in the northern Okinawa Trough. The reasons that caused the change of dissolved oxygen content in bottom water in the northern Okinawa Trough varied during different periods. The main factors are related to sea level, strengths of East Asian monsoon and the Kuroshio Current, and the shift of Westerly Jet Axis. The semi-closed topography in the northern Okinawa Trough provides a space framework for the presence of anoxia, while the sea level together with the Kuroshio Current, the East Asian monsoon and the Westerly Jet Axis seems to affect the strength of water stratification and the nutrient supply; thereby, regulating the dissolved oxygen exchange between surface and bottom waters. This work was supported by the National Natural Science Foundation of China(Grant No.:40906035,40710069004) and by basic scientific fund for

  9. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection

    PubMed Central

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    Background It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Materials and methods Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate–malate or N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)–ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate–malate as substrate. Results As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. Conclusion In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process. PMID:26203225

  10. Effects of Mild Water Stress and Diurnal Changes in Temperature and Humidity on the Stable Oxygen and Hydrogen Isotopic Composition of Leaf Water in Cornus stolonifera L. 1

    PubMed Central

    Flanagan, Lawrence B.; Ehleringer, James R.

    1991-01-01

    In this paper we make comparisons between the observed stable isotopic composition of leaf water and the predictions of the Craig-Gordon model of isotopic enrichment when plants (Cornus stolonifera L.) were exposed to natural, diurnal changes in temperature and humidity in a glasshouse. In addition, we determined the effects of mild water stress on the isotopic composition of leaf water. The model predicted different patterns of diurnal change for the oxygen and hydrogen isotopic composition of leaf water. The observed leaf water isotopic composition followed qualitatively similar patterns of diurnal change to those predicted by the model. At midday, however, the model always predicted a higher degree of heavy isotope enrichment than was actually observed in leaves. There was no effect of mild water stress on the hydrogen isotopic composition of leaf water. For the oxygen isotopic composition of leaf water, there was either no significant difference between control and water-stressed plants or the stressed plants had lower δ18O values, despite the enriched stem water isotopic composition observed for the stressed plants. PMID:16668385

  11. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. PMID:25704155

  12. Full scale evaluation of diffuser ageing with clean water oxygen transfer tests.

    PubMed

    Krampe, J

    2011-01-01

    Aeration is a crucial part of the biological wastewater treatment in activated sludge systems and the main energy user of WWTPs. Approximately 50 to 60% of the total energy consumption of a WWTP can be attributed to the aeration system. The performance of the aeration system, and in the case of fine bubble diffused aeration the diffuser performance, has a significant impact on the overall plant efficiency. This paper seeks to isolate the changes of the diffuser performance over time by eliminating all other influencing parameters like sludge retention time, surfactants and reactor layout. To achieve this, different diffusers have been installed and tested in parallel treatment trains in two WWTPs. The diffusers have been performance tested in clean water tests under new conditions and after one year of operation. A set of material property tests describing the diffuser membrane quality was also performed. The results showed a significant drop in the performance of the EPDM diffuser in the first year which resulted in similar oxygen transfer efficiency around 16 g/m3/m for all tested systems. Even though the tested silicone diffusers did not show a drop in performance they had a low efficiency in the initial tests. The material properties indicate that the EPDM performance loss is partly due to the washout of additives. PMID:22097050

  13. Exchanges of oxygen, carbon dioxide, nitrogen and water in the caecilian Dermophis mexicanus.

    PubMed

    Stiffler, D F; Talbot, C R

    2000-11-01

    Oxygen consumption was measured in five Dermophis mexicanus and averaged (+/- SEM) 0.047 +/- 0.004 ml O2 g(-1) x h(-1). Carbon dioxide production averaged 0.053 +/- 0.005 ml CO2 g(-1) x h(-1) in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 micromol N g(-1) x h(-1) which is higher than that found for other amphibians. Of this, 82.5% (1.13 micromol N g(-1) x h(-1)) was in the form of urea while 17.5% (0.24 micromol N g(-1) h(-1)) was in the form of NH3 + NH4+. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g(-1) x h(-1) in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. PMID:11128440

  14. Two-dimensional resonance Raman spectroscopy of oxygen- and water-ligated myoglobins

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-07-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has recently been developed as a tool for studies of structural heterogeneity and photochemical dynamics in condensed phases. In this paper, 2DRR spectroscopy is used to investigate line broadening mechanisms of both oxygen- and water-ligated myoglobins. General signatures of anharmonicity and inhomogeneous line broadening are first established with model calculations to facilitate signal interpretation. It is shown that the present quasi-degenerate version of 2DRR spectroscopy is insensitive to anharmonicity, because signal generation is allowed for harmonic modes. Rather, the key information to be gained from 2DRR spectroscopy pertains to the line broadening mechanisms, which are fairly obvious by inspection of the data. 2DRR signals acquired for both heme protein systems reveal significant heterogeneity in the vibrational modes local to the heme's propionic acid side chains. These side chains are known to interact with solvent, because they protrude from the hydrophobic pocket that encloses the heme. Molecular dynamics simulations suggest that the heterogeneity detected in our 2DRR experiments reflects fluctuations in the geometries of the side chains. Knowledge of such thermal motions will be useful for understanding protein function (e.g., ligand binding) because the side chains are an effective "gateway" for the exchange of thermal energy between the heme and solvent.

  15. Oxygen and Sulfur Isotope Composition of Dissolved Sulfate in Interstitial Waters of the Great Australian Bight, ODP Leg 182.

    NASA Astrophysics Data System (ADS)

    Bernasconi, S. M.; Böttcher, M. E.; Wormann, U. G.

    2005-12-01

    We measured the sulfur and oxygen isotope composition of dissolved sulfides and sulfate at ODP Sites 1129, 1130, 1131 and 1132 in the Great Australian Bight (GAB). At all Sites, a saline brine is present in the subsurface as indicated by increasing chloride concentrations with depth to reach contents up to 3 times seawater. Sulfate also increases with depth but the concentrations are reduced by intense microbial sulfate reduction. The sulfur isotope fractionation between coexisting dissolved sulfate and sulfide is very large and reaches up to 70 ‰ at all studied Sites. Due to the high sulfide concentrations and the lack of a significant source of oxidants we consider that the large sulfur isotope fractionations are induced by sulfate reducing bacteria alone without a significant contribution of elemental sulfur disproportionation and sulfide oxidation processes. The oxygen isotope composition of dissolved sulfate reaches maximum values of approximately +27 ‰ vs. VSMOW at all sites, close to the equilibrium isotope fractionation between sulfate and water. The oxygen isotope composition of dissolved sulfate positively correlates with the sulfur isotope fractionation between sulfate and sulfide. These oxygen isotope data thus support the hypothesis that that the high sulfur isotope fractionation are related to a single step fractionation by sulfate reducing bacteria and do not involve significant sulfide oxidation reactions and/or elemental sulfur disproportionation. Sulfide oxidation processes would lead to a lowering of the oxygen isotope composition of residual sulfate. Elemental sulfur disproportionation has been shown to increase the oxygen isotope composition of sulfate but to a smaller extent than that that observed in the GAB. The patterns of the oxygen isotope increase with progressive sulfate reduction indicate a predominant influence of isotope exchange rather than a kinetic isotope fractionation controlling the oxygen isotope composition of sulfate

  16. Water column biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and eastern tropical South Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Löscher, C. R.; Bange, H. W.; Schmitz, R. A.; Callbeck, C. M.; Engel, A.; Hauss, H.; Kanzow, T.; Kiko, R.; Lavik, G.; Loginova, A.; Melzner, F.; Neulinger, S. C.; Pahlow, M.; Riebesell, U.; Schunck, H.; Thomsen, S.; Wagner, H.

    2015-03-01

    Recent modeling results suggest that oceanic oxygen levels will decrease significantly over the next decades to centuries in response to climate change and altered ocean circulation. Hence the future ocean may experience major shifts in nutrient cycling triggered by the expansion and intensification of tropical oxygen minimum zones (OMZs). There are numerous feedbacks between oxygen concentrations, nutrient cycling and biological productivity; however, existing knowledge is insufficient to understand physical, chemical and biological interactions in order to adequately assess past and potential future changes. We investigated the pelagic biogeochemistry of OMZs in the eastern tropical North Atlantic and eastern tropical South Pacific during a series of cruise expeditions and mesocosm studies. The following summarizes the current state of research on the influence of low environmental oxygen conditions on marine biota, viruses, organic matter formation and remineralization with a particular focus on the nitrogen cycle in OMZ regions. The impact of sulfidic events on water column biogeochemistry, originating from a specific microbial community capable of highly efficient carbon fixation, nitrogen turnover and N2O production is further discussed. Based on our findings, an important role of sinking particulate organic matter in controlling the nutrient stochiometry of the water column is suggested. These particles can enhance degradation processes in OMZ waters by acting as microniches, with sharp gradients enabling different processes to happen in close vicinity, thus altering the interpretation of oxic and anoxic environments.

  17. 7 CFR 916.16 - Pure grower or pure producer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Pure grower or pure producer. 916.16 Section 916.16... Order Regulating Handling Definitions § 916.16 Pure grower or pure producer. (a) Pure grower means any...); or (2) Who produces and handles his or her own product; Provided, That a pure grower can pack...

  18. 7 CFR 916.16 - Pure grower or pure producer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Pure grower or pure producer. 916.16 Section 916.16... Order Regulating Handling Definitions § 916.16 Pure grower or pure producer. (a) Pure grower means any...); or (2) Who produces and handles his or her own product; Provided, That a pure grower can pack...

  19. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  20. The oxygen isotopic compositions of silica phytoliths and plant water in grasses: implications for the study of paleoclimate

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth A.; Longstaffe, Frederick J.

    2000-03-01

    Information about climatic conditions during plant growth is preserved by the oxygen-isotope composition of biogenic silica (phytoliths) deposited in grasses. The oxygen-isotope composition of phytolith silica is dependent on soil-water δ 18O values, relative humidity and evapotranspiration, and temperature during plant growth. Phytolith and plant-water δ 18O values for C3 ( A. breviligulata) and C4 ( C. longifolia) grasses from natural and greenhouse sites in southwestern Ontario were used to compare the isotopic fractionation between biogenic silica and water in various parts of these living plants. For non or weakly transpiring tissues (rhizomes, stems, sheaths) in both grass species, the Δ 18O silica-plant water remained constant at ˜34‰, and the δ 18O and δD values of plant water collected from pre-dawn and mid-day samplings showed little variation. These plant waters were only slightly enriched in 18O and D relative to water provided to the grasses. Isotopic temperatures calculated from the silica and plant-water isotopic data matched measured growing temperatures for the region. By comparison, the upper leaf water was extremely enriched in oxygen-18 and deuterium at maximum rates of transpiration relative to water from non-transpiring tissues, as were the calculated, steady-state values for leaf-water δ 18O and δD. Silica produced in the transpiring tissues (leaf, inflorescence) has higher δ 18O values than silica from non-transpiring tissues, but the enrichment is modest compared to upper leaf water under mid-day conditions. Leaf phytoliths have formed from plant water typical of average conditions in the lower leaf, where the extreme 18O-enrichment is not encountered. C. longifolia was also collected from Alberta and Nebraska, where growing conditions are different from southwestern Ontario. Phytoliths at all three sites have a similar pattern of δ 18O values within the plants, but the isotopic separation between leaf and stem silica increases

  1. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  2. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium

    SciTech Connect

    Haschke, John M.; Allen, Thomas H.; Morales, Luis A.

    1999-06-18

    Investigation of the interactions of plutonium dioxide with water vapor and with an oxygen-hydrogen mixture show that the oxide is both chemically reactive and catalytically active. Correspondence of the chemical behavior with that for oxidation of uranium in moist air suggests that similar catalytic processes participate in the mechanism of moisture-enhanced corrosion of uranium and plutonium. Evaluation of chemical and kinetic data for corrosion of the metals leads to a comprehensive mechanism for corrosion in dry air, water vapor, and moist air. Results are applied in confirming that the corrosion rate of Pu in water vapor decreases sharply between 100 and 200 degrees C.

  3. Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/

    DOEpatents

    Robinson, P.R.; Bamberger, C.E.

    1980-02-08

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  4. Effect of Pattern Layout and Dissolved Oxygen in CO2 Rinse Water on Cu Corrosion during Post-Etch Cleaning

    NASA Astrophysics Data System (ADS)

    Kentaro Tokuri,; Yukinari Yamashita,; Morio Shiohara,; Noriaki Oda,; Seiichi Kondo,; Shuichi Saito,

    2010-05-01

    When post-etch cleaning was carried out in Cu dual-damascene process, Cu at the bottom of isolated via was etched out especially in the wafer edge, and this would become a critical issue as device scale is shrunk. The corrosion was caused in the rinse step rather than chemical cleaning step because dissolved oxygen in rinse water from the air increased oxidation-reduction potential (ORP) and CO2 included in the rinse water for preventing wafer electrification decreased pH. The corrosion was found to be suppressed by increasing dummy pattern density and by controlling atmosphere and pH of the rinse water.

  5. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water

  6. Effects of climate change on deep-water oxygen and winter mixing in a deep lake (Lake Geneva)

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Alfred, Wüest; Damien, Bouffard

    2016-04-01

    Oxygen is the most important dissolved gas for lake ecosystems. Because low oxygen concentrations are an ongoing problem in many parts of the oceans and numerous lakes, oxygen depletion processes have been intensively studied over the last decades and were mainly attributed to high nutrient loads. Recently, climate-induced changes in stratification and mixing behavior were recognized as additional thread to hypolimnetic oxygen budgets in lakes and reservoirs [Matzinger et al., 2007; Zhang et al., 2015]. Observational data of Lake Geneva, a deep perialpine lake situated between France and Switzerland showed no decreasing trend in hypoxia over the last 43 years, despite an impressive reduction in nutrient input during this period. Instead, hypoxic conditions were predominantly controlled by deep mixing end of winter and in turn by winter temperatures. To test the sensitivity of Lake Geneva on future climate change and changes in water transparency, we simulated the hydrodynamics and temperature of Lake Geneva under varying conditions for atmospheric temperature and water clarity performed with the one-dimensional model SIMSTRAT [Goudsmit, 2002]. The results show, that the stratification in lakes is only weakly affected by changes in light absorption due to varying water quality. For conditions expected for the end of the century, a decrease in the annual mean deep convective mixing of up to 45 m is predicted. Also complete mixing events over the whole lake are less likely to occur. A change in the hypolimnetic oxygen concentration of up to 20% can thus be expected in the future. These results show, that changes in deep mixing have an equally strong impact as eutrophication on the deep-water oxygen development of oligomictic lakes and have to be considered in the prediction of the future development of lakes. References: Goudsmit, G. H., H. Burchard, F. Peeters, and A. Wüest (2002), Application of k-ɛ turbulence models to enclosed basins: The role of internal

  7. CO2 and C2H2 in cold nanodroplets of oxygenated organic molecules and water.

    PubMed

    Devlin, J Paul; Balcı, F Mine; Maşlakcı, Zafer; Uras-Aytemiz, Nevin

    2014-11-14

    Recent demonstrations of subsecond and microsecond timescales for formation of clathrate hydrate nanocrystals hint at future methods of control of environmental and industrial gases such as CO2 and methane. Combined results from cold-chamber and supersonic-nozzle [A. S. Bhabhe, "Experimental study of condensation and freezing in a supersonic nozzle," Ph.D. thesis (Ohio State University, 2012), Chap. 7] experiments indicate extremely rapid encagement of components of all-vapor pre-mixtures. The extreme rates are derived from (a) the all-vapor premixing of the gas-hydrate components and (b) catalytic activity of certain oxygenated organic large-cage guests. Premixing presents no obvious barrier to large-scale conditions of formation. Further, from sequential efforts of the groups of Trout and Buch, a credible defect-based model of the catalysis mechanism exists for guidance. Since the catalyst-generated defects are both mobile and abundant, it is often unnecessary for a high percentage of the cages to be occupied by a molecular catalyst. Droplets represent the liquid phase that bridges the premixed vapor and clathrate hydrate phases but few data exist for the droplets themselves. Here we describe a focused computational and FTIR spectroscopic effort to characterize the aerosol droplets of the all-vapor cold-chamber methodology. Computational data for CO2 and C2H2, hetero-dimerized with each of the organic catalysts and water, closely match spectroscopic redshift patterns in both magnitude and direction. Though vibrational frequency shifts are an order of magnitude greater for the acetylene stretch mode, both CO2 and C2H2 experience redshift values that increase from that for an 80% water-methanol solvent through the solvent series to approximately doubled values for tetrahydrofuran and trimethylene oxide (TMO) droplets. The TMO solvent properties extend to a 50 mol.% solution of CO2, more than an order of magnitude greater than for the water-methanol solvent mixture

  8. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures

    NASA Astrophysics Data System (ADS)

    Horita, Juske

    2014-03-01

    An experimental study was conducted to determine oxygen and carbon isotope fractionation factors in the system dolomite-water-CO2 at 80-350 and 100-250 °C, respectively, by means of direct precipitation (80 °C) and dolomitization of CaCO3 (100-350 °C). The products are protodolomite with slight Ca-excess (80-100 °C) and well-ordered stoichiometric dolomite (150-350 °C). Several experimental artifacts (inheritance, premature reactions, and kinetic effects) were tested, although attainment of isotope equilibrium cannot be proven. 18O/16O fractionation factors of (proto)dolomite-water at 80-350 °C can be readily expressed with 1σ error: 103lnα=3.140(±0.022)·{106}/{T2}-3.14(±0.11). Our experimental study, which is generally consistent with a majority of experimental and theoretical studies in the literature, provides for the first time an accurate equation over a wide range of temperature. In combination of the calcite-water equation (O’Neil et al., 1969; Friedman and O’Neil, 1977), 18O/16O fractionation factors of (proto)dolomite-calcite at 80-350 °C can also be expressed with 1σ error: 103lnα=0.351(±0.028)·{106}/{T2}-0.25(±0.13). Dolomite is slightly (0.7-2.6‰) enriched in 18O relative to calcite in this temperature range. Given the very good linearity with a 1/T2 term, the above two equations may be extrapolated beyond the temperature range. Our experimental results of 13C/12C fractionation between CO2 and dolomite at 100-250 °C also show a linear function with a 1/T2 term with a cross-over temperature of 200 °C, which differs from results of theoretical calculations.

  9. CO2 and C2H2 in cold nanodroplets of oxygenated organic molecules and water

    NASA Astrophysics Data System (ADS)

    Devlin, J. Paul; Balcı, F. Mine; Maşlakcı, Zafer; Uras-Aytemiz, Nevin

    2014-11-01

    Recent demonstrations of subsecond and microsecond timescales for formation of clathrate hydrate nanocrystals hint at future methods of control of environmental and industrial gases such as CO2 and methane. Combined results from cold-chamber and supersonic-nozzle [A. S. Bhabhe, "Experimental study of condensation and freezing in a supersonic nozzle," Ph.D. thesis (Ohio State University, 2012), Chap. 7] experiments indicate extremely rapid encagement of components of all-vapor pre-mixtures. The extreme rates are derived from (a) the all-vapor premixing of the gas-hydrate components and (b) catalytic activity of certain oxygenated organic large-cage guests. Premixing presents no obvious barrier to large-scale conditions of formation. Further, from sequential efforts of the groups of Trout and Buch, a credible defect-based model of the catalysis mechanism exists for guidance. Since the catalyst-generated defects are both mobile and abundant, it is often unnecessary for a high percentage of the cages to be occupied by a molecular catalyst. Droplets represent the liquid phase that bridges the premixed vapor and clathrate hydrate phases but few data exist for the droplets themselves. Here we describe a focused computational and FTIR spectroscopic effort to characterize the aerosol droplets of the all-vapor cold-chamber methodology. Computational data for CO2 and C2H2, hetero-dimerized with each of the organic catalysts and water, closely match spectroscopic redshift patterns in both magnitude and direction. Though vibrational frequency shifts are an order of magnitude greater for the acetylene stretch mode, both CO2 and C2H2 experience redshift values that increase from that for an 80% water-methanol solvent through the solvent series to approximately doubled values for tetrahydrofuran and trimethylene oxide (TMO) droplets. The TMO solvent properties extend to a 50 mol.% solution of CO2, more than an order of magnitude greater than for the water-methanol solvent mixture

  10. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait

    SciTech Connect

    Cooper, L.W. |; Whitledge, T.E.; Grebmeier, J.M. |; Weingartner, T.

    1997-06-01

    Seawater nutrient, salinity, and oxygen 18 data collected from 1990 to 1993 in the Bering and Chukchi Seas were used to identify potential sources of nutrients and water masses that result in formation of the Arctic Ocean upper halocline and its associated nutrient maximum. Water matching the {delta}{sup 18}O values of the Arctic Ocean upper halocline and containing sufficient, or a nearly sufficient, nutrient and salinity concentration was collected in subsurface waters in the summer in portions of the Bering Sea, particularly the Gulf of Anadyr. However, nutrient concentrations significantly declined in this north flowing water over the shallow continental shelf before it reached the Bering Strait, as a consequence of biological utilization, and dilution with nutrient-poor and oxygen 18-depleted fresh water. Therefore it does not appear likely that the flow of unaltered water through the Bering Strait in the summer plays a critical role in the formation of the Arctic Ocean upper halocline. The role of other mechanisms for contributing Pacific-derived waters to the Arctic Ocean nutrient maximum is considered.{copyright} 1997 American Geophysical Union

  11. Empirical equations for the temperature dependence of calcite-water oxygen isotope fractionation from 10 to 70°C.

    PubMed

    Demény, Attila; Kele, Sándor; Siklósy, Zoltán

    2010-12-30

    Although the temperature dependence of calcite-water oxygen isotope fractionation seems to have been well established by numerous empirical, experimental and theoretical studies, it is still being discussed, especially due to the demand for increased accuracy of paleotemperature calculations. Experimentally determined equations are available and have been verified by theoretical calculations (considered as representative of isotopic equilibrium); however, many natural formations do not seem to follow these relationships implying either that existing fractionation equations should be revised, or that carbonate deposits are seriously affected by kinetic and solution chemistry effects, or late-stage alterations. In order to test if existing fractionation-temperature relationships can be used for natural deposits, we have studied calcite formations precipitated in various environments by means of stable isotope mass spectrometry: travertines (freshwater limestones) precipitating from hot and warm waters in open-air or quasi-closed environments, as well as cave deposits formed in closed systems. Physical and chemical parameters as well as oxygen isotope composition of water were monitored for all the investigated sites. Measuring precipitation temperatures along with oxygen isotope compositions of waters and calcites yielded empirical environment-specific fractionation-temperature equations: [1] 1000 · lnα = 17599/T - 29.64 [for travertines with a temperature range of 30 to 70°C] and [2] 1000 · lnα = 17500/T - 29.89 [for cave deposits for the range 10 to 25°C]. Finally, based on the comparison of literature data and our results, the use of distinct calcite-water oxygen isotopic fractionation relationships and application strategies to obtain the most reliable paleoclimate information are evaluated. PMID:21080503

  12. Purely lytic osteosarcoma

    SciTech Connect

    De Santos, L.A.; Eideken, B.

    1982-11-01

    The radiographic features of 42 purely lytic osteosarcomas are presented. Purely lytic osteosarcoma is identified as a lytic lesion of bone with no demonstrable osteoid matrix by conventional radiographic modalities. Purely lytic osteosarcoma represented 13.7% of a group of 305 osteosarcomas. The most common presentation was that of a lytic illdefined lesion with a moderate to large extraosseous mass component. Nine lesions presented with benign radiographic features. The differential diagnosis is outlined. The need for awareness of this type of presentation of osteosarcoma is stressed.

  13. Oxygen flux as an indicator of physiological stress in aquatic organisms: a real-time biomonitoring system of water quality

    NASA Astrophysics Data System (ADS)

    Sanchez, Brian C.; Yale, Gowri; Chatni, Rameez; Ochoa-Acuña, Hugo G.; Porterfield, D. Marshall; Mclamore, Eric S.; Sepúlveda, María S.

    2009-05-01

    The detection of harmful chemicals and biological agents in real time is a critical need for protecting water quality. We studied the real-time effects of five environmental contaminants with differing modes of action (atrazine, pentachlorophenol, cadmium chloride, malathion, and potassium cyanide) on respiratory oxygen consumption in 2-day post-fertilization fathead minnow (Pimephales promelas) eggs. Our objective was to assess the sensitivity of fathead minnow eggs using the self-referencing micro-optrode technique to detect instantaneous changes in oxygen consumption after brief exposures to low concentrations of contaminants. Oxygen consumption data indicated that the technique is indeed sensitive enough to reliably detect physiological alterations induced by all contaminants. After 2 h of exposure, we identified significant increases in oxygen consumption upon exposure to pentachlorophenol (100 and 1000 μg/L), cadmium chloride (0.0002 and 0.002 μg/L), and atrazine (150 μg/L). In contrast, we observed a significant decrease in oxygen flux after exposures to potassium cyanide (5.2, 22, and 44 μg/L) and atrazine (1500 μg/L). No effects were detected after exposures to malathion (200 and 340 μg/L). We have also tested the sensitivity of Daphnia magna embryos as another animal model for real-time environmental biomonitoring. Our results are so far encouraging and support further development of this technology as a physiologically coupled biomonitoring tool for the detection of environmental toxicants.

  14. Induction of reactive oxygen species and algal growth inhibition by tritiated water with or without copper.

    PubMed

    Réty, C; Gilbin, R; Gomez, E

    2012-03-01

    Tritium ((3) H) is a radioactive element of ecological concern because of its release into aquatic ecosystems from nuclear power plants. However, the acute and chronic effects of tritiated water (HTO) on aquatic organisms are poorly documented, as are its effects on oxidative stress. In addition, the effects of HTO in combination with other contaminants remain largely unexamined. Herein, we document the effect of HTO on a primary aquatic producer (Chlamydomonas reinhardtii) by measuring growth and oxidative stress using fluorimetric (H(2) DCF-DA) determination of Reactive Oxygen Species (ROS) production. The maximum cell density of the alga (1.65 × 10(6) cells mL(-1) ) was reduced by 23% (1.27 × 10(6) cells mL(-1) ) at the highest exposure tested (59 MBq mL(-1) HTO), whereas cells exposed to 0.9 MBq mL(-1) showed a significantly enhanced maximum cell density of 1.90 × 10(6) cells mL(-1) , an increase of 15%. With regard to oxidative stress, exposure to HTO (0.04, 0.16, and 2.8 MBq mL(-1) ) induced an early dose-dependent peak in ROS production after 14-15 min of exposure, followed by a slow decrease in ROS which stabilized after 60 min. Moreover, this study showed that the presence of HTO may influence the impact of other conventional, nonradioactive contaminants, such as copper, a well known oxidizing trace metal for aquatic organisms. A significant synergic effect of copper and HTO on ROS production was observed. This synergic effect on oxidative stress was shown to be linked to an enhanced copper uptake rate measured in the presence of HTO (> 4 times). We conclude that HTO should be considered as a sensitizer when in a mixture with other contaminants, especially through interactions on the antioxidant system of algae. PMID:20607814

  15. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Lili; Tian, Tian; Jiang, Jing; Ai, Lunhong

    2015-10-01

    The development of efficient and cheap anode materials for the utilization in the oxygen evolution reaction (OER) is essential for energy-conversion technologies. In this study, hierarchically porous Co3O4 architectures with honeycomb-like structures are synthesized by employing cobalt-based zeolitic imidazolate framework (ZIF-67-Co) as metal source and sacrificial template. After a simple one-step calcination process, the ZIF-67-Co precursor can be chemically transformed into the Co3O4 architectures with abundant porosity and oxygen vacancy. These easily obtained and earth-abundant Co3O4 architectures present high performance toward the electrochemical water splitting for evolving molecular oxygen, affording a small OER onset potential, large anodic current and long-term durability in 0.1 M KOH solution, which are comparable to the electroactive noble- and transition-metal oxygen evolution catalysts previously reported. These merits suggest that the ZIF-derived Co3O4 architectures are promising electrocatalysts for OER from water splitting.

  16. Science: Pure or Applied?

    ERIC Educational Resources Information Center

    Evans, Peter

    1980-01-01

    Through a description of some of the activities which take place in his science classroom, the author makes a strong case for the inclusion of technology, or applied science, rather than pure science in the primary curriculum. (KC)

  17. Pure-quartic solitons.

    PubMed

    Blanco-Redondo, Andrea; de Sterke, C Martijn; Martijn, de Sterke C; Sipe, J E; Krauss, Thomas F; Eggleton, Benjamin J; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  18. Pure-quartic solitons

    PubMed Central

    Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  19. Pure-quartic solitons

    NASA Astrophysics Data System (ADS)

    Blanco-Redondo, Andrea; Martijn, De Sterke C.; Sipe, J. E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers.

  20. Oxygen K-edge fine structures of water by x-ray Raman scattering spectroscopy under pressure conditions

    SciTech Connect

    Fukui, Hiroshi; Huotari, Simo; Andrault, Denis; Kawamoto, Tatsuhiko

    2007-10-07

    Fine structure of the oxygen K edge was investigated for water at ambient pressure, 0.16, 0.21, 0.27, 0.47, and 0.60 GPa using x-ray Raman scattering spectroscopy (XRS). Similarity in near-edge structures at 0.16 and 0.60 GPa suggests little difference in the electronic state of oxygen in the low-pressure and high-pressure forms of water. Yet, we observed significant variation of preedge structure of the XRS spectra with compression. The intensity of the preedge peak at 535.7 eV has a minimal value at around 0.3 GPa, indicating that the number of hydrogen bonding increases first and then decreases as a function of pressure.

  1. Geomorphology: Pure and applied

    SciTech Connect

    Hart, M.G.

    1986-01-01

    The book summarizes the history of intellectual debate in geomorphology and describes modern developments both ''pure'' and ''applied.'' The history begins well before W.M. Davis and follows through to such debates as those concerned with the Pleistocene. Modern developments in pure geomorphology are cast in terms of chapters on form, process, materials, and methods analysis. The applied chapters concentrate on environmental hazards and resources, and their management.

  2. Kinetics of oxygen-enhanced water gas shift on bimetallic catalysts and the roles of metals and support

    NASA Astrophysics Data System (ADS)

    Kugai, Junichiro

    The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O

  3. Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Kattner, G.; Beszczynska-Möller, A.; Nöthig, E. M.; Stimac, I.

    2011-05-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on a hotspot of methane formation in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79° N oceanographic transect. We show that between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitation occurs and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences and initiates regenerated production in the western Fram Strait. In a unique biogeochemical feedback process, methane production occurs despite an oxygen excess. We postulate that DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for methane formation. Thus, feedback effects on cycling pathways of methane are likely, with DMSP catabolism in high latitudes possibly contributing to a warming effect on the earth's climate. This process could constitute an additional component in biogeochemical cycling in a seasonal ice-free Arctic Ocean. The metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment. Therefore we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  4. A Survey and Resource Materials on the Use of Oxygen Supplementation in Fish Culture.

    SciTech Connect

    Colt, John; Orwicz, Kris; Bouck, Gerald R.

    1988-09-01

    Oxygen supplementation is the process by which naturally occurring dissolved oxygen (DO) is supplemented with enriched oxygen to restore or enhance DO levels in water. In aquaculture this is usually done with relatively pure oxygen and the result has significant potential to improve fish health, aid hatchery economic considerations, or both. For example, oxygen supplementation can preclude both hypoxia and gas bubble disease, as well as allow more fish to be reared in the same space or water or both. However, the concepts and technology in oxygen supplementation are evolving rapidly and direct communication with the user groups would foster technology transfer and improve implementation. Therefore we undertook and now report a survey of organizations that either currently use or plan to use oxygen supplementation. Additionally we included various pertinent material, including literature sources, lists of consultants and equipment manufacturers and some current research in oxygen supplementation.

  5. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  6. The influence of excitation radiation parameters on photosensitized generation of singlet oxygen in water

    NASA Astrophysics Data System (ADS)

    Il'ina, A. D.; Glazov, A. L.; Semenova, I. V.; Vasyutinskii, O. S.

    2016-06-01

    Photosensitized generation of singlet oxygen with the aid of Radahlorin® photosensitizer has been investigated. The dependences of the intensity of singlet oxygen phosphorescence and photosensitizer fluorescence on the excitation radiation wavelength in the range of 350-440 nm and on the irradiation dose have been obtained. The dependence of the ratio of the sensitizer fluorescence intensity at about 670 nm to the singlet oxygen phosphorescence intensity at a wavelength of 1270 nm on the excitation radiation wavelength is found to be nonmonotonic and have a minimum near the center of the absorption band on its red wing. The results obtained can be used to monitor the singlet oxygen concentration in solutions.

  7. Oxygen isotope fractionation between hydration water and free water in the MgSO4 and FeSO4 systems

    NASA Astrophysics Data System (ADS)

    Kohl, I. E.; Coleman, M. L.

    2012-12-01

    MgSO4 or FeSO4. The isotope composition of free (non-hydration sphere) waters from experimental solutions were determined by replicate analyses of CO2 gas equilibrated with 18MOhm water containing 0-2.0M MgSO4 and 0-1.6M FeSO4 (the highest concentrations were just below saturation). Differences over the temperature range, 4°C - 70°C were measured between pure water and free water from ionic solutions showed maximum Δ18O (difference between measured CO2 from a given solution and that from pure water) at the highest temperatures and concentrations, of -6‰ and -3‰ for MgSO4 and FeSO4, respectively. Δ18O were, for the most part, linear with both concentration and temperature, decreasing to <1‰ at 0.5 -0.2M. The changes in free water isotopic composition reflect fractionation associated with the capture of hydration sphere water and ion pair formation. As different ion pair types have different hydration numbers and are likely to have slightly different fractionation factors, these data will eventually allow us to compute the isotopic compositions of all species in the system. The main target being hydration sphere water and a validation that, as expected, this latter water is captured as crystalline water during formation of hydrated evaporite minerals. These data will enable the understanding of possible bulk water isotopic compositions on Mars.

  8. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  9. Characterizing Redox Conditions in Oxygen-deficient Waters Off Peru During the 2013 US GEOTRACES Zonal Transect

    NASA Astrophysics Data System (ADS)

    Cutter, G. A.; Nielsdottir, M.

    2014-12-01

    The oxygen-deficient zone that extends from coastal Peru well into the tropical Pacific Ocean has been described as "suboxic," but recent measurements of sulfate reduction suggest it may have some anoxic characteristics (e.g., free sulfide). The redox poise of suboxia strongly affects the solubility/stability of a wide variety of trace elements and therefore their vertical and horizontal transport. The problem is that suboxic is not chemically well defined, but certainly represents a very wide range of redox conditions (pE of ca. 10 to -2). During the 2013 US GEOTRACES Pacific cruise (International GEOTRACES section GP16) we determined a suite of redox couples to help define the redox poise in the water column: oxygen(/water), iodate/iodide, nitrate/nitrite, selenate/elemental Se, arsenate/arsenite, and sulfate/hydrogen sulfide. Using the RV Thomas Thompson we occupied a total of 11 stations along 12° S from coastal Peru to 94° W to sample the oxygen deficient waters using a conventional CTD/rosette and the trace metal-clean US GEOTRACES CTD/carousel. Determinations of all the redox tracers were made on board ship except for selenium. On the Peru shelf, oxygen concentrations were less than 10 μM from 30m to the bottom, while farther offshore the depth of this oxygen minimum was 700 m thick starting at ca. 80 m depth; the layer thickness steadily decreased moving west. In spite of the low oxygen conditions, nitrate and iodate were still detectable, while their corresponding reduced species had maxima in the low O2 waters. Dissolved hydrogen sulfide was below the detection limit of 70 pM, and no evidence of As(V) reduction was found; selenium speciation has yet to be determined. The lack of detectable dissolved hydrogen sulfide shows the redox conditions are certainly not anoxic, and incomplete iodate and nitrate reduction suggest the redox environment is more oxidizing than previously reported. The apparent temporal and spatial variability of the redox poise will

  10. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    NASA Astrophysics Data System (ADS)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (<10-6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH4), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0-5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0-5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH4 emission (r = -0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  11. Combinatorial Development of Water Splitting Catalysts Based on the Oxygen Evolving Complex of Photosystem II

    SciTech Connect

    Woodbury, Neal

    2010-03-31

    The use of methods to create large arrays of potential catalysts for the reaction H2O ½ O2 + 2H+ on the anode of an electrolysis system were investigated. This reaction is half of the overall reaction involved in the splitting of water into hydrogen and oxygen gas. This method consisted of starting with an array of electrodes and developing patterned electrochemical approaches for creating a different, defined peptide at each position in the array. Methods were also developed for measuring the rate of reaction at each point in the array. In this way, the goal was to create and then tests many thousands of possible catalysts simultaneously. This type of approach should lead to an ability to optimize catalytic activity systematically, by iteratively designing and testing new libraries of catalysts. Optimization is important to decrease energy losses (over-potentials) associated with the water splitting reaction and thus for the generation of hydrogen. Most of the efforts in this grant period were focused on developing the chemistry and analytical methods required to create pattern peptide formation either using a photolithography approach or an electrochemical approach for dictating the positions of peptide bond formation. This involved testing a large number of different reactions and conditions. We have been able to find conditions that have allowed us to pattern peptide bond formation on both glass slides using photolithographic methods and on electrode arrays made by the company Combimatrix. Part of this effort involved generating novel approaches for performing mass spectroscopy directly from the patterned arrays. We have also been able to demonstrate the ability to measure current at each electrode due to electrolysis of water. This was performed with customized instrumentation created in collaboration with Combimatrix. In addition, several different molecular designs for peptides that bound metals (primarily Mn) were developed and synthesized and metal

  12. Oxygen electrode-based single antibody amperometric biosensor for qualitative detection of E. coli and bacteria in water.

    PubMed

    Theegala, Chandra S; Small, Danyelle D; Monroe, W Todd

    2008-04-01

    Design and performance of an amperometric biosensor for E. coli O157:H7 that is based on a common dissolved oxygen probe is discussed. Anti-E. coli O157:H7 antibody was conjugated to horseradish peroxidase and immobilized on a nitrocellulose membrane that was placed over the oxygen probe membrane using a custom-fabricated polyvinyl chloride (PVC) insert. Upon bacterial cell binding, a decrease in enzyme activity resulted in a change in oxygen concentration that was detected with a Clark-type oxygen electrode probe. Validation experiments determined the effect of the outer membrane and insert on the Clarke electrode performance and linearity, and the effects of stirring on sensor response. The mechanism of enzymatic disruption is presumably steric hindrance due to binding of the bacterial cell and conformational change in antibody structure. Sampling various dilutions of heat-sterilized E. coli O157:H7 cells in water, as little as 50 bacterial cells/mL could be detected in approximately 20 minutes of sampling and processing procedures. Bacterial concentrations from 0 to 5000 cells/mL were tested, with 2.52 mg/L +/- 0.37 mg/L equivalents of oxygen produced from as few as 50 cells/mL, versus 6.26 +/- 0.64 mg/L when no cells were present in solution. Overall, the developed amperometric biosensor technology offered an efficient means of detection primarily due to its ease of use, cost-effectiveness, portability, and amenability to incorporation at existing water quality gaging stations. PMID:18324534

  13. Sedimentary Redox Conditions, Biogenic Production, and Oxygenation of Southeast Pacific Intermediate Waters Over the Past 30 ky.

    NASA Astrophysics Data System (ADS)

    Muratli, J.; Mix, A.; Chase, Z.; McManus, J.

    2007-12-01

    We present data from SE Pacific sediments in an effort to characterize the paleo-redox conditions of shallow (~400-1000 m) subsurface sediments, and the water masses that overlie them, over the past 30 ky. The sediments were recovered during ODP Leg 202, and come from three sites: 1233, 1234, and 1235; together these three sites constitute a vertical transect of Antarctic Intermediate Water (AAIW). Site 1233, at 41°S, sits in the core of AAIW at 838 m depth. Site 1234, at 36°S, is located between AAIW and the Pacific Central Water (PCW) mass. Site 1235 (489 m) is located close to Site 1234, but is between AAIW and the overlying low- dissolved-oxygen Gunther Undercurrent (GUC) water mass. Recent sediments for sites 1234 and 1235 contain a rich signature of biogenic opal production and enrichments of iron and the authigenic metals U, Mo, and Re. At site 1234 there is a minimum in biogenic Si at approximately 20 ky followed by a slight increase and a second minimum between 12 and 5 ky. At both sites 1233 and 1234 the trace metals exhibit more structure during the period of roughly 15 to 30 ky as compared to the most recent 15 ky. The trace metal data at site 1234 shows a sharp reducing signature at ~17 ky (higher Mo, lower U:Mo ratios), bracketed by periods of more oxygenated conditions (lower Mo, higher U:Mo) back to ~22 ky, and forward to ~12 ky. This combination of low biological production and more oxygenated bottom water may suggest a period of increased AAIW ventilation as far north as site 1234. Although it is difficult at this point to unequivocally separate the impact of ventilation from production using our current data base, it does appear that some of the observed changes in sedimentary character may be ventilation-driven rather than driven by local production.

  14. Impact of liquid water on oxygen reaction in cathode catalyst layer of proton exchange membrane fuel cell: A simple and physically sound model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Gao, Yuan

    2016-06-01

    When cells work at high current density, liquid water accumulates in their catalyst layer (CL) and the gaseous oxygen could dissolve into the water and the ionomer film simultaneously; their associated dissolved concentrations in equilibrium with the gaseous oxygen are also different. Based on a CL acquired using tomography, we present new methods in this paper to derive agglomerate models for partly saturated CL by viewing the movement and reaction of the dissolved oxygen in the two liquids (water and ionomer) and the agglomerate as two independent random processes. Oxygen dissolved in the water moves differently from oxygen dissolved in the ionomer, and to make the analysis tractable, we use an average distribution function to describe the average movement of all dissolved oxygen. A formula is proposed to describe this average distribution function, which, in combination with the exponential distribution assumed in the literature for oxygen reaction, leads to a simple yet physically sound agglomerate model. The model has three parameters which can be directly calculated from CL structure rather than by calibration. We explain how to calculate these parameters under different water contents for a given CL structure, and analyse the impact of liquid water on cell performance.

  15. Pure uterine lipoma.

    PubMed

    Erdem, Gulnur; Celik, Onder; Karakas, Hakki Muammer; Alkan, Alpay; Hascalik, Seyma

    2007-10-01

    Lipomatous tumors of the uterus are unusual, benign neoplasms seen in postmenopausal women. Although many of the mixed-type cases such as lipoleiomyoma and fibrolipoma have been reported, pure uterine lipomas are extremely rare. In the literature, a few cases with pure uterine lipoma have been reported. We first present the advanced magnetic resonance findings of pure uterine lipoma, followed by those of ultrasonography (US) and computed tomography (CT). We markedly detected lipid peaks on the magnetic resonance spectroscopy (MRS) and the apparent diffusion coefficient value to be 0.00 due to chemical-shift effects with diffusion-weighted imaging (DWI). Although pelvic lipomatous tumors can be diagnosed with US and CT, in some cases, further workup may be required to localize the lesion. MRI may yield more valuable data for differential diagnosis. MRS and DWI findings provide additional clues on the nature of the lesion. PMID:17905250

  16. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas

    SciTech Connect

    Grebmeier, J.M. ); Cooper, L.W.; DeNiro, M.J. )

    1990-07-01

    Oxygen isotopic composition of bottom seawater and tunicate cellulose were used as short-term and long-term indicators, respectively, of water-mass characteristics in the northern Bering and Chukchi Seas. Oxygen isotopic composition of northeastern Bering Sea waters is influenced by Yukon River inflows of {sup 18}O-depleted continental water mixing with relatively {sup 18}O-enriched waters contributed by the Anadyr Current. Tunicate cellulose sampled under Alaska coastal water is more depleted in {sup 18}O than that collected under Bering shelf and Anadyr waters, which reflects the oxygen isotopic composition of these waters. Tunicate cellulose collected under the mixed Bering shelf water displays intermediate {delta} {sup 18}O values. Oxygen isotopic analyses of bottom seawater were used to determine the spatial location and influence of continental and coastal-derived precipitation and of sea-ice formation on water-mass structure on the continental shelf of the northern Bering and Chukchi Seas. Results indicate that the oxygen isotopic composition of tunicate cellulose, averaged over multiple seasons, may serve as a long-term biochemical indicator of water-mass patterns in ice-covered polar regions where continuous sampling is impractical.

  17. Detection of molecular oxygen on Mars.

    NASA Technical Reports Server (NTRS)

    Carleton, N. P.; Traub, W. A.

    1972-01-01

    Molecular oxygen was detected in Martian spectra near 7635 A and its abundance was measured both during and after the 1971 dust storm. Its column abundance in the clear Martian atmosphere is about 10.4 plus or minus 1.0 cm/amagat, giving a mixing ratio of molecular oxygen to carbon dioxide 0.0013. The mixing ratio of molecular oxygen to carbon monoxide (1.4 plus or minus 0.3) is quite different from the value of 0.5 that would result from the photolysis of a pure carbon dioxide atmosphere, which indicates that there is or was a net source of oxygen relative to carbon (probably water) in the Martian atmosphere.

  18. Bioengineering Evaluation of Retrofitted Oxygen Supplementation in Surface Water Project ; Final Report 2000.

    SciTech Connect

    Ewing, R.D.

    2000-06-01

    The Willamette Oxygen Supplementation Project was designed to answer one major question concerning the decreasing salmon runs in the Columbia Basin: Can available technology be used to increase runs of chinook salmon in the Columbia basin in existing hatcheries. It was recognized that the restoration of salmon runs would require both hatchery supplementation and protection of wild salmon habitat. The large financial outlay required for construction of new hatcheries makes this choice undesirable. If the production of existing hatcheries could be augmented by the use of increased densities with oxygen supplementation, this would be the preferred procedure. Willamette Hatchery was chosen for conducting the experimental releases of chinook salmon reared at high densities with oxygen supplementation for several reasons: (1) It was located far upstream, simulating the long migration distances required for Columbia River salmon; (2) Salmon were not required to navigate through a series of dams, which might make the returns less interpretable; (3) Willamette Hatchery had excellent returns, nearly 2% survival, in the years previous to the experiment; (4) Willamette Hatchery had a history of low disease incidence; (5) Willamette Hatchery had a manager and crew interested in the experiment. In 1999, the last of the adult salmon from the experiment returned to the hatchery. From analyses of these returns, a number of conclusions were reached: (1) Numbers of fish surviving to adulthood increased with increased rearing densities and oxygen supplementation; (2) Percent yield, a measure of the efficiency of rearing, decreased with increased rearing density; (3) Baffled raceways were very poor for raising spring chinook salmon; (4) Oxygen supplementation seemed to increase production, even in the lower densities; (5) The most cost-effective method of rearing spring chinook salmon was rearing at high densities with oxygen supplementation.

  19. Laboratory Method for Analysis of Small Concentrations of Methyl tert-Butyl Ether and Other Ether Gasoline Oxygenates in Water

    USGS Publications Warehouse

    Rose, Donna L.; Connor, Brooke F.; Abney, Sonja R.; Raese, Jon W.

    1998-01-01

    This Fact Sheet presents data for analysis of nanogram-per-liter concentrations of methyl tert-butyl ether (MTBE) and three other ether gasoline oxygenates, including methyl tert-pentyl ether (TAME), diisopropyl ether (DIPE), and ethyl tert-butyl ether (ETBE), by purge- and-trap capillary-column gas chromatography. Long-term method detection levels (LT-MDLs) for MTBE, TAME, DIPE, and ETBE ranged from 15 to 83 nanograms per liter (0.015 to 0.083 microgram per liter). Nanogram-per-liter-concentration detections are reported if all of the identification criteria are met, whereas previous methods censored detections at a pre-determined method reporting level. The reporting level for this method is defined as two times the LT-MDL, does not censor detections at less than this concentration, and is referred to as the nondetection value (NDV). Bias and variability data from multiple analyses, analysts, and instruments over a 60-day period show the oxygenate recoveries ranging from 100 to 109 percent, with 6 to 8 percent relative standard deviation. MTBE, TAME, DIPE, and ETBE were not detected in the analysis of 225 laboratory reagent blanks from January to December 1997. A preservation study in ground water and surface water indicates that all the oxygenates are stable at pH 2 for up to 216 days, with recoveries ranging from 94 to 115 percent on day 216, and relative standard deviations ranging from 5 to 9 percent for the duration of the study.

  20. Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity.

    PubMed

    Vidimar, Vania; Meng, Xiangjun; Klajner, Marcelina; Licona, Cynthia; Fetzer, Ludivine; Harlepp, Sébastien; Hébraud, Pascal; Sidhoum, Marjorie; Sirlin, Claude; Loeffler, Jean-Philippe; Mellitzer, Georg; Sava, Gianni; Pfeffer, Michel; Gaiddon, Christian

    2012-12-01

    Organometallic compounds which contain metals, such as ruthenium or gold, have been investigated as a replacement for platinum-derived anticancer drugs. They often show good antitumor effects, but the identification of their precise mode of action or their pharmacological optimization is still challenging. We have previously described a class of ruthenium(II) compounds with interesting anticancer properties. In comparison to cisplatin, these molecules have lower side effects, a reduced ability to interact with DNA, and they induce cell death in absence of p53 through CHOP/DDIT3. We have now optimized these molecules by improving their cytotoxicity and their water solubility. In this article, we demonstrate that by changing the ligands around the ruthenium we modify the ability of the compounds to interact with DNA. We show that these optimized molecules reduce tumor growth in different mouse models and retain their ability to induce CHOP/DDIT3. However, they are more potent inducers of cancer cell death and trigger the production of reactive oxygen species and the activation of caspase 8. More importantly, we show that blocking reactive oxygen species production or caspase 8 activity reduces significantly the activity of the compounds. Altogether our data suggest that water-soluble ruthenium(II)-derived compounds represent an interesting class of molecules that, depending on their structures, can target several pro-apoptotic signaling pathways leading to reactive oxygen species production and caspase 8 activation. PMID:22964219

  1. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass.

    PubMed

    Yamamoto, Hironori; Yamamoto, Tamiji; Mito, Yugo; Asaoka, Satoshi

    2016-06-15

    Granulated coal ash (GCA), which is a by-product of coal thermal electric power stations, effectively decreases phosphate and hydrogen sulfide (H2S) concentrations in the pore water of coastal marine sediments. In this study, we developed a pelagic-benthic coupled ecosystem model to evaluate the effectiveness of GCA for diminishing the oxygen-deficient water mass formed in coastal bottom water of Hiroshima Bay in Japan. Numerical experiments revealed the application of GCA was effective for reducing the oxygen-deficient water masses, showing alleviation of the DO depletion in summer increased by 0.4-3mgl(-1). The effect of H2S adsorption onto the GCA lasted for 5.25years in the case in which GCA was mixed with the sediment in a volume ratio of 1:1. The application of this new GCA-based environmental restoration technique could also make a substantial contribution to form a recycling-oriented society. PMID:27143344

  2. The Formation of Oxygen-Containing Molecules in Liquid Water Environments on the Surface of Titan (Invited)

    NASA Astrophysics Data System (ADS)

    Neish, C.

    2010-12-01

    Saturn’s moon Titan represents a unique locale for studying prebiotic chemistry. Reactions occurring in its thick nitrogen - methane atmosphere produce a wide variety of organic molecules. Observations by the Voyager spacecraft found evidence for six gas-phase hydrocarbons and three nitriles, along with an enveloping haze layer shrouding the surface of the moon (Hanel et al., 1981; Kunde et al., 1981; Maguire et al., 1981). More recently, the INMS instrument on the Cassini spacecraft has found evidence for organic molecules up to its mass limit of 100 Da at altitudes as high as 1200 km (Waite et al., 2005; Vuitton et al. 2007). Laboratory experiments that simulate the reactions occurring in Titan’s atmosphere produce many of the same organic molecules observed by Voyager and Cassini, along with organic precipitates known as tholins. Tholins have the general formula CxHyNz and are spectrally similar to Titan’s haze (Khare et al., 1984). Though interesting from the point of view of organic chemistry, the molecules found in Titan’s atmosphere stop short of addressing questions related to the origins of life. Oxygen - a key element for most known biological molecules - is generally lacking in Titan’s atmosphere. The most abundant oxygenated molecule, CO, is present at only ~50 ppm (de Kok et al., 2007). However, if Titan’s atmospheric organic molecules mix with water found in cryovolcanic lavas or impact melts, they may react to produce oxygen-containing, prebiotic species. In this paper, I will show that reactions between Titan tholins and low temperature aqueous solutions produce a wide variety of oxygen-containing species. These reactions display first-order kinetic behaviour with half-lives between 0.4 to 7 days at 273 K (in water) and between 0.3 and 14 days at 253 K (in 13 wt. % ammonia-water). Tholin hydrolysis is thus very fast compared to the freezing timescales of impact melts and volcanic sites on Titan, which take hundreds to thousands of years

  3. A micropalaeontological perspective on export productivity, oxygenation and temperature in NE Atlantic deep-waters across Terminations I and II

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Skinner, Luke; Hodell, David A.; Piller, Werner E.

    2015-08-01

    Census counts of benthic foraminifera were studied from the SW Iberian Margin to reconstruct past changes in deep-water hydrography across Terminations I and II. Detailed benthic faunal data (> 125 μm size-fraction) allow us to evaluate the limitations imposed by taphonomic processes and restricted size-fractions. The comparison of recent (mudline) and fossil assemblages at IODP Site U1385 indicates the quick post-mortem disintegration of shells of astrorhizoid taxa (~ 80% of the present-day fauna), resulting in impoverished fossil assemblages. While the application of quantitative proxy methods is problematic under these circumstances, the fossil assemblages can still provide a qualitative palaeoenvironmental signal that, while most fully expressed in the 125-212 μm size-fraction, is nonetheless also expressed to some degree in the > 212 μm size-fraction. Variations in the benthic foraminiferal assemblages reveal information about changing organic matter supply, deep-water oxygenation and temperature. MIS 2 is generally characterized by an elevated trophic state and variable oxic conditions, with oxygenation minima culminating in the Younger Dryas (YD) and Heinrich Stadials (HS) 1, 2 and 3. Low oxic conditions coincide with decreased water-temperature and lower benthic δ13C, pointing to the strong influence of a southern sourced water-mass during these periods. HS 1 is the most extreme of these intervals, providing further evidence for a severe temporary reduction or even shutdown of AMOC. With the inception of MIS 1, organic matter supply reduced and a better ventilated deep-water environment bathed by NEADW is established. For Termination II, clear indications of southern-sourced water are limited to the early phase of HS 11. During the latter part of HS 11, the deep-water environment seems to be determined by strongly increased supply of organic matter, potentially explaining the decoupling of benthic δ13C and Mg/Ca records of earlier studies as a

  4. Lamp enables measurement of oxygen concentration in presence of water vapor

    NASA Technical Reports Server (NTRS)

    Brisco, F. J.; Moorhead, J. E.; Paige, W. S.

    1967-01-01

    Open-electrode ultraviolet source lamp radiates sufficient energy at 1800 angstroms and 1470 angstroms for use in a double-beam, duel-wavelength oxygen sensor. The lamp is filled with xenon at a pressure of 100 mm of Hg.

  5. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  6. Dahlbeck and Pure Ontology

    ERIC Educational Resources Information Center

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  7. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes

    USGS Publications Warehouse

    McKenzie, W.F.; Truesdell, A.H.

    1977-01-01

    The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above ca. 140??C and that little re-equilibration occurs during ascent to the surface. The geothermometer is, however, affected by changes in ??18O of water due to subsurface boiling and dilution and by addition of sulfate of nearsurface origin. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142??C, respectively. ?? 1976.

  8. Live foraminiferal faunas (Rose Bengal stained) from the northern Arabian Sea: links with bottom-water oxygenation

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Koho, K. A.; Mojtahid, M.; Reichart, G. J.; Jorissen, F. J.

    2013-09-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2-78 μM) and bathymetric (885-3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125 μm, 125-150 μm and > 150 μm). The larger foraminifera (> 125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ, suggesting an opportunistic behaviour. On the basis of a Principal Component Analysis, three foraminiferal groups were identified, reflecting the environmental parameters along the study transect. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta, Praeglobobulimina spp. , Bulimina exilis, Uvigerina peregrina typeparva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16 μM), is composed of more cosmopolitan taxa tolerant to low-oxygen concentrations (Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, more cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last group, reflecting the higher BWO. At these deeper sites, the faunas exhibit a clear depth

  9. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  10. Tracing ground-water movement by using the stable isotopes of oxygen and hydrogen, upper Penitencia Creek alluvial fan, Santa Clara Valley, California

    USGS Publications Warehouse

    Muir, K.S.; Coplen, Tyler B.

    1981-01-01

    Starting in 1965 the Santa Clara Valley Water District began importing about i00,000 acre-feet per year of northern California water. About one-half of this water was used to artificially recharge the Upper Penitencia Creek alluvial fan in Santa Clara Valley. In order to determine the relative amounts of local ground water and recharged imported water being pumped from the wells, stable isotopes of oxygen and hydrogen were used to trace the movement of the imported water in the alluvial fan. To trace the movement of imported water in the Upper Penitencia Creek alluvial fan, well samples were selected to give areal and depth coverage for the whole fan. The stable isotopes of oxygen-16, oxygen-18, and deuterium were measured in the water samples of imported water and from the wells and streams in the Santa Clara Valley. The d18oand dD compositions of the local runoff were about -6.00 o/oo (parts per thousand) and -40 o/oo, respectively; the average compositions for the local native ground-water samples were about -6.1 o/oo and -41 o/oo, respectively; and the average compositions of the imported water samples were -10.2 o/oo and -74 o/oo, respectively. (The oxygen isotopic composition of water samples is reported relative to Standard Mean Ocean Water, in parts per thousand.) The difference between local ground water and recharged imported water was about 4.1 o/oo in d18o and 33 o/oo in dL. The isotopic data indicate dilution of northern California water with local ground water in a downgradient direction. Two wells contain approximately 74 percent northern California water, six wells more than 50 percent. Data indicate that there may be a correlation between the percentage of northern California water and the depth or length of perforated intervals in wells.

  11. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water

    PubMed Central

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-01-01

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs. PMID:20133799

  12. Study on the killing of oceanic harmful micro-organisms in ship's ballast water using oxygen active particles

    NASA Astrophysics Data System (ADS)

    Chen, C.; Meng, X. Y.; Bai, M. D.; Tian, Y. P.; Jing, Y.

    2013-03-01

    Global Environment Facility has identified that the spread of marine invasive alien species is one of the four major risk factors threatening the safety of global marine environments. Ballast water discharge is the main cause of biological invasion. With physical methods of strong electric field ionization discharge at atmospheric pressure, O2 and sea water (gaseous) were ionized, and then dissociated to a number of oxygen active particles (ROS) such as ·OH, O2+, H2O+, etc. ROS was injected into 0.6 t h-1 ballast water treatment system to form high concentration ROS solution in order to kill the harmful micro-organisms in ballast water. According to the land-based test standard of International Maritime Organization (IMO) Guidelines for Approval of Ballast Water Management Systems (G8), this paper concludes that single-cell algae of 3.0 × 104 cell ml-1 and bacteria of 2.0 × 104 cfu ml-1 were killed by ROS solution of 2.0 ppm. Death rate could reach almost 100%. The results meet the requirements of Regulation D-2 of International Convention for the Control and Management of Ships' Ballast Water and Sediments completely.

  13. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava

    PubMed Central

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  14. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.

    PubMed

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  15. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  16. Extraterrestrial water of possible Martian origin in SNC meteorites: Constraints from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Karlsson, H. R.; Clayton, R. N.; Gibson, E. K.; Mayeda, T. K.; Socki, R. A.

    1991-01-01

    Many lines of evidence suggest that the SNC group of meteorites (Shergotty-Nakhla-Chassigny) are derived from the planet Mars. Because SNC meteorites have water, they may contain information on the origin and fate of water on the planet Mars. The first measurements are presented of delta O-18 and delta O-17 of water extracted from SNC's. The water analyses are displayed with each meteorite designated. The isotopic composition is shown of the SNC waters relative to the SNC whole rocks and the terrestrial line. The O-17 excess is shown of the SNC water as a function of pyrolysis temperature. And delta O-18 values are displayed of the water as a function of pyrolysis temperature for the four SNC meteorites. The analyses are briefly examined.

  17. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios

    USGS Publications Warehouse

    Silva, S.R.; Kendall, C.; Wilkison, D.H.; Ziegler, A.C.; Chang, Cecily C.Y.; Avanzino, R.J.

    2000-01-01

    A new method for concentrating nitrate from fresh waters for ??15N and ??18O analysis has been developed and field-tested for four years. The benefits of the method are: (1) elimination of the need to transport large volumes of water to the laboratory for processing; (2) elimination of the need for hazardous preservatives; and (3) the ability to concentrate nitrate from fresh waters. Nitrate is collected by, passing the water-sample through pre-filled, disposable, anion exchanging resin columns in the field. The columns are subsequently transported to the laboratory where the nitrate is extracted, converted to AgNO3 and analyzed for its isotope composition. Nitrate is eluted from the anion exchange columns with 15 ml of 3 M HCl. The nitrate-bearing acid eluant is neutralized with Ag2O, filtered to remove the AgCl precipitate, then freeze-dried to obtain solid AgNO3, which is then combusted to N2 in sealed quartz tubes for ?? 15N analysis. For ?? 18O analysis, aliquots of the neutralized eluant are processed further to remove non-nitrate oxygen-bearing anions and dissolved organic matter. Barium chloride is added to precipitate sulfate and phosphate; the solution is then filtered, passed through a cation exchange column to remove excess Ba2+, re-neutralized with Ag2O, filtered, agitated with activated carbon to remove dissolved organic matter and freeze-dried. The resulting AgNO3 is combusted with graphite in a closed tube to produce CO2, which is cryogenically purified and analyzed for its oxygen isotope composition. The 1?? analytical precisions for ??15N and ??18O are ?? 0.05%o and ??0.5???, respectively, for solutions of KNO3 standard processed through the entire column procedure. High concentrations of anions in solution can interfere with nitrate adsorption on the anion exchange resins, which may result in isotope fractionation of nitrogen and oxygen (fractionation experiments were conducted for nitrogen only; however, fractionation for oxygen is expected

  18. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stable H and O isotope composition of river and stream water records information on runoff sources and land/atmosphere water fluxes within the catchment, and is a potentially powerful tool for network-based monitoring of large ecohydrological systems. Process-based hydrological models, however,...

  19. Water conditions and geochemistry in northern Adriatic anoxia-prone areas and response of benthic faunas to oxygen deficiencies

    NASA Astrophysics Data System (ADS)

    Zuschin, Martin; Riedel, Bettina; Stachowitsch, Michael; Cermelj, Branko

    2010-05-01

    One predicted effect of global climate change, specifically global warming, is the increase in the temperatures and stratification of shallow coastal and estuarine systems. This, coupled with ongoing anthropogenic eutrophication, will exacerbate hypoxia and benthic mortalities, significantly damaging these critical marine ecosystems. These phenomena are particularly severe on sublitoral soft-bottoms such as the poorly sorted silty sands at the study site in the northern Adriatic Sea. We deployed a specially developed underwater chamber to artificially induce anoxia in situ. Our Experimental Anoxia Generating Unit (EAGU) is a large plexiglass chamber that combines a digital camera with oxygen/hydrogen sulphide/pH sensors along with flashes and battery packs. The unit can be deployed for up to five days to autonomously generate oxygen crises and quantify both physico-chemical parameters and benthic responses. The system is initially positioned in an "open" configuration (open-sided aluminium frame) over the benthic fauna ("control" experiment). After 24 h the EAGU is switched to its "closed" configuration (plexiglass enclosure) and repositioned over the same assemblage. In this contribution, we focus on the natural oxygen content, temperature and pH of bottom waters during summer, the course of oxygen decrease during our experiments and the onset of H2S development. Oxygen content of the bottom water, a few centimetres above the sediment-water interface, ranges from ~3.5-8 but is mostly between 4-6 ml l-1 during July to September of the study periods (2005 and 2006) and decreases to zero within ~1-3 days after initiation of our experiments. In parallel, H2S starts to develop at the onset of anoxia. Water temperatures at the bottom were stable during experiments and ranged from 18.5°C to 21.4°C, but pH decreased from 8.3 to 8.1 at the beginning to 7.9 to 7.7 at the end of the experiments. Sediment profiling indicates that the diffusive benthic boundary layer is

  20. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  1. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water.

    PubMed

    Hocaoglu, S Murat; Insel, G; Cokgor, E Ubay; Orhon, D

    2011-03-01

    Effect of low dissolved oxygen on simultaneous nitrification and denitrification was evaluated in a membrane bioreactor treating black water. A fully aerobic membrane bioreactor was operated at a sludge age of 60 days under three low dissolved oxygen (DO) levels below 0.5mg/L. It sustained effective simultaneous nitrification/denitrification for the entire observation period. Nitrification was incomplete due to adverse effects of a number of factors such as low DO level, SMPs inhibition, alkalinity limitation, etc. DO impact was more significant on denitrification: Nitrate was fully removed at low DO level but the removal was gradually reduced as DO was increased to 0.5mg/L. Nitrogen removal remained optimal within the DO range of 0.15-0.35 mg/L. Experimental results were calibrated and simulated by model evaluation with the same model coefficients. The model defined improved mass transfer with lower affinity coefficients for oxygen and nitrate as compared to conventional activated sludge. PMID:21239168

  2. Surface Measurements of Oxygen, Carbon Dioxide and Water Vapor Fluxes Using AN Automated Chamber System

    NASA Astrophysics Data System (ADS)

    Fentabil, M. M.; Fazackerley, S.; Nichol, C. F.

    2011-12-01

    The various soil respiration measurements that are available depend on measuring the emitted CO2 flux as organic carbon is respired aerobically. Comparative studies among the four well known methods (the open-flow infra-red gas analyzer method; the closed chamber method; the dynamic closed chamber method; and the alkali absorption method) under field conditions and laboratory experiments show differences. The discrepancies observed in these methods under field conditions could be evaluated by incorporating O2 flux measurement in addition to CO2 flux measurement. However, this is hampered by the absence of suitable equipment for measuring oxygen influx at the soil surface. A system to measure O2 fluxes at the soil surface using chamber methods has been developed. A gas handling subsystem and O2 analyser has been incorporated into an existing non-steady st