Science.gov

Sample records for oxylipin biosynthetic complex

  1. A Covalent Linker Allows for Membrane Targeting of An Oxylipin Biosynthetic Complex

    SciTech Connect

    Gilbert, N.C.; Niebuhr, M.; Tsuruta, H.; Bordelon, T.; Ridderbusch, O.; Dassey, A.; Brash, A.R.; Bartlett, S.G.; Newcomer, M.E.

    2009-05-18

    A naturally occurring bifunctional protein from Plexaura homomalla links sequential catalytic activities in an oxylipin biosynthetic pathway. The C-terminal lipoxygenase (LOX) portion of the molecule catalyzes the transformation of arachidonic acid (AA) to the corresponding 8R-hydroperoxide, and the N-terminal allene oxide synthase (AOS) domain promotes the conversion of the hydroperoxide intermediate to the product allene oxide (AO). Small-angle X-ray scattering data indicate that in the absence of a covalent linkage the two catalytic domains that transform AA to AO associate to form a complex that recapitulates the structure of the bifunctional protein. The SAXS data also support a model for LOX and AOS domain orientation in the fusion protein inferred from a low-resolution crystal structure. However, results of membrane binding experiments indicate that covalent linkage of the domains is required for Ca2+-dependent membrane targeting of the sequential activities, despite the noncovalent domain association. Furthermore, membrane targeting is accompanied by a conformational change as monitored by specific proteolysis of the linker that joins the AOS and LOX domains. Our data are consistent with a model in which Ca2+-dependent membrane binding relieves the noncovalent interactions between the AOS and LOX domains and suggests that the C2-like domain of LOX mediates both protein-protein and protein-membrane interactions.

  2. Survey of volatile oxylipins and their biosynthetic precursors in bryophytes.

    PubMed

    Croisier, Emmanuel; Rempt, Martin; Pohnert, Georg

    2010-04-01

    Oxylipins are metabolites which are derived from the oxidative fragmentation of polyunsaturated fatty acids. These metabolites play central roles in plant hormonal regulation and defense. Here we survey the production of volatile oxylipins in bryophytes and report the production of a high structural variety of C5, C6, C8 and C9 volatiles of mosses. In liverworts and hornworts oxylipin production was not as pronounced as in the 23 screened mosses. A biosynthetic investigation revealed that both, C18 and C20 fatty acids serve as precursors for the volatile oxylipins that are mainly produced after mechanical wounding of the green tissue of mosses. PMID:20079505

  3. Structural Insights Into the Evolutionary Paths of Oxylipin Biosynthetic Enzymes

    SciTech Connect

    Lee, D.-S.; Nioche, P.; Hamberg, M.; Raman, C.S.

    2009-05-20

    The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic {pi}-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.

  4. Oxylipins in moss development and defense

    PubMed Central

    de León, Inés Ponce; Hamberg, Mats; Castresana, Carmen

    2015-01-01

    Oxylipins are oxygenated fatty acids that participate in plant development and defense against pathogen infection, insects, and wounding. Initial oxygenation of substrate fatty acids is mainly catalyzed by lipoxygenases (LOXs) and α-dioxygenases but can also take place non-enzymatically by autoxidation or singlet oxygen-dependent reactions. The resulting hydroperoxides are further metabolized by secondary enzymes to produce a large variety of compounds, including the hormone jasmonic acid (JA) and short-chain green leaf volatiles. In flowering plants, which lack arachidonic acid, oxylipins are produced mainly from oxidation of polyunsaturated C18 fatty acids, notably linolenic and linoleic acids. Algae and mosses in addition possess polyunsaturated C20 fatty acids including arachidonic and eicosapentaenoic acids, which can also be oxidized by LOXs and transformed into bioactive compounds. Mosses are phylogenetically placed between unicellular green algae and flowering plants, allowing evolutionary studies of the different oxylipin pathways. During the last years the moss Physcomitrella patens has become an attractive model plant for understanding oxylipin biosynthesis and diversity. In addition to the advantageous evolutionary position, functional studies of the different oxylipin-forming enzymes can be performed in this moss by targeted gene disruption or single point mutations by means of homologous recombination. Biochemical characterization of several oxylipin-producing enzymes and oxylipin profiling in P. patens reveal the presence of a wider range of oxylipins compared to flowering plants, including C18 as well as C20-derived oxylipins. Surprisingly, one of the most active oxylipins in plants, JA, is not synthesized in this moss. In this review, we present an overview of oxylipins produced in mosses and discuss the current knowledge related to the involvement of oxylipin-producing enzymes and their products in moss development and defense. PMID:26191067

  5. Oxylipins in moss development and defense.

    PubMed

    Ponce de León, Inés; Hamberg, Mats; Castresana, Carmen

    2015-01-01

    Oxylipins are oxygenated fatty acids that participate in plant development and defense against pathogen infection, insects, and wounding. Initial oxygenation of substrate fatty acids is mainly catalyzed by lipoxygenases (LOXs) and α-dioxygenases but can also take place non-enzymatically by autoxidation or singlet oxygen-dependent reactions. The resulting hydroperoxides are further metabolized by secondary enzymes to produce a large variety of compounds, including the hormone jasmonic acid (JA) and short-chain green leaf volatiles. In flowering plants, which lack arachidonic acid, oxylipins are produced mainly from oxidation of polyunsaturated C18 fatty acids, notably linolenic and linoleic acids. Algae and mosses in addition possess polyunsaturated C20 fatty acids including arachidonic and eicosapentaenoic acids, which can also be oxidized by LOXs and transformed into bioactive compounds. Mosses are phylogenetically placed between unicellular green algae and flowering plants, allowing evolutionary studies of the different oxylipin pathways. During the last years the moss Physcomitrella patens has become an attractive model plant for understanding oxylipin biosynthesis and diversity. In addition to the advantageous evolutionary position, functional studies of the different oxylipin-forming enzymes can be performed in this moss by targeted gene disruption or single point mutations by means of homologous recombination. Biochemical characterization of several oxylipin-producing enzymes and oxylipin profiling in P. patens reveal the presence of a wider range of oxylipins compared to flowering plants, including C18 as well as C20-derived oxylipins. Surprisingly, one of the most active oxylipins in plants, JA, is not synthesized in this moss. In this review, we present an overview of oxylipins produced in mosses and discuss the current knowledge related to the involvement of oxylipin-producing enzymes and their products in moss development and defense. PMID:26191067

  6. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing.

    PubMed

    Buček, A; Brabcová, J; Vogel, H; Prchalová, D; Kindl, J; Valterová, I; Pichová, I

    2016-06-01

    Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris. PMID:26945888

  7. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes

    PubMed Central

    Crofts, Naoko; Abe, Natsuko; Oitome, Naoko F.; Matsushima, Ryo; Hayashi, Mari; Tetlow, Ian J.; Emes, Michael J.; Nakamura, Yasunori; Fujita, Naoko

    2015-01-01

    Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein–protein interactions in maize and wheat amyloplasts. This study investigated whether protein–protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200–400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs–BEs, and, among BE isozymes, BEIIa–Pho1, and pullulanase-type DBE–BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch. PMID:25979995

  8. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes.

    PubMed

    Crofts, Naoko; Abe, Natsuko; Oitome, Naoko F; Matsushima, Ryo; Hayashi, Mari; Tetlow, Ian J; Emes, Michael J; Nakamura, Yasunori; Fujita, Naoko

    2015-08-01

    Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein-protein interactions in maize and wheat amyloplasts. This study investigated whether protein-protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200-400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs-BEs, and, among BE isozymes, BEIIa-Pho1, and pullulanase-type DBE-BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch. PMID:25979995

  9. Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins

    SciTech Connect

    Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Yaqoob, Muhammad M.; Hammock, Bruce D.; Gilroy, Derek; Zeldin, Darryl C.

    2015-08-07

    Vascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors. - Highlights: • We examined oxylipin production in different

  10. Nanolipoprotein particles comprising a natural rubber biosynthetic enzyme complex and related products, methods and systems

    DOEpatents

    Hoeprich, Paul D.; Whalen, Maureen

    2016-04-05

    Provided herein are nanolipoprotein particles that comprise a biosynthetic enzyme more particularly an enzyme capable of catalyzing rubber or other rubbers polymerization, and related assemblies, devices, methods and systems.

  11. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought.

    PubMed

    Savchenko, Tatyana; Kolla, Venkat A; Wang, Chang-Quan; Nasafi, Zainab; Hicks, Derrick R; Phadungchob, Bpantamars; Chehab, Wassim E; Brandizzi, Federica; Froehlich, John; Dehesh, Katayoon

    2014-03-01

    Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA. PMID:24429214

  12. CYP450-derived oxylipins mediate inflammatory resolution

    PubMed Central

    Gilroy, Derek W.; De Maeyer, Roel P. H.; Bystrom, Jonas; Newson, Justine; Lih, Fred B.; Stables, Melanie; Zeldin, Darryl C.; Bishop-Bailey, David

    2016-01-01

    Resolution of inflammation has emerged as an active process in immunobiology, with cells of the mononuclear phagocyte system being critical in mediating efferocytosis and wound debridement and bridging the gap between innate and adaptive immunity. Here we investigated the roles of cytochrome P450 (CYP)-derived epoxy-oxylipins in a well-characterized model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were produced in a biphasic manner during the peaks of acute (4 h) and resolution phases (24–48 h) of the response. The epoxygenase inhibitor SKF525A (epoxI) given at 24 h selectively inhibited arachidonic acid- and linoleic acid-derived CYP450-epoxy-oxlipins and resulted in a dramatic influx in monocytes. The epoxI-recruited monocytes were strongly GR1+, Ly6chi, CCR2hi, CCL2hi, and CX3CR1lo. In addition, expression of F4/80 and the recruitment of T cells, B cells, and dendritic cells were suppressed. sEH (Ephx2)−/− mice, which have elevated epoxy-oxylipins, demonstrated opposing effects to epoxI-treated mice: reduced Ly6chi monocytes and elevated F4/80hi macrophages and B, T, and dendritic cells. Ly6chi and Ly6clo monocytes, resident macrophages, and recruited dendritic cells all showed a dramatic change in their resolution signature following in vivo epoxI treatment. Markers of macrophage differentiation CD11b, MerTK, and CD103 were reduced, and monocyte-derived macrophages and resident macrophages ex vivo showed greatly impaired phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte lineage recruitment and activity to promote inflammatory resolution and represent a previously unidentified internal regulatory system governing the establishment of adaptive immunity. PMID:27226306

  13. CYP450-derived oxylipins mediate inflammatory resolution.

    PubMed

    Gilroy, Derek W; Edin, Matthew L; De Maeyer, Roel P H; Bystrom, Jonas; Newson, Justine; Lih, Fred B; Stables, Melanie; Zeldin, Darryl C; Bishop-Bailey, David

    2016-06-01

    Resolution of inflammation has emerged as an active process in immunobiology, with cells of the mononuclear phagocyte system being critical in mediating efferocytosis and wound debridement and bridging the gap between innate and adaptive immunity. Here we investigated the roles of cytochrome P450 (CYP)-derived epoxy-oxylipins in a well-characterized model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were produced in a biphasic manner during the peaks of acute (4 h) and resolution phases (24-48 h) of the response. The epoxygenase inhibitor SKF525A (epoxI) given at 24 h selectively inhibited arachidonic acid- and linoleic acid-derived CYP450-epoxy-oxlipins and resulted in a dramatic influx in monocytes. The epoxI-recruited monocytes were strongly GR1(+), Ly6c(hi), CCR2(hi), CCL2(hi), and CX3CR1(lo) In addition, expression of F4/80 and the recruitment of T cells, B cells, and dendritic cells were suppressed. sEH (Ephx2)(-/-) mice, which have elevated epoxy-oxylipins, demonstrated opposing effects to epoxI-treated mice: reduced Ly6c(hi) monocytes and elevated F4/80(hi) macrophages and B, T, and dendritic cells. Ly6c(hi) and Ly6c(lo) monocytes, resident macrophages, and recruited dendritic cells all showed a dramatic change in their resolution signature following in vivo epoxI treatment. Markers of macrophage differentiation CD11b, MerTK, and CD103 were reduced, and monocyte-derived macrophages and resident macrophages ex vivo showed greatly impaired phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte lineage recruitment and activity to promote inflammatory resolution and represent a previously unidentified internal regulatory system governing the establishment of adaptive immunity. PMID:27226306

  14. The Patatin-Containing Phospholipase A pPLAIIα Modulates Oxylipin Formation and Water Loss in Arabidopsis thaliana

    PubMed Central

    Yang, Wen-Yu; Zheng, Yong; Bahn, Sung Chul; Pan, Xiang-Qing; Vu, Hieu Sy; Roth, Mary R.; Scheu, Brad; Welti, Ruth; Hong, Yue-Yun; Wang, Xue-Min

    2012-01-01

    The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid. pPLAIIα-deficient plants displayed a higher level of jasmonic acid and methyl jasmonate, as well as the oxylipin-biosynthetic intermediates 13-hydroperoxylinolenic acid and 12-oxophytodienoic acid than wild-type (WT) plants. The expression of genes involved in oxylipin production was also higher in the pPLAIIα-deficient mutant than in WT plants. The mutant plants lost water more quickly than WT plants. The stomata of WT and mutant plants responded similarly to abscisic acid. In response to desiccation, the mutant and WT leaves produced abscisic acid at the same rate, but, after 4 h of desiccation, the jasmonic acid level was much higher in mutant than WT leaves. These results indicate that pPLAIIα negatively regulates oxylipin production and suggest a role in the removal of oxidatively modified fatty acids from membranes. PMID:22259021

  15. Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes

    PubMed Central

    Noverr, Mairi C.; Erb-Downward, John R.; Huffnagle, Gary B.

    2003-01-01

    Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen “cross-talk” that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens. PMID:12857780

  16. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2016-01-01

    Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules. PMID:26805855

  17. Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis - a targeted 'omics study.

    PubMed

    Lee, Yie Hou; Cui, Liang; Fang, Jinling; Chern, Bernard Su Min; Tan, Heng Hao; Chan, Jerry K Y

    2016-01-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial-like tissues at extrauterine sites. Elevation in protein and lipid mediators of inflammation including oxylipins and cytokines within the peritoneum characterize the inflamed pelvic region and may contribute to the survival and growth of displaced endometrial tissues. The presence of a clinically silent but molecularly detectable systemic inflammation in endometriosis has been proposed. Thus, we examined serum oxylipin and immunomodulatory protein levels in 103 women undergoing laparoscopy to evaluate systematically any involvement in systemic pathophysiological inflammation in endometriosis. Oxylipin levels were similar between women with and without endometriosis. Stratification by menstrual phase or severity did not offer any difference. Women with ovarian endometriosis had significantly lower 12-HETE relative to peritoneal endometriosis (-50.7%). Serum oxylipin levels were not associated with pre-operative pain symptoms. Changes to immunomodulatory proteins were minimal, with IL-12(p70), IL-13 and VEGF significantly lower in mild endometriotic women compared to non-endometriotic women (-39%, -54% and -76% respectively). Verification using C-reactive protein as a non-specific marker of inflammation further showed similar levels between groups. The implications of our work suggest pro-inflammatory mediators in the classes studied may have potentially limited value as circulating biomarkers for endometriosis, suggesting of potentially tenuous systemic inflammation in endometriosis. PMID:27193963

  18. Development and Validation of a High-Throughput Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry Approach for Screening of Oxylipins and Their Precursors.

    PubMed

    Wolfer, Arnaud M; Gaudin, Mathieu; Taylor-Robinson, Simon D; Holmes, Elaine; Nicholson, Jeremy K

    2015-12-01

    Lipid mediators, highly bioactive compounds synthesized from polyunsaturated fatty acids (PUFAs), have a fundamental role in the initiation and signaling of the inflammatory response. Although extensively studied in isolation, only a limited number of analytical methods offer a comprehensive coverage of the oxylipin synthetic cascade applicable to a wide range of human biofluids. We report the development of an ultrahigh-performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry (UHPLC-MS) assay to quantify oxylipins and their PUFA precursors in 100 μL of human serum, plasma, urine, and cell culture supernatant. A single 15 min UHPLC run enables the quantification of 43 oxylipins and 5 PUFAs, covering pro and anti-inflammatory lipid mediators synthesized across the cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) pathways. The method was validated in multiple biofluid matrixes (serum, plasma, urine, and cell supernatant) and suppliers, ensuring its suitability for large scale metabonomic studies. The approach is accurate, precise, and reproducible (RSD < 15%) over multiple days and concentrations. Very high sensitivity is achieved with limits of quantification inferior to picograms for the majority of analytes (0.05-125 pg) and linear range spanning up to 5 orders of magnitude. This enabled the quantification of the great majority of these analytes at their low endogenous level in human biofluids. We successfully applied the procedure to individuals undergoing a fasting intervention; oxylipin profiles highlighted significantly altered PUFA and inflammatory profiles in accordance with previously published studies as well as offered new insight on the modulation of the biosynthetic cascade responsible for the regulation of oxylipins. PMID:26501362

  19. Lipoprotein Lipase releases esterified oxylipins from Very Low Density Lipoproteins

    PubMed Central

    Shearer, Gregory C.; Newman, John W.

    2009-01-01

    We previously demonstrated that defects in lipoprotein metabolism alter the distribution of oxygenated polyunsaturated fatty acids (PUFAs) in lipoprotein particles. If these oxidation products are released by lipoprotein lipase (LpL), then their delivery to peripheral tissues with bulk lipids could influence cellular function. Using 26 week old normolipidemic and hyperlipidemic Zucker rats, we measured PUFA alcohols, epoxides, diols, ketones and triols (i.e. oxylipins) in esterified and non-esterified fractions of whole plasma, VLDL, and LpL-generated VLDL-lipolysates. Whole plasma, VLDL, and lipolysate oxylipin profiles were distinct and altered by hyperlipidemia. While >90% of the whole plasma oxylipins were esterified, the fraction of each oxylipin class in the VLDL varied: 46% of alcohols, 30% of epoxides, 19% of diols, <10% of ketones, <1% triols. Whole plasma was dominated by arachidonate alcohols, while the linoleate alcohols, epoxides and ketones showed an increased prevalence in VLDL. LpL-mediated VLDL lipolysis of PUFA alcohols, diols and ketones was detected and the relative abundance of oxygenated linoleates was enhanced in the lipolysates, relative to their corresponding VLDL. In summary esterified oxylipins were seen to be LpL substrates with heterogeneous distributions among lipoprotein classes. Moreover, oxylipin distributions are changes within the context of obesity-associated dyslipidemia. These results support the notion that the VLDL-LpL axis may facilitate the delivery of plasma oxylipins to the periphery. The physiological implication of these findings are yet to be elucidated, however these molecules are plausible indicators of systemic oxidative stress, and could report this status to the peripheral tissues. PMID:19042114

  20. Crystal Structure of a Sulfur Carrier Protein Complex Found in the Cysteine Biosynthetic Pathway of Mycobacterium tuberculosis

    SciTech Connect

    Jurgenson, Christopher T.; Burns, Kristin E.; Begley, Tadhg P.; Ealick, Steven E.

    2008-10-02

    The structure of the protein complex CysM-CysO from a new cysteine biosynthetic pathway found in the H37Rv strain of Mycobacterium tuberculosis has been determined at 1.53 {angstrom} resolution. CysM (Rv1336) is a PLP-containing {beta}-replacement enzyme and CysO (Rv1335) is a sulfur carrier protein with a ubiquitin-like fold. CysM catalyzes the replacement of the acetyl group of O-acetylserine by CysO thiocarboxylate to generate a protein-bound cysteine that is released in a subsequent proteolysis reaction. The protein complex in the crystal structure is asymmetric with one CysO protomer binding to one end of a CysM dimer. Additionally, the structures of CysM and CysO were determined individually at 2.8 and 2.7 {angstrom} resolution, respectively. Sequence alignments with homologues and structural comparisons with CysK, a cysteine synthase that does not utilize a sulfur carrier protein, revealed high conservation of active site residues; however, residues in CysM responsible for CysO binding are not conserved. Comparison of the CysM-CysO binding interface with other sulfur carrier protein complexes revealed a similarity in secondary structural elements that contribute to complex formation in the ThiF-ThiS and MoeB-MoaD systems, despite major differences in overall folds. Comparison of CysM with and without bound CysO revealed conformational changes associated with CysO binding.

  1. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  2. Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate.

    PubMed

    Bera, Asim K; Atanasova, Vesna; Robinson, Howard; Eisenstein, Edward; Coleman, James P; Pesci, Everett C; Parsons, James F

    2009-09-15

    Pseudomonas quinolone signal (PQS), 2-heptyl-3-hydroxy-4-quinolone, is an intercellular alkyl quinolone signaling molecule produced by the opportunistic pathogen Pseudomonas aeruginosa. Alkyl quinolone signaling is an atypical system that, in P. aeruginosa, controls the expression of numerous virulence factors. PQS is synthesized from the tryptophan pathway intermediate, anthranilate, which is derived either from the kynurenine pathway or from an alkyl quinolone specific anthranilate synthase encoded by phnAB. Anthranilate is converted to PQS by the enzymes encoded by the pqsABCDE operon and pqsH. PqsA forms an activated anthraniloyl-CoA thioester that shuttles anthranilate to the PqsD active site where it is transferred to Cys112 of PqsD. In the only biochemically characterized reaction, a condensation then occurs between anthraniloyl-PqsD and malonyl-CoA or malonyl-ACP, a second PqsD substrate, forming 2,4-dihydroxyquinoline (DHQ). The role PqsD plays in the biosynthesis of other alkyl quinolones, such as PQS, is unclear, though it has been reported to be required for their production. No evidence exists that DHQ is a PQS precursor, however. Here we present a structural and biophysical characterization of PqsD that includes several crystal structures of the enzyme, including that of the PqsD-anthranilate covalent intermediate and the inactive Cys112Ala active site mutant in complex with anthranilate. The structure reveals that PqsD is structurally similar to the FabH and chalcone synthase families of fatty acid and polyketide synthases. The crystallographic asymmetric unit contains a PqsD dimer. The PqsD monomer is composed of two nearly identical approximately 170-residue alphabetaalphabetaalpha domains. The structures show anthranilate-liganded Cys112 is positioned deep in the protein interior at the bottom of an approximately 15 A long channel while a second anthraniloyl-CoA molecule is waiting in the cleft leading to the protein surface. Cys112, His257, and

  3. Impact of phyto-oxylipins in plant defense.

    PubMed

    Blée, Elizabeth

    2002-07-01

    Phyto-oxylipins are metabolites produced in plants by the oxidative transformation of unsaturated fatty acids via a series of diverging metabolic pathways. Biochemical dissection and genetic approaches have provided compelling evidence that these oxygenated derivatives actively participate in plant defense mechanisms. During the past decade, interest in this field was focused on the biosynthesis of jasmonic acid (one branch of C18 polyunsaturated fatty acid metabolism) and on its relationship to the other plant defense-signaling pathways. However, recently, antisense strategies have revealed that oxylipins other than jasmonates are probably also essential for the resistance of plants to pathogens. PMID:12119169

  4. Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria.

    PubMed

    Trapp, Marília Almeida; Kai, Marco; Mithöfer, Axel; Rodrigues-Filho, Edson

    2015-02-01

    Bioassay-guided fractionation of Alternanthera brasiliana stem extracts resulted in the isolation of an antibiotically active fraction. Five human pathogenic bacteria were used to guide the fractionation process for the isolation of antimicrobial compounds. Finally, 17 linoleate oxylipins were identified by LC-MS/MS and NMR spectroscopy. Five of the isolated compounds present in A. brasiliana tissues were also detected to be synthesized by endophytic bacteria of the genus Bacillus that were isolated from A. brasiliana. It is speculated that the antibiotic oxylipins from A. brasiliana might derive from bacteria and be involved in an ecological relationship between this plant and its endophytes. PMID:25433629

  5. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs12

    PubMed Central

    Gabbs, Melissa; Leng, Shan; Devassy, Jessay G; Monirujjaman, Md; Aukema, Harold M

    2015-01-01

    Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. PMID:26374175

  6. Hepatic oxylipin profiles in obese rats: Effect of antioxidant supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity induces biochemical changes in lipid metabolism. The extent to which enzymatic and non-enzymatic lipid (per)oxidation products, oxylipins, are altered by obesity is of great interest. Conflicting data exist regarding oxidative damage to lipids in obesity. We investigated the extent to which ...

  7. The emerging role of oxylipins in thrombosis and diabetes.

    PubMed

    Tourdot, Benjamin E; Ahmed, Intekhab; Holinstat, Michael

    2014-01-01

    The prevalence of cardiovascular disease (CVD), the leading cause of death in the US, is predicted to increase due to the shift in age of the general population and increase in CVD risk factors such as obesity and diabetes. New therapies are required to decrease the prevalence of CVD risk factors (obesity and diabetes) as well as reduce atherothrombosis, the major cause of CVD related mortality. Oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids, play a role in the progression of CVD risk factors and thrombosis. Aspirin, a cyclooxygenase-1 inhibitor, decreases atherothrombotic associated mortality by 25%. These potent effects of aspirin have shown the utility of modulating oxylipin signaling pathways to decrease CVD mortality. The role of many oxylipins in the progression of CVD, however, is still uncertain or controversial. An increased understanding of the role oxylipins play in CVD risk factors and thrombosis could lead to new therapies to decrease the prevalence of CVD and its associated mortality. PMID:24432004

  8. Crystal Structure of the Streptomyces coelicolor TetR-Like Protein ActR Alone and in Complex with Actinorhodin or the Actinorhodin Biosynthetic Precursor (S)-DNPA

    SciTech Connect

    Willems,A.; Tahlan, K.; Taguchi, T.; Zhang, K.; Lee, Z.; Ichinose, K.; Junop, M.; Nodwell, J.

    2008-01-01

    Actinorhodin, an antibiotic produced by Streptomyces coelicolor, is exported from the cell by the ActA efflux pump. actA is divergently transcribed from actR, which encodes a TetR-like transcriptional repressor. We showed previously that ActR represses transcription by binding to an operator from the actA/actR intergenic region. Importantly, actinorhodin itself or various actinorhodin biosynthetic intermediates can cause ActR to dissociate from its operator, leading to derepression. This suggests that ActR may mediate timely self-resistance to an endogenously produced antibiotic by responding to one of its biosynthetic precursors. Here, we report the structural basis for this precursor-mediated derepression with crystal structures of homodimeric ActR by itself and in complex with either actinorhodin or the actinorhodin biosynthetic intermediate (S)-DNPA [4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho-[2, 3-c]-pyran-3-(S)-acetic acid]. The ligand-binding tunnel in each ActR monomer has a striking hydrophilic/hydrophobic/hydrophilic arrangement of surface residues that accommodate either one hexacyclic actinorhodin molecule or two back-to-back tricyclic (S)-DNPA molecules. Moreover, our work also reveals the strongest structural evidence to date that TetR-mediated antibiotic resistance may have been acquired from an antibiotic-producer organism.

  9. Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis – a targeted ‘omics study

    PubMed Central

    Lee, Yie Hou; Cui, Liang; Fang, Jinling; Chern, Bernard Su Min; Tan, Heng Hao; Chan, Jerry K. Y.

    2016-01-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial-like tissues at extrauterine sites. Elevation in protein and lipid mediators of inflammation including oxylipins and cytokines within the peritoneum characterize the inflamed pelvic region and may contribute to the survival and growth of displaced endometrial tissues. The presence of a clinically silent but molecularly detectable systemic inflammation in endometriosis has been proposed. Thus, we examined serum oxylipin and immunomodulatory protein levels in 103 women undergoing laparoscopy to evaluate systematically any involvement in systemic pathophysiological inflammation in endometriosis. Oxylipin levels were similar between women with and without endometriosis. Stratification by menstrual phase or severity did not offer any difference. Women with ovarian endometriosis had significantly lower 12-HETE relative to peritoneal endometriosis (−50.7%). Serum oxylipin levels were not associated with pre-operative pain symptoms. Changes to immunomodulatory proteins were minimal, with IL-12(p70), IL-13 and VEGF significantly lower in mild endometriotic women compared to non-endometriotic women (−39%, −54% and −76% respectively). Verification using C-reactive protein as a non-specific marker of inflammation further showed similar levels between groups. The implications of our work suggest pro-inflammatory mediators in the classes studied may have potentially limited value as circulating biomarkers for endometriosis, suggesting of potentially tenuous systemic inflammation in endometriosis. PMID:27193963

  10. Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones.

    PubMed

    Ogorodnikova, Anna V; Mukhitova, Fakhima K; Grechkin, Alexander N

    2015-10-01

    Green tissues of spikemoss Selaginella martensii Spring possessed the complex oxylipins patterns. Major oxylipins were the products of linoleic and α-linolenic acids metabolism via the sequential action of 13-lipoxygenase and divinyl ether synthase (DES) or allene oxide synthase (AOS). AOS products were represented by 12-oxophytodienoic acid (12-oxo-PDA) isomers. Exceptionally, S. martensii possesses high level of 12-oxo-9(13),15-PDA, which is very uncommon in flowering plants. Separate divinyl ethers were purified after micro-preparative incubations of linoleic or α-linolenic acids with homogenate of S. martensii aerial parts. The NMR data allowed us to identify all geometric isomers of divinyl ethers. Linoleic acid was converted to divinyl ethers etheroleic acid, (11Z)-etheroleic acid and a minority of (ω5Z)-etheroleic acid. With α-linolenate precursor, the specificity of divinyl ether biosynthesis was distinct. Etherolenic and (ω5Z)-etherolenic acids were the prevailing products while (11Z)-etherolenic acid was a minor one. Divinyl ethers are detected first time in non-flowering land plant. These are the first observations of fatty acid metabolism through the lipoxygenase pathway in spikemosses (Lycopodiophyta). PMID:26277770

  11. AHL-priming functions via oxylipin and salicylic acid

    PubMed Central

    Schenk, Sebastian T.; Schikora, Adam

    2015-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant–microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID

  12. Arabidopsis ERG28 Tethers the Sterol C4-Demethylation Complex to Prevent Accumulation of a Biosynthetic Intermediate That Interferes with Polar Auxin Transport[C][W

    PubMed Central

    Mialoundama, Alexis Samba; Jadid, Nurul; Brunel, Julien; Di Pascoli, Thomas; Heintz, Dimitri; Erhardt, Mathieu; Mutterer, Jérôme; Bergdoll, Marc; Ayoub, Daniel; Van Dorsselaer, Alain; Rahier, Alain; Nkeng, Paul; Geoffroy, Philippe; Miesch, Michel; Camara, Bilal; Bouvier, Florence

    2013-01-01

    Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development. PMID:24326590

  13. Lipid and oxylipin profiles during aging and sprout development in potato tubers (Solanum tuberosum L.).

    PubMed

    Fauconnier, Marie Laure; Welti, Ruth; Blée, Elizabeth; Marlier, Michel

    2003-07-21

    Potato tubers (Solanum tuberosum L. cv Bintje) were stored at 20 degrees C for 210 days without desprouting to study the lipoxygenase pathway during aging. After 15 days of storage, potato tubers sprouted, while after 45-60 days, apical dominance was lost and multiple sprouts developed. Analysis of the fatty acid hydroperoxides (HPOs) revealed that 9-S-hydroperoxide of linoleic acid (9-HPOD) was the main oxylipin formed. Between 45 and 60 days of storage, increases in the levels of 9-HPOD and colneleic acid were observed. Analysis of phospholipids and galactolipids by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that a decrease in the levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), digalactosyldiacylglycerol (DGDG), and monogalactosyldiacylglycerol (MGDG) occurred between 0 and 45 days of aging. The decrease in the amount of linoleic acid in complex lipids correlates well with the amount of 9-HPOD and colneleic acid produced. PMID:12880871

  14. Biosynthetic Anthracycline Variants

    NASA Astrophysics Data System (ADS)

    Niemi, Jarmo; Metsä-Ketelä, Mikko; Schneider, Gunter; Mäntsälä, Pekka

    In addition to synthetic and semisynthetic methods, new anthracycline structures have been generated by biosynthetic methods: genetic engineering of Streptomyces production strains, bioconversion and chemoenzymatic synthesis. In this review, we discuss the set of molecules potentially producible by biosynthetic methods and which structures have so far been realized. Biosynthetic variation in the anthracycline molecule manifests itself either as structure changes in the tetracyclic aglycone, or as variation in glycosylation. Understanding the biosynthetic sequence and knowledge of the substrate specificities of the enzymes participating in it enable rational generation of new anthracycline diversity. Future possibilities include protein engineering of the biosynthetic enzymes to improve the production of new structural combinations.

  15. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss.

    PubMed

    Alvarez, Alfonso; Montesano, Marcos; Schmelz, Eric; Ponce de León, Inés

    2016-01-01

    Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors. PMID:27047509

  16. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss

    PubMed Central

    Alvarez, Alfonso; Montesano, Marcos; Schmelz, Eric; Ponce de León, Inés

    2016-01-01

    Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors. PMID:27047509

  17. Impact of circulating esterified eicosanoids and other oxylipins on endothelial function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids including epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic (HETEs) and other oxylipins derived from polyunsaturated fatty acids have emerging roles in endothelial inflammation and its atherosclerotic consequences. Unlike many eicosanoids, they are known to be esterified in c...

  18. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese Health Study.

    PubMed

    Sun, Ye; Koh, Hiromi W L; Choi, Hyungwon; Koh, Woon-Puay; Yuan, Jian-Min; Newman, John W; Su, Jin; Fang, Jinling; Ong, Choon Nam; van Dam, Rob M

    2016-07-01

    We aimed to examine the prospective association between plasma FAs, oxylipins, and risk of acute myocardial infarction (AMI) in a Singapore Chinese population. A nested case-control study with 744 incident AMI cases and 744 matched controls aged 47-83 years was conducted within the Singapore Chinese Health Study. Nineteen plasma FAs and 12 oxylipins were quantified using MS. These were grouped into 12 FA clusters and 5 oxylipin clusters using hierarchical clustering, and their associations with AMI risk were assessed. Long-chain n-3 FAs [odds ratio (OR) = 0.67 per SD increase, 95% confidence interval (CI): 0.53-0.84, P < 0.001] and stearic acid (OR = 0.65, 95% CI: 0.44-0.97, P = 0.03) were inversely associated with AMI risk, whereas arachidonic acid (AA) was positively associated with AMI risk (OR = 1.25, 95% CI: 1.03-1.52, P = 0.02) in the multivariable model with adjustment for other FAs. Further adjustment for oxylipins did not substantially change these associations. An inverse association was observed between AA-derived oxylipin, thromboxane (TX)B2, and AMI risk (OR = 0.81, 95% CI: 0.71-0.93, P = 0.003). Circulating long-chain n-3 FAs and stearic acid were associated with a lower and AA was associated with a higher AMI risk in this Chinese population. The association between the oxylipin TXB2 and AMI requires further research. PMID:27371261

  19. Variation in nucleotide sequence of TRI1 in 13 trichothecene-producing species of Fusarium: evidence for a complex evolutionary history of a mycotoxin biosynthetic locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are mycotoxins produced by several genera of fungi, including some agriculturally important Fusarium species. In the two species, Fusarium graminearum and F. sporotrichioides, that have been examined most thoroughly, trichothecene biosynthetic enzymes are encoded at three loci: (1) ...

  20. Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex.

    PubMed

    Ferreira, G C; Andrew, T L; Karr, S W; Dailey, H A

    1988-03-15

    Protoporhyrinogen oxidase (EC 1.3.3.4), the penultimate enzyme of the heme biosynthetic pathway, catalyzes the removal of six hydrogens from protoporphyrinogen IX to form protoporphyrin IX. The enzyme in eukaryotes is associated with the inner mitochondrial membrane. In the present study we have examined requirements for solubilization of this enzyme and find that it behaves as an intrinsic membrane protein that is solubilized only with detergents such as sodium cholate. The in situ orientation of the enzyme with respect to the inner mitochondrial membrane places the active site on the cytosolic face of this membrane rather than the matrix side where the active site of ferrochelatase, the terminal pathway enzyme, is located. Examination of the kinetics of the two terminal enzymes in mitochondrial membranes demonstrates that substrate channeling occurs between these terminal two-pathway enzymes. However, examination of solubilized and membrane-reconstituted enzymes shows no evidence for a stable complex. Based upon these and previous data a model for the terminal three-pathway enzymes is presented. PMID:3346226

  1. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins

    PubMed Central

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J.; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  2. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins.

    PubMed

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  3. Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells.

    PubMed

    Aukema, Harold M; Winter, Tanja; Ravandi, Amir; Dalvi, Siddhartha; Miller, Donald W; Hatch, Grant M

    2016-05-01

    The human blood-brain barrier (BBB) is the restrictive barrier between the brain parenchyma and the circulating blood and is formed in part by microvessel endothelial cells. The brain contains significant amounts of arachidonic acid (ARA), and docosahexaenoic acid (DHA), which potentially give rise to the generation of bioactive oxylipins. Oxylipins are oxygenated fatty acid metabolites that are involved in an assortment of biological functions regulating neurological health and disease. Since it is not known which oxylipins are generated by human brain microvessel endothelial cells (HBMECs), they were incubated for up to 30 min in the absence or presence of 0.1-mM ARA, eicosapentaenoic acid (EPA) or DHA bound to albumin (1:1 molar ratio), and the oxylipins generated were examined using high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Of 135 oxylipins screened in the media, 63 were present at >0.1 ng/mL at baseline, and 95 were present after incubation with fatty acid. Oxylipins were rapidly generated and reached maximum levels by 2-5 min. While ARA, EPA and DHA each stimulated the production of oxylipins derived from these fatty acids themselves, ARA also stimulated the production of oxylipins from endogenous 18- and 20-carbon fatty acids, including α-linolenic acid. Oxylipins generated by the lipoxygenase pathway predominated both in resting and stimulated states. Oxylipins formed via the cytochrome P450 pathway were formed primarily from DHA and EPA, but not ARA. These data indicate that HBMECs are capable of generating a plethora of bioactive lipids that have the potential to modulate BBB endothelial cell function. PMID:26439837

  4. Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    PubMed Central

    Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z.; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D.; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M.; Wheelock, Craig E.

    2011-01-01

    Background Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. Objectives This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Methods Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Results Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E2 (PGE2). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Conclusions Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas. PMID:21897859

  5. LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides.

    PubMed

    Scala, Valeria; Giorni, Paola; Cirlini, Martina; Ludovici, Matteo; Visentin, Ivan; Cardinale, Francesca; Fabbri, Anna A; Fanelli, Corrado; Reverberi, Massimo; Battilani, Paola; Galaverna, Gianni; Dall'Asta, Chiara

    2014-01-01

    Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi. PMID:25566199

  6. LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides

    PubMed Central

    Scala, Valeria; Giorni, Paola; Cirlini, Martina; Ludovici, Matteo; Visentin, Ivan; Cardinale, Francesca; Fabbri, Anna A.; Fanelli, Corrado; Reverberi, Massimo; Battilani, Paola; Galaverna, Gianni; Dall'Asta, Chiara

    2014-01-01

    Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi. PMID:25566199

  7. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus: Intersubunit Communication in a Pyrimidine Biosynthetic Complex

    SciTech Connect

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Martin, Philip D.; Hachem, Fatme; Brunzelle, Joseph S.; Edwards, Brian F. P.; Evans, David R.

    2013-12-19

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (Ki = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes.

  8. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese health study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: We aimed to examine the prospective association between plasma fatty acids (FAs), oxylipins and risk of acute myocardial infarction (AMI) in a Singapore Chinese population. Methods: A nested case-control study with 744 incident AMI cases and 744 matched controls aged 47-83 years was condu...

  9. Quantitative profiling of oxylipins through comprehensive lc-ms/ms analysis: Application in cardiac surgery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxylipins, including eicosanoids, affect a broad range of biological processes, such as the initiation and resolution of inflammation. These compounds, also referred to as lipid mediators, are (non-) enzymatically generated by oxidation of polyunsaturated fatty acids such as arachidonic acid (AA). A...

  10. LIPOPROTEIN LIPASE RELEASES ESTERIFIED OXYLIPINS FROM VERY LOW-DENSITY LIPOPROTEINS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defects in lipoprotein metabolism alter the lipoprotein distribution of oxidized PUFAs, and we speculate that lipoprotein lipase (LpL) is a determinant in the release of VLDL-associated oxylipins. Here, using 12 wk old normolipidemic (lean) and hyperlipidemic (obese) Zucker-rats, we measured PUFA al...

  11. Ethanolamide Oxylipins of Linolenic Acid Can Negatively Regulate Arabidopsis Seedling Development[C][W

    PubMed Central

    Keereetaweep, Jantana; Blancaflor, Elison B.; Hornung, Ellen; Feussner, Ivo; Chapman, Kent D.

    2013-01-01

    N-Acylethanolamines (NAEs) are fatty-acid derivatives with potent biological activities in a wide range of eukaryotic organisms. Polyunsaturated NAEs are among the most abundant NAE types in seeds of Arabidopsis thaliana, and they can be metabolized by either fatty acid amide hydrolase (FAAH) or by lipoxygenase (LOX) to low levels during seedling establishment. Here, we identify and quantify endogenous oxylipin metabolites of N-linolenoylethanolamine (NAE 18:3) in Arabidopsis seedlings and show that their levels were higher in faah knockout seedlings. Quantification of oxylipin metabolites in lox mutants demonstrated altered partitioning of NAE 18:3 into 9- or 13-LOX pathways, and this was especially exaggerated when exogenous NAE was added to seedlings. When maintained at micromolar concentrations, NAE 18:3 specifically induced cotyledon bleaching of light-grown seedlings within a restricted stage of development. Comprehensive oxylipin profiling together with genetic and pharmacological interference with LOX activity suggested that both 9-hydroxy and 13-hydroxy linolenoylethanolamides, but not corresponding free fatty-acid metabolites, contributed to the reversible disruption of thylakoid membranes in chloroplasts of seedling cotyledons. We suggest that NAE oxylipins of linolenic acid represent a newly identified, endogenous set of bioactive compounds that may act in opposition to progression of normal seedling development and must be depleted for successful establishment. PMID:24151297

  12. Effect of omega-3 fatty acids on the oxylipin composition of lipoproteins in hypertriglyceridemic, statin-treated subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Oxylipins mediate many physiological processes, including inflammation and vascular function. Generally considered local and transient, we suggest their presence in lipoproteins indicates they also mediate the effects lipoproteins have on inflammation and vascular biology. To support th...

  13. Modulation of blood oxylipin levels by long-chain omega-3 fatty acid supplementation in hyper- and normolipidemic men

    PubMed Central

    Schuchardt, Jan Philipp; Schmidt, Simone; Kressel, Gaby; Willenberg, Ina; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-01-01

    Introduction Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) such as EPA and DHA have been shown to possess beneficial health effects, and it is believed that many of their effects are mediated by their oxygenated products (oxylipins). Recently, we have shown that serum levels of several hydroxy, epoxy, and dihydroxy FAs are dependent on the individual status of the parent FAs in a cohort of normo- and hyperlipidemic subjects. So far, the effect of an increased dietary LC n-3 PUFA intake on hydroxy, epoxy, and dihydroxy FA levels has not been investigated in subjects with mild combined hyperlipidemia. Subjects and Methods In the present study, we compared oxylipin patterns of 10 hyperlipidemic (cholesterol >200 mg/dl; triglyceride >150 mg/ml) and 10 normolipidemic men in response to twelve weeks of LC n-3 PUFA intake (1.14 g DHA and 1.56 g EPA). Levels of 44 free hydroxy, epoxy and dihydroxy FAs were analyzed in serum by LC-MS. Additionally, oxylipin levels were compared with their parent PUFA levels in erythrocyte membranes; a biomarker for the individual PUFA status. Results Differences in the oxylipin pattern between normo- and hyperlipidemic subjects were minor before and after treatment. In all subjects, levels of EPA-derived oxylipins (170–4,800 pM) were considerably elevated after LC n-3 PUFA intake (150–1,400 %), the increase of DHA-derived oxylipins (360–3,900 pM) was less pronounced (30–130 %). The relative change of EPA in erythrocyte membranes is strongly correlated (r ≥ 0.5; p<0.05) with the relative change of corresponding epoxy and dihydroxy FA serum levels. The effect on arachidonic acid (AA)-derived oxylipin levels (140–27,100 pM) was inconsistent. Discussion and Conclusions The dietary LC PUFA composition has a direct influence on the endogenous oxylipin profile, including several highly biological active EPA- and DHA-derived lipid mediators. The shift in oxylipin pattern appears to be dependent on the initial LC PUFA

  14. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis of Fusarium verticillioides and maize kernels.

    PubMed

    Ludovici, Matteo; Ialongo, Cristiano; Reverberi, Massimo; Beccaccioli, Marzia; Scarpari, Marzia; Scala, Valeria

    2014-01-01

    Fusarium verticillioides is one of the most important fungal pathogens causing ear and stalk rot in maize, even if frequently asymptomatic, producing a harmful series of compounds named fumonisins. Plant and fungal oxylipins play a crucial role in determining the outcome of the interaction between the pathogen and its host. Moreover, oxylipins result as signals able to modulate the secondary metabolism in fungi. In keeping with this, a novel, quantitative LC-MS/MS method was designed to quantify up to 17 different oxylipins produced by F. verticillioides and maize kernels. By applying this method, we were able to quantify oxylipin production in vitro - F. verticillioides grown into Czapek-Dox/yeast extract medium amended with 0.2% w/v of cracked maize - and in vivo, i.e. during its growth on detached mature maize ears. This study pinpoints the role of oxylipins in a plant pathogen such as F. verticillioides and sets up a novel tool aimed at understanding the role oxylipins play in mycotoxigenic pathogens during their interactions with respective hosts. PMID:25255035

  15. The Nicotiana attenuata GLA1 lipase controls the accumulation of Phytophthora parasitica-induced oxylipins and defensive secondary metabolites

    PubMed Central

    Schuck, Stefan; Kallenbach, Mario; Baldwin, Ian T.; Bonaventure, Gustavo

    2014-01-01

    Nicotiana attenuata plants silenced in the expression of GLYCEROLIPASE A1 (ir-gla1 plants) are compromised in the herbivore- and wound-induced accumulation of jasmonic acid (JA). However, these plants accumulate wild-type (WT) levels of JA and divinyl-ethers (DVE) during Phytophthora parasitica infection (Bonaventure et al., 2011). By profiling oxylipin-enriched fractions with targeted and untargeted LC-QTOF approaches, we demonstrate that the accumulation of 9-hydroxy-10E,12Z-octadecadienoic acid (9-OH-18:2) and additional C18 and C19 oxylipins is reduced by ca. 20-fold in P. parasitica infected ir-gla1 leaves compared to WT. This reduced accumulation of oxylipins was accompanied by a reduced accumulation of unsaturated free fatty acids and specific lysolipid species. Untargeted metabolic profiling of total leaf extracts showed that 87 metabolites accumulated differentially in leaves of P. parasitica-infected ir-gla1 plants with glycerolipids, hydroxylated-diterpene glycosides and phenylpropanoid derivatives accounting together for ca. 20% of these 87 metabolites. Thus, P. parasitica-induced oxylipins may participate in the regulation of metabolic changes during infection. Together, the results demonstrate that GLA1 plays a distinct role in the production of oxylipins during biotic stress responses, supplying substrates for 9-OH-18:2 and additional C18 and C19 oxylipin formation during P. parasitica infection whereas supplying substrates for the biogenesis of JA during herbivory and mechanical wounding. PMID:24450863

  16. Serum-Based Oxylipins Are Associated with Outcomes in Primary Prevention Implantable Cardioverter Defibrillator Patients

    PubMed Central

    Zhang, Yiyi; Guallar, Eliseo; Blasco-Colmenares, Elena; Harms, Amy C.; Vreeken, Rob J.; Hankemeier, Thomas; Tomaselli, Gordon F.; Cheng, Alan

    2016-01-01

    Introduction Individuals with systolic heart failure are at risk of ventricular arrhythmias and all-cause mortality. Little is known regarding the mechanisms underlying these events. We sought to better understand if oxylipins, a diverse class of lipid metabolites derived from the oxidation of polyunsaturated fatty acids, were associated with these outcomes in recipients of primary prevention implantable cardioverter defibrillators (ICDs). Methods Among 479 individuals from the PROSE-ICD study, baseline serum were analyzed and quantitatively profiled for 35 known biologically relevant oxylipin metabolites. Associations with ICD shocks for ventricular arrhythmias and all-cause mortality were evaluated using Cox proportional hazards models. Results Six oxylipins, 17,18-DiHETE (HR = 0.83, 95% CI 0.70 to 0.99 per SD change in oxylipin level), 19,20-DiHDPA (HR = 0.79, 95% CI 0.63 to 0.98), 5,6-DiHETrE (HR = 0.73, 95% CI 0.58 to 0.91), 8,9-DiHETrE (HR = 0.76, 95% CI 0.62 to 0.95), 9,10-DiHOME (HR = 0.81, 95% CI 0.65 to 1.00), and PGF1α (HR = 1.33, 95% CI 1.04 to 1.71) were associated with the risk of appropriate ICD shock after multivariate adjustment for clinical factors. Additionally, 4 oxylipin-to-precursor ratios, 15S-HEPE / FA (20:5-ω3), 17,18-DiHETE / FA (20:5-ω3), 19,20-DiHDPA / FA (20:5-ω3), and 5S-HEPE / FA (20:5-ω3) were positively associated with the risk of all-cause mortality. Conclusion In a prospective cohort of patients with primary prevention ICDs, we identified several novel oxylipin markers that were associated with appropriate shock and mortality using metabolic profiling techniques. These findings may provide new insight into the potential biologic pathways leading to adverse events in this patient population. PMID:27281224

  17. Differential effects of EPA versus DHA on postprandial vascular function and the plasma oxylipin profile in men[S

    PubMed Central

    McManus, Seán; Tejera, Noemi; Awwad, Khader; Rigby, Neil; Fleming, Ingrid; Cassidy, Aedin; Minihane, Anne Marie

    2016-01-01

    Our objective was to investigate the impact of EPA versus DHA on arterial stiffness and reactivity and underlying mechanisms (with a focus on plasma oxylipins) in the postprandial state. In a three-arm crossover acute test meal trial, men (n = 26, 35–55 years) at increased CVD risk received a high-fat (42.4 g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, long chain n-3 PUFA-derived oxylipins, nitrite and hydrogen sulfide, and serum lipids and glucose. Vascular function was assessed using blood pressure, reactive hyperemia index, pulse wave velocity, and augmentation index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P = 0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA- and DHA-derived oxylipins in the acute postprandial state, with an (1.3-fold) increase in 19,20-dihydroxydocosapentaenoic acid evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight into the AIx effect. PMID:27170732

  18. A diet containing a nonfat dry milk matrix significantly alters systemic endocannabinoids and oxylipins in diet-induced obese mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Diets rich in dairy and/or calcium (Ca) have been associated with reductions in adiposity and inflammation, but the mechanisms underlying this remain to be fully elucidated. Oxylipins and endocannabinoids are bioactive lipids, which influence energy homeostasis, adipose function, insuli...

  19. Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long chain omega-3 fatty acids (n-3 FAs), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids have beneficial health effects, but the molecular mediators of these effects are not well-characterized. Oxygenated n-3 FAs (oxylipins) may be an important class of mediators. Members of this chemic...

  20. Differential effects of EPA versus DHA on postprandial vascular function and the plasma oxylipin profile in men.

    PubMed

    McManus, Seán; Tejera, Noemi; Awwad, Khader; Vauzour, David; Rigby, Neil; Fleming, Ingrid; Cassidy, Aedin; Minihane, Anne Marie

    2016-09-01

    Our objective was to investigate the impact of EPA versus DHA on arterial stiffness and reactivity and underlying mechanisms (with a focus on plasma oxylipins) in the postprandial state. In a three-arm crossover acute test meal trial, men (n = 26, 35-55 years) at increased CVD risk received a high-fat (42.4 g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, long chain n-3 PUFA-derived oxylipins, nitrite and hydrogen sulfide, and serum lipids and glucose. Vascular function was assessed using blood pressure, reactive hyperemia index, pulse wave velocity, and augmentation index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P = 0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA- and DHA-derived oxylipins in the acute postprandial state, with an (1.3-fold) increase in 19,20-dihydroxydocosapentaenoic acid evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight into the AIx effect. PMID:27170732

  1. Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins.

    PubMed

    Willenberg, Ina; Ostermann, Annika I; Schebb, Nils Helge

    2015-04-01

    Quantification of eicosanoids and oxylipins derived from other polyunsaturated fatty acids in biological samples is crucial for a better understanding of the biology of these lipid mediators. Moreover, a robust and reliable quantification is necessary to monitor the effects of pharmaceutical intervention and diet on the arachidonic acid (AA) cascade, one of today's most relevant drug targets. Low (sub-nanomolar) concentrations and a large number of structurally similar analytes, including regioisomers, require high chromatographic resolution and selective and sensitive mass spectrometry analysis. Currently, reversed-phase liquid chromatography in combination with detection on sensitive triple-quadrupole instruments, operating in selected reaction monitoring mode, is the main method of quantitative oxylipin analysis. A lack of standardized sample collection, handling, and preparation procedures, degradation of the analytes during sample preparation, and purity and availability of standards (internal standards) are the major problems of targeted metabolomics approaches for the AA cascade. Major challenges for instrumental analytical methods are the detection of esterified oxylipins, and separation and individual detection of oxylipin isomers. Solving these problems would help to further knowledge of the biology of lipid mediators, and is an important task for bio-analytical research. PMID:25577350

  2. Effect of acute and chronic DSS induced colitis on plasma eicosanoid and oxylipin levels in the rat.

    PubMed

    Willenberg, Ina; Ostermann, Annika I; Giovannini, Samoa; Kershaw, Olivia; von Keutz, Anne; Steinberg, Pablo; Schebb, Nils Helge

    2015-07-01

    Eicosanoids and oxylipins are potent lipid mediators involved in the regulation of inflammation. In order to evaluate their role and suitability as biomarkers in colitis, we analyzed their systemic levels in the acute and chronic phase of dextran sulfate sodium (DSS) induced colitis. Male Fischer 344 rats were treated in three cycles with 4% DSS in the drinking water (4 days followed by 10 days recovery) and blood was drawn 3 days prior to the first DSS treatment and on days 4, 11, 32 and 39. Histopathological evaluation of the colon tissue after 42 days showed that the animals developed a mild to severe chronic colitis. Consistently, prostaglandin levels were massively (twofold) elevated in the colonic tissue. LC-MS based targeted metabolomics was used to determine plasma oxylipin levels at the different time points. In the acute phase of inflammation directly after DSS treatment, epoxy-fatty acid (FA), dihydroxy-FA and hydroxy-FA plasma concentrations were uniformly elevated. With each treatment cycle the increase in these oxylipin levels was more pronounced. Our data suggest that in the acute phase of colitis release of polyunsaturated FAs from membranes in the inflamed tissue is reflected by a uniform increase of oylipins formed in different branches of the arachidonic acid cascade. However, during the recovery phases the systemic oxylipin pattern is not or only moderately altered and does not allow to evaluate the onset of chronic inflammation in the colon. PMID:25908302

  3. Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic (20:4n-6; ARA) and docosahexaenoic (22:6n-3; DHA) acid was determined in piglets. Piglets randomly received one of six formulas (n=8 per group) from day 3 to 27 postnatally. Diets contained varying ARA and DHA l...

  4. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

    PubMed Central

    Mondy, Samuel; Tranchimand, Sylvain; Rumeau, Dominique; Boudsocq, Marie; Garcia, Ana Victoria; Douki, Thierry; Bigeard, Jean; Laurière, Christiane; Chevalier, Anne; Castresana, Carmen; Hirt, Heribert

    2013-01-01

    Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. PMID:23526882

  5. Subunit orientation in the Escherichia coli enterobactin biosynthetic EntA-EntE complex revealed by a two-hybrid approach.

    PubMed

    Pakarian, Paknoosh; Pawelek, Peter D

    2016-08-01

    The siderophore enterobactin is synthesized by the enzymes EntA-F and EntH in the Escherichia coli cytoplasm. We previously reported in vitro evidence of an interaction between tetrameric EntA and monomeric EntE. Here we used bacterial adenylate cyclase two-hybrid (BACTH) assays to demonstrate that the E. coli EntA-EntE interaction occurs intracellularly. Furthermore, to obtain information on subunit orientation in the EntA-EntE complex, we fused BACTH reporter fragments T18 and T25 to EntA and EntE in both N-terminal and C-terminal orientations. To validate functionality of our fusion proteins, we performed Chrome Azurol S (CAS) assays using E. coli entE(-) and entA(-) knockout strains transformed with our BACTH constructs. We found that transformants expressing N-terminal and C-terminal T18/T25 fusions to EntE exhibited CAS signals, indicating that these constructs could rescue the entE(-) phenotype. While expression of EntA with N-terminal T18/T25 fusions exhibited CAS signals, C-terminal fusions did not, presumably due to disruption of the EntA tetramer in vivo. Bacterial growth assays supported our CAS findings. Co-transformation of functional T18/T25 fusions into cya(-)E. coli BTH101 cells resulted in positive BACTH signals only when T18/T25 fragments were fused to the N-termini of both EntA and EntE. Co-expression of N-terminally fused EntA with C-terminally fused EntE resulted in no detectable BACTH signal. Analysis of protein expression by Western blotting confirmed that the loss of BACTH signal was not due to impaired expression of fusion proteins. Based on our results, we propose that the N-termini of EntA and EntE are proximal in the intracellular complex, while the EntA N-terminus and EntE C-terminus are distal. A protein-protein docking simulation using SwarmDock was in agreement with our experimental observations. PMID:27086082

  6. Emergent Biosynthetic Capacity in Simple Microbial Communities

    PubMed Central

    Chiu, Hsuan-Chao; Levy, Roie; Borenstein, Elhanan

    2014-01-01

    Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity – instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a “Goldilocks” principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together, our results

  7. Catalysis-based and protecting-group-free total syntheses of the marine oxylipins hybridalactone and the ecklonialactones A, B, and C.

    PubMed

    Hickmann, Volker; Kondoh, Azusa; Gabor, Barbara; Alcarazo, Manuel; Fürstner, Alois

    2011-08-31

    Concise and protecting-group-free total syntheses of the marine oxylipins hybridalactone (1) and three members of the ecklonialactone family (2-4) were developed. They deliver these targets in optically pure form in 14 or 13 steps, respectively, in the longest linear sequence; five of these steps are metal-catalyzed and four others are metal-mediated. The route to either 1 or 2-4 diverges from the common building block 22, which is accessible in 7 steps from 2[5H]furanone by recourse to a rhodium-catalyzed asymmetric 1,4-addition reaction controlled by the carvone-derived diene ligand 35 and a ring-closing alkene metathesis (RCM) catalyzed by the ruthenium indenylidene complex 17 as the key operations. Alternatively, 22 can be made in 10 steps from furfural via a diastereoselective three-component coupling process. The further elaboration of 22 into hybridalactone as the structurally most complex target with seven contiguous chiral centers was based upon a sequence of cyclopropanation followed by a vanadium-catalyzed epoxidation, both of which were directed by the same free hydroxy group at C15. The macrocyclic scaffold was annulated to the headgroup by means of a ring-closing alkyne metathesis reaction (RCAM). In response to the unusually high propensity of the oxirane of the targeted oxylipins for ring opening, this transformation had to be performed with complexes of the type [(Ar(3)SiO)(4)Mo≡CPh][K·OEt(2)] (43), which represent a new generation of exceedingly tolerant yet remarkably efficient catalysts. Their ancillary triarylsilanolate ligands temper the Lewis acidity of the molybdenum center but are not sufficiently nucleophilic to engage in the opening of the fragile epoxide ring. A final semireduction of the cycloalkyne formed in the RCAM step to the required (Z)-alkene completed the total synthesis of (-)-1. The fact that the route from the common fragment 22 to the ecklonialactones could follow a similar logic showcased the flexibility inherent to the

  8. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  9. Biosynthetic pathways of ergot alkaloids.

    PubMed

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  10. Effects of Three Volatile Oxylipins on Colony Development in Two Species of Fungi and on Drosophila Larval Metamorphosis.

    PubMed

    Yin, Guohua; Padhi, Sally; Lee, Samantha; Hung, Richard; Zhao, Guozhu; Bennett, Joan W

    2015-09-01

    The aim of this study is to investigate the effects of three volatile oxylipins on colony development in two fungi and on Drosophila larval metamorphosis. Using an airborne exposure technique, three common and volatile oxylipins (1-octen-3-ol, (E)-2-hexenal, and 1-hexanol) were compared for their effects on spore germination and colony growth in Aspergillus niger and Penicillium chrysogenum, as well as for their effects on the morphogenesis of larvae of Drosophila melanogaster. Conidia of both A. niger and P. chrysogenum plated in the presence of low concentrations (50 ppm) of these three volatile organic compounds (VOCs) formed fewer colony-forming units (CFUs) and exhibited reduced radial growth of colonies as compared to controls. When A. niger and P. chrysogenum spores were germinated in the presence of the enantiomers of 1-octen-3-ol, (R)-(-)-1-octen-3-ol had the greatest impact on colony morphology (decreased sporulation and colony diameter), while (S)-(+)-1-octen-3-ol and the racemic form yielded similar morphological changes but to a lesser extent. In addition, Drosophila larvae exposed to vapors of these oxylipins exhibited serious delays in metamorphosis and toxic effects on pupae and adult stages. Low concentration of these three VOCs can significantly inhibit the formation of CFUs and the growth of fungi. (R)-(-)-1-octen-3-ol imposed the greatest impact on fungal morphology compared to (S)-(+)-1-octen-3-ol and the racemic form. The three volatile oxylipins could also delay the metamorphosis of Drosophila and impose toxic effects on its pupae and adult stages. PMID:26126831

  11. Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation

    PubMed Central

    Berthelot, Claire C.; Kamita, Shizuo George; Sacchi, Romina; Yang, Jun; Nording, Malin L.; Georgi, Katrin; Hegedus Karbowski, Christine; German, J. Bruce; Weiss, Robert H.; Hogg, Ronald J.; Hammock, Bruce D.; Zivkovic, Angela M.

    2015-01-01

    Introduction There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA), which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs). Methods Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA) and 1.5 g/d docosahexaenoic acid (DHA). Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR). Results Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), and interleukin 8 (IL-8) gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA) in the phosphatidylethanolamine (PE) lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2)/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE)/ARA for ALOX12) were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated. Conclusions The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12

  12. Biosynthetic Polymers as Functional Materials

    PubMed Central

    2016-01-01

    The synthesis of functional polymers encoded with biomolecules has been an extensive area of research for decades. As such, a diverse toolbox of polymerization techniques and bioconjugation methods has been developed. The greatest impact of this work has been in biomedicine and biotechnology, where fully synthetic and naturally derived biomolecules are used cooperatively. Despite significant improvements in biocompatible and functionally diverse polymers, our success in the field is constrained by recognized limitations in polymer architecture control, structural dynamics, and biostabilization. This Perspective discusses the current status of functional biosynthetic polymers and highlights innovative strategies reported within the past five years that have made great strides in overcoming the aforementioned barriers. PMID:27375299

  13. Effects of overexpressing individual lignin biosynthetic enzymes on feeding and growth of corn earworms and fall armyworms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is an important insect resistance component of plants. Enhancing or disrupting the lignin biosynthetic pathway for different bioenergy uses may alter pest resistance. The lignin biosynthetic pathway is complex, and a number of pathway compounds are also involved in the biosynthesis of simpler...

  14. Effect of Soluble Epoxide Hydrolase on the Modulation of Coronary Reactive Hyperemia: Role of Oxylipins and PPARγ.

    PubMed

    Hanif, Ahmad; Edin, Matthew L; Zeldin, Darryl C; Morisseau, Christophe; Nayeem, Mohammed A

    2016-01-01

    Coronary reactive hyperemia (CRH) is a physiological response to ischemic insult that prevents the potential harm associated with an interruption of blood supply. The relationship between the pharmacologic inhibition of soluble epoxide hydrolase (sEH) and CRH response to a brief ischemia is not known. sEH is involved in the main catabolic pathway of epoxyeicosatrienoic acids (EETs), which are converted into dihydroxyeicosatrienoic acids (DHETs). EETs protect against ischemia/reperfusion injury and have numerous beneficial physiological effects. We hypothesized that inhibition of sEH by t-AUCB enhances CRH in isolated mouse hearts through changing the oxylipin profiles, including an increase in EETs/DHETs ratio. Compared to controls, t-AUCB-treated mice had increased CRH, including repayment volume (RV), repayment duration, and repayment/debt ratio (p < 0.05). Treatment with t-AUCB significantly changed oxylipin profiles, including an increase in EET/DHET ratio, increase in EpOME/DiHOME ratio, increase in the levels of HODEs, decrease in the levels of mid-chain HETEs, and decrease in prostanoids (p < 0.05). Treatment with MS-PPOH (CYP epoxygenase inhibitor) reduced CRH, including RV (p < 0.05). Involvement of PPARγ in the modulation of CRH was demonstrated using a PPARγ-antagonist (T0070907) and a PPARγ-agonist (rosiglitazone). T0070907 reduced CRH (p < 0.05), whereas rosiglitazone enhanced CRH (p < 0.05) in isolated mouse hearts compared to the non-treated. These data demonstrate that sEH inhibition enhances, whereas CYP epoxygenases-inhibition attenuates CRH, PPARγ mediate CRH downstream of the CYP epoxygenases-EET pathway, and the changes in oxylipin profiles associated with sEH-inhibition collectively contributed to the enhanced CRH. PMID:27583776

  15. A biosynthetic pathway for anandamide

    PubMed Central

    Liu, Jie; Wang, Lei; Harvey-White, Judith; Osei-Hyiaman, Douglas; Razdan, Raj; Gong, Qian; Chan, Andrew C.; Zhou, Zhifeng; Huang, Bill X.; Kim, Hee-Yong; Kunos, George

    2006-01-01

    The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released “on demand” by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE–PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE–PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target. PMID:16938887

  16. Type 2 Diabetes Associated Changes in the Plasma Non-Esterified Fatty Acids, Oxylipins and Endocannabinoids

    PubMed Central

    Grapov, Dmitry; Adams, Sean H.; Pedersen, Theresa L.; Garvey, W. Timothy; Newman, John W.

    2012-01-01

    Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-associated changes in plasma NEFA and signaling lipids, we quantitatively targeted >150 plasma lipidome components in age- and body mass index-matched, overweight to obese, non-diabetic (n = 12) and type 2 diabetic (n = 43) African-American women. Diabetes related NEFA patterns indicated ∼60% increase in steroyl-CoA desaturase activity and ∼40% decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty acids were elevated >80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this pathological state which are independent of obesity associated changes. PMID:23144998

  17. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    SciTech Connect

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  18. Biosynthetic porphyrins and the origin of photosynthesis

    NASA Technical Reports Server (NTRS)

    Mauzerall, D.; Ley, A.; Mercer-Smith, J. A.

    1986-01-01

    Since the prebiotic atmosphere was anaerobic, if not reducing, a useful function of primordial photosynthesis would have been to photooxidize reduced substrates such as Fe(+2), S(-2) or reduced organic molecules and to emit hydrogen. Experiments have shown that the early biogenic pigments uroporphyrin and coproporphyrin do photooxidize organic compounds and emit hydrogen in the presence of a platinum catalyst. These experiments were carried out in dilute aqueous solution near neutral pH under anaerobic atmosphere, and quantum yields near 10-2 were obtained. Thus relevant prebiotic conditions were maintained. Rather then to further optimize conditions, attempts were made to replace the platinum catalyst by a more prebiotically suitable catalyst. Trials with an Fe4S4(SR)4 cluster, in analogy to the present hydrogenase and nitrogenase, were not successful. However, experiments using cobalt complexes to catalyze the formation of hydrogen are promising. In analogy with biological photosynthetic systems which group pigments, electron transfer molecules and enzymes in clusters for efficiency, it was found that binding the biogenic porphyrins to the polyvinyl alcohol used to support the platinum catalyst did increase the quantum yield of the reaction. It was also found that ultraviolet light can serve to photo-oxidize porphyrinogens to porphyrins under anaerobic conditions. Thus the formation of the colorless porphyriogens by the extraordinarily simple biosynthetic pathway would not be a problem because of the prevalence of UV light in the prebiotic, anoxic atmosphere.

  19. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized. PMID:26139824

  20. Circulating levels of endocannabinoids and oxylipins altered by dietary lipids in older women are likely associated with previously identified gene targets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postmenopausal women (PMW) report marginal n-3 PUFA intakes and are at risk of chronic diseases associated with the skeletal, muscular, and cardiovascular systems. Our investigation characterized the endocannabinoids (EC), oxylipins (OL), and global metabolites (GM) in white PMW (75 ± 7 y), randomiz...

  1. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus.

    PubMed

    Lauritano, Chiara; Carotenuto, Ylenia; Vitiello, Valentina; Buttino, Isabella; Romano, Giovanna; Hwang, Jiang-Shiou; Ianora, Adrianna

    2015-12-01

    Diatoms are eukaryotic unicellular plants that constitute one of the major components of marine phytoplankton, comprising up to 40% of annual productivity at sea and representing 25% of global carbon-fixation. Diatoms have traditionally been considered a preferential food for zooplankton grazers such as copepods, but, in the last two decades, this beneficial role has been challenged after the discovery that many species of diatoms produce toxic metabolites, collectively termed oxylipins, that induce reproductive failure in zooplankton grazers. Diatoms are the dominant natural diet of Calanus sinicus, a cold-temperate calanoid copepod that supports secondary production of important fisheries in the shelf ecosystems of the Northwest Pacific Ocean, Yellow Sea, Sea of Japan and South China Sea. In this study, the effect of the oxylipin-producing diatom Skeletonema marinoi on C. sinicus has been evaluated by analyzing expression level changes of genes involved in defense and detoxification systems. Results show that C. sinicus is more resistant to a diet of this diatom species in terms of gene expression patterns, compared to the congeneric species Calanus helgolandicus which is an important constituent of the temperate waters of the Atlantic Ocean and northern Mediterranean Sea. These findings contribute to the better understanding of genetic and/or phenotypic flexibility of copepod species and their capabilities to cope with stress by identifying molecular markers (such as stress and detoxification genes) as biosensors for environmental perturbations (e.g. toxins and contaminants) affecting marine copepods. PMID:25666254

  2. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    PubMed

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. PMID:27130972

  3. Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution

    PubMed Central

    Umeno, Daisuke; Tobias, Alexander V.; Arnold, Frances H.

    2005-01-01

    Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products—those that could be made biosynthetically—remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these “evolved” pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed. PMID:15755953

  4. Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway.

    PubMed

    Kriechbaumer, Verena; Botchway, Stanley W; Hawes, Chris

    2016-07-01

    The growth regulator auxin is involved in all key developmental processes in plants. A complex network of a multiplicity of potential biosynthetic pathways as well as transport, signalling plus conjugation and deconjugation lead to a complex and multifaceted system system for auxin function. This raises the question how such a system can be effectively organized and controlled. Here we report that a subset of auxin biosynthetic enzymes in the TAA/YUC route of auxin biosynthesis is localized to the endoplasmic reticulum (ER). ER microsomal fractions also contain a significant percentage of auxin biosynthetic activity. This could point toward a model of auxin function using ER membrane location and subcellular compartmentation for supplementary layers of regulation. Additionally we show specific protein-protein interactions between some of the enzymes in the TAA/YUC route of auxin biosynthesis. PMID:27208541

  5. Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets.

    PubMed

    Bruins, Maaike J; Dane, Adrie D; Strassburg, Katrin; Vreeken, Rob J; Newman, John W; Salem, Norman; Tyburczy, Cynthia; Brenna, J Thomas

    2013-06-01

    The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic acid (20:4n-6; ARA) and docosahexaenoic acid (22:6n-3; DHA) was determined in piglets. Piglets randomly received one of six formulas (n = 8 per group) from days 3 to 27 postnatally. Diets contained incremental ARA or incremental DHA levels as follows (% fatty acid, ARA/DHA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D1) 0.66/0.33; and (D2) 0.67/0.62, resulting in incremental intake (g/kg BW/day) of ARA: 0.07 ± 0.01, 0.43 ± 0.03, 0.55 ± 0.03, and 0.82 ± 0.05 at constant DHA intake (0.82 ± 0.05), or incremental intake of DHA: 0.27 ± 0.02, 0.49 ± 0.03, and 0.81 ± 0.05 at constant ARA intake (0.54 ± 0.04). Plasma oxylipin concentrations and free plasma PUFA levels were determined at day 28 using LC-MS/MS. Incremental dietary ARA intake dose-dependently increased plasma ARA levels. In parallel, ARA intake dose-dependently increased ARA-derived diols 5,6- and 14,15-dihydroxyeicosatrienoic acid (DiHETrE) and linoleic acid-derived 12,13-dihydroxyoctadecenoic acid (DiHOME), downstream metabolites of cytochrome P450 expoxygenase (CYP). The ARA epoxide products from CYP are important in vascular homeostatic maintenance. Incremental DHA intake increased plasma DHA and most markedly raised the eicosapentaenoic acid (EPA) metabolite 17,18-dihydroxyeicosatetraenoic acid (DiHETE) and the DHA metabolite 19,20-dihydroxydocosapentaenoic acid (DiHDPE). In conclusion, increasing ARA and DHA intake dose-dependently influenced endogenous n-6 and n-3 oxylipin plasma concentrations in growing piglets, although the biological relevance of these findings remains to be determined. PMID:23543770

  6. Profiling the Oxylipin and Endocannabinoid Metabolome by UPLC-ESI-MS/MS in Human Plasma to Monitor Postprandial Inflammation

    PubMed Central

    Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M.; Nording, Malin L.

    2015-01-01

    Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005–2.1 pg on column), limit of quantification (0.0005–4.2 pg on column), inter- and intraday accuracy (85–115%) and precision (< 5%), recovery (40–109%) and stability (40–105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting

  7. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    PubMed Central

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Aiese Cigliano, Riccardo; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-01-01

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies. PMID:26512693

  8. Changes in Retinal N-Acylethanolamines and their Oxylipin Derivatives During the Development of Visual Impairment in a Mouse Model for Glaucoma.

    PubMed

    Montgomery, Christa L; Keereetaweep, Jantana; Johnson, Heather M; Grillo, Stephanie L; Chapman, Kent D; Koulen, Peter

    2016-07-01

    Neurons are especially susceptible to oxidative damage, which is increasingly implicated in neurodegenerative disease. Certain N-acylethanolamines (NAEs) have been shown to protect neurons from oxidative stress. Since glaucoma may be considered a neurodegenerative disorder and the survival of retinal neurons could also be influenced by N-acylethanolamines, our goal was to quantify changes in certain N-acylethanolamine species and their oxylipin derivatives in the retina of a mouse model for glaucoma. We also sought to identify relationships between these and parameters of glaucoma disease development, specifically intraocular pressure, visual acuity, and contrast sensitivity. Five N-acylethanolamine species and three NAE oxylipin derivatives were quantified in retina from young and aged DBA/2Crl mice. N-Acylethanolamines and NAE-oxylipins in retinal extracts were quantified against deuterated standards by isotope dilution gas chromatography-mass spectrometry. Levels (nmol/g dry weight) of N-arachidonoylethanolamine (anandamide; NAE 20:4) were significantly (p = 0.008) decreased in aged (2.875 ± 0.6702) compared to young animals (5.175 ± 0.971). Conversely, the anandamide oxylipin, 15(S)-HETE ethanolamide (15(S)-HETE EA), was significantly (p = 0.042) increased in aged (0.063 ± 0.009) compared to young animals (0.039 ± 0.011). Enzymatic depletion of the anandamide pool by 15-lipoxygenase and consequent accumulation of 15(S)-HETE ethanolamine may contribute to decreased visual function in glaucomatous mice. Since N-acylethanolamines effectively attenuate glaucoma pathogenesis and associated visual impairment, our data provides additional rationale and novel targets for glaucoma therapies. PMID:27221132

  9. Synthesis of the (9R,13R)-isomer of LDS1, a flower-inducing oxylipin isolated from Lemna paucicostata.

    PubMed

    Takayasu, Yuki; Ogura, Yusuke; Towada, Ryo; Kuwahara, Shigefumi

    2016-08-01

    The first synthesis of the (9R,13R)-stereoisomer of LDS1, a flower-inducing oxylipin isolated from Lemna paucicostata, has been achieved from a known allylic alcohol by a seven-step sequence that involves the Horner-Wadsworth-Emmons olefination to construct its full carbon framework and an enzymatic hydrolysis of a penultimate methyl ester intermediate to provide the target molecule. PMID:27023212

  10. Elucidation of Pseurotin Biosynthetic Pathway Points to Trans-Acting C-Methyltransferase and Source of Chemical Diversity Generation**

    PubMed Central

    Tsunematsu, Yuta; Fukutomi, Manami; Saruwatari, Takayoshi; Noguchi, Hiroshi; Watanabe, Kenji; Hotta, Kinya; Tang, Yi

    2015-01-01

    Pseurotins comprise a family of structurally related Aspergillal natural products having interesting bioactivity. However, little is known about the biosynthetic steps involved in the formation of their complex chemical features. Here, we systematically deleted the pseurotin biosynthetic genes in A. fumigatus and performed in vivo and in vitro characterization of the tailoring enzymes to determine the biosynthetic intermediates and the gene products responsible for the formation of each intermediate. This allowed us to elucidate the main biosynthetic steps leading to the formation of pseurotin A from the predominant precursor, azaspirene. The study revealed the combinatorial nature of the biosynthesis of the pseurotin family of compounds and the intermediates. Most interestingly, we report the first identification of an epoxidase–C-methyltransferase bifunctional fusion protein PsoF that appears to methylate the nascent polyketide backbone carbon atom in trans. PMID:24939566

  11. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  12. Biosynthetic route towards saxitoxin and shunt pathway

    PubMed Central

    Tsuchiya, Shigeki; Cho, Yuko; Konoki, Keiichi; Nagasawa, Kazuo; Oshima, Yasukatsu; Yotsu-Yamashita, Mari

    2016-01-01

    Saxitoxin, the most potent voltage-gated sodium channel blocker, is one of the paralytic shellfish toxins (PSTs) produced by cyanobacteria and dinoflagellates. Recently, putative biosynthetic genes of PSTs were reported in these microorganisms. We previously synthesized genetically predicted biosynthetic intermediates, Int-A’ and Int-C’2, and also Cyclic-C’ which was not predicted based on gene, and identified them all in the toxin-producing cyanobacterium Anabaena circinalis (TA04) and the dinoflagellate Alexandrium tamarense (Axat-2). This study examined the incorporation of 15N-labeled intermediates into PSTs (C1 and C2) in A. circinalis (TA04). Conversions from Int-A’ to Int-C’2, from Int-C’2 to Cyclic-C’, and from Int-A’ and Int-C’2 to C1 and C2 were indicated using high resolution-LC/MS. However, Cyclic-C’ was not converted to C1 and C2 and was detected primarily in the extracellular medium. These results suggest that Int-A’ and Int-C’2 are genuine precursors of PSTs, but Int-C’2 converts partially to Cyclic-C’ which is a shunt product excreted to outside the cells. This paper provides the first direct demonstration of the biosynthetic route towards saxitoxin and a shunt pathway. PMID:26842222

  13. Tryptophan biosynthetic enzymes of Staphylococcus aureus.

    PubMed

    Proctor, A R; Kloos, W E

    1973-04-01

    Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway. PMID:4698207

  14. Identification of Coq11, a New Coenzyme Q Biosynthetic Protein in the CoQ-Synthome in Saccharomyces cerevisiae*

    PubMed Central

    Allan, Christopher M.; Awad, Agape M.; Johnson, Jarrett S.; Shirasaki, Dyna I.; Wang, Charles; Blaby-Haas, Crysten E.; Merchant, Sabeeha S.; Loo, Joseph A.; Clarke, Catherine F.

    2015-01-01

    Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11. PMID:25631044

  15. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae.

    PubMed

    Allan, Christopher M; Awad, Agape M; Johnson, Jarrett S; Shirasaki, Dyna I; Wang, Charles; Blaby-Haas, Crysten E; Merchant, Sabeeha S; Loo, Joseph A; Clarke, Catherine F

    2015-03-20

    Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1-COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11. PMID:25631044

  16. Aphid Feeding Activates Expression of a Transcriptome of Oxylipin-Based Defense Signals in Wheat Involved in Resistance to Herbivory

    PubMed Central

    SMITH, C. MICHAEL; LIU, XUMING; WANG, LIANG J.; LIU, XIANG; CHEN, MING-SHUN; STARKEY, SHARON; BAI, JIANFA

    2013-01-01

    Damage by the Russian wheat aphid (RWA), Diuraphis noxia, significantly reduces wheat and barley yields worldwide. In compatible interactions, virulent RWA populations flourish and susceptible plants suffer extensive leaf chlorophyll loss. In incompatible interactions, RWA reproduction and population growth are significantly reduced and RWA-related chlorophyll loss in resistant plants is minor. The objectives of this study were to develop an understanding of the molecular and phytochemical bases of RWA resistance in plants containing the Dnx resistance gene. Microarray, real-time polymerase chain reaction, and phytohormone assays were conducted to identify transcriptome components unique to RWA-infested Dnx plants and susceptible (Dn0) plants, and to identify and characterize putative genes involved in Dnx plant defense responses. We found that RWA-infested Dnx plants upregulated > 180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense. The expression of several of these genes in RWA-infested Dnx plants increased significantly from 6- to 24-h post infestation (hpi), but their expression in Dn0 plants, when present, was delayed until 48- to 96 hpi. Concentrations of 16- and 18-carbon fatty acids, trans-methyl-12-oxophytodienoic acid, and abscisic acid were significantly greater in Dnx foliage than in Dn0 foliage after RWA infestation, suggesting that Dnx RWA defense and resistance genes may be regulated via the oxylipin pathway. These findings provide a foundation for the elucidation of the molecular basis for compatible- and incompatible plant-aphid interactions. PMID:20229216

  17. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia.

    PubMed

    Taki-Nakano, Nozomi; Kotera, Jun; Ohta, Hiroyuki

    2016-05-13

    Jasmonates are plant lipid-derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)-induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. PMID:27086850

  18. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA)

    PubMed Central

    Dave, Anuja; Graham, Ian A.

    2012-01-01

    Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA. PMID:22645585

  19. PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway.

    PubMed

    Latham, John A; Iavarone, Anthony T; Barr, Ian; Juthani, Prerak V; Klinman, Judith P

    2015-05-15

    Pyrroloquinoline quinone (PQQ) is a product of a ribosomally synthesized and post-translationally modified pathway consisting of five conserved genes, pqqA-E. PqqE is a radical S-adenosylmethionine (RS) protein with a C-terminal SPASM domain, and is proposed to catalyze the formation of a carbon-carbon bond between the glutamate and tyrosine side chains of the peptide substrate PqqA. PqqD is a 10-kDa protein with an unknown function, but is essential for PQQ production. Recently, in Klebsiella pneumoniae (Kp), PqqD and PqqE were shown to interact; however, the stoichiometry and KD were not obtained. Here, we show that the PqqE and PqqD interaction transcends species, also occurring in Methylobacterium extorquens AM1 (Me). The stoichiometry of the MePqqD and MePqqE interaction is 1:1 and the KD, determined by surface plasmon resonance spectroscopy (SPR), was found to be ∼12 μm. Moreover, using SPR and isothermal calorimetry techniques, we establish for the first time that MePqqD binds MePqqA tightly (KD ∼200 nm). The formation of a ternary MePqqA-D-E complex was captured by native mass spectrometry and the KD for the MePqqAD-MePqqE interaction was found to be ∼5 μm. Finally, using a bioinformatic analysis, we found that PqqD orthologues are associated with the RS-SPASM family of proteins (subtilosin, pyrroloquinoline quinone, anaerobic sulfatase maturating enzyme, and mycofactocin), all of which modify either peptides or proteins. In conclusion, we propose that PqqD is a novel peptide chaperone and that PqqD orthologues may play a similar role in peptide modification pathways that use an RS-SPASM protein. PMID:25817994

  20. PqqD Is a Novel Peptide Chaperone That Forms a Ternary Complex with the Radical S-Adenosylmethionine Protein PqqE in the Pyrroloquinoline Quinone Biosynthetic Pathway*

    PubMed Central

    Latham, John A.; Iavarone, Anthony T.; Barr, Ian; Juthani, Prerak V.; Klinman, Judith P.

    2015-01-01

    Pyrroloquinoline quinone (PQQ) is a product of a ribosomally synthesized and post-translationally modified pathway consisting of five conserved genes, pqqA-E. PqqE is a radical S-adenosylmethionine (RS) protein with a C-terminal SPASM domain, and is proposed to catalyze the formation of a carbon-carbon bond between the glutamate and tyrosine side chains of the peptide substrate PqqA. PqqD is a 10-kDa protein with an unknown function, but is essential for PQQ production. Recently, in Klebsiella pneumoniae (Kp), PqqD and PqqE were shown to interact; however, the stoichiometry and KD were not obtained. Here, we show that the PqqE and PqqD interaction transcends species, also occurring in Methylobacterium extorquens AM1 (Me). The stoichiometry of the MePqqD and MePqqE interaction is 1:1 and the KD, determined by surface plasmon resonance spectroscopy (SPR), was found to be ∼12 μm. Moreover, using SPR and isothermal calorimetry techniques, we establish for the first time that MePqqD binds MePqqA tightly (KD ∼200 nm). The formation of a ternary MePqqA-D-E complex was captured by native mass spectrometry and the KD for the MePqqAD-MePqqE interaction was found to be ∼5 μm. Finally, using a bioinformatic analysis, we found that PqqD orthologues are associated with the RS-SPASM family of proteins (subtilosin, pyrroloquinoline quinone, anaerobic sulfatase maturating enzyme, and mycofactocin), all of which modify either peptides or proteins. In conclusion, we propose that PqqD is a novel peptide chaperone and that PqqD orthologues may play a similar role in peptide modification pathways that use an RS-SPASM protein. PMID:25817994

  1. Cyanobacterial toxins: biosynthetic routes and evolutionary roots.

    PubMed

    Dittmann, Elke; Fewer, David P; Neilan, Brett A

    2013-01-01

    Cyanobacteria produce an unparalleled variety of toxins that can cause severe health problems or even death in humans, and wild or domestic animals. In the last decade, biosynthetic pathways have been assigned to the majority of the known toxin families. This review summarizes current knowledge about the enzymatic basis for the production of the hepatotoxins microcystin and nodularin, the cytotoxin cylindrospermopsin, the neurotoxins anatoxin and saxitoxin, and the dermatotoxin lyngbyatoxin. Elucidation of the biosynthetic pathways of the toxins has paved the way for the development of molecular techniques for the detection and quantification of the producing cyanobacteria in different environments. Phylogenetic analyses of related clusters from a large number of strains has also allowed for the reconstruction of the evolutionary scenarios that have led to the emergence, diversification, and loss of such gene clusters in different strains and genera of cyanobacteria. Advances in the understanding of toxin biosynthesis and evolution have provided new methods for drinking-water quality control and may inspire the development of techniques for the management of bloom formation in the future. PMID:23051004

  2. Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA2 Signaling Pathway

    PubMed Central

    Apaya, Maria Karmella; Lin, Chih-Yu; Chiou, Ching-Yi; Yang, Chung-Chih; Ting, Chen-Yun; Shyur, Lie-Fen

    2015-01-01

    Sepsis remains a major medical issue despite decades of research. Identification of important inflammatory cascades and key molecular mediators are crucial for developing intervention and prevention strategies. In this study, we conducted a comparative oxylipin metabolomics study to gain a comprehensive picture of lipid mediator dynamics during the initial hyperinflammatory phase of sepsis, and demonstrated, in parallel, the efficacy of simvastatin and plant galactolipid, 1,2-di-O-α-linolenoyl-3-O-β-­galactopyranosyl-sn-glycerol (dLGG) in the homeostatic regulation of the oxylipin metabolome using a lipopolysaccharide (LPS)-induced sepsis C57BL/6J mouse model. LPS increased the systemic and organ levels of proinflammatory metabolites of linoleic acid including leukotoxin diols (9-,10-DHOME, 12-,13-DHOME) and octadecadienoic acids (9-HODE and 13-HODE) and arachidonic acid-derived prostanoid, PGE2, and hydroxyeicosatetraenoic acids (8-, 12- and 15-HETE). Treatment with either compound decreased the levels of proinflammatory metabolites and elevated proresolution lipoxin A4, 5(6)-EET, 11(12)-EET and 15-deoxy-PGJ2. dLGG and simvastatin ameliorated the effects of LPS-induced mitogen-activated protein kinase (MAPK)-dependent activation of cPLA2, cyclooxygenase-2, lipoxygenase, cytochrome P450 and/or epoxide hydrolase lowered systemic TNF-α and IL-6 levels and aminotransferase activities and decreased organ-specific infiltration of inflammatory leukocytes and macrophages, and septic shock-induced multiple organ damage. Furthermore, both dLGG and simvastatin increased the survival rates in the cecal ligation and puncture (CLP) sepsis model. This study provides new insights into the role of oxylipins in sepsis pathogenesis and highlights the potential of simvastatin and dLGG in sepsis therapy and prevention. PMID:26701313

  3. A C35 Carotenoid Biosynthetic Pathway

    PubMed Central

    Umeno, Daisuke; Arnold, Frances H.

    2003-01-01

    Upon coexpression with Erwinia geranylgeranyldiphosphate (GGDP) synthase in Escherichia coli, C30 carotenoid synthase CrtM from Staphylococcus aureus produces novel carotenoids with the asymmetrical C35 backbone. The products of condensation of farnesyldiphosphate and GDP, C35 structures comprise 40 to 60% of total carotenoid accumulated. Carotene desaturases and carotene cyclases from C40 or C30 pathways accepted and converted the C35 substrate, thus creating a C35 carotenoid biosynthetic pathway in E. coli. Directed evolution to modulate desaturase step number, together with combinatorial expression of the desaturase variants with lycopene cyclases, allowed us to produce at least 10 compounds not previously described. This result highlights the plastic and expansible nature of carotenoid pathways and illustrates how combinatorial biosynthesis coupled with directed evolution can rapidly access diverse chemical structures. PMID:12788765

  4. Flavoenzymes: Versatile Catalysts in Biosynthetic Pathways

    PubMed Central

    Walsh, Christopher T.; Wencewicz, Timothy A.

    2012-01-01

    Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C4a and N5 of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly. PMID:23051833

  5. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice.

    PubMed

    Midtbø, Lisa Kolden; Borkowska, Alison G; Bernhard, Annette; Rønnevik, Alexander Krokedal; Lock, Erik-Jan; Fitzgerald, Michael L; Torstensen, Bente E; Liaset, Bjørn; Brattelid, Trond; Pedersen, Theresa L; Newman, John W; Kristiansen, Karsten; Madsen, Lise

    2015-06-01

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming. PMID:25776459

  6. TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria.

    PubMed

    Loeschcke, Anita; Markert, Annette; Wilhelm, Susanne; Wirtz, Astrid; Rosenau, Frank; Jaeger, Karl-Erich; Drepper, Thomas

    2013-01-18

    Secondary metabolites represent a virtually inexhaustible source of natural molecules exhibiting a high potential as pharmaceuticals or chemical building blocks. To gain broad access to these compounds, sophisticated expression systems are needed that facilitate the transfer and expression of large chromosomal regions, whose genes encode complex metabolic pathways. Here, we report on the development of the novel system for the transfer and expression of biosynthetic pathways (TREX), which comprises all functional elements necessary for the delivery and concerted expression of clustered pathway genes in different bacteria. TREX employs (i) conjugation for DNA transfer, (ii) randomized transposition for its chromosomal insertion, and (iii) T7 RNA polymerase for unimpeded bidirectional gene expression. The applicability of the TREX system was demonstrated by establishing the biosynthetic pathways of two pigmented secondary metabolites, zeaxanthin and prodigiosin, in bacteria with different metabolic capacities. Thus, TREX represents a valuable tool for accessing natural products by allowing comparative expression studies with clustered genes. PMID:23656323

  7. Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: alpha-Gal epitope producing "superbug".

    PubMed

    Chen, Xi; Liu, Ziye; Zhang, Jianbo; Zhang, Wei; Kowal, Przemyslaw; Wang, Peng George

    2002-01-01

    A metabolic pathway engineered Escherichia coli strain (superbug) containing one plasmid harboring an artificial gene cluster encoding all the five enzymes in the biosynthetic pathway of Galalpha l,3Lac through galactose metabolism has been developed. The plasmid contains a lambda promoter, a c1857 repressor gene, an ampicillin resistance gene, and a T7 terminator. Each gene was preceded by a Shine - Dalgarno sequence for ribosome binding. In a reaction catalyzed by the recombinant E. coli strain, Galalpha 1,3Lac trisaccharide accumulated at concentrations of 14.2 mM (7.2 gL(-1)) in a reaction mixture containing galactose, glucose, lactose, and a catalytic amount of uridine 5'-diphosphoglucose. This work demonstrates that large-scale synthesis of complex oligosaccharides can be achieved economically and efficiently through a single, biosynthetic pathway engineered microorganism. PMID:17590953

  8. An eight-step synthesis of epicolactone reveals its biosynthetic origin

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Pascal; Armanino, Nicolas; Ilg, Marina K.; Webster, Robert; Trauner, Dirk

    2015-11-01

    Epicolactone is a recently isolated fungal metabolite that is highly complex for its size, and yet racemic. With its array of quaternary stereocentres, high degree of functionalization and intricate polycyclic structure, it poses a considerable challenge to synthesis, a challenge that can be met by understanding its biosynthetic origin. If drawn in a certain way, epicolactone reveals a pattern that resembles purpurogallin, the archetype of ubiquitous natural colourants formed via oxidative dimerization. Based on this insight, we designed a biomimetic synthesis of epicolactone that proceeds in only eight steps from vanillyl alcohol. We have isolated a key intermediate that supports our biosynthetic hypothesis and anticipate that an isomer of epicolactone stemming from our synthetic efforts could also be found as a natural product.

  9. Evolution-guided optimization of biosynthetic pathways

    PubMed Central

    Raman, Srivatsan; Rogers, Jameson K.; Taylor, Noah D.; Church, George M.

    2014-01-01

    Engineering biosynthetic pathways for chemical production requires extensive optimization of the host cellular metabolic machinery. Because it is challenging to specify a priori an optimal design, metabolic engineers often need to construct and evaluate a large number of variants of the pathway. We report a general strategy that combines targeted genome-wide mutagenesis to generate pathway variants with evolution to enrich for rare high producers. We convert the intracellular presence of the target chemical into a fitness advantage for the cell by using a sensor domain responsive to the chemical to control a reporter gene necessary for survival under selective conditions. Because artificial selection tends to amplify unproductive cheaters, we devised a negative selection scheme to eliminate cheaters while preserving library diversity. This scheme allows us to perform multiple rounds of evolution (addressing ∼109 cells per round) with minimal carryover of cheaters after each round. Based on candidate genes identified by flux balance analysis, we used targeted genome-wide mutagenesis to vary the expression of pathway genes involved in the production of naringenin and glucaric acid. Through up to four rounds of evolution, we increased production of naringenin and glucaric acid by 36- and 22-fold, respectively. Naringenin production (61 mg/L) from glucose was more than double the previous highest titer reported. Whole-genome sequencing of evolved strains revealed additional untargeted mutations that likely benefit production, suggesting new routes for optimization. PMID:25453111

  10. Biosynthetic Studies of Aziridine Formation in Azicemicins

    PubMed Central

    Ogasawara, Yasushi; Liu, Hung-wen

    2009-01-01

    The azicemicins, which are angucycline-type antibiotics produced by the actinomycete, Kibdelosporangium sp. MJ126-NF4, contain an aziridine ring attached to the polyketide core. Feeding experiments using [1-13C]acetate or [1,2-13C2] acetate indicated that the angucycline skeleton is biosynthesized by a type II polyketide synthase. Isotope-tracer experiments using deuterium-labeled amino acids revealed that aspartic acid is the precursor of the aziridine moiety. Subsequent cloning and sequencing efforts led to the identification of the azicemicin (azic) gene cluster spanning ~50 kbp. The cluster harbors genes typical for type II polyketide synthesis. Also contained in the cluster are genes for two adenylyl transferases, a decarboxylase, an additional acyl carrier protein (ACP), and several oxygenases. On the basis of the assigned functions of these genes, a possible pathway for aziridine ring formation in the azecimicins can now be proposed. To obtain support for the proposed biosynthetic pathway, two genes encoding adenylyltransferases were overexpressed and the resulting proteins were purified. Enzyme assays showed that one of the adenylyltransferases specifically recognizes aspartic acid, providing strong evidence, in addition to the feeding experiments, that aspartate is the precursor of the aziridine moiety. The results reported herein set the stage for future biochemical studies of aziridine biosynthesis and assembly. PMID:19928906

  11. Deciphering the late biosynthetic steps of antimalarial compound FR-900098.

    PubMed

    Johannes, Tyler W; DeSieno, Matthew A; Griffin, Benjamin M; Thomas, Paul M; Kelleher, Neil L; Metcalf, William W; Zhao, Huimin

    2010-01-29

    FR-900098 is a potent chemotherapeutic agent for the treatment of malaria. Here we report the heterologous production of this compound in Escherichia coli by reconstructing the entire biosynthetic pathway using a three-plasmid system. Based on this system, whole-cell feeding assays in combination with in vitro enzymatic activity assays reveal an unusual functional role of nucleotide conjugation and lead to the complete elucidation of the previously unassigned late biosynthetic steps. These studies also suggest a biosynthetic route to a second phosphonate antibiotic, FR-33289. A thorough understanding of the FR-900098 biosynthetic pathway now opens possibilities for metabolic engineering in E. coli to increase production of the antimalarial antibiotic and combinatorial biosynthesis to generate novel derivatives of FR-900098. PMID:20142041

  12. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts.

    PubMed

    Nielsen, Agnieszka Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos; Wlodarczyk, Artur Jacek; Gnanasekaran, Thiyagarajan; Perestrello Ramos H de Jesus, Maria; King, Brian Christopher; Bakowski, Kamil; Jensen, Poul Erik

    2016-07-01

    Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts. PMID:27005523

  13. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli.

    PubMed Central

    Lawrence, J G; Roth, J R

    1995-01-01

    The enteric bacterium Escherichia coli synthesizes cobalamin (coenzyme B12) only when provided with the complex intermediate cobinamide. Three cobalamin biosynthetic genes have been cloned from Escherichia coli K-12, and their nucleotide sequences have been determined. The three genes form an operon (cob) under the control of several promoters and are induced by cobinamide, a precursor of cobalamin. The cob operon of E. coli comprises the cobU gene, encoding the bifunctional cobinamide kinase-guanylyltransferase; the cobS gene, encoding cobalamin synthetase; and the cobT gene, encoding dimethylbenzimidazole phosphoribosyltransferase. The physiological roles of these sequences were verified by the isolation of Tn10 insertion mutations in the cobS and cobT genes. All genes were named after their Salmonella typhimurium homologs and are located at the corresponding positions on the E. coli genetic map. Although the nucleotide sequences of the Salmonella cob genes and the E. coli cob genes are homologous, they are too divergent to have been derived from an operon present in their most recent common ancestor. On the basis of comparisons of G+C content, codon usage bias, dinucleotide frequencies, and patterns of synonymous and nonsynonymous substitutions, we conclude that the cob operon was introduced into the Salmonella genome from an exogenous source. The cob operon of E. coli may be related to cobalamin synthetic genes now found among non-Salmonella enteric bacteria. PMID:7592411

  14. Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae

    PubMed Central

    Suresh, Harsha Garadi; da Silveira dos Santos, Aline Xavier; Kukulski, Wanda; Tyedmers, Jens; Riezman, Howard; Bukau, Bernd; Mogk, Axel

    2015-01-01

    Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum–, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum–mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes. PMID:25761633

  15. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes.

    PubMed

    Sablowski, R W; Moyano, E; Culianez-Macia, F A; Schuch, W; Martin, C; Bevan, M

    1994-01-01

    Synthesis of flavonoid pigments in flowers requires the co-ordinated expression of genes encoding enzymes in th phenylpropanoid biosynthetic pathway. Some cis-elements involved in the transcriptional control of these genes have been defined. We report binding of petal-specific activities from tobacco and Antirrhinum majus (snapdragon) to an element conserved in promoters of phenylpropanoid biosynthetic genes and implicated in expression in flowers. These binding activities were inhibited by antibodies raised against Myb305, a flower-specific Myb protein previously cloned from Antirrhinum by sequence homology. Myb305 bound to the same element and formed a DNA-protein complex with the same mobility as the Antirrhinum petal protein in electrophoretic mobility shift experiments. Myb305 activated expression from its binding site in yeast and in tobacco protoplasts. In protoplasts, activation also required a G-box-like element, suggesting co-operation with other elements and factors. The results strongly suggest a role for Myb305-related proteins in the activation of phenylpropanoid biosynthetic genes in flowers. This is consistent with the genetically demonstrated role of plant Myb proteins in the regulation of genes involved in flavonoid synthesis. PMID:8306956

  16. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    PubMed

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  17. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    PubMed

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  18. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms

    PubMed Central

    Wang, Yan; Wang, Liuqing; Liu, Fei; Wang, Qi; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhao, Yueju; Liu, Yang

    2016-01-01

    Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms. PMID:27007394

  19. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms.

    PubMed

    Wang, Yan; Wang, Liuqing; Liu, Fei; Wang, Qi; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhao, Yueju; Liu, Yang

    2016-03-01

    Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms. PMID:27007394

  20. A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution: Lessons for Engineering Biosynthesis

    PubMed Central

    Sali, Andrej; Takano, Eriko; Fischbach, Michael A.

    2014-01-01

    Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways. PMID:25474254

  1. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis.

    PubMed

    Medema, Marnix H; Cimermancic, Peter; Sali, Andrej; Takano, Eriko; Fischbach, Michael A

    2014-12-01

    Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways. PMID:25474254

  2. Natural Product Biosynthetic Gene Diversity in Geographically Distinct Soil Microbiomes

    PubMed Central

    Reddy, Boojala Vijay B.; Kallifidas, Dimitris; Kim, Jeffrey H.; Charlop-Powers, Zachary; Feng, Zhiyang

    2012-01-01

    The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies. PMID:22427492

  3. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  4. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.

    PubMed

    Kishimoto, Shinji; Sato, Michio; Tsunematsu, Yuta; Watanabe, Kenji

    2016-01-01

    Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details. PMID:27548127

  5. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    PubMed Central

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  6. Evidence for birth-and-death evolution of a secondary metabolite biosynthetic gene cluster and its relocation within and between genomes of the filamentous fungus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, genes required for synthesis of secondary metabolites are often clustered. The fumonisin biosynthetic (FUM) gene cluster is required for synthesis of a family of toxic secondary metabolites, fumonisins, produced by some fungi of the Gibberella fujikuroi species complex (GFSC). Among GFSC s...

  7. Molecular Networking and Pattern-Based Genome Mining Improves discovery of biosynthetic gene clusters and their products from Salinispora species

    PubMed Central

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-01-01

    Summary Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. PMID:25865308

  8. Engineered Production of Tryprostatins in E. coli through Reconstitution of a Partial ftm Biosynthetic Gene Cluster from Aspergillus sp.

    PubMed Central

    Shah, Gopitkumar R; Wesener, Shane R.; Cheng, Yi-Qiang

    2015-01-01

    Tryprostatin A and B are indole alkaloid-based fungal products that inhibit mammalian cell cycle at the G2/M phase. They are biosynthetic intermediates of fumitremorgins produced by a complex pathway involving a nonribosomal peptide synthetase (FtmA), a prenyltransferase (FtmB), a cytochrome P450 hydroxylase (FtmC), an O-methyltransferase (FtmD), and several additional enzymes. A partial fumitremorgin biosynthetic gene cluster (ftmABCD) from Aspergillus sp. was reconstituted in Escherichia coli BL21(DE3) cells, with or without the co-expression of an Sfp-type phosphopantetheinyltransferase gene (Cv_sfp) from Chromobacterium violaceum No. 968. Several recombinant E. coli strains produced tryprostatin B up to 106 mg/l or tryprostatin A up to 76 mg/l in the fermentation broth under aerobic condition, providing an effective way to prepare those pharmaceutically important natural products biologically. PMID:26640821

  9. Discovery and Reconstitution of the Cycloclavine Biosynthetic Pathway—Enzymatic Formation of a Cyclopropyl Group†

    PubMed Central

    Jakubczyk, Dorota; Caputi, Lorenzo; Hatsch, Anaëlle; Nielsen, Curt A. F.; Diefenbacher, Melanie; Klein, Jens; Molt, Andrea; Schröder, Hartwig; Cheng, Johnathan Z.

    2015-01-01

    Abstract The ergot alkaloids, a class of fungal‐derived natural products with important biological activities, are derived from a common intermediate, chanoclavine‐I, which is elaborated into a set of diverse structures. Herein we report the discovery of the biosynthetic pathway of cycloclavine, a complex ergot alkaloid containing a cyclopropyl moiety. We used a yeast‐based expression platform along with in vitro biochemical experiments to identify the enzyme that catalyzes a rearrangement of the chanoclavine‐I intermediate to form a cyclopropyl moiety. The resulting compound, cycloclavine, was produced in yeast at titers of >500 mg L−1, thus demonstrating the feasibility of the heterologous expression of these complex alkaloids.

  10. Discovery and reconstitution of the cycloclavine biosynthetic pathway--enzymatic formation of a cyclopropyl group.

    PubMed

    Jakubczyk, Dorota; Caputi, Lorenzo; Hatsch, Anaëlle; Nielsen, Curt A F; Diefenbacher, Melanie; Klein, Jens; Molt, Andrea; Schröder, Hartwig; Cheng, Johnathan Z; Naesby, Michael; O'Connor, Sarah E

    2015-04-20

    The ergot alkaloids, a class of fungal-derived natural products with important biological activities, are derived from a common intermediate, chanoclavine-I, which is elaborated into a set of diverse structures. Herein we report the discovery of the biosynthetic pathway of cycloclavine, a complex ergot alkaloid containing a cyclopropyl moiety. We used a yeast-based expression platform along with in vitro biochemical experiments to identify the enzyme that catalyzes a rearrangement of the chanoclavine-I intermediate to form a cyclopropyl moiety. The resulting compound, cycloclavine, was produced in yeast at titers of >500 mg L(-1) , thus demonstrating the feasibility of the heterologous expression of these complex alkaloids. PMID:25712404

  11. Validation of a tandem mass spectrometry method using combined extraction of 37 oxylipins and 14 endocannabinoid-related compounds including prostamides from biological matrices.

    PubMed

    Gouveia-Figueira, Sandra; Nording, Malin L

    2015-09-01

    There is a clinical need for more relevant coverage of bioactive lipids using smaller sample volumes. Therefore, we have validated a tandem mass spectrometry method for combined solid phase extraction of 37 compounds in the oxylipin (OxL) and 14 in the endocannabinoid (eCB) metabolome, as well as prostamides. The limits of quantification (LOQ) for compounds in the eCB metabolome were in the range 0.5-1000 fg on column, intraday accuracy and precision ranges (%) were 83-125 and 0.3-17, respectively, and interday accuracy and precision ranges (%) were 80-119 and 1.2-20, respectively, dependent upon the compound and the concentration studied. Corresponding values for OxL were 0.5 fg-4.2 pg on column (LOQ), 85-115% (inter- and intraday accuracy) and <5% (precision). The combined extraction method was successfully applied to tissues, cell extracts, human plasma and milk samples. A deeper study of levels in elk, pig and cow brain, as well as cow heart and liver revealed tissue and species-specific elevation of eicosanoids: arachidonate diols, 20-HETE and 12(S)-HEPE (cow liver), LTB4 (cow brain), and monohydroxy metabolites (HETEs), epoxides and 5-oxo-ETE in elk brain, which might be caused by factors of stress and/or post-mortem reactions in the tissues. PMID:26115647

  12. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway

    PubMed Central

    López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.

    2010-01-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666

  13. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network.

    PubMed

    Widhalm, Joshua R; Gutensohn, Michael; Yoo, Heejin; Adebesin, Funmilayo; Qian, Yichun; Guo, Longyun; Jaini, Rohit; Lynch, Joseph H; McCoy, Rachel M; Shreve, Jacob T; Thimmapuram, Jyothi; Rhodes, David; Morgan, John A; Dudareva, Natalia

    2015-01-01

    In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network. PMID:26356302

  14. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    PubMed Central

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  15. Artificial Chromosomes to Explore and to Exploit Biosynthetic Capabilities of Actinomycetes

    PubMed Central

    Alduina, Rosa; Gallo, Giuseppe

    2012-01-01

    Actinomycetes are an important source of biologically active compounds, like antibiotics, antitumor agents, and immunosuppressors. Genome sequencing is revealing that this class of microorganisms has larger genomes relative to other bacteria and uses a considerable fraction of its coding capacity (5–10%) for the production of mostly cryptic secondary metabolites. To access actinomycetes biosynthetic capabilities or to improve the pharmacokinetic properties and production yields of these chemically complex compounds, genetic manipulation of the producer strains can be performed. Heterologous expression in amenable hosts can be useful to exploit and to explore the genetic potential of actinomycetes and not cultivable but interesting bacteria. Artificial chromosomes that can be stably integrated into the Streptomyces genome were constructed and demonstrated to be effective for transferring entire biosynthetic gene clusters from intractable actinomycetes into more suitable hosts. In this paper, the construction of several shuttle Escherichia coli-Streptomyces artificial chromosomes is discussed together with old and new strategies applied to improve heterologous production of secondary metabolites. PMID:22919271

  16. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use.

    PubMed

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  17. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics.

    PubMed

    Molohon, Katie J; Melby, Joel O; Lee, Jaeheon; Evans, Bradley S; Dunbar, Kyle L; Bumpus, Stefanie B; Kelleher, Neil L; Mitchell, Douglas A

    2011-12-16

    The soil-dwelling, plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 is a prolific producer of complex natural products. Recently, a new FZB42 metabolite, plantazolicin (PZN), has been described as a member of the growing thiazole/oxazole-modified microcin (TOMM) family. TOMMs are biosynthesized from inactive, ribosomal peptides and undergo a series of cyclodehydrations, dehydrogenations, and other modifications to become bioactive natural products. Using high-resolution mass spectrometry, chemoselective modification, genetic interruptions, and other spectroscopic tools, we have determined the molecular structure of PZN. In addition to two conjugated polyazole moieties, the amino-terminus of PZN has been modified to N(α),N(α)-dimethylarginine. PZN exhibited a highly selective antibiotic activity toward Bacillus anthracis, but no other tested human pathogen. By altering oxygenation levels during fermentation, PZN analogues were produced that bear variability in their heterocycle content, which yielded insight into the order of biosynthetic events. Lastly, genome-mining has revealed the existence of four additional PZN-like biosynthetic gene clusters. Given their structural uniqueness and intriguing antimicrobial specificity, the PZN class of antibiotics may hold pharmacological value. PMID:21950656

  18. Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells.

    PubMed

    Lallemand, Benjamin; Erhardt, Mathieu; Heitz, Thierry; Legrand, Michel

    2013-06-01

    The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thaliana). Here all these sporopollenin biosynthetic enzymes but TKPR2 have been immunolocalized to endoplasmic reticulum of anther tapetal cells. Pull-down experiments demonstrated that tagged recombinant proteins interacted to form complexes whose constituents were characterized by immunoblotting. In vivo protein interactions were evidenced by yeast (Saccharomyces cerevisiae) two-hybrid analysis and by fluorescence lifetime imaging microscopy/Förster resonance energy transfer studies in transgenic Nicotiana benthamiana, which were used to test the possibility that the enzymes interact to form a biosynthetic metabolon. Various pairs of proteins fused to two distinct fluorochromes were coexpressed in N. benthamiana leaf tissues and fluorescence lifetime imaging microscopy/Förster resonance energy transfer measurements demonstrated that proteins interacted pairwise in planta. Taken together, these results suggest the existence of a sporopollenin metabolon. PMID:23632852

  19. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network

    PubMed Central

    Widhalm, Joshua R.; Gutensohn, Michael; Yoo, Heejin; Adebesin, Funmilayo; Qian, Yichun; Guo, Longyun; Jaini, Rohit; Lynch, Joseph H.; McCoy, Rachel M.; Shreve, Jacob T.; Thimmapuram, Jyothi; Rhodes, David; Morgan, John A.; Dudareva, Natalia

    2015-01-01

    In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network. PMID:26356302

  20. Structure Determination and Interception of Biosynthetic Intermediates for the Plantazolicin Class of Highly Discriminating Antibiotics

    PubMed Central

    Molohon, Katie J.; Melby, Joel O.; Lee, Jaeheon; Evans, Bradley S.; Dunbar, Kyle L.; Bumpus, Stefanie B.; Kelleher, Neil L.; Mitchell, Douglas A.

    2011-01-01

    The soil dwelling, plant-growth promoting bacterium, Bacillus amyloliquefaciens FZB42, is a prolific producer of complex natural products. Recently, a new FZB42 metabolite, plantazolicin (PZN), has been described as a member of the growing thiazole/oxazole-modified microcin (TOMM) family. TOMMs are biosynthesized from inactive, ribosomal peptides and undergo a series of cyclodehydrations, dehydrogenations, and other modifications to become bioactive natural products. Using high-resolution mass spectrometry, chemoselective modification, genetic interruptions, and other spectroscopic tools, we have determined the molecular structure of PZN. In addition to two conjugated polyazole moieties, the amino-terminus of PZN has been modified to Nα,Nα-dimethylarginine. PZN exhibited a highly selective antibiotic activity towards Bacillus anthracis, but no other tested human pathogen. By altering oxygenation levels during fermentation, PZN analogs were produced that bear variability in their heterocycle content, which yielded insight into the order of biosynthetic events. Lastly, genome-mining has revealed the existence of four additional PZN-like biosynthetic gene clusters. Given their structural uniqueness and intriguing antimicrobial specificity, the PZN class of antibiotics may hold pharmacological value. PMID:21950656

  1. Accessing natural product biosynthetic processes by mass spectrometry.

    PubMed

    Bumpus, Stefanie B; Kelleher, Neil L

    2008-10-01

    Two important classes of natural products are made by nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). With most biosynthetic intermediates covalently tethered during biogenesis, protein mass spectrometry (MS) has proven invaluable for their interrogation. New mass spectrometric assay formats (such as selective cofactor ejection and proteomics style LC-MS) are showcased here in the context of functional insights into new breeds of NRPS/PKS enzymes, including the first characterization of an 'iterative' PKS, the biosynthesis of the enediyne antitumor antibiotics, the study of a new strategy for PKS initiation via a GNAT-like mechanism, and the analysis of branching strategies in the so-called 'AT-less' NRPS/PKS hybrid systems. The future of MS analysis of NRPS and PKS biosynthetic pathways lies in adoption and development of methods that continue bridging enzymology with proteomics as both fields continue their post-genomic acceleration. PMID:18706516

  2. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis.

    PubMed

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G; Sørensen, Jens Laurids

    2015-07-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  3. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica

    PubMed Central

    Janso, Jeffrey E.; Haltli, Brad A.; Eustáquio, Alessandra S.; Kulowski, Kerry; Waldman, Abraham J.; Zha, Li; Nakamura, Hitomi; Bernan, Valerie S.; He, Haiyin; Carter, Guy T.; Koehn, Frank E.; Balskus, Emily P.

    2014-01-01

    The lomaiviticins are a family of cytotoxic marine natural products that have captured the attention of both synthetic and biological chemists due to their intricate molecular scaffolds and potent biological activities. Here we describe the identification of the gene cluster responsible for lomaiviticin biosynthesis in Salinispora pacifica strains DPJ-0016 and DPJ-0019 using a combination of molecular approaches and genome sequencing. The link between the lom gene cluster and lomaiviticin production was confirmed using bacterial genetics, and subsequent analysis and annotation of this cluster revealed the biosynthetic basis for the core polyketide scaffold. Additionally, we have used comparative genomics to identify candidate enzymes for several unusual tailoring events, including diazo formation and oxidative dimerization. These findings will allow further elucidation of the biosynthetic logic of lomaiviticin assembly and provide useful molecular tools for application in biocatalysis and synthetic biology. PMID:25045187

  4. Biosynthetic Modularity Rules in the Bisintercalator Family of Antitumor Compounds

    PubMed Central

    Fernández, Javier; Marín, Laura; Álvarez-Alonso, Raquel; Redondo, Saúl; Carvajal, Juan; Villamizar, Germán; Villar, Claudio J.; Lombó, Felipe

    2014-01-01

    Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development. PMID:24821625

  5. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    PubMed Central

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  6. Heterologous Expression and Manipulation of Three Tetracycline Biosynthetic Pathways**

    PubMed Central

    Wang, Peng; Kim, Woncheol; Pickens, Lauren B.; Gao, Xue; Tang, Yi

    2014-01-01

    Three and one: Three tetracycline biosynthetic pathways have been overexpressed and manipulated in heterologous host Streptomyces lividans K4-114. New tetracycline modifying enzymes have been identified through a series of gene inactivation and intermediate characterization. The collection of newly discovered tailoring enzyme and the heterologous platform will promote our understanding of tetracycline biosynthesis, as well as our performance to engineer tetracycline biosynthesis in an efficient manner. PMID:23024027

  7. Biosynthetic Gene Cluster for the Polyenoyltetramic Acid α-Lipomycin

    PubMed Central

    Bihlmaier, C.; Welle, E.; Hofmann, C.; Welzel, K.; Vente, A.; Breitling, E.; Müller, M.; Glaser, S.; Bechthold, A.

    2006-01-01

    The gram-positive bacterium Streptomyces aureofaciens Tü117 produces the acyclic polyene antibiotic α-lipomycin. The entire biosynthetic gene cluster (lip gene cluster) was cloned and characterized. DNA sequence analysis of a 74-kb region revealed the presence of 28 complete open reading frames (ORFs), 22 of them belonging to the biosynthetic gene cluster. Central to the cluster is a polyketide synthase locus that encodes an eight-module system comprised of four multifunctional proteins. In addition, one ORF shows homology to those for nonribosomal peptide synthetases, indicating that α-lipomycin belongs to the classification of hybrid peptide-polyketide natural products. Furthermore, the lip cluster includes genes responsible for the formation and attachment of d-digitoxose as well as ORFs that resemble those for putative regulatory and export functions. We generated biosynthetic mutants by insertional gene inactivation. By analysis of culture extracts of these mutants, we could prove that, indeed, the genes involved in the biosynthesis of lipomycin had been cloned, and additionally we gained insight into an unusual biosynthesis pathway. PMID:16723573

  8. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    DOE PAGESBeta

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-08-14

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction ofmore » a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.« less

  9. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies.

    PubMed

    Chakraborty, Saumen; Reed, Julian; Sage, J Timothy; Branagan, Nicole C; Petrik, Igor D; Miner, Kyle D; Hu, Michael Y; Zhao, Jiyong; Alp, E Ercan; Lu, Yi

    2015-10-01

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV-vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent (57)Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. The outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs. PMID:26274098

  10. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    SciTech Connect

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-10-05

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  11. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans.

    PubMed

    Feng, Likui; Shou, Qingyao; Butcher, Rebecca A

    2016-06-01

    L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting. PMID:27009306

  12. Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster*

    PubMed Central

    Wang, Qiang; Hillwig, Matthew L.; Okada, Kazunori; Yamazaki, Kohei; Wu, Yisheng; Swaminathan, Sivakumar; Yamane, Hisakazu; Peters, Reuben J.

    2012-01-01

    Recent reports have revealed genomic clustering of enzymatic genes for particular biosynthetic pathways in plant specialized/secondary metabolism. Rice (Oryza sativa) carries two such clusters for production of antimicrobial diterpenoid phytoalexins, with the cluster on chromosome 2 containing four closely related/homologous members of the cytochrome P450 CYP76M subfamily (CYP76M5–8). Notably, the underlying evolutionary expansion of these CYP appears to have occurred after assembly of the ancestral biosynthetic gene cluster, suggesting separate roles. It has been demonstrated that CYP76M7 catalyzes C11α-hydroxylation of ent-cassadiene, and presumably mediates an early step in biosynthesis of the derived phytocassane class of phytoalexins. Here we report biochemical characterization of CYP76M5, -6, and -8. Our results indicate that CYP76M8 is a multifunctional/promiscuous hydroxylase, with CYP76M5 and -7 seeming to provide only redundant activity, while CYP76M6 seems to provide both redundant and novel activity, relative to CYP76M8. RNAi-mediated double knockdown of CYP76M7 and -8 suppresses elicitor inducible phytocassane production, indicating a role for these monooxygenases in phytocassane biosynthesis. In addition, our data suggests that CYP76M5, -6, and -8 may play redundant roles in production of the oryzalexin class of phytoalexins as well. Intriguingly, the preceding diterpene synthase for oryzalexin biosynthesis, unlike that for the phytocassanes, is not found in the chromosome 2 diterpenoid biosynthetic gene cluster. Accordingly, our results not only uncover a complex evolutionary history, but also further suggest some intriguing differences between plant biosynthetic gene clusters and the seemingly similar microbial operons. The implications for the underlying metabolic evolution of plants are then discussed. PMID:22215681

  13. Characterization of CYP76M5-8 indicates metabolic plasticity within a plant biosynthetic gene cluster.

    PubMed

    Wang, Qiang; Hillwig, Matthew L; Okada, Kazunori; Yamazaki, Kohei; Wu, Yisheng; Swaminathan, Sivakumar; Yamane, Hisakazu; Peters, Reuben J

    2012-02-24

    Recent reports have revealed genomic clustering of enzymatic genes for particular biosynthetic pathways in plant specialized/secondary metabolism. Rice (Oryza sativa) carries two such clusters for production of antimicrobial diterpenoid phytoalexins, with the cluster on chromosome 2 containing four closely related/homologous members of the cytochrome P450 CYP76M subfamily (CYP76M5-8). Notably, the underlying evolutionary expansion of these CYP appears to have occurred after assembly of the ancestral biosynthetic gene cluster, suggesting separate roles. It has been demonstrated that CYP76M7 catalyzes C11α-hydroxylation of ent-cassadiene, and presumably mediates an early step in biosynthesis of the derived phytocassane class of phytoalexins. Here we report biochemical characterization of CYP76M5, -6, and -8. Our results indicate that CYP76M8 is a multifunctional/promiscuous hydroxylase, with CYP76M5 and -7 seeming to provide only redundant activity, while CYP76M6 seems to provide both redundant and novel activity, relative to CYP76M8. RNAi-mediated double knockdown of CYP76M7 and -8 suppresses elicitor inducible phytocassane production, indicating a role for these monooxygenases in phytocassane biosynthesis. In addition, our data suggests that CYP76M5, -6, and -8 may play redundant roles in production of the oryzalexin class of phytoalexins as well. Intriguingly, the preceding diterpene synthase for oryzalexin biosynthesis, unlike that for the phytocassanes, is not found in the chromosome 2 diterpenoid biosynthetic gene cluster. Accordingly, our results not only uncover a complex evolutionary history, but also further suggest some intriguing differences between plant biosynthetic gene clusters and the seemingly similar microbial operons. The implications for the underlying metabolic evolution of plants are then discussed. PMID:22215681

  14. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans

    PubMed Central

    Feng, Likui; Shou, Qingyao; Butcher, Rebecca A.

    2016-01-01

    L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo. Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting. PMID:27009306

  15. Biosynthesis of hibarimicins. II. Elucidation of biosynthetic pathway by cosynthesis using blocked mutants.

    PubMed

    Kajiura, Takayuki; Furumai, Tamotsu; Igarashi, Yasuhiro; Hori, Hiroshi; Higashi, Kazuaki; Ishiyama, Tadayuki; Uramoto, Masakazu; Uehara, Yoshimasa; Oki, Toshikazu

    2002-01-01

    The biosynthetic pathway of hibarimicin (HBM) was proposed on the basis of the experimental results obtained by using blocked mutants of Microbispora rosea subsp. hibaria TP-A0121, the HBM producer. In its biosynthesis, the oxidative coupling of the aromatic undecaketide unit generates a symmetrical aglycon HMP-Y1 (hibarimicin-mutant product Y1), which is oxidatively modified to hibarimicinone, the HBM aglycon. The following glycosylation of hibarimicinone gives rise to the HBM complex. We identified that HMP-Y1 prepared by methanolysis of HMP-Y6, a glycosylated metabolite from a blocked mutant, was the key intermediate: transformation of 13C-labeled HMP-Y1 to HBM B was confirmed by NMR measurements. Mutant strain produced another type of aglycon HMP-P1 in which the coupled polyketide units were intramolecularly bridged by the ether bond. This metabolite also arose by the spontaneous elimination of methanol molecule from hibarimicinone. PMID:11918066

  16. Dual Role of a Biosynthetic Enzyme, CysK, in Contact Dependent Growth Inhibition in Bacteria

    PubMed Central

    Kaundal, Soni; Uttam, Manju; Thakur, Krishan Gopal

    2016-01-01

    Contact dependent growth inhibition (CDI) is the phenomenon where CDI+ bacterial strain (inhibitor) inhibits the growth of CDI−strain (target) by direct cell to cell contact. CDI is mediated by cdiBAI gene cluster where CdiB facilitates the export of CdiA, an exotoxin, on the cell surface and CdiI acts as an immunity protein to protect CDI+ cells from autoinhibition. CdiA-CT, the C-terminal region of the toxin CdiA, from uropathogenic Escherichia coli strain 536 (UPEC536) is a latent tRNase that requires binding of a biosynthetic enzyme CysK (O-acetylserine sulfyhydrylase) for activation in the target cells. CdiA-CT can also interact simultaneously with CysK and immunity protein, CdiI, to form a ternary complex in UPEC536. But the role of CysK in the ternary complex is not clear. We studied the hydrodynamic, thermodynamic and kinetic parameters of binary and ternary complexes using AUC, ITC and SPR respectively, to investigate the role of CysK in UPEC536. We report that CdiA-CT binds CdiI and CysK with nanomolar range affinity. We further report that binding of CysK to CdiA-CT improves its affinity towards CdiI by ~40 fold resulting in the formation of a more stable complex with over ~130 fold decrease in dissociation rate. Thermal melting experiments also suggest the role of CysK in stabilizing CdiA-CT/CdiI complex as Tm of the binary complex shifts ~10°C upon binding CysK. Hence, CysK acts a modulator of CdiA-CT/CdiI interactions by stabilizing CdiA-CT/CdiI complex and may play a crucial role in preventing autoinhibition in UPEC536. This study reports a new moonlighting function of a biosynthetic enzyme, CysK, as a modulator of toxin/immunity interactions in UPEC536 inhibitor cells. PMID:27458806

  17. A novel interaction linking the FAS-II and phthiocerol dimycocerosate (PDIM) biosynthetic pathways.

    PubMed

    Kruh, Nicole A; Borgaro, Janine G; Ruzsicska, Béla P; Xu, Hua; Tonge, Peter J

    2008-11-14

    The fatty acid biosynthesis (FAS-II) pathway in Mycobacterium tuberculosis generates long chain fatty acids that serve as the precursors to mycolic acids, essential components of the mycobacterial cell wall. Enzymes in the FAS-II pathway are thought to form one or more noncovalent multi-enzyme complexes within the cell, and a bacterial two-hybrid screen was used to search for missing components of the pathway and to furnish additional data on interactions involving these enzymes in vivo. Using the FAS-II beta-ketoacyl synthase, KasA, as bait, an extensive bacterial two-hybrid screen of a M. tuberculosis genome fragment library unexpectedly revealed a novel interaction between KasA and PpsB as well as PpsD, two polyketide modules involved in the biosynthesis of the virulence lipid phthiocerol dimycocerosate (PDIM). Sequence analysis revealed that KasA interacts with PpsB and PpsD in the region of the acyl carrier domain of each protein, raising the possibility that lipids could be transferred between the FAS-II and PDIM biosynthetic pathways. Subsequent studies utilizing purified proteins and radiolabeled lipids revealed that fatty acids loaded onto PpsB were transferred to KasA and also incorporated into long chain fatty acids synthesized using a Mycobacterium smegmatis lysate. These data suggest that in addition to producing PDIMs, the growing phthiocerol product can also be shuttled into the FAS-II pathway via KasA as an entry point for further elongation. Interactions between these biosynthetic pathways may exist as a simple means to increase mycobacterial lipid diversity, enhancing functionality and the overall complexity of the cell wall. PMID:18703500

  18. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  19. EXPANSION OF BISINDOLE BIOSYNTHETIC PATHWAYS BY COMBINATORIAL CONSTRUCTION

    PubMed Central

    Du, Yi-Ling; Ryan, Katherine S.

    2015-01-01

    Cladoniamides are indolotryptoline natural products that derive from indolocarbazole precursors. Here, we present a microbial platform to artificially redirect the cladoniamide pathway to generate unnatural bisindoles for drug discovery. Specifically, we target glycosyltransferase, halogenase, and oxidoreductase genes from the phylogenetically-related indolocarbazole rebeccamycin and staurosporine pathways. We generate a series of novel compounds, reveal details about the substrate specificities of a number of enzymes, and set the stage for future efforts to develop new catalysts and compounds by engineering of bisindole genes. The strategy for structural diversification we use here could furthermore be applied to other natural product families with known biosynthetic genes. PMID:25548949

  20. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola.

    PubMed

    Xu, Meimei; Hillwig, Matthew L; Lane, Amy L; Tiernan, Mollie S; Moore, Bradley S; Peters, Reuben J

    2014-09-26

    While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe-microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms. PMID:25203741

  1. Characterization of an Orphan Diterpenoid Biosynthetic Operon from Salinispora arenicola

    PubMed Central

    2015-01-01

    While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe–microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms. PMID:25203741

  2. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe

    SciTech Connect

    Speiser, D.M.; Ortiz, D.F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D.W. Univ. of California, Berkeley )

    1992-12-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. 41 refs., 8 figs., 2 tabs.

  3. Elucidation of Enzymatic Mechanism of Phenazine Biosynthetic Protein PhzF Using QM/MM and MD Simulations

    PubMed Central

    Liu, Fei; Zhao, Yi-Lei; Wang, Xiaolei; Hu, Hongbo; Peng, Huasong; Wang, Wei; Wang, Jing-Fang; Zhang, Xuehong

    2015-01-01

    The phenazine biosynthetic pathway is of considerable importance for the pharmaceutical industry. The pathway produces two products: phenazine-1,6-dicarboxylic acid and phenazine-1-carboxylic acid. PhzF is an isomerase that catalyzes trans-2,3-dihydro-3-hydroxyanthranilic acid isomerization and plays an essential role in the phenazine biosynthetic pathway. Although the PhzF crystal structure has been determined recently, an understanding of the detailed catalytic mechanism and the roles of key catalytic residues are still lacking. In this study, a computational strategy using a combination of molecular modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics simulations was used to elucidate these important issues. The Apo enzyme, enzyme–substrate complexes with negatively charged Glu45, enzyme–transition state analog inhibitor complexes with neutral Glu45, and enzyme–product complexes with negatively charged Glu45 structures were optimized and modeled using a 200 ns molecular dynamics simulation. Residues such as Gly73, His74, Asp208, Gly212, Ser213, and water, which play important roles in ligand binding and the isomerization reaction, were comprehensively investigated. Our results suggest that the Glu45 residue at the active site of PhzF acts as a general base/acid catalyst during proton transfer. This study provides new insights into the detailed catalytic mechanism of PhzF and the results have important implications for PhzF modification. PMID:26414009

  4. Effect of photoperiod on gibberellin biosynthetic enzymes in spinach

    SciTech Connect

    Gilmour, S.J.; Bleecker, A.B.; Zeevaart, J.A.D.

    1986-04-01

    The photoperiodic control of stem elongation in spinach, a long day (LD) rosette plant, is mediated by gibberellins (GAs). The early 13-hydroxylated GA biosynthetic pathway from GA/sub 12/ to GA/sub 20/ operates in spinach: GA/sub 12/ ..-->.. GA/sub 53/ ..-->.. GA/sub 44/ ..-->.. GA/sub 19/ ..-->.. GA/sub 20/. Two enzymes of this pathway, those converting GA/sub 53/ to GA/sub 44/ (GA/sub 53/ oxidase) and GA/sub 19/ to GA/sub 20/ (GA/sub 19/ oxidase), are regulated by light. The enzyme converting GA/sub 44/ to GA/sub 19/ (GA/sub 44/ oxidase) is not light-regulated. In the light GA/sub 53/ and GA/sub 18/ oxidase activities are increased, therefore causing the GA biosynthetic pathway to be turned on. This leads to the production of an active GA in LD, which causes an increase in stem elongation. Two the enzymes, GA/sub 44/ and GA/sub 53/ oxidases, can be separated from one another by anion exchange HPLC. Estimates of the molecular weights of these two enzymes based on gel filtration HPLC will be reported.

  5. The carotenoid biosynthetic pathway: thinking in all dimensions.

    PubMed

    Shumskaya, Maria; Wurtzel, Eleanore T

    2013-07-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signaling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavor of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and predictability of metabolic engineering of carotenoids rests in the ability to target carotenoids for specific physiological purposes as well as to simultaneously modify carotenoids along with other desired traits. Here, we ask whether predictive metabolic engineering of the carotenoid pathway is indeed possible. Despite a long history of research on the pathway, at this point in time we can only describe the pathway as a parts list and have almost no knowledge of the location of the complete pathway, how it is assembled, and whether there exists any trafficking of the enzymes or the carotenoids themselves. We discuss the current state of knowledge regarding the "complete" pathway and make the argument that predictive metabolic engineering of the carotenoid pathway (and other pathways) will require investigation of the three dimensional state of the pathway as it may exist in plastids of different ultrastructures. Along with this message we point out the need to develop new types of visualization tools and resources that better reflect the dynamic nature of biosynthetic pathways. PMID:23683930

  6. Deuterium NMR spectroscopy of biosynthetically deuterated mammalian tissues

    SciTech Connect

    Curatolo, W.; Jungalwala, F.B.; Sears, B.; Tuck, L.; Neuringer, L.J.

    1985-07-30

    The choline-containing phospholipids of mammalian membranes have been biosynthetically deuterated by raising rats on a diet supplemented with (HOCH2CH2N(CD3)3) Cl or (HOCD2CH2N(CH3)3) Cl . Deuterium NMR spectra have been obtained from excised deuterated brain, sciatic nerve, heart, and lung, from isolated brain myelin and brain microsomes, and from aqueous dispersions of lipid extracts. Measurements of residual quadrupole splittings for excised deuterated neural tissues demonstrate that the orientational order of the choline head group is similar to that observed in model membranes. The spin-lattice relaxation time of the choline head group in deuterated neural tissue is indistinguishable from that observed in model membranes. These results support the proposal that the conformation and motional dynamics of the choline head groups of the bulk choline-containing lipids of neural tissue are similar to those in model membranes. Spectra of biosynthetically deuterated brain myelin and brain microsomes exhibit similar quadrupole splittings. Since these membranes have significantly different protein contents, these results indicate that no strong polar interactions exist between membrane proteins and the choline head groups of choline-containing membrane lipids. Spectra of intact deuterated heart and lung exhibit broad lines and a range of quadrupole splittings.

  7. Substrate specificity of the sialic acid biosynthetic pathway

    SciTech Connect

    Jacobs, Christina L.; Goon, Scarlett; Yarema, Kevin J.; Hinderlich, Stephan; Hang, Howard C.; Chai, Diana H.; Bertozzi, Carolyn R.

    2001-07-18

    Unnatural analogs of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogs bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell-surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogs with ketone-containing N-acyl groups that varied in the lengthor steric bulk was chemically synthesized and tested for metabolic conversion to cell-surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.

  8. Cloning and characterization of the biosynthetic gene cluster for kutznerides

    PubMed Central

    Fujimori, Danica Galonić; Hrvatin, Siniša; Neumann, Christopher S.; Strieker, Matthias; Marahiel, Mohamed A.; Walsh, Christopher T.

    2007-01-01

    Kutznerides, actinomycete-derived cyclic depsipetides, consist of six nonproteinogenic residues, including a highly oxygenated tricyclic hexahydropyrroloindole, a chlorinated piperazic acid, 2-(1-methylcyclopropyl)-glycine, a β-branched-hydroxy acid, and 3-hydroxy glutamic acid, for which biosynthetic logic has not been elucidated. Herein we describe the biosynthetic gene cluster for the kutzneride family, identified by degenerate primer PCR for halogenating enzymes postulated to be involved in biosyntheses of these unusual monomers. The 56-kb gene cluster encodes a series of six nonribosomal peptide synthetase (NRPS) modules distributed over three proteins and a variety of tailoring enzymes, including both mononuclear nonheme iron and two flavin-dependent halogenases, and an array of oxygen transfer catalysts. The sequence and organization of NRPS genes support incorporation of the unusual monomer units into the densely functionalized scaffold of kutznerides. Our work provides insight into the formation of this intriguing class of compounds and provides a foundation for elucidating the timing and mechanisms of their biosynthesis. PMID:17940045

  9. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity.

    PubMed

    Kleigrewe, Karin; Gerwick, Lena; Sherman, David H; Gerwick, William H

    2016-02-01

    Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology. PMID:26758451

  10. THE CAROTENOID BIOSYNTHETIC PATHWAY: THINKING IN ALL DIMENSIONS

    PubMed Central

    Shumskaya, Maria; Wurtzel, Eleanore T.

    2013-01-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signalling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavour of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and predictability of metabolic engineering of carotenoids rests in the ability to target carotenoids for specific physiological purposes as well as to simultaneously modify carotenoids along with other desired traits. Here, we ask whether predictive metabolic engineering of the carotenoid pathway is indeed possible. Despite a long history of research on the pathway, at this point in time we can only describe the pathway as a parts list and have almost no knowledge of the location of the complete pathway, how it is assembled, and whether there exists any trafficking of the enzymes or the carotenoids themselves. We discuss the current state of knowledge regarding the “complete” pathway and make the argument that predictive metabolic engineering of the carotenoid pathway (and other pathways) will require investigation of the three dimensional state of the pathway as it may exist in plastids of different ultrastructures. Along with this message we point out the need to develop new types of visualization tools and resources that better reflect the dynamic nature of biosynthetic pathways. PMID:23683930

  11. Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli.

    PubMed

    Pranawidjaja, Stephanie; Choi, Su-In; Lay, Bibiana W; Kim, Pil

    2015-06-01

    Bacterial heme was produced from a genetic-engineered Escherichia coli via the porphyrin pathway and it was useful as an iron resource for animal feed. The amount of the E. colisynthesized heme, however, was only few milligrams in a culture broth and it was not enough for industrial applications. To analyze heme biosynthetic pathways, an engineered E. coli artificially overexpressing ALA synthase (hemA from Rhodobacter sphaeroides) and pantothenate kinase (coaA gene from self geneome) was constructed as a bacterial heme-producing strain, and both the transcription levels of pathway genes and the intermediates concentrations were determined from batch and continuous cultures. Transcription levels of the pathway genes were not significantly changed among the tested conditions. Intracellular intermediate concentrations indicated that aminolevulinic acid (ALA) and coenzyme A (CoA) were enhanced by the hemA-coaA co-expression. Intracellular coproporphyrinogen I and protoporphyrin IX accumulation suggested that the bottleneck steps in the heme biosynthetic pathway could be the spontaneous conversion of HMB to coproporphyrinogen I and the limited conversion of protoporphyrin IX to heme, respectively. A strategy to increase the conversion of ALA to heme is discussed based on the results. PMID:25537720

  12. Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway.

    PubMed

    Cronan, John E

    2016-06-01

    Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism. PMID:27074917

  13. Overexpression of the Coq8 Kinase in Saccharomyces cerevisiae coq Null Mutants Allows for Accumulation of Diagnostic Intermediates of the Coenzyme Q6 Biosynthetic Pathway*

    PubMed Central

    Xie, Letian X.; Ozeir, Mohammad; Tang, Jeniffer Y.; Chen, Jia Y.; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F.; Pierrel, Fabien

    2012-01-01

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q6 biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q6 biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q6. Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q6 biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway. PMID:22593570

  14. Identification and functional analysis of brassicicene C biosynthetic gene cluster in Alternaria brassicicola.

    PubMed

    Minami, Atsushi; Tajima, Naoto; Higuchi, Yusuke; Toyomasu, Tomonobu; Sassa, Takeshi; Kato, Nobuo; Dairi, Tohru

    2009-02-01

    The biosynthetic gene cluster of brassicicene C was identified in Alternaria brassicicola strain ATCC 96836 from genome database search. In vivo and in vitro study clearly revealed the function of Orf8 and Orf6 as a fusicoccadiene synthase and methyltransferase, respectively. The understanding toward the biosynthetic pathway promises construction of this type of diterpene compounds with genetic engineering. PMID:19097780

  15. Stereoselective synthesis of deuterium-labeled (2S)-cyclohexenyl alanines, biosynthetic intermediates of cinnabaramide.

    PubMed

    Barbie, Philipp; Huo, Liujie; Müller, Rolf; Kazmaier, Uli

    2012-12-01

    Dideuterated β-cyclohexenylalanines, proposed biosynthetic intermediates of the cinnabaramides, can be obtained from chiral alkynols via a sequence of Irland-Claisen rearrangement, ring closing metathesis, and radical decarboxylation. Feeding experiments indicate that both (2S)-β-cyclohexenylalanines can be incorporated into cinnabaramide, while the configuration at the cyclohexenyl ring does not restrict biosynthetic processing. PMID:23163839

  16. Variability in mycotoxin biosynthetic genes in Fusarium and its effect on mycotoxin contamination of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As is the case for other fungal secondary metabolite biosynthetic genes, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thu...

  17. Detection of additional genes of the patulin biosynthetic pathway in Penicillium griseofulvum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes in the patulin biosynthetic pathway are likely to be arranged in a cluster as has been found for biosynthetic pathways of other mycotoxins. The mycotoxin patulin, common in apples and apple juice, is most often associated with Penicillium expansum. However, of 15 fungal species capable of sy...

  18. Identification of the Herboxidiene Biosynthetic Gene Cluster in Streptomyces chromofuscus ATCC 49982

    PubMed Central

    Shao, Lei; Zi, Jiachen; Zeng, Jia

    2012-01-01

    The 53-kb biosynthetic gene cluster for the novel anticholesterol natural product herboxidiene was identified in Streptomyces chromofuscus ATCC 49982 by genome sequencing and gene inactivation. In addition to herboxidiene, a biosynthetic intermediate, 18-deoxy-herboxidiene, was also isolated from the fermentation broth of S. chromofuscus ATCC 49982 as a minor metabolite. PMID:22247174

  19. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  20. Discovery of a widely distributed toxin biosynthetic gene cluster

    PubMed Central

    Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.

    2008-01-01

    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757

  1. Toward a biosynthetic route to sclareol and amber odorants.

    PubMed

    Schalk, Michel; Pastore, Laurence; Mirata, Marco A; Khim, Samretthy; Schouwey, Marina; Deguerry, Fabienne; Pineda, Virginia; Rocci, Letizia; Daviet, Laurent

    2012-11-21

    Ambergris, a waxy substance excreted by the intestinal tract of the sperm whale, has been a highly prized fragrance ingredient for millenia. Because of supply shortage and price inflation, a number of ambergris substitutes have been developed by the fragrance industry. One of the key olfactory components and most appreciated substitutes of ambergris, Ambrox is produced industrially by semisynthesis from sclareol, a diterpene-diol isolated from Clary sage. In the present study, we report the cloning and functional characterization of the enzymes responsible for the biosynthesis of sclareol. Furthermore, we reconstructed the sclareol biosynthetic pathway in genetically engineered Escherichia coli and reached sclareol titers of ~1.5 g/L in high-cell-density fermentation. Our work provides a basis for the development of an alternative, sustainable, and cost-efficient route to sclareol and other diterpene analogues. PMID:23113661

  2. Crystallographic Trapping in the Rebeccamycin Biosynthetic Enzyme RebC

    SciTech Connect

    Ryan, K.S.; Howard-Jones, A.R.; Hamill, M.J.; Elliott, S.J.; Walsh, C.T.; Drennan, C.L.

    2009-06-04

    The biosynthesis of rebeccamycin, an antitumor compound, involves the remarkable eight-electron oxidation of chlorinated chromopyrrolic acid. Although one rebeccamycin biosynthetic enzyme is capable of generating low levels of the eight-electron oxidation product on its own, a second protein, RebC, is required to accelerate product formation and eliminate side reactions. However, the mode of action of RebC was largely unknown. Using crystallography, we have determined a likely function for RebC as a flavin hydroxylase, captured two snapshots of its dynamic catalytic cycle, and trapped a reactive molecule, a putative substrate, in its binding pocket. These studies strongly suggest that the role of RebC is to sequester a reactive intermediate produced by its partner protein and to react with it enzymatically, preventing its conversion to a suite of degradation products that includes, at low levels, the desired product.

  3. Manipulating Natural Product Biosynthetic Pathways via DNA Assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2014-01-01

    DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products. PMID:24903884

  4. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster.

    PubMed

    Bilyk, Oksana; Sekurova, Olga N; Zotchev, Sergey B; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  5. Pictet–Spengler reaction-based biosynthetic machinery in fungi

    PubMed Central

    Yan, Wei; Ge, Hui Ming; Wang, Gang; Jiang, Nan; Mei, Ya Ning; Jiang, Rong; Li, Sui Jun; Chen, Chao Jun; Jiao, Rui Hua; Xu, Qiang; Ng, Seik Weng; Tan, Ren Xiang

    2014-01-01

    The Pictet–Spengler (PS) reaction constructs plant alkaloids such as morphine and camptothecin, but it has not yet been noticed in the fungal kingdom. Here, a silent fungal Pictet–Spenglerase (FPS) gene of Chaetomium globosum 1C51 residing in Epinephelus drummondhayi guts is described and ascertained to be activable by 1-methyl-l-tryptophan (1-MT). The activated FPS expression enables the PS reaction between 1-MT and flavipin (fungal aldehyde) to form “unnatural” natural products with unprecedented skeletons, of which chaetoglines B and F are potently antibacterial with the latter inhibiting acetylcholinesterase. A gene-implied enzyme inhibition (GIEI) strategy has been introduced to address the key steps for PS product diversifications. In aggregation, the work designs and validates an innovative approach that can activate the PS reaction-based fungal biosynthetic machinery to produce unpredictable compounds of unusual and novel structure valuable for new biology and biomedicine. PMID:25425666

  6. Alkaloids from Pandanus amaryllifolius: Isolation and Their Plausible Biosynthetic Formation.

    PubMed

    Tsai, Yu-Chi; Yu, Meng-Lun; El-Shazly, Mohamed; Beerhues, Ludger; Cheng, Yuan-Bin; Chen, Lei-Chin; Hwang, Tsong-Long; Chen, Hui-Fen; Chung, Yu-Ming; Hou, Ming-Feng; Wu, Yang-Chang; Chang, Fang-Rong

    2015-10-23

    Pandanus amaryllifolius Roxb. (Pandanaceae) is used as a flavor and in folk medicine in Southeast Asia. The ethanolic crude extract of the aerial parts of P. amaryllifolius exhibited antioxidant, antibiofilm, and anti-inflammatory activities in previous studies. In the current investigation, the purification of the ethanolic extract yielded nine new compounds, including N-acetylnorpandamarilactonines A (1) and B (2); pandalizines A (3) and B (4); pandanmenyamine (5); pandamarilactones 2 (6) and 3 (7), and 5(E)-pandamarilactonine-32 (8); and pandalactonine (9). The isolated alkaloids, with either a γ-alkylidene-α,β-unsaturated-γ-lactone or γ-alkylidene-α,β-unsaturated-γ-lactam system, can be classified into five skeletons including norpandamarilactonine, indolizinone, pandanamine, pandamarilactone, and pandamarilactonine. A plausible biosynthetic route toward 1-5, 7, and 9 is proposed. PMID:26461164

  7. Metabolic Profiling of Alternative NAD Biosynthetic Routes in Mouse Tissues

    PubMed Central

    Mori, Valerio; Amici, Adolfo; Mazzola, Francesca; Di Stefano, Michele; Conforti, Laura; Magni, Giulio; Ruggieri, Silverio; Raffaelli, Nadia; Orsomando, Giuseppe

    2014-01-01

    NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the “amidated” and “deamidated” routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease. PMID:25423279

  8. Resorbable biosynthetic mesh for crural reinforcement during hiatal hernia repair.

    PubMed

    Alicuben, Evan T; Worrell, Stephanie G; DeMeester, Steven R

    2014-10-01

    The use of mesh to reinforce crural closure during hiatal hernia repair is controversial. Although some studies suggest that using synthetic mesh can reduce recurrence, synthetic mesh can erode into the esophagus and in our opinion should be avoided. Studies with absorbable or biologic mesh have not proven to be of benefit for recurrence. The aim of this study was to evaluate the outcome of hiatal hernia repair with modern resorbable biosynthetic mesh in combination with adjunct tension reduction techniques. We retrospectively analyzed all patients who had crural reinforcement during repair of a sliding or paraesophageal hiatal hernia with Gore BioA resorbable mesh. Objective follow-up was by videoesophagram and/or esophagogastroduodenoscopy. There were 114 patients. The majority of operations (72%) were laparoscopic primary repairs with all patients receiving a fundoplication. The crura were closed primarily in all patients and reinforced with a BioA mesh patch. Excessive tension prompted a crural relaxing incision in four per cent and a Collis gastroplasty in 39 per cent of patients. Perioperative morbidity was minor and unrelated to the mesh. Median objective follow-up was one year, but 18 patients have objective follow-up at two or more years. A recurrent hernia was found in one patient (0.9%) three years after repair. The use of crural relaxing incisions and Collis gastroplasty in combination with crural reinforcement with resorbable biosynthetic mesh is associated with a low early hernia recurrence rate and no mesh-related complications. Long-term follow-up will define the role of these techniques for hiatal hernia repair. PMID:25264654

  9. Localization of p24 putative cargo receptors in the early secretory pathway depends on the biosynthetic activity of the cell.

    PubMed Central

    Kuiper, R P; Bouw, G; Janssen, K P; Rötter, J; van Herp, F; Martens, G J

    2001-01-01

    Members of the p24 family of putative cargo receptors (subdivided into p24-alpha, -beta, -gamma and -delta) are localized in the intermediate-and cis-Golgi compartments of the early secretory pathway, and are thought to play an important role in protein transport. In the present study, we wondered what effect increased biosynthetic cell activity with resulting high levels of protein transport would have on the subcellular localization of p24. We examined p24 localization in Xenopus intermediate pituitary melanotrope cells, which in black- and white-adapted animals are biosynthetically highly active and virtually inactive respectively. In addition, p24 localization was studied in Xenopus anterior pituitary cells whose activity is not changed during background adaptation. Using organelle fractionation, we found that in the inactive melanotropes and moderately active anterior pituitary cells of white-adapted animals, the p24-alpha, -beta, -gamma and -delta proteins are all located in the Golgi compartment. In the highly active melanotropes, but not in the anterior cells of black-adapted animals, the steady-state distribution of all four p24 members changed towards the intermediate compartment and subdomains of the endoplasmic reticulum (ER), most probably the ER exit sites. In the active melanotropes, the major cargo protein pro-opiomelanocortin was mostly localized to ER subdomains and partially co-localized with the p24 proteins. Furthermore, in the active cells, in vitro blocking of protein biosynthesis by cycloheximide or dispersion of the Golgi complex by brefeldin A led to a redistribution of the p24 proteins, indicating their involvement in ER-to-Golgi protein transport and extensive cycling in the early secretory pathway. We conclude that the subcellular localization of p24 proteins is dynamic and depends on the biosynthetic activity of the cell. PMID:11716771

  10. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria.

    PubMed

    Blodgett, Joshua A V; Oh, Dong-Chan; Cao, Shugeng; Currie, Cameron R; Kolter, Roberto; Clardy, Jon

    2010-06-29

    A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched. PMID:20547882

  11. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria

    PubMed Central

    Blodgett, Joshua A. V.; Oh, Dong-Chan; Cao, Shugeng; Currie, Cameron R.; Kolter, Roberto; Clardy, Jon

    2010-01-01

    A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides’ mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched. PMID:20547882

  12. Confirmation of a Protein-Protein Interaction in the Pantothenate Biosynthetic Pathway by Using Sortase-Mediated Labelling.

    PubMed

    Morrison, Philip M; Balmforth, Matthew R; Ness, Samuel W; Williamson, Daniel J; Rugen, Michael D; Turnbull, W Bruce; Webb, Michael E

    2016-04-15

    High-throughput studies have been widely used to identify protein-protein interactions; however, few of these candidate interactions have been confirmed in vitro. We have used a combination of isothermal titration calorimetry and fluorescence anisotropy to screen candidate interactions within the pantothenate biosynthetic pathway. In particular, we observed no interaction between the next enzyme in the pathway, pantothenate synthetase (PS), and aspartate decarboxylase, but did observe an interaction between PS and the putative Nudix hydrolase, YfcD. Confirmation of the interaction by fluorescence anisotropy was dependent upon labelling an adventitiously formed glycine on the protein N-terminal affinity purification tag by using Sortase. Subsequent formation of the protein-protein complex led to apparent restriction of the dynamics of this tag, thus suggesting that this approach could be generally applied to a subset of other protein-protein interaction complexes. PMID:26818742

  13. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol

    PubMed Central

    Romek, Katarzyna M.; Nun, Pierrick; Remaud, Gérald S.; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J.

    2015-01-01

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by 13C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of 13C (δ13Ci) within the molecule with better than 1‰ precision. Very substantial variation in the 13C positional distribution is found: between δ13Ci = −11 and −53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor–substrate relationships can be proposed. In addition, data obtained from the 18O/16O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of 13C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means. PMID:26106160

  14. Identification and characterization of a welwitindolinone alkaloid biosynthetic gene cluster in the stigonematalean Cyanobacterium Hapalosiphon welwitschii.

    PubMed

    Hillwig, Matthew L; Fuhrman, Heather A; Ittiamornkul, Kuljira; Sevco, Tyler J; Kwak, Daniel H; Liu, Xinyu

    2014-03-21

    The identification of a 36 kb welwitindolinone (wel) biosynthetic gene cluster in Hapalosiphon welwitschii UTEX B1830 is reported. Characterization of the enzymes responsible for assembling the early biosynthetic intermediates geranyl pyrophosphate and 3-((Z)-2′-isocyanoethenyl)indole as well as a dedicated N-methyltransferase in the maturation of N-methylwelwitindolinone C isothiocyanate solidified the link between the wel pathway and welwitindolinone biosynthesis. Comparative analysis of the ambiguine and welwitindolinone biosynthetic pathways in two different organisms provided insights into the origins of diverse structures within hapalindole-type molecules. PMID:24677572

  15. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    PubMed Central

    2012-01-01

    Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization. PMID:23092390

  16. Sporopollenin Biosynthetic Enzymes Interact and Constitute a Metabolon Localized to the Endoplasmic Reticulum of Tapetum Cells[W

    PubMed Central

    Lallemand, Benjamin; Erhardt, Mathieu; Heitz, Thierry; Legrand, Michel

    2013-01-01

    The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thaliana). Here all these sporopollenin biosynthetic enzymes but TKPR2 have been immunolocalized to endoplasmic reticulum of anther tapetal cells. Pull-down experiments demonstrated that tagged recombinant proteins interacted to form complexes whose constituents were characterized by immunoblotting. In vivo protein interactions were evidenced by yeast (Saccharomyces cerevisiae) two-hybrid analysis and by fluorescence lifetime imaging microscopy/Förster resonance energy transfer studies in transgenic Nicotiana benthamiana, which were used to test the possibility that the enzymes interact to form a biosynthetic metabolon. Various pairs of proteins fused to two distinct fluorochromes were coexpressed in N. benthamiana leaf tissues and fluorescence lifetime imaging microscopy/Förster resonance energy transfer measurements demonstrated that proteins interacted pairwise in planta. Taken together, these results suggest the existence of a sporopollenin metabolon. PMID:23632852

  17. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways.

    PubMed

    Clausen, Mette; Kannangara, Rubini M; Olsen, Carl E; Blomstedt, Cecilia K; Gleadow, Roslyn M; Jørgensen, Kirsten; Bak, Søren; Motawie, Mohammed S; Møller, Birger Lindberg

    2015-11-01

    The biosynthetic pathway for the cyanogenic glucoside dhurrin in sorghum has previously been shown to involve the sequential production of (E)- and (Z)-p-hydroxyphenylacetaldoxime. In this study we used microsomes prepared from wild-type and mutant sorghum or transiently transformed Nicotiana benthamiana to demonstrate that CYP79A1 catalyzes conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime whereas CYP71E1 catalyzes conversion of (E)-p-hydroxyphenylacetaldoxime into the corresponding geometrical Z-isomer as required for its dehydration into a nitrile, the next intermediate in cyanogenic glucoside synthesis. Glucosinolate biosynthesis is also initiated by the action of a CYP79 family enzyme, but the next enzyme involved belongs to the CYP83 family. We demonstrate that CYP83B1 from Arabidopsis thaliana cannot convert the (E)-p-hydroxyphenylacetaldoxime to the (Z)-isomer, which blocks the route towards cyanogenic glucoside synthesis. Instead CYP83B1 catalyzes the conversion of the (E)-p-hydroxyphenylacetaldoxime into an S-alkyl-thiohydroximate with retention of the configuration of the E-oxime intermediate in the final glucosinolate core structure. Numerous microbial plant pathogens are able to detoxify Z-oximes but not E-oximes. The CYP79-derived E-oximes may play an important role in plant defense. PMID:26361733

  18. Identification and analysis of the resorcinomycin biosynthetic gene cluster.

    PubMed

    Ooya, Koichi; Ogasawara, Yasushi; Noike, Motoyoshi; Dairi, Tohru

    2015-01-01

    Resorcinomycin (1) is composed of a nonproteinogenic amino acid, (S)-2-(3,5-dihydroxy-4-isopropylphenyl)-2-guanidinoacetic acid (2), and glycine. A biosynthetic gene cluster was identified in a genome database of Streptoverticillium roseoverticillatum by searching for orthologs of the genes responsible for biosynthesis of pheganomycin (3), which possesses a (2)-derivative at its N-terminus. The cluster contained a gene encoding an ATP-grasp-ligase (res5), which was suggested to catalyze the peptide bond formation between 2 and glycine. A res5-deletion mutant lost 1 productivity but accumulated 2 in the culture broth. However, recombinant RES5 did not show catalytic activity to form 1 with 2 and glycine as substrates. Moreover, heterologous expression of the cluster resulted in accumulation of only 2 and no production of 1 was observed. These results suggested that a peptide with glycine at its N-terminus may be used as a nucleophile and then maturated by a peptidase encoded by a gene outside of the cluster. PMID:26034896

  19. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH) and fumarase (RoFUM1) were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2) was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1) than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner. PMID:22335940

  20. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes

    PubMed Central

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways. PMID:26617621

  1. Functions Encoded by Pyrrolnitrin Biosynthetic Genes from Pseudomonas fluorescens

    PubMed Central

    Kirner, Sabine; Hammer, Philip E.; Hill, D. Steven; Altmann, Annett; Fischer, Ilona; Weislo, Laura J.; Lanahan, Mike; van Pée, Karl-Heinz; Ligon, James M.

    1998-01-01

    Pyrrolnitrin is a secondary metabolite derived from tryptophan and has strong antifungal activity. Recently we described four genes, prnABCD, from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. In the work presented here, we describe the function of each prn gene product. The four genes encode proteins identical in size and serology to proteins present in wild-type Pseudomonas fluorescens, but absent from a mutant from which the entire prn gene region had been deleted. The prnA gene product catalyzes the chlorination of l-tryptophan to form 7-chloro-l-tryptophan. The prnB gene product catalyzes a ring rearrangement and decarboxylation to convert 7-chloro-l-tryptophan to monodechloroaminopyrrolnitrin. The prnC gene product chlorinates monodechloroaminopyrrolnitrin at the 3 position to form aminopyrrolnitrin. The prnD gene product catalyzes the oxidation of the amino group of aminopyrrolnitrin to a nitro group to form pyrrolnitrin. The organization of the prn genes in the operon is identical to the order of the reactions in the biosynthetic pathway. PMID:9537395

  2. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers

    PubMed Central

    Kellner, Stefanie; Ochel, Antonia; Thüring, Kathrin; Spenkuch, Felix; Neumann, Jennifer; Sharma, Sunny; Entian, Karl-Dieter; Schneider, Dirk; Helm, Mark

    2014-01-01

    In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC–MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding 13C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations <2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude. PMID:25129236

  3. Characterization of sophorolipid biosynthetic enzymes from Starmerella bombicola.

    PubMed

    Saerens, Karen M J; Van Bogaert, Inge N A; Soetaert, Wim

    2015-11-01

    Altering glycolipid structure by genetic engineering of Starmerella bombicola is a recently started research topic and worthy alternative to the unsuccessful selective feeding strategies conventionally applied to reach this goal. One question to be addressed when expressing heterologous proteins in S. bombicola is the activity of the subsequent biosynthetic enzymes toward such modified substrates. In this scope, we studied the substrate specificity of the UDP-glucosyltransferases UgtA1 and UgtB1, responsible for the stepwise synthesis of sophorolipids from a hydroxylated fatty acid, and that of the acetyltransferase, responsible for acetylation of the sophorolipid molecule. All enzymes showed specificity toward a C18:1 chained acceptor and both glucosyltransferases were highly selective toward the UDP-glucose donor. Severe product inhibition of the glucosyltransferases explains the limited accumulation of sophorolipid intermediates by earlier created single deletion mutants of S. bombicola. Finally, a more detailed study of the acetylation of sophorolipid intermediates sheds light on the enzymatic cascade during synthesis. PMID:26298016

  4. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    PubMed Central

    Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2008-01-01

    Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP) increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established. PMID:18664246

  5. Translating biosynthetic gene clusters into fungal armor and weaponry

    PubMed Central

    Keller, Nancy P

    2015-01-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs. PMID:26284674

  6. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  7. Fumonisin-nonproducing mutants exhibit differential expression of putative polyketide biosynthetic gene clusters in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maize pathogen Fusarium verticillioides produces a group of polyketide derived secondary metabolites called fumonisins. Fumonisins can cause diseases in animals, and have been correlated epidemiologically with esophageal cancer and birth defects in humans. The fumonisin biosynthetic gene clust...

  8. Biosynthetic Pathway for Mannopeptimycins, Lipoglycopeptide Antibiotics Active against Drug-Resistant Gram-Positive Pathogens

    PubMed Central

    Magarvey, Nathan A.; Haltli, Brad; He, Min; Greenstein, Michael; Hucul, John A.

    2006-01-01

    The mannopeptimycins are a novel class of lipoglycopeptide antibiotics active against multidrug-resistant pathogens with potential as clinically useful antibacterials. This report is the first to describe the biosynthesis of this novel class of mannosylated lipoglycopeptides. Included here are the cloning, sequencing, annotation, and manipulation of the mannopeptimycin biosynthetic gene cluster from Streptomyces hygroscopicus NRRL 30439. Encoded by genes within the mannopeptimycin biosynthetic gene cluster are enzymes responsible for the generation of the hexapeptide core (nonribosomal peptide synthetases [NRPS]) and tailoring reactions (mannosylation, isovalerylation, hydroxylation, and methylation). The NRPS system is noncanonical in that it has six modules utilizing only five amino acid-specific adenylation domains and it lacks a prototypical NRPS macrocyclizing thioesterase domain. Analysis of the mannopeptimycin gene cluster and its engineering has elucidated the mannopeptimycin biosynthetic pathway and provides the framework to make new and improved mannopeptimycins biosynthetically. PMID:16723579

  9. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens.

    PubMed

    Magarvey, Nathan A; Haltli, Brad; He, Min; Greenstein, Michael; Hucul, John A

    2006-06-01

    The mannopeptimycins are a novel class of lipoglycopeptide antibiotics active against multidrug-resistant pathogens with potential as clinically useful antibacterials. This report is the first to describe the biosynthesis of this novel class of mannosylated lipoglycopeptides. Included here are the cloning, sequencing, annotation, and manipulation of the mannopeptimycin biosynthetic gene cluster from Streptomyces hygroscopicus NRRL 30439. Encoded by genes within the mannopeptimycin biosynthetic gene cluster are enzymes responsible for the generation of the hexapeptide core (nonribosomal peptide synthetases [NRPS]) and tailoring reactions (mannosylation, isovalerylation, hydroxylation, and methylation). The NRPS system is noncanonical in that it has six modules utilizing only five amino acid-specific adenylation domains and it lacks a prototypical NRPS macrocyclizing thioesterase domain. Analysis of the mannopeptimycin gene cluster and its engineering has elucidated the mannopeptimycin biosynthetic pathway and provides the framework to make new and improved mannopeptimycins biosynthetically. PMID:16723579

  10. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are polyketide mycotoxins produced by the maize pathogen Fusarium verticillioides and are associated with multiple human and animal diseases. A fumonisin biosynthetic pathway has been proposed, but structures of early pathway intermediates have not been demonstrated. The F. verticillioide...

  11. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor.

    PubMed

    Qu, Xudong; Jiang, Nan; Xu, Fei; Shao, Lei; Tang, Gongli; Wilkinson, Barrie; Liu, Wen

    2011-03-01

    Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA. PMID:21416665

  12. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering.

    PubMed

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J

    2014-05-28

    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications. PMID:24724156

  13. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway

    PubMed Central

    Park, Sung Ryeol; Tripathi, Ashootosh; Wu, Jianfeng; Schultz, Pamela J.; Yim, Isaiah; McQuade, Thomas J.; Yu, Fengan; Arevang, Carl-Johan; Mensah, Abraham Y.; Tamayo-Castillo, Giselle; Xi, Chuanwu; Sherman, David H.

    2016-01-01

    Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This cellular superstructure can display increased resistance to antibiotics and cause serious, persistent health problems in humans. Here we describe a high-throughput in vitro screen to identify inhibitors of Acinetobacter baumannii biofilms using a library of natural product extracts derived from marine microbes. Analysis of extracts derived from Streptomyces gandocaensis results in the discovery of three peptidic metabolites (cahuitamycins A–C), with cahuitamycin C being the most effective inhibitor (IC50=14.5 μM). Biosynthesis of cahuitamycin C proceeds via a convergent biosynthetic pathway, with one of the steps apparently being catalysed by an unlinked gene encoding a 6-methylsalicylate synthase. Efforts to assess starter unit diversification through selective mutasynthesis lead to production of unnatural analogues cahuitamycins D and E of increased potency (IC50=8.4 and 10.5 μM). PMID:26880271

  14. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  15. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  16. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles.

    PubMed

    Frej, Anna D; Clark, Jonathan; Le Roy, Caroline I; Lilla, Sergio; Thomason, Peter A; Otto, Grant P; Churchill, Grant; Insall, Robert H; Claus, Sandrine P; Hawkins, Phillip; Stephens, Len; Williams, Robin S B

    2016-05-15

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  17. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    PubMed Central

    Mikkelsen, Maria D.; Harholt, Jesper; Ulvskov, Peter; Johansen, Ida E.; Fangel, Jonatan U.; Doblin, Monika S.; Bacic, Antony; Willats, William G. T.

    2014-01-01

    Background and Aims The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. Methods Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. Key Results Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. Conclusions The results provide new insights into the evolution of

  18. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways.

    PubMed

    Ongley, Sarah E; Bian, Xiaoying; Neilan, Brett A; Müller, Rolf

    2013-08-01

    The heterologous expression of microbial natural product biosynthetic pathways coupled with advanced DNA engineering enables optimisation of product yields, functional elucidation of cryptic gene clusters, and generation of novel derivatives. This review summarises the recent advances in cloning and maintenance of natural product biosynthetic gene clusters for heterologous expression and the efforts fundamental for discovering novel natural products in the post-genomics era, with a focus on polyketide synthases (PKSs) and non-ribosomal polypeptide synthetases (NRPS). PMID:23832108

  19. Evolution of a Genome-Encoded Bias in Amino Acid Biosynthetic Pathways Is a Potential Indicator of Amino Acid Dynamics in the Environment

    PubMed Central

    Fasani, Rick A.; Savageau, Michael A.

    2014-01-01

    Overcoming the stress of starvation is one of an organism’s most challenging phenotypic responses. Those organisms that frequently survive the challenge, by virtue of their fitness, will have evolved genomes that are shaped by their specific environments. Understanding this genotype–environment–phenotype relationship at a deep level will require quantitative predictive models of the complex molecular systems that link these aspects of an organism’s existence. Here, we treat one of the most fundamental molecular systems, protein synthesis, and the amino acid biosynthetic pathways involved in the stringent response to starvation. These systems face an inherent logical dilemma: Building an amino acid biosynthetic pathway to synthesize its product—the cognate amino acid of the pathway—may require that very amino acid when it is no longer available. To study this potential “catch-22,” we have created a generic model of amino acid biosynthesis in response to sudden starvation. Our mathematical analysis and computational results indicate that there are two distinctly different outcomes: Partial recovery to a new steady state, or full system failure. Moreover, the cell’s fate is dictated by the cognate bias, the number of cognate amino acids in the corresponding biosynthetic pathway relative to the average number of that amino acid in the proteome. We test these implications by analyzing the proteomes of over 1,800 sequenced microbes, which reveals statistically significant evidence of low cognate bias, a genetic trait that would avoid the biosynthetic quandary. Furthermore, these results suggest that the pattern of cognate bias, which is readily derived by genome sequencing, may provide evolutionary clues to an organism’s natural environment. PMID:25118252

  20. Detection of photoactive siderophore biosynthetic genes in the marine environment.

    PubMed

    Gärdes, Astrid; Triana, Christopher; Amin, Shady A; Green, David H; Romano, Ariel; Trimble, Lyndsay; Carrano, Carl J

    2013-06-01

    Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their "biochemical potential" and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the "biochemical potential" for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect. PMID:23700243

  1. Evolution of a Biosynthetic Temporary Skin Substitute: A Preliminary Study

    PubMed Central

    Phipps, Richard; Woeller, Collynn; Rodeheaver, George; Naughton, Gail K.; Piney, Emmett; Hickerson, William; Branski, Ludwik; Holmes, James H.

    2015-01-01

    Objective: To compare PermeaDerm to first temporary biosynthetic skin substitute (Biobrane, cleared by the Food and Drug Administration in 1979). Methods: Different temporary skin substitutes (Biobrane, PermeaDerm, and PermeaDerm derivatives) were tested for physical differences, impact on healing wounds, inflammatory response, and ability to allow adequate growth of dermal fibroblasts and mesenchymal stem cells without accumulation of excessive scar-forming myofibroblasts. Proliferation of fibroblasts and stem cells on various skin substitutes was measured, and myofibroblast marker accumulation was evaluated by the expression of α-smooth muscle actin and fibronectin. Fibroblast migration was measured by tracking viable cells with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] dye. Results: In vivo testing shows PermeaDerm works well as a temporary skin substitute, performing better than Biobrane with respect to inflammation and fluid accumulation. Tissue culture techniques revealed that cells on PermeaDerm grow in a more uniform fashion and migrated to a greater extent than cells on Biobrane. Furthermore, cells grown in the presence of PermeaDerm expressed lower levels of the myofibroblast markers α-smooth muscle actin and fibronectin than cells grown on Biobrane. Conclusion: PermeaDerm with variable porosity possesses all attributes and properties known to be important for a successful temporary skin substitute and enables the clinician to control porosity from essentially zero to what the wound requires. The ability of the clinician to minimize wound desiccation without fluid accumulation is related to the reduction of punctate scarring. PMID:26229573

  2. The Magnesium Branch of the Tetrapyrrole Biosynthetic Pathway

    SciTech Connect

    Beale, S. I.

    2004-05-11

    It should be noted that the focus of the research changed somewhat during the course of the current award. The initial focus is indicated by the title of the current grant, ''The Magnesium Branch of the Chlorophyll Biosynthetic Pathway''. During the current grant period, Dr. Robert Willows, a postdoctoral associate, joined the faculty of McQuarie University in Australia. When he left my lab, we decided that he should independently pursue research on structure/function relationships in Mg chelatase and that our laboratories would collaborate on regulatory studies of this enzyme. Also, during the current award period, I began collaborating with Dr. Ariane Atteia and Mr. Robert van Lis, who were at the time located at the Autonomous University of Mexico. Dr. Atteia has since joined my laboratory and Mr. van Lis will also do so when he obtains his Ph.D. in the near future. These individuals bring to the laboratory their interests and expertise in the respiratory components of Chlamydomonas and their desire to become experts in tetrapyrrole metabolism. Recently, in a collaboration with Dr. David Bollivar, a former postdoctoral associate who is now at Illinois Wesleyan University, and Dr. Caroline Walker, who was at Clemson University but has since left this research area, we recently made a major breakthrough on the oxygen-independent cyclase reaction, which has now become an important component of the current proposal. Finally, our research on phycobilin biosynthesis in Synechucystis has revealed that this organism can grow at very low oxygen concentrations and its genome contains several genes that may encode for enzymes that catalyze alternative oxygen-independent reactions for tetrapyrrole biosynthesis, so characterizing the genes, their enzymes, and regulation of expression have also become parts of the current proposal.

  3. Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses

    PubMed Central

    Kampa, Annette; Gagunashvili, Andrey N.; Gulder, Tobias A. M.; Morinaka, Brandon I.; Daolio, Cristina; Godejohann, Markus; Miao, Vivian P. W.; Piel, Jörn; Andrésson, Ólafur S.

    2013-01-01

    Bacteria are a major source of natural products that provide rich opportunities for both chemical and biological investigation. Although the vast majority of known bacterial metabolites derive from free-living organisms, increasing evidence supports the widespread existence of chemically prolific bacteria living in symbioses. A strategy based on bioinformatic prediction, symbiont cultivation, isotopic enrichment, and advanced analytics was used to characterize a unique polyketide, nosperin, from a lichen-associated Nostoc sp. cyanobacterium. The biosynthetic gene cluster and the structure of nosperin, determined from 30 μg of compound, are related to those of the pederin group previously known only from nonphotosynthetic bacteria associated with beetles and marine sponges. The presence of this natural product family in such highly dissimilar associations suggests that some bacterial metabolites may be specific to symbioses with eukaryotes and encourages exploration of other symbioses for drug discovery and better understanding of ecological interactions mediated by complex bacterial metabolites. PMID:23898213

  4. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Alexander, Nancy J; Desjardins, Anne E

    2009-12-01

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of interest because they are toxic to animals and plants and can contribute to pathogenesis of Fusarium on some crop species. Fusarium graminearum and F. sporotrichioides have trichothecene biosynthetic genes (TRI) at three loci: a 12-gene TRI cluster and two smaller TRI loci that consist of one or two genes. Here, comparisons of additional Fusarium species have provided evidence that TRI loci have a complex evolutionary history that has included loss, non-functionalization and rearrangement of genes as well as trans-species polymorphism. The results also indicate that the TRI cluster has expanded in some species by relocation of two genes into it from the smaller loci. Thus, evolutionary forces have driven consolidation of TRI genes into fewer loci in some fusaria but have maintained three distinct TRI loci in others. PMID:19843228

  5. Biosynthetic Pathway Analysis for Improving the Cordycepin and Cordycepic Acid Production in Hirsutella sinensis.

    PubMed

    Lin, Shan; Liu, Zhi-Qiang; Xue, Ya-Ping; Baker, Peter James; Wu, Hui; Xu, Feng; Teng, Yi; Brathwaite, Mgavi Elombe; Zheng, Yu-Guo

    2016-06-01

    Hirsutella sinensis is considered as the only correct anamorph of Ophiocordyceps sinensis. To improve cordycepin and cordycepic acid production in H. sinensis, the biosynthetic pathways of cordycepin and cordycepic acid were predicted, and verified by cloning and expressing genes involved in these pathways, respectively. Then, 5'-nucleotidase participating in biosynthetic pathway of cordycepin, hexokinase, and glucose phosphate isomerase involved in biosynthetic pathway of cordycepic acid, were demonstrated playing important roles in the corresponding biosynthetic pathway by real-time PCR, accompanying with significantly up-regulated 15.03-, 5.27-, and 3.94-fold, respectively. Moreover, the metabolic regulation of H. sinensis was performed. As expected, cordycepin production reached 1.09 mg/g when additional substrate of 5'-nucleotidase was 4 mg/mL, resulting in an increase of 201.1 % compared with the control. In the same way, cordycepic acid production reached 26.6 and 23.4 % by adding substrate of hexokinase or glucose phosphate isomerase, leading to a rise of 77.3 and 55.1 %, respectively. To date, this is the first time to improve cordycepin and cordycepic acid production through metabolic regulation based on biosynthetic pathway analysis, and metabolic regulation is proved as a simple and effective way to enhance the output of cordycepin and cordycepic acid in submerged cultivation of H. sinensis. PMID:26922724

  6. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    SciTech Connect

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In

  7. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    DOE PAGESBeta

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites

  8. Volatile terpenes from actinomycetes: a biosynthetic study correlating chemical analyses to genome data.

    PubMed

    Rabe, Patrick; Citron, Christian A; Dickschat, Jeroen S

    2013-11-25

    The volatile terpenes of 24 actinomycetes whose genomes have been sequenced (or are currently being sequenced) were collected by use of a closed-loop stripping apparatus and identified by GC/MS. The analytical data were compared against a phylogenetic analysis of all 192 currently available sequences of bacterial terpene cyclases (excluding geosmin and 2-methylisoborneol synthases). In addition to the several groups of terpenes with known biosynthetic origin, selinadienes were identified as a large group of biosynthetically related sesquiterpenes that are produced by several streptomycetes. The detection of a large number of previously unrecognised side products of known terpene cyclases proved to be particularly important for an in depth understanding of biosynthetic pathways to known terpenes in actinomycetes. Interpretation of the chemical analytical data in the context of the phylogenetic tree of bacterial terpene cyclases pointed to the function of three new enzymes: (E)-β-caryophyllene synthase, selina-3,7(11)-diene synthase and aristolochene synthase. PMID:24243698

  9. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli.

    PubMed

    Stahlhut, Steen G; Siedler, Solvej; Malla, Sailesh; Harrison, Scott J; Maury, Jérôme; Neves, Ana Rute; Forster, Jochen

    2015-09-01

    Plant secondary metabolites are an underutilized pool of bioactive molecules for applications in the food, pharma and nutritional industries. One such molecule is fisetin, which is present in many fruits and vegetables and has several potential health benefits, including anti-cancer, anti-viral and anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer's disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin pathway in Escherichia coli. We propose a novel biosynthetic pathway from the amino acid, tyrosine, utilizing nine heterologous enzymes. The pathway proceeds via the synthesis of two flavanones never produced in microorganisms before--garbanzol and resokaempferol. We show for the first time a functional biosynthetic pathway and establish E. coli as a microbial platform strain for the production of fisetin and related flavonols. PMID:26192693

  10. Biosynthetic origins of the epoxyquinone skeleton in epoxyquinols A and B.

    PubMed

    Fujita, Katsuki; Ishikawa, Fumihiro; Kakeya, Hideaki

    2014-12-26

    The biosynthetic origins of epoxyquinols A (1) and B (2) produced by an unidentified fungus have attracted considerable interest because these compounds could be assembled from a biosynthetic precursor, epoxycyclohexenone aldehyde (3), via an electrocyclization/intermolecular Diels-Alder dimerization cascade reaction. Furthermore, very little is known about the biosynthetic origins of naturally occurring epoxyquinone moieties. We herein describe the incorporation of (13)C at specific positions within the structure of a shunt product, epoxycyclohexenone (4), using stable isotope feeding experiments with sodium [1-(13)C]-acetate and sodium [1,2-(13)C2]-acetate. The results of these experiments strongly suggest that the epoxyquinone skeleton is assembled by a polyketide synthase. PMID:25470317

  11. Identification of protein-protein interactions of isoflavonoid biosynthetic enzymes with 2-hydroxyisoflavanone synthase in soybean (Glycine max (L.) Merr.).

    PubMed

    Waki, Toshiyuki; Yoo, DongChan; Fujino, Naoto; Mameda, Ryo; Denessiouk, Konstantin; Yamashita, Satoshi; Motohashi, Reiko; Akashi, Tomoyoshi; Aoki, Toshio; Ayabe, Shin-ichi; Takahashi, Seiji; Nakayama, Toru

    2016-01-15

    Metabolic enzymes, including those involved in flavonoid biosynthesis, are proposed to form weakly bound, ordered protein complexes, called "metabolons". Some hypothetical models of flavonoid biosynthetic metabolons have been proposed, in which metabolic enzymes are believed to anchor to the cytoplasmic surface of the endoplasmic reticulum (ER) via ER-bound cytochrome P450 isozymes (P450s). However, no convincing evidence for the interaction of flavonoid biosynthetic enzymes with P450s has been reported previously. Here, we analyzed binary protein-protein interactions of 2-hydroxyisoflavanone synthase 1 (GmIFS1), a P450 (CYP93C), with cytoplasmic enzymes involved in isoflavone biosynthesis in soybean. We identified binary interactions between GmIFS1 and chalcone synthase 1 (GmCHS1) and between GmIFS1 and chalcone isomerases (GmCHIs) by using a split-ubiquitin membrane yeast two-hybrid system. These binary interactions were confirmed in planta by means of bimolecular fluorescence complementation (BiFC) using tobacco leaf cells. In these BiFC analyses, fluorescence signals that arose from the interaction of these cytoplasmic enzymes with GmIFS1 generated sharp, network-like intracellular patterns, which was very similar to the ER-localized fluorescence patterns of GmIFS1 labeled with a fluorescent protein. These observations provide strong evidence that, in planta, interaction of GmCHS1 and GmCHIs with GmIFS1 takes place on ER on which GmIFS1 is located, and also provide important clues to understand how enzymes and proteins form metabolons to establish efficient metabolic flux of (iso)flavonoid biosynthesis. PMID:26694697

  12. Polyketide synthase chemistry does not direct biosynthetic divergence between 9- and 10-membered enediynes.

    PubMed

    Horsman, Geoff P; Chen, Yihua; Thorson, Jon S; Shen, Ben

    2010-06-22

    Enediynes are potent antitumor antibiotics that are classified as 9- or 10-membered according to the size of the enediyne core structure. However, almost nothing is known about enediyne core biosynthesis, and the determinants of 9- versus 10-membered enediyne core biosynthetic divergence remain elusive. Previous work identified enediyne-specific polyketide synthases (PKSEs) that can be phylogenetically distinguished as being involved in 9- versus 10-membered enediyne biosynthesis, suggesting that biosynthetic divergence might originate from differing PKSE chemistries. Recent in vitro studies have identified several compounds produced by the PKSE and associated thioesterase (TE), but condition-dependent product profiles make it difficult to ascertain a true catalytic difference between 9- and 10-membered PKSE-TE systems. Here we report that PKSE chemistry does not direct 9- versus 10-membered enediyne core biosynthetic divergence as revealed by comparing the products from three 9-membered and two 10-membered PKSE-TE systems under identical conditions using robust in vivo assays. Three independent experiments support a common catalytic function for 9- and 10-membered PKSEs by the production of a heptaene metabolite from: (i) all five cognate PKSE-TE pairs in Escherichia coli; (ii) the C-1027 and calicheamicin cognate PKSE-TEs in Streptomyces lividans K4-114; and (iii) selected native producers of both 9- and 10-membered enediynes. Furthermore, PKSEs and TEs from different 9- and 10-membered enediyne biosynthetic machineries are freely interchangeable, revealing that 9- versus 10-membered enediyne core biosynthetic divergence occurs beyond the PKSE-TE level. These findings establish a starting point for determining the origins of this biosynthetic divergence. PMID:20534556

  13. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products.

    PubMed

    Li, Yong Fuga; Tsai, Kathleen J S; Harvey, Colin J B; Li, James Jian; Ary, Beatrice E; Berlew, Erin E; Boehman, Brenna L; Findley, David M; Friant, Alexandra G; Gardner, Christopher A; Gould, Michael P; Ha, Jae H; Lilley, Brenna K; McKinstry, Emily L; Nawal, Saadia; Parry, Robert C; Rothchild, Kristina W; Silbert, Samantha D; Tentilucci, Michael D; Thurston, Alana M; Wai, Rebecca B; Yoon, Yongjin; Aiyar, Raeka S; Medema, Marnix H; Hillenmeyer, Maureen E; Charkoudian, Louise K

    2016-04-01

    Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and

  14. Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast.

    PubMed

    Morris, J S; Dastmalchi, M; Li, J; Chang, L; Chen, X; Hagel, J M; Facchini, P J

    2016-01-01

    Benzylisoquinoline alkaloid (BIA) metabolism has been the focus of a considerable research effort over the past half-century, primarily because of the pharmaceutical importance of several compounds produced by opium poppy (Papaver somniferum). Advancements in genomics technologies have substantially accelerated the rate of gene discovery over the past decade, such that most biosynthetic enzymes involved in the formation of the major alkaloids of opium poppy have now been isolated and partially characterized. Not unexpectedly, the availability of all perceived biosynthetic genes has facilitated the reconstitution of several BIA pathways in microbial hosts, including yeast (Saccharomyces cerevisiae). Product yields are currently insufficient to consider the commercial production of high-value BIAs, such as morphine. However, the rudimentary success demonstrated by the uncomplicated and routine assembly of a multitude of characterized BIA biosynthetic genes provides a valuable gene discovery tool for the rapid functional identification of the plethora of gene candidates available through increasingly accessible genomic, transcriptomic, and proteomic databases. BIA biosynthetic gene discovery represents a substantial research opportunity largely owing to the wealth of existing enzyme data mostly obtained from a single plant species. Functionally novel enzymes and variants with potential metabolic engineering applications can be considered the primary targets. Selection of candidates from sequence repositories is facilitated by the monophyletic relationship among biosynthetic genes belonging to a wide range of enzyme families, such as the numerous cytochromes P450 and AdoMet-dependent O- and N-methyltransferases that operate in BIA metabolism. We describe methods for the rapid functional screening of uncharacterized gene candidates encoding potential BIA biosynthetic enzymes using yeast strains engineered to perform selected metabolic conversions. As an initial

  15. The development and use of a general route to brassinolide, its biosynthetic precursors, metabolites and analogues.

    PubMed

    Hurski, A L; Ermolovich, Yu V; Zhabinskii, V N; Khripach, V A

    2015-02-01

    A new method for the construction of steroid side chains through the addition of lithium salts of dithianes to a C-22 aldehyde was developed. An efficient one-pot procedure for the preparation of a suitable C-22 aldehyde from commercial epibrassinolide in three steps in 86% isolated yield was described. Enantioselective hydroxymethylation of isovaleraldehyde and Kulinkovich cyclopropanation of silylated Roche esters were used as key steps for the dithiane syntheses. The method was applied for the preparation of brassinolide, its biosynthetic precursors and metabolites. In addition, a number of brassinosteroids with a double bond in the side chain were prepared as precursors for tritiated derivatives for biosynthetic studies. PMID:25473936

  16. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  17. [Methods of advanced purification-the challenge for biosynthetic antibiotics industry].

    PubMed

    Oniscu, C; Caşcaval, D; Galaction, Anca-Irina

    2002-01-01

    Reactive extraction, permeation through liquid membranes and direct extraction are some of the new techniques applied for separation and advanced purification of biosynthetic antibiotics. Compared with the conventional separation techniques, the main advantages of these extraction methods are: high separation efficiency, the avoidance of antibiotics chemical and thermal inactivation, high purity of obtained antibiotics. Furthermore, using reactive extraction or permeation through liquid membrane, the antibiotics can be selective separated from their biosynthesis precursors or from the secondary biosynthetic compounds. This paper is a review on separation of Penicillins and Erythromycin by means of these extraction techniques, being underlined their advantages, applications and problems concerning the separation process scale-up. PMID:12638304

  18. The Mangotoxin Biosynthetic Operon (mbo) Is Specifically Distributed within Pseudomonas syringae Genomospecies 1 and Was Acquired Only Once during Evolution

    PubMed Central

    Carrión, Víctor J.; Gutiérrez-Barranquero, José A.; Arrebola, Eva; Bardaji, Leire; Codina, Juan C.; de Vicente, Antonio

    2013-01-01

    Mangotoxin production was first described in Pseudomonas syringae pv. syringae strains. A phenotypic characterization of 94 P. syringae strains was carried out to determine the genetic evolution of the mangotoxin biosynthetic operon (mbo). We designed a PCR primer pair specific for the mbo operon to examine its distribution within the P. syringae complex. These primers amplified a 692-bp DNA fragment from 52 mangotoxin-producing strains and from 7 non-mangotoxin-producing strains that harbor the mbo operon, whereas 35 non-mangotoxin-producing strains did not yield any amplification. This, together with the analysis of draft genomes, allowed the identification of the mbo operon in five pathovars (pathovars aptata, avellanae, japonica, pisi, and syringae), all of which belong to genomospecies 1, suggesting a limited distribution of the mbo genes in the P. syringae complex. Phylogenetic analyses using partial sequences from housekeeping genes differentiated three groups within genomospecies 1. All of the strains containing the mbo operon clustered in groups I and II, whereas those lacking the operon clustered in group III; however, the relative branching order of these three groups is dependent on the genes used to construct the phylogeny. The mbo operon maintains synteny and is inserted in the same genomic location, with high sequence conservation around the insertion point, for all the strains in groups I and II. These data support the idea that the mbo operon was acquired horizontally and only once by the ancestor of groups I and II from genomospecies 1 within the P. syringae complex. PMID:23144138

  19. Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase.

    PubMed

    Chakraborty, Saumen; Reed, Julian; Ross, Matthew; Nilges, Mark J; Petrik, Igor D; Ghosh, Soumya; Hammes-Schiffer, Sharon; Sage, J Timothy; Zhang, Yong; Schulz, Charles E; Lu, Yi

    2014-02-24

    A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}(7) complex in a protein-based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}(7) complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S=1/2) [Fe(2+)-NO(.)]. The radical nature of the FeB -bound NO would facilitate N-N bond formation by radical coupling with the heme-bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs. PMID:24481708

  20. Variability in mycotoxin biosynthetic genes and gene clusters in Fusarium and its implications for mycotoxin contamination of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As with other fungal secondary metabolites, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thus, fumonisin biosynthetic gen...

  1. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways. PMID:26343778

  2. Asymmetric Total Syntheses of (+)- and (−)-Versicolamide B and Biosynthetic Implications

    PubMed Central

    Miller, Kenneth A.; Tsukamoto, Sachiko; Williams, Robert M.

    2010-01-01

    The Diels-Alder reaction is one of the most well-studied, synthetically useful organic transformations. While a significant number of naturally occurring substances are postulated to arise by biosynthetic Diels-Alder reactions, rigorous confirmation of a mechanistically distinct natural Diels-Alderase enzyme remains elusive. Within this context, several related fungi within the Aspergillus genus produce a number of metabolites of opposite absolute configuration including (+)- or (−)-versicolamide B. These alkaloids are hypothesized to arise via biosynthetic Diels-Alder reactions implying that each Aspergillus species possesses enantiomerically distinct Diels-Alderases. Herein, experimental validation of these biosynthetic proposals via deployment of the IMDA reaction as a key step in the asymmetric total syntheses of (+)- and (−)-versicolamide B is described. Laboratory validation of the proposed biosynthetic Diels-Alder construction, coupled with the secondary metabolite profile of the producing fungi, reveals that each Aspergillus species has evolved enantiomerically distinct indole oxidases, as well as enantiomerically distinct Diels-Alderases. PMID:20300443

  3. Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the universe

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2000-01-01

    Our previous analysis of the energetics of metabolism showed that both the biosynthesis of amino acids and lipids from sugars, and the fermentation of organic substrates, were energetically driven by electron transfer reactions resulting in carbon redox disproportionation (Weber, 1997). Redox disproportionation--the spontaneous (energetically favorable) direction of carbon group transformation in biosynthesis--is brought about and driven by the energetically downhill transfer of electron pairs from more oxidized carbon groups (with lower half-cell reduction potentials) to more reduced carbon groups (with higher half-cell reduction potentials). In this report, we compare the redox and kinetic properties of carbon groups in order to evaluate the relative biosynthetic capability of organic substrates, and to identify the optimal biosubstrate. This analysis revealed that sugars (monocarbonyl alditols) are the optimal biosynthetic substrate because they contain the maximum number of biosynthetically useful high energy electrons/carbon atom while still containing a single carbonyl group needed to kinetically facilitate their conversion to useful biosynthetic intermediates. This conclusion applies to aqueous life throughout the Universe because it is based on invariant aqueous carbon chemistry--primarily, the universal reduction potentials of carbon groups.

  4. Altered expression of polyketide biosynthetic gene clusters in fumonisin-deficient mutants of Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a pathogen of maize and produces fumonisins, a group of polyketide derived secondary metabolites. Fumonisins cause diseases in animals, and they have been correlated epidemiologically with esophageal cancer and birth defects in humans. Fumonisin biosynthetic genes are c...

  5. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  6. PERTURBATIONS OF THE LIGNIN BIOSYNTHETIC PATHWAY AND THEIR POTENTIAL TO IMPACT PLANT CELL WALL UTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects on lignification of perturbing most of the genes for enzymes on the monolignol biosynthetic pathway have now been reasonably well studied, particularly in angiosperms. Early studies sought to reduce lignin content with the idea of targeting the key barrier to efficient utilization of pla...

  7. The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it is known that oxalic acid provides a selective advantage to the secreting microbe, our understanding of how this acid is biosynthesized remains incomplete. This study reports the identification, cloning, and partial characterization of the oxalic acid biosynthetic enzyme from the animal ...

  8. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to produce fumonisin mycotoxins varies among members of the black aspergilli. Previously, analyses of selected genes in the fumonisin biosynthetic gene (fum) cluster in black aspergilli from California grapes indicated that fumonisin-nonproducing isolates of Aspergillus welwitschiae lack...

  9. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products.

    PubMed

    Blodgett, Joshua A V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W

    2016-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus methylation remain poorly understood. In addition, the model for non-ribosomal peptide synthetase assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it with the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analyzed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery. PMID:26328935

  10. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products

    PubMed Central

    Blodgett, Joshua A. V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W.

    2015-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus-methylation remain poorly understood. In addition, the model for NRPS assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it to the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analysed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery. PMID:26328935