Science.gov

Sample records for oxytocin receptor antagonist

  1. Oxytocin stimulated release of PGF2α and its inhibition by a cyclooxygenase inhibitor and an oxytocin receptor antagonist from equine endometrial cultures.

    PubMed

    Penrod, Leah V; Allen, Ronald E; Rhoads, Michelle L; Limesand, Sean W; Arns, Mark J

    2013-06-01

    Uterine inflammation results in a poor uterine environment and early embryonic loss in the mare due to an inhibition of maternal recognition of pregnancy caused from increased prostaglandin F2α (PGF2α). Oxytocin binds to endometrial cell receptors to activate prostaglandin synthesis. An oxytocin receptor antagonist (Atosiban) and a cyclooxygenase inhibitor (indomethacin) both decrease PGF2α production. The aim of this study was to evaluate the in vitro effects of Atosiban and indomethacin on equine uterine prostaglandin secretion. Equine endometrial explants were harvested on day two of behavioral estrus. Endometrial explant cultures were challenged with oxytocin (250nM) and PGF2α concentrations were measured over time. Explants were also cultured with Atosiban and indomethacin for 6h to determine the influence on PGF2α secretion. When endometrial explants were challenged with oxytocin, PGF2α concentrations were greater (P<0.0001) at each time point over the 24h of culture as compared to controls. Oxytocin failed (P<0.001) to elicit PGF2α release in explants cultured with either Atosiban or indomethacin. These findings show equine endometrial explants can be stimulated with oxytocin to increase secretion of PGF2α and this secretion can be inhibited through an oxytocin receptor antagonist and a Cox inhibitor, suggesting that this response to oxytocin involves an oxytocin receptor mediated event that activates the prostaglandin synthesis cascade through cyclooxygenase. Furthermore, this data suggests a role for the use of these inhibitors in vivo to decrease uterine PGF2α secretion and prevent early luteal regression and embryonic loss. PMID:23664650

  2. Effects of oxytocin-related peptides on acute morphine tolerance: opposite actions by oxytocin and its receptor antagonists.

    PubMed

    Kovács, G L; Sarnyai, Z; Izbéki, F; Szabó, G; Telegdy, G; Barth, T; Jost, K; Brtnik, F

    1987-05-01

    The hormonally and behaviorally active nonapeptide oxytocin (OXT), its behaviorally active N-terminal octapeptide desglycinamide9-OXT and Z-prolyl-D-leucine, a synthetic analog of the C-terminal prolyl7-leucine8 sequence, inhibited the development both of a moderate and of a strong tolerance to morphine. N-alpha-Acetyl-(2-0-methyltyrosine)-OXT and (penicillamine1-2-0-methyltyrosine)- lysine8-vasopressin, both OXT receptor antagonists, facilitated the development of a moderate morphine tolerance. The i.c.v. injection of either antagonist prevented the effects of i.c.v. and s.c. OXT treatment on the development of tolerance. The effect of desglycinamide9-OXT, but not that of Z-prolyl-D-leucine was also prevented by N-alpha-acetyl-(2-0-methyltyrosine)-OXT. It is concluded that OXT and desglycinamide9-OXT, but not Z-prolyl-D-leucine, attenuate morphine tolerance by affecting putative oxytocinergic binding sites in the mouse brain. The fact that i.c.v. injection of the receptor antagonist also blocked the effect of s.c. OXT treatment argues in favor of the possibility that a minor proportion of s.c. OXT (or behaviorally active fragments thereof) may reach central nervous system target sites. PMID:3033220

  3. Selective and Potent Agonists and Antagonists for Investigating the Role of Mouse Oxytocin Receptors

    PubMed Central

    Busnelli, Marta; Bulgheroni, Elisabetta; Manning, Maurice; Kleinau, Gunnar

    2013-01-01

    The neuropeptides oxytocin (OT) and vasopressin (AVP) have been shown to play a central role in social behaviors; as a consequence, they have been recognized as potential drugs to treat neurodevelopmental and psychiatric disorders characterized by impaired social interactions. However, despite the basic and preclinical relevance of mouse strains carrying genetic alterations in the OT/AVP systems to basic and preclinical translational neuroscience, the pharmacological profile of mouse OT/AVP receptor subtypes has not been fully characterized. To fill in this gap, we have characterized a number of OT and AVP agonists and antagonists at three murine OT/AVP receptors expressed in the nervous system as follows: the oxytocin (mOTR) and vasopressin V1a (mV1aR) and V1b (mV1bR) subtypes. These three receptors were transiently expressed in vitro for binding and intracellular signaling assays, and then a homology model of the mOTR structure was constructed to investigate how its molecular features compare with human and rat OTR orthologs. Our data indicate that the selectivity profile of the natural ligands, OT and AVP, is conserved in humans, rats, and mice. Furthermore, we found that the synthetic peptide [Thr4Gly7]OT (TGOT) is remarkably selective for the mOTR and, like the endogenous OT ligand, activates Gq and Gi and recruits β-arrestins. Finally, we report three antagonists that exhibit remarkably high affinities and selectivities at mOTRs. These highly selective pharmacological tools will contribute to the investigation of the specific physiologic and pathologic roles of mOTR for the development of selective OT-based therapeutics. PMID:23723434

  4. Molecular changes induced by repeated restraint stress in the heart: the effect of oxytocin receptor antagonist atosiban.

    PubMed

    Bartekova, Monika; Barancik, Miroslav; Pokusa, Michal; Prokopova, Barbora; Radosinska, Jana; Rusnak, Andrej; Breier, Albert; Jezova, Daniela

    2015-09-01

    Even though stress belongs to the most common lifestyle risk factors of cardiovascular diseases, there are only limited data on direct influence of stressors on the heart. The aim of the present study was to explore selected protein signaling pathways in response to repeated immobilization stress in the heart tissue. Effects of simultaneous treatment with atosiban, an oxytocin receptor antagonist, on stress-induced changes in the heart were also investigated. Male Wistar rats were exposed to repeated immobilization (2 h daily, lasting 2 weeks). The results showed increased phosphorylation of Akt kinase, enhanced levels of Bcl-2, and decreased levels of cleaved caspase-3 in the left ventricle in response to chronic stress independently of the treatment. Exposure to restraint led to the rise of HSP-90 and p53 in vehicle-treated rats only. Stress failed to modify MMP-2 activity and ultrastructure of the heart tissue. Treatment with the oxytocin/vasopressin receptor antagonist atosiban reversed stress-induced rise in HSP-90 and p53 proteins. In conclusion, our data demonstrate that repeated restraint stress induces Akt kinase activation and this is associated with elevation of anti-apoptotic proteins (Bcl-2) and down-regulation of pro-apoptotic proteins (cleaved caspase-3). These findings suggest that activation of pro-survival anti-apoptotic Akt kinase pathway plays an important role in molecular mechanisms underlying responses and adaptation of the rat heart to repeated stress exposure. The results further indicate a regulatory role of oxytocin/vasopressin in the control of stress-induced activation in HSP-90 and related proteins. PMID:26323039

  5. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.

    PubMed

    Kim, Sung Hye; MacIntyre, David A; Hanyaloglu, Aylin C; Blanks, Andrew M; Thornton, Steven; Bennett, Phillip R; Terzidou, Vasso

    2016-01-15

    Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi-2 and Gαi-3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways. PMID:26586210

  6. The Effect of an Oxytocin Receptor Antagonist (Retosiban, GSK221149A) on the Response of Human Myometrial Explants to Prolonged Mechanical Stretch.

    PubMed

    Moraitis, Alexandros A; Cordeaux, Yolande; Charnock-Jones, D Stephen; Smith, Gordon C S

    2015-10-01

    Multiple pregnancy is a major cause of spontaneous preterm birth, which is related to uterine overdistention. The objective of this study was to determine whether an oxytocin receptor antagonist, retosiban (GSK221149A), inhibited the procontractile effect of stretch on human myometrium. Myometrial biopsies were obtained at term planned cesarean delivery (n = 12). Each biopsy specimen was dissected into 8 strips that were exposed in pairs to low or high stretch (0.6 or 2.4 g) in the presence of retosiban (1 μM) or vehicle (dimethylsulfoxide) for 24 hours. Subsequently, we analyzed the contractile responses to KCl and oxytocin in the absence of retosiban. We found that incubation under high stretch in vehicle alone increased the response of myometrial explants to both KCl (P = .007) and oxytocin (P = .01). However, there was no statistically significant effect of stretch when explants were incubated with retosiban (P = .3 and .2, respectively). Incubation with retosiban in low stretch had no statistically significant effect on the response to either KCl or oxytocin (P = .8 and >.9, respectively). Incubation with retosiban in high stretch resulted in a statistically significant reduction (median fold change, interquartile range, P) in the response to both KCl (0.74, 0.60-1.03, P = .046) and oxytocin (0.71, 0.53-0.91, P = .008). The greater the effect of stretch on explants from a given patient, the greater was the inhibitory effect of retosiban (r = -0.65, P = .02 for KCl and r= -0.73, P = .007 for oxytocin). These results suggest that retosiban prevented stretch-induced stimulation of human myometrial contractility. Retosiban treatment is a potential approach for preventing preterm birth in multiple pregnancy. PMID:26207346

  7. Oxytocin receptor ligands induce changes in cytoskeleton in neuroblastoma cells.

    PubMed

    Bakos, Jan; Strbak, Vladimir; Paulikova, Helena; Krajnakova, Lucia; Lestanova, Zuzana; Bacova, Zuzana

    2013-07-01

    Aim of the present study was to evaluate effects of ligands of oxytocin receptors on gene expression of neurofilament proteins (nestin and microtubule-associated protein 2 (MAP2)) associated with neuronal differentiation and growth factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) related to neuronal growth. Fluorescent staining of F-actin was used to observe morphology of cells. Co-treatment with oxytocin and oxytocin receptor antagonist--atosiban--resulted in significant increase of MAP2 gene expression in SK-N-SH cells. There was no effect of oxytocin on gene expression of growth factors BDNF and NGF. Surprisingly, oxytocin with atosiban significantly increased mRNA levels for both BDNF and NGF. Gene expression of vasopressin receptor (V1aR) significantly decreased in response to vasopressin. Atosiban decreased mRNA levels for oxytocin receptor (OXTR) and V1aR. Oxytocin significantly decreased OXTR and nestin mRNA levels and increased mRNA levels for BDNF and NGF in U-87 MG cells. The densest recruitment of F-actin filaments was observed in apical parts of filopodia in SK-N-SH cells incubated in oxytocin presence. Present data demonstrate complex role of ligands of oxytocin receptors in regulation of gene expression of intermediate filaments and thus, oxytocin might be considered as a growth factor in neuronal type of cells. PMID:23335033

  8. Oxytocin antagonists for the management of preterm birth: a review.

    PubMed

    Usta, Ihab M; Khalil, Ali; Nassar, Anwar H

    2011-06-01

    Preterm birth, the leading cause of neonatal morbidity and mortality, is estimated at incidence of 12.7% of all births, which has not decreased over the last four decades despite intensive antenatal care programs aimed at high-risk groups, the widespread use of tocolytics, and a series of other preventive and therapeutic interventions. Oxytocin antagonists, namely atosiban, represent an appealing choice that seems to be effective with apparently fewer side effects than the traditional tocolytics. This article reviews the available literature on the pharmacokinetics, mode of administration, and clinical utility of oxytocin antagonists for acute and maintenance tocolysis with special emphasis on its safety profile. PMID:21170825

  9. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors

    PubMed Central

    Mitre, Mariela; Marlin, Bianca J.; Schiavo, Jennifer K.; Morina, Egzona; Norden, Samantha E.; Hackett, Troy A.; Aoki, Chiye J.

    2016-01-01

    Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent–infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior. PMID:26911697

  10. Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

    PubMed Central

    Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G

    2012-01-01

    We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852

  11. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for. PMID:25604388

  12. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors

    PubMed Central

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-01-01

    AIM: To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. METHODS: Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. RESULTS: Colon transit was slower in the cold group than in the control group (P < 0.05). Colonic smooth muscle contractile response to oxytocin decreased, and the inhibitory effect of oxytocin on muscle contractility was enhanced by cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P < 0.05). Atosiban and tetrodotoxin inhibited the effect of oxytocin on colonic motility. Oxytocin receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P < 0.05). Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P < 0.05). However, in ovariectomized rats, estradiol treatment increased blood oxytocin, and the response of colonic muscle strips to oxytocin was attenuated. CONCLUSION: Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent. PMID:25152590

  13. Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: An electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

    SciTech Connect

    Raggenbass, M.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J. )

    1989-01-01

    In transverse hippocampal slices from rat and guinea pig brains, the authors obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1,000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 {mu}M. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. The results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide.

  14. The Peptide Oxytocin Antagonist F-792, When Given Systemically, Does Not Act Centrally in Lactating Rats.

    PubMed

    Leng, G; Russell, J A

    2016-04-01

    Oxytocin secreted by nerve terminals in the posterior pituitary has important actions for ensuring a successful outcome of pregnancy: it stimulates uterine contractions that lead to birth and it is essential in the milk-ejection reflex, enabling milk to be expelled from the mammary glands into the mouths of suckling young. Oxytocin also has important actions in the brain: released from dendrites of neurones that innervate the posterior pituitary, oxytocin auto-excites the neurones to fire action potentials in co-ordinated bursts, causing secretion of pulses of oxytocin. Central oxytocin actions are blocked by an oxytocin antagonist given into the brain and, consequently, milk transfer stops. Systemic peptide oxytocin antagonist (atosiban) treatment is used clinically in management of pre-term labour, a major obstetric problem. Hence, it is important to know whether an oxytocin antagonist given peripherally can enter the brain and interfere with central oxytocin actions. In the present study, we tested F792, a peptide oxytocin antagonist. In urethane-anaesthetised suckled rats, we show that the mammary gland responsiveness to oxytocin is blocked by i.v. injections of 7 μg/kg of F792, and the milk-ejection reflex is blocked when F792 is given directly into the brain at a dose of 0.2 μg. To critically test whether F792 given systemically can enter the brain, we recorded the suckling- and oxytocin-induced burst-firing of individual antidromically identified oxytocin neurones in the paraventricular nucleus. Given systemically at 100 μg/kg i.v., F792 acted only peripherally, blocking the milk-ejecting actions of oxytocin, but not the burst-firing of oxytocin neurones during suckling (n = 5 neurones in five rats). Hence, this peptide oxytocin antagonist does not enter the brain from the circulation to interfere with an essential oxytocin function in the brain. Furthermore, the functions of oxytocin in the brain evidently cannot be explored with a systemic peptide

  15. Transient receptor potential melastatin-2 and temperature participate in the process of CD38-regulated oxytocin secretion.

    PubMed

    Liu, Hong-Xiang; Ma, Shuang; Nan, Yong; Yang, Wan-Hua

    2016-08-17

    In recent studies, oxytocin showed potential for the treatment of mental diseases. CD38 is essential for oxytocin release, and hence plays a critical role in social behavior. CD38 catalyzes β-NAD into cyclic ADP ribose (cADPR), which could elevate the intracellular Ca by Ca-permeable channels for oxytocin secretion. The temperature-sensitive cation channel, transient receptor potential melastatin-2 (TRPM2), is a cation-nonselective cation and has been shown to affect oxytocin indirectly. The aim of the present study was to verify the participation of temperature and TRPM2 in CD38-regulated oxytocin release. The crude membranes were prepared to isolate the nerve terminals from the posterior pituitary. At 34°C, 37°C, and 39°C, agonists (β-NAD, ADPR, cADPR) and antagonists (8-Br-cADPR, 2-APB) were used to stimulate the nerve terminals. Oxytocin releases were investigated by enzyme-linked immunosorbent assay. In addition, the expression of TRPM2 and CD38 in the hypothalamus and pituitary was detected by western blotting and quantitative PCR. CD38 agonists (β-NAD, cADPR) and antagonist (8-Br-cADPR) could increase or reduce the oxytocin release, respectively. TRPM2 agonist (ADPR) and antagonist (2-APB) alone could also regulate oxytocin release. Furthermore, temperature could increase agonist stimulation and attenuate the antagonist inhibition on oxytocin release. In addition, CD38 and TRPM2 were expressed in the hypothalamus and pituitary at both the mRNA and the protein level. TRPM2 in pituitary nerve terminals plays a role in oxytocin release. Temperature- enhanced oxytocin release by CD38 and TRPM2. TRPM2 might be involved in the process of CD38-regulated oxytocin release. PMID:27348016

  16. Selective orexin receptor antagonists.

    PubMed

    Lebold, Terry P; Bonaventure, Pascal; Shireman, Brock T

    2013-09-01

    The orexin, or hypocretin, neuropeptides (orexin-A and orexin-B) are produced on neurons in the hypothalamus which project to key areas of the brain that control sleep-wake states, modulation of food intake, panic, anxiety, emotion, reward and addictive behaviors. These neuropeptides exert their effects on a pair of G-protein coupled receptors termed the orexin-1 (OX1) and orexin-2 (OX2) receptors. Emerging biology suggests the involvement of these receptors in psychiatric disorders as they are thought to play a key role in the regulation of multiple systems. This review is intended to highlight key selective OX1 or OX2 small-molecule antagonists. PMID:23891187

  17. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors.

    PubMed

    Mitre, Mariela; Marlin, Bianca J; Schiavo, Jennifer K; Morina, Egzona; Norden, Samantha E; Hackett, Troy A; Aoki, Chiye J; Chao, Moses V; Froemke, Robert C

    2016-02-24

    Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. PMID:26911697

  18. Xanthines as Adenosine Receptor Antagonists

    PubMed Central

    Jacobson, Kenneth A.

    2013-01-01

    The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogs have subsequently been synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes. PMID:20859796

  19. The role of oxytocin antagonists in repeated implantation -failure.

    PubMed

    Decleer, W; Osmanagaoglu, K; Devroey, P

    2012-01-01

    A prospective cohort study has been performed to find out if the administration of an oxytocin antagonist (Atosiban) at the occasion of embryo transfer has an effect on the pregnancy rate in patients with repeated failure of implantation. A total of 52 women with repeated failure of implantation after IVF/ICSI were included in this study. The ongoing pregnancy rate (OPR) in the total group of patients was 12 out of 52 (23.1%). Based on embryo quality all cases were categorized in two groups. One with good embryo quality (Group A) and one with poor quality embryos (Group B). Of all patients who became pregnant, 11 belonged to the group of 26 patients with good quality embryos (OPR 42.3 %) and only one to the group of 26 patients with poor quality embryos (OPR 3.8 %). Our results indicate that when good quality embryos can be obtained, the use of Atosiban at the occasion of embryo transfer might offer a significant better implantation rate in women with repeated implantation failure after IVF/ICSI. PMID:24753913

  20. The design of orally bioavailable 2, 5-diketopiperazine oxytocin antagonists: from concept to clinical candidate for premature labor.

    PubMed

    Borthwick, Alan D; Liddle, John

    2011-07-01

    A short, efficient and highly stereoselective synthesis has been developed for a series of 6-indanyl-3-alkyl-7-aryl/heterocyclic-(3R, 6R, 7R)-2, 5-diketopiperazine amides that are potent and selective oxytocin (OT) antagonists. Property-based design using an estimate of human oral absorption enabled focus to be directed to those templates with the greatest chance of delivering high bioavailability in humans. This led to the 2', 4'-difluorophenyl dimethylamide 40, a highly potent (pK(i) =9.2) and selective OT antagonist (>1,000-fold selectivity vs. the human vasopressin receptors V1a, V2, and V1b) with good oral bioavailability (>50%) in the rat and dog. Increased solubility and an improved Cyp450 profile was achieved with a range of 2'-substituted 7-(1',3'-oxazol-4'-yl)-(3R,6R,7R)-2,5-diketopiperazine amides and branching at the α-carbon of the 3-butyl group led to a superior rat pharmacokinetic profile that resulted in the discovery of the 2'-methyl-1',3'-oxazol-4'-yl morpholine amide derivative 74 GSK221149A (Retosiban), which had the best oral exposure and bioavailability in the rat. Retosiban has sub-nanomolar affinity (K(i) =0.65 nM) for the oxytocin receptor with >1400-fold selectivity over the closely related vasopressin receptors. It has good solubility, low protein binding and has a good Cyp450 profile with no significant inhibition IC(50) >100 µM. Retosiban is >15-fold more potent at the human oxytocin receptor than atosiban (a marketed i.v, peptide OT antagonist) and it has been shown to be an effective tocolytic by i.v. and by oral administration in rats, and was selected for progression as a potential clinical candidate for preterm labor. PMID:20027670

  1. Thermodynamics of the interaction between oxytocin and its myometrial receptor in sheep: a stepwise binding mechanism.

    PubMed

    Pliska, Vladimir; Folkers, Gerd; Spiwok, Vojtěch

    2014-09-01

    Entropy (ΔS), enthalpy (ΔH) and heat capacity (ΔCp) changes attending the oxytocin interaction with its two binding sites on myometrial cell membranes in sheep were derived from the temperature dependence of Kd values. The high affinity oxytocin site (Kd on the order of 10(-9)mol l(-1), 25 °C), ascribed to the oxytocin receptor (OXTR), is entropy-driven in the temperature range 0-37 °C. Enthalpy component prevails as a driving force in the binding to the low affinity site (Kd ≈ 10(-7)) within the higher temperature range. ΔCp values in both cases do not differ significantly from zero but become highly relevant in the presence of a GTP analog (10(-4)M GTP-γS). Under these conditions, ΔCp in the low site interaction becomes negative and ΔS is shifted toward negative values (enthalpy drift); ΔCp of the high affinity site rises to a high positive value and the interaction is even more strongly entropy driven. Atosiban, a competitive antagonist of oxytocin at OXTR displays a single significant binding site on myometrial cells (Kd about 10(-7)mol l(-1)). Thermodynamic profiles of atosiban and the low affinity oxytocin site show conspicuous similarities, indicating that the inhibitor is bound to the low affinity site, and not, with a lower affinity, to the putative receptor protein. It is suggested that the interaction of oxytocin with its responding system on myometrial membranes follows in two distinct steps that are likely to be associated with several independent binding domains in the GPCR receptor. PMID:25010721

  2. Oxytocin receptor DNA methylation in postpartum depression.

    PubMed

    Kimmel, Mary; Clive, Makena; Gispen, Fiona; Guintivano, Jerry; Brown, Tori; Cox, Olivia; Beckmann, Matthias W; Kornhuber, Johannes; Fasching, Peter A; Osborne, Lauren M; Binder, Elisabeth; Payne, Jennifer L; Kaminsky, Zachary

    2016-07-01

    The oxytocin receptor (OXTR) is a key regulator of stress and anxiety and may be regulated by both psychosocial risk factors and gonadal hormones, making it an attractive candidate for study in postpartum depression (PPD). The objective of this study was to investigate both serum hormone and PPD specific DNA methylation variation in the OXTR. Illumina HM450 microarray data generated in a prospective PPD cohort identified significant associations (P=0.014) with PPD in an intronic region in the OXTR located 4bp proximal to an estrogen receptor (ER) binding region. Pyrosequencing confirmed moderate evidence for an interaction of CpGs in the region with childhood abuse status to mediate PPD. These CpGs located on chr3 at positions 8810078 and 8810069 exhibited significant associations with postpartum depression scores from an independent cohort of 240 women with no prior psychiatric history. Hormone analysis suggested a PPD specific negative correlation of DNA methylation in the region with serum estradiol levels. Estradiol levels and OXTR DNA methylation exhibited a significant interaction to associate with the ratio of allopregnanolone to progesterone. Cumulatively, the data corroborate our previous hypotheses of a PPD specific increased sensitivity of epigenetic reprogramming at estrogen target genes and suggests that OXTR epigenetic variation may be an important mediator of mood relevant neuroactive steroid production. PMID:27108164

  3. Oxytocin and vasopressin: distinct receptors in myometrium

    SciTech Connect

    Guillon, G.; Balestre, M.N.; Roberts, J.M.; Bottari, S.P.

    1987-06-01

    The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/- 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.

  4. Pyridyl-2,5-diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists: synthesis, pharmacokinetics, and in vivo potency.

    PubMed

    Borthwick, Alan D; Liddle, John; Davies, Dave E; Exall, Anne M; Hamlett, Christopher; Hickey, Deirdre M; Mason, Andrew M; Smith, Ian E D; Nerozzi, Fabrizio; Peace, Simon; Pollard, Derek; Sollis, Steve L; Allen, Michael J; Woollard, Patrick M; Pullen, Mark A; Westfall, Timothy D; Stanislaus, Dinesh J

    2012-01-26

    A six-stage stereoselective synthesis of indanyl-7-(3'-pyridyl)-(3R,6R,7R)-2,5-diketopiperazines oxytocin antagonists from indene is described. SAR studies involving mono- and disubstitution in the 3'-pyridyl ring and variation of the 3-isobutyl group gave potent compounds (pK(i) > 9.0) with good aqueous solubility. Evaluation of the pharmacokinetic profile in the rat, dog, and cynomolgus monkey of those derivatives with low cynomolgus monkey and human intrinsic clearance gave 2',6'-dimethyl-3'-pyridyl R-sec-butyl morpholine amide Epelsiban (69), a highly potent oxytocin antagonist (pK(i) = 9.9) with >31000-fold selectivity over all three human vasopressin receptors hV1aR, hV2R, and hV1bR, with no significant P450 inhibition. Epelsiban has low levels of intrinsic clearance against the microsomes of four species, good bioavailability (55%) and comparable potency to atosiban in the rat, but is 100-fold more potent than the latter in vitro and was negative in the genotoxicity screens with a satisfactory oral safety profile in female rats. PMID:22239250

  5. Endothelin receptors and their antagonists.

    PubMed

    Maguire, Janet J; Davenport, Anthony P

    2015-03-01

    All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein-coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ET(A) receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ET(B). The renal vascular endothelium only expresses the ET(B) subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ET(B) in in the nephron to reduce salt and water re-absorption. In contrast, ET(A) predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ET(A) (BQ123, TAK-044) and ET(B) (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ET(A)/ET(B) antagonists or display ET(A) selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease. PMID:25966344

  6. Oxytocin Reduces Cocaine Seeking and Reverses Chronic Cocaine-Induced Changes in Glutamate Receptor Function

    PubMed Central

    Zhou, Luyi; Sun, Wei-Lun; Young, Amy B.; Lee, Kunhee; McGinty, Jacqueline F.

    2015-01-01

    Background: Oxytocin, a neurohypophyseal neuropeptide, is a potential mediator and regulator of drug addiction. However, the cellular mechanisms of oxytocin in drug seeking remain unknown. Methods: In the present study, we used a self-administration/reinstatement model to study the effects of oxytocin on cocaine seeking and its potential interaction with glutamate function at the receptor level. Results: Systemic oxytocin dose-dependently reduced cocaine self-administration during various schedules of reinforcement, including fixed ratio 1, fixed ratio 5, and progressive ratio. Oxytocin also attenuated reinstatement to cocaine seeking induced by cocaine prime or conditioned cues. Western-blot analysis indicated that oxytocin increased phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunit at the Ser 845 site with or without accompanying increases in phosphorylation of extracellular signal-regulated kinase, in several brain regions, including the prefrontal cortex, bed nucleus of the stria terminalis, amygdala, and dorsal hippocampus. Immunoprecipitation of oxytocin receptor and GluA1 subunit receptors further demonstrated a physical interaction between these 2 receptors, although the interaction was not influenced by chronic cocaine or oxytocin treatment. Oxytocin also attenuated sucrose seeking in a GluA1- or extracellular-signal-regulated kinase-independent manner. Conclusions: These findings suggest that oxytocin mediates cocaine seeking through interacting with glutamate receptor systems via second messenger cascades in mesocorticolimbic regions. PMID:25539504

  7. Oxytocin differentially modulates compromise and competitive approach but not withdrawal to antagonists from own vs. rivaling other groups.

    PubMed

    Ten Velden, Femke S; Baas, Matthijs; Shalvi, Shaul; Kret, Mariska E; De Dreu, Carsten K W

    2014-09-11

    In humans, oxytocin promotes cognitive and motivational tendencies that benefit the groups on which humans depend for their survival and prosperity. Here we examined decision making in an incentivized two-player poker game with either an in-group or out-group antagonist. Sixty nine healthy males received 24 IU oxytocin or matching placebo, and played four rounds of a simplified poker game. On each round they received either low or high value cards to create differences in competitive strength, and then responded to a bet placed by their (simulated) (in-group or out-group) antagonist. Under placebo, participants withdrew and competed depending on their own (low vs. high) competitive strength, regardless of their antagonist's group membership. Under oxytocin, however, participants settled more and competed less with an in-group as compared to an out-group antagonist; withdrawal was unaffected by group membership. We conclude that oxytocin sensitizes humans to the group membership of their interaction partner, rendering them relatively more benevolent and less competitive towards those seen as belonging to their own group. This article is part of a Special Issue entitled Oxytocin and Social Behav. PMID:24055737

  8. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors.

    PubMed

    Bales, K L; Plotsky, P M; Young, L J; Lim, M M; Grotte, N; Ferrer, E; Carter, C S

    2007-01-01

    Developmental exposure to oxytocin (OT) or oxytocin antagonists (OTAs) has been shown to cause long-lasting and often sexually dimorphic effects on social behaviors in prairie voles (Microtus ochrogaster). Because regulation of social behavior in monogamous mammals involves central receptors for OT, arginine vasopressin (AVP), and dopamine, we examined the hypothesis that the long-lasting, developmental effects of exposure to neonatal OT or OTA might reflect changes in the expression of receptors for these peptides. On postnatal day 1, prairie voles were injected intraperitoneally with either OT (1 mg/kg), an OTA (0.1 mg/kg), saline vehicle, or were handled only. At approximately 60 days of age, vasopressin V1a receptors, OT receptors (OTR) and dopamine D2 receptor binding were quantified using receptor autoradiography in brain tissue taken from males and females. Significant treatment effects on V1a binding were found in the bed nucleus of the stria terminalis (BNST), cingulate cortex (CgCtx), mediodorsal thalamus (MdThal), medial preoptic area of the hypothalamus (MPOA), and lateral septum (LS). The CgCtx, MPOA, ventral pallidum, and LS also showed significant sex by treatment interactions on V1a binding. No significant treatment or sex differences were observed for D2 receptor binding. No significant treatment difference was observed for OTR receptor binding, and only a marginal sex difference. Changes in the neuropeptide receptor expression, especially the V1a receptor, may help to explain sexually dimorphic changes in behavior that follow comparable neonatal manipulations. PMID:17055176

  9. Tetrahydroquinoline derivatives as opioid receptor antagonists.

    PubMed

    Zhang, Cunyu; Westaway, Susan M; Speake, Jason D; Bishop, Michael J; Goetz, Aaron S; Carballo, Luz Helena; Hu, Mike; Epperly, Andrea H

    2011-01-15

    Opioid receptors play an important role in both behavioral and homeostatic functions. We herein report tetrahydroquinoline derivatives as opioid receptor antagonists. SAR studies led to the identification of the potent antagonist 2v, endowed with 1.58nM (K(i)) functional activity against the μ opioid receptor. DMPK data suggest that novel tetrahydroquinoline analogs may be advantageous in peripheral applications. PMID:21193310

  10. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats

    PubMed Central

    Hicks, C; Ramos, L; Reekie, T; Misagh, G H; Narlawar, R; Kassiou, M; McGregor, I S

    2014-01-01

    Background and Purpose There is current interest in oxytocin (OT) as a possible therapeutic in psychiatric disorders. However, the usefulness of OT may be constrained by peripheral autonomic effects, which may involve an action at both OT and vasopressin V1A receptors. Here, we characterized the cardiovascular and thermoregulatory effects of OT, vasopressin (AVP) and the non-peptide OT receptor agonist WAY 267,464 in rats, and assessed the relative involvement of the OT and V1A receptors in these effects. Experimental Approach Biotelemetry in freely moving male Wistar rats was used to examine body temperature and heart rate after OT (0.01 – 1 mg kg−1; i.p.), AVP (0.001 – 0.1 mg kg−1; i.p.) or WAY 267,464 (10 and 100 mg kg−1; i.p.). The actions of the OT receptor antagonist Compound 25 (C25, 5 and 10 mg kg−1) and V1A receptor antagonist SR49059 (1 and 10 mg kg−1) were studied, as well as possible V1A receptor antagonist effects of WAY 267,464. Key Results OT and AVP dose-dependently reduced body temperature and heart rate. WAY 267,464 had similar, but more modest, effects. SR49059, but not C25, prevented the hypothermia and bradycardia induced by OT and AVP. WAY 267,464 (100 mg·kg−1) prevented the effects of OT, and to some extent AVP. Conclusions and Implications Peripherally administered OT and AVP have profound cardiovascular and thermoregulatory effects that appear to principally involve the V1A receptor rather than the OT receptor. Additionally, WAY 267,464 is not a simple OT receptor agonist, as it has functionally relevant V1A antagonist actions. PMID:24641248

  11. Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: a 24-week randomized clinical trial.

    PubMed

    Kosaka, H; Okamoto, Y; Munesue, T; Yamasue, H; Inohara, K; Fujioka, T; Anme, T; Orisaka, M; Ishitobi, M; Jung, M; Fujisawa, T X; Tanaka, S; Arai, S; Asano, M; Saito, D N; Sadato, N; Tomoda, A; Omori, M; Sato, M; Okazawa, H; Higashida, H; Wada, Y

    2016-01-01

    Recent studies have suggested that long-term oxytocin administration can alleviate the symptoms of autism spectrum disorder (ASD); however, factors influencing its efficacy are still unclear. We conducted a single-center phase 2, pilot, randomized, double-blind, placebo-controlled, parallel-group, clinical trial in young adults with high-functioning ASD, to determine whether oxytocin dosage and genetic background of the oxytocin receptor affects oxytocin efficacy. This trial consisted of double-blind (12 weeks), open-label (12 weeks) and follow-up phases (8 weeks). To examine dose dependency, 60 participants were randomly assigned to high-dose (32 IU per day) or low-dose intranasal oxytocin (16 IU per day), or placebo groups during the double-blind phase. Next, we measured single-nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR). In the intention-to-treat population, no outcomes were improved after oxytocin administration. However, in male participants, Clinical Global Impression-Improvement (CGI-I) scores in the high-dose group, but not the low-dose group, were significantly higher than in the placebo group. Furthermore, we examined whether oxytocin efficacy, reflected in the CGI-I scores, is influenced by estimated daily dosage and OXTR polymorphisms in male participants. We found that >21 IU per day oxytocin was more effective than ⩽21 IU per day, and that a SNP in OXTR (rs6791619) predicted CGI-I scores for ⩽21 IU per day oxytocin treatment. No severe adverse events occurred. These results suggest that efficacy of long-term oxytocin administration in young men with high-functioning ASD depends on the oxytocin dosage and genetic background of the oxytocin receptor, which contributes to the effectiveness of oxytocin treatment of ASD. PMID:27552585

  12. Septal oxytocin administration impairs peer affiliation via V1a receptors in female meadow voles.

    PubMed

    Anacker, Allison M J; Christensen, Jennifer D; LaFlamme, Elyssa M; Grunberg, Diana M; Beery, Annaliese K

    2016-06-01

    The peptide hormone oxytocin (OT) plays an important role in social behaviors, including social bond formation. In different contexts, however, OT is also associated with aggression, social selectivity, and reduced affiliation. Female meadow voles form social preferences for familiar same-sex peers under short, winter-like day lengths in the laboratory, and provide a means of studying affiliation outside the context of reproductive pair bonds. Multiple lines of evidence suggest that the actions of OT in the lateral septum (LS) may decrease affiliative behavior, including greater density of OT receptors in the LS of meadow voles that huddle less. We infused OT into the LS of female meadow voles immediately prior to cohabitation with a social partner to determine its effects on partner preference formation. OT prevented the formation of preferences for the partner female. Co-administration of OT with a specific OT receptor antagonist did not reverse the effect, but co-administration of OT with a specific vasopressin 1a receptor (V1aR) antagonist did, indicating that OT in the LS likely acted through V1aRs to decrease partner preference. Receptor autoradiography revealed dense V1aR binding in the LS of female meadow voles. These results suggest that the LS is a brain region that may be responsible for inhibitory effects of OT administration on affiliation, which will be important to consider in therapeutic administrations of OT. PMID:26974500

  13. [Oxytocin, the hormone that everyone uses and that few know].

    PubMed

    López-Ramírez, Cinthia Elizabeth; Arámbula-Almanza, Jaqueline; Camarena-Pulido, Eva Elizabet

    2014-07-01

    BACKGROUND. Oxytocin is a well known drug most commonly used in obstetrics for induction or augmentation of labor. Due to its essential role in labor, and the overall effect in the body, oxytocin must be deeply understood by all obstetricians who use it and prescribe it. There is relevant data listed about oxytocin and has reviewed the evidence in 31 full text articles of indexed journals between 1999 and 2013. In search engines like MEDLINE, MedicLatina, PUBMED, Wolters Kluwer Healt, with keywords like: oxytocin, oxytocin receptor, oxytocin vasopressin, oxytocin postpartum, oxytocin review, oxytocin labor, oxytocin release. The best evidence from the literature based on the methodology they used is included. The word oxytocin comes from the Greek words omega Chi upsilon xi, tau omicron Chi omicron chi xi, which means "swift birth". It is synthesized in the paraventricular and supraoptic nuclei of the hypotalamus is mainly released from the neurohypophysis and nerve terminals. It travels from the brain to the heart and the whole body, activating or modulating a wide range of functions and emotions. Mainly cause myometrial contractions and myoepithelial cells of the breast for milk ejection. Its adverse effects are dose-related. No one knows exactly the minumum and maximum dose of oxytocin. More research is needed about central and peripheral receptors, coupled with the use to which they currently gives to agonists and antagonists of oxytocin and its receptor. As of 2013, the documented adverse effects to date have been undervalued. PMID:25102673

  14. Endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Channick, Richard N; Sitbon, Olivier; Barst, Robyn J; Manes, Alessandra; Rubin, Lewis J

    2004-06-16

    Endothelin receptor antagonism has emerged as an important therapeutic strategy in pulmonary arterial hypertension (PAH). Laboratory and clinical investigations have clearly shown that endothelin (ET)-1 is overexpressed in several forms of pulmonary vascular disease and likely plays a significant pathogenetic role in the development and progression of pulmonary vasculopathy. Oral endothelin receptor antagonists (ERAs) have been shown to improve pulmonary hemodynamics, exercise capacity, functional status, and clinical outcome in several randomized placebo-controlled trials. Bosentan, a dual-receptor antagonist, is approved by the U.S. Food and Drug Administration for class III and IV patients with PAH, based on two phase III trials. In addition to its efficacy as sole therapy, bosentan may have a role as part of a combination of drugs such as a prostanoid or sildenafil. The selective endothelin receptor-A antagonists sitaxsentan and ambrisentan are currently undergoing investigation. PMID:15194180

  15. Histamine-2 Receptor Antagonists and Semen Quality.

    PubMed

    Banihani, Saleem A

    2016-01-01

    Histamine-2 receptor antagonists are a class of drugs used to treat the acid-related gastrointestinal diseases such as ulcer and gastro-oesophageal reflux disease. Although such drugs, especially ranitidine and famotidine, are still widely used, their effects on semen quality, and hence on male infertility, is still unclear. This MiniReview systematically addresses and summarizes the effect of histamine-2 receptor antagonists (cimetidine, ranitidine, nizatidine and famotidine) on semen quality, particularly, on sperm function. Cimetidine appears to have adverse effects on semen quality. While the effects of ranitidine and nizatidine on semen quality are still controversial, famotidine does not appear to change semen quality. Therefore, additional studies will be required to clarify whether histamine-2 receptor-independent effects of these drugs play a role in semen quality as well as further clinical studies including direct comparison of the histamine-2 receptor antagonists. PMID:26176290

  16. Oxytocin and the oxytocin receptor underlie intra-strain, but not inter-strain, social recognition

    PubMed Central

    Macbeth, Abbe H.; Lee, Heon-Jin; Edds, Jennifer; Young, W. Scott

    2009-01-01

    We studied three lines of oxytocin (Oxt) and oxytocin receptor (Oxtr) knockout (KO) male mice (Oxt−/−, total Oxtr−/−, and partial-forebrain Oxtr (OxtrFB/FB)) with established deficits in social recognition to further refine our understanding of their deficits with regard to stimulus female's strain. We used a modified social discrimination paradigm in which subjects are singly housed only for the duration of the test. Additionally, stimulus females are singly-housed throughout testing and are presented within corrals for rapid comparison of investigation by subject males. Wildtype (WT) males from all three lines discriminated between familiar and novel females of three different strains (C57BL/6, Balb/c, Swiss-Webster). No KO males discriminated between familiar and novel Balb/c or C57BL/6 females. Male Oxt−/− and Oxtr−/− mice, but not OxtrFB/FB mice, discriminated between familiar and novel Swiss-Webster females. As this might indicate a global deficit in individual recognition for OxtrFB/FB males, we examined their ability to discriminate between females from different strains and compared performance with Oxtr−/− males. WT and KO males from both lines were able to distinguish between familiar and novel females from different strains, indicating the social recognition deficit is not universal. Instead, we hypothesize that the Oxtr is involved in “fine” intra-strain recognition, but is less important in “broad” inter-strain recognition. We also present the novel finding of decreased investigation across tests, which is likely an artifact of repeated testing and not due to stimulus female's strain or age of subject males. PMID:19531157

  17. Carbetocin is a Functional Selective Gq Agonist That Does Not Promote Oxytocin Receptor Recycling After Inducing β-Arrestin-Independent Internalisation.

    PubMed

    Passoni, I; Leonzino, M; Gigliucci, V; Chini, B; Busnelli, M

    2016-04-01

    Carbetocin, a long-acting oxytocin analogue, has been reported to elicit interesting and peculiar behavioural effects. The present study investigated the molecular pharmacology of carbetocin, aiming to better understand the molecular basis of its action in the brain. Using bioluminescence resonance energy transfer biosensors, we characterised the effects of carbetocin on the three human oxytocin/vasopressin receptors expressed in the nervous system: the oxytocin receptor (OXTR) and the vasopressin V1a (V1aR) and V1b (V1bR) receptors. Our results indicate that (i) carbetocin activates the OXTR but not the V1aR and V1bR at which it may act as an antagonist; (ii) carbetocin selectively activates only the OXTR/Gq pathway displaying a strong functional selectivity; (iii) carbetocin is a partial agonist at the OXTR/Gq coupling; (iv) carbetocin promotes OXTR internalisation via a previously unreported β-arrestin-independent pathway; and (v) carbetocin does not induce OXTR recycling to the plasma membrane. Altogether, these molecular pharmacology features identify carbetocin as a substantially different analogue compared to the endogenous oxytocin and, consequently, carbetocin is not expected to mimic oxytocin in the brain. Whether these unique features of carbetocin could be exploited therapeutically remains to be established. PMID:26751410

  18. A Conditional Knockout Mouse Line of the Oxytocin Receptor

    PubMed Central

    Lee, Heon-Jin; Caldwell, Heather K.; Macbeth, Abbe H.; Tolu, Selen G.; Young, W. Scott

    2008-01-01

    Oxytocin plays important roles in reproductive physiology and various behaviors, including maternal behavior and social memory. Its receptor (Oxtr) is present in peripheral tissues and brain, so a conditional knockout (KO, −/−) would be useful to allow elimination of the receptor in specific sites at defined times. We created a line of mice in which loxP sites flank Oxtr coding sequence (floxed) enable Cre recombinase-mediated inactivation of the receptor. We expressed Cre recombinase in these mice either in all tissues (Oxtr−/−) or the forebrain (OxtrFB/FB) using the Ca2+/calmodulin-dependent protein kinase IIα promoter. The latter KO has reduced Oxtr binding beginning 21–28 d postnatally, leading to prominent reductions in the lateral septum, hippocampus, and ventral pallidum. The medial amygdala is spared, and there is significant retention of binding within the olfactory bulb and nucleus and neocortex. We did not observe any deficits in the general health, sensorimotor functions, anxiety-like behaviors, or sucrose intake in either Oxtr−/− or OxtrFB/FB mice. Females of both KO types deliver pups, but only the OxtrFB/FB mice are able to eject milk. Oxtr−/− males show impaired social memory for familiar females, whereas the OxtrFB/FB males appear to recognize their species but not individuals. Our results confirm the importance of oxytocin in social recognition and demonstrate that spatial and temporal inactivation of the Oxtr will enable finer understanding of the physiological, behavioral, and developmental roles of the receptor. PMID:18356275

  19. Identification of a potent and selective oxytocin antagonist, from screening a fully encoded differential release combinatorial chemical library.

    PubMed

    Evans, B; Pipe, A; Clark, L; Banks, M

    2001-05-21

    A library of 1,296 1,4-benzodiazepines was prepared on 160 microM Tentagel beads. Compounds are attached to the beads using orthogonally cleavable linkers. The library was first screened as pools of 30 beads where 50% of the material is released and screened. GW405212X, a selective oxytocin antagonist, was identified by picking single beads from active pools. PMID:11392541

  20. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells. PMID:26474566

  1. Cocaine treatment alters oxytocin receptor binding but not mRNA production in postpartum rat dams.

    PubMed

    Jarrett, T M; McMurray, M S; Walker, C H; Johns, J M

    2006-06-01

    Gestational cocaine treatment in rat dams results in decreased oxytocin (OT) levels, up-regulated oxytocin receptor (OTR) binding density and decreased receptor affinity in the whole amygdala, all concomitant with a significant increase in maternal aggression on postpartum day six. Rat dams with no gestational drug treatment that received an infusion of an OT antagonist directly into the central nucleus of the amygdala (CeA) exhibited similarly high levels of maternal aggression towards intruders. Additionally, studies indicate that decreased OT release from the hypothalamic division of the paraventricular nucleus (PVN) is coincident with heightened maternal aggression in rats. Thus, it appears that cocaine-induced alterations in OT system dynamics (levels, receptors, production, and/or release) may mediate heightened maternal aggression following cocaine treatment, but the exact mechanisms through which cocaine impacts the OT system have not yet been determined. Based on previous studies, we hypothesized that two likely mechanisms of cocaine's action would be, increased OTR binding specifically in the CeA, and decreased OT mRNA production in the PVN. Autoradiography and in situ hybridization assays were performed on targeted nuclei in brain regions of rat dams on postpartum day six, following gestational treatment twice daily with cocaine (15 mg/kg) or normal saline (1 ml/kg). We now report cocaine-induced reductions in OTR binding density in the ventromedial hypothalamus (VMH) and bed nucleus of the stria terminalis (BNST), but not the CeA. There was no significant change in OT mRNA production in the PVN following cocaine treatment. PMID:16677710

  2. The Nonpeptide Oxytocin Receptor Agonist WAY 267,464: Receptor-Binding Profile, Prosocial Effects and Distribution of c-Fos Expression in Adolescent Rats

    PubMed Central

    Hicks, C.; Jorgensen, W.; Brown, C.; Fardell, J.; Koehbach, J.; Gruber, C. W.; Kassiou, M.; Hunt, G. E.; McGregor, I. S.

    2012-01-01

    Previous research suggests that the nonpeptide oxytocin receptor (OTR) agonist WAY 267,464 may only partly mimic the effects of oxytocin in rodents. The present study further explored these differences and related them to OTR and vasopressin 1a receptor (V1aR) pharmacology and regional patterns of c-Fos expression. Binding data for WAY 267,464 and oxytocin were obtained by displacement binding assays on cellular membranes, while functional receptor data were generated by luciferase reporter assays. For behavioural testing, adolescent rats were tested in a social preference paradigm, the elevated plus-maze (EPM) and for locomotor activity changes following WAY 267,464 (10 and 100 mg/kg, i.p.) or oxytocin (0.1 and 1 mg/kg, i.p.). The higher doses were also examined for their effects on regional c-Fos expression. Results showed that WAY 267,464 had higher affinity (Ki) at the V1aR than the OTR (113 versus 978 nm). However, it had no functional response at the V1aR and only a weak functional effect (EC50) at the OTR (881 nm). This suggests WAY 267,464 is an OTR agonist with weak affinity and a possible V1aR antagonist. Oxytocin showed high binding at the OTR (1.0 nm) and V1aR (503 nm), with a functional EC50 of 9.0 and 59.7 nm, respectively, indicating it is a potent OTR agonist and full V1aR agonist. WAY 267,464 (100 mg/kg), but not oxytocin, significantly increased the proportion of time spent with a live rat, over a dummy rat, in the social preference test. Neither compound affected EPM behaviour, whereas the higher doses of WAY 267,464 and oxytocin suppressed locomotor activity. WAY 267,464 and oxytocin produced similar c-Fos expression in the paraventricular hypothalamic nucleus, central amygdala, lateral parabrachial nucleus and nucleus of the solitary tract, suggesting a commonality of action at the OTR with the differential doses employed. However, WAY 267,464 caused greater c-Fos expression in the medial amygdala and the supraoptic nucleus than oxytocin, and

  3. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole

    PubMed Central

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-01-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system. PMID:25652247

  4. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    PubMed

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system. PMID:25652247

  5. Tachykinin neurokinin 3 receptor signaling in cholecystokinin-elicited release of oxytocin and vasopressin.

    PubMed

    Haley, Gwendolen E; Flynn, Francis W

    2008-05-01

    Neurokinin 3 receptor (NK3R) signaling has an integral role in the stimulated oxytocin (OT) and vasopressin (VP) release in response to hyperosmolarity and hypotension. Peripheral injections of cholecystokinin (CCK) receptor agonists for the CCK-A (sulfated CCK-8) and CCK-B (nonsulfated CCK-8) receptors elicit an OT release in rat. It is unknown whether NK3R contributes to this endocrine response. Freely behaving male rats were administered an intraventricular pretreatment of 250 or 500 pmol of SB-222200, a specific NK3R antagonist, or 0.15 M NaCl before an intraperitoneal or intravenous injection of CCK-8 (nonsulfated or sulfated) or 0.15 M NaCl. Blood samples were taken before intraventricular treatment and 15 min after intraperitoneal or intravenous injection, and plasma samples were assayed for OT and VP concentration. Intraperitoneal injection of both nonsulfated and sulfated CCK-8 significantly increased plasma OT levels and had no effect on plasma VP levels. Intravenous injection of sulfated CCK-8 stimulated an increase in plasma OT levels and did not alter plasma VP levels. However, intravenous injection of nonsulfated CCK-8 stimulated a significant increase in plasma levels of both OT and VP. No other studies have demonstrated CCK-8-stimulated release of VP in rat. NK3R antagonist did not alter baseline levels of either hormone. However, pretreatment of NK3R antagonist significantly blocked the CCK-stimulated release of OT in all CCK treatment groups and blocked VP release in response to intravenous injection of nonsulfated CCK-8. Therefore, central NK3R signaling is required for OT and VP release in response to CCK administration. PMID:18385472

  6. Interactions of vasopressin and oxytocin receptors with vasopressin analogues substituted in position 2 with 3,3'-diphenylalanine--a molecular docking study.

    PubMed

    Slusarz, Magdalena J; Sikorska, Emilia; Slusarz, Rafał

    2013-02-01

    Vasopressin and oxytocin receptors belong to the superfamily of G protein-coupled receptors and play an important role in many physiological functions. They are also involved in a number of pathological conditions being important drug targets. In this work, four vasopressin analogues substituted at position 2 with 3,3'-diphenylalanine have been docked into partially flexible vasopressin and oxytocin receptors. The bulky residue at position 2 acts as a structural restraint much stronger in the oxytocin receptor (OTR) than in the vasopressin V2 receptor (V2R), resulting in a different location of the analogues in these receptors. This explains the different, either agonistic or antagonistic, activities of the analogues in V2R and OTR, respectively. In all complexes, the conserved polar residues serve as anchor points for the ligand both in OTR and V2R. Strong interactions of the C-terminus of analogue II ([Mpa(1) ,d-Dpa(2) ,Val(4) ,d-Arg(8) ]VP) with extracellular loop 3 may be responsible for its highest activity at V2R. It also appears that V2R adapts more readily to the docking analogues by conformational changes in the aromatic side chains triggering receptor activation. A weak activity at V1a vasopressin receptor appears to be caused by weak receptor-ligand interactions. Results of this study may facilitate a rational design of new analogues with the highest activity/selectivity at vasopressin and OTRs. PMID:23303737

  7. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations. PMID:26528239

  8. RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles

    PubMed Central

    Keebaugh, Alaine C.; Barrett, Catherine E.; LaPrairie, Jamie L.; Jenkins, Jasmine J.; Young, Larry J.

    2015-01-01

    Oxytocin modulates many aspects of social cognition and behaviors, including maternal nurturing, social recognition and bonding. Natural variation in oxytocin receptor (OXTR) density in the nucleus accumbens (NAcc) is associated with variation in alloparental behavior, and artificially enhancing OXTR expression in the NAcc enhances alloparental behavior and pair bonding in socially monogamous prairie voles. Furthermore, infusion of an OXTR antagonist into the nucleus accumbens (NAcc) inhibits alloparental behavior and partner preference formation. However, antagonists can promiscuously interact with other neuropeptide receptors. To directly examine the role of OXTR signaling in social bonding, we used RNA interference to selectively knockdown, but not eliminate, OXTR in the NAcc of female prairie voles and examined the impact on social behaviors. Using an adeno-associated viral vector expressing a short hairpin RNA (shRNA) targeting Oxtr mRNA, we reduced accumbal OXTR density in female prairie voles from juvenile age through adulthood. Females receiving the shRNA vector displayed a significant reduction in alloparental behavior and disrupted partner preference formation. These are the first direct demonstrations that OXTR plays a critical role in alloparental behavior and adult social attachment, and suggest that natural variation in OXTR expression in this region alone can create variation in social behavior. PMID:25874849

  9. Central oxytocin receptor stimulation attenuates the orexigenic effects of butorphanol tartrate.

    PubMed

    Olszewski, Pawel K; Klockars, Oscar A; Klockars, Anica; Levine, Allen S

    2016-09-28

    Butorphanol tartrate (BT), a mixed µ/κ/δ opioid receptor agonist, is one of the most potent orexigens known to date. The central mechanisms through which BT causes hyperphagia are largely unknown. Interestingly, BT suppresses meal-end activation of neurons synthesizing anorexigenic neuropeptide, oxytocin (OT), which suggests that BT promotes hyperphagia by silencing OT-derived satiety signaling. As OT terminates consumption by acting by distinct hindbrain and forebrain circuits, we investigated whether stimulation of the OT receptor in the forebrain or the hindbrain [through lateral ventricular (LV) and fourth ventricular (4V) OT injections] leads to termination of food intake induced by BT. We established effective doses of BT on chow intake in ad-libitum-fed and overnight-deprived rats as well as effective doses of LV and 4V OT in deprived animals. Then, we determined doses of LV and 4V OT that reduce hyperphagia produced by BT in sated and deprived rats. Finally, we assessed whether OT's effects on BT-induced feeding can be suppressed by an OT receptor antagonist. 4 mg/kg BT increased intake in ad-libitum-fed and overnight-deprived rats, whereas LV and 4V OT at 1 μg caused a decrease in deprived rats. BT-induced chow intake in hungry and sated animals was suppressed by a very low, 0.1 μg dose of 4V OT, whereas 1 μg OT was effective LV. The effect of OT was attenuated by OT receptor antagonist, L-368 899. Reduced activity of the OT circuit, especially its hindbrain component, is a critical factor in shaping the magnitude of consumption in response to BT treatment. PMID:27471903

  10. Medicinal chemistry of competitive kainate receptor antagonists.

    PubMed

    Larsen, Ann M; Bunch, Lennart

    2011-02-16

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1-5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure-activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  11. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  12. Antiplatelet therapy: thrombin receptor antagonists

    PubMed Central

    Tello-Montoliu, Antonio; Tomasello, Salvatore D; Ueno, Masafumi; Angiolillo, Dominick J

    2011-01-01

    Activated platelets stimulate thrombus formation in response to rupture of an atherosclerotic plaque or endothelial cell erosion, promoting atherothrombotic disease. Multiple pathways contribute to platelet activation. Aspirin, an irreversible inhibitor of thromboxane A2 synthesis, in combination with clopidogrel, an inhibitor of P2Y12 adenosine diphosphate platelet receptors, represent the current standard-of-care of antiplatelet therapy for patients with acute coronary syndrome and for those undergoing percutaneous coronary intervention. Although these agents have demonstrated significant clinical benefit, the increased risk of bleeding and the recurrence of thrombotic events represent substantial limitations. Thrombin is one of the most important platelet activators. The inhibition of protease-activated receptor 1 showed a good safety profile in preclinical studies. In fact, phase II studies with vorapaxar (SCH530348) and atopaxar (E5555) showed no increase of bleeding events in addition to the current standard-of-care of antiplatelet therapy. Although the results of phase III trials for both drugs are awaited, this family is a promising new addition to the current clinical practice for patients with atherothrombotic disease, not only as an alternative, but also as additional therapy. PMID:21906120

  13. Vasopressin receptor antagonists: Characteristics and clinical role.

    PubMed

    Rondon-Berrios, Helbert; Berl, Tomas

    2016-03-01

    Hyponatremia, the most common electrolyte disorder in hospitalized patients is associated with increased risk of mortality even when mild and apparently asymptomatic. Likewise morbidity manifested as attention deficits, gait disturbances, falls, fractures, and osteoporosis is more prevalent in hyponatremic subjects. Hyponatremia also generates a significant financial burden. Therefore, it is important to explore approaches that effectively and safely treat hyponatremia. Currently available strategies are physiologically sound and affordable but lack evidence from clinical trials and are limited by variable efficacy, slow response, and/or poor compliance. The recent emergence of vasopressin receptor antagonists provides a class of drugs that target the primary pathophysiological mechanism, namely vasopressin mediated impairment of free water excretion. This review summarizes the historical development, pharmacology, clinical trials supporting efficacy and safety, shortcomings, as well as practical suggestions for the use of vasopressin receptor antagonists. PMID:27156765

  14. Modulation of anxiety behavior in the elevated plus maze using peptidic oxytocin and vasopressin receptor ligands in the rat.

    PubMed

    Mak, Plato; Broussard, Christina; Vacy, Kristina; Broadbear, Jillian H

    2012-04-01

    Oxytocin (OT) and arginine vasopressin (AVP), in their capacities as neuromodulators, are believed to play an important role in mood control, including regulation of the anxiety response. In the present study, the contributions of oxytocin and vasopressin receptor modulation to anxiety-like behaviors were examined in male Sprague-Dawley rats. The behavioral effects of the OT receptor agonist, carbetocin (intracerebroventricular, intravenous and intraperitoneal routes), the AVP receptor agonist desmopressin (intravenous route), and the OT/AVP(1A) receptor antagonist atosiban (intravenous route) were evaluated in the elevated plus maze. The benzodiazepine diazepam was included as a positive control. Central but not systemic administration of carbetocin produced pronounced anxiolytic-like behavioral changes comparable to those measured following systemic diazepam treatment. The anxiolytic efficacy of carbetocin was maintained following 10 days of once-daily treatment, contrasting with the effects of diazepam which were no longer distinguishable from saline treatment. Systemic administration of desmopressin produced anxiogenic-like effects whereas systemic atosiban produced anxiolytic-like effects. Co-administration of desmopressin with atosiban resulted in saline-like behavioral responses, implicating an AVP(1A) receptor mechanism in the anxiolytic and anxiogenic effects of these neuropeptides following systemic administration. A peripherally-mediated antidiuretic effect of desmopressin on water consumption was also demonstrated. These results highlight the potential therapeutic utility of AVP(1A) receptor blockade in the modulation of anxiety-related behaviors; AVP(1A) receptor blockade appears to be a more promising pharmacological target than does OT receptor activation following systemic drug administration. PMID:21890582

  15. Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat

    SciTech Connect

    Johnson, A.E.; Ball, G.F.; Coirini, H.; Harbaugh, C.R.; McEwen, B.S.; Insel, T.R. )

    1989-09-01

    Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay of OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.

  16. Azines as histamine H4 receptor antagonists.

    PubMed

    Lazewska, Dorota; Kiec-Kononowicz, Katarzyna

    2012-01-01

    Since 2000, when the histamine H4 receptor (H4R) was cloned, it has constituted an interesting target for drug development. Pharmacological studies suggest the potential utility of histamine H4R antagonists/inverse agonists in the treatment of inflammatory diseases, e.g. allergic rhinitis, asthma, atopic dermatitis, colitis, or pruritus. The first H4R ligands were non-selective compounds, but intensive chemical and pharmacological work has led to the discovery of highly potent and selective H4R antagonists (e.g. JNJ7777120, CZC-13788, PF-2988403, A-940894, A-987306). The first compound (UR-63325) has finally entered into clinical studies for the treatment of allergic respiratory diseases (completing the phase I ascending dose trial) and has been found to be safe and well tolerated. The number of scientific publications and patent applications in the H4 field is increasing annually. Among the diverse chemical structures of the H4R antagonists described a 2-aminopyrimidine scaffold is repeatedly found. This review looked at recent advances in the search for H4R antagonists as reflected in patent applications/patents and peer-reviewed publications over the last two years. The work concerns azines (mono-, di-, triazines) and their fused analogues. The chemistry and pharmacology has been described. PMID:22202103

  17. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus)

    PubMed Central

    Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.

    2014-01-01

    The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological

  18. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  19. Hypothalamic oxytocin attenuates CRF expression via GABA(A) receptors in rats.

    PubMed

    Bülbül, Mehmet; Babygirija, Reji; Cerjak, Diana; Yoshimoto, Sazu; Ludwig, Kirk; Takahashi, Toku

    2011-04-28

    Centrally released oxytocin (OXT) has anxiolytic and anti-stress effects. Delayed gastric emptying (GE) induced by acute restraint stress (ARS) for 90 min is completely restored following 5 consecutive days of chronic homotypic restraint stress (CHS), via up-regulating hypothalamic OXT expression in rats. However, the mechanism behind the restoration of delayed GE following CHS remains unclear. Gamma-aminobutyric acid (GABA)-projecting neurons in the paraventricular nucleus (PVN) have been shown to inhibit corticotropin releasing factor (CRF) synthesis via GABA(A) receptors. We hypothesized that GABA(A) receptors are involved in mediating the inhibitory effect of OXT on CRF expression in the PVN, which in turn restores delayed GE following CHS. OXT (0.5 μg) and selective GABA(A) receptor antagonist, bicuculline methiodide (BMI) (100 ng), were administered intracerebroventricularly (icv). Solid GE was measured under non-stressed (NS), ARS and CHS conditions. Expression of CRF mRNA in the PVN was evaluated by real time RT-PCR. Neither OXT nor BMI changed GE and CRF mRNA expression under NS conditions. Delayed GE and increased CRF mRNA expression induced by ARS were restored by icv-injection of OXT. The effects of OXT on delayed GE and increased CRF mRNA expression in ARS were abolished by icv-injection of BMI. Following CHS, delayed GE was completely restored in saline (icv)-injected rats, whereas daily injection of BMI (icv) attenuated the restoration of delayed GE. Daily injection of BMI (icv) significantly increased CRF mRNA expression following CHS. It is suggested that central OXT inhibits ARS-induced CRF mRNA expression via GABA(A) receptors in the PVN. GABAergic system is also involved in OXT-mediated adaptation response of delayed GE under CHS conditions. PMID:21382355

  20. Pharmacodynamic properties of leukotriene receptor antagonists.

    PubMed

    Nicosia, S

    1999-06-01

    Leukotrienes (LTs) are among the most important mediators of asthma; cysteine-containing LTs (cysteinyl-LTs, i.e. LTC4, LTD4 and LTE4) are very potent bronchoconstrictors and participate in the inflammatory component of asthma by inducing mucus hypersecretion, plasma extravasation, mucosal oedema and eosinophil recruitment. Therefore, compounds able to inhibit either the formation or the action of LTs are potential antiasthma drugs and, at present, the cysteinyl-LT receptor antagonists (LTRAs) appear to be the most promising. The receptors for cysteinyl-LTs, termed CysLT receptors, are heterogeneous; at least two different classes have so far been recognized, named CysLT1 (blocked by the so-called classical antagonists, such as FPL 55712, ICI 198,615, ICI 204,219, SK&F 104353, MK-476 and others) and CysLT2 (insensitive to the classical antagonists, but sensitive to BAY u9773). The authors' results indicate that even more receptor subclasses might exist in human airways, which discriminate between LTC4 and LTD4, both asthma mediators. Among the many LTRAs, zafirlukast (Accolate, ICI 204,219), montelukast (Singulair, MK-476) and pranlukast (Onon, ONO-1078) are available for clinical use. All the LTRAs are able to inhibit LTD4-induced bronchoconstriction in humans, albeit with different potencies. With respect to antigen challenge, all of them inhibit the early phase of response, whereas only the most recently developed and potent ones are effective in the late phase. LTRAs are effective in asthma triggered by exercise, cold or aspirin. Furthermore, although they are not bronchodilators per se, they increase basal forced expiratory volume in one second in patients with mild-to-moderate asthma, indicating that, in these individuals, constant cysteinyl-LT release contributes to maintaining increased bronchial tone. Finally, the effect of LTRAs is additive to that of beta-agonists and is potentiated by antihistamine compounds. In conclusion, the available results clearly

  1. Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications

    PubMed Central

    Freeman, Sara M.; Young, Larry J.

    2016-01-01

    In the last several decades, sophisticated experimental techniques have been used to determine the neurobiology of the oxytocin and vasopressin systems in rodents. Using a suite of methodologies, including electrophysiology, site-specific selective pharmacology, receptor autoradiography, in vivo microdialysis, and genetic and optogenetic manipulations, we have gained unprecedented knowledge about how these neuropeptides engage neural circuits to regulate behaviour, particularly social behaviour. Based on this foundation of information from rodent studies, we have started generating new hypotheses and frameworks about how the oxytocin and vasopressin systems could be acting in humans to influence social cognition. However, despite the recent inundation of publications using intranasal oxytocin in humans, we still know very little about the neurophysiology of the oxytocin system in primates more broadly. Furthermore, the design and analysis of these human studies have remained largely uninformed of the potential neurobiological mechanisms underlying their findings. Although the methods available for studying the oxytocin and vasopressin systems in humans are incredibly limited as a result of practical and ethical considerations, there is great potential to fill the gaps in our knowledge by developing better nonhuman primate models of social functioning. Behavioural pharmacology and receptor autoradiography have been used to study the oxytocin and vasopressin systems in nonhuman primates, and there is now great potential to broaden our understanding of the neurobiology of these systems. In this review, we discuss comparative findings in receptor distributions in rodents and primates, with perspectives on the functionality of conserved regions of expression in these distinct mammalian clades. We also identify specific ways that established technologies can be used to answer basic research questions in primates. Finally, we highlight areas of future research in nonhuman

  2. Endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Dupuis, J; Hoeper, M M

    2008-02-01

    The endothelin (ET) system, especially ET-1 and the ET(A) and ET(B) receptors, has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH). Together with prostanoids and phosphodiesterase 5 inhibitors, ET receptor antagonists have become mainstays in the current treatment of PAH. Three substances are currently available for the treatment of PAH. One of these substances, bosentan, blocks both ET(A) and ET(B) receptors, whereas the two other compounds, sitaxsentan and ambrisentan, are more selective blockers of the ET(A) receptor. There is ongoing debate as to whether selective or nonselective ET receptor blockade is advantageous in the setting of PAH, although there is no clear evidence that receptor selectivity is relevant with regard to the clinical effects of these drugs. For the time being, other features, such as safety profiles and the potential for pharmacokinetic interactions with other drugs used in the treatment of PAH, may be more important than selectivity or nonselectivity when selecting treatments for individual patients. PMID:18238950

  3. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    SciTech Connect

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  4. Oxytocin--a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies.

    PubMed

    Insel, T R

    1992-01-01

    Oxytocin (OT) is a nine amino acid peptide synthesized in hypothalamic cells which project either to the neurohypophysis or to sites within the central nervous system. Although neurohypophyseal OT release has long been associated with uterine contraction and milk ejection, the function of intracerebral OT remains unclear. On the basis of behavioral, cellular, and comparative studies, this review suggests that brain OT influences the formation of social bonds. The first part of this review examines evidence linking central OT to several forms of affiliation. Central administration of OT induces maternal and reproductive behaviors in rats primed with gonadal steroids. OT antagonists and hypothalamic lesions block the initiation of maternal and reproductive behaviors but have no effects on these behaviors once established. Our new studies in rat pups demonstrate that central OT selectively decreases the separation response, an effect which mimics social contact. These studies of parental, reproductive, and attachment behaviors suggest that exogenous OT has "prosocial" effects and that endogenous OT may be essential for initiating social interaction. In a second series of experiments, we investigated the cellular mechanisms for OT's effects on social behavior by means of autoradiographic receptor binding. In the rat forebrain, OT receptors are expressed in several limbic regions believed to be involved in the integration of sensory processing. The regulation of these receptors is surprisingly resistant to either ablation of OT cells or repeated central administration of OT. However, receptors in two regions, the bed nucleus of the stria terminalis (BNST) and the ventromedial nucleus of the hypothalamus (VMN), appear selectively induced by exogenous or endogenous increases in gonadal steroids. At parturition, binding to OT receptors increases 84% in the BNST, and at estrus, binding increases 35% in the VMN. These results demonstrate that physiologic changes in gonadal

  5. Novel paramagnetic AT1 receptor antagonists.

    PubMed

    Tan, Nichole P H; Taylor, Michelle K; Bottle, Steven E; Wright, Christine E; Ziogas, James; White, Jonathan M; Schiesser, Carl H; Jani, Nitya V

    2011-11-28

    Novel paramagnetic selective angiotensin AT(1) receptor antagonists (sartans) bearing nitroxides (3, 4) have been prepared and their pharmacology evaluated in vitro as well as in vivo. Compounds 3, 4 proved to be effective sartans with pK(B) estimates in the range 6.2-9.1. In addition, the sodium salt (11) of 4 (R = Bu) is able to protect against vascular injury in hypertensive rats as determined by its ability to attenuate the development of intimal thickening caused by balloon injury of the carotid artery. PMID:21963998

  6. Mineralocorticoid receptor antagonists and endothelial function

    PubMed Central

    Maron, Bradley A.; Leopold, Jane A.

    2010-01-01

    Hyperaldosteronism has been associated with endothelial dysfunction and impaired vascular reactivity in patients with hypertension or congestive heart failure. The mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone have been shown to reduce morbidity and mortality, in part, by ameliorating the adverse effects of aldosterone on vascular function. Although spironolactone and eplerenone are increasingly utilized in patients with cardiovascular disease, widespread clinical use is limited by the development of gynecomastia with spironolactone and hyperkalemia with both agents. This suggests that the development of newer agents with favorable side effect profiles is warranted. PMID:18729003

  7. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting

    PubMed Central

    Michalska, Kalina J.; Decety, Jean; Liu, Chunyu; Chen, Qi; Martz, Meghan E.; Jacob, Suma; Hipwell, Alison E.; Lee, Steve S.; Chronis-Tuscano, Andrea; Waldman, Irwin D.; Lahey, Benjamin B.

    2013-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4–6 years old. Results: In response to child stimuli during functional magnetic resonance imaging (fMRI), hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (SNPs) (rs53576 and rs1042778) in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods. PMID:24550797

  8. Dopamine-oxytocin interactions in penile erection.

    PubMed

    Baskerville, T A; Allard, J; Wayman, C; Douglas, A J

    2009-12-01

    Dopamine and oxytocin have established roles in the central regulation of penile erection in rats; however, the neural circuitries involved in a specific erectile context and the interaction between dopamine and oxytocin mechanisms remain to be elucidated. The medial preoptic area (MPOA), supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus may serve as candidate sites because they contain oxytocin cells, receive dopaminergic inputs and have been implicated in mediating masculine sexual behavior. Double immunofluorescence revealed that substantial numbers of oxytocin cells in the MPOA, SON and PVN possess dopamine D(2), D(3) and D(4) receptors. In anaesthetized rats, using intracavernous pressure as a physiological indicator of erection, blockade of lumbosacral oxytocin receptors (UK, 427843) reduced erectile responses to a nonselective dopamine agonist (apomorphine), suggesting that dopamine recruits a paraventriculospinal oxytocin pathway. In conscious males in the absence of a female, penile erection elicited by a D(2)/D(3) (Quinelorane) but not D(4) (PD168077) agonist was associated with activation of medial parvocellular PVN oxytocin cells. In another experiment where males were given full access to a receptive female, a D(4) (L-745870) but not D(2) or D(3) antagonist (L-741626; nafadotride) inhibited penile erection (intromission), and this was correlated with SON magnocellular oxytocin neuron activation. Together, the data suggest dopamine's effects on hypothalamic oxytocin cells during penile erection are context-specific. Dopamine may act via different parvocellular and magnocellular oxytocin subpopulations to elicit erectile responses, depending upon whether intromission is performed. This study demonstrates the potential existence of interaction between central dopamine and oxytocin pathways during penile erection, with the SON and PVN serving as integrative sites. PMID:20128851

  9. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions. PMID:25476609

  10. Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress.

    PubMed

    Lee, Sun-Young; Park, Seong-Hae; Chung, ChiHye; Kim, Jeansok J; Choi, Se-Young; Han, Jung-Soo

    2015-01-01

    The hippocampus is vulnerable to uncontrollable stress and is enriched with oxytocin receptors, but their interactive influences on hippocampal functioning are unknown. This study aimed to determine the effects of intranasal oxytocin administration on stress-induced alterations in synaptic plasticity and spatial memory in male rats. While vehicle-administered stressed rats showed impairment in long-term potentiation, enhancement in long-term depression, and weakened spatial memory, these changes were not observed in oxytocin-administered stressed rats. To reveal the potential signaling mechanism mediating these effects, levels of phosphorylated extracellular signal-regulated kinases (pERK) in the hippocampus was examined. Western blotting showed that oxytocin treatment blocked stress-induced alterations of pERK. Additionally, the oxytocin receptor antagonist L-368,899 inhibited the oxytocin's protective effects on hippocampal memory to stress. Thus, intranasal administration of oxytocin reduced stress effects on hippocampal synaptic plasticity and memory in rats via acting on oxytocin receptors and regulating ERK activity. This study suggests that exogenous oxytocin may be a therapeutically effective means to counter the detrimental neurocognitive effects of stress. PMID:26688325

  11. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    PubMed

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. PMID:27237044

  12. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans

    PubMed Central

    Feng, Chunliang; Lori, Adriana; Waldman, Irwin D.; Binder, Elisabeth B.; Haroon, Ebrahim; Rilling, James K.

    2015-01-01

    Intranasal oxytocin (OT) can modulate social-emotional functioning and related brain activity in humans. Consequently, OT has been discussed as a potential treatment for psychiatric disorders involving social behavioral deficits. However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene (OXTR). Previously, we conducted a double-blind, placebo-controlled study in which healthy men and women were randomized to treatment with intranasal OT or placebo. Afterwards, they were imaged with fMRI while playing an iterated Prisoner’s Dilemma Game with same-sex partners. Within the left ventral caudate nucleus, intranasal OT treatment increased activation to reciprocated cooperation in men, but tended to decrease activation in women. Here, we show that these sex differences in OT effects are specific to individuals with the rs53576 GG genotype, and are not found for other genotypes (rs53576 AA/AG). Thus, OT may increase the reward or salience of positive social interactions for male GG homozygotes, while decreasing those processes for female GG homozygotes. These results suggest that rs53576 genotype is an important variable to consider in future investigations of the clinical efficacy of intranasal OT treatment. PMID:26178189

  13. Gestational treatment with cocaine and fluoxetine alters oxytocin receptor number and binding affinity in lactating rat dams.

    PubMed

    Johns, Josephine M; Lubin, Deborah A; Walker, Cheryl H; Joyner, Paul; Middleton, Christopher; Hofler, Vivian; McMurray, Matthew

    2004-01-01

    Cocaine administered chronically throughout gestation has been correlated with deficits in maternal behavior, increased maternal aggressive behavior and decreased oxytocin levels in rats. In addition to its effects on oxytocin levels, cocaine is a potent serotonergic, dopaminergic and noradrenergic reuptake inhibitor. Alterations in the dopaminergic and serotonergic systems have been suggested as possibly having a role in cocaine-induced maternal aggression. This study was in part, an attempt to understand some of the mechanisms by which cocaine increases postpartum aggression, particularly as they relate to changes in the oxytocin system. Oxytocin receptor number and binding affinity in the medial preoptic area of the hypothalamus, ventral tegmental area, hippocampus and amygdala were determined for lactating rat dams on postpartum day 6 (PPD 6) that were gestationally treated with cocaine, fluoxetine, saline or an amfonelic acid/fluoxetine drug combination. Cocaine and fluoxetine treatment both resulted in a significant up-regulation of oxytocin receptor number and lower receptor affinity in the amygdala of lactating rat dams compared to saline controls and the amfonelic acid/fluoxetine combination treatment group. Cocaine treatment also resulted in a significant down-regulation of oxytocin receptors in the medial preoptic area and both cocaine and fluoxetine treated dams had the highest affinity for oxytocin receptors in this brain region. Results of the present study support previous data indicating that alterations in oxytocinergic and perhaps serotonergic system dynamics in the amygdala may play a role in cocaine-induced postpartum aggression. PMID:15380831

  14. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa.

    PubMed

    Acevedo, Summer F; Valencia, Celeste; Lutter, Michael; McAdams, Carrie J

    2015-08-30

    Oxytocin is a peptide hormone important for social behavior and differences in psychological traits have been associated with variants of the oxytocin receptor gene in healthy people. We examined whether single nucleotide polymorphisms (SNPs) of the oxytocin receptor gene (OXTR) correlated with clinical symptoms in women with anorexia nervosa, bulimia nervosa, and healthy comparison (HC) women. Subjects completed clinical assessments and provided DNA for analysis. Subjects were divided into four groups: HC, subjects currently with anorexia nervosa (AN-C), subjects with a history of anorexia nervosa but in long-term weight recovery (AN-WR), and subjects with bulimia nervosa (BN). Five SNPs of the oxytocin receptor were examined. Minor allele carriers showed greater severity in most of the psychiatric symptoms. Importantly, the combination of having had anorexia and carrying either of the A alleles for two SNPS in the OXTR gene (rs53576, rs2254298) was associated with increased severity specifically for ED symptoms including cognitions and behaviors associated both with eating and appearance. A review of psychosocial data related to the OXTR polymorphisms examined is included in the discussion. OXTR polymorphisms may be a useful intermediate endophenotype to consider in the treatment of patients with anorexia nervosa. PMID:26106053

  15. Hypothalamic oxytocin mediates social buffering of the stress response

    PubMed Central

    Smith, Adam S.; Wang, Zuoxin

    2013-01-01

    Background While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Methods Female prairie voles (Microtus ochrogaster) were exposed to 1 hr immobilization stress then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized females recovering alone with oxytocin, or vehicle, and females recovering with their male partner with a selective oxytocin receptor antagonist, or vehicle. Group sizes varied from 6 to 8 voles (n = 98 total). Results We found that 1 hr immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in females recovering alone, but not the females recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus (PVN) of the hypothalamus. Intra-PVN oxytocin injections reduced behavioral and corticosterone responses to immobilization whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Conclusions Together, our data demonstrate that PVN oxytocin mediates the social buffering effects on the stress response, and thus may be a target for treatment of stress-related disorders. PMID:24183103

  16. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    PubMed Central

    Khanfar, Mohammad A.; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  17. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists.

    PubMed

    Khanfar, Mohammad A; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  18. Indole-like Trk receptor antagonists.

    PubMed

    Tammiku-Taul, Jaana; Park, Rahel; Jaanson, Kaur; Luberg, Kristi; Dobchev, Dimitar A; Kananovich, Dzmitry; Noole, Artur; Mandel, Merle; Kaasik, Allen; Lopp, Margus; Timmusk, Tõnis; Karelson, Mati

    2016-10-01

    The virtual screening for new scaffolds for TrkA receptor antagonists resulted in potential low molecular weight drug candidates for the treatment of neuropathic pain and cancer. In particular, the compound (Z)-3-((5-methoxy-1H-indol-3-yl)methylene)-2-oxindole and its derivatives were assessed for their inhibitory activity against Trk receptors. The IC50 values were computationally predicted in combination of molecular and fragment-based QSAR. Thereafter, based on the structure-activity relationships (SAR), a series of new compounds were designed and synthesized. Among the final selection of 13 compounds, (Z)-3-((5-methoxy-1-methyl-1H-indol-3-yl)methylene)-N-methyl-2-oxindole-5-sulfonamide showed the best TrkA inhibitory activity using both biochemical and cellular assays and (Z)-3-((5-methoxy-1-methyl-1H-indol-3-yl)methylene)-2-oxindole-5-sulfonamide was the most potent inhibitor of TrkB and TrkC. PMID:27318978

  19. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    PubMed

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. PMID:26643557

  20. Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills

    PubMed Central

    Skuse, David H.; Lori, Adriana; Cubells, Joseph F.; Lee, Irene; Conneely, Karen N.; Puura, Kaija; Lehtimäki, Terho; Binder, Elisabeth B.; Young, Larry J.

    2014-01-01

    The neuropeptides oxytocin and vasopressin are evolutionarily conserved regulators of social perception and behavior. Evidence is building that they are critically involved in the development of social recognition skills within rodent species, primates, and humans. We investigated whether common polymorphisms in the genes encoding the oxytocin and vasopressin 1a receptors influence social memory for faces. Our sample comprised 198 families, from the United Kingdom and Finland, in whom a single child had been diagnosed with high-functioning autism. Previous research has shown that impaired social perception, characteristic of autism, extends to the first-degree relatives of autistic individuals, implying heritable risk. Assessments of face recognition memory, discrimination of facial emotions, and direction of gaze detection were standardized for age (7–60 y) and sex. A common SNP in the oxytocin receptor (rs237887) was strongly associated with recognition memory in combined probands, parents, and siblings after correction for multiple comparisons. Homozygotes for the ancestral A allele had impairments in the range −0.6 to −1.15 SD scores, irrespective of their diagnostic status. Our findings imply that a critical role for the oxytocin system in social recognition has been conserved across perceptual boundaries through evolution, from olfaction in rodents to visual memory in humans. PMID:24367110

  1. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris).

    PubMed

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system. PMID:24454713

  2. Oxytocin Receptor Gene Polymorphisms Are Associated with Human Directed Social Behavior in Dogs (Canis familiaris)

    PubMed Central

    Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Ádám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (−212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5′ and 3′ UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3′ and 5′ UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system. PMID:24454713

  3. Lack of Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Alexithymia: Evidence from Patients with Obsessive-Compulsive Disorder

    PubMed Central

    Koh, Min Jung; Kim, Wonji; Kang, Jee In; Namkoong, Kee; Kim, Se Joo

    2015-01-01

    Oxytocin receptor gene single nucleotide polymorphisms have been associated with structural and functional alterations in brain regions, which involve social-emotional processing. Therefore, oxytocin receptor gene polymorphisms may contribute to individual differences in alexithymia, which is considered to be a dysfunction of emotional processing. The aim of this study was to evaluate the association between oxytocin receptor gene single nucleotide polymorphisms or haplotypes and alexithymia in patients with obsessive-compulsive disorder. We recruited 355 patients with obsessive-compulsive disorder (234 men, 121 women). Alexithymia was measured by using the Toronto Alexithymia Scale. We performed single-marker and haplotype association analyses with eight single nucleotide polymorphisms (rs237885, rs237887, rs2268490, rs4686301, rs2254298, rs13316193, rs53576, and rs2268498) in the oxytocin receptor gene. There were no significant associations between any of the eight single nucleotide polymorphism of the oxytocin receptor gene and alexithymia. In addition, a six-locus haplotype block (rs237885-rs237887-rs2268490-rs4686301-rs2254298-rs13316193) was not significantly associated with alexithymia. These findings suggest that genetic variations in the oxytocin receptor gene may not explain a significant part of alexithymia in patients with obsessive-compulsive disorder. PMID:26599592

  4. Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization.

    PubMed

    Wrzal, Paulina K; Devost, Dominic; Pétrin, Darlaine; Goupil, Eugénie; Iorio-Morin, Christian; Laporte, Stéphane A; Zingg, Hans H; Hébert, Terence E

    2012-01-01

    The oxytocin receptor (OTR) and the β(2)-adrenergic receptor (β(2)AR) are key regulators of uterine contraction. These two receptors are targets of tocolytic agents used to inhibit pre-term labor. Our recent study on the nature of OTR- and β(2)AR-mediated ERK1/2 activation in human hTERT-C3 myometrial cells suggested the presence of an OTR/β(2)AR hetero-oligomeric complex (see companion article). The goal of this study was to investigate potential allosteric interactions between OTR and β(2)AR and establish the nature of the interactions between these receptors in myometrial cells. We found that OTR-mediated ERK1/2 activation was attenuated significantly when cells were pretreated with the β(2)AR agonist isoproterenol or two antagonists, propranolol or timolol. In contrast, pretreatment of cells with a third β(2)AR antagonist, atenolol resulted in an increase in OTR-mediated ERK1/2 activation. Similarly, β(2)AR-mediated ERK1/2 activation was strongly attenuated by pretreatment with the OTR antagonists, atosiban and OTA. Physical interactions between OTR and β(2)AR were demonstrated using co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and protein-fragment complementation (PCA) assays in HEK 293 cells, the latter experiments indicating the interactions between the two receptors were direct. Our analyses suggest physical interactions between OTR and β(2)AR in the context of a new heterodimer pair lie at the heart of the allosteric effects. PMID:21963428

  5. Endothelin receptor antagonists in the treatment of pulmonary arterial hypertension.

    PubMed

    Langleben, David

    2007-03-01

    The recognition that endothelin-1 contributes to the pathogenesis of pulmonary arterial hypertension has led to the development of clinically useful endothelin receptor antagonists that improve symptoms and functional capacity and alter the natural history of the disease in a beneficial way. The antagonists have varying degrees of selectivity for the two classes of endothelin receptor, termed ETA and ETB, and the varying degrees may translate into clinical differences. Endothelin receptor antagonists have become an integral part of therapy for pulmonary arterial hypertension, and the indications for their use are expanding. PMID:17338931

  6. Expression and Developmental Regulation of Oxytocin (OT) and Oxytocin Receptors (OTR) in the Enteric Nervous System (ENS) and Intestinal Epithelium

    PubMed Central

    Welch, Martha G.; Tamir, Hadassah; Gross, Kara J.; Chen, Jason; Anwar, Muhammad; Gershon, Michael D.

    2011-01-01

    Although oxytocin (OT) and oxytocin receptor (OTR) are known for roles in parturition and milk let-down, they are not hypothalamus-restricted. OT is important in nurturing and opposition to stress. Transcripts encoding OT and OTR have been reported in adult human gut, and OT affects intestinal motility. We tested the hypotheses that OT is endogenous to the enteric nervous system (ENS) and that OTR signaling may participate in enteric neurophysiology. Reverse transcriptase polymerase chain reaction confirmed OT and OTR transcripts in adult mouse and rat gut and in precursors of enteric neurons immunoselected from fetal rats. Enteric OT and OTR expression continued through adulthood but was developmentally regulated, peaking at postnatal day 7. Coincidence of the immunoreactivities of OTR and the neural marker Hu was 100% in the P3 and 71% in the adult myenteric plexus, when submucosal neurons were also OTR-immunoreactive. Co-localization with NeuN established that intrinsic primary afferent neurons are OTR-expressing. Because OTR transcripts and protein were detected in the nodose ganglia, OT signaling might also affect extrinsic primary afferent neurons. Although OT immunoreactivity was found only in ~1% of myenteric neurons, extensive OT-immunoreactive varicosities surrounded many others. Villus enterocytes were OTR-immunoreactive through postnatal day 17; however, by postnatal day 19, immunoreactivity waned to become restricted to crypts and concentrated at crypt-villus junctions. Immunoelectron microscopy revealed plasmalemmal OTR at enterocyte adherens junctions. We suggest that OT and OTR signaling might be important in ENS development and function and might play roles in visceral sensory perception and neural modulation of epithelial biology. PMID:19003903

  7. Brain oxytocin correlates with maternal aggression: link to anxiety.

    PubMed

    Bosch, Oliver J; Meddle, Simone L; Beiderbeck, Daniela I; Douglas, Alison J; Neumann, Inga D

    2005-07-20

    The oxytocinergic system is critically involved in the regulation of maternal behavior, which includes maternal aggression. Because aggression has been linked to anxiety, we investigated the maternal aggression and the role of brain oxytocin in lactating Wistar rats selectively bred for high anxiety-related behavior (HAB) or low anxiety-related behavior (LAB) during the 10 min maternal defense test. HAB dams displayed more maternal aggression against a virgin intruder compared with LAB dams, resulting in more defensive behavior and higher anxiety of HAB-defeated virgins. The different levels of aggression were accompanied by opposite oxytocin release patterns within the paraventricular nucleus (PVN; HAB, increase; LAB, decrease). Furthermore, oxytocin release was higher within the central nucleus of the amygdala (CeA) of HAB dams compared with LABs. A direct correlation between the offensive behavior displayed during the maternal defense test and local oxytocin release was found in both the PVN and CeA. Using retrodialysis, blockade of endogenous oxytocin action by infusion of an oxytocin receptor antagonist (des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) into the PVN or CeA reduced maternal aggression of HAB dams, whereas infusion of synthetic oxytocin into the PVN tended to increase aggression toward the intruder in LAB dams. There were no significant differences in oxytocin receptor mRNA expression or oxytocin receptor binding between lactating HAB and LAB dams. Therefore, differences in intracerebral release patterns of oxytocin, rather than differences at the level of oxytocin receptors, are critical for the regulation of maternal aggressive behavior. PMID:16033890

  8. Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress

    PubMed Central

    Lee, Sun-Young; Park, Seong-Hae; Chung, ChiHye; Kim, Jeansok J.; Choi, Se-Young; Han, Jung-Soo

    2015-01-01

    The hippocampus is vulnerable to uncontrollable stress and is enriched with oxytocin receptors, but their interactive influences on hippocampal functioning are unknown. This study aimed to determine the effects of intranasal oxytocin administration on stress-induced alterations in synaptic plasticity and spatial memory in male rats. While vehicle-administered stressed rats showed impairment in long-term potentiation, enhancement in long-term depression, and weakened spatial memory, these changes were not observed in oxytocin-administered stressed rats. To reveal the potential signaling mechanism mediating these effects, levels of phosphorylated extracellular signal-regulated kinases (pERK) in the hippocampus was examined. Western blotting showed that oxytocin treatment blocked stress-induced alterations of pERK. Additionally, the oxytocin receptor antagonist L-368,899 inhibited the oxytocin’s protective effects on hippocampal memory to stress. Thus, intranasal administration of oxytocin reduced stress effects on hippocampal synaptic plasticity and memory in rats via acting on oxytocin receptors and regulating ERK activity. This study suggests that exogenous oxytocin may be a therapeutically effective means to counter the detrimental neurocognitive effects of stress. PMID:26688325

  9. A constructive replication of the association between the oxytocin receptor genotype and parenting.

    PubMed

    Klahr, Ashlea M; Klump, Kelly; Burt, S Alexandra

    2015-02-01

    Behavioral genetic studies have robustly indicated that parenting behaviors are heritable-that is, individual differences in parenting are at least partially a function of genetic differences between persons. Few studies, however, have sought to identify the specific genetic variants that are associated with individual differences in parenting. Genes that influence the oxytocin system are of particular interest, given the growing body of evidence that points to the role of oxytocin for social behaviors, including parenting. The current study conducted examinations of associations between a variant in the oxytocin receptor gene (OXTR rs53576) and parental warmth, control, and negativity in a sample of 1,000 twin children and their parents (N = 500 families) from the Michigan State University Twin Registry to constructively replicate and extend prior work (Bakermans-Kranenburg & van IJzendoorn, 2008; Michalska et al., 2014). Analyses were conducted both at the level of the child and the level of the parent, allowing us to examine both child-driven (via evocative gene-environment correlation) and parent-driven genetic effects on parenting. Mothers' OXTR genotype predicted her warmth toward her children, even after controlling for child genotype. This association was not found for fathers. These findings add to the growing body of evidence linking oxytocin functioning to parental behavior and also highlight potential etiological differences in parenting across mothers and fathers. PMID:25419912

  10. Amygdala responses to salient social cues vary with oxytocin receptor genotype in youth.

    PubMed

    Marusak, Hilary A; Furman, Daniella J; Kuruvadi, Nisha; Shattuck, David W; Joshi, Shantanu H; Joshi, Anand A; Etkin, Amit; Thomason, Moriah E

    2015-12-01

    Depression, anxiety, and posttraumatic stress disorder are linked to altered limbic morphology, dysregulated neuroendocrine function, and heightened amygdala responses to salient social cues. Oxytocin appears to be a potent modulator of amygdala reactivity and neuroendocrine responses to psychosocial stress. Given these stress regulatory effects, there is increasing interest in understanding the role of oxytocin in vulnerability to stress-related clinical disorders. The present study examines the impact of a common functional variant within the oxytocin receptor (OXTR) gene (rs2254298) on structure and function of the amygdala in a high-risk sample of urban, low-income, minority youth with a high incidence of early life stress (ELS). Compared to G/G homozygotes, youth carrying the OXTR A-allele showed increased amygdala volume, reduced behavioral performance, and heightened amygdala response during two functional magnetic resonance imaging (fMRI) tasks that involved viewing socially-relevant face stimuli. Higher amygdala response was related to ELS in A-allele carriers but not G/G homozygotes. These findings underscore a series of relations among a common oxytocin system gene variant, ELS exposure, and structure and function of the amygdala in early life. Heightened amygdala response to salient social cues in OXTR A-allele carriers may elevate risk for emotional psychopathology by increasing amygdala involvement in disambiguating environmental cues, particularly for individuals with ELS. PMID:26477647

  11. A Constructive Replication of the Association between the Oxytocin Receptor Genotype and Parenting

    PubMed Central

    Klahr, Ashlea M.; Klump, Kelly L.; Burt, S. Alexandra

    2015-01-01

    Behavioral genetic studies have robustly indicated that parenting behaviors are heritable – that is, individual differences in parenting are at least partially a function of genetic differences between persons. Few studies, however, have sought to identify the specific genetic variants that are associated with individual differences in parenting. Genes that influence the oxytocin system are of particular interest, given the growing body of evidence that points to the role of oxytocin for social behaviors, including parenting. The current study conducted examinations of associations between a variant in the oxytocin receptor gene (OXTR rs53576) and parental warmth, control, and negativity in a sample of 1,000 twin children and their parents (N=500 families) from the Michigan State University Twin Registry to constructively replicate and extend prior work (Bakermans-Kranenburg & van IJzendoorn, 2008; Michalska et al., 2014). Analyses were conducted both at the level of the child and the level of the parent, allowing us to examine both child-driven (via evocative gene-environment correlation) and parent-driven genetic effects on parenting. Mothers’ OXTR genotype predicted her warmth towards her children, even after controlling for child genotype. This association was not found for fathers. These findings add to the growing body of evidence linking oxytocin functioning to parental behavior and also highlight potential etiological differences in parenting across mothers and fathers. PMID:25419912

  12. Oxytocin receptor gene polymorphism modulates the effects of social support on heart rate variability.

    PubMed

    Kanthak, Magdalena K; Chen, Frances S; Kumsta, Robert; Hill, LaBarron K; Thayer, Julian F; Heinrichs, Markus

    2016-05-01

    A large body of empirical research has demonstrated stress-buffering effects of social support. However, recent studies suggest that genetic variation of the oxytocin system (specifically, a common single nucleotide polymorphism, rs53576, of the oxytocin receptor gene) modulates the efficacy of social support. The timing and neurobiological basis of this genetic modulation were investigated using a standardized, laboratory-based psychological stress procedure (Trier Social Stress Test for Groups, TSST-G). To index potential stress buffering effects of social support mediated by the oxytocin system, heart rate variability (HRV) was obtained before and during the TSST-G from 40 healthy participants. Results indicate that social support is associated with higher HRV only in G allele carriers. Specifically, social support increased heart rate variability during direct social interaction and only in individuals with at least one copy of the G allele of rs53576. These findings support the idea that the stress-attenuating effects of social support are modulated by genetic variation of the oxytocin system. PMID:26903384

  13. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  14. Oxytocin prevents ethanol actions at δ subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats.

    PubMed

    Bowen, Michael T; Peters, Sebastian T; Absalom, Nathan; Chebib, Mary; Neumann, Inga D; McGregor, Iain S

    2015-03-10

    Even moderate doses of alcohol cause considerable impairment of motor coordination, an effect that substantially involves potentiation of GABAergic activity at δ subunit-containing GABA(A) receptors (δ-GABA(A)Rs). Here, we demonstrate that oxytocin selectively attenuates ethanol-induced motor impairment and ethanol-induced increases in GABAergic activity at δ-GABA(A)Rs and that this effect does not involve the oxytocin receptor. Specifically, oxytocin (1 µg i.c.v.) given before ethanol (1.5 g/kg i.p.) attenuated the sedation and ataxia induced by ethanol in the open-field locomotor test, wire-hanging test, and righting-reflex test in male rats. Using two-electrode voltage-clamp electrophysiology in Xenopus oocytes, oxytocin was found to completely block ethanol-enhanced activity at α4β1δ and α4β3δ recombinant GABA(A)Rs. Conversely, ethanol had no effect when applied to α4β1 or α4β3 cells, demonstrating the critical presence of the δ subunit in this effect. Oxytocin had no effect on the motor impairment or in vitro effects induced by the δ-selective GABA(A)R agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, which binds at a different site on δ-GABA(A)Rs than ethanol. Vasopressin, which is a nonapeptide with substantial structural similarity to oxytocin, did not alter ethanol effects at δ-GABA(A)Rs. This pattern of results confirms the specificity of the interaction between oxytocin and ethanol at δ-GABA(A)Rs. Finally, our in vitro constructs did not express any oxytocin receptors, meaning that the observed interactions occur directly at δ-GABA(A)Rs. The profound and direct interaction observed between oxytocin and ethanol at the behavioral and cellular level may have relevance for the development of novel therapeutics for alcohol intoxication and dependence. PMID:25713389

  15. Oxytocin prevents ethanol actions at δ subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats

    PubMed Central

    Bowen, Michael T.; Peters, Sebastian T.; Absalom, Nathan; Chebib, Mary; Neumann, Inga D.; McGregor, Iain S.

    2015-01-01

    Even moderate doses of alcohol cause considerable impairment of motor coordination, an effect that substantially involves potentiation of GABAergic activity at δ subunit-containing GABAA receptors (δ-GABAARs). Here, we demonstrate that oxytocin selectively attenuates ethanol-induced motor impairment and ethanol-induced increases in GABAergic activity at δ-GABAARs and that this effect does not involve the oxytocin receptor. Specifically, oxytocin (1 µg i.c.v.) given before ethanol (1.5 g/kg i.p.) attenuated the sedation and ataxia induced by ethanol in the open-field locomotor test, wire-hanging test, and righting-reflex test in male rats. Using two-electrode voltage-clamp electrophysiology in Xenopus oocytes, oxytocin was found to completely block ethanol-enhanced activity at α4β1δ and α4β3δ recombinant GABAARs. Conversely, ethanol had no effect when applied to α4β1 or α4β3 cells, demonstrating the critical presence of the δ subunit in this effect. Oxytocin had no effect on the motor impairment or in vitro effects induced by the δ-selective GABAAR agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, which binds at a different site on δ-GABAARs than ethanol. Vasopressin, which is a nonapeptide with substantial structural similarity to oxytocin, did not alter ethanol effects at δ-GABAARs. This pattern of results confirms the specificity of the interaction between oxytocin and ethanol at δ-GABAARs. Finally, our in vitro constructs did not express any oxytocin receptors, meaning that the observed interactions occur directly at δ-GABAARs. The profound and direct interaction observed between oxytocin and ethanol at the behavioral and cellular level may have relevance for the development of novel therapeutics for alcohol intoxication and dependence. PMID:25713389

  16. Chronic Methamphetamine Self-Administration Dysregulates Oxytocin Plasma Levels and Oxytocin Receptor Fibre Density in the Nucleus Accumbens Core and Subthalamic Nucleus of the Rat.

    PubMed

    Baracz, S J; Parker, L M; Suraev, A S; Everett, N A; Goodchild, A K; McGregor, I S; Cornish, J L

    2016-04-01

    The neuropeptide oxytocin attenuates reward and abuse for the psychostimulant methamphetamine (METH). Recent findings have implicated the nucleus accumbens (NAc) core and subthalamic nucleus (STh) in oxytocin modulation of acute METH reward and relapse to METH-seeking behaviour. Surprisingly, the oxytocin receptor (OTR) is only modestly involved in both regions in oxytocin attenuation of METH-primed reinstatement. Coupled with the limited investigation of the role of the OTR in psychostimulant-induced behaviours, we primarily investigated whether there are cellular changes to the OTR in the NAc core and STh, as well as changes to oxytocin plasma levels, after chronic METH i.v. self-administration (IVSA) and after extinction of drug-taking. An additional aim was to examine whether changes to central corticotrophin-releasing factor (CRF) and plasma corticosterone levels were also apparent because of the interaction of oxytocin with stress-regulatory mechanisms. Male Sprague-Dawley rats were trained to lever press for i.v. METH (0.1 mg/kg/infusion) under a fixed-ratio 1 schedule or received yoked saline infusions during 2-h sessions for 20 days. An additional cohort of rats underwent behavioural extinction for 15 days after METH IVSA. Subsequent to the last day of IVSA or extinction, blood plasma was collected for enzyme immunoassay, and immunofluorescence was conducted on NAc core and STh coronal sections. Rats that self-administered METH had higher oxytocin plasma levels, and decreased OTR-immunoreactive (-IR) fibres in the NAc core than yoked controls. In animals that self-administered METH and underwent extinction, oxytocin plasma levels remained elevated, OTR-IR fibre density increased in the STh, and a trend towards normalisation of OTR-IR fibre density was evident in the NAc core. CRF-IR fibre density in both brain regions and corticosterone plasma levels did not change across treatment groups. These findings demonstrate that oxytocin systems, both centrally

  17. Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain.

    PubMed

    Puglia, Meghan H; Lillard, Travis S; Morris, James P; Connelly, Jessica J

    2015-03-17

    In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene (OXTR). DNA methylation of OXTR, an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease. PMID:25675509

  18. Oxytocin and vasopressin receptor polymorphisms interact with circulating neuropeptides to predict human emotional reactions to stress

    PubMed Central

    Moons, Wesley G.; Way, Baldwin M.; Taylor, Shelley E.

    2014-01-01

    Oxytocin (OT) and a polymorphism (rs53576) in the oxytocin receptor gene (OXTR) have been independently associated with stress reactivity, whereas oxytocin’s sister peptide, arginine vasopressin (AVP), and polymorphisms in the vasopressin receptor gene (AVPR1A) have been independently associated with aggressive behavior. In this study, 68 men and 98 women were genotyped for the OXTR rs53576 polymorphism and the AVPR1A RS1 polymorphism. Baseline and post-stressor levels of plasma OT, plasma AVP, positive affect, and anger were assessed. Women, but not men, with high levels of post-stressor OT and the GG genotype of rs53576 felt the most positive affect after the stressor. Men, but not women, with high levels of post-stressor AVP and with the 320allele of the RS1 polymorphism reported more post-stressor anger than non-carriers. These data constitute the first evidence that oxytocin and vasopressin receptor genes interact with levels of OT and AVP to predict sex-specific emotional stress responses. PMID:24660771

  19. Deficiency of interleukin-1 receptor antagonist responsive to anakinra.

    PubMed

    Schnellbacher, Charlotte; Ciocca, Giovanna; Menendez, Roxanna; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Duarte, Ana M; Rivas-Chacon, Rafael

    2013-01-01

    We describe a 3-month-old infant who presented to our institution with interleukin (IL)-1 receptor antagonist deficiency (DIRA), which consists of neutrophilic pustular dermatosis, periostitis, aseptic multifocal osteomyelitis, and persistently high acute-phase reactants. Skin findings promptly improved upon initiation of treatment with anakinra (recombinant human IL-1 receptor antagonist), and the bony lesions and systemic inflammation resolved with continued therapy. PMID:22471702

  20. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats

    PubMed Central

    Zheng, Jun; Babygirija, Reji; Bülbül, Mehmet; Cerjak, Diana; Ludwig, Kirk

    2010-01-01

    Accumulation of continuous life stress (chronic stress) often causes gastric symptoms. Although central oxytocin has antistress effects, the role of central oxytocin in stress-induced gastric dysmotility remains unknown. Solid gastric emptying was measured in rats receiving acute restraint stress, 5 consecutive days of repeated restraint stress (chronic homotypic stress), and 7 consecutive days of varying types of stress (chronic heterotypic stress). Oxytocin and oxytocin receptor antagonist were administered intracerebroventricularly (icv). Expression of corticotropin-releasing factor (CRF) mRNA and oxytocin mRNA in the paraventricular nucleus (PVN) of the hypothalamus was evaluated by real-time RT-PCR. The changes of oxytocinergic neurons in the PVN were evaluated by immunohistochemistry. Acute stress delayed gastric emptying, and the delayed gastric emptying was completely restored after 5 consecutive days of chronic homotypic stress. In contrast, delayed gastric emptying persisted following chronic heterotypic stress. The restored gastric emptying following chronic homotypic stress was antagonized by icv injection of an oxytocin antagonist. Icv injection of oxytocin restored delayed gastric emptying induced by chronic heterotypic stress. CRF mRNA expression, which was significantly increased in response to acute stress and chronic heterotypic stress, returned to the basal levels following chronic homotypic stress. In contrast, oxytocin mRNA expression was significantly increased following chronic homotypic stress. The number of oxytocin-immunoreactive cells was increased following chronic homotypic stress at the magnocellular part of the PVN. Icv injection of oxytocin reduced CRF mRNA expression induced by acute stress and chronic heterotypic stress. It is suggested that the adaptation mechanism to chronic stress may involve the upregulation of oxytocin expression in the hypothalamus, which in turn attenuates CRF expression. PMID:20689056

  1. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats.

    PubMed

    Zheng, Jun; Babygirija, Reji; Bülbül, Mehmet; Cerjak, Diana; Ludwig, Kirk; Takahashi, Toku

    2010-10-01

    Accumulation of continuous life stress (chronic stress) often causes gastric symptoms. Although central oxytocin has antistress effects, the role of central oxytocin in stress-induced gastric dysmotility remains unknown. Solid gastric emptying was measured in rats receiving acute restraint stress, 5 consecutive days of repeated restraint stress (chronic homotypic stress), and 7 consecutive days of varying types of stress (chronic heterotypic stress). Oxytocin and oxytocin receptor antagonist were administered intracerebroventricularly (icv). Expression of corticotropin-releasing factor (CRF) mRNA and oxytocin mRNA in the paraventricular nucleus (PVN) of the hypothalamus was evaluated by real-time RT-PCR. The changes of oxytocinergic neurons in the PVN were evaluated by immunohistochemistry. Acute stress delayed gastric emptying, and the delayed gastric emptying was completely restored after 5 consecutive days of chronic homotypic stress. In contrast, delayed gastric emptying persisted following chronic heterotypic stress. The restored gastric emptying following chronic homotypic stress was antagonized by icv injection of an oxytocin antagonist. Icv injection of oxytocin restored delayed gastric emptying induced by chronic heterotypic stress. CRF mRNA expression, which was significantly increased in response to acute stress and chronic heterotypic stress, returned to the basal levels following chronic homotypic stress. In contrast, oxytocin mRNA expression was significantly increased following chronic homotypic stress. The number of oxytocin-immunoreactive cells was increased following chronic homotypic stress at the magnocellular part of the PVN. Icv injection of oxytocin reduced CRF mRNA expression induced by acute stress and chronic heterotypic stress. It is suggested that the adaptation mechanism to chronic stress may involve the upregulation of oxytocin expression in the hypothalamus, which in turn attenuates CRF expression. PMID:20689056

  2. Effectors of cyclic adenosine 5'-monophosphate up-regulating-oxytocin receptors in rabbit amnion cells: isoproterenol, parathyroid hormone-related protein, and potentiation by cortisol.

    PubMed

    Jeng, Y J; Hinko, A; Soloff, M S

    1995-11-01

    Forskolin (FSK; an activator of adenylyl cyclase) and cortisol synergistically increase the concentration of oxytocin receptors (OTRs) in rabbit amnion cells. The aims of this study were to characterize potential physiological regulators of OTR concentrations acting through adenylyl cyclase and to clarify the mechanisms of potentiation by cAMP and cortisol. Both isoproterenol (ISO) and parathyroid hormone-related protein (PTHrP) elevated amnion cell cAMP levels and OTR concentrations. The effects of ISO and PTHrP on OTR were potentiated by cortisol. Cortisol had no effect on the ability of ISO or PTHrP to stimulate adenylyl cyclase activity, and cAMP did not affect the number or affinity of glucocorticoid receptors in whole cells or in cytosol. Adenylyl cyclase activation, however, caused conversion of mifepristone (RU486) from a glucocorticoid antagonist to agonist. Thus, mifepristone elevated OTR receptor concentrations in the presence of FSK. In contrast, a structurally related glucocorticoid antagonist, onapristone (ZK98 299), was unaffected by cAMP. Because glucocorticoid receptors bound to mifepristone are capable of interacting with DNA, whereas onapristone-occupied receptors are not, we conclude that cAMP affects glucocoticoid receptor-DNA interactions, accounting for the synergistic effects of cAMP and cortisol on OTRs. PMID:8527507

  3. No Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Experimentally Elicited Social Preferences

    PubMed Central

    Apicella, Coren L.; Cesarini, David; Johannesson, Magnus; Dawes, Christopher T.; Lichtenstein, Paul; Wallace, Björn; Beauchamp, Jonathan; Westberg, Lars

    2010-01-01

    Background Oxytocin (OXT) has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR) gene variants and experimentally elicited social preferences are rare. Methodology/Principal Findings We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs) of the OXTR gene in a sample of Swedish twins (n = 684). Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs) and behavior in either of the games. Conclusion We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant. PMID:20585395

  4. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches.

    PubMed

    Veiga, G A L; Milazzotto, M P; Nichi, M; Lúcio, C F; Silva, L C G; Angrimani, D S R; Vannucchi, C I

    2015-04-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs. PMID:25714892

  5. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism.

    PubMed

    Peñagarikano, Olga; Lázaro, María T; Lu, Xiao-Hong; Gordon, Aaron; Dong, Hongmei; Lam, Hoa A; Peles, Elior; Maidment, Nigel T; Murphy, Niall P; Yang, X William; Golshani, Peyman; Geschwind, Daniel H

    2015-01-21

    Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homolog of CNTNAP2 (contactin-associated protein-like 2), in which mutations cause cortical dysplasia and focal epilepsy (CDFE) syndrome, displays many features that parallel those of the human disorder. Because CDFE has high penetrance for autism spectrum disorder (ASD), we performed an in vivo screen for drugs that ameliorate abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment to rectify this deficit. PMID:25609168

  6. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile. PMID:20667724

  7. Oxytocin and appetite.

    PubMed

    Leng, Gareth; Onaka, Tatsushi; Caquineau, Celine; Sabatier, Nancy; Tobin, Vicky A; Takayanagi, Yuki

    2008-01-01

    Oxytocin has potent central effects on feeding behaviour, as well as on social and sexual behaviours, and one likely substrate for its anorectic effect is the ventromedial nucleus of the hypothalamus. This nucleus expresses a high density of oxytocin receptors, but contains very few oxytocin-containing fibres, hence it is a likely target of 'neurohormonal' actions of oxytocin, including possibly oxytocin released from the dendrites of magnocellular oxytocin neurones. As oxytocin release from dendrites is regulated independent of electrical activity and of secretion from the neurohypophysis, exactly how this release is regulated by metabolic and reproduction-related signals remains to be established fully. Intriguingly though, it looks as though this central release of oxytocin from magnocellular neurons might be instrumental in a fundamental shift in motivational behaviour - switching behaviour from being driven by the need to find and consume food, to the need to reproduce. PMID:18655879

  8. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  9. Azogabazine; a photochromic antagonist of the GABAA receptor.

    PubMed

    Huckvale, Rosemary; Mortensen, Martin; Pryde, David; Smart, Trevor G; Baker, James R

    2016-07-12

    The design and synthesis of azogabazine is described, which represents a highly potent (IC50 = 23 nM) photoswitchable antagonist of the GABAA receptor. An azologization strategy is adopted, in which a benzyl phenyl ether in a high affinity gabazine analogue is replaced by an azobenzene, with resultant retention of antagonist potency. We show that cycling from blue to UV light, switching between trans and cis isomeric forms, leads to photochemically controlled antagonism of the GABA ion channel. PMID:27327397

  10. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy.

    PubMed

    Viero, Cedric; Shibuya, Izumi; Kitamura, Naoki; Verkhratsky, Alexei; Fujihara, Hiroaki; Katoh, Akiko; Ueta, Yoichi; Zingg, Hans H; Chvatal, Alexandr; Sykova, Eva; Dayanithi, Govindan

    2010-10-01

    Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein-coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo-pituitary-adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca²(+) in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy. PMID:20626426

  11. Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety.

    PubMed

    Ziegler, Christiane; Dannlowski, Udo; Bräuer, David; Stevens, Stephan; Laeger, Inga; Wittmann, Hannah; Kugel, Harald; Dobel, Christian; Hurlemann, René; Reif, Andreas; Lesch, Klaus-Peter; Heindel, Walter; Kirschbaum, Clemens; Arolt, Volker; Gerlach, Alexander L; Hoyer, Jürgen; Deckert, Jürgen; Zwanzger, Peter; Domschke, Katharina

    2015-05-01

    Social anxiety disorder (SAD) is a commonly occurring and highly disabling disorder. The neuropeptide oxytocin and its receptor (OXTR) have been implicated in social cognition and behavior. This study-for the first time applying a multilevel epigenetic approach-investigates the role of OXTR gene methylation in categorical, dimensional, and intermediate neuroendocrinological/neural network phenotypes of social anxiety. A total of 110 unmedicated patients with SAD and matched 110 controls were analyzed for OXTR methylation by direct sequencing of sodium bisulfite-converted DNA extracted from whole blood. Furthermore, OXTR methylation was investigated regarding SAD-related traits (Social Phobia Scale (SPS) and Social Interaction Anxiety Scale (SIAS)), salivary cortisol response during the Trier social stress test (TSST), and amygdala responsiveness to social phobia related verbal stimuli using fMRI. Significantly decreased OXTR methylation particularly at CpG Chr3: 8 809 437 was associated with (1) the categorical phenotype of SAD (p<0.001, Cohen's d=0.535), (2) increased SPS and SIAS scores (p<0.001), (3) increased cortisol response to the TSST (p=0.02), and (4) increased amygdala responsiveness during social phobia-related word processing (right: p(corr)<0.001; left: p(corr)=0.005). Assuming that decreased OXTR methylation confers increased OXTR expression, the present finding may reflect a compensatory upregulation for pathologically reduced oxytocin levels or a causally relevant increased OXTR activation in SAD and related traits. OXTR methylation patterns might thus serve as peripheral surrogates of oxytocin tone and aid in establishing accessible biomarkers of SAD risk allowing for indicated preventive interventions and personalized treatment approaches targeting the oxytocin system. PMID:25563749

  12. Oxytocin Receptor Gene Methylation: Converging Multilevel Evidence for a Role in Social Anxiety

    PubMed Central

    Ziegler, Christiane; Dannlowski, Udo; Bräuer, David; Stevens, Stephan; Laeger, Inga; Wittmann, Hannah; Kugel, Harald; Dobel, Christian; Hurlemann, René; Reif, Andreas; Lesch, Klaus-Peter; Heindel, Walter; Kirschbaum, Clemens; Arolt, Volker; Gerlach, Alexander L; Hoyer, Jürgen; Deckert, Jürgen; Zwanzger, Peter; Domschke, Katharina

    2015-01-01

    Social anxiety disorder (SAD) is a commonly occurring and highly disabling disorder. The neuropeptide oxytocin and its receptor (OXTR) have been implicated in social cognition and behavior. This study—for the first time applying a multilevel epigenetic approach—investigates the role of OXTR gene methylation in categorical, dimensional, and intermediate neuroendocrinological/neural network phenotypes of social anxiety. A total of 110 unmedicated patients with SAD and matched 110 controls were analyzed for OXTR methylation by direct sequencing of sodium bisulfite-converted DNA extracted from whole blood. Furthermore, OXTR methylation was investigated regarding SAD-related traits (Social Phobia Scale (SPS) and Social Interaction Anxiety Scale (SIAS)), salivary cortisol response during the Trier social stress test (TSST), and amygdala responsiveness to social phobia related verbal stimuli using fMRI. Significantly decreased OXTR methylation particularly at CpG Chr3: 8 809 437 was associated with (1) the categorical phenotype of SAD (p<0.001, Cohen's d=0.535), (2) increased SPS and SIAS scores (p<0.001), (3) increased cortisol response to the TSST (p=0.02), and (4) increased amygdala responsiveness during social phobia-related word processing (right: pcorr<0.001; left: pcorr=0.005). Assuming that decreased OXTR methylation confers increased OXTR expression, the present finding may reflect a compensatory upregulation for pathologically reduced oxytocin levels or a causally relevant increased OXTR activation in SAD and related traits. OXTR methylation patterns might thus serve as peripheral surrogates of oxytocin tone and aid in establishing accessible biomarkers of SAD risk allowing for indicated preventive interventions and personalized treatment approaches targeting the oxytocin system. PMID:25563749

  13. Fluorescent Human EP3 Receptor Antagonists.

    PubMed

    Tomasch, Miriam; Schwed, J Stephan; Kuczka, Karina; Meyer Dos Santos, Sascha; Harder, Sebastian; Nüsing, Rolf M; Paulke, Alexander; Stark, Holger

    2012-09-13

    Exchange of the lipophilc part of ortho-substituted cinnamic acid lead structures with different small molecule fluorophoric moieties via a dimethylene spacer resulted in hEP3R ligands with affinities in the nanomolar concentration range. Synthesized compounds emit fluorescence in the blue, green, and red range of light and have been tested concerning their potential as a pharmacological tool. hEP3Rs were visualized by confocal laser scanning microscopy on HT-29 cells, on murine kidney tissues, and on human brain tissues and functionally were characterized as antagonists on human platelets. Inhibition of PGE2 and collagen-induced platelet aggregation was measured after preincubation with novel hEP3R ligands. The pyryllium-labeled ligand 8 has been shown as one of the most promising structures, displaying a useful fluorescence and highly affine hEP3R antagonists. PMID:24900547

  14. Cholestasis of pregnancy, pruritus and 5-hydroxytryptamine 3 receptor antagonists.

    PubMed

    Schumann, Roman; Hudcova, Jana

    2004-09-01

    Pruritus, an early symptom of intrahepatic cholestasis of pregnancy, may be severe. Conventional treatment includes ursodeoxycholic acid and cholestyramine. Ondansetron, a 5-hydroxytryptamine 3 receptor antagonist antiemetic, has been shown to reduce pruritus of different etiologies including cholestasis. We now report the successful preoperative use of ondansetron in a patient with pruritus from intrahepatic cholestasis of pregnancy. While the mechanism for our patient's response is poorly understood, 5-hydroxytryptamine 3 receptor antagonists should be further evaluated and possibly considered as a treatment option for intrahepatic cholestasis of pregnancy-related pruritus. PMID:15315599

  15. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    SciTech Connect

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M.

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  16. Histamine 2 Receptor Antagonists and Proton Pump Inhibitors.

    PubMed

    Brinkworth, Megan D; Aouthmany, Mouhammad; Sheehan, Michael

    2016-01-01

    Within the last 50 years, the pharmacologic market for gastric disease has grown exponentially. Currently, medical management with histamine 2 receptor antagonist and proton pump inhibitors are the mainstay of therapy over surgical intervention. These are generally regarded as safe medications, but there are growing numbers of cases documenting adverse effects, especially those manifesting in the skin. Here we review the pharmacology, common clinical applications, and adverse reactions of both histamine 2 receptor antagonists and proton pump inhibitors with a particular focus on the potential for allergic reactions including allergic contact dermatitis. PMID:27172303

  17. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits

    PubMed Central

    Baribeau, Danielle A.; Anagnostou, Evdokia

    2015-01-01

    Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders. PMID:26441508

  18. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    PubMed

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic. PMID:11554551

  19. Novel alkoxy-oxazolyl-tetrahydropyridine muscarinic cholinergic receptor antagonists.

    PubMed

    Shannon, H E; Bymaster, F P; Hendrix, J C; Quimby, S J; Mitch, C H

    1995-01-01

    The purpose of the present studies was to compare a novel series of alkoxy-oxazolyl-tetrahydropyridines (A-OXTPs) as muscarinic receptor antagonists. The affinity of these compounds for muscarinic receptors was determined by inhibition of [3H]pirenzepine to M1 receptors in hippocampus, [3H]QNB to M2 receptors in brainstem, and [3H]oxotremorine-M to high affinity muscarinic agonist binding sites in cortex. All of the compounds had higher affinity for [3H]pirenzepine than for [3H]QNB or [3H]oxotremorine-M labeled receptors, consistent with an interpretation that they are relatively selective M1 receptor antagonists, although none were as selective as pirenzepine. In addition, dose-response curves were determined for antagonism of oxotremorine-induced salivation (mediated by M3 receptors) and tremor (mediated by non-M1 receptors) in mice. In general, the A-OXTPs were equipotent and equieffective in antagonizing both salivation and tremor, although there were modest differences for some compounds. Dose-response curves also were determined on behavior maintained under a spatial-alternation schedule of food presentation in rats as a measure of effects on working memory. The A-OXTPs produced dose-related decreases in percent correct responding at doses three- to ten-fold lower than those which decreased rates of responding. However, only one compound, MB-OXTP, produced effects on percent correct responding consistent with a selective effect on memory as opposed to non-memory variables. The present results provide evidence that these alkoxy-oxazolyl-tetrahydropyridines are a novel series of modestly M1-selective muscarinic receptor antagonists, and that one member of the series, MB-OXTP, appears to be more selective in its effects on memory than previously studies muscarinic antagonists. PMID:7753969

  20. Endothelin receptor antagonists as disease modifiers in systemic sclerosis.

    PubMed

    Shetty, Nagalakshmi; Derk, Chris T

    2011-02-01

    Systemic sclerosis (SSc) is a multisystem connective tissue disease of unknown etiology that is characterized by inflammation, vascular dysfunction and fibrosis of the skin and visceral organs. SSc is clinically diverse both in terms of the burden of skin and organ involvement and the rate of progression of the disease. Recent studies indicate that the endothelin system, especially ET-1 and the ETA and ETB receptors may play a key role in the pathogenesis of SSc. A new class of drugs, endothelin receptor antagonists has been introduced for treatment of patients with pulmonary arterial hypertension (PAH). Bosentan, a dual endothelin receptor antagonist as well as Sitaxsentan and Ambrisentan, selective blockers of the ETA receptor have proven effective in SSc-PAH. This effect may be mediated through both a vasodilatory and antifibrotic effect, thus making these agents attractive as potential disease modifying agents for SSc. PMID:21184655

  1. Oxytocin-Dopamine Interactions Mediate Variations in Maternal Behavior in the Rat

    PubMed Central

    Shahrokh, Dara K.; Zhang, Tie-Yuan; Diorio, Josie; Gratton, Alain; Meaney, Michael J.

    2010-01-01

    Variations in maternal behavior among lactating rats associate with differences in estrogen-oxytocin interactions in the medial preoptic area (mPOA) and in dopamine levels in the nucleus accumbens (nAcc). Thus, stable, individual differences in pup licking/grooming (LG) are abolished by oxytocin receptor blockade or treatments that eliminate differences in the nAcc dopamine signal. We provide novel evidence for a direct effect of oxytocin at the level of the ventral tegmental area (VTA) in the regulation of nAcc dopamine levels. Mothers that exhibit consistently increased pup LG (i.e. high LG mothers) by comparison with low LG mothers show increased oxytocin expression in the mPOA and the paraventricular nucleus of the hypothalamus and increased projections of oxytocin-positive cells from both mPOA and paraventricular nucleus of the hypothalamus to the VTA. Direct infusion of oxytocin into the VTA increased the dopamine signal in the nAcc. Finally, high compared with low LG mothers show greater increases in dopamine signal in the nAcc during bouts of pup LG, and this difference is abolished with infusions of an oxytocin receptor antagonist directly into the VTA. These studies reveal a direct effect of oxytocin on dopamine release within the mesocorticolimbic dopamine system and are consistent with previous reports of oxytocin-dopamine interactions in the establishment and maintenance of social bonds. PMID:20228171

  2. 2-Cycloalkyl phenoxyacetic acid CRTh2 receptor antagonists.

    PubMed

    Sandham, David A; Aldcroft, Clive; Baettig, Urs; Barker, Lucy; Beer, David; Bhalay, Gurdip; Brown, Zarin; Dubois, Gerald; Budd, David; Bidlake, Louise; Campbell, Emma; Cox, Brian; Everatt, Brian; Harrison, David; Leblanc, Catherine J; Manini, Jodie; Profit, Rachael; Stringer, Rowan; Thompson, Katy S; Turner, Katharine L; Tweed, Morris F; Walker, Christoph; Watson, Simon J; Whitebread, Steven; Willis, Jennifer; Williams, Gareth; Wilson, Caroline

    2007-08-01

    High throughput screening identified a phenoxyacetic acid scaffold as a novel CRTh2 receptor antagonist chemotype, which could be optimised to furnish a compound with functional potency for inhibition of human eosinophil shape change and oral bioavailability in the rat. PMID:17531480

  3. Role of the Oxytocin Receptor Expressed in the Rostral Medullary Raphe in Thermoregulation During Cold Conditions

    PubMed Central

    Kasahara, Yoshiyuki; Tateishi, Yuko; Hiraoka, Yuichi; Otsuka, Ayano; Mizukami, Hiroaki; Ozawa, Keiya; Sato, Keisuke; Hidema, Shizu; Nishimori, Katsuhiko

    2015-01-01

    Recent papers have reported that oxytocin (Oxt) and the oxytocin receptor (Oxtr) may be involved in the regulation of food intake in mammals. We therefore suspected the Oxt/Oxtr system to be involved in energy homeostasis. In previous studies, we found a tendency toward obesity in Oxtr-deficient (Oxtr−/−) mice, as well as impaired thermoregulation when these mice were exposed to cold conditions. In the present study, we observed the expression of Oxtr in the rostral medullary raphe (RMR), the brain region known to control thermogenesis in brown adipose tissue (BAT). Through immunohistochemistry, we detected neurons expressing Oxtr and c-Fos in the RMR of mice exposed to cold conditions. Up to 40% of Oxtr-positive neurons in RMR were classified as glutamatergic neurons, as shown by immunostaining using anti-VGLUT3 antibody. In addition, mice with exclusive expression of Oxtr in the RMR were generated by injecting an AAV-Oxtr vector into the RMR region of Oxtr−/− mice. We confirmed the recovery of thermoregulatory ability in the manipulated mice during exposure to cold conditions. Moreover, mice with RMR-specific expression of Oxtr lost the typical morphological change in BAT observed in Oxtr−/− mice. Additionally, increased expression of the β3-adrenergic receptor gene, Adrb3, was observed in BAT. These results are the first to show the critical role of RMR Oxtr expression in thermoregulation during cold conditions. PMID:26635729

  4. Role of the Oxytocin Receptor Expressed in the Rostral Medullary Raphe in Thermoregulation During Cold Conditions.

    PubMed

    Kasahara, Yoshiyuki; Tateishi, Yuko; Hiraoka, Yuichi; Otsuka, Ayano; Mizukami, Hiroaki; Ozawa, Keiya; Sato, Keisuke; Hidema, Shizu; Nishimori, Katsuhiko

    2015-01-01

    Recent papers have reported that oxytocin (Oxt) and the oxytocin receptor (Oxtr) may be involved in the regulation of food intake in mammals. We therefore suspected the Oxt/Oxtr system to be involved in energy homeostasis. In previous studies, we found a tendency toward obesity in Oxtr-deficient (Oxtr (-/-)) mice, as well as impaired thermoregulation when these mice were exposed to cold conditions. In the present study, we observed the expression of Oxtr in the rostral medullary raphe (RMR), the brain region known to control thermogenesis in brown adipose tissue (BAT). Through immunohistochemistry, we detected neurons expressing Oxtr and c-Fos in the RMR of mice exposed to cold conditions. Up to 40% of Oxtr-positive neurons in RMR were classified as glutamatergic neurons, as shown by immunostaining using anti-VGLUT3 antibody. In addition, mice with exclusive expression of Oxtr in the RMR were generated by injecting an AAV-Oxtr vector into the RMR region of Oxtr (-/-) mice. We confirmed the recovery of thermoregulatory ability in the manipulated mice during exposure to cold conditions. Moreover, mice with RMR-specific expression of Oxtr lost the typical morphological change in BAT observed in Oxtr (-/-) mice. Additionally, increased expression of the β3-adrenergic receptor gene, Adrb3, was observed in BAT. These results are the first to show the critical role of RMR Oxtr expression in thermoregulation during cold conditions. PMID:26635729

  5. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. PMID:27108935

  6. Enhanced Uterine Contractility and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for Oxytocin Receptor Desensitization.

    PubMed

    Grotegut, Chad A; Mao, Lan; Pierce, Stephanie L; Swamy, Geeta K; Heine, R Phillips; Murtha, Amy P

    2016-04-01

    Oxytocin is a potent uterotonic agent and is used clinically for induction and augmentation of labor, as well as for prevention and treatment of postpartum hemorrhage. Oxytocin increases uterine contractility by activating the oxytocin receptor (OXTR), a member of the G protein-coupled receptor family, which is prone to molecular desensitization. After oxytocin binding, the OXTR is phosphorylated by a member of the G protein-coupled receptor kinase (GRK) family, which allows for recruitment of β-arrestin, receptor internalization, and desensitization. According to previous in vitro analyses, desensitization of calcium signaling by the OXTR is mediated by GRK6. The objective of this study was to determine the role of GRK6 in mediating uterine contractility. Here, we demonstrate that uterine GRK6 levels increase in pregnancy and using a telemetry device to measure changes in uterine contractility in live mice during labor, show that mice lacking GRK6 produce a phenotype of enhanced uterine contractility during both spontaneous and oxytocin-induced labor compared with wild-type or GRK5 knockout mice. In addition, the observed enhanced contractility was associated with high rates of term stillbirth. Lastly, using a heterologous in vitro model, we show that β-arrestin recruitment to the OXTR, which is necessary for homologous OXTR desensitization, is dependent on GRK6. Our findings suggest that GRK6-mediated OXTR desensitization in labor is necessary for normal uterine contractile patterns and optimal fetal outcome. PMID:26886170

  7. Use of the H3 receptor antagonist radioligand [3H]-A-349821 to reveal in vivo receptor occupancy of cognition enhancing H3 receptor antagonists

    PubMed Central

    Miller, TR; Milicic, I; Bauch, J; Du, J; Surber, B; Browman, KE; Marsh, K; Cowart, M; Brioni, JD; Esbenshade, TA

    2009-01-01

    Background and purpose: The histamine H3 receptor antagonist radioligand [3H]-A-349821 was characterized as a radiotracer for assessing in vivo receptor occupancy by H3 receptor antagonists that affect behaviour. This model was established as an alternative to ex vivo binding methods, for relating antagonist H3 receptor occupancy to blood levels and efficacy in preclinical models. Experimental approach: In vivo cerebral cortical H3 receptor occupancy by [3H]-A-349821 was determined in rats from differences in [3H]-A-349821 levels in the isolated cortex and cerebellum, a brain region with low levels of H3 receptors. Comparisons were made to relate antagonist H3 receptor occupancy to blood levels and efficacy in a preclinical model of cognition, the five-trial inhibitory avoidance response in rat pups. Key results: In adult rats, [3H]-A-349821, 1.5 µg·kg−1, penetrated into the brain and cleared more rapidly from cerebellum than cortex; optimally, [3H]-A-349821 levels were twofold higher in the latter. With increasing [3H]-A-349821 doses, cortical H3 receptor occupancy was saturable with a binding capacity consistent with in vitro binding in cortex membranes. In studies using tracer [3H]-A-349821 doses, ABT-239 and other H3 receptor antagonists inhibited H3 receptor occupancy by [3H]-A-349821 in a dose-dependent manner. Blood levels of the antagonists corresponding to H3 receptor occupancy were consistent with blood levels associated with efficacy in the five-trial inhibitory avoidance response. Conclusions and implications: When employed as an occupancy radiotracer, [3H]-A-349821 provided valid measurements of in vivo H3 receptor occupancy, which may be helpful in guiding and interpreting clinical studies of H3 receptor antagonists. PMID:19413577

  8. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Siebel, Anna Maria; Bonan, Carla Denise

    2016-09-15

    Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia. PMID:27247142

  9. Extra-helical binding site of a glucagon receptor antagonist.

    PubMed

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  10. Tachykinin NK3 receptor contribution to systemic release of vasopressin and oxytocin in response to osmotic and hypotensive challenge.

    PubMed

    Haley, Gwendolen E; Flynn, Francis W

    2007-08-01

    Activation of the neurokinin 3 receptor (NK3R) by a receptor agonist, hypotension, and hyperosmolarity results in the internalization of NK3R expressed by magnocellular neurons and the release of vasopressin (VP) and oxytocin (OT) into the circulation. The contribution of NK3R activation to the release of VP and OT in response to hyperosmolarity and hypotension was evaluated by measuring the release of both hormones following pretreatment with a selective NK3R antagonist, SB-222200. Freely behaving male rats were given an intraventricular injection of either 0.15 M NaCl or 250, 500, or 1,000 pmol SB-222200, and then were administered an intravenous infusion of 2 M NaCl or 0.15 M NaCl (experiment 1), or a bolus intra injection of 0.15 M NaCl or hydralazine (HDZ), a hypotension-inducing drug (experiment 2). Blood samples were taken from indwelling arterial catheters at various time points for 1-2 h, both before and after treatments. Plasma VP and OT levels were determined by ELISA. Blockade of NK3R did not affect the baseline levels of either hormone. In contrast, pretreatment with SB-222200 significantly reduced ( approximately 60%) or abolished the release of VP and OT, respectively, to 2 M NaCl infusion. HDZ-induced VP and OT release was eliminated by pretreatment with 500 pmol SB-222200. Therefore, NK3R activation contributes significantly to the systemic release of both VP and OT in response to osmotic and hypotensive challenges. PMID:17522129

  11. Variation in the oxytocin receptor gene is associated with behavioral and neural correlates of empathic accuracy

    PubMed Central

    Laursen, Helle Ruff; Siebner, Hartwig Roman; Haren, Tina; Madsen, Kristoffer; Grønlund, Rikke; Hulme, Oliver; Henningsson, Susanne

    2014-01-01

    The neuromodulators oxytocin and serotonin have been implicated in regulating affective processes underlying empathy. Understanding this dependency, however, has been limited by a lack of objective metrics for measuring empathic performance. Here we employ a novel psychophysical method for measuring empathic performance that quantitatively measures the ability of subjects to decode the experience of another person's pain. In 50 female subjects, we acquired functional magnetic resonance imaging data as they were exposed to a target subject experiencing variable degrees of pain, whilst performing an irrelevant attention-demanding task. We investigated the effect of variation in the oxytocin receptor gene (OXTR) and the serotonin transporter gene (SLC6A4) on the psychophysical and neurometric variability associated with empathic performance. The OXTR rs2268498 and rs53576 polymorphisms, but not the SLC6A4 5-HTTLPR, were associated with significant differences in empathic accuracy, with CC- and AA-carriers, respectively, displaying higher empathic accuracy. For OXTR rs2268498 there was also a genotype difference in the correlation between empathic accuracy and activity in the superior temporal sulcus (STS). In OXTR rs2268498 CC-carriers, high empathic accuracy was associated with stronger responsiveness of the right STS to the observed pain. Together, the results show that genetic variation in the OXTR has significant influence on empathic accuracy and that this may be linked to variable responsivity of the STS. PMID:25538588

  12. Differential Methylation of the Oxytocin Receptor Gene in Patients with Anorexia Nervosa: A Pilot Study

    PubMed Central

    Kim, Mi Jeong; Treasure, Janet

    2014-01-01

    Background and Aim Recent studies in patients with anorexia nervosa suggest that oxytocin may be involved in the pathophysiology of anorexia nervosa. We examined whether there was evidence of variation in methylation status of the oxytocin receptor (OXTR) gene in patients with anorexia nervosa that might account for these findings. Methods We analyzed the methylation status of the CpG sites in a region from the exon 1 to the MT2 regions of the OXTR gene in buccal cells from 15 patients and 36 healthy women using bisulfite sequencing. We further examined whether methylation status was associated with markers of illness severity or form. Results We identified six CpG sites with significant differences in average methylation levels between the patient and control groups. Among the six differentially methylated CpG sites, five showed higher than average methylation levels in patients than those in the control group (64.9–88.8% vs. 6.6–45.0%). The methylation levels of these five CpG sites were negatively associated with body mass index (BMI). BMI, eating disorders psychopathology, and anxiety were identified in a regression analysis as factors affecting the methylation levels of these CpG sites with more variation accounted for by BMI. Conclusions Epigenetic misregulation of the OXTR gene may be implicated in anorexia nervosa, which may either be a mechanism linking environmental adversity to risk or may be a secondary consequence of the illness. PMID:24523928

  13. A short review of twin pregnancy and how oxytocin receptor expression may differ in multiple pregnancy.

    PubMed

    Turton, Peter; Neilson, James P; Quenby, Siobhan; Burdyga, Theodor; Wray, Susan

    2009-05-01

    During a multiple pregnancy, the mother and her fetuses are exposed to a variety of risks during both pregnancy and labour. The most notable of these risks is that of pre-term labour and its associated sequelae. Whilst much research has been directed towards understanding the mechanisms of uterine contractility, very little research has focussed on how contractility in multiple pregnancy differs from contractility in the singleton pregnancy. The aim of this paper is to review the changing prevalence and risks of a twin pregnancy, as well as reviewing what is known about myometrium from multiple pregnancies. The paper ends by discussing how oxytocin receptor expression may differ in twin pregnancy, based on the evidence of animal models, as well as presenting our own evidence of how oxytocin affects myometrium from twin pregnancies. We highlight the lack of the basic information needed to characterize human myometrium in twin pregnancies. Of particular note is the lack of supporting data for the hypothesis that stretch is responsible for earlier activation of the uterus in multiple pregnancy. New hypotheses based on increased experimental work are called for. Such information may throw light on specific mechanisms leading to the increased incidence of pre-term delivery in twins. PMID:19303192

  14. Oxytocin Receptor Gene (OXTR) Polymorphism, Perceived Social Support, and Psychological Symptoms in Maltreated Adolescents

    PubMed Central

    Hostinar, Camelia E.; Cicchetti, Dante; Rogosch, Fred A.

    2014-01-01

    Despite the detrimental consequences of child maltreatment on developmental processes, some individuals show remarkable resilience, with few signs of psychopathology, while others succumb to dysfunction. Given that oxytocin has been shown to be involved in social affiliation, attachment, social support, trust, empathy, and other social or reproductive behaviors, we chose to examine the possible moderation of maltreatment effects on perceived social support and on psychological symptoms by a common SNP (rs53576) in the oxytocin receptor gene (OXTR). We studied adolescents (N = 425) aged approximately 13-15, including participants with objectively documented maltreatment histories (N = 263) and a non-maltreated comparison group from a comparable low-socioeconomic status background (N = 162). There was a significant genotype by maltreatment interaction such that maltreated adolescents with the G/G genotype perceived significantly lower social support compared to maltreated A-carriers, with no effect of genotype in the comparison group. Maltreated G/Gs also reported higher levels of Internalizing symptoms than A-carriers, even though they did not differ from them on objective measures of maltreatment (type, duration, or severity). G/G homozygotes may be more attuned to negative social experiences such as family maltreatment, while maltreated A-carriers were indistinguishable from non-maltreated adolescents in levels of mental health symptoms. PMID:24621832

  15. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men.

    PubMed

    Waller, Rebecca; Corral-Frías, Nadia S; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R; Hariri, Ahmad R; Hyde, Luke W

    2016-08-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. PMID:27036876

  16. Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents.

    PubMed

    Hostinar, Camelia E; Cicchetti, Dante; Rogosch, Fred A

    2014-05-01

    Despite the detrimental consequences of child maltreatment on developmental processes, some individuals show remarkable resilience, with few signs of psychopathology, while others succumb to dysfunction. Given that oxytocin has been shown to be involved in social affiliation, attachment, social support, trust, empathy, and other social or reproductive behaviors, we chose to examine the possible moderation of maltreatment effects on perceived social support and on psychological symptoms by a common single nucleotide polymorphism (rs53576) in the oxytocin receptor gene. We studied adolescents (N = 425) aged approximately 13-15, including participants with objectively documented maltreatment histories (N = 263) and a nonmaltreated comparison group from a comparable low socioeconomic status background (N = 162). There was a significant genotype by maltreatment interaction, such that maltreated adolescents with the G/G genotype perceived significantly lower social support compared to maltreated A-carriers, with no effect of genotype in the comparison group. Maltreated G/Gs also reported higher levels of internalizing symptoms than did A-carriers, even though they did not differ from them on objective measures of maltreatment (type, duration, or severity). G/G homozygotes may be more attuned to negative social experiences, such as family maltreatment, while maltreated A-carriers were indistinguishable from nonmaltreated adolescents in levels of mental health symptoms. PMID:24621832

  17. Transient receptor potential ankyrin 1 (TRPA1) antagonists.

    PubMed

    Preti, Delia; Saponaro, Giulia; Szallasi, Arpad

    2015-01-01

    The transient receptor potential ankyrin 1 (TRPA1) channel is an irritant sensor highly expressed on nociceptive neurons. The clinical use of TRPA1 antagonists is based on the concept that TRPA1 is active during disease states like neuropathic pain. Indeed, in Phase 2a proof-of-concept studies the TRPA1 antagonist GRC17536 has shown efficacy in patients with painful diabetic neuropathy. Moreover, animal studies suggest that the therapeutic value of TRPA1 antagonists extends beyond pain to pruritus, asthma and cough with limited safety concerns. This review provides a comprehensive overview of the patent literature (since 2007) on small-molecule inhibitors of the TRPA1 channel. Despite the clear progress, many unanswered questions remain. Future advancement to Phase 3 studies will assess the real translational potential of this research field. PMID:25853468

  18. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  19. μ Opioid receptor: novel antagonists and structural modeling

    PubMed Central

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-01-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates. PMID:26888328

  20. Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity.

    PubMed

    Farber, N B; Kim, S H; Dikranian, K; Jiang, X P; Heinkel, C

    2002-01-01

    NMDA glutamate receptor antagonists are used in clinical anesthesia, and are being developed as therapeutic agents for preventing neurodegeneration in stroke, epilepsy, and brain trauma. However, the ability of these agents to produce neurotoxicity in adult rats and psychosis in adult humans compromises their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state might play a role in neurodegenerative and psychotic disorders, like Alzheimer's disease and schizophrenia. Thus, understanding the mechanism underlying NRHypo-induced neurotoxicity and psychosis could have significant clinically relevant benefits. NRHypo neurotoxicity can be prevented by several classes of agents (e.g. antimuscarinics, non-NMDA glutamate antagonists, and alpha(2) adrenergic agonists) suggesting that the mechanism of neurotoxicity is complex. In the present study a series of experiments was undertaken to more definitively define the receptors and complex neural circuitry underlying NRHypo neurotoxicity. Injection of either the muscarinic antagonist scopolamine or the non-NMDA antagonist NBQX directly into the cortex prevented NRHypo neurotoxicity. Clonidine, an alpha(2) adrenergic agonist, protected against the neurotoxicity when injected into the basal forebrain. The combined injection of muscarinic and non-NMDA Glu agonists reproduced the neurotoxic reaction. Based on these and other results, we conclude that the mechanism is indirect, and involves a complex network disturbance, whereby blockade of NMDA receptors on inhibitory neurons in multiple subcortical brain regions, disinhibits glutamatergic and cholinergic projections to the cerebral cortex. Simultaneous excitotoxic stimulation of muscarinic (m(3)) and glutamate (AMPA/kainate) receptors on cerebrocortical neurons appears to be the proximal mechanism by which the neurotoxic and psychotomimetic effects of NRHypo are mediated. PMID:11803444

  1. The oxytocin receptor gene (OXTR) localizes to human chromosome 3p25 by fluorescence in situ hybridization and PCR analysis of somatic cell hybrids

    SciTech Connect

    Simmons, C.F. Jr.; Clancy, T.E.; Quan, R.

    1995-04-10

    The human oxytocin receptor regulates parturition and myometrial contractility, breast milk let-down, and reproductive behaviors in the mammalian central nervous system. Kimura et al. recently identified a human oxytocin receptor cDNA by means of expression cloning from a human myometrial cDNA library. To elucidate further the molecular mechanisms that regulate oxytocin receptor gene expression and to define the expected Mendelian inheritance of possible human disease states, we must determine the number of genes, their localization, and their organization and structure. We summarize below our data indicating that the human oxytocin receptor gene is localized to 3p25 and exists as a single copy in the haploid genome. 9 refs., 2 figs.

  2. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    PubMed

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function. PMID:24039134

  3. Rational design of high affinity tachykinin NK1 receptor antagonists.

    PubMed

    Boyle, S; Guard, S; Higginbottom, M; Horwell, D C; Howson, W; McKnight, A T; Martin, K; Pritchard, M C; O'Toole, J; Raphy, J

    1994-05-01

    The rational design of a non-peptide tachykinin NK1 receptor antagonist, [(2-benzofuran)-CH2OCO]-(R)-alpha-MeTrp-(S)-NHCH(CH3)P h (28, PD 154075) is described. Compound 28 has a Ki = 9 and 0.35 nM for the NK1 receptor binding site in guinea-pig cerebral cortex membranes and human IM9, cells respectively (using [125I] Bolton-Hunter-SP as the radioligand). It is a potent antagonist in vitro where it antagonises the contractions mediated by SPOMe in the guinea-pig ileum (KB = 0.3 nM). Compound 28 is active in vivo in the guinea-pig plasma extravasation model, where it is able to block the SPOMe-induced protein plasma extravasation (monitored by Evans Blue) in the bladder with an ID50 of 0.02 mg kg-1 iv. PMID:7922147

  4. Discovery of aryloxy tetramethylcyclobutanes as novel androgen receptor antagonists.

    PubMed

    Guo, Chuangxing; Linton, Angelica; Kephart, Susan; Ornelas, Martha; Pairish, Mason; Gonzalez, Javier; Greasley, Samantha; Nagata, Asako; Burke, Benjamin J; Edwards, Martin; Hosea, Natilie; Kang, Ping; Hu, Wenyue; Engebretsen, Jon; Briere, David; Shi, Manli; Gukasyan, Hovik; Richardson, Paul; Dack, Kevin; Underwood, Toby; Johnson, Patrick; Morell, Andrew; Felstead, Robert; Kuruma, Hidetoshi; Matsimoto, Hiroaki; Zoubeidi, Amina; Gleave, Martin; Los, Gerrit; Fanjul, Andrea N

    2011-11-10

    An aryloxy tetramethylcyclobutane was identified as a novel template for androgen receptor (AR) antagonists via cell-based high-throughput screening. Follow-up to the initial "hit" established 5 as a viable lead. Further optimization to achieve full AR antagonism led to the discovery of 26 and 30, both of which demonstrated excellent in vivo tumor growth inhibition upon oral administration in a castration-resistant prostate cancer (CRPC) animal model. PMID:21936524

  5. The H2-receptor antagonist era in duodenal ulcer disease.

    PubMed Central

    Marks, I. N.

    1992-01-01

    This paper reviews the remarkable impact of H2-receptor antagonists on duodenal ulcer management. The development and the scientific rationale of these agents are presented, and efficacy and safety aspects in the short- and long-term treatment of duodenal ulcer disease discussed. Attention is focused on the possible role of "acid rebound" in ulcer relapse following the withdrawal of therapy and on the clinical relevance of prolonged suppression of acid secretion in patients on long-term therapy. PMID:1364125

  6. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    SciTech Connect

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.; Meyers, K.M.; Szot, P.; Miller, M.A.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /sup 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.

  7. Sensitivity in detecting facial displays of emotion: Impact of maternal depression and oxytocin receptor genotype.

    PubMed

    Burkhouse, Katie L; Woody, Mary L; Owens, Max; McGeary, John E; Knopik, Valerie S; Gibb, Brandon E

    2016-01-01

    The current study examined sensitivity in detecting emotional faces among children of depressed and non-depressed mothers. A second goal was to examine the potential moderating role of the oxytocin receptor gene (OXTR rs53576), which has been linked to emotion recognition in the past. Participants included 247 children (ages 8-14). Children completed a forced choice emotion identification task. Maternal history of major depressive disorder during children's lives was associated with children's sensitivity in detecting emotional faces among children homozygous for the OXTR rs53576 G allele, but not among carriers of the A allele. Among G homozygotes, children of depressed mothers exhibited increased sensitivity in detecting sad faces, and reduced sensitivity in detecting happiness, compared to children of non-depressed mothers. PMID:25622005

  8. Associations between oxytocin receptor genotypes and social cognitive performance in individuals with schizophrenia.

    PubMed

    Davis, Michael C; Horan, William P; Nurmi, Erika L; Rizzo, Shemra; Li, Wendy; Sugar, Catherine A; Green, Michael F

    2014-11-01

    Individuals with schizophrenia often show substantial deficits in social cognitive abilities, which are strongly associated with social functioning. To advance our understanding of the genetic variation that is associated with social cognitive deficits in schizophrenia, we genotyped 74 schizophrenia outpatients who completed social cognitive performance measures assessing mentalizing, social perception, and emotional intelligence, as well as clinical symptoms. We assessed seven single nucleotide polymorphisms (SNPs) of the oxytocin receptor (OXTR) previously found to show replicable associations with socio-emotional processes. For one of the seven SNPs, rs2268493, the 'T' allele was significantly associated with poorer performance on a composite social cognition index, as well as specific tests of mentalizing and social perception. None of the SNPs were associated with clinical symptoms. Though the sample size is small, these findings provide initial support for the involvement of genetic variants of the OXTR in social cognitive impairments in schizophrenia. PMID:25244972

  9. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  10. Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure.

    PubMed

    Busnelli, Marta; Kleinau, Gunnar; Muttenthaler, Markus; Stoev, Stoytcho; Manning, Maurice; Bibic, Lucka; Howell, Lesley A; McCormick, Peter J; Di Lascio, Simona; Braida, Daniela; Sala, Mariaelvina; Rovati, G Enrico; Bellini, Tommaso; Chini, Bice

    2016-08-11

    Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers. PMID:27420737

  11. Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors.

    PubMed

    Bedingfield, J S; Jane, D E; Kemp, M C; Toms, N J; Roberts, P J

    1996-08-01

    The metabotropic glutamate (mGlu) receptor antagonist properties of novel phenylglycine analogues were investigated in adult rat cortical slices (mGlu receptors negatively coupled to adenylyl cyclase), neonatal rat cortical slices and in cultured rat cerebellar granule cells (mGlu receptors coupled to phosphoinositide hydrolysis). (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-methyl-3-carboxymethyl-4-hydroxyphenylglycine (M3CM4HPG) and (RS)-alpha-methyl-4-hydroxy-3-phosphonomethylphenylglycine (M4H3PMPG) were demonstrated to have potent and selective effects against 10 microM L-2-amino-4-phosphonobutyrate (L-AP4)- and 0.3 microM (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine (L-CCG-1)-mediated inhibition of forskolin-stimulated cAMP accumulation in the adult rat cortex. In contrast, these compounds demonstrated either weak or no antagonism at mGlu receptors coupled to phosphoinositide hydrolysis in either neonatal rat cortex or in cultured cerebellar granule cells. These compounds thus appear to be useful discriminatory pharmacological tools for mGlu receptors and form the basis for the further development of novel antagonists. PMID:8864696

  12. A prototypical Sigma-1 receptor antagonist protects against brain ischemia

    PubMed Central

    Schetz, John A.; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W.

    2016-01-01

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this study it potently protects against oxidative stress-related cell death in vitro at low concentrations. The protective potency of haloperidol and a number of other butyrophenone compounds positively correlate with their affinity for a cloned Sigma-1 receptor, and the protection is mimicked by a Sigma-1 receptor-selective antagonist (BD1063), but not an agonist (PRE-084). In vivo, an acute low dose (0.05 mg/kg s.c.) of haloperidol reduces by half the ischemic lesion volume induced by a transient middle cerebral artery occlusion. These in vitro and in vivo pre-clinical results suggest that a low dose of acutely administered haloperidol might have a novel application as a protective agent against ischemic cerebral stroke and other types of brain injury with an ischemic component. PMID:17919467

  13. Intergenerational transmission of alloparental behavior and oxytocin and vasopressin receptor distribution in the prairie vole

    PubMed Central

    Perkeybile, Allison M.; Delaney-Busch, Nathanial; Hartman, Sarah; Grimm, Kevin J.; Bales, Karen L.

    2015-01-01

    Variation in the early environment has the potential to permanently alter offspring behavior and development. We have previously shown that naturally occurring variation in biparental care of offspring in the prairie vole is related to differences in social behavior of the offspring. It was not, however, clear whether the behavioral differences seen between offspring receiving high compared to low amounts of parental care were the result of different care experiences or were due to shared genetics with their high-contact or low-contact parents. Here we use cross-fostering methods to determine the mode of transmission of alloparental behavior and oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) binding from parent to offspring. Offspring were cross-fostered or in-fostered on postnatal day 1 and parental care received was quantified in the first week postpartum. At weaning, offspring underwent an alloparental care test and brains were then collected from all parents and offspring to examine OTR and V1aR binding. Results indicate that alloparental behavior of offspring was predicted by the parental behavior of their rearing parents. Receptor binding for both OTR and V1aR tended to be predicted by the genetic mothers for female offspring and by the genetic fathers for male offspring. These findings suggest a different, sex-dependent, role of early experience and genetics in shaping behavior compared to receptor distribution and support the notion of sex-dependent outcomes. PMID:26257619

  14. Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons

    PubMed Central

    Qiu, Fang; Qiu, Chun-Yu; Cai, Huilan; Liu, Ting-Ting; Qu, Zu-Wei; Yang, Zhifan; Li, Jia-Da; Zhou, Qun-Yong; Hu, Wang-Ping

    2014-01-01

    BACKGROUND AND PURPOSE A growing number of studies have demonstrated that oxytocin (OT) plays an analgesic role in modulation of nociception and pain. Most work to date has focused on the central mechanisms of OT analgesia, but little is known about whether peripheral mechanisms are also involved. Acid-sensing ion channels (ASICs) are distributed in peripheral sensory neurons and participate in nociception. Here, we investigated the effects of OT on the activity of ASICs in dorsal root ganglion (DRG) neurons. EXPERIMENTAL APPROACH Electrophysiological experiments were performed on neurons from rat DRG. Nociceptive behaviour was induced by acetic acid in rats and mice lacking vasopressin, V1A receptors. KEY RESULTS OT inhibited the functional activity of native ASICs. Firstly, OT dose-dependently decreased the amplitude of ASIC currents in DRG neurons. Secondly, OT inhibition of ASIC currents was mimicked by arginine vasopressin (AVP) and completely blocked by the V1A receptor antagonist SR49059, but not by the OT receptor antagonist L-368899. Thirdly, OT altered acidosis-evoked membrane excitability of DRG neurons and significantly decreased the amplitude of the depolarization and number of action potentials induced by acid stimuli. Finally, peripherally administered OT or AVP inhibited nociceptive responses to intraplantar injection of acetic acid in rats. Both OT and AVP also induced an analgesic effect on acidosis-evoked pain in wild-type mice, but not in V1A receptor knockout mice. CONCLUSIONS AND IMPLICATIONS These results reveal a novel peripheral mechanism for the analgesic effect of OT involving the modulation of native ASICs in primary sensory neurons mediated by V1A receptors. PMID:24641084

  15. Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine

    PubMed Central

    Moore, Eric L; Salvatore, Christopher A

    2012-01-01

    The clinical effectiveness of antagonizing the calcitonin gene-related peptide (CGRP) receptor for relief of migraine pain has been clearly demonstrated, but the road to the development of these small molecule antagonists has been daunting. The key hurdle that needed to be overcome was the CGRP receptor itself. The vast majority of the current antagonists recognize similar epitopes on the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). RAMP1 is a relatively small, single, transmembrane-spanning protein and along with the G-protein-coupled receptor CLR comprise a functional CGRP receptor. The tri-helical extracellular domain of RAMP1 plays a key role in the high affinity binding of CGRP receptor antagonists and drives their species-selective pharmacology. Over the years, a significant amount of mutagenesis data has been generated to identify specific amino acids or regions within CLR and RAMP1 that are critical to antagonist binding and has directed attention to the CLR/RAMP1 extracellular domain (ECD) complex. Recently, the crystal structure of the CGRP receptor ECD has been elucidated and not only reinforces the early mutagenesis data, but provides critical insight into the molecular mechanism of CGRP receptor antagonism. This review will highlight the drug design hurdles that must be overcome to meet the desired potency, selectivity and pharmacokinetic profile while retaining drug-like properties. Although the development of these antagonists has proved challenging, blocking the CGRP receptor may one day represent a new way to manage migraine and offer hope to migraine sufferers. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21871019

  16. Inhibition of ionotropic neurotransmitter receptors by antagonists: strategy to estimate the association and the dissociation rate constant of antagonists with very strong affinity to the receptors.

    PubMed

    Aoshima, H; Inoue, Y; Hori, K

    1992-10-01

    Since binding of an agonist to an ionotropic neurotransmitter receptor causes not only channel opening, but also desensitization of the receptor, inhibition of the receptor by the antagonist sometimes becomes very complicated. The transient state kinetics of ligand association and dissociation, and desensitization of the receptor were considered on the basis of the minimal model proposed by Hess' group, and the following possibilities were proposed. 1) When an agonist is simultaneously applied to the receptor with an antagonist whose affinity to the receptor is extremely strong and different from that of the agonist, it is usually impossible to estimate the real inhibition constant exactly from the responses because desensitization of the receptor proceeds before the equilibrium of the ligand binding. Simultaneous addition of the antagonist with strong affinity to the receptor may apparently accelerate inactivation (desensitization) of the receptor. The association rate constant of the antagonist can be estimated by analyses of the rate of the inactivation in the presence and the absence of the antagonist. 2) A preincubated antagonist with a slow dissociation rate constant, i.e., a very effective inhibitor, may cause apparent noncompetitive inhibition of the receptor, since the receptor is desensitized by an agonist as soon as the antagonist dissociates from the receptor and the dissociation of the antagonist from the receptor becomes the rate-determining step. A nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus oocytes by injecting mRNA prepared from Electrophorus electricus electroplax and used for the experiments on inhibition by an antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1337082

  17. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  18. Pharmacological characterization of antagonists of the C5a receptor

    PubMed Central

    Paczkowski, Natalii J; Finch, Angela M; Whitmore, Jacqueline B; Short, Anna J; Wong, Allan K; Monk, Peter N; Cain, Stuart A; Fairlie, David P; Taylor, Stephen M

    1999-01-01

    Potent and highly selective small molecule antagonists have recently been developed by us for C5a receptors (C5aR) on human polymorphonuclear leukocytes (PMN). In this study we compared a new cyclic antagonist, F-[OPdChaWR], with an acyclic derivative, MeFKPdChaWr, for their capacities to bind to C5aR on human PMN and human umbilical artery membranes. We also compared their inhibition of myeloperoxidase (MPO) secretion from human PMNs and their inhibition of human umbilical artery contraction induced by human recombinant C5a.In both PMNs and umbilical artery, the cyclic and acyclic C5a antagonists displayed insurmountable antagonism against C5a. There were differences in selectivities for the C5aR with F-[OPdChaWR] (pKb 8.64±0.21) being 30 times more potent than MeFKPdChaWr (pKb 7.16±0.11, P<0.05) in PMNs, but of similar potency (pKb 8.19±0.38 vs pKb 8.28±0.29, respectively) in umbilical artery. This trend was also reflected in their relative binding affinities, both antagonists having similar affinities (−logIC50 values) for C5aR in umbilical artery membranes (F-[OPdChaWR], 7.00±0.46; MeFKPdChaWr, 7.23±0.17), whereas in PMN membranes the C5aR affinity of the cycle F-[OPdChaWR] (7.05±0.06) was four times higher than that of acyclic MeFKPdChaWr (6.43±0.24, P<0.05).In summary, the results reveal that these antagonists are insurmountable in nature against C5a for C5aR on at least two human cell types, and the differences in relative receptor binding affinities and antagonistic potencies against C5a are consistent with differences in receptors within these cell types. The nature of these differences is yet to be elucidated. PMID:10602324

  19. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  20. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    PubMed Central

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  1. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits.

    PubMed

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2015-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  2. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  3. Examining the role of oxytocin in the interoceptive effects of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') using a drug discrimination paradigm in the rat.

    PubMed

    Broadbear, Jillian H; Tunstall, Brendan; Beringer, Katherine

    2011-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') use results in distinctive mood changes of a prosocial nature, most likely through its enhancement of serotonin (5HT) neurotransmission. Activation of 5HT-1A postsynaptic receptors has been shown to stimulate the release of oxytocin in the central nervous system where it regulates aspects of mood and behavior. Using a drug discrimination paradigm, we examined whether modulation of oxytocin receptor activity would affect conditioned behavioral responses to MDMA. Male and female Sprague Dawley rats (n=24) were trained to reliably differentiate between MDMA and a related stimulant, amphetamine (AMP), and saline using a three-lever drug discrimination paradigm. The extent to which substitution with carbetocin (an oxytocin analog) or co-administration with atosiban (an oxytocin receptor antagonist) affected drug-appropriate responding was evaluated. The tricyclic antidepressant imipramine was included as a negative control. The results supported the hypotheses that substitution with an oxytocin analog (carbetocin) would partially generalize to the MDMA training cue, whereas blocking oxytocin receptors with atosiban would result in a selective disruption of MDMA--but not AMP-appropriate responding. These findings were specific to the oxytocin receptor ligands as imipramine pre-treatment did not affect drug-appropriate responding. The results of this study implicate oxytocin receptor activation as a key MDMA-specific interoceptive cue in male and female rats and support the conclusion that this is one of the features of MDMA's subjective effects that distinguishes it from AMP. PMID:21070509

  4. Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1

    PubMed Central

    Chrencik, Jill E.; Roth, Christopher B.; Terakado, Masahiko; Kurata, Haruto; Omi, Rie; Kihara, Yasuyuki; Warshaviak, Dora; Nakade, Shinji; Asmar-Rovira, Guillermo; Mileni, Mauro; Mizuno, Hirotaka; Griffith, Mark T.; Rodgers, Caroline; Han, Gye Won; Velasquez, Jeffrey; Chun, Jerold; Stevens, Raymond C.

    2015-01-01

    Summary Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with six cognate G protein-coupled receptors. Herein we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analysis. Structural analysis combined with molecular dynamics identified a basis for ligand access to the LPA1 binding pocket from the extracellular space contrasting with the proposed access for the sphingosine 1-phosphate receptor. Characteristics of the LPA1 binding pocket raise the possibility of promiscuous ligand recognition of phosphorylated endocannabinoids. Cell-based assays confirmed this hypothesis, linking the distinct receptor systems through metabolically related ligands with potential functional and therapeutic implications for treatment of disease. PMID:26091040

  5. Vasopressin receptor antagonists, heart failure, and polycystic kidney disease.

    PubMed

    Torres, Vicente E

    2015-01-01

    The synthesis of nonpeptide orally bioavailable vasopressin antagonists devoid of agonistic activity (vaptans) has made possible the selective blockade of vasopressin receptor subtypes for therapeutic purposes. Vaptans acting on the vasopressin V2 receptors (aquaretics) have attracted attention as a possible therapy for heart failure and polycystic kidney disease. Despite a solid rationale and encouraging preclinical testing, aquaretics have not improved clinical outcomes in randomized clinical trials for heart failure. Additional clinical trials with select population targets, more flexible dosing schedules, and possibly a different drug type or combination (balanced V1a/V2 receptor antagonism) may be warranted. Aquaretics are promising for the treatment of autosomal dominant polycystic kidney disease and have been approved in Japan for this indication. More studies are needed to better define their long-term safety and efficacy and optimize their utilization. PMID:25493947

  6. Variation in the oxytocin receptor gene (OXTR) is associated with pair-bonding and social behavior

    PubMed Central

    Walum, Hasse; Lichtenstein, Paul; Neiderhiser, Jenae M.; Reiss, David; Ganiban, Jody M.; Spotts, Erica L.; Pedersen, Nancy L.; Anckarsäter, Henrik; Larsson, Henrik; Westberg, Lars

    2011-01-01

    Background In specific vole and primate species the neuropeptide Oxytocin (OT) plays a central role in the regulation of pair-bonding behavior. Here we investigate to what extent genetic variants in the oxytocin receptor gene (OXTR) are associated with pair-bonding and related social behaviors in humans. Methods We first genotyped twelve Single Nucleotide Polymorphisms (SNPs) in the Twin and Offspring Study in Sweden (TOSS, N=2309) and the Swedish Twin Study of CHild and Adolescent Development (TCHAD, N=1240) comprising measures of self-reported pair-bonding behavior. In the TOSS-sample we further investigated one the SNPs for measures of marital status and quality. Moreover, in the TCHAD sample we explored the longitudinal relationship between precursors of pair-bonding during childhood and subsequent behavior in romantic relationships. Finally, in TCHAD and in the Child and Adolescent Twin Study of Sweden (CATSS, N=1771) the association between the same SNP and childhood behaviors was investigated. Results One SNP (rs7632287) in OXTR was associated with traits reflecting pair-bonding in women in the TOSS and TCHAD samples. In girls the rs7632287 SNP was further associated with childhood social problems, which longitudinally predicted pair-bonding behavior in the TCHAD-sample. This association was replicated in the CATSS-sample in which an association between the same SNP and social interaction deficit symptoms from the autism spectrum was detected. Conclusion These results suggest an association between variation in OXTR and human pair-bonding and other social behaviors, possibly indicating that the well described influence of OT on affiliative behavior in voles could also be of importance for humans. PMID:22015110

  7. Association between the oxytocin receptor (OXTR) gene and children's social cognition at 18 months.

    PubMed

    Wade, M; Hoffmann, T J; Wigg, K; Jenkins, J M

    2014-09-01

    At 18 months, children engage in a variety of social behaviors that reflect their nascent ability to understand the intentions of other people (e.g. joint attention, empathy, cooperation and self-recognition). Although numerous contextual factors have been shown to predict social cognition in young children, the genetic underpinnings of social-cognitive traits has been understudied in this age group. Owing to the known effects of oxytocin on adult social cognition and psychopathology, this study hypothesized that variability in the oxytocin receptor gene (OXTR) would be associated with social cognition in children at 18 months. Participants consisted of 350 children (182 males; 168 females) who were part of an ongoing longitudinal study that aimed to assess environmental and genetic contributions to children's cognitive and socio-emotional functioning. At 18 months, social cognition was measured using previously validated and developmentally sensitive tasks assessing children's joint attention, empathy, cooperation and self-recognition. Five potentially functional OXTR variants were genotyped: rs1042778, rs2254298, rs11131149, rs237897 and rs237899. A family-based association design was used to control for population admixture and stratification, and additional non-genomic covariates were controlled. Results showed that variability in rs11131149 was significantly associated with social cognition (P=0.009), with more copies of the major allele related to higher social cognition, and more copies of the minor (risk) allele associated with lower social cognition. A haplotype consisting of rs11131149-rs2254298 was also associated with social cognition (P=0.020). Implications for normative and pathological development are discussed, and key areas for future research are proposed. PMID:24916666

  8. Nicotinic Receptor Antagonists as Treatments for Nicotine Abuse

    PubMed Central

    Crooks, Peter A.; Bardo, Michael T.; Dwoskin, Linda P.

    2014-01-01

    Despite the proven efficacy of current pharmacotherapies for tobacco dependence, relapse rates continue to be high, indicating that novel medications are needed. Currently, several smoking cessation agents are available, including varenicline (Chantix®), bupropion (Zyban®), and cytisine (Tabex®). Varenicline and cytisine are partial agonists at the α4β2* nicotinic acetylcholine receptor (nAChR). Bupropion is an antidepressant but is also an antagonist at α3β2* ganglionic nAChRs. The rewarding effects of nicotine are mediated, in part, by nicotine-evoked dopamine (DA) release leading to sensitization, which is associated with repeated nicotine administration and nicotine addiction. Receptor antagonists that selectivity target central nAChR subtypes mediating nicotine-evoked DA release should have efficacy as tobacco use cessation agents with the therapeutic advantage of a limited side-effect profile. While α-conotoxin MII (α-CtxMII)-insensitive nAChRs (e.g., α4β2*) contribute to nicotine-evoked DA release, these nAChRs are widely distributed in the brain, and inhibition of these receptors may lead to nonselective and untoward effects. In contrast, α-CtxMII-sensitive nAChRs mediating nicotine-evoked DA release offer an advantage as targets for smoking cessation, due to their more restricted localization primarily to dopaminergic neurons. Small drug-like molecules that are selective antagonists at α-CtxMII-sensitive nAChR subtypes that contain α6 and β2 subunits have now been identified. Early research identified a variety of quaternary ammonium analogs that were potent and selective antagonists at nAChRs mediating nicotine-evoked DA release. More recent data have shown that novel, non-quaternary bis-1,2,5,6-tetrahydropyridine analogs potently inhibit (IC50<1 nM) nicotine-evoked DA release in vitro by acting as antagonists at α-CtxMII-sensitive nAChR subtypes; these compounds also decrease NIC self-administration in rats. PMID:24484986

  9. GABAA receptor modulating steroid antagonists (GAMSA) are functional in vivo.

    PubMed

    Johansson, Maja; Strömberg, Jessica; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn

    2016-06-01

    GABAA receptor modulating steroid antagonists (GAMSA) selectively inhibit neurosteroid-mediated enhancement of GABA-evoked currents at the GABAA receptor. 3α-hydroxy-neurosteroids, notably allopregnanolone and tetrahydrodeoxycorticosterone (THDOC), potentiate GABAA receptor-mediated currents. On the contrary, various 3β-hydroxy-steroids antagonize this positive neurosteroid-mediated modulation. Importantly, GAMSAs are specific antagonists of the positive neurosteroid-modulation of the receptor and do not inhibit GABA-evoked currents. Allopregnanolone and THDOC have both negative and positive actions. Allopregnanolone can impair encoding/consolidation and retrieval of memories. Chronic administration of a physiological allopregnanolone concentration reduces cognition in mice models of Alzheimer's disease. In humans an allopregnanolone challenge impairs episodic memory and in hepatic encephalopathy cognitive deficits are accompanied by increased brain ammonia and allopregnanolone. Hippocampal slices react in vitro to ammonia by allopregnanolone synthesis in CA1 neurons, which blocks long-term potentiation (LTP). Thus, allopregnanolone may impair learning and memory by interfering with hippocampal LTP. Contrary, pharmacological treatment with allopregnanolone can promote neurogenesis and positively influence learning and memory of trace eye-blink conditioning in mice. In rat the GAMSA UC1011 inhibits an allopregnanolone-induced learning impairment and the GAMSA GR3027 restores learning and motor coordination in rats with hepatic encephalopathy. In addition, the GAMSA isoallopregnanolone antagonizes allopregnanolone-induced anesthesia in rats, and in humans it antagonizes allopregnanolone-induced sedation and reductions in saccadic eye velocity. 17PA is also an effective GAMSA in vivo, as it antagonizes allopregnanolone-induced anesthesia and spinal analgesia in rats. In vitro the allopregnanolone/THDOC-increased GABA-mediated GABAA receptor activity is antagonized

  10. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    SciTech Connect

    Wang, C.-P.; Lee, Y.-F.; Chang, C.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-12-08

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression.

  11. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  12. A non-peptide oxytocin receptor agonist, WAY-267,464, alleviates novelty-induced hypophagia in mice: insights into changes in c-Fos immunoreactivity.

    PubMed

    Olszewski, Pawel K; Ulrich, Christine; Ling, Nicholas; Allen, Kerry; Levine, Allen S

    2014-09-01

    Anxiety caused by the novelty of food or of the environment where the food is presented leads to suppression of consumption (hyponeophagia) reflected by an increased latency to begin feeding and decreased food intake. Studies suggest that some anxiolytics, mainly benzodiazepines and SSRIs, resolve hyponeophagia. Though the neurohormone oxytocin (OT) affects both anxiety responsiveness and feeding-related homeostasis, the link between OT and hyponeophagia has not been established. The current experiments examined the effect of OT receptor stimulation on hyponeophagia in mice and associated changes in brain activity. We found that the OT receptor agonist, WAY-267,464, at 10 and 30 mg/kg b. wt. IP, reduced the latency to approach food and increased the amount of food eaten in hyponeophagia tests differing in animals' motivation to eat (hunger, reward) and the anxiogenic context of environmental novelty (illumination and type of the cage). This effect was abolished by the pretreatment with the OT receptor antagonist, L-368,899, at 10mg/kg b. wt. The antagonist also suppressed social transmission of preference for novel food. Mice subjected to novelty conditions causing hypophagia showed significant changes in c-Fos immunoreactivity in the hippocampus, lateral septum, cingulate and piriform cortex and in the bed nucleus of the stria terminalis, lateral division, posterolateral part (STLP). The pretreatment with WAY-267,464 restored c-Fos levels in the STLP to values detected in control animals subjected to non-anxiogenic conditions. We conclude that OT plays a role in shaping the magnitude of the novelty stress-provoked hypophagia and the activity of the relevant neural networks. PMID:25038444

  13. Interleukin-1 receptor antagonist gene therapy for arthritis.

    PubMed

    Krishnan, B R

    1999-08-01

    Rheumtatoid arthritis (RA) is a crippling, autoimmune disease, and is characterized by inflammation and destruction of joint tissue. Interleukin-1 (IL-1) has been identified as a key pro-inflammatory cytokine responsible for inflammation. One of the mechanisms of regulation of activity of IL-1 is IL-1 receptor antagonist (IL-1ra)-mediated: IL-1RA competes with IL-1 for binding to the IL-1 receptor. Significant progress has been made in the potential application of IL-1ra gene therapyfor the treatment of arthritis. Various vectors have been tested for the delivery of the IL-1ra gene to the intra-articular region. Recent studies in humans have provided encouraging prospects for IL-1ra-mediated arthritis gene therapy. PMID:11713759

  14. Neurokinin-1 Receptor Antagonists in Preventing Postoperative Nausea and Vomiting

    PubMed Central

    Liu, Meng; Zhang, Hao; Du, Bo-Xiang; Xu, Feng-Ying; Zou, Zui; Sui, Bo; Shi, Xue-Yin

    2015-01-01

    Abstract Newly developed neurokinin-1 receptor (NK-1R) antagonists have been recently tried in the prevention of postoperative nausea and vomiting (PONV). This systematic review and meta-analysis was conducted to explore whether NK-1R antagonists were effective in preventing PONV. The PRISMA statement guidelines were followed. Randomized clinical trials (RCTs) that tested the preventive effects of NK-1R antagonists on PONV were identified by searching EMBASE, CINAHL, PubMed, and the Cochrane Library databases followed by screening. Data extraction was performed using a predefined form and trial quality was assessed using a modified Jadad scale. The primary outcome measure was the incidence of PONV. Meta-analysis was performed for studies using similar interventions. Network meta-analysis (NMA) was conducted to compare the anti-vomiting effects of placebo, ondansetron, and aprepitant at different doses. Fourteen RCTs were included. Meta-analysis found that 80 mg of aprepitant could reduce the incidences of nausea (3 RCTs with 224 patients, pooled risk ratio (RR) = 0.60, 95% confidence interval (CI) = 0.47 to 0.75), and vomiting (3 RCTs with 224 patients, pooled RR = 0.13, 95% CI = 0.04 to 0.37) compared with placebo. Neither 40 mg (3 RCTs with 1171 patients, RR = 0.47, 95% CI = 0.37 to 0.60) nor 125 mg (2 RCTs with 1058 patients, RR = 0.32, 95% CI = 0.13 to 0.78) of aprepitant showed superiority over 4 mg of ondansetron in preventing postoperative vomiting. NMA did not find a dose-dependent effect of aprepitant on preventing postoperative vomiting. Limited data suggested that NK-1R antagonists, especially aprepitant were effective in preventing PONV compared with placebo. More large-sampled high-quality RCTs are needed. PMID:25984662

  15. Initial investigation of three selective and potent small molecule oxytocin receptor PET ligands in New World monkeys.

    PubMed

    Smith, Aaron L; Freeman, Sara M; Barnhart, Todd E; Abbott, David H; Ahlers, Elizabeth O; Kukis, David L; Bales, Karen L; Goodman, Mark M; Young, Larry J

    2016-07-15

    The neuropeptide oxytocin is part of a neuroendocrine system that has physiological effects ranging from ensuring uterine myometrial contractions at parturition and post-partum mammary gland milk ejection to the modulation of neural control of social relationships. This initial study was performed to investigate the potential use of positron emission tomography (PET) for localizing oxytocin receptors in two New World primates. Three biomarkers for PET (1-3) that are known to have high affinity and selectivity for the human oxytocin receptor were investigated in the common marmoset (Callithrix jacchus) via PET imaging. Brain penetration, and uptake in the salivary gland area were both observed with biomarkers 2 and 3. No brain penetration was observed with 1, but uptake was observed more specifically in several peripheral endocrine glands compared to 2 or 3. Biomarker 2, which displayed the best brain penetration of the three biomarkers in the marmoset, was then investigated in the monogamous coppery titi monkey (Callicebus cupreus) in a brain scan and a limited full body scan. No significant brain penetration of 2 was observed in the titi monkey, but significant uptake was observed in various locations throughout the periphery. Metabolism of 2 was suspected to have been significant based upon HPLC analysis of blood draws, but parent compound was still present near the end of the scan. Follow-up investigations will focus on next generation biomarkers bearing improved binding characteristics and brain penetrability as well as investigating tissue in regions where biomarker uptake was observed. PMID:27209233

  16. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    SciTech Connect

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  17. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. PMID:19263096

  18. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2.

    PubMed

    Leonzino, Marianna; Busnelli, Marta; Antonucci, Flavia; Verderio, Claudia; Mazzanti, Michele; Chini, Bice

    2016-04-01

    Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders. PMID:27052180

  19. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2

    PubMed Central

    Leonzino, Marianna; Busnelli, Marta; Antonucci, Flavia; Verderio, Claudia; Mazzanti, Michele; Chini, Bice

    2016-01-01

    Summary Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders. PMID:27052180

  20. Involvement of nigral oxytocin in locomotor activity: A behavioral, immunohistochemical and lesion study in male rats.

    PubMed

    Angioni, Laura; Cocco, Cristina; Ferri, Gian-Luca; Argiolas, Antonio; Melis, Maria Rosaria; Sanna, Fabrizio

    2016-07-01

    Oxytocin is involved in the control of different behaviors, from sexual behavior and food consumption to empathy, social and affective behaviors. An imbalance of central oxytocinergic neurotransmission has been also associated with different mental pathologies, from depression, anxiety and anorexia/bulimia to schizophrenia, autism and drug dependence. This study shows that oxytocin may also play a role in the control of locomotor activity. Accordingly, intraperitoneal oxytocin (0.5-2000μg/kg) reduced locomotor activity of adult male rats. This effect was abolished by d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist, given into the lateral ventricles at the dose of 2μg/rat, which was ineffective on locomotor activity. Oxytocin (50-200ng/site) also reduced and d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin (2μg/site) increased locomotor activity when injected bilaterally into the substantia nigra, a key area in the control of locomotor activity. Conversely, the destruction of nigral neurons bearing oxytocin receptors by the recently characterized neurotoxin oxytocin-saporin injected into the substantia nigra, increased basal locomotor activity. Since oxytocin-saporin injected into the substantia nigra caused a marked reduction of neurons immunoreactive for tyrosine hydroxylase (e.g., nigrostriatal dopaminergic neurons) and for vesicular glutamate transporters VGluT1, VGluT2 and VGluT3 (e.g., glutamatergic neurons), but not for glutamic acid decarboxylase (e.g., GABAergic neurons), together these findings suggest that oxytocin influences locomotor activity by acting on receptors localized presynaptically in nigral glutamatergic nerve terminals (which control the activity of nigral GABAergic efferent neurons projecting to brain stem nuclei controlling locomotor activity), rather than on receptors localized in the cell bodies/dendrites of nigrostriatal dopaminergic neurons. PMID:27189764

  1. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats.

    PubMed

    Beery, Annaliese K; McEwen, Lisa M; MacIsaac, Julia L; Francis, Darlene D; Kobor, Michael S

    2016-01-01

    This article is part of a Special Issue "Parental Care". Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr DNA methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by "high" licking-grooming (HL) and "low" licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr DNA methylation was significantly lower at multiple CpGs in the blood of LL versus HL males, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in DNA methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr DNA methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant

  2. Long chain polyunsaturated fatty acids alter oxytocin signaling and receptor density in cultured pregnant human myometrial smooth muscle cells.

    PubMed

    Kim, Paul Y; Zhong, Miao; Kim, Yoon-Sun; Sanborn, Barbara M; Allen, Kenneth G D

    2012-01-01

    Epidemiological studies and interventional clinical trials indicate that consumption of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) such as docosahexaenoic acid (DHA) lengthen gestational duration. Although the mechanisms are not well understood, prostaglandins (PG) of the 2-series are known to play a role in the initiation and progress of labor. In animal studies, modest DHA provision has been shown to reduce placental and uterine PGE(2) and PGF(2α), matrix metalloproteinase (MMP)-2 and MMP-9 expression, and placental collagenase activity. However, modulation of PG biosynthesis may not account for all the effects of LC n-3 PUFAs in labor. We investigated one potential PG-independent mechanism of LC PUFA action using cultured pregnant human myometrial smooth muscle cells. Our goal was to characterize the effect of LC PUFA treatment on oxytocin signaling, a potent uterotonic hormone involved in labor. The addition of 10 µM-100 µM DHA or arachidonic acid (AA) to the culture media for 48 h resulted in dose dependent enrichment of these fatty acids in membrane lipid. DHA and AA significantly inhibited phosphatidylinositol turnover and [Ca(2+)](i) mobilization with oxytocin stimulation compared to bovine serum albumin control and equimolar oleic acid. DHA and AA significantly reduced oxytocin receptor membrane concentration without altering binding affinity or rate of receptor internalization. These findings demonstrate a role for LC n-3 PUFAs in regulation of oxytocin signaling and provide new insight into additional mechanisms pertaining to reports of dietary fish and fish oil consumption prolonging gestation. PMID:22848573

  3. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing.

    PubMed

    Modi, Meera E; Majchrzak, Mark J; Fonseca, Kari R; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L; Kablaoui, Natasha M

    2016-08-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  4. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing

    PubMed Central

    Modi, Meera E.; Majchrzak, Mark J.; Fonseca, Kari R.; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L.

    2016-01-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  5. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  6. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

    PubMed

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto; Yamasue, Hidenori

    2014-10-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects. PMID:23946005

  7. Common oxytocin receptor gene variant interacts with rejection sensitivity to influence cortisol reactivity during negative evaluation.

    PubMed

    Auer, Brandon J; Byrd-Craven, Jennifer; Grant, DeMond M; Granger, Douglas A

    2015-09-01

    The study tested the hypothesis that variation in the oxytocin receptor gene (OXTR rs53576) and self-report of rejection sensitivity are associated with adrenocortical reactivity to social stress. Participants (N=94; 36.17% male; Mage=20.18yrs; 62.8% Caucasian) completed a writing task on a salient problem in society, provided self-report via questionnaire of rejection sensitivity, and were then informed that a committee of peers would evaluate their written comments. Participants received either scripted praise or criticism as a way to induce social evaluative threat. Saliva was collected before and after the stress task and assayed for cortisol. Results revealed that cortisol levels increased in participants with moderate levels of social rejection sensitivity-inferred by rs53576 genotype and reported rejection sensitivity-while cortisol levels decreased in participants with high and low levels of social rejection sensitivity. Our findings suggest a curvilinear relationship between social rejection sensitivity and cortisol reactivity in the context of social rejection, warranting further consideration in future studies. PMID:26241486

  8. Polymorphism of the Oxytocin Receptor Gene Modulates Behavioral and Attitudinal Trust among Men but Not Women

    PubMed Central

    Nishina, Kuniyuki; Takagishi, Haruto; Inoue-Murayama, Miho; Takahashi, Hidehiko; Yamagishi, Toshio

    2015-01-01

    A relationship between the oxytocin receptor gene (OXTR) and behavioral and attitudinal trust has been suggested, but the nature of this relationship has not yet been established. We obtained behavioral trust data from 470 Japanese participants (242 women) aged 20–59 years, together with their levels of general trust and personality traits (NEO-FFI). Saliva buccal swabs were collected from 411 of these 470 participants and used for genotyping of OXTR rs53576. Our participants were found to have more AA alleles (40%) than GG alleles (12%). The GG men were more trusting and also rated higher on attitudinal trust than AA men, and this difference did not diminish when personality traits were controlled for. However, this pattern was not observed among women. In addition, controlling for attitudinal trust reduced the difference in behavioral trust among men to a non-significant level, but the difference in attitudinal trust remained significant when behavioral trust was controlled. These results indicate that the OXTR genotype affects attitudinal trust as part of an individual’s relatively stable disposition, and further affects behavioral trust through changes in attitudinal trust. PMID:26444016

  9. Normal Maternal Behavior, But Increased Pup Mortality, in Conditional Oxytocin Receptor Knockout Females

    PubMed Central

    Macbeth, Abbe H.; Stepp, Jennifer E.; Lee, Heon-Jin; Young, W. Scott; Caldwell, Heather K.

    2011-01-01

    Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr−/−) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups and maternal behavior of virgin Oxtr−/− females toward foster pups and compared knockouts of both lines to wildtype (Oxtr+/+) littermates. We found that both Oxtr−/− and OxtrFB/FB females appear to have largely normal maternal behaviors. However, with first litters, approximately 40% of the OxtrFB/FB knockout dams experienced high pup mortality, compared to fewer than 10% of the Oxtr+/+ dams. We then went on to test whether or not this phenotype occurred in subsequent litters or when the dams were exposed to an environmental disturbance. We found that regardless of the degree of external disturbance, OxtrFB/FB females lost more pups on their first and second litters compared to wildtype females. Possible reasons for higher pup mortality in OxtrFB/FB females are discussed. PMID:20939667

  10. Association of Oxytocin Receptor Gene (OXTR) rs53576 Polymorphism with Sociality: A Meta-Analysis

    PubMed Central

    Li, Jingguang; Zhao, Yajun; Li, Rena; Broster, Lucas S.; Zhou, Chenglin; Yang, Suyong

    2015-01-01

    A common variant in the oxytocin receptor gene (OXTR), rs53576, has been broadly linked to socially related personality traits and behaviors. However, the pattern of published results is inconsistent. Here, we performed a meta-analysis to comprehensively evaluate the association. The literature was searched for relevant studies and effect sizes between individuals homozygous for the G allele (GG) and individuals with A allele carriers (AA/AG). Specifically, two indices of sociality were evaluated independently: i) general sociality (24 samples, n = 4955), i.e., how an individual responds to other people in general; and ii) close relationships (15 samples, n = 5262), i.e., how an individual responds to individuals with closed connections (parent-child or romantic relationship). We found positive association between the rs53576 polymorphism and general sociality (Cohen’s d = 0.11, p = .02); G allele homozygotes had higher general sociality than the A allele carriers. However, the meta-analyses did not detect significant genetic association between rs53576 and close relationships (Cohen’s d = 0.01, p = .64). In conclusion, genetic variation in the rs53576 influences general sociality, which further implies that it is worthy to systematically examine whether the rs53576 is a valid genetic marker for socially related psychiatric disorders. PMID:26121678

  11. Interaction between oxytocin receptor polymorphism and interdependent culture values on human empathy

    PubMed Central

    Luo, Siyang; Ma, Yina; Liu, Yi; Li, Bingfeng; Wang, Chenbo; Shi, Zhenhao; Li, Xiaoyang; Zhang, Wenxia; Rao, Yi

    2015-01-01

    Recent evidence suggests that the association between oxytocin receptor polymorphism (OXTR rs53576) and emotion-related behavioral/psychological tendencies differs between individuals from East Asian and Western cultures. What remains unresolved is which specific dimension of cultural orientations interacts with OXTR rs53576 to shape these tendencies and whether such gene × culture interactions occurs at both behavioral and neural level. This study investigated whether and how OXTR rs53576 interacts with interdependence—a key dimension of cultural orientations that distinguish between East Asian and Western cultures—to affect human empathy that underlies altruistic motivation and prosocial behavior. Experiment 1 measured interdependence, empathy trait and OXTR rs53576 genotypes of 1536 Chinese participants. Hierarchical regression analyses revealed a stronger association between interdependence and empathy trait in G allele carriers compared with A/A homozygotes of OXTR rs53576. Experiment 2 measured neural responses to others’ suffering by scanning A/A and G/G homozygous of OXTR rs53576 using functional magnetic resonance imaging. Hierarchical regression analyses revealed stronger associations between interdependence and empathic neural responses in the insula, amygdala and superior temporal gyrus in G/G compared with A/A carriers. Our results provide the first evidence for gene × culture interactions on empathy at both behavioral tendency and underlying brain activity. PMID:25680993

  12. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene

    PubMed Central

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto

    2014-01-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic–paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including ‘prosociality’, ‘communication’, ‘details/patterns’ and ‘imagination’ in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower ‘prosociality’, which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower ‘prosociality’ also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects. PMID:23946005

  13. Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity.

    PubMed

    Luo, Siyang; Li, Bingfeng; Ma, Yina; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-04-15

    The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively. PMID:25637390

  14. Novel rare variations of the oxytocin receptor (OXTR) gene in autism spectrum disorder individuals

    PubMed Central

    Liu, Xiaoxi; Kawashima, Minae; Miyagawa, Taku; Otowa, Takeshi; Latt, Khun Zaw; Thiri, Myo; Nishida, Hisami; Sugiyama, Toshiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Mabuchi, Akihiko; Tokunaga, Katsushi; Sasaki, Tsukasa

    2015-01-01

    The oxytocin receptor (OXTR) gene has been implicated as a risk gene for autism spectrum disorder (ASD)—a neurodevelopmental disorder with essential features of impairments in social communication and reciprocal interaction. The genetic associations between common variations in OXTR and ASD have been reported in multiple ethnic populations. However, little is known about the distribution of rare variations within OXTR in ASD patients. In this study, we resequenced the full length of OXTR in 105 ASD individuals using an approach that combined the power of next-generation sequencing technology, long-range PCR and DNA pooling. We demonstrated that rare variants with minor allele frequency as low as 0.05% could be reliably detected by our method. We identified 28 novel variants including potential functional variants in the intron region and one rare missense variant (R150S). We subsequently performed Sanger sequencing and validated five novel variants located in previously suggested candidate regions in ASD individuals. Further sequencing of 312 healthy subjects showed that the burden of rare variants is significantly higher in ASDs compared with healthy individuals. Our results support that the rare variation in OXTR gene might be involved in ASD. PMID:27081536

  15. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion.

    PubMed

    McQuaid, Robyn J; McInnis, Opal A; Matheson, Kimberly; Anisman, Hymie

    2015-08-01

    A single-nucleotide polymorphism on the oxytocin receptor gene (OXTR), rs53576, involving a guanine (G) to adenine (A) substitution has been associated with altered prosocial features. Specifically, individuals with the GG genotype (i.e. the absence of the polymorphism) display beneficial traits including enhanced trust, empathy and self-esteem. However, because G carriers might also be more socially sensitive, this may render them more vulnerable to the adverse effects of a negative social stressor. The current investigation, conducted among 128 white female undergraduate students, demonstrated that relative to individuals with AA genotype, G carriers were more emotionally sensitive (lower self-esteem) in response to social ostracism promoted through an on-line ball tossing game (Cyberball). Furthermore, GG individuals also exhibited altered blood pressure and cortisol levels following rejection, effects not apparent among A carriers. The data support the view that the presence of the G allele not only promotes prosocial behaviors but also favors sensitivity to a negative social stressor. PMID:25564674

  16. N-Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists.

    PubMed

    Criado, Manuel; Mulet, José; Sala, Francisco; Sala, Salvador; Colmena, Inés; Gandía, Luis; Bautista-Aguilera, Oscar M; Samadi, Abdelouahid; Chioua, Mourad; Marco-Contelles, José

    2016-08-17

    A series of multitarget directed propargylamines, as well as other differently susbstituted piperidines have been screened as potential modulators of neuronal nicotinic acetylcholine receptors (nAChRs). Most of them showed antagonist actions on α7 nAChRs. Especially, compounds 13, 26, and 38 displayed submicromolar IC50 values on homomeric α7 nAChRs, whereas they were less effective on heteromeric α3β4 and α4β2 nAChRs (up to 20-fold higher IC50 values in the case of 13). Antagonism was concentration dependent and noncompetitive, suggesting that these compounds behave as negative allosteric modulators of nAChRs. Upon the study of a series of less complex derivatives, the N-benzylpiperidine motif, common to these compounds, was found to be the main pharmacophoric group. Thus, 2-(1-benzylpiperidin-4-yl)-ethylamine (48) showed an inhibitory potency comparable to the one of the previous compounds and also a clear preference for α7 nAChRs. In a neuroblastoma cell line, representative compounds 13 and 48 also inhibited, in a concentration-dependent manner, cytosolic Ca(2+) signals mediated by nAChRs. Finally, compounds 38 and 13 inhibited 5-HT3A serotonin receptors whereas they had no effect on α1 glycine receptors. Given the multifactorial nature of many pathologies in which nAChRs are involved, these piperidine antagonists could have a therapeutic potential in cases where cholinergic activity has to be negatively modulated. PMID:27254782

  17. Effects of N-acetylimidazole on oxytocin binding in bovine mammary tissue

    SciTech Connect

    Zhao, X.; Gorewit, R.C.; Currie, W.B. )

    1990-01-01

    The effects of N-acetylimidazole on specific binding of oxytocin to microsomal fractions of bovine mammary gland were studied. N-acetylimidazole suppressed oxytocin binding, with time and concentration dependence. Decreased oxytocin binding activity appeared to be due to decreased affinity of the hormone for its receptor. Acetylation of oxytocin, rather than of oxytocin receptors, seemed to be responsible for the decreased binding.

  18. Antisocial behavior and polymorphisms in the oxytocin receptor gene: findings in two independent samples.

    PubMed

    Hovey, D; Lindstedt, M; Zettergren, A; Jonsson, L; Johansson, A; Melke, J; Kerekes, N; Anckarsäter, H; Lichtenstein, P; Lundström, S; Westberg, L

    2016-07-01

    The quantitative genetic contribution to antisocial behavior is well established, but few, if any, genetic variants are established as risk factors. Emerging evidence suggests that the neuropeptide oxytocin (OXT) may modulate interpersonal aggression. We here investigated whether single-nucleotide polymorphisms (SNPs) in the OXT receptor gene (OXTR) are associated with the expression of antisocial behavior. A discovery sample, including both sexes, was drawn from the Child and Adolescent Twin Study in Sweden (CATSS; n=2372), and a sample from the Twin Study of Child and Adolescent Development (TCHAD; n=1232) was used for replication. Eight SNPs in OXTR, selected on previous associations with social and antisocial behavior, were genotyped in the participants of CATSS. Significant polymorphisms were subsequently genotyped in TCHAD for replication. Participants completed self-assessment questionnaires-Life History of Aggression (LHA; available only in CATSS), and Self-Reported Delinquency (SRD; available in both samples)-designed to capture antisocial behavior as continuous traits. In the discovery sample, the rs7632287 AA genotype was associated with higher frequency of antisocial behavior in boys, and this was then replicated in the second sample. In particular, overt aggression (directly targeting another individual) was strongly associated with this genotype in boys (P=6.2 × 10(-7) in the discovery sample). Meta-analysis of the results for antisocial behavior from both samples yielded P=2.5 × 10(-5). Furthermore, an association between rs4564970 and LHA (P=0.00013) survived correction in the discovery sample, but there was no association with the SRD in the replication sample. We conclude that the rs7632287 and rs4564970 polymorphisms in OXTR may independently influence antisocial behavior in adolescent boys. Further replication of our results will be crucial to understanding how aberrant social behavior arises, and would support the OXT receptor as one

  19. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition.

    PubMed

    Gram, A; Boos, A; Kowalewski, M P

    2014-06-01

    Oxytocin (OT) plays an important role as an inducer of uterine contractility, acting together with its receptor (OTR) to increase synthesis of prostaglandins. Although OT is commonly used in the treatment for dystocia and uterine inertia in the bitch, little attention has been paid to the role of OT in mechanisms regulating parturition in the dog, so that knowledge about the expression of OTR in the canine uterus and placenta is sparse. Consequently, the expression and cellular localization of OTR were investigated in canine utero/placental compartments and interplacental sites throughout pregnancy and at normal and antigestagen-induced parturition, by real-time PCR, immunohistochemistry, western blot and in situ hybridization. The utero/placental and interplacental expression of OTR was constant from pre-implantation until mid-gestation, with a significant increase observed at prepartum luteolysis. In antigestagen-treated mid-pregnant dogs, OTR was upregulated in both interplacental and utero/placental samples. Besides clear myometrial signals, cellular localization of OTR was evident in the endometrial surface epithelial, stromal and vascular endothelial cells. Weaker signals were observed in superficial and deep uterine glandular epithelial cells. Placental OTR was localized in maternal decidual cells and capillary pericytes. Finally, OTR was colocalized with the progesterone receptor (PGR) in maternal decidual cells, coinciding with previously reported increased availability of prostaglandins in the foetal part of the placenta during normal and induced parturition. These findings suggest involvement of OTR in the signalling cascade leading to the prepartum release of prostaglandins from the pregnant canine uterus. PMID:24947860

  20. Cumulative risk on the oxytocin receptor gene (OXTR) underpins empathic communication difficulties at the first stages of romantic love.

    PubMed

    Schneiderman, Inna; Kanat-Maymon, Yaniv; Ebstein, Richard P; Feldman, Ruth

    2014-10-01

    Empathic communication between couples plays an important role in relationship quality and individual well-being and research has pointed to the role of oxytocin in providing the neurobiological substrate for pair-bonding and empathy. Here, we examined links between genetic variability on the oxytocin receptor gene (OXTR) and empathic behaviour at the initiation of romantic love. Allelic variations on five OXTR single nucleotide polymorphisms (SNPs) previously associated with susceptibility to disorders of social functioning were genotyped in 120 new lovers: OXTRrs13316193, rs2254298, rs1042778, rs2268494 and rs2268490. Cumulative genetic risk was computed by summing risk alleles on each SNP. Couples were observed in support-giving interaction and behaviour was coded for empathic communication, including affective congruence, maintaining focus on partner, acknowledging partner's distress, reciprocal exchange and non-verbal empathy. Hierarchical linear modelling indicated that individuals with high OXTR risk exhibited difficulties in empathic communication. OXTR risk predicted empathic difficulties above and beyond the couple level, relationship duration, and anxiety and depressive symptoms. Findings underscore the involvement of oxytocin in empathic behaviour during the early stages of social affiliation, and suggest the utility of cumulative risk and plasticity indices on the OXTR as potential biomarkers for research on disorders of social dysfunction and the neurobiology of empathy. PMID:23974948

  1. Orexin receptor antagonists as therapeutic agents for insomnia

    PubMed Central

    Equihua, Ana C.; De La Herrán-Arita, Alberto K.; Drucker-Colin, Rene

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed arousal, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia. PMID:24416019

  2. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  3. NMDA Receptor Antagonist Ketamine Impairs Feature Integration in Visual Perception

    PubMed Central

    Meuwese, Julia D. I.; van Loon, Anouk M.; Scholte, H. Steven; Lirk, Philipp B.; Vulink, Nienke C. C.; Hollmann, Markus W.; Lamme, Victor A. F.

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  4. Substituted tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor.

    PubMed

    Perrey, David A; German, Nadezhda A; Gilmour, Brian P; Li, Jun-Xu; Harris, Danni L; Thomas, Brian F; Zhang, Yanan

    2013-09-12

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and a preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats. PMID:23941044

  5. [Treatment of pulmonary arterial hypertension: endothelin-receptor antagonists].

    PubMed

    Hoeper, M M

    2006-12-01

    Endothelin-1 (ET-1) is of significance in the pathophysiology and prognosis of pulmonary hypertension (PHT). Bosentan, an endothelin-receptor antagonist, currently plays a central role in the treatment of PHT, because it improves exercise capacity, hemodynamics, clinical symptoms and right ventricular function, achieving a survival duration of 2- 3 years. Bosentan causes an increase of transaminases in about 10% of patients, but this effect is reversible on dosage reduction or discontinuing the medication. However, transaminases should be measured every 4 weeks while patients are on bosentan. Almost all current guidelines list bosentan as of equal value to sildenafil or prostacyclin analogues in the first-line treatment of patients in NYHA functional class III and also, with narrower indications, of those in class IV. PMID:17139593

  6. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449

  7. Prostaglandins, H2-receptor antagonists and peptic ulcer disease.

    PubMed

    Bright-Asare, P; Habte, T; Yirgou, B; Benjamin, J

    1988-01-01

    Peptic ulcer develops when offensive factors overwhelm defensive processes in the gastroduodenal mucosa. Offensive factors include NSAIDs, hydrochloric acid-peptic activity, bile reflux, and some products of the lipoxygenase pathway such as leukotriene B4; whereas defensive processes are largely mediated by prostaglandins through poorly understood mechanisms uniformly termed cytoprotection. Cytoprotection, a physiological process working through the products of arachidonic acid metabolism, may result from the net effect of the protective actions of prostaglandins versus the damaging actions of leukotrienes. Some prostaglandins also have antisecretory effects. Therefore the peptic ulcer healing effects of prostaglandin analogues, all of which have significant antisecretory activity, may be more due to their antisecretory effects than primarily to their effects on mucosal defences. Certain drug-induced gastroduodenal lesions, e.g. NSAID-induced ulcers, which are often unresponsive to H2-receptor antagonists, have been healed and their recurrence prevented by the use of PGE1 and PGE2 analogues. All the prostaglandin analogues investigated to date in humans have the potential for inducing abortion, an important side effect which may limit their worldwide use. The optimal prostaglandin analogue for ulcer healing should not induce abortion and should be potently cytoprotective. The predominant damaging agent in the development of peptic ulcer disease is gastric hydrochloric acid. Thus, the worldwide established efficacy and safety of H2-receptor antagonists such as cimetidine, ranitidine, famotidine and most recently of roxatidine acetate suggest that these agents have become the standard by which other forms of anti-ulcer therapy should be judged. PMID:2905237

  8. Expression of histamine H4 receptor in human epidermal tissues and attenuation of experimental pruritus using H4 receptor antagonist.

    PubMed

    Yamaura, Katsunori; Oda, Manabu; Suwa, Eriko; Suzuki, Masahiko; Sato, Hiromi; Ueno, Koichi

    2009-10-01

    Many medicines exist which can cause pruritus (itching) as "serious adverse events." Many severe pruritic conditions respond poorly to histamine H1 receptor antagonists; there is no generally accepted antipruritic treatment. Recently described histamine H4 receptors are expressed in haematopoietic cells and have been linked to the pathology of allergy and asthma. We previously reported their expression in human dermal fibroblasts; in this study we have investigated H4 receptor expression in human epidermal tissue and found it to be greater in keratinocytes in the epidermal upper layer than in the lower layer. We have also investigated the effect of histamine H4 receptor antagonists on histamine H1 receptor antagonist-resistant pruritus using a mouse model. Scratching behavior was induced by histamine (300 nmol) or substance P (100 nmol) injected intradermally into the rostral part of the back of each mouse. Fexofenadine, a histamine H1 receptor antagonist, reduced scratching induced by histamine but not by substance P, whereas JNJ7777120, a histamine H4 receptor antagonist, significantly reduced both histamine- and substance P-induced scratching. These results suggest that H4 receptor antagonists may be useful for treatment of H1 receptor antagonist-resistant pruritus. PMID:19652466

  9. The Oxytocin Receptor (OXTR) Contributes to Prosocial Fund Allocations in the Dictator Game and the Social Value Orientations Task

    PubMed Central

    Israel, Salomon; Lerer, Elad; Shalev, Idan; Uzefovsky, Florina; Riebold, Mathias; Laiba, Efrat; Bachner-Melman, Rachel; Maril, Anat; Bornstein, Gary; Knafo, Ariel; Ebstein, Richard P.

    2009-01-01

    Background Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. Methodology/Principal Findings Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (p<0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher's exact test). Conclusions The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences. PMID:19461999

  10. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats.

    PubMed

    Vales, Karel; Zach, Petr; Bielavska, Edita

    2006-02-01

    The effect of glutamate receptor antagonists on conditioned taste aversion (CTA) was studied in rats. The association of the short-term memory of a gustatory conditioned stimulus (CS) with visceral malaise (unconditioned stimulus, US) in the CTA paradigm takes place in the parabrachial nuclei (PBN) of the brainstem. The first direct evidence of participation of glutamatergic neurotransmission in the PBN during CTA demonstrated that the extracellular level of glutamate rises during saccharin drinking (Bielavska et al. in Brain Res 887:413-417, 2000). Our results show an effect of microdialysis administration of selective GluR antagonists into the PBN on the formation of CTA engram. We used four glutamate receptor (GluR) antagonists of different types (D-AP5, MK-801 as antagonists of ionotropic GluR and L-AP3, MSPG as antagonists of metabotropic GluR). The disruptive effect of MK-801 on CTA formation in the PBN is concentration-dependent, with the greatest inhibition under the higher concentrations eliciting significant disruption. The application of D-AP5 (0.1, 1, 5 mM) did not elicit a statistically significant blockade of CTA acquisition. This indicates that the association of the US-CS in the PBN is not dependent on NMDA receptors. On the contrary, application of L-AP3 (0.1, 1, 5 mM) blocked the CS-US association. PMID:16273405

  11. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs.

    PubMed

    Kaplan, G B; Sears, M T

    1996-01-01

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. Adenosine receptors and their functions have been shown to be regulated by chronic opiate treatment. This study examines the role of adenosine receptors in the expression of opiate withdrawal behaviors. The effects of single doses of parenterally administered adenosine receptor subtype-selective agonists and antagonists on opiate withdrawal signs in morphine-dependent mice were measured. Mice received subcutaneous morphine pellet treatment for 72 h and then underwent naloxone-precipitated withdrawal after pretreatment with adenosinergic agents. Adenosine agonists attenuated different opiate withdrawal signs. The A1 agonist R-N6(phenylisopropyl)adenosine (0, 0.01, 0.02 mg/kg, IP) significantly reduced wet dog shakes and withdrawal diarrhea, while the A2a-selective agonist 2-p-(2-carboxethyl)phenylethylamino-5'-N-ethylcarboxamido adenosine or CGS 21680 (0, 0.01, 0.05 mg/kg, IP) significantly inhibited teeth chattering and forepaw treads. Adenosine receptor antagonists enhanced different opiate withdrawal signs. The adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (0, 1, 10 mg/kg, IP) significantly increased weight loss and the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (0, 1 and 10 mg/kg, IP) enhanced wet dog shakes and withdrawal diarrhea. Treatment effects of adenosinergic agents were not due to nonspecific motor effects, as demonstrated by activity monitoring studies. These results support a role for adenosine receptors in the expression of opiate withdrawal and suggest the potential utility of adenosine agonists in its treatment. PMID:8741956

  12. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  13. Internalization and desensitization of the oxytocin receptor is inhibited by Dynamin and clathrin mutants in human embryonic kidney 293 cells.

    PubMed

    Smith, M P; Ayad, V J; Mundell, S J; McArdle, C A; Kelly, E; López Bernal, A

    2006-02-01

    Oxytocin (OT) has long been used as an uterotonic during labor management in women, and yet responses to OT infusion remain variable and unpredictable among patients. The investigation of oxytocin receptor (OTR) regulation will benefit labor management, because the clinical practice of continuous iv infusion of OT is not optimal. As with other G protein-coupled receptors, it is likely that the OTR internalizes and/or desensitizes upon continuous agonist exposure. The mechanisms by which this might occur, however, are unclear. Here we explore OTR internalization and desensitization in human embryonic kidney cells by utilizing inhibitors of heterologous second messenger systems and recently available mutant cDNA constructs. We report rapid and extensive internalization and desensitization of the OTR upon agonist exposure. Internalization was unaffected by inhibitors of protein kinase C or Ca(2+) calmodulin-dependant kinase II but was significantly reduced after transfection with dominant-negative mutant cDNAs of G protein-coupled receptor kinase 2, beta-Arrestin2, Dynamin, and Eps15 (a component of clathrin-coated pits). Moreover, desensitization of the OTR, measured by a calcium mobilization assay, was also inhibited by the aforementioned cDNA constructs. Thus, our data demonstrate, for the first time, the importance of the classical clathrin-mediated pathway during agonist-induced OTR internalization and desensitization. PMID:16179383

  14. Vasopressin receptor antagonists and their role in clinical medicine

    PubMed Central

    Narayen, Girish; Mandal, Surya Narayan

    2012-01-01

    Hyponatremia is the most common electrolyte abnormality in hospitalized patients. Its treatment is based not only on extracellular fluid volume status of patients but also on its pathogenetic mechanisms. Conventional treatment of hyponatremia like fluid restriction, which is useful in euvolemic and hypervolemic hyponatremia, has very poor patient compliance over long term. Vasopressin receptor antagonists (Vaptans) are a new group of nonpeptide drugs which have been used in various clinical conditions with limited success. Whereas conivaptan is to be administered intravenously, the other vaptans like tolvaptan, lixivaptan, and satavaptan are effective as oral medication. They produce aquaresis by their action on vasopressin type 2 (V2R) receptors in the collecting duct and thus increase solute free water excretion. Vaptans are being used as an alternative to fluid restriction in euvolemic and hypervolemic hyponatremic patients. Efficacy of vaptans is now well accepted for management of correction of hyponatremia over a short period. However, its efficacy in improving the long-term morbidity and mortality in patients with chronic hyponatremia due to cirrhosis and heart failure is yet to be established. Vaptans have not become the mainstay treatment of hyponatremia yet. PMID:22470853

  15. CGRP Receptor Antagonists in the Treatment of Migraine

    PubMed Central

    Durham, Paul L.; Vause, Carrie V.

    2011-01-01

    Based on preclinical and clinical studies, the neuropeptide calcitonin gene-related peptide (CGRP) is proposed to play a central role in the underlying pathology of migraine. CGRP and its receptor are widely expressed in both the peripheral and central nervous system by multiple cell types involved in the regulation of inflammatory and nociceptive responses. Peripheral release of CGRP from trigeminal nerve fibers within the dura and from the cell body of trigeminal ganglion neurons is likely to contribute to peripheral sensitization of trigeminal nociceptors. Similarly, the release of CGRP within the trigeminal nucleus caudalis can facilitate activation of nociceptive second order neurons and glial cells. Thus, CGRP is involved in the development and maintenance of persistent pain, central sensitization, and allodynia, events characteristic of migraine pathology. In contrast, CGRP release within the brain is likely to function in an anti-nociceptive capacity. This review will focus on the development and clinical data on CGRP receptor antagonists as well as discussing their potential roles in migraine therapy via modulation of multiple cell types within the peripheral and central nervous systems. PMID:20433208

  16. Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans

    PubMed Central

    Kirkpatrick, Matthew G.; Francis, Sunday M.; Lee, Royce; de Wit, Harriet; Jacob, Suma

    2014-01-01

    MDMA (±3,4-methylenedioxymethamphetamine, ‘ecstasy’) is reportedly used recreationally because it increases feelings of sociability and interpersonal closeness. Prior work suggests that the pro-social effects of MDMA may be mediated by release of oxytocin. A direct examination of plasma levels of oxytocin after acute doses of oxytocin and MDMA, in the same individuals, would provide further evidence for the idea that MDMA produces its prosocial effects by increasing oxytocin. Fourteen healthy MDMA users participated in a 4-session, double-blind study in which they received oral MDMA (0.75 and 1.5 mg/kg), intranasal oxytocin (20 IU or 40 IU), and placebo. Plasma oxytocin concentrations, as well as cardiovascular and subjective effects were assessed before and at several time points after drug administration. MDMA (1.5 mg/kg only) increased plasma oxytocin levels to a mean peak of 83.7 pg/ml at approximately 90–120 minutes, compared to 18.6 pg/ml after placebo. Intranasal oxytocin (40 IU, but not 20 IU) increased plasma oxytocin levels to 48.0 pg/ml, 30–60 min after nasal spray administration. MDMA dose-dependently increased heart rate, blood pressure, feelings of euphoria (e.g., ‘High’ and ‘Like Drug’), and feelings of sociability, whereas oxytocin had no cardiovascular or subjective effects. The subjective and cardiovascular responses to MDMA were not related to plasma oxytocin levels, although the N was small for this analysis. Future studies examining the effects of oxytocin antagonists on responses to MDMA will help to determine the mechanism by which MDMA produces pro-social effects. PMID:24882155

  17. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress.

    PubMed

    Lucas-Thompson, Rachel G; Holman, E Alison

    2013-04-01

    We examined whether the oxytocin receptor gene (OXTR) single nucleotide polymorphism (SNP) rs53576 genotype buffers the combined impact of negative social environments (e.g., interpersonal conflict/constraint) and economic stress on post-traumatic stress (PTS) symptoms and impaired daily functioning following collective stress (September 11th terrorist attacks). Saliva was collected by mail and used to genotype 704 respondents. Participants completed Web-based assessments of pre-9/11 mental health, acute stress 9-23 days after 9/11, the quality of social environments 1 year post-9/11, economic stress 18 months post-9/11, and PTS symptoms and impaired functioning 2 and 3 years post-9/11. Interactions between negative social environments and economic stress were examined separately based on OXTR rs53576 genotype (GG vs. any A allele). For individuals with an A allele, a negative social environment significantly increased PTS symptoms without regard to the level of economic stress experienced. However, for respondents with a GG genotype, negative social environments predicted elevated PTS symptoms only for those also experiencing high economic stress. Gender moderated associations between negative social environments, economic stress, and impaired functioning. The functioning of females was most affected by negative social environments regardless of genotype and economic stress, whereas the functioning of males was differentially susceptible to economic stress depending on OXTR genotype and negative social environments. These findings suggest that it is important to consider the combined impact of gender and ongoing stress in different domains as moderators of genetic vulnerability following collective stress. PMID:23470776

  18. Association between Oxytocin Receptor Gene Polymorphisms and Self-Rated ‘Empathic Concern’ in Schizophrenia

    PubMed Central

    Montag, Christiane; Brockmann, Eva-Maria; Lehmann, Anja; Müller, Daniel J.; Rujescu, Dan; Gallinat, Jürgen

    2012-01-01

    The nonapeptide oxytocin (OXT) and its receptor (OXTR) have been implicated in social cognition, empathy, emotion and stress regulation in humans. Previous studies reported associations between OXT and OXTR genetic polymorphisms and risk for disorders characterized by impaired socio-emotional functioning, such as schizophrenia and autism. Here we investigate the influence of two single nucleotide polymorphisms (SNPs) within the OXTR gene on a measure of socio-emotional functioning in schizophrenic patients. OXTR SNPs that were previously investigated in other studies were genotyped in 145 patients diagnosed with schizophrenia according to DSM-IV and 145 healthy controls matched for age and gender. The Interpersonal Reactivity Index (IRI) was used to assess cognitive (‘perspective taking’), affective (‘empathic concern’) and self-related (‘personal distress’) dimensions of empathy. No group differences in genotype frequencies were observed. MANCOVA revealed a significant main (F [1,282] = 10.464; p<0.01) and interaction effect (genotype by diagnosis: F [1,282] = 4.329; p<0.05) of OXTR SNP rs2254298(A>GG) with ‘empathic concern’. Within the schizophrenia group, linear regression analysis determined OXTR rs2254298 genotype, PANSS negative and general symptom score, and age of disease onset as being significantly associated with ‘empathic concern’. OXTR rs2254298 significantly impacted PANSS general psychopathology scores. No associations were found for OXTR rs53576, IRI ‘perspective taking’ or ‘personal distress’ ratings. Our preliminary findings support hypotheses about an involvement of OXTR rs2254298 in emotional empathy in schizophrenic and healthy individuals, warranting independent replication. PMID:23284802

  19. Association between oxytocin receptor gene polymorphisms and self-rated 'empathic concern' in schizophrenia.

    PubMed

    Montag, Christiane; Brockmann, Eva-Maria; Lehmann, Anja; Müller, Daniel J; Rujescu, Dan; Gallinat, Jürgen

    2012-01-01

    The nonapeptide oxytocin (OXT) and its receptor (OXTR) have been implicated in social cognition, empathy, emotion and stress regulation in humans. Previous studies reported associations between OXT and OXTR genetic polymorphisms and risk for disorders characterized by impaired socio-emotional functioning, such as schizophrenia and autism. Here we investigate the influence of two single nucleotide polymorphisms (SNPs) within the OXTR gene on a measure of socio-emotional functioning in schizophrenic patients. OXTR SNPs that were previously investigated in other studies were genotyped in 145 patients diagnosed with schizophrenia according to DSM-IV and 145 healthy controls matched for age and gender. The Interpersonal Reactivity Index (IRI) was used to assess cognitive ('perspective taking'), affective ('empathic concern') and self-related ('personal distress') dimensions of empathy. No group differences in genotype frequencies were observed. MANCOVA revealed a significant main (F [1,282] = 10.464; p<0.01) and interaction effect (genotype by diagnosis: F [1,282] = 4.329; p<0.05) of OXTR SNP rs2254298(A>GG) with 'empathic concern'. Within the schizophrenia group, linear regression analysis determined OXTR rs2254298 genotype, PANSS negative and general symptom score, and age of disease onset as being significantly associated with 'empathic concern'. OXTR rs2254298 significantly impacted PANSS general psychopathology scores. No associations were found for OXTR rs53576, IRI 'perspective taking' or 'personal distress' ratings. Our preliminary findings support hypotheses about an involvement of OXTR rs2254298 in emotional empathy in schizophrenic and healthy individuals, warranting independent replication. PMID:23284802

  20. Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats.

    PubMed

    Kudwa, Andrea E; McGivern, Robert F; Handa, Robert J

    2014-04-22

    The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors. PMID:24631553

  1. A new oxytocin-saporin cytotoxin for lesioning oxytocin-receptive neurons in the rat hindbrain.

    PubMed

    Baskin, Denis G; Kim, Francis; Gelling, Richard W; Russell, Brian J; Schwartz, Michael W; Morton, Gregory J; Simhan, Hyagriv N; Moralejo, Daniel H; Blevins, James E

    2010-09-01

    Evidence suggests that release of oxytocin in the nucleus tractus solitarius (NTS) of the hindbrain from descending projections that originate in the paraventricular nucleus can inhibit food intake by amplifying the satiety response to cholecystokinin (CCK). To further evaluate this mechanism in rats, we used a novel cytotoxin, saporin conjugated to oxytocin (OXY-SAP), a compound designed to destroy cells that express oxytocin receptors (OXYr). OXY-SAP was injected directly into the NTS to lesion neurons that express OXYr and that are implicated in potentiating CCK's satiety effects. The control consisted of injection of saporin conjugated to a nonsense peptide. We found that OXY-SAP was cytotoxic to human uterine smooth muscle cells in vitro, demonstrating that OXY-SAP can lesion cells that express OXYr. Using laser capture microdissection and real-time quantitative PCR, we demonstrated that OXYr mRNA levels were reduced in the NTS after OXY-SAP administration. Moreover, we found that OXY-SAP attenuated the efficacy of CCK-8 to reduce food intake and blocked the actions of an OXYr antagonist to stimulate food intake. The findings suggest that OXY-SAP is an effective neurotoxin for in vivo elimination of cells that express OXYr and is potentially useful for studies to analyze central nervous system mechanisms that involve the action of oxytocin on food intake and other physiological processes. PMID:20610562

  2. Angiotensin II receptor blockade in normotensive subjects: A direct comparison of three AT1 receptor antagonists.

    PubMed

    Mazzolai, L; Maillard, M; Rossat, J; Nussberger, J; Brunner, H R; Burnier, M

    1999-03-01

    Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects. PMID:10082498

  3. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    PubMed

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636. PMID:24972084

  4. Biomolecular recognition of antagonists by α7 nicotinic acetylcholine receptor: Antagonistic mechanism and structure-activity relationships studies.

    PubMed

    Peng, Wei; Ding, Fei

    2015-08-30

    As the key constituent of ligand-gated ion channels in the central nervous system, nicotinic acetylcholine receptors (nAChRs) and neurodegenerative diseases are strongly coupled in the human species. In recently years the developments of selective agonists by using nAChRs as the drug target have made a large progress, but the studies of selective antagonists are severely lacked. Currently these antagonists rest mainly on the extraction of partly natural products from some animals and plants; however, the production of these crude substances is quite restricted, and artificial synthesis of nAChR antagonists is still one of the completely new research fields. In the context of this manuscript, our primary objective was to comprehensively analyze the recognition patterns and the critical interaction descriptors between target α7 nAChR and a series of the novel compounds with potentially antagonistic activity by means of virtual screening, molecular docking and molecular dynamics simulation, and meanwhile these recognition reactions were also compared with the biointeraction of α7 nAChR with a commercially natural antagonist - methyllycaconitine. The results suggested clearly that there are relatively obvious differences of molecular structures between synthetic antagonists and methyllycaconitine, while the two systems have similar recognition modes on the whole. The interaction energy and the crucially noncovalent forces of the α7 nAChR-antagonists are ascertained according to the method of Molecular Mechanics/Generalized Born Surface Area. Several amino acid residues, such as B/Tyr-93, B/Lys-143, B/Trp-147, B/Tyr-188, B/Tyr-195, A/Trp-55 and A/Leu-118 played a major role in the α7 nAChR-antagonist recognition processes, in particular, residues B/Tyr-93, B/Trp-147 and B/Tyr-188 are the most important. These outcomes tally satisfactorily with the discussions of amino acid mutations. Based on the explorations of three-dimensional quantitative structure

  5. Association between Genetic Variation in the Oxytocin Receptor Gene and Emotional Withdrawal, but not between Oxytocin Pathway Genes and Diagnosis in Psychotic Disorders

    PubMed Central

    Haram, Marit; Tesli, Martin; Bettella, Francesco; Djurovic, Srdjan; Andreassen, Ole Andreas; Melle, Ingrid

    2015-01-01

    Social dysfunction is common in patients with psychotic disorders. Oxytocin is a neuropeptide with a central role in social behavior. This study aims to explore the relationship between oxytocin pathway genes and symptoms related to social dysfunction in patients with psychotic disorders. We performed association analyses between four oxytocin pathway genes (OXT, OXTR, AVP, and CD38) and four areas of social behavior-related psychopathology as measured by Positive and Negative Syndrome Scale. For this purpose, we used both a polygenic risk score (PGRS) and single OXTR candidate single nucleotide polymorphism previously reported in the literature (rs53576, rs237902, and rs2254298). A total of 734 subjects with DSM-IV psychotic spectrum disorders and 420 healthy controls were included. Oxytocin pathway PGRSs were calculated based on the independent Psychiatric Genomics Consortium study sample. There was a significant association between symptom of Emotional Withdrawal and the previously reported OXTR risk allele A in rs53576. No significant associations between oxytocin pathway gene variants and a diagnosis of psychotic disorder were found. Our findings indicate that while oxytocin pathway genes do not appear to contribute to the susceptibility to psychotic disorders, variations in the OXTR gene might play a role in the development of impaired social behavior. PMID:25667571

  6. Antagonist of prostaglandin E2 receptor 4 induces metabolic alterations in liver of mice.

    PubMed

    Li, Ning; Zhang, Limin; An, Yanpeng; Zhang, Lulu; Song, Yipeng; Wang, Yulan; Tang, Huiru

    2015-03-01

    Prostaglandin E2 receptor 4 (EP4) is one of the receptors for prostaglandin E2 and plays important roles in various biological functions. EP4 antagonists have been used as anti-inflammatory drugs. To investigate the effects of an EP4 antagonist (L-161982) on the endogenous metabolism in a holistic manner, we employed a mouse model, and obtained metabolic and transcriptomic profiles of multiple biological matrixes, including serum, liver, and urine of mice with and without EP4 antagonist (L-161982) exposure. We found that this EP4 antagonist caused significant changes in fatty acid metabolism, choline metabolism, and nucleotide metabolism. EP4 antagonist exposure also induced oxidative stress to mice. Our research is the first of its kind to report information on the alteration of metabolism associated with an EP4 antagonist. This information could further our understanding of current and new biological functions of EP4. PMID:25669961

  7. Stilbenes as κ-Selective, Non-nitrogenous Opioid Receptor Antagonists

    PubMed Central

    2015-01-01

    The natural stilbene pawhuskin A has been shown to function as an opioid receptor antagonist, with preferential binding to the κ receptor. This finding encouraged assembly of a set of analogues to probe the importance of key structural features. Assays on these compounds determined that one (compound 29) shows potent opioid receptor binding activity and significantly improved selectivity for the κ receptor. These studies begin to illuminate the structural features of these non-nitrogenous opioid receptor antagonists that are required for activity. PMID:24456556

  8. Chromatographic resolution of angiotensin II receptor antagonists (sartans).

    PubMed

    Tahir, Muhammad Saqlain; Adnan, Ahmad; Syed, Quratulain

    2016-08-01

    First time a simple, sensitive and unified quantification method has been developed to analyze the complete class of angiotensin II receptor antagonists which are used in the treatment of hypertension either alone or in combination with some other drugs. The most important advantage of developed method was that the eight separate drugs can be determined on a single chromatographic system without modifications in detection wavelength and mobile phase. The drugs were separated on a Purospher Star 4.6mm×25cm, 5μm, C18 column maintained at 40°C with 1mLmin(-1) flow rate using ultra violet detection at 254nm. Good separation (Rs>2.0) was achieved in a short analysis allowing simultaneous determination of all eight sartans. The effect of variation in flow rate, detection wavelength and column oven temperature was also studied. The proposed method was statistically validated in terms of precision, accuracy, linearity, specificity and robustness. The newly developed method proved to be specific, robust and accurate for the quantification of eight sartans in commercial pharmaceutical formulations. PMID:27258943

  9. Leukotriene receptor antagonists for chronic urticaria: a systematic review

    PubMed Central

    2014-01-01

    A significant proportion of patients with chronic urticaria respond inadequately to first line treatment with antihistamines. Leukotreine receptor antagonists (LTRA) are also used for chronic urticaria, although firm recommendations on their use are lacking. We performed a systematic review of randomised trials to determine the role of LTRA in treatment of chronic urticaria. A search of PUBMED, EMBASE, SCOPUS, LILACS, the Cochrane Central Register of Controlled Trials, and the Web of Science for relevant randomized control trials or cross over studies yielded 10 eligible studies. The heterogeneity of trials were high, preventing valid meta-analysis of data. Most trials indicated that LTRA are not superior to placebo or antihistamine therapy, while combination therapy of LTRA and antihistamines appear to be more efficacious compared to antihistamine alone. The side effect profile and tolerability of this group of drugs is acceptable. The use of LTRA as monotherapy cannot be recommended. LTRA are effective add-on therapy to anti-histamines, and their use in patients responding poorly to antihistamines is justifiable. Further well designed randomized controlled trials with clear and standardized outcome measures are needed to determine the role of LTRA in chronic urticaria. PMID:24817895

  10. Side Effects of Leukotriene Receptor Antagonists in Asthmatic Children

    PubMed Central

    Erdem, Semiha Bahceci; Nacaroglu, Hikmet Tekin; Unsal Karkiner, Canan Sule; Gunay, Ilker; Can, Demet

    2015-01-01

    Background: Leukotriene receptor antagonists (LTRAs) are drugs which have been widely used more than ten years. As the use of LTRAs increases, our knowledge with respect to their side effects increases as well. Objectives: The objective of our study was to evaluat the observed side effects of LTRAs used in patients with astma. Patients and Methods: 1024 patients treated only with LTRAs owing to asthma or early wheezing were included in the study for a five-year period. The observed side effects of LTRAs in these patients were retrospectively investigated. The side effects were divided into two parts as psychiatric and non-psychiatric. Results: Among the 1024 cases included in the study, 67.5% of the patients out of 41 with side effects were male, 32.5% were female and the average age was 6.5 years. The rate of patients with asthma was 63.41% and 36.58% of the patients had early wheezing. It was determined that sex, age and diagnosis (early wheezing or asthma) of the patients were ineffective in the emergence of side effects. The average period for the emergence of side effects was the first month. It was observed that hyperactivity was the most frequently observed psychiatric side effect and that abdominal pain was the non-psychiatric side effect. Conclusions: The side effects of LTRAs were common in children. Therefore, patients must be informed at the beginning of the treatment and they must be evaluated at certain intervals. PMID:26495098

  11. Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients

    PubMed Central

    Tsai, Ming-Ju; Wu, Ping-Hsun; Sheu, Chau-Chyun; Hsu, Ya-Ling; Chang, Wei-An; Hung, Jen-Yu; Yang, Chih-Jen; Yang, Yi-Hsin; Kuo, Po-Lin; Huang, Ming-Shyan

    2016-01-01

    Previous in vitro and in vivo studies have demonstrated the potential of using cysteinyl leukotriene receptor antagonists (LTRAs) for chemoprevention, but this has not been investigated in any clinical setting. We therefore investigated the chemopreventive effect of LTRAs in a nationwide population-based study. From the Taiwan National Health Insurance Research Database, we enrolled adults with newly-diagnosed asthma between 2001 and 2011. Among these patients, each LTRA user was matched with five randomly-selected LTRA non-users by sex, age, asthma diagnostic year and modified Charlson Comorbidity Index score. We considered the development of cancer as the outcome. Totally, 4185 LTRA users and 20925 LTRA non-users were identified. LTRA users had a significantly lower cancer incidence rate than LTRA non-users did. Multivariable Cox regression analyses adjusting for baseline characteristics and comorbidities showed LTRA use was an independent protecting factor (hazard ratio = 0.31 [95% CI: 0.24–0.39]), and cancer risk decreased progressively with higher cumulative dose of LTRAs. In conclusion, this study revealed that the LTRA use decreased cancer risk in a dose-dependent manner in asthma patients. The chemopreventive effect of LTRAs deserves further study. PMID:27052782

  12. Applicability of DPI formulations for novel neurokinin receptor antagonist.

    PubMed

    Kumon, M; Yabe, Y; Kasuya, Y; Suzuki, M; Kusai, A; Yonemochi, E; Terada, K

    2008-05-22

    A novel triple neurokinin receptor antagonist (TNRA) could have pharmaceutical efficacy for asthma and/or chronic obstructive pulmonary disease. TNRA is potentially developed as inhalation medicine. The aim of this investigation was to evaluate the applicability of dry powder inhaler (DPI) formulation for TNRA. DPI formulation containing lactose was used for this feasibility study. Mechanofusion process for surface modification was applied on lactose particles to prepare four different DPI formulations. The mixture of TNRA and lactose was administered to rats intratracheally using an insufflator. The deposition pattern and blood concentration profile of TNRA were evaluated. Although there was no significant difference in deposition on deep lungs between the four formulations, DPI formulations containing mechanofusion-processed lactose showed longer T(max) and t(1/2) and higher AUC(0-infinity) and MRT compared to that containing intact lactose. On the other hand, the contact angle measurement showed that the mechanofusion process decreased the polar part of the surface energy of the lactose. Therefore, the prolongation of the wetting of the formulated powder mixture seemed to delay the dissolution of TNRA deposited in respiratory tract. It was concluded that DPI formulation containing mechanofusion-processed lactose could be suitable for inhalation of TNRA. PMID:18294787

  13. Bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant.

    PubMed

    Bergström, Moa Andresen; Isin, Emre M; Castagnoli, Neal; Milne, Claire E

    2011-10-01

    In the present work, the characterization of the biotransformation and bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant (Acomplia) is described. Rimonabant was approved in Europe in 2006 for the treatment of obesity but was withdrawn in 2008 because of a significant drug-related risk of serious psychiatric disorders. The aim of the present work is to characterize the biotransformation and potential bioactivation pathways of rimonabant in vitro in human and rat liver microsomes. The observation of a major iminium ion metabolite led us to perform reactive metabolite trapping, covalent binding to proteins, and time-dependent inhibition of cytochrome P450 3A4 studies. The major biotransformation pathways were oxidative dehydrogenation of the piperidinyl ring to an iminium ion, hydroxylation of the 3 position of the piperidinyl ring, and cleavage of the amide linkage. In coincubations with potassium cyanide, three cyanide adducts were detected. A high level of covalent binding of rimonabant in human liver microsomes was observed (920 pmol equivalents/mg protein). In coincubations with potassium cyanide and methoxylamine, the covalent binding was reduced by approximately 40 and 30%, respectively, whereas GSH had no significant effect on covalent binding levels. Rimonabant was also found to inhibit cytochrome P450 3A4 irreversibly in a time-dependent manner. In view of these findings, it is noteworthy that, to date, no toxicity findings related to the formation of reactive metabolites from rimonabant have been reported. PMID:21733882

  14. Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients.

    PubMed

    Tsai, Ming-Ju; Wu, Ping-Hsun; Sheu, Chau-Chyun; Hsu, Ya-Ling; Chang, Wei-An; Hung, Jen-Yu; Yang, Chih-Jen; Yang, Yi-Hsin; Kuo, Po-Lin; Huang, Ming-Shyan

    2016-01-01

    Previous in vitro and in vivo studies have demonstrated the potential of using cysteinyl leukotriene receptor antagonists (LTRAs) for chemoprevention, but this has not been investigated in any clinical setting. We therefore investigated the chemopreventive effect of LTRAs in a nationwide population-based study. From the Taiwan National Health Insurance Research Database, we enrolled adults with newly-diagnosed asthma between 2001 and 2011. Among these patients, each LTRA user was matched with five randomly-selected LTRA non-users by sex, age, asthma diagnostic year and modified Charlson Comorbidity Index score. We considered the development of cancer as the outcome. Totally, 4185 LTRA users and 20925 LTRA non-users were identified. LTRA users had a significantly lower cancer incidence rate than LTRA non-users did. Multivariable Cox regression analyses adjusting for baseline characteristics and comorbidities showed LTRA use was an independent protecting factor (hazard ratio = 0.31 [95% CI: 0.24-0.39]), and cancer risk decreased progressively with higher cumulative dose of LTRAs. In conclusion, this study revealed that the LTRA use decreased cancer risk in a dose-dependent manner in asthma patients. The chemopreventive effect of LTRAs deserves further study. PMID:27052782

  15. Mineralocorticoid Receptor Antagonists for Treatment of Hypertension and Heart Failure

    PubMed Central

    Sica, Domenic A.

    2015-01-01

    Spironolactone and eplerenone are both mineralocorticoid-receptor antagonists. These compounds block both the epithelial and nonepithelial actions of aldosterone, with the latter assuming increasing clinical relevance. Spironolactone and eplerenone both affect reductions in blood pressure either as mono- or add-on therapy; moreover, they each afford survival benefits in diverse circumstances of heart failure and the probability of renal protection in proteinuric chronic kidney disease. However, as use of mineralocorticoid-blocking agents has expanded, the hazards inherent in taking such drugs have become more apparent. Whereas the endocrine side effects of spironolactone are in most cases little more than a cosmetic annoyance, the potassium-sparing effects of both spironolactone and eplerenone can prove disastrous, even fatal, if sufficient degrees of hyperkalemia emerge. For most patients, however, the risk of developing hyperkalemia in and of itself should not discourage the sensible clinician from bringing these compounds into play. Hyperkalemia should always be considered a possibility in patients receiving either of these medications; therefore, anticipatory steps should be taken to minimize the likelihood of its occurrence if long-term therapy of these agents is being considered. PMID:27057293

  16. Prazosin, an alpha 1-adrenergic receptor antagonist, suppresses experimental autoimmune encephalomyelitis in the Lewis rat.

    PubMed Central

    Brosnan, C F; Goldmuntz, E A; Cammer, W; Factor, S M; Bloom, B R; Norton, W T

    1985-01-01

    Prazosin, an antagonist of alpha 1-adrenergic receptors, has been found to suppress the clinical and histological expression of experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. Suppression was more significant in females than in males and was a dose-dependent phenomenon. Analysis of the effect of other adrenergic receptor antagonists supports the conclusion that the suppressive effect of prazosin is a consequence of blockade of the alpha 1-receptor since treatment with either the alpha 2-antagonist yohimbine or the beta-antagonist propranolol exacerbated the disease, whereas treatment with the long-acting mixed alpha 1/alpha 2-antagonist phenoxybenzamine had some suppressive activity. Treatment with prazosin was also able to suppress clinical and histological signs of EAE in animals sensitized by adoptive transfer with activated spleen or lymph node cells. Whether prazosin acts through altering vascular permeability or the immune response, or both, remains to be determined. Images PMID:2994053

  17. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition.

    PubMed

    Lerer, E; Levi, S; Salomon, S; Darvasi, A; Yirmiya, N; Ebstein, R P

    2008-10-01

    Evidence both from animal and human studies suggests that common polymorphisms in the oxytocin receptor (OXTR) gene are likely candidates to confer risk for autism spectrum disorders (ASD). In lower mammals, oxytocin is important in a wide range of social behaviors, and recent human studies have shown that administration of oxytocin modulates behavior in both clinical and non-clinical groups. Additionally, two linkage studies and two recent association investigations also underscore a possible role for the OXTR gene in predisposing to ASD. We undertook a comprehensive study of all 18 tagged SNPs across the entire OXTR gene region identified using HapMap data and the Haploview algorithm. Altogether 152 subjects diagnosed with ASDs (that is, DSM IV autistic disorder or pervasive developmental disorder--NOS) from 133 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED set of programs. Significant association with single SNPs and haplotypes (global P-values <0.05, following permutation test adjustment) were observed with ASD. Association was also observed with IQ and the Vineland Adaptive Behavior Scales (VABS). In particular, a five-locus haplotype block (rs237897-rs13316193-rs237889-rs2254298-rs2268494) was significantly associated with ASD (nominal global P=0.000019; adjusted global P=0.009) and a single haplotype (carried by 7% of the population) within that block showed highly significant association (P=0.00005). This is the third association study, in a third ethnic group, showing that SNPs and haplotypes in the OXTR gene confer risk for ASD. The current investigation also shows association with IQ and total VABS scores (as well as the communication, daily living skills and socialization subdomains), suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries. PMID:17893705

  18. Discovery and pharmacological profile of new hydrophilic 5-HT(4) receptor antagonists.

    PubMed

    Brudeli, Bjarne; Navaratnarajah, Mirusha; Andressen, Kjetil Wessel; Manfra, Ornella; Moltzau, Lise Román; Nilsen, Nils Olav; Levy, Finn Olav; Klaveness, Jo

    2014-09-15

    The synthesis and pharmacological data of some new and potent hydrophilic 5-HT4 receptor antagonists are described. Propanediol derivative 25 was identified as a potent antagonist with low affinity for the hERG potassium channel and promising pharmacokinetics. PMID:25149506

  19. Identification of potent CNS-penetrant thiazolidinones as novel CGRP receptor antagonists.

    PubMed

    Joshi, Pramod; Anderson, Corey; Binch, Hayley; Hadida, Sabine; Yoo, Sanghee; Bergeron, Danielle; Decker, Caroline; terHaar, Ernst; Moore, Jonathan; Garcia-Guzman, Miguel; Termin, Andreas

    2014-02-01

    Calcitonin gene-related peptide (CGRP) has been implicated in acute migraine pathogenesis. In an effort to identify novel CGRP receptor antagonists for the treatment of migraine, we have discovered thiazolidinone 49, a potent (Ki=30 pM, IC50=1 nM), orally bioavailable, CNS-penetrant CGRP antagonist with good pharmacokinetic properties. PMID:24405707

  20. Discovery of novel non-steroidal reverse indole mineralocorticoid receptor antagonists.

    PubMed

    Ogawa, Anthony K; Bunte, Ellen Vande; Mal, Rudrajit; Lan, Ping; Sun, Zhongxiang; Crespo, Alejandro; Wiltsie, Judyann; Clemas, Joseph; Gibson, Jack; Contino, Lisa; Lisnock, JeanMarie; Zhou, Gaochao; Garcia-Calvo, Margarita; Jochnowitz, Nina; Ma, Xiuying; Pan, Yi; Brown, Patricia; Zamlynny, Beata; Bateman, Thomas; Leung, Dennis; Xu, Ling; Tong, Xinchun; Liu, Kun; Crook, Martin; Sinclair, Peter

    2016-06-15

    Reported herein are a series of reverse indoles that represent novel non-steroidal mineralocorticoid receptor (MR) antagonists. The key structure-activity relationships (SAR) are presented below. This reverse indole series is exemplified by a compound that demonstrated efficacy in an acute natriuresis rodent model comparable to marketed MR antagonists, spironolactone and eplerenone. PMID:27161805

  1. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  2. Kynurenic acid amides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Galgóczy, Kornél; Gere, Anikó; Horváth, Csilla; Farkas, Sándor; Greiner, István; Domány, György

    2007-01-15

    A novel series of kynurenic acid amides, ring-enlarged derivatives of indole-2-carboxamides, was prepared and identified as in vivo active NR2B subtype selective NMDA receptor antagonists. The synthesis and SAR studies are discussed. PMID:17074483

  3. Motherhood and oxytocin receptor genetic variation are associated with selective changes in electrocortical responses to infant facial expressions.

    PubMed

    Peltola, Mikko J; Yrttiaho, Santeri; Puura, Kaija; Proverbio, Alice Mado; Mononen, Nina; Lehtimäki, Terho; Leppänen, Jukka M

    2014-06-01

    Recent studies suggest that parental caregiving is associated with adaptive changes in neurocognitive responses to emotional cues and oxytocin function, possibly reflecting the increased need of parents to monitor infants' emotional states. In the current study, we investigated whether the changes associated with motherhood and oxytocin receptor genetic variation rs53576 are specific to the processing of infant cues as opposed to a more general increase in responsiveness to emotional cues. We measured event-related brain potentials (ERPs) and behavioral recognition responses from mothers of young infants (n = 48) and nulliparous females (n = 46) to infant and adult faces displaying strong and mild intensity emotional expressions. Mothers and GG allele carriers of the OXTR gene showed an early latency (∼100 ms) differential frontal ERP response to strong intensity facial expressions, and mothers also showed modulation of the posterior EPN waveform by negative valence. The early frontal ERP modulation was associated with faster emotion recognition performance across participants. Most importantly, these effects were highly specific to infant facial expressions. The results point to a dissociable neurocognitive system that is involved in monitoring infants' emotional cues and may be important in supporting parental caregiving in humans. PMID:24749639

  4. Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration.

    PubMed

    Zanos, Panos; Georgiou, Polymnia; Metaxas, Athanasios; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2015-07-23

    Nicotine addiction is considered to be the main preventable cause of death worldwide. While growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the addictive properties of several abused drugs, the regulation of the oxytocinergic system following nicotine administration has so far received little attention. Here, we examined the effects of long-term nicotine or saline administration on the central oxytocinergic system using [(125)I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress and emotional regulation. These results provide direct evidence for nicotine-induced neuroadaptations in the oxytocinergic system, which may be involved in the modulation of nicotine-seeking as well as emotional consequence of chronic drug use. PMID:26037668

  5. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    PubMed

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. PMID:26926566

  6. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function

    PubMed Central

    Tost, Heike; Kolachana, Bhaskar; Hakimi, Shabnam; Lemaitre, Herve; Verchinski, Beth A.; Mattay, Venkata S.; Weinberger, Daniel R.; Meyer–Lindenberg, Andreas

    2010-01-01

    The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance. PMID:20647384

  7. QT interval prolongation and torsade de pointes: Synergistic effect of flecainide and H1 receptor antagonists

    PubMed Central

    Acosta-Materán, Carlos; Díaz-Oliva, Eloy; Fernández-Rodríguez, Diego; Hernández-Afonso, Julio

    2016-01-01

    A high percentage of patients having atrial fibrillation (AF) presents with paroxysmal AF. Flecainide, the prototypic class Ic anti-arrhythmic drug is the most effective drug to maintain sinus rhythm in this subgroup of patients, though the drug has potential pro-arrhythmic effects. Furthermore, the H1 receptor antagonists are the most commonly prescribed drugs for the symptomatic treatment of pruritus. Despite having low number of adverse effects, the H1 receptor antagonists have cardiotoxic effects. Flecainide and H1 receptor antagonists present arrhythmic complications including QT interval prolongation and torsade de pointes (TdP). The case presented here is a 65-year-old female who was diagnosed of atrial fibrillation and presented with rashes in lower extremities. The patient was treated using flecainide and H1 receptor antagonists (loratadine and hydroxyzine) that prolonged QT interval and induced TdP. The concomitant administration of flecainide and H1 receptor antagonists seems to have a synergistic effect in QT interval prolongation and subsequent TdP. The concurrent administration of H1 receptor antagonists to patients receiving class Ic anti-arrhythmic drugs should be avoided in order to reduce arrhythmic risk in this population. PMID:27440957

  8. Does the oxytocin receptor (OXTR) polymorphism (rs2254298) confer 'vulnerability' for psychopathology or 'differential susceptibility'? Insights from evolution.

    PubMed

    Brüne, Martin

    2012-01-01

    The diathesis-stress model of psychiatric conditions has recently been challenged by the view that it might be more accurate to speak of 'differential susceptibility' or 'plasticity' genes, rather than one-sidedly focusing on individual vulnerability. That is, the same allelic variation that predisposes to a psychiatric disorder if associated with (developmentally early) environmental adversity may lead to a better-than-average functional outcome in the same domain under thriving (or favourable) environmental conditions. Studies of polymorphic variations of the serotonin transporter gene, the monoamino-oxidase-inhibitor A coding gene or the dopamine D4 receptor gene indicate that the early environment plays a crucial role in the development of favourable versus unfavourable outcomes. Current evidence is limited, however, to establishing a link between genetic variation and behavioural phenotypes. In contrast, little is known about how plasticity may be expressed at the neuroanatomical level as a 'hard-wired' correlate of observable behaviour. The present review article seeks to further strengthen the argument in favour of the differential susceptibility theory by incorporating findings from behavioural and neuroanatomical studies in relation to genetic variation of the oxytocin receptor gene. It is suggested that polymorphic variation at the oxytocin receptor gene (rs2254298) is associated with sociability, amygdala volume and differential risk for psychiatric conditions including autism, depression and anxiety disorder, depending on the quality of early environmental experiences. Seeing genetic variation at the core of developmental plasticity can explain, in contrast to the diathesis-stress perspective, why evolution by natural selection has maintained such 'risk' alleles in the gene pool of a population. PMID:22510359

  9. Pharmacophore modeling of dual angiotensin II and endothelin A receptor antagonists.

    PubMed

    Xue, Wei-Zhe; Lü, Wei; Zhou, Zhi-Ming; Wang, Zhan-Li

    2009-09-01

    Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity. Dual AT1 and ET(A) receptor antagonists (DARAs) can map to both Hypo-AT(1)-7 and Hypo-ET(A)-1, separately. Comparison of Hypo-AT(1)-7 and Hypo-ET(A)-1, not only AT1 and ET(A) antagonist pharmacophore models consist of essential features necessary for compounds to be highly active and selective toward their corresponding receptor, but also have something in common. The results in this study will act as a valuable tool for designing and researching structural relationship of novel dual AT1 and ET(A) receptor antagonists. PMID:20055175

  10. Development of 1,3-diphenyladamantane derivatives as nonsteroidal progesterone receptor antagonists.

    PubMed

    Mori, Shuichi; Takeuchi, Yuki; Tanatani, Aya; Kagechika, Hiroyuki; Fujii, Shinya

    2015-02-15

    Nonsteroidal progesterone receptor (PR) full antagonists are needed as tools for elucidating the physiological functions of PR and as candidates for treatment of various diseases. We designed and synthesized 1,3-diphenyladamantane derivatives, and investigated their PR-antagonistic activity in comparison with our recently developed boron cluster-based PR antagonists. Among the synthesized adamantane derivatives, compound 9a exhibited the most potent PR-antagonistic activity (IC50: 25nM) and showed high binding affinity for the PR ligand-binding domain, comparable with that of the boron cluster-based PR antagonists. These results suggest that disubstituted adamantane, like the boron cluster m-carborane, is a promising hydrophobic pharmacophore for further structural development of nonsteroidal PR antagonists. PMID:25593098

  11. Both glutamate receptor antagonists and prefrontal cortex lesions prevent induction of cocaine sensitization and associated neuroadaptations.

    PubMed

    Li, Y; Hu, X T; Berney, T G; Vartanian, A J; Stine, C D; Wolf, M E; White, F J

    1999-12-01

    Behavioral sensitization to psychomotor stimulants is accompanied by a number of alterations in the mesoaccumbens dopamine (DA) system, including DA autoreceptor subsensitivity in the ventral tegmental area (VTA) and DA D1 receptor supersensitivity in the nucleus accumbens (NAc). We investigated the role of excitatory amino acid (EAA) transmission in the induction of cocaine sensitization and these accompanying DA receptor alterations. To do so, we used three glutamate receptor antagonists, the noncompetitive NMDA receptor antagonist MK-801 (0.1 mg/kg), the competitive NMDA receptor antagonist CGS 19755 (10.0 mg/kg), and the AMPA receptor antagonist NBQX (12.5 mg/kg). Rats received daily double injections of either one of these antagonists or saline with either cocaine (15.0 mg/kg) or saline for 5 days. Cocaine sensitization was defined as an increase in horizontal locomotor activity in response to cocaine challenge (7.5 mg/kg) on the third day of withdrawal. All three antagonists prevented the induction of cocaine sensitization. Extracellular single cell recordings revealed that these antagonists also prevented the induction of DA autoreceptor subsensitivity in the VTA and DA D1 receptor supersensitivity in the NAc. To determine whether the relevant glutamate receptors were under regulation by medial prefrontal cortex (mPFC) EAA efferents, we next lesioned the mPFC bilaterally with ibotenic acid at least 7 days before repeated cocaine treatment began. These lesions also prevented the induction of cocaine sensitization and the associated neuroadaptations. Our findings indicate that glutamate transmission from mPFC to the mesoaccumbens DA system is critical for the induction of cocaine sensitization and its cellular correlates. PMID:10523754

  12. NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids.

    PubMed

    Gear, R W; Bogen, O; Ferrari, L F; Green, P G; Levine, J D

    2014-01-17

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ∼90min after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J-113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  13. Alcohol- and alcohol antagonist-sensitive human GABAA receptors: tracking δ subunit incorporation into functional receptors.

    PubMed

    Meera, Pratap; Olsen, Richard W; Otis, Thomas S; Wallner, Martin

    2010-11-01

    GABA(A) receptors (GABA(A)Rs) have long been a focus as targets for alcohol actions. Recent work suggests that tonic GABAergic inhibition mediated by extrasynaptic δ subunit-containing GABA(A)Rs is uniquely sensitive to ethanol and enhanced at concentrations relevant for human alcohol consumption. Ethanol enhancement of recombinant α4β3δ receptors is blocked by the behavioral alcohol antagonist 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (Ro15-4513), suggesting that EtOH/Ro15-4513-sensitive receptors mediate important behavioral alcohol actions. Here we confirm alcohol/alcohol antagonist sensitivity of α4β3δ receptors using human clones expressed in a human cell line and test the hypothesis that discrepant findings concerning the high alcohol sensitivity of these receptors are due to difficulties incorporating δ subunits into functional receptors. To track δ subunit incorporation, we used a functional tag, a single amino acid change (H68A) in a benzodiazepine binding residue in which a histidine in the δ subunit is replaced by an alanine residue found at the homologous position in γ subunits. We demonstrate that the δH68A substitution confers diazepam sensitivity to otherwise diazepam-insensitive α4β3δ receptors. The extent of enhancement of α4β3δH68A receptors by 1 μM diazepam, 30 mM EtOH, and 1 μM β-carboline-3-carboxy ethyl ester (but not 1 μM Zn(2+) block) is correlated in individual recordings, suggesting that δ subunit incorporation into recombinant GABA(A)Rs varies from cell to cell and that this variation accounts for the variable pharmacological profile. These data are consistent with the notion that δ subunit-incorporation is often incomplete in recombinant systems yet is necessary for high ethanol sensitivity, one of the features of native δ subunit-containing GABA(A)Rs. PMID:20699325

  14. Alcohol- and Alcohol Antagonist-Sensitive Human GABAA Receptors: Tracking δ Subunit Incorporation into Functional Receptors

    PubMed Central

    Meera, Pratap; Olsen, Richard W.; Otis, Thomas S.

    2010-01-01

    GABAA receptors (GABAARs) have long been a focus as targets for alcohol actions. Recent work suggests that tonic GABAergic inhibition mediated by extrasynaptic δ subunit-containing GABAARs is uniquely sensitive to ethanol and enhanced at concentrations relevant for human alcohol consumption. Ethanol enhancement of recombinant α4β3δ receptors is blocked by the behavioral alcohol antagonist 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (Ro15-4513), suggesting that EtOH/Ro15-4513-sensitive receptors mediate important behavioral alcohol actions. Here we confirm alcohol/alcohol antagonist sensitivity of α4β3δ receptors using human clones expressed in a human cell line and test the hypothesis that discrepant findings concerning the high alcohol sensitivity of these receptors are due to difficulties incorporating δ subunits into functional receptors. To track δ subunit incorporation, we used a functional tag, a single amino acid change (H68A) in a benzodiazepine binding residue in which a histidine in the δ subunit is replaced by an alanine residue found at the homologous position in γ subunits. We demonstrate that the δH68A substitution confers diazepam sensitivity to otherwise diazepam-insensitive α4β3δ receptors. The extent of enhancement of α4β3δH68A receptors by 1 μM diazepam, 30 mM EtOH, and 1 μM β-carboline-3-carboxy ethyl ester (but not 1 μM Zn2+ block) is correlated in individual recordings, suggesting that δ subunit incorporation into recombinant GABAARs varies from cell to cell and that this variation accounts for the variable pharmacological profile. These data are consistent with the notion that δ subunit-incorporation is often incomplete in recombinant systems yet is necessary for high ethanol sensitivity, one of the features of native δ subunit-containing GABAARs. PMID:20699325

  15. Reversal of Peripheral Nerve Injury-induced Hypersensitivity in the Postpartum Period: Role of Spinal Oxytocin

    PubMed Central

    Gutierrez, Silvia; Liu, Baogang; Hayashida, Ken-ichiro; Houle, Timothy T.; Eisenach, James C.

    2012-01-01

    Background Physical injury, including surgery, can result in chronic pain; yet chronic pain following childbirth, including cesarean delivery in women, is rare. The mechanisms involved in this protection by pregnancy or delivery have not been explored. Methods We examined the effect of pregnancy and delivery on hypersensitivity to mechanical stimuli of the rat hindpaw induced by peripheral nerve injury (spinal nerve ligation) and after intrathecal oxytocin, atosiban and naloxone. Additionally, oxytocin concentration in lumbar spinal cerebrospinal fluid was determined. Results Spinal nerve ligation performed at mid-pregnancy resulted in similar hypersensitivity to nonpregnant controls, but hypersensitivity partially resolved beginning after delivery. Removal of pups after delivery prevented this partial resolution. Cerebrospinal fluid concentrations of oxytocin were greater in normal postpartum rats prior to weaning. To examine the effect of injury at the time of delivery rather than during pregnancy, spinal nerve ligation was performed within 24 h of delivery. This resulted in acute hypersensitivity that partially resolved over the next 2–3 weeks. Weaning of pups resulted only in a temporary return of hypersensitivity. Intrathecal oxytocin effectively reversed the hypersensitivity following separation of the pups. Postpartum resolution of hypersensitivity was transiently abolished by intrathecal injection of the oxytocin receptor antagonist, atosiban. Conclusions These results suggest that the postpartum period rather than pregnancy protects against chronic hypersensitivity from peripheral nerve injury and that this protection may reflect sustained oxytocin signaling in the central nervous system during this period. PMID:23249932

  16. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment

    PubMed Central

    Edvinsson, Lars

    2015-01-01

    Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one of the major limitations in the use of triptans. However their use had to be discontinued because of risk of liver toxicity after continuous exposure. As an alternative approach to block CGRP transmission, fully humanized monoclonal antibodies towards CGRP and the CGRP receptor have been developed for treatment of chronic migraine (attacks >15 days/month). Initial results from phase I and II clinical trials have revealed promising results with minimal side effects and significant relief from chronic migraine as compared with placebo. The effectiveness of these various molecules raises the question of where is the target site(s) for antimigraine action. The gepants are small molecules that can partially pass the blood–brain barrier (BBB) and therefore, might have effects in the CNS. However, antibodies are large molecules and have limited possibility to pass the BBB, thus effectively excluding them from having a major site of action within the CNS. It is suggested that the antimigraine site should reside in areas not limited by the BBB such as intra- and extracranial vessels, dural mast cells and the trigeminal system. In order to clarify this topic and surrounding questions, it is important to understand the localization of CGRP and the CGRP receptor components in these possible sites of migraine-related regions and their relation to the BBB. PMID:25731075

  17. Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels

    PubMed Central

    Branchi, Igor; Curley, James P.; D’Andrea, Ivana; Cirulli, Francesca; Champagne, Frances A.; Alleva, Enrico

    2012-01-01

    The early social environment has a profound impact on developmental trajectories. Although an impoverished early environment can undermine the acquisition of appropriate social skills, the specific role played by the different components of an individual’s early environment in building social competencies has not been fully elucidated. Here we setup an asynchronous communal nesting paradigm in mice to disentangle the influence of maternal care and early peer interactions on adult social behavior and neural systems reportedly involved in the regulation of social interactions. The asynchronous communal nesting consists of three mothers giving birth three days apart, generating three groups of pups -- the Old, the Middle and the Young – all raised in a single nest from birth to weaning. We scored the amount of maternal and peer interactions received by these mice and by a fourth group reared under standard conditions. At adulthood, the four experimental groups have been investigated for social behavior in a social interaction test, i.e. facing an unfamiliar conspecific during five 20-min daily encounters, and for oxytocin receptor and BDNF levels. Results show that only individuals exposed to high levels of both maternal and peer interactions demonstrated elaborate adult agonistic competencies, i.e. the ability to promptly display a social status, and high BDNF levels in the hippocampus, frontal cortex and hypothalamus. By contrast, only individuals exposed to high levels of peer interactions showed enhanced adult affiliative behavior and enhanced oxytocin receptor levels in selected nuclei of the amygdala. Overall these findings indicate that early interactions with mother and peers independently shape specific facets of adult social behavior and neural systems involved in social interaction. PMID:22910688

  18. Region Specific Up-Regulation of Oxytocin Receptors in the Opioid Oprm1−/− Mouse Model of Autism

    PubMed Central

    Gigliucci, Valentina; Leonzino, Marianna; Busnelli, Marta; Luchetti, Alessandra; Palladino, Viola Stella; D’Amato, Francesca R.; Chini, Bice

    2014-01-01

    Autism spectrum disorders (ASDs) are characterized by impaired communication, social impairments, and restricted and repetitive behaviors and interests. Recently, altered motivation and reward processes have been suggested to participate in the physiopathology of ASDs, and μ-opioid receptors (MORs) have been investigated in relation to social reward due to their involvement in the neural circuitry of reward. Mice lacking a functional MOR gene (Oprm1−/− mice) display abnormal social behavior and major autistic-like core symptoms, making them an animal model of autism. The oxytocin (OXT) system is a key regulator of social behavior and co-operates with the opioidergic system in the modulation of social behavior. To better understand the opioid-OXT interplay in the central nervous system, we first determined the expression of the oxytocin receptor (OXTR) in the brain of WT C57BL6/J mice by quantitative autoradiography; we then evaluated OXTR regional alterations in Oprm1−/− mice. Moreover, we tested these mice in a paradigm of social behavior, the male–female social interaction test, and analyzed the effects of acute intranasal OXT treatment on their performance. In autoradiography, Oprm1−/− mice selectively displayed increased OXTR expression in the Medial Anterior Olfactory Nucleus, the Central and Medial Amygdaloid nuclei, and the Nucleus Accumbens. Our behavioral results confirmed that Oprm1−/− male mice displayed social impairments, as indicated by reduced ultrasonic calls, and that these were rescued by a single intranasal administration of OXT. Taken together, our results provide evidence of an interaction between OXT and opioids in socially relevant brain areas and in the modulation of social behavior. Moreover, they suggest that the oxytocinergic system may act as a compensative mechanism to bypass and/or restore alterations in circuits linked to impaired social behavior. PMID:25225634

  19. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  20. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  1. Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder

    PubMed Central

    Stockmeier, Craig A.; Howley, Eimear; Shi, Xiaochun; Sobanska, Anna; Clarke, Gerard; Friedman, Lee; Rajkowska, Grazyna

    2009-01-01

    Serotonin-1A receptors may play a role in the pathophysiology of depression and suicide. In postmortem brain tissue, agonist binding to serotonin-1A receptors is reportedly increased or unchanged in depression or suicide, while neuroimaging studies report a decrease in antagonist binding to these receptors in subjects with depression. In this study, both agonist and antagonist radioligand binding to serotonin-1A receptors were examined in postmortem orbitofrontal cortex from subjects with major depressive disorder (MDD). Brain tissue was collected at autopsy from 11 subjects with MDD and 11 age- and gender-matched normal control subjects. Two depressed subjects had a recent psychoactive substance use disorder. Six subjects with MDD had a prescription for an antidepressant drug in the last month of life, and, of these six, postmortem bloods from only two subjects tested positive for an antidepressant drug. There was no significant difference between cohorts for age, postmortem interval or tissue pH. The receptor agonist [3H]8-OH-DPAT or the antagonist [3H]MPPF were used to autoradiographically label serotonin-1A receptors in frozen sections from cytoarchitectonically-defined left rostral orbitofrontal cortex (area 47). There was no significant difference between depressed and control subjects in agonist binding to serotonin-1A receptors. However, antagonist binding was significantly decreased in outer layers of orbitofrontal cortex in MDD. This observation in postmortem tissue confirms reports using an antagonist radioligand in living subjects with depression. Decreased antagonist binding to serotonin-1A receptors in outer layers of orbitofrontal cortex suggests diminished receptor signaling and may be linked to corresponding neuronal changes detected previously in these depressed subjects. PMID:19215942

  2. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    PubMed

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking. PMID:25399704

  3. In silico binding characteristics between human histamine H1 receptor and antagonists.

    PubMed

    Wang, Xiaojian; Yang, Qian; Li, Minyong; Yin, Dali; You, Qidong

    2010-09-01

    It is widely acknowledged that the H(1) receptor antagonists have important therapeutic significance in the treatment of various allergic disorders, but little was known about the binding mode between the receptor and antagonists since the crystal structure of G-protein coupling receptors (GPCRs) were hard to obtain. In this paper, a theoretical three-dimensional model of human histamine H(1) receptor (HHR1) was developed on the basis of recently reported high resolution structures of human A(2A) adenosine receptor, human beta(2)-adrenoceptor and turkey beta(1)-adrenoceptor. Furthermore, three representative H(1) receptor antagonists were chosen for docking studies. Subsequently, a qualitative pharmacophore model was developed by Hiphop algorithm based on the docking conformations of these three antagonists. In this paper, active environment, certain key residues, and the corresponding pharmacophore features of H(1) receptor were identified by such combinations of receptor-based and ligand-based approaches, which would give sufficient guidance for the rational design of novel antihistamine agents. PMID:20179978

  4. Improvement of Cold Tolerance by Selective A1 Adenosine Receptor Antagonists in Rats

    PubMed Central

    Lee, T. F.; Li, D. J.; Jacobson, K. A.; Wang, L. C. H.

    2015-01-01

    Previously we have shown that the improvement of cold tolerance by theophylline is due to antagonism at adenosine receptors rather than inhibition of phosphodiesterase. Since theophylline is a nonselective adenosine receptor antagonist for both A1 and A2 receptors, the present study investigated the adenosine receptor subtype involved in theophylline’s action. Acute systemic injection of selective A1 receptor antagonists (1,3-dialkyl-8-aryl or 1,3-dialkyl-8-cyclopentyl xanthine derivatives) significantly increased both the total and maximal heat production as well as cold tolerance. In contrast, injection of a relatively selective A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (compound No. 19), failed to significantly alter the thermogenic response of the rat under cold exposure. Further, the relative effectiveness of these compounds in increasing total thermogenesis was positively correlated with their potency in blocking the A1 adenosine receptor (r= .52, p<0.01), but not in A2 adenosine receptor (r= .20, p<0.2). It is likely that the thermally beneficial effects of adenosine A1 antagonists are due to their attenuation of the inhibitory effects of endogenously released adenosine on lipolysis and glucose utilization, resulting in increased substrate mobilization and utilization for enhanced thermogenesis. PMID:2263650

  5. The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries

    PubMed Central

    Nagasaki, Hiroshi; Chung, Shinjae; Dooley, Colette T.; Wang, Zhiwei; Li, Chunying; Saito, Yumiko; Clark, Stewart D; Houghten, Richard A.; Civelli, Olivier

    2009-01-01

    Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits potent orexigenic activity. In rodents, it exerts its actions by interacting with one receptor, MCH1 receptor which is expressed in many parts of the central nervous system (CNS). To study the physiological implications of the MCH system, we need to be able to block it locally and acutely. This necessitates the use of MCH1 receptor antagonists. While MCH1 receptor antagonists have been previously reported, they are mainly not accessible to academic research. We apply here a strategy that leads to the isolation of a high affinity and selective MCH1 receptor antagonist amenable to in vivo analyses without further chemical modifications. This antagonist, TPI 1361-17, was identified through the screening of multiple non-peptide positional scanning synthetic combinatorial libraries (PS-SCL) totaling more than eight hundred thousand compounds in conditions that allow for the identification of only high-affinity compounds. TPI 1361-17 exhibited an IC50 value of 6.1 nM for inhibition of 1 nM MCH-induced Ca2+ mobilization and completely displaced the binding of [125I] MCH to rat MCH1 receptor. TPI 1361-17 was found specific, having no affinity for a variety of other G-protein coupled receptors and channels. TPI 1361-17 was found active in vivo since it blocked MCH-induced food intake by 75 %. Our results indicate that TPI 1361-17 is a novel and selective MCH1 receptor antagonist and is an effective tool to study the physiological functions of the MCH system. These results also illustrate the successful application of combinatorial library screening to identify specific surrogate antagonists in an academic setting. PMID:19041642

  6. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  7. Differentiation of agonist conformation and antagonist conformation in multiple opioid receptors.

    PubMed

    Ogawa, N; Yamawaki, Y; Kuroda, H; Nukina, I; Ofuji, T

    1981-12-11

    To differentiate the opiate (naloxone) receptor and the enkephalin receptor in rat brain, we solubilized the receptor molecules by detergent and determined the molecular weights by gel filtration. The receptor preparation was bound to [3H] naloxone or [3H] Met5-enkephalin, and was solubilized by Triton X-100. On gel chromatography with a Sepharose 6B column, the agonist and the antagonist conformation of opioid receptors eluted as molecules with the molecular weights of 240,000, and 120,000 and with Stokes' radii of 5.5 nm and 4.3 nm, respectively. Further, it was also disclosed that Na+ was bound to the antagonist conformation of opioid receptors but not to the agonist conformation. PMID:6275320

  8. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  9. New insights into the stereochemical requirements of the bradykinin B1 receptor antagonists binding.

    PubMed

    Lupala, Cecylia S; Gomez-Gutierrez, Patricia; Perez, Juan J

    2016-07-01

    Bradykinin (BK) is a nonapeptide involved in several pathophysiological conditions including among others, septic and haemorrhagic shock, anaphylaxis, arthritis, rhinitis, asthma, inflammatory bowel disease. Accordingly, BK antagonists have long been sought after for therapeutic intervention. Action of BK is mediated through two different G-protein coupled receptors known as B1 and B2. Although there are several B1 antagonists reported in literature, their pharmacological profile is not yet optimal so that new molecules need to be discovered. In the present work we have constructed an atomistic model of the B1 receptor and docked diverse available non-peptide antagonists in order to get a deeper insight into the structure-activity relationships involving binding to this receptor. The model was constructed by homology modeling using the chemokine CXC4 and bovine rhodopsin receptors as template. The model was further refined using molecular dynamics for 600ns with the protein embedded in a POPC bilayer. From the refinement process we obtained an average structure that was used for docking studies using the Glide software. Antagonists selected for the docking studies include Compound 11, Compound 12, Chroman28, SSR240612, NPV-SAA164 and PS020990. The results of the docking study underline the role of specific receptor residues in ligand binding. The results of this study permitted to define a pharmacophore that describes the stereochemical requirements of antagonist binding, and can be used for the discovery of new compounds. PMID:27469392

  10. Abscisic Acid Analogues That Act as Universal or Selective Antagonists of Phytohormone Receptors.

    PubMed

    Rajagopalan, Nandhakishore; Nelson, Ken M; Douglas, Amy F; Jheengut, Vishal; Alarcon, Idralyn Q; McKenna, Sean A; Surpin, Marci; Loewen, Michele C; Abrams, Suzanne R

    2016-09-13

    The plant hormone abscisic acid (ABA) plays many important roles in controlling plant development and physiology, from flowering to senescence. ABA is now known to exert its effects through a family of soluble ABA receptors, which in Arabidopsis thaliana has 13 members divided into three clades. Homologues of these receptors are present in other plants, also in relatively large numbers. Investigation of the roles of each homologue in mediating the diverse physiological roles of ABA is hampered by this genetic redundancy. We report herein the in vitro screening of a targeted ABA-like analogue library and identification of novel antagonist hits, including the analogue PBI686 that had been developed previously as a probe for identifying ABA-binding proteins. Further in vitro characterization of PBI686 and development of second-generation leads yielded both receptor-selective and universal antagonist hits. In planta assays in different species have demonstrated that these antagonist leads can overcome various ABA-induced physiological changes. While the general antagonists open up a hitherto unexplored avenue for controlling plant growth through inhibition of ABA-regulated physiological processes, the receptor-selective antagonist can be developed into chemical probes to explore the physiological roles of individual receptors. PMID:27523384

  11. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma.

    PubMed

    Bisgaard, H

    2001-01-01

    Cysteinyl leukotrienes, synthesized de novo from cell membrane phospholipids, are proinflammatory mediators that play an important role in the pathophysiology of asthma. These mediators are among the most potent of bronchoconstrictors and cause vasodilation, increased microvascular permeability, exudation of macromolecules and edema. The cysteinyl leukotrienes also have potent chemoattractant properties for eosinophils, causing an influx of eosinophils into the airway mucosa, which further fuels the inflammatory process. In addition, the cysteinyl leukotrienes are potent secretagogues and reduce ciliary motility, which may hinder mucociliary clearance. Asthmatic patients demonstrate increased production of cysteinyl leukotrienes during naturally occurring asthma and acute asthma attacks as well as after allergen and exercise challenge. The leukotriene receptor antagonists montelukast, zafirlukast and pranlukast inhibit bronchoconstriction in asthmatic patients undergoing allergen, exercise, cold air or aspirin challenge. They attenuate the hallmarks of asthmatic inflammation, including eosinophilia in the airway mucosa and peripheral blood. Moreover, exhaled nitric oxide concentrations, another correlate of airway inflammation, are decreased during montelukast treatment in children. Cysteinyl leukotriene synthesis is not blocked by corticosteroid therapy. This important observation suggests that the leukotriene receptor antagonists represent a novel therapeutic approach, one that may provide benefits that are additive with corticosteroid therapy. This supposition is supported by clinical observations that treatment with leukotriene receptor antagonists significantly improve asthma control when added to inhaled corticosteroid therapy. Moreover, the bronchodilator properties of the leukotriene receptor antagonists are additive with those of beta agonists. These data provide strong support for the use of leukotriene receptor antagonists for treating asthma. PMID

  12. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness.

    PubMed

    Breese, George R; Knapp, Darin J; Moy, Sheryl S

    2002-06-01

    NMDA receptor antagonists worsen symptoms in schizophrenia and induce schizophrenic-like symptoms in normal individuals. In animals, NMDA antagonist-induced behavioral responses include increased activity, head weaving, deficits in paired pulse inhibition and social interaction, and increased forced swim immobility. Repeated exposure to NMDA antagonists in animals results in behavioral sensitization-a phenomenon accentuated in rats with dopaminergic neurons lesioned during development. In keeping with an involvement of serotonin and glutamate release in NMDA antagonist action, selected behaviors induced by NMDA antagonists are minimized by 5-HT(2A) receptor antagonists and mGLU2 receptor agonists. These observations provide promising new approaches for treating acute NMDA antagonist-induced psychosis. Further, acute atypical antipsychotic drugs also minimize NMDA antagonist actions to a greater degree than typical antipsychotics. However, because knowledge concerning acute versus chronic effectiveness of various antipsychotic drugs against NMDA antagonist neuropathology is limited, future studies to define more fully the basis of their differences in efficacy after chronic treatment could provide an understanding of their actions on neural mechanisms responsible for the core pathogenesis of schizophrenia. PMID:12204191

  13. Overexpression of oxytocin receptors in the hypothalamic PVN increases baroreceptor reflex sensitivity and buffers BP variability in conscious rats

    PubMed Central

    Lozić, Maja; Greenwood, Michael; Šarenac, Olivera; Martin, Andrew; Hindmarch, Charles; Tasić, Tatjana; Paton, Julian; Murphy, David; Japundžić-Žigon, Nina

    2014-01-01

    Background and Purpose The paraventricular nucleus (PVN) of the hypothalamus is an important integrative site for neuroendocrine control of the circulation. We investigated the role of oxytocin receptors (OT receptors) in PVN in cardiovascular homeostasis. Experimental Approach Experiments were performed in conscious male Wistar rats equipped with a radiotelemetric device. The PVN was unilaterally co-transfected with an adenoviral vector (Ad), engineered to overexpress OT receptors, and an enhanced green fluorescent protein (eGFP) tag. Control groups: PVN was transfected with an Ad expressing eGFP alone or untransfected, sham rats (Wt). Recordings were obtained without and with selective blockade of OT receptors (OTX), during both baseline and stressful conditions. Baroreceptor reflex sensitivity (BRS) and cardiovascular short-term variability were evaluated using the sequence method and spectral methodology respectively. Key Results Under baseline conditions, rats overexpressing OT receptors (OTR) exhibited enhanced BRS and reduced BP variability compared to control groups. Exposure to stress increased BP, BP variability and HR in all rats. In control groups, but not in OTR rats, BRS decreased during stress. Pretreatment of OTR rats with OTX reduced BRS and enhanced BP and HR variability under baseline and stressful conditions. Pretreatment of Wt rats with OTX, reduced BRS and increased BP variability under baseline and stressful conditions, but only increased HR variability during stress. Conclusions and Implications OT receptors in PVN are involved in tonic neural control of BRS and cardiovascular short-term variability. The failure of this mechanism could critically contribute to the loss of autonomic control in cardiovascular disease. PMID:24834854

  14. Design, synthesis and pharmacological characterization of fluorescent peptides for imaging human V1b vasopressin or oxytocin receptors

    PubMed Central

    Corbani, Maithé; Trueba, Miguel; Stoev, Stoytcho; Murat, Brigitte; Mion, Julie; Boulay, Véra; Guillon, Gilles; Manning, Maurice

    2011-01-01

    Among the four known vasopressin and oxytocin receptors, the specific localization of the V1b isoform is poorly described due to the lack of selective pharmacological tools. In an attempt to address this need, we decided to design, synthesize and characterize fluorescent selective V1b analogues. Starting with the selective V1b agonist, [deamino-Cys1, Leu4, Lys8]vasopressin (d[Leu4,Lys8]VP) synthesized earlier, we added blue, green or red fluorophores to the lysine residue at position 8, either directly or by the use of linkers of different lengths. Among the nine analogues synthesized, two exhibited very promising properties. These are d[Leu4, Lys (Alexa 647)8]VP (3) and d[Leu4, Lys (11-aminoundecanoyl-Alexa 647)8]VP (9). They remained full V1b agonists with nanomolar affinity and specifically decorated the plasma membrane of CHO cells stably transfected with the human V1b receptor. These new selective fluorescent peptides will allow the cellular localisation of V1b or OT receptor isoforms in native tissues. PMID:21428295

  15. Rigidified 2-aminopyrimidines as histamine H4 receptor antagonists: effects of substitution about the rigidifying ring.

    PubMed

    Koenig, John R; Liu, Huaqing; Drizin, Irene; Witte, David G; Carr, Tracy L; Manelli, Arlene M; Milicic, Ivan; Strakhova, Marina I; Miller, Thomas R; Esbenshade, Timothy A; Brioni, Jorge D; Cowart, Marlon

    2010-03-15

    Three novel series of histamine H(4) receptor (H(4)R) antagonists containing the 2-aminopyrimidine motif are reported. The best of these compounds display good in vitro potency in both functional and binding assays. In addition, representative compounds are able to completely block itch responses when dosed ip in a mouse model of H(4)-agonist induced scratching, thus demonstrating their activities as H(4)R antagonists. PMID:20171098

  16. Design and evaluation of xanthine based adenosine receptor antagonists: Potential hypoxia targeted immunotherapies

    PubMed Central

    Thomas, Rhiannon; Lee, Joslynn; Chevalier, Vincent; Sadler, Sara; Selesniemi, Kaisa; Hatfield, Stephen; Sitkovsky, Michail; Ondrechen, Mary Jo; Jones, Graham B.

    2015-01-01

    Molecular modeling techniques were applied to the design, synthesis and optimization of a new series of xanthine based adenosine A2A receptor antagonists. The optimized lead compound was converted to a PEG derivative and a functional in vitro bioassay used to confirm efficacy. Additionally, the PEGylated version showed enhanced aqueous solubility and was inert to photoisomerization, a known limitation of existing antagonists of this class. PMID:24126093

  17. Oxytocin receptor gene sequences in owl monkeys and other primates show remarkable interspecific regulatory and protein coding variation.

    PubMed

    Babb, Paul L; Fernandez-Duque, Eduardo; Schurr, Theodore G

    2015-10-01

    The oxytocin (OT) hormone pathway is involved in numerous physiological processes, and one of its receptor genes (OXTR) has been implicated in pair bonding behavior in mammalian lineages. This observation is important for understanding social monogamy in primates, which occurs in only a small subset of taxa, including Azara's owl monkey (Aotus azarae). To examine the potential relationship between social monogamy and OXTR variation, we sequenced its 5' regulatory (4936bp) and coding (1167bp) regions in 25 owl monkeys from the Argentinean Gran Chaco, and examined OXTR sequences from 1092 humans from the 1000 Genomes Project. We also assessed interspecific variation of OXTR in 25 primate and rodent species that represent a set of phylogenetically and behaviorally disparate taxa. Our analysis revealed substantial variation in the putative 5' regulatory region of OXTR, with marked structural differences across primate taxa, particularly for humans and chimpanzees, which exhibited unique patterns of large motifs of dinucleotide A+T repeats upstream of the OXTR 5' UTR. In addition, we observed a large number of amino acid substitutions in the OXTR CDS region among New World primate taxa that distinguish them from Old World primates. Furthermore, primate taxa traditionally defined as socially monogamous (e.g., gibbons, owl monkeys, titi monkeys, and saki monkeys) all exhibited different amino acid motifs for their respective OXTR protein coding sequences. These findings support the notion that monogamy has evolved independently in Old World and New World primates, and that it has done so through different molecular mechanisms, not exclusively through the oxytocin pathway. PMID:26025428

  18. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing.

    PubMed

    Ong, Zhi Yi; Alhadeff, Amber L; Grill, Harvey J

    2015-05-01

    Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 μg) or mNTS (0.3 μg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons. PMID:25740340

  19. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing

    PubMed Central

    Alhadeff, Amber L.; Grill, Harvey J.

    2015-01-01

    Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 μg) or mNTS (0.3 μg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons. PMID:25740340

  20. Genetic variation in the oxytocin receptor gene is associated with a social phenotype in autism spectrum disorders.

    PubMed

    Harrison, Ashley J; Gamsiz, Ece D; Berkowitz, Isaac C; Nagpal, Shailender; Jerskey, Beth A

    2015-12-01

    Oxytocin regulates social behavior in animal models. Research supports an association between genetic variation in the oxytocin receptor gene (OXTR) and autism spectrum disorders (ASD). In this study, we examine the association between the OXTR gene and a specific social phenotype within ASD. This genotype-phenotype investigation may provide insight into how OXTR conveys risk for social impairment. The current study investigated 10 SNPS in the OXTR gene that have been previously shown to be associated with ASD. We examine the association of these SNPs with both a social phenotype and a repetitive behavior phenotype comprised of behaviors commonly impaired in ASD in the Simons simplex collection (SSC). Using a large sample to examine the association between OXTR and ASD (n = range: 485-1002), we find evidence to support a relation between two OXTR SNPs and the examined social phenotype among children diagnosed with ASD. Greater impairment on the social responsiveness scale standardized total score and on several subdomains was observed among individuals with one or more copies of the minor frequency allele in both rs7632287 and rs237884. Linkage disequilibrium (LD) mapping suggests that these two SNPs are in LD within and overlapping the 3' untranslated region (3'-UTR) of the OXTR gene. These two SNPs were also associated with greater impairment on the repetitive behavior scale. Results of this study indicate that social impairment and repetitive behaviors in ASD are associated with genomic variation in the 3'UTR of the OXTR gene. These variants may be linked to an allele that alters stability of the mRNA message although further work is necessary to test this hypothesis. PMID:26365303

  1. Neurokinin-1 Receptor Antagonists as Antitumor Drugs in Gastrointestinal Cancer: A New Approach

    PubMed Central

    Muñoz, Miguel; Coveñas, Rafael

    2016-01-01

    Gastrointestinal (GI) cancer is the term for a group of cancers affecting the digestive system. After binding to the neurokinin-1 (NK-1) receptor, the undecapeptide substance P (SP) regulates GI cancer cell proliferation and migration for invasion and metastasis, and controls endothelial cell proliferation for angiogenesis. SP also exerts an antiapoptotic effect. Both SP and the NK-1 receptor are located in GI tumor cells, the NK-1 receptor being overexpressed. By contrast, after binding to the NK-1 receptor, NK-1 receptor antagonists elicit the inhibition (epidermal growth factor receptor inhibition) of the proliferation of GI cancer cells in a concentration-dependent manner, induce the death of GI cancer cells by apoptosis, counteract the Warburg effect, inhibit cancer cell migration (counteracting invasion and metastasis), and inhibit angiogenesis (vascular endothelial growth factor inhibition). NK-1 receptor antagonists are safe and well tolerated. Thus, the NK-1 receptor could be considered as a new target in GI cancer and NK-1 receptor antagonists (eg, aprepitant) could be a new promising approach for the treatment of GI cancer. PMID:27488320

  2. Selective P2X7 receptor antagonists for chronic inflammation and pain

    PubMed Central

    Donnelly-Roberts, Diana; Jarvis, Michael F.

    2008-01-01

    ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential. PMID:18568426

  3. Kinetic properties of "dual" orexin receptor antagonists at OX1R and OX2R orexin receptors.

    PubMed

    Callander, Gabrielle E; Olorunda, Morenike; Monna, Dominique; Schuepbach, Edi; Langenegger, Daniel; Betschart, Claudia; Hintermann, Samuel; Behnke, Dirk; Cotesta, Simona; Fendt, Markus; Laue, Grit; Ofner, Silvio; Briard, Emmanuelle; Gee, Christine E; Jacobson, Laura H; Hoyer, Daniel

    2013-01-01

    Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various "dual" orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [(3)H]-BBAC ((S)-N-([1,1'-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the "dual" antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the "dual" antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo. PMID:24376396

  4. Kinetic properties of “dual” orexin receptor antagonists at OX1R and OX2R orexin receptors

    PubMed Central

    Callander, Gabrielle E.; Olorunda, Morenike; Monna, Dominique; Schuepbach, Edi; Langenegger, Daniel; Betschart, Claudia; Hintermann, Samuel; Behnke, Dirk; Cotesta, Simona; Fendt, Markus; Laue, Grit; Ofner, Silvio; Briard, Emmanuelle; Gee, Christine E.; Jacobson, Laura H.; Hoyer, Daniel

    2013-01-01

    Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various “dual” orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S)-N-([1,1′-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the “dual” antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the “dual” antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo. PMID:24376396

  5. Orexin 1 receptor antagonists in compulsive behavior and anxiety: possible therapeutic use

    PubMed Central

    Merlo Pich, Emilio; Melotto, Sergio

    2014-01-01

    Fifteen years after the discovery of hypocretin/orexin a large body of evidence has been collected supporting its critical role in the modulation of several regulatory physiological functions. While reduced levels of hypocretin/orexin were initially associated with narcolepsy, increased levels have been linked in recent years to pathological states of hypervigilance and, in particular, to insomnia. The filing to FDA of the dual-activity orexin receptor antagonist (DORA) suvorexant for the indication of insomnia further corroborates the robustness of such evidences. However, as excessive vigilance is also typical of anxiety and panic episodes, as well as of abstinence and craving in substance misuse disorders. In this review we briefly discuss the evidence supporting the development of hypocretin/orexin receptor 1 (OX1) antagonists for these indications. Experiments using the OX1 antagonist SB-334867 and mutant mice have involved the OX1 receptor in mediating the compulsive reinstatement of drug seeking for ethanol, nicotine, cocaine, cannabinoids and morphine. More recently, data have been generated with the novel selective OX1 antagonists GSK1059865 and ACT-335827 on behavioral and cardiovascular response to stressors and panic-inducing agents in animals. Concluding, while waiting for pharmacologic data to become available in humans, risks and benefits for the development of an OX1 receptor antagonist for Binge Eating and Anxiety Disorders are discussed. PMID:24592206

  6. Characterization of PCS1055, a novel muscarinic M4 receptor antagonist.

    PubMed

    Croy, Carrie H; Chan, Wai Y; Castetter, Andrea M; Watt, Marla L; Quets, Anne T; Felder, Christian C

    2016-07-01

    Identification of synthetic ligands selective for muscarinic receptor subtypes has been challenging due to the high sequence identity and structural homology among the five muscarinic acetylcholine receptors. Here, we report the pharmacological characterization of PCS1055, a novel muscarinic M4 receptor antagonist. PCS1055 inhibited radioligand [(3)H]-NMS binding to the M4 receptor with a Ki=6.5nM. Though the potency of PCS1055 is lower than that of pan-muscarinic antagonist atropine, it has better subtype selectivity over previously reported M4-selective reagents such as the muscarinic-peptide toxins (Karlsson et al., 1994; Santiago and Potter, 2001a) at the M1 subtype, and benzoxazine ligand PD102807 at the M3-subtype (Bohme et al., 2002). A detailed head-to-head comparison study using [(3)H]-NMS competitive binding assays characterizes the selectivity profiles of PCS1055 to that of other potent muscarinic-antagonist compounds PD102807, tropicamide, AF-DX-384, pirenzapine, and atropine. In addition to binding studies, the subtype specificity of PCS1055 is also demonstrated by functional receptor activation as readout by GTP-γ-[(35)S] binding. These GTP-γ-[(35)S] binding studies showed that PCS1055 exhibited 255-, 69.1-, 342- and >1000-fold greater inhibition of Oxo-M activity at the M4 versus the M1-, M2(-), M3-or M5 receptor subtypes, respectively. Schild analyses indicates that PCS1055 acts as a competitive antagonist to muscarinic M4 receptor, and confirms the affinity of the ligand to be low nanomolar, Kb=5.72nM. Therefore, PCS1055 represents a new M4-preferring antagonist that may be useful in elucidating the roles of M4 receptor signaling. PMID:27085897

  7. Attenuation of D-1 antagonist-induced D-1 receptor upregulation by conccomitant D-2 receptor blockade

    SciTech Connect

    Parashos, S.A.; Barone, P.; Tucci, I.; Chase, T.N.

    1987-11-16

    The effect of chronic selective D-1 and/or D-2 dopamine receptor blockade on regional D-1 receptor binding was studied in rat brain following chronic treatment with the specific D-1 antagonist SCH 23390 and/or the predominantly D-2 antagonist haloperidol. D-1 receptor density and affinity were evaluated by quantitative autoradiography using /sup 125/I-SCH 23982. Chronic SCH 23390 treatment increased D-1 receptor density by 30 to 40% in the striatum, accumbens and tuberculum olfactorium; receptor affinity remained unchanged. Haloperidol had no effect on D-1 receptor Bmax or Kd values, although, when administered with SCH 23390, reduced the D-1 receptor upregulation induced by the D-1 antagonist in striatum and tuberculum olfactorium, but not in nucleus accumbens, These results may be attributable to D-1/D-2 dopamine receptor interactions occurring in the striatum and tuberculum olfactorium and may have implications for the prevention and treatment of drug-induced extrapyramidal disorders. 34 references, 1 figure, 2 tables.

  8. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile. PMID:8780717

  9. Identification of short-acting κ-opioid receptor antagonists with anxiolytic-like activity.

    PubMed

    Peters, Matthew F; Zacco, Anna; Gordon, John; Maciag, Carla M; Litwin, Linda C; Thompson, Carolann; Schroeder, Patricia; Sygowski, Linda A; Piser, Timothy M; Brugel, Todd A

    2011-07-01

    The κ-opioid receptor plays a central role in mediating the response to stressful life events. Inhibiting κ-opioid receptor signaling is proposed as a mechanism for treating stress-related conditions such as depression and anxiety. Preclinical testing consistently confirms that disruption of κ-opioid signaling is efficacious in animal models of mood disorders. However, concerns about the feasibility of developing antagonists into drugs stem from an unusual pharmacodynamic property of prototypic κ-opioid receptor-selective antagonists; they inhibit receptor signaling for weeks to months after a single dose. Several fundamental questions include - is it possible to identify short-acting antagonists; is long-lasting inhibition necessary for efficacy; and is it safe to develop long-acting antagonists in the clinic. Here, we test representative compounds (AZ-ECPC, AZ-MTAB, and LY-DMPF) from three new chemical series of κ-opioid receptor ligands for long-lasting inhibition. Each compound dose-dependently reversed κ-opioid agonist-induced diuresis. However, unlike the prototypic antagonist, nBNI, which fully inhibited evoked diuresis for at least four weeks, the new compounds showed no inhibition after one week. The two compounds with greater potency and selectivity were tested in prenatally-stressed rats on the elevated plus maze, an exploration-based model of anxiety. Spontaneous exploration of open arms in the elevated plus maze was suppressed by prenatal stress and restored with both compounds. These findings indicate that persistent inhibition is not an inherent property of κ-opioid-selective antagonists and that post-stress dosing with transient inhibitors can be effective in a mood disorder model. This further supports κ-opioid receptor as a promising target for developing novel psychiatric medications. PMID:21539838

  10. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure

    PubMed Central

    Nappi, Jean M; Sieg, Adam

    2011-01-01

    Aldosterone is a mineralocorticoid hormone synthesized by the adrenal glands that has several regulatory functions to help the body maintain normal volume status and electrolyte balance. Studies have shown significantly higher levels of aldosterone secretion in patients with congestive heart failure compared with normal patients. Elevated levels of aldosterone have been shown to elevate blood pressure, cause left ventricular hypertrophy, and promote cardiac fibrosis. An appreciation of the true role of aldosterone in patients with chronic heart failure did not become apparent until the publication of the Randomized Aldactone Evaluation Study. Until recently, the use of aldosterone receptor antagonists has been limited to patients with severe heart failure and patients with heart failure following myocardial infarction. The Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF) study added additional evidence to support the expanded use of aldosterone receptor antagonists in heart failure patients. The results of the EMPHASIS-HF trial showed that patients with mild-to-moderate (New York Heart Association Class II) heart failure had reductions in mortality and hospitalizations from the addition of eplerenone to optimal medical therapy. Evidence remains elusive about the exact mechanism by which aldosterone receptor antagonists improve heart failure morbidity and mortality. The benefits of aldosterone receptor antagonist use in heart failure must be weighed against the potential risk of complications, ie, hyperkalemia and, in the case of spironolactone, possible endocrine abnormalities, in particular gynecomastia. With appropriate monitoring, these risks can be minimized. We now have evidence that patients with mild-to-severe symptoms associated with systolic heart failure will benefit from the addition of an aldosterone receptor antagonist to the standard therapies of angiotensin-converting enzyme inhibitors and beta

  11. Pharmacological characterization of YM598, a selective endothelin-A receptor antagonist.

    PubMed

    Sudoh, Katsumi; Yuyama, Hironori; Noguchi, Yukiko; Fujimori, Akira; Ukai, Masashi; Ohtake, Akiyoshi; Sato, Shuichi; Sasamata, Masao; Miyata, Keiji

    2004-11-01

    The binding affinities of YM598, a novel endothelin-A (ETA) receptor antagonist, for native human ETA receptors expressed in human coronary artery smooth muscle cells and endothelin-B (ETB) subtypes in the human melanoma cell line SKMel- 28 were compared with those of atrasentan and bosentan. The in vivo ETA receptor antagonist activities of YM598 and atrasentan were also evaluated in pithed rats. The inhibitory dissociation constant values of YM598, atrasentan and bosentan were 0.772, 0.0551 and 4.75 nM, respectively, for native human ETA receptors, and 143, 4.80 and 40.9 nM, respectively, for native human ETB subtypes. The calculated selectivity ratios of YM598, atrasentan and bosentan for ETA versus ETB receptors were 222, 136 and 13.0, respectively. In pithed rats, YM598 and atrasentan inhibited the big endothelin-1 (1 nmol/kg)-induced pressor response in a dose-dependent manner, after both intravenous and oral administration. The inhibitory effect of YM598 was less potent than that of atrasentan when these agents were intravenously administered, but those of both agents were comparable when orally administered. These results suggest that YM598 has a high selectivity for native human ETA receptors against ETB receptors, and that YM598 is superior to atrasentan as an ETA receptor antagonist, with regard to pharmacological bioavailability in rats. PMID:15838329

  12. The effects of vasopressin and oxytocin on methamphetamine-induced place preference behaviour in rats.

    PubMed

    Subiah, Cassandra O; Mabandla, Musa V; Phulukdaree, Alisa; Chuturgoon, Anil A; Daniels, Willie M U

    2012-09-01

    Methamphetamine is a highly addictive stimulant drug whose illicit use and resultant addiction has become an alarming global phenomenon. The mesolimbic dopaminergic pathway has been shown to be fundamental to the establishment of addictive behaviour. This pathway, as part of the reward system of the brain, has also been shown to be important in classical conditioning, which is a learnt response. Within the modulation of learning and memory, the neurohypophyseal hormones vasopressin and oxytocin have been reported to play a vital role, with vasopressin exerting a long- term facilitatory effect and oxytocin exerting an inhibitory effect. Therefore we adopted a conditioned place preference model to investigate whether vasopressin V1b receptor antagonist SSR 149415 or oxytocin treatment would cause a decrease in the seeking behaviour in a reinstatement paradigm. Behavioural findings indicated that methamphetamine induced a change in the place preference in the majority of our animals. This change in place preference was not seen when vasopressin was administered during the extinction phase. On the other hand the methamphetamine-induced change in place preference was enhanced during the reinstatement phase in the animals that were treated with oxytocin. Striatal dopamine levels were determined, as methamphetamine is known to increase dopamine transmission in this area. Significant changes in dopamine levels were observed in some of our animals. Rats that received both methamphetamine and oxytocin had significantly higher striatal dopamine than those that received oxytocin alone. Western blot analysis for hippocampal cyclic AMP response element binding protein (CREB) was also conducted as a possible indicator of glutamatergic NMDA receptor activity, a pathway that is important for learning and memory. The Western blot analysis showed no changes in hippocampal pCREB expression. Overall our data led us to conclude that methamphetamine treatment can change place preference

  13. The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes.

    PubMed

    Ocampo Daza, Daniel; Lewicka, Michalina; Larhammar, Dan

    2012-01-01

    The vertebrate oxytocin and vasopressin receptors form a family of G-protein-coupled receptors (GPCRs) that mediate a large variety of functions, including social behavior and the regulation of blood pressure, water balance and reproduction. In mammals four family members have been identified, three of which respond to vasopressin (VP) named V1A, V1B and V2, and one of which is activated by oxytocin (OT), called the OT receptor. Four receptors have been identified in chicken as well, but these have received different names. Until recently only V1-type receptors have been described in several species of teleost fishes. We have identified family members in several gnathostome genomes and performed phylogenetic analyses to classify OT/VP-receptors across species and determine orthology relationships. Our phylogenetic tree identifies five distinct ancestral gnathostome receptor subtypes in the OT/VP receptor family: V1A, V1B, V2A, V2B and OT receptors. The existence of distinct V2A and V2B receptors has not been previously recognized. We have found these two subtypes in all examined teleost genomes as well as in available frog and lizard genomes and conclude that the V2A-type is orthologous to mammalian V2 receptors whereas the V2B-type is orthologous to avian V2 receptors. Some teleost fishes have acquired additional and more recent gene duplicates with up to eight receptor family members. Thus, this analysis reveals an unprecedented complexity in the gnathostome repertoire of OT/VP receptors, opening interesting research avenues regarding functions such as regulation of water balance, reproduction and behavior, particularly in reptiles, amphibians, teleost fishes and cartilaginous fishes. PMID:22057000

  14. The association between 2D:4D ratio and cognitive empathy is contingent on a common polymorphism in the oxytocin receptor gene (OXTR rs53576).

    PubMed

    Weisman, Omri; Pelphrey, Kevin A; Leckman, James F; Feldman, Ruth; Lu, Yunfeng; Chong, Anne; Chen, Ying; Monakhov, Mikhail; Chew, Soo Hong; Ebstein, Richard P

    2015-08-01

    Both testosterone and oxytocin influence an individual's accuracy in inferring another's feelings and emotions. Fetal testosterone, and the second-to-forth digit ratio (2D:4D) as its proxy, plays a role in social cognitive development, often by attenuating socio-affective skill. Conversely, oxytocin generally facilitates socio-affiliative and empathic cognition and behavior. A common polymorphism in the oxytocin receptor gene, OXTR rs53576, has been repeatedly linked with psychosocial competence, including empathy, with individuals homozygous for the G allele typically characterized by enhanced socio-cognitive skills compared to A allele carriers. We examined the role of oxytocin and testosterone in collectively contributing to individual differences in cognitive empathy as measured by Baron-Cohen's "Reading the Mind in the Eyes" task (RMET). Findings are based on a large cohort of male and female students (N=1463) of Han Chinese ethnicity. In line with existing literature, women outperformed men in the RMET. Men showed significantly lower 2D:4D ratio compared to women, indicating higher exposure to testosterone during the prenatal period. Interestingly, variation in the OXTR gene was found to interact with 2D:4D to predict men's (but not women's) RMET performance. Among men with GG allelic variation, those with low fetal testosterone performed better on the RMET, compared to men with GG and high fetal testosterone, suggesting greater identification of another's emotional state. Taken together, our data lend unique support to the mutual influence of the oxytocin and testosterone systems in shaping core aspect of human social cognition early in development, further suggesting that this effect is gender-specific. PMID:25935637

  15. Immunolocalization and gene expression of oxytocin receptors in carcinomas and non-neoplastic tissues of the breast.

    PubMed Central

    Bussolati, G.; Cassoni, P.; Ghisolfi, G.; Negro, F.; Sapino, A.

    1996-01-01

    Recent evidence indicates that oxytocin (OT), in addition to the induction of myometrial and myoepithelial cell contraction, can influence proliferation and differentiation in developing mammary glands and in breast cancer cells, hence the interest in detecting and locating OT receptors (OTRs). We produced rabbit antisera and a monoclonal antibody against a synthetic peptide corresponding to the carboxy terminus of the predicted OTR sequence. We tested their specificity in immunoblasts and immunocytochemical tests. All of the antibodies specifically stained myometrium (at term of pregnancy). In the human breast, OTRs were detected in myoepithelial cells along ducts of normal lobules and in sclerosing adenosis. Intraductal cells in benign hyperplastic lesions were also positive. OTRs were demonstrated in cases of primary and metastatic carcinomas of the breast. In the same tissues, OTR gene expression was shown by reverse transcriptase polymerase chain reaction procedures detecting the specific mRNA. These results suggest that the interaction between OT and its receptors might play a role in the origin and evolution of non-neoplastic lesions and carcinomas of the breast. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:8669475

  16. Ineffectiveness of nicotinic acetylcholine receptor antagonists for treatment-resistant depression: a meta-analysis.

    PubMed

    Wang, Hee Ryung; Woo, Young Sup; Bahk, Won-Myong

    2016-09-01

    Emerging preclinical and clinical evidences suggest a potential role of nicotinic acetylcholine receptors in the pathophysiology of depression. Several clinical trials have investigated the efficacy of nicotinic acetylcholine receptor antagonists in treatment-resistant depression. We carried out this meta-analysis to investigate whether nicotinic acetylcholine receptor antagonists significantly improve symptoms in patients with major depressive disorder who have an inadequate response to standard antidepressant therapy. A comprehensive literature search identified six randomized-controlled trials. These six trials, which included 2067 participants, were pooled for this meta-analysis using a random-effects model. Nicotinic acetylcholine receptor antagonists failed to show superior efficacy compared with placebo in terms of the mean change in the Montgomery-Asberg Depression Rating Scale score [mean difference=-0.12 (95% confidence interval (CI)=-0.96 to 0.71]; response rate [risk ratio=0.92 (95% CI=0.83-1.02)]; and remission rate [risk ratio=1.01 (95% CI=0.83-1.23)]. This meta-analysis failed to confirm preliminary positive evidence for the efficacy of nicotinic acetylcholine receptor antagonists in treatment-resistant depression. Further studies investigating the efficacy of various alternative treatment strategies for treatment-resistant depression will help clinicians to better understand and choose better treatment options for these populations. PMID:26982579

  17. A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist

    SciTech Connect

    Tolbert, W. David; Daugherty, Jennifer; Gao, ChongFeng; Xie, Qian; Miranti, Cindy; Gherardi, Ermanno; Vande Woude, George; Xu, H. Eric

    2010-03-08

    Hepatocyte growth factor (HGF) activates the Met receptor tyrosine kinase by binding and promoting receptor dimerization. Here we describe a mechanistic basis for designing Met antagonists based on NK1, a natural variant of HGF containing the N-terminal and the first kringle domain. Through detailed biochemical and structural analyses, we demonstrate that both mouse and human NK1 induce Met dimerization via a conserved NK1 dimer interface. Mutations designed to alter the NK1 dimer interface abolish its ability to promote Met dimerization but retain full Met-binding activity. Importantly, these NK1 mutants act as Met antagonists by inhibiting HGF-mediated cell scattering, proliferation, branching, and invasion. The ability to separate the Met-binding activity of NK1 from its Met dimerization activity thus provides a rational basis for designing Met antagonists. This strategy of antagonist design may be applicable for other growth factor receptors by selectively abolishing the receptor activation ability but not the receptor binding of the growth factors.

  18. The emergence of the vasopressin and oxytocin hormone receptor gene family lineage: Clues from the characterization of vasotocin receptors in the sea lamprey (Petromyzon marinus).

    PubMed

    Mayasich, Sally A; Clarke, Benjamin L

    2016-01-15

    The sea lamprey (Petromyzon marinus) is a jawless vertebrate at an evolutionary nexus between invertebrates and jawed vertebrates. Lampreys are known to possess the arginine vasotocin (AVT) hormone utilized by all non-mammalian vertebrates. We postulated that the lamprey would possess AVT receptor orthologs of predecessors to the arginine vasopressin (AVP)/oxytocin (OXT) family of G protein-coupled receptors found in mammals, providing insights into the origins of the mammalian V1A, V1B, V2 and OXT receptors. Among the earliest animals to diverge from the vertebrate lineage in which these receptors are characterized is the jawed, cartilaginous elephant shark, which has genes orthologous to all four mammalian receptor types. Therefore, our work was aimed at helping resolve the critical gap concerning the outcomes of hypothesized large-scale (whole-genome) duplication events. We sequenced one partial and four full-length putative lamprey AVT receptor genes and determined their mRNA expression patterns in 15 distinct tissues. Phylogenetically, three of the full-coding genes possess structural characteristics of the V1 clade containing the V1A, V1B and OXT receptors. Another full-length coding gene and the partial sequence are part of the V2 clade and appear to be most closely related to the newly established V2B and V2C receptor subtypes. Our synteny analysis also utilizing the Japanese lamprey (Lethenteron japonicum) genome supports the recent proposal that jawless and jawed vertebrates shared one-round (1R) of WGD as the most likely scenario. PMID:26764211

  19. Binding of antagonists of H1 and H2 histamine receptors to peripheral blood lymphocytes of atopic and healthy subjects.

    PubMed

    Zak-Nejmark, T; Małolepszy, J; Osos, M; Nadobna, G; Jutel, M

    1991-01-01

    The binding of the antagonists of histamine H1 and H2 receptors by peripheral blood lymphocytes from atopic and healthy subjects was investigated. We found that lymphocytes from atopic subjects showed statistically significant decrease in the binding of H2 receptor antagonist - ranitidine. In addition, lymphocytes from atopic and control subjects had similar capacity of binding of H1 receptor antagonist - promethazine. The ratio of the amount of H1 and H2 antagonists, bound to lymphocytes from atopic and healthy subjects, was calculated. The difference between the values in the group of atopic (2.55) and control subjects (1.55) was statistically significant. PMID:1841552

  20. Allosteric interactions of three muscarine antagonists at bovine tracheal smooth muscle and cardiac M2 receptors.

    PubMed

    Roffel, A F; Elzinga, C R; Meurs, H; Zaagsma, J

    1989-03-01

    The kinetics of [3H]dexetimide dissociation from muscarine receptors in bovine cardiac left ventricular and tracheal smooth muscle membranes were studied in the absence and presence of three muscarine antagonists. It was found that [3H]dexetimide dissociation from cardiac muscarine receptors was monophasic and very fast (half life less than 1 min) and was slowed by the cardioselective muscarine antagonists, gallamine, methoctramine and AF-DX 116, concentration dependently. [3H]Dexetimide dissociation from tracheal muscarine receptors was biphasic, with a fast phase (half-life less than 1 min) followed after 4-5 min by a slow phase (half-life = 38.5 min). The fast component, but not the slow component, was slowed by the muscarine antagonists with concentration dependencies very similar to those found in the heart. We conclude from these data that the major population of tracheal smooth muscle muscarine receptors resembles the cardiac M2 type not only with respect to equilibrium binding affinities but also with respect to the secondary, allosteric binding site on the muscarine receptor. The results also imply that the cardiac receptor subtype is much more sensitive to allosteric modulation than the glandular/smooth muscle receptor subtype. PMID:2714370

  1. Determination of the functional size of oxytocin receptors in plasma membranes from mammary gland and uterine myometrium of the rat by radiation inactivation

    SciTech Connect

    Soloff, M.S.; Beauregard, G.; Potier, M.

    1988-05-01

    Gel filtration of detergent-solubilized oxytocin (OT) receptors in plasma membrane fractions from both regressed mammary gland and labor myometrium of the rat, showed that specific (/sup 3/H)OT binding was associated with a heterogeneously sized population of macromolecules. As radiation inactivation is the only method available to measure the apparent molecular weights of membrane proteins in situ, we used this approach to define the functional sizes of OT receptors. The results indicate that both mammary and myometrial receptors are uniform in size and of similar molecular mass. Mammary and myometrial receptors were estimated to be 57.5 +/- 3.8 (SD) and 58.8 +/- 1.6 kilodaltons, respectively. Knowledge of the functional size of OT receptors will be useful in studies involving the purification and characterization of the receptor and associated membrane components.

  2. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  3. Opposite effects of GABAA and NMDA receptor antagonists on ethanol-induced behavioral sleep in rats.

    PubMed

    Beleslin, D B; Djokanović, N; Jovanović Mićić, D; Samardzić, R

    1997-01-01

    The effects of the GABAA receptor antagonists, pentylenetetrazol, bicuculline, and picrotoxin, the glycine antagonist, strychnine, and the NMDA receptor antagonist, memantine, on ethanol-induced behavioral sleep and body temperature were investigated. Pentylenetetrazol, bicuculline, and picrotoxin given prior and following ethanol reduced the behavioral sleep and potentiated the hypothermia caused by ethanol. However, convulsions appeared when bicuculline, but not pentylenetetrazol and picrotoxin, were given following ethanol. After the reversal of unconsciousness in rats without convulsions the animals remained awake throughout the experiments without motor incoordination, hyperexcitability, and sedation, but they were in hypothermia within 12 h. The glycine antagonist, strychnine, given prior or after ethanol had virtually no effect on ethanol-induced behavioral sleep and hypothermia. Ethanol given prior or following strychnine failed to antagonize strychnine-induced convulsions. The NMDA receptor antagonist, memantine, given following ethanol potentiated the behavioral sleep and had virtually no effect on hypothermia induced by ethanol. It is suggested that the ethanol-induced behavioral sleep may be attributed to its ability to enhance the GABAergic mechanisms and to inhibit NMDA-mediated excitatory responses. However, the ethanol-induced hypothermia may be ascribed solely to the facilitation of GABAergic transmission. Further, it is postulated that a bidirectional inhibitory system subserves the regulation of behavioral sleep and convulsions. However, one-way inhibitory system underlies the ethanol-induced hypothermia. PMID:9085718

  4. Modeling the interactions between alpha(1)-adrenergic receptors and their antagonists.

    PubMed

    Du, Lupei; Li, Minyong

    2010-09-01

    As crucial members of the G-protein coupled receptor (GPCR) superfamily, alpha (1)-adrenergic receptors (alpha(1)-ARs) are recognized to intervene the actions of endogenous catecholamines such as norepinephrine and epinephrine. So far three distinct alpha(1)-AR subtypes, alpha(1A), alpha(1B) and alpha(1D), have been characterized by functional analysis, radio-ligand binding and molecular biology studies. The alpha(1)-ARs are of therapeutic interest because of their distinct and critical roles in many physiological processes, containing hypertension, benign prostatic hyperplasia, smooth muscle contraction, myocardial inotropy and chronotropy, and hepatic glucose metabolism. Accordingly, designing subtype-selective antagonists for each of the three alpha(1)-AR subtypes has been an enthusiastic region of medicinal research. Even though a large number of studies on GPCRs have been conducted, understanding of how known antagonists bind to alpha(1)-ARs still remains sketchy and has been a serious impediment to search for potent and subtype-selective alpha(1)-AR antagonists because of the lack of detailed experimental structural knowledge. This review deliberates the simulation of alpha(1)-ARs and their interactions with antagonists by using ligand-based (pharmacophore identification and QSAR modeling) and structure-based (comparative modeling and molecular docking) approaches. Combined with experimental data, these computational attempts could improve our understanding of the structural basis of antagonist binding and the molecular basis of receptor activation, thus offering a more reasonable approach in the design of drugs targeting alpha(1)-ARs. PMID:20412040

  5. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  6. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  7. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  8. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Sasse, Thomas; Clozel, Martine; Nayler, Oliver

    2012-01-01

    Two endothelin receptor antagonists (ERAs), bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH), a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC). The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1)) assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b) values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2)) compared to bosentan and ambrisentan (ROt(1/2):17 minutes versus 70 seconds and 40 seconds, respectively). Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1) assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1) concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2) rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive ERA with

  9. Identification of Trisubstituted-pyrazol Carboxamide Analogs as Novel and Potent Antagonists of Farnesoid X Receptor

    PubMed Central

    Yu, Donna D.; Lin, Wenwei; Forman, Barry M.; Chen, Taosheng

    2014-01-01

    Farnesoid X receptor (FXR, NRIH4) plays a major role in the control of cholesterol metabolism. This suggests that antagonizing the transcriptional activity of FXR is a potential means to treat cholestasis and related metabolic disorders. Here we describe the synthesis, biological evaluation, and structure-activity relationship (SAR) studies of trisubstituted-pyrazol carboxamides as novel and potent FXR antagonists. One of these novel FXR antagonists, 4j has an IC50 of 7.5 nM in an FXR binding assay and 468.5 nM in a cell-based FXR antagonistic assay. Compound 4j has no detectable FXR agonistic activity or cytotoxicity. Notably, 4j is the most potent FXR antagonist identified to date; it has a promising in vitro profile and could serve as an excellent chemical tool to elucidate the biological function of FXR. PMID:24775917

  10. [Discovery and pharmacological properties of selective neurokinin-receptor antagonists, FK224 and FK888].

    PubMed

    Fujii, T

    1995-09-01

    In order to create a new drug for the treatment of respiratory diseases, such as asthma and chronic bronchitis, having a novel therapeutic mechanism, we have been trying to develop new compounds with neurokinin (NK)-receptor antagonistic effects. We used [3H]-substance P binding to guinea pig lung membrane for the first screening system and successfully discovered FK224 from a fermentation product and FK888 from chemical design studies using an octapeptide antagonist (D-Pro4,D-Trp7,9,10) SP4-11 as the parent compound. FK224 and FK888 showed different selectivities against the NK-receptor subtypes (NK1, NK2, NK3); FK888 was a highly potent NK1-selective antagonist, and FK224 was a NK1 + NK2 dual receptor antagonist. Neither compound had any activity on the NK3 receptor. In the in vivo experiments, FK224 and FK888 significantly inhibited the constriction and plasma extravasation in the airway induced by agonist injection. These compounds also showed inhibitory effects on the airway response induced by capsaicin and antidromic stimulation of vagus nerves. Furthermore, FK224 and FK888 were effective on the mucus secretion in the airway and the cough reflex induced by citric acid challenge. There were some differences in the effects of FK224 and FK888 in the in vivo experiments, and it was suggested that the NK1 receptor and NK2 receptor were mainly involved in neurogenic inflammation and airway constriction, respectively. FK224 and FK888 are now undergoing clinical studies to test the effectiveness of a NK antagonist in human respiratory diseases. PMID:8529964

  11. Histamine H3 receptor antagonist decreases cue-induced alcohol reinstatement in mice.

    PubMed

    Nuutinen, Saara; Mäki, Tiia; Rozov, Stanislav; Bäckström, Pia; Hyytiä, Petri; Piepponen, Petteri; Panula, Pertti

    2016-07-01

    We have earlier found that the histamine H3 receptor (H3R) antagonism diminishes motivational aspects of alcohol reinforcement in mice. Here we studied the role of H3Rs in cue-induced reinstatement of alcohol seeking in C57BL/6J mice using two different H3R antagonists. Systemic administration of H3R antagonists attenuated cue-induced alcohol seeking suggesting that H3R antagonists may reduce alcohol craving. To understand how alcohol affects dopamine and histamine release, a microdialysis study was performed on C57BL/6J mice and the levels of histamine, dopamine and dopamine metabolites were measured in the nucleus accumbens. Alcohol administration was combined with an H3R antagonist pretreatment to reveal whether modulation of H3R affects the effects of alcohol on neurotransmitter release. Alcohol significantly increased the release of dopamine in the nucleus accumbens but did not affect histamine release. Pretreatment with H3R antagonist ciproxifan did not modify the effect of alcohol on dopamine release. However, histamine release was markedly increased with ciproxifan. In conclusion, our findings demonstrate that H3R antagonism attenuates cue-induced reinstatement of alcohol seeking in mice. Alcohol alone does not affect histamine release in the nucleus accumbens but H3R antagonist instead increases histamine release significantly suggesting that the mechanism by which H3R antagonist inhibits alcohol seeking found in the present study and the decreased alcohol reinforcement, reward and consumption found earlier might include alterations in the histaminergic neurotransmission in the nucleus accumbens. These findings imply that selective antagonists of H3Rs could be a therapeutic strategy to prevent relapse and possibly diminish craving to alcohol use. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26107118

  12. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions

    SciTech Connect

    Steranka, L.R.; Manning, D.C.; DeHaas, C.J.; Ferkany, J.W.; Borosky, S.A.; Connor, J.R.; Vavrek, R.J.; Stewart, J.M.; Snyder, S.H.

    1988-05-01

    Autoradiographic studies localize (/sup 3/H)bradykinin receptor binding sites to the substantia gelatinosa, dorsal root, and a subset of small cells in both the dorsal root and trigeminal ganglia of the guinea pig. (/sup 3/H)Bradykinin labeling is also observed over myocardinal/coronary visceral afferent fibers. The localization of (/sup 3/H)bradykinin receptors to nociceptive pathways supports a role for bradykinin in pain mediation. Several bradkykinin antagonists block bradykinin-induced acute vascular pain in the rat. The bradykinin antagonists also relieve bradykinin- and urate-induced hyperalgesia in the rat paw. These results indicate that bradykinin is a physiologic mediator of pain and that bradykinin antagonists have analgesic activity in both acute and chronic pain models.

  13. Orexin Receptor Antagonists: New Therapeutic Agents for the Treatment of Insomnia.

    PubMed

    Roecker, Anthony J; Cox, Christopher D; Coleman, Paul J

    2016-01-28

    Since its discovery in 1998, the orexin system, composed of two G-protein coupled receptors, orexins 1 and 2, and two neuropeptide agonists, orexins A and B, has captured the attention of the scientific community as a potential therapeutic target for the treatment of obesity, anxiety, and sleep/wake disorders. Genetic evidence in rodents, dogs, and humans was revealed between 1999 and 2000, demonstrating a causal link between dysfunction or deletion of the orexin system and narcolepsy, a disorder characterized by hypersomnolence during normal wakefulness. These findings encouraged efforts to discover agonists to treat narcolepsy and, alternatively, antagonists to treat insomnia. This perspective will focus on the discovery and development of structurally diverse orexin antagonists suitable for preclinical pharmacology studies and human clinical trials. The work described herein culminated in the 2014 FDA approval of suvorexant as a first-in-class dual orexin receptor antagonist for the treatment of insomnia. PMID:26317591

  14. Structure-based design of eugenol analogs as potential estrogen receptor antagonists.

    PubMed

    Anita, Yulia; Radifar, Muhammad; Kardono, Leonardus Bs; Hanafi, Muhammad; Istyastono, Enade P

    2012-01-01

    Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists. PMID:23144548

  15. Isoquinoline derivatives as potent CRTH2 receptor antagonists: synthesis and SAR.

    PubMed

    Nishikawa-Shimono, Rie; Sekiguchi, Yoshinori; Koami, Takeshi; Kawamura, Madoka; Wakasugi, Daisuke; Watanabe, Kazuhito; Wakahara, Shunichi; Matsumoto, Kayo; Takayama, Tetsuo

    2012-05-01

    Synthesis and structure-activity relationship of a novel series of isoquinoline CRTH2 receptor antagonists are described. One of the most potent compounds, TASP0376377 (6m), showed not only potent binding affinity (IC(50)=19 nM) but also excellent functional antagonist activity (IC(50)=13 nM). TASP0376377 was tested for its ability of a chemotaxis assay to show the effectiveness (IC(50)=23 nM), which was in good agreement with the CRTH2 antagonist potency. Furthermore, TASP0376377 showed sufficient selectivity for binding to CRTH2 over the DP1 prostanoid receptor (IC(50)>1 μM) and COX-1 and COX-2 enzymes (IC(50)>10 μM). PMID:22469703

  16. The Involvement of Oxytocin in the Subthalamic Nucleus on Relapse to Methamphetamine-Seeking Behaviour

    PubMed Central

    Baracz, Sarah Jane; Everett, Nicholas Adams; Cornish, Jennifer Louise

    2015-01-01

    The psychostimulant methamphetamine (METH) is an addictive drug of abuse. The neuropeptide oxytocin has been shown to modulate METH-related reward and METH-seeking behaviour. Recent findings implicated the subthalamic nucleus (STh) as a key brain region in oxytocin modulation of METH-induced reward. However, it is unclear if oxytocin acts in this region to attenuate relapse to METH-seeking behaviour, and if this action is through the oxytocin receptor. We aimed to determine whether oxytocin pretreatment administered into the STh would reduce reinstatement to METH use in rats experienced at METH self-administration, and if this could be reversed by the co-administration of the oxytocin receptor antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae into the STh under isoflourane anaesthesia. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour sessions under a fixed ratio 1 schedule for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.2 pmol, 0.6 pmol, 1.8 pmol, 3.6 pmol) or co-administration of oxytocin (3.6 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (3 nmol) into the STh (200 nl/side) was examined on METH-primed reinstatement (1 mg/kg; i.p.). We found that local administration of the highest oxytocin dose (3.6 pmol) into the STh decreased METH-induced reinstatement and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT had a non-specific effect on lever press activity. These findings highlight that oxytocin modulation of the STh is an important modulator of relapse to METH abuse. PMID:26284529

  17. Benzofuran-substituted urea derivatives as novel P2Y(1) receptor antagonists.

    PubMed

    Thalji, Reema K; Aiyar, Nambi; Davenport, Elizabeth A; Erhardt, Joseph A; Kallal, Lorena A; Morrow, Dwight M; Senadhi, Shobha; Burns-Kurtis, Cynthia L; Marino, Joseph P

    2010-07-15

    Benzofuran-substituted urea analogs have been identified as novel P2Y(1) receptor antagonists. Structure-activity relationship studies around the urea and the benzofuran moieties resulted in compounds having improved potency. Several analogs were shown to inhibit ADP-mediated platelet activation. PMID:20542694

  18. New benzoyl urea derivatives as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, I; Greiner, I; Kolok, S; Galgóczy, K; Ignácz-Szendrei, Gy; Horváth, Cs; Farkas, S; Gáti, T; Háda, V; Domány, Gy

    2006-09-01

    A novel series of benzoyl urea derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of the substitution of the piperidine ring on the biological activity of the compounds was studied. Compound 9 was active in the formalin test in mice. PMID:17020160

  19. A Time-course Study with the Androgen Receptor Antagonist Flutamide in Fish

    EPA Science Inventory

    Flutamide, a drug registered to treat some types of prostate cancer in humans, has been used for many years as a model androgen receptor (AR) antagonist in studies aimed at characterizing disruption of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis. Various studies hav...

  20. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    PubMed Central

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  1. 7-Azaindole-3-acetic acid derivatives: potent and selective CRTh2 receptor antagonists.

    PubMed

    Sandham, David A; Adcock, Claire; Bala, Kamlesh; Barker, Lucy; Brown, Zarin; Dubois, Gerald; Budd, David; Cox, Brian; Fairhurst, Robin A; Furegati, Markus; Leblanc, Catherine; Manini, Jodie; Profit, Rachael; Reilly, John; Stringer, Rowan; Schmidt, Alfred; Turner, Katharine L; Watson, Simon J; Willis, Jennifer; Williams, Gareth; Wilson, Caroline

    2009-08-15

    High throughput screening identified a 7-azaindole-3-acetic acid scaffold as a novel CRTh2 receptor antagonist chemotype, which could be optimised to furnish a highly selective compound with good functional potency for inhibition of human eosinophil shape change in whole blood and oral bioavailability in the rat. PMID:19592244

  2. Synthetic approaches to site selective deuterium incorporation in a novel CRTh2 receptor antagonist clinical candidate.

    PubMed

    Sandham, David A; Page, Christopher J

    2014-03-01

    Selection of acidic or basic reaction conditions, combined with appropriate temperatures, allowed for site selective direct incorporation of deuterium at multiple positions in the 7-azaindole-3-acetic acid CRTh2 receptor antagonist clinical candidate NVP-QAV680. PMID:24452929

  3. Possible differences in modes of agonist and antagonist binding at human 5-HT6 receptors.

    PubMed

    Pullagurla, Manik R; Westkaemper, Richard B; Glennon, Richard A

    2004-09-01

    A graphics model of the human 5-HT6 receptor was constructed and automated docking studies were performed. The model suggests that 5-HT6 antagonist arylsulfonyltryptamines might bind differently than that of the agonist serotonin. Furthermore, the model explains many of the empirical results from our previous structure-affinity studies. PMID:15357994

  4. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    SciTech Connect

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of ({sup 3}H) SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for ({sup 3}H) SCH-23390 binding, and no change in the K{sub D}. Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of ({sup 3}H) spiroperidol to striatal homogenates by 70-80%.

  5. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    EPA Science Inventory

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  6. Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain

    PubMed Central

    Bendix, Ivo; Serdar, Meray; Herz, Josephine; von Haefen, Clarissa; Nasser, Fatme; Rohrer, Benjamin; Endesfelder, Stefanie; Felderhoff-Mueser, Ursula; Spies, Claudia D.; Sifringer, Marco

    2014-01-01

    Exposure to N-methyl-d-aspartate (NMDA) receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect cholinergic agonist physostigmine on neurotrophin expression and the extracellular matrix during NMDA receptor antagonist induced injury to the immature rat brain. The aim was to investigate matrix metalloproteinase (MMP)-2 activity, as well as expression of tissue inhibitor of metalloproteinase (TIMP)-2 and brain-derived neurotrophic factor (BDNF) after co-administration of the non-competitive NMDA receptor antagonist MK801 (dizocilpine) and the acetylcholinesterase (AChE) inhibitor physostigmine. The AChE inhibitor physostigmine ameliorated the MK801-induced reduction of BDNF mRNA and protein levels, reduced MK801-triggered MMP-2 activity and prevented decreased TIMP-2 mRNA expression. Our results indicate that AChE inhibition may prevent newborn rats from MK801-mediated brain damage by enhancing neurotrophin-associated signaling pathways and by modulating the extracellular matrix. PMID:24595240

  7. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke.

    PubMed

    Maysami, Samaneh; Wong, Raymond; Pradillo, Jesus M; Denes, Adam; Dhungana, Hiramani; Malm, Tarja; Koistinaho, Jari; Orset, Cyrille; Rahman, Mahbubur; Rubio, Marina; Schwaninger, Markus; Vivien, Denis; Bath, Philip M; Rothwell, Nancy J; Allan, Stuart M

    2016-03-01

    Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials. PMID:26661169

  8. Methamphetamine abstinence induces changes in μ-opioid receptor, oxytocin and CRF systems: Association with an anxiogenic phenotype.

    PubMed

    Georgiou, Polymnia; Zanos, Panos; Garcia-Carmona, Juan-Antonio; Hourani, Susanna; Kitchen, Ian; Laorden, Maria-Luisa; Bailey, Alexis

    2016-06-01

    The major challenge in treating methamphetamine addicts is the maintenance of a drug free-state since they experience negative emotional symptoms during abstinence, which may trigger relapse. The neuronal mechanisms underlying long-term withdrawal and relapse are currently not well-understood. There is evidence suggesting a role of the oxytocin (OTR), μ-opioid receptor (MOPr), dopamine D2 receptor (D2R), corticotropin-releasing factor (CRF) systems and the hypothalamic-pituitary-adrenal (HPA)-axis in the different stages of methamphetamine addiction. In this study, we aimed to characterize the behavioral effects of methamphetamine withdrawal in mice and to assess the modulation of the OTR, MOPr, D2R, CRF and HPA-axis following chronic methamphetamine administration and withdrawal. Ten-day methamphetamine administration (2 mg/kg) increased OTR binding in the amygdala, whilst 7 days of withdrawal induced an upregulation of this receptor in the lateral septum. Chronic methamphetamine treatment increased plasma OT levels that returned to control levels following withdrawal. In addition, methamphetamine administration and withdrawal increased striatal MOPr binding, as well as c-Fos(+)/CRF(+) neuronal expression in the amygdala, whereas an increase in plasma corticosterone levels was observed following METH administration, but not withdrawal. No differences were observed in the D2R binding following METH administration and withdrawal. The alterations in the OTR, MOPr and CRF systems occurred concomitantly with the emergence of anxiety-related symptoms and the development of psychomotor sensitization during withdrawal. Collectively, our findings indicate that chronic methamphetamine use and abstinence can induce brain-region specific neuroadaptations of the OTR, MOPr and CRF systems, which may, at least, partly explain the withdrawal-related anxiogenic effects. PMID:26896754

  9. Oxytocin and vasopressin receptor gene variation as a proximate base for inter- and intraspecific behavioral differences in bonobos and chimpanzees.

    PubMed

    Staes, Nicky; Stevens, Jeroen M G; Helsen, Philippe; Hillyer, Mia; Korody, Marisa; Eens, Marcel

    2014-01-01

    Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5' promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼ 360 bp in this region (+/- DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees. PMID:25405348

  10. Oxytocin and Vasopressin Receptor Gene Variation as a Proximate Base for Inter- and Intraspecific Behavioral Differences in Bonobos and Chimpanzees

    PubMed Central

    Staes, Nicky; Stevens, Jeroen M. G.; Helsen, Philippe; Hillyer, Mia; Korody, Marisa; Eens, Marcel

    2014-01-01

    Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees. PMID:25405348

  11. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    SciTech Connect

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  12. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3×10(-5)mol/L and GW0742 IC50 4.9×10(-6)mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5)mol/L), beraprost (10(-5)mol/L) and GW0742 (10(-5)mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. PMID:26686607

  13. ( sup 3 H)SCH39166, a D1 dopamine receptor antagonist: Binding characteristics and localization

    SciTech Connect

    Wamsley, J.K.; Hunt, M.E.; McQuade, R.D.; Alburges, M.E. )

    1991-02-01

    Schering-Plough Research has developed a new, more specific analogue of SCH23390. This compound, SCH39166, has been shown to be a potent, specific, D1 receptor antagonist with several features which are advantageous over its predecessor. In this report, the binding characteristics of (3H)SCH39166 are described by in vitro analysis in rat brain tissues. The binding was shown to be of high affinity (Kd in the low nM range), saturable, and specific (readily displaceable with SCH23390, but not with the D2 receptor antagonists sulpiride or haloperidol). The binding of SCH39166 is more selective for binding to D1 receptors than SCH23390 with regard to overlap of the latter compound onto 5HT2 and 5HT1C receptors. Autoradiographic localization of D1 receptor sites labeled with (3H)SCH39166 showed a very specific distribution in areas known to contain high quantities of D1 receptors. These regions included the deepest layer of the cerebral cortex, the caudate-putamen, nucleus accumbens, olfactory tubercle, entopeduncular nucleus, and substantia nigra-pars reticulata, as well as less dense binding in a few other areas. At the concentration of ligand used (1 nM), there was a noticeable paucity of labeling in lamina IV of the cerebral cortex and in the choroid plexus, regions of high 5HT2 and 5HT1C receptor binding, respectively. Thus, SCH39166 represents a new D1 receptor antagonist which shows a greater specificity for the D1 receptor than its predecessor SCH23390. As previously shown, another distinct advantage of this compound is its stability in primates which should allow the determination of the effects and utility of D1 receptor antagonism in vivo.

  14. Mesenteric vascular reactivity to histamine receptor agonists and antagonists. [Dogs

    SciTech Connect

    Walus, K.M.; Fondacaro, J.D.; Jacobson, E.D.

    1981-05-01

    Response patterns of intestinal blood flow, oxygen extraction and consumption, blood flow distribution, and motility were assessed during intraarterial infusions of histamine, histamine after H1 or H2 blockade, dimaprit or dimaprit after H2 blockade. Histamine produced an initial peak response of blood flow with a slow decrease thereafter. Oxygen extraction was evenly depressed throughout the infusion, and oxygen consumption increased at the beginning. All initial responses were blocked by tripelennamine. Ranitidine, a new H2 antagonist, accelerated the decay of all responses. Dimaprit produced effects identical to those of histamine after tripelennamine. Distribution of blood flow was unchanged at the beginning of histamine infusion, but subsequently showed a shift to muscularis which was blocked by tripelennamine. Histamine usually stimulated intestinal contractions and this effect was abolished by tripelennamine. Thus, H1 stimulation, besides producing an initial vasodilation, increases oxygen uptake and redistributes flow to the muscularis.

  15. Oxycodone with an opioid receptor antagonist: A review.

    PubMed

    Davis, Mellar P; Goforth, Harold W

    2016-01-01

    The rationale for putting opioid antagonists with an agonist is to improve pain control, to reduce side effects, and/or to reduce abuse. The combination of prolonged release (PR) oxycodone and naloxone reduces constipation as demonstrated in multiple studies and has been designated a tamper-resistant opioid by the Food and Drug Administration. Bioequivalence of the combination product compared with PR oxycodone has not been established. Several of the pivotal studies provided suboptimal laxative support in the control arm of the randomized trials. Two noninferiority trials have demonstrated equivalent analgesia between PR oxycodone and the combination product at doses of less than 120 mg of oxycodone per day. There appears to be an analgesic ceiling above 80-120 mg of oxycodone per day. Safety monitoring during randomized trials was not been well described in published manuscripts. Benefits appear to be better for those with chronic noncancer pain compared with individuals with cancer when constipation was the primary outcome. PMID:26908305

  16. Histamine H₄ Receptor Antagonists: A New Approach for Tinnitus Treatment?

    PubMed

    Hagenow, Jens; Stark, Holger

    2015-01-01

    Tinnitus, a disorder with disruptive sound perception in the head without an external source, affects around 15 % of the worldwide adult population. Since there is no approved drug for the treatment for this symptom, novel strategies need to be developed to provide relief for the patient. A patent from the small French start-up company Sensorion suggests the use of histamine H4 receptor (H4R) inhibitors as potential treatment. Since histamine and its receptor subtypes are strongly involved in neuronal and inflammatory processes in vestibular areas, targeting the H4R could be a novel way to gain a treatment for tinnitus. Although mRNA and protein levels of H4R have been demonstrated on isolated spiral ganglion neurons from mice, the methods of receptor detection as well as the species relevance of the data are under discussion and require considerable further verification, especially on a disease with a high medical need like tinnitus. PMID:25909438

  17. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats

    PubMed Central

    YANG, NENGLI; LIANG, YAFENG; YANG, PEI; WANG, WEIJIAN; ZHANG, XUEZHENG; WANG, JUNLU

    2016-01-01

    Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1β, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients. PMID:27347079

  18. Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind.

    PubMed

    Wade, Mark; Hoffmann, Thomas J; Jenkins, Jennifer M

    2015-12-01

    Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behavior--two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. PMID:25977357

  19. Religion priming and an oxytocin receptor gene (OXTR) polymorphism interact to affect self-control in a social context.

    PubMed

    Sasaki, Joni Y; Mojaverian, Taraneh; Kim, Heejung S

    2015-02-01

    Using a genetic moderation approach, this study examines how an experimental prime of religion impacts self-control in a social context, and whether this effect differs depending on the genotype of an oxytocin receptor gene (OXTR) polymorphism (rs53576). People with different genotypes of OXTR seem to have different genetic orientations toward sociality, which may have consequences for the way they respond to religious cues in the environment. In order to determine whether the influence of religion priming on self-control is socially motivated, we examine whether this effect is stronger for people who have OXTR genotypes that should be linked to greater rather than less social sensitivity (i.e., GG vs. AA/AG genotypes). The results showed that experimentally priming religion increased self-control behaviors for people with GG genotypes more so than people with AA/AG genotypes. Furthermore, this Gene × Religion interaction emerged in a social context, when people were interacting face to face with another person. This research integrates genetic moderation and social psychological approaches to address a novel question about religion's influence on self-control behavior, which has implications for coping with distress and psychopathology. These findings also highlight the importance of the social context for understanding genetic moderation of psychological effects. PMID:25640833

  20. Oxytocin receptor and Mecp2 308/Y knockout mice exhibit altered expression of autism-related social behaviors.

    PubMed

    Pobbe, Roger L H; Pearson, Brandon L; Blanchard, D Caroline; Blanchard, Robert J

    2012-12-01

    The development of tasks measuring behaviors specific to the three major symptom categories for autism makes it possible to differentiate mouse models of autism spectrum disorders (ASD) in terms of changes in these specific categories. Prior studies indicate that BTBR T+tf/J mice, the strain that has been evaluated most extensively, show autism-relevant changes in all three symptom categories; reciprocal social interactions; communication; and repetitive, ritualized behaviors. This report reviews the behaviors of oxytocin receptor (Oxtr) and Mecp2(308/Y) wild-type (WT) and knockout (KO) mice, in a number of tests specifically designed to provide information on behaviors that may show functional parallels to the core symptoms of ASD. Oxtr KO mice show robust decreases in reciprocal social interactions, and reduced levels of communication, but no changes in repetitive, ritualized behaviors; whereas Mecp2(308/Y) KO mice show a slight but consistent enhancement of social behavior and communication, and no changes in repetitive, ritualized behaviors. This data base, although small, strongly indicates that mouse models can sort the diagnostic symptoms of autism, and suggests that biological and physiological analyses of these strains may be capable of providing differential information on the brain systems involved in particular symptoms of this disorder. Profiles of behavioral changes in other mouse models of ASD should provide additional specificity in the search for biomarkers associated with particular ASD symptoms and symptom clusters. PMID:22406388

  1. APORPHINOID ANTAGONISTS OF 5-HT2A RECEPTORS: FURTHER EVALUATION OF RING A SUBSTITUENTS AND THE SIZE OF RING C

    PubMed Central

    Ponnala, Shashikanth; Kapadia, Nirav; Navarro, Hernán A.; Harding, Wayne W.

    2014-01-01

    A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340. PMID:24766771

  2. Bazedoxifene-scaffold-based mimetics of solomonsterols A and B as novel pregnane X receptor antagonists.

    PubMed

    Hodnik, Žiga; Peterlin Mašič, Lucija; Tomašić, Tihomir; Smodiš, Domen; D'Amore, Claudio; Fiorucci, Stefano; Kikelj, Danijel

    2014-06-12

    Pregnane X receptor (PXR), a member of the NR1I nuclear receptor family, acts as a xenobiotic sensor and a paramount transcriptional regulator of drug-metabolizing enzymes and transporters. The overexpression of PXR in various cancer cells indicates the importance of PXR as a drug target for countering multidrug resistance in anticancer treatments. We describe the discovery of novel bazedoxifene-scaffold-based PXR antagonists inspired by the marine sulfated steroids solomonsterol A and B as natural leads. A luciferase reporter assay on a PXR-transfected HepG2 cell line identified compounds 19-24 as promising PXR antagonists. Further structure-activity relationship studies of the most active PXR antagonist from the series (compound 20, IC50 = 11 μM) revealed the importance of hydroxyl groups as hydrogen-bond donors for PXR antagonistic activity. PXR antagonists 20 and 24 (IC50 = 14 μM), in addition to the downregulation of PXR expression, exhibited inhibition of PXR-induced CYP3A4 expression, which illustrates their potential to suppress PXR-regulated phase-I drug metabolism. PMID:24828006

  3. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  4. Oxytocin-dependent consolation behavior in rodents

    PubMed Central

    Burkett, J. P.; Andari, E.; Johnson, Z. V.; Curry, D. C.; de Waal, F. B. M.; Young, L. J.

    2016-01-01

    Consolation behavior toward distressed others is common in humans and great apes, yet our ability to explore the biological mechanisms underlying this behavior is limited by its apparent absence in laboratory animals. Here, we provide empirical evidence that a rodent species, the highly social and monogamous prairie vole (Microtus ochrogaster), greatly increases partner-directed grooming toward familiar conspecifics (but not strangers) that have experienced an unobserved stressor, providing social buffering. Prairie voles also match the fear response, anxiety-related behaviors, and corticosterone increase of the stressed cagemate, suggesting an empathy mechanism. Exposure to the stressed cagemate increases activity in the anterior cingulate cortex, and oxytocin receptor antagonist infused into this region abolishes the partner-directed response, showing conserved neural mechanisms between prairie vole and human. PMID:26798013

  5. Oxytocin-dependent consolation behavior in rodents.

    PubMed

    Burkett, J P; Andari, E; Johnson, Z V; Curry, D C; de Waal, F B M; Young, L J

    2016-01-22

    Consolation behavior toward distressed others is common in humans and great apes, yet our ability to explore the biological mechanisms underlying this behavior is limited by its apparent absence in laboratory animals. Here, we provide empirical evidence that a rodent species, the highly social and monogamous prairie vole (Microtus ochrogaster), greatly increases partner-directed grooming toward familiar conspecifics (but not strangers) that have experienced an unobserved stressor, providing social buffering. Prairie voles also match the fear response, anxiety-related behaviors, and corticosterone increase of the stressed cagemate, suggesting an empathy mechanism. Exposure to the stressed cagemate increases activity in the anterior cingulate cortex, and oxytocin receptor antagonist infused into this region abolishes the partner-directed response, showing conserved neural mechanisms between prairie vole and human. PMID:26798013

  6. Effects of P2Y12 receptor antagonists beyond platelet inhibition - comparison of ticagrelor with thienopyridines.

    PubMed

    Nylander, Sven; Schulz, Rainer

    2016-04-01

    The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea. PMID:26758983

  7. Enantiopure Indolo[2,3-a]quinolizidines: Synthesis and Evaluation as NMDA Receptor Antagonists.

    PubMed

    Pereira, Nuno A L; Sureda, Francesc X; Pérez, Maria; Amat, Mercedes; Santos, Maria M M

    2016-01-01

    Enantiopure tryptophanol is easily obtained from the reduction of its parent natural amino acid trypthophan (available from the chiral pool), and can be used as chiral auxiliary/inductor to control the stereochemical course of a diastereoselective reaction. Furthermore, enantiopure tryptophanol is useful for the syntheses of natural products or biological active molecules containing the aminoalcohol functionality. In this communication, we report the development of a small library of indolo[2,3-a]quinolizidines and evaluation of their activity as N-Methyl d-Aspartate (NMDA) receptor antagonists. The indolo[2,3-a]quinolizidine scaffold was obtained using the following key steps: (i) a stereoselective cyclocondensation of (S)- or (R)-tryptophanol with appropriate racemic δ-oxoesters; (ii) a stereocontrolled cyclization on the indole nucleus. The synthesized enantiopure indolo[2,3-a]quinolizidines were evaluated as NMDA receptor antagonists and one compound was identified to be 2.9-fold more potent as NMDA receptor blocker than amantadine (used in the clinic for Parkinson's disease). This compound represents a hit compound for the development of novel NMDA receptor antagonists with potential applications in neurodegenerative disorders associated with overactivation of NMDA receptors. PMID:27509489

  8. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity.

    PubMed

    Dennis, Megan K; Field, Angela S; Burai, Ritwik; Ramesh, Chinnasamy; Petrie, Whitney K; Bologa, Cristian G; Oprea, Tudor I; Yamaguchi, Yuri; Hayashi, Shin-Ichi; Sklar, Larry A; Hathaway, Helen J; Arterburn, Jeffrey B; Prossnitz, Eric R

    2011-11-01

    GPER/GPR30 is a seven-transmembrane G protein-coupled estrogen receptor that regulates many aspects of mammalian biology and physiology. We have previously described both a GPER-selective agonist G-1 and antagonist G15 based on a tetrahydro-3H-cyclopenta[c]quinoline scaffold. The antagonist lacks an ethanone moiety that likely forms important hydrogen bonds involved in receptor activation. Computational docking studies suggested that the lack of the ethanone substituent in G15 could minimize key steric conflicts, present in G-1, that limit binding within the ERα ligand binding pocket. In this report, we identify low-affinity cross-reactivity of the GPER antagonist G15 to the classical estrogen receptor ERα. To generate an antagonist with enhanced selectivity, we therefore synthesized an isosteric G-1 derivative, G36, containing an isopropyl moiety in place of the ethanone moiety. We demonstrate that G36 shows decreased binding and activation of ERα, while maintaining its antagonist profile towards GPER. G36 selectively inhibits estrogen-mediated activation of PI3K by GPER but not ERα. It also inhibits estrogen- and G-1-mediated calcium mobilization as well as ERK1/2 activation, with no effect on EGF-mediated ERK1/2 activation. Similar to G15, G36 inhibits estrogen- and G-1-stimulated proliferation of uterine epithelial cells in vivo. The identification of G36 as a GPER antagonist with improved ER counterselectivity represents a significant step towards the development of new highly selective therapeutics for cancer and other diseases. PMID:21782022

  9. Small-molecule endothelin receptor antagonists: a review of patenting activity across therapeutic areas.

    PubMed

    Mucke, Hermann A M

    2009-06-01

    In the field of nonpeptide NCEs with endothelin receptor antagonist activity, a burst in corporate IP filings occurred in the 1990s once the human endothelin system had been characterized, but patent activity has declined in the past decade. Universities have not been active in this area of research to a degree that would have led to many patent applications. While three endothelin receptor antagonists (bosentan, sitaxentan and ambrisentan) are already available for the treatment of pulmonary arterial hypertension, the use of such compounds for the larger therapy areas of heart failure, cancer and nephropathy is still being evaluated in late-stage clinical trials. Marketed and advanced-stage endothelin receptor blockers have remarkably little chemical diversity; thus, the substantially larger chemical space defined by patenting remains to be explored. PMID:19517317

  10. Drug Insight: endothelin-receptor antagonists for pulmonary arterial hypertension in systemic rheumatic diseases.

    PubMed

    Humbert, Marc; Simonneau, Gérald

    2005-12-01

    Rapid advances in the understanding of endothelin as a naturally occurring peptide with developmental and regulatory roles in normal physiology, along with a number of deleterious effects under pathologic conditions (including vasoconstriction, fibrosis, vascular hypertrophy, and inflammation) have led to the development of endothelin-receptor antagonists (ERAs). Bosentan, an antagonist with dual specificity for the endothelin-receptor subtypes A and B, has been shown to be efficacious and well tolerated in placebo-controlled clinical trials and is now approved in many countries, including the US, Canada, and Europe, for treatment of pulmonary arterial hypertension (PAH), including PAH associated with rheumatic diseases. ERAs with specificity for the endothelin-receptor subtype A, including sitaxsentan and ambrisentan, are currently undergoing investigation. This article reviews PAH associated with systemic rheumatic diseases and describes the role of ERAs in this setting. PMID:16932638

  11. Homology modeling and antagonist binding site study of the human histamine H2 receptor.

    PubMed

    Zhang, Jing; Qi, Tao; Wei, Jing

    2012-11-01

    On the basis of the high resolution crystal structures of bovine rhodopsin, human beta2-adrenergic receptor and human A(2a) adenosine receptor, three-dimensional structure of the human histamine H2 receptor (HHR2) was developed by homology modeling. Results of the evaluations suggest that a high quality homology model for HHR2 has been obtained. Three antagonists, cimetidine, ranitidine and nizatidine, were applied to binding site study with this model through molecular docking, molecular dynamics simulations and the molecular mechanics-Poisson-Boltzmann surface area calculations. One aspartic acid, Asp98 in transmembrane domain 7 (TM3), has been identified as major contributors to ligand binding by H-bond interactions. Asn159 in TM4 and Asp186 in TM5 are of great importance in stabilizing HHR2- antagonist complexes. Two hydrophobic sites especially two residues, Val99 in TM3 and Phe254 in TM6, were identified to be essential for their strong hydrophobic interactions with antagonists. The findings reported here are in agreement with available experimental mutagenesis data. This study should be very helpful for a better understanding of the action mode of the antagonist and for guiding further drug design and mutagenesis studies. PMID:22779803

  12. Identification of a New Morpholine Scaffold as a P2Y12 Receptor Antagonist.

    PubMed

    Ahn, Young Ha; Lee, Joo-Youn; Park, Hee Dong; Kim, Tae Hun; Park, Min Chul; Choi, Gildon; Kim, Sunghoon

    2016-01-01

    The P2Y12 receptor is critical for platelet activation and is an attractive drug target for the prevention of atherothrombotic events. Despite the proven antithrombotic efficacy of P2Y12 inhibitors, these thienopyridine scaffolds are prodrugs that lack important features of the ideal antithrombotic agent. For this reason, ticagrelor-a new chemical class of P2Y12 receptor antagonist-was developed, but it can cause shortness of breath and various types of bleeding. Moreover, ticagrelor is a cytochrome P450 3A4 substrate/inhibitor and, therefore, caution should be exercised when it is used concomitantly with strong CYP3A4 inducers/inhibitors. There is a need for novel P2Y12 receptor antagonist scaffolds that are reversible and have high efficacy without associated side effects. Here, we describe a novel antagonist containing a morpholine moiety that was identified by screening libraries of commercially available compounds. The molecule, Compound E, acted on P2Y12, but not P2Y1 and P2Y13, and exhibited pharmacological characteristics that were distinct from those of ticagrelor, acting instead on P2Y12 via an allosteric mechanism. These results provide a basis for the development/optimization of a new class of P2Y12 antagonists. PMID:27563870

  13. A new class of pseudopeptide antagonists of the kinin B1 receptor containing alkyl spacers.

    PubMed

    Galoppini, C; Meini, S; Tancredi, M; Di Fenza, A; Triolo, A; Quartara, L; Maggi, C A; Formaggio, F; Toniolo, C; Mazzucco, S; Papini, A; Rovero, P

    1999-02-11

    Four previously reported kinin receptor peptide antagonists, including the B1 receptor-selective peptides desArg10-HOE 140 (H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-OH) and B-9858 (H-Lys-Lys-Arg-Pro-Hyp-Gly-Igl-Ser-D-Igl-Oic-OH), have been modified by replacement of the central tetrapeptide Pro-Hyp-Gly-Xaa with linear alkyl spacers of variable length. The analogue of desArg10-HOE 140 containing the 11-aminoundecanoic acid as spacer, MEN 11575 [H-D-Arg-Arg-NH-(CH2)10-CO-Ser-D-Tic-Oic-OH], was found to be slightly more potent than the unmodified peptide (pA2 = 7.1) as a kinin B1 receptor antagonist in the rat ileum longitudinal smooth muscle assay. Moreover, MEN 11575 is devoid of residual agonist activity at the kinin B1 receptor (rat ileum) and antagonist activity at the kinin B2 receptor (guinea pig ileum longitudinal smooth muscle). Both these activities are displayed by the parent peptide desArg10-HOE 140. Therefore, despite its greatly simplified chemical structure, MEN 11575 shows an improved pharmacological profile in terms of both potency and selectivity, and it represents a good template for the development of new peptidomimetic kinin B1 receptor antagonists. We also report an attempt to investigate the conformational role of the flexible, linear spacer of MEN 11575 and to design more constrained analogues, possibly locked in the bioactive conformation, using semirigid spacers based on Calpha-tetrasubstituted alpha-amino acids of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc). PMID:9986712

  14. Antagonists of retinoic acid receptors (RARs) are potent growth inhibitors of prostate carcinoma cells

    PubMed Central

    Hammond, L A; Krinks, C H Van; Durham, J; Tomkins, S E; Burnett, R D; Jones, E L; Chandraratna, R A S; Brown, G

    2001-01-01

    Novel synthetic antagonists of retinoic acid receptors (RARs) have been developed. To avoid interference by serum retinoids when testing these compounds, we established serum-free grown sub-lines (>3 years) of the prostate carcinoma lines LNCaP, PC3 and DU145. A high affinity pan-RAR antagonist (AGN194310, Kd for binding to RARs = 2–5 nM) inhibited colony formation (by 50%) by all three lines at 16–34 nM, and led to a transient accumulation of flask-cultured cells in G1 followed by apoptosis. AGN194310 is 12–22 fold more potent than all-trans retinoic acid (ATRA) against cell lines and also more potent in inhibiting the growth of primary prostate carcinoma cells. PC3 and DU145 cells do not express RARβ, and an antagonist with predominant activity at RARβ and RARγ (AGN194431) inhibited colony formation at concentrations (∼100 nM) commensurate with a Kd value of 70 nM at RARγ. An RARα antagonist (AGN194301) was less potent (IC50 ∼200 nM), but was more active than specific agonists of RARα and of βγ. A component(s) of serum and of LNCaP-conditioned medium diminishes the activity of antagonists: this factor is not the most likely candidates IGF-1 and EGF. In vitro studies of RAR antagonists together with data from RAR-null mice lead to the hypothesis that RARγ-regulated gene transcription is necessary for the survival and maintenance of prostate epithelium. The increased potencies of RAR antagonists, as compared with agonists, suggest that antagonists may be useful in the treatment of prostate carcinoma. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487280

  15. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects.

    PubMed

    Opal, M D; Klenotich, S C; Morais, M; Bessa, J; Winkle, J; Doukas, D; Kay, L J; Sousa, N; Dulawa, S M

    2014-10-01

    Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset. Our findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling. PMID:24166413

  16. VARIATION IN THE OXYTOCIN RECEPTOR GENE IS ASSOCIATED WITH INCREASED RISK FOR ANXIETY, STRESS AND DEPRESSION IN INDIVIDUALS WITH A HISTORY OF EXPOSURE TO EARLY LIFE STRESS

    PubMed Central

    Myers, Amanda J.; Williams, Leanne; Gatt, Justine M.; McAuley-Clark, Erica Z.; Dobson-Stone, Carol; Schofield, Peter R.; Nemeroff, Charles B.

    2014-01-01

    Background Oxytocin is a neuropeptide that is involved in the regulation of mood, anxiety and social biology. Genetic variation in the oxytocin receptor gene (OXTR) has been implicated in anxiety, depression and related stress phenotypes. It is not yet known whether OXTR interacts with other risk factors such as early life trauma to heighten the severity of experienced anxiety and depression. Methods In this study, we examined genotypes in 653 individuals and tested whether SNP variation in OXTR correlates with severity of features of self-reported experience on the Depression Anxiety and Stress Scale (DASS), and whether this correlation is enhanced when early life trauma is taken into account. We also assessed the effects of OXTR SNPs on RNA expression levels in two separate brain tissue cohorts totaling 365 samples. Results A significant effect of OXTR genotype on DASS anxiety, stress and depression scores was found and ELS events, in combination with several different OXTR SNPs, were significantly associated with differences in DASS scores with one SNP (rs139832701) showing significant association or a trend towards association for all three measures. Several OXTR SNPs were correlated with alterations in OXTR RNA expression and rs3831817 replicated across both sets of tissues. Conclusions These results support the hypothesis that the oxytocin system plays a role in the pathophysiology of mood and anxiety disorders. PMID:25262417

  17. Effects of Reproductive Experience on Central Expression of Progesterone, Oestrogen α, Oxytocin and Vasopressin Receptor mRNA in Male California Mice (Peromyscus californicus)

    PubMed Central

    Perea-Rodriguez, J. P.; Takahashi, E. Y.; Amador, T. M.; Hao, R. C.; Saltzman, W.; Trainor, B. C.

    2016-01-01

    Fatherhood in biparental mammals is accompanied by distinct neuroendocrine changes in males, involving some of the same hormones involved in maternal care. In the monogamous, biparental California mouse (Peromyscus californicus), paternal care has been linked to changes in the central and/or peripheral availability of oestrogen, progesterone, vasopressin and oxytocin, although it is not known whether these endocrine fluctuations are associated with changes in receptor availability in the brain. Thus, we compared mRNA expression of oestrogen receptor (ER)α, progesterone receptor (PR), vasopressin receptor (V1a) and oxytocin receptor (OTR) in brain regions implicated in paternal care [i.e. medial preoptic area (MPOA)], fear [i.e. medial amygdala (MeA)] and anxiety [i.e. bed nucleus of the stria terminalis (BNST)] between first-time fathers (n = 8) and age-matched virgin males (n = 7). Males from both reproductive conditions behaved paternally towards unrelated pups, whereas fathers showed significantly shorter latencies to behave paternally and less time investigating pups. Furthermore, fathers showed significantly lower PR, OTR and V1a receptor mRNA expression in the BNST compared to virgins. Fathers also showed a marginally significant (P = 0.07) reduction in progesterone receptor mRNA expression in the MPOA, although fatherhood was not associated with any other changes in receptor mRNA in the MPOA or MeA. The results of the present study indicate that behavioural and endocrine changes associated with the onset of fatherhood, and/or with cohabitation with a (breeding) female, are accompanied by changes in mRNA expression of hormone and neuropeptide receptors in the brain. PMID:25659593

  18. Effects of reproductive experience on central expression of progesterone, oestrogen α, oxytocin and vasopressin receptor mRNA in male California mice (Peromyscus californicus).

    PubMed

    Perea-Rodriguez, J P; Takahashi, E Y; Amador, T M; Hao, R C; Saltzman, W; Trainor, B C

    2015-04-01

    Fatherhood in biparental mammals is accompanied by distinct neuroendocrine changes in males, involving some of the same hormones involved in maternal care. In the monogamous, biparental California mouse (Peromyscus californicus), paternal care has been linked to changes in the central and/or peripheral availability of oestrogen, progesterone, vasopressin and oxytocin, although it is not known whether these endocrine fluctuations are associated with changes in receptor availability in the brain. Thus, we compared mRNA expression of oestrogen receptor (ER)α, progesterone receptor (PR), vasopressin receptor (V1a) and oxytocin receptor (OTR) in brain regions implicated in paternal care [i.e. medial preoptic area (MPOA)], fear [i.e. medial amygdala (MeA)] and anxiety [i.e. bed nucleus of the stria terminalis (BNST)] between first-time fathers (n = 8) and age-matched virgin males (n = 7). Males from both reproductive conditions behaved paternally towards unrelated pups, whereas fathers showed significantly shorter latencies to behave paternally and less time investigating pups. Furthermore, fathers showed significantly lower PR, OTR and V1a receptor mRNA expression in the BNST compared to virgins. Fathers also showed a marginally significant (P = 0.07) reduction in progesterone receptor mRNA expression in the MPOA, although fatherhood was not associated with any other changes in receptor mRNA in the MPOA or MeA. The results of the present study indicate that behavioural and endocrine changes associated with the onset of fatherhood, and/or with cohabitation with a (breeding) female, are accompanied by changes in mRNA expression of hormone and neuropeptide receptors in the brain. PMID:25659593

  19. Major Depressive Disorder and Kappa Opioid Receptor Antagonists

    PubMed Central

    Li, Wei; Sun, Huijiao; Chen, Hao; Yang, Xicheng; Xiao, Li; Liu, Renyu; Shao, Liming; Qiu, Zhuibai

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disease worldwide. The clinical use of tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs)/serotonin–norepinephrine reuptake inhibitor (SNRIs) for this condition have been widely accepted, but they were challenged by unacceptable side-effects, potential drug-drug interactions (DDIs) or slow onset/lack of efficacy. The endogenous opioid system is involved in stress and emotion regulatory processes and its role in MDD has been implicated. Although several KOR antagonists including JDTic and PF-04455242 were discontinued in early clinical trials, ALKS 5461 and CERC-501(LY-2456302) survived and entered into Phase-III and Phase-II trials, respectively. Considering the efficacy and safety of early off-label use of buprenorphine in the management of the treatment-resistant depression (TRD), it will be not surprising to predict the potential success of ALKS 5461 (a combination of buprenorphine and ALKS-33) in the near future. Moreover, CERC-501 will be expected to be available as monotherapy or adjuvant therapy with other first-line antidepressants in the treatment of TRD, if ongoing clinical trials continue to provide positive benefit-risk profiles. Emerging new researches might bring more drug candidates targeting the endogenous opioid system to clinical trials to address current challenges in MDD treatment in clinical practice. PMID:27213169

  20. Species differences in the effects of the κ-opioid receptor antagonist zyklophin.

    PubMed

    Sirohi, Sunil; Aldrich, Jane V; Walker, Brendan M

    2016-03-01

    We have shown that dysregulation of the dynorphin/kappa-opioid receptor (DYN/KOR) system contributes to escalated alcohol self-administration in alcohol dependence and that KOR antagonists with extended durations of action selectively reduce escalated alcohol consumption in alcohol-dependent animals. As KOR antagonism has gained widespread attention as a potential therapeutic target to treat alcoholism and multiple neuropsychiatric disorders, we tested the effect of zyklophin (a short-acting KOR antagonist) on escalated alcohol self-administration in rats made alcohol-dependent using intermittent alcohol vapor exposure. Following dependence induction, zyklophin was infused centrally prior to alcohol self-administration sessions and locomotor activity tests during acute withdrawal. Zyklophin did not impact alcohol self-administration or locomotor activity in either exposure condition. To investigate the neurobiological basis of this atypical effect for a KOR antagonist, we utilized a κ-, μ-, and δ-opioid receptor agonist-stimulated GTPyS coupling assay to examine the opioid receptor specificity of zyklophin in the rat brain and mouse brain. In rats, zyklophin did not affect U50488-, DAMGO-, or DADLE-stimulated GTPyS coupling, whereas the prototypical KOR antagonist nor-binaltorphimine (norBNI) attenuated U50488-induced stimulation in the rat brain tissue at concentrations that did not impact μ- and δ-receptor function. To reconcile the discrepancy between the present rat data and published mouse data, comparable GTPyS assays were conducted using mouse brain tissue; zyklophin effects were consistent with KOR antagonism in mice. Moreover, at higher concentrations, zyklophin exhibited agonist properties in rat and mouse brains. These results identify species differences in zyklophin efficacy that, given the rising interest in the development of short-duration KOR antagonists, should provide valuable information for therapeutic development efforts. PMID:26992699

  1. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    PubMed Central

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 μM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  2. Prophylactic effects of the histamine H1 receptor antagonist epinastine and the dual thromboxane A2 receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells antagonist ramatroban on allergic rhinitis model in mice.

    PubMed

    Suzuki, Yuh; Inoue, Toshio; Yamamoto, Atsuki; Sugimoto, Yukio

    2011-01-01

    The prophylactic use of anti-allergic drugs has been proposed to be effective in the treatment of seasonal allergic rhinitis in humans. However, there is little information regarding the prophylactic effect of thromboxane A(2) (TXA(2)) receptor antagonist on allergic rhinitis. Recent studies revealed that a TXA(2) receptor antagonist ramatroban could block the prostaglandin D(2) (PGD(2)) receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). In the present study, we investigated the prophylactic effects of the histamine H(1) receptor antagonist epinastine and the TXA(2) receptor antagonist ramatroban and seratrodast on mouse models of allergic rhinitis. Female BALB/c mice were sensitized by an intraperitoneal injection of ovalbumin and alum on days 0, 5, 14 and 21. Seven days later, mice were sensitized by intranasal application of ovalbumin thrice a week. Drugs were administered once a day from day 22. The severity of allergic rhinitis was assessed by determining the extent of 2 nasal allergic symptoms (sneezing and nasal rubbing). Histamine sensitivity and eosinophil infiltration into the nasal mucosa were also determined. Epinastine and ramatroban significantly reduced nasal symptoms and the number of eosinophils in the nasal mucosa. Seratrodast showed no effect on nasal symptoms and eosinophil infiltration into the nasal mucosa. In addition, histamine sensitivity was reduced by epinastine and ramatroban. These results indicate that epinastine and ramatroban induce the prophylactic effect on allergic rhinitis. PMID:21467637

  3. Discovery and development of orexin receptor antagonists as therapeutics for insomnia

    PubMed Central

    Winrow, CJ; Renger, JJ

    2014-01-01

    Insomnia persistently affects the quality and quantity of sleep. Currently approved treatments for insomnia primarily target γ-aminobutyric acid-A (GABA-A) receptor signalling and include benzodiazepines and GABA-A receptor modulators. These drugs are used to address this sleep disorder, but have the potential for side effects such as tolerance and dependence, making them less attractive as maintenance therapy. Forward and reverse genetic approaches in animals have implicated orexin signalling (also referred to as hypocretin signalling) in the control of vigilance and sleep/wake states. Screening for orexin receptor antagonists using in vitro and in vivo methods in animals has identified compounds that block one or other of the orexin receptors (single or dual orexin receptor antagonists [SORAs and DORAs], respectively) in animals and humans. SORAs have primarily been used as probes to further elucidate the roles of the individual orexin receptors, while a number of DORAs have progressed to clinical development as pharmaceutical candidates for insomnia. The DORA almorexant demonstrated significant improvements in a number of clinically relevant sleep parameters in animal models and in patients with insomnia but its development was halted. SB-649868 and suvorexant have demonstrated efficacy and tolerability in Phase II and III trials respectively. Furthermore, suvorexant is currently under review by the Food and Drug Administration for the treatment of insomnia. Based on the publication of recent non-clinical and clinical data, orexin receptor antagonists potentially represent a targeted, effective and well-tolerated new class of medications for insomnia. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:23731216

  4. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders.

    PubMed

    Hodgson, Robert A; Bedard, Paul J; Varty, Geoffrey B; Kazdoba, Tatiana M; Di Paolo, Therese; Grzelak, Michael E; Pond, Annamarie J; Hadjtahar, Abdallah; Belanger, Nancy; Gregoire, Laurent; Dare, Aurelie; Neustadt, Bernard R; Stamford, Andrew W; Hunter, John C

    2010-10-01

    Parkinson's Disease (PD) and Extrapyramidal Syndrome (EPS) are movement disorders that result from degeneration of the dopaminergic input to the striatum and chronic inhibition of striatal dopamine D(2) receptors by antipsychotics, respectively. Adenosine A(2A) receptors are selectively localized in the basal ganglia, primarily in the striatopallidal ("indirect") pathway, where they appear to operate in concert with D(2) receptors and have been suggested to drive striatopallidal output balance. In cases of dopaminergic hypofunction, A(2A) receptor activation contributes to the overdrive of the indirect pathway. A(2A) receptor antagonists, therefore, have the potential to restore this inhibitor imbalance. Consequently, A(2A) receptor antagonists have therapeutic potential in diseases of dopaminergic hypofunction such as PD and EPS. Targeting the A(2A) receptor may also be a way to avoid the issues associated with direct dopamine agonists. Recently, preladenant was identified as a potent and highly selective A(2A) receptor antagonist, and has produced a significant improvement in motor function in rodent models of PD. Here we investigate the effects of preladenant in two primate movement disorder models. In MPTP-treated cynomolgus monkeys, preladenant (1 or 3 mg/kg; PO) improved motor ability and did not evoke any dopaminergic-mediated dyskinetic or motor complications. In Cebus apella monkeys with a history of chronic haloperidol treatment, preladenant (0.3-3.0 mg/kg; PO) delayed the onset of EPS symptoms evoked by an acute haloperidol challenge. Collectively, these data support the use of preladenant for the treatment of PD and antipsychotic-induced movement disorders. PMID:20655910

  5. Roles of Amino Acids and Subunits in Determining the Inhibition of Nicotinic Acetylcholine Receptors by Competitive Antagonists

    PubMed Central

    Dilger, James P.; Vidal, Ana Maria; Liu, Man; Mettewie, Claire; Suzuki, Takahiro; Pham, Anh; Demazumder, Deeptankar

    2008-01-01

    Background Binding sites for agonists and competitive antagonists (nondepolarizing neuromuscular blocking agents) are located at the α–δ and α–ε subunit interfaces of adult nicotinic acetylcholine receptors. Most information about the amino acids that participate in antagonist binding comes from binding studies with (+)-tubocurarine and metocurine. These bind selectively to the α–ε interface but are differentially sensitive to mutations. To test the generality of this observation, the authors measured current inhibition by five competitive antagonists on wild-type and mutant acetylcholine receptors. Methods HEK293 cells were transfected with wild-type or mutant (αY198F, εD59A, εD59N, εD173A, εD173N, δD180K) mouse muscle acetylcholine receptor complementary DNA. Outside-out patches were excised and perfused with acetylcho-line in the absence and presence of antagonist. Concentration–response curves were constructed to determine antagonist IC50. An antagonist-removal protocol was used to determine dissociation and association rates. Results Effects of mutations were antagonist specific. αY198F decreased the IC50 of (+)-tubocurarine 10-fold, increased the IC50 of vecuronium 5-fold, and had smaller effects on other antagonists. (+)-Tubocurarine was the most sensitive antagonist to εD173 mutations. εD59 mutations had large effects on metocurine and cisatracurium. δD180K decreased inhibition by pancuronium, vecuronium, and cisatracurium. Inhibition by these antagonists was increased for receptors containing two δ subunits but no ε subunit. Differences in IC50 arose from differences in both dissociation and association rates. Conclusion Competitive antagonists exhibited different patterns of sensitivity to mutations. Except for pancuronium, the antagonists were sensitive to mutations at the α–ε interface. Pancuronium, vecuronium, and cisatracurium were selective for the α–δ interface. This suggests the possibility of synergistic

  6. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  7. Effects of Urotensin II Receptor Antagonist, GSK1440115, in Asthma

    PubMed Central

    Portnoy, Alison; Kumar, Sanjay; Behm, David J.; Mahar, Kelly M.; Noble, Robert B.; Throup, John P.; Russ, Steven F.

    2013-01-01

    Background: Urotensin II (U-II) is highly expressed in the human lung and has been implicated in regulating respiratory physiology in preclinical studies. Our objective was to test antagonism of the urotensin (UT) receptor by GSK1440115, a novel, competitive, and selective inhibitor of the UT receptor, as a therapeutic strategy for the treatment of asthma. Methods: Safety, tolerability, and pharmacokinetics (PK) of single doses of GSK1440115 (1–750 mg) were assessed in a Phase I, placebo controlled study in 70 healthy subjects. In a Phase Ib study, 12 asthmatic patients were randomized into a two-period, single-blind crossover study and treated with single doses of 750 mg GSK1440115 or placebo and given a methacholine challenge. Results: Administration of GSK1440115 was safe and well-tolerated in healthy subjects and asthmatic patients. In both studies, there was a high degree of variability in the observed PK following oral dosing with GSK1440115 at all doses. There was a marked food effect in healthy subjects at the 50 mg dose. In the presence of food at the 750 mg dose, the time to maximal concentration was between 2 and 6 h and the terminal half-life was short at approximately 2 h. All asthmatic patients maintained greater than the predicted concentration levels necessary to achieve predicted 96% receptor occupancy for ≥3 h (between 4 and 7 h post-dose). There were no apparent trends or relationships between the systemic plasma exposure of GSK1440115 and pharmacodynamic endpoints, PC20 after methacholine challenge and FEV1, in asthmatics. Conclusion: While GSK1440115 was safe and well-tolerated, it did not induce bronchodilation in asthmatics, or protect against methacholine-induced bronchospasm, suggesting that acute UT antagonism is not likely to provide benefit as an acute bronchodilator in this patient population. PMID:23641215

  8. The role of oxytocin in neuropsychiatric disorders.

    PubMed

    Marazziti, D; Catena Dell'osso, M

    2008-01-01

    Oxytocin (OT) is a neurohypophysial hormone synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Although OT-like substances have been identified in all vertebrates, OT has been found only in mammals where it plays a major role in the onset and maintaining of behaviors which are typical of these animals, such as labour and lactation. Recently, several data have suggested the involvement of OT in the formation of infant attachment, maternal behavior, pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. The aim of this paper was to review critically the role of OT in the regulation of different physiological functions and complex behaviors, as well as its possible involvement in the pathophysiology of some neuropsychiatric disorders. MEDLINE and PubMed (1972-2007) databases were searched for English language articles by using the following keywords: oxytocin, physiology, cognitive functions, attachment, psychopathology, psychiatric disorders. Papers were examined that addressed the following aspects of the OT system: synthesis and localization, receptors, physiology: In addition, latest findings showing abnormalities of OT and OT system in several neuropsychiatric disorders, including autism, obsessive-compulsive disorder, eating disorders, addiction, schizophrenia, post-traumatic stress disorder and Prader-Willy syndrome, will be also discussed together with the possible clinical use of OT or its analogues and/or antagonists. PMID:18336283

  9. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  10. Identification of spirooxindole and dibenzoxazepine motifs as potent mineralocorticoid receptor antagonists.

    PubMed

    Lotesta, Stephen D; Marcus, Andrew P; Zheng, Yajun; Leftheris, Katerina; Noto, Paul B; Meng, Shi; Kandpal, Geeta; Chen, Guozhou; Zhou, Jing; McKeever, Brian; Bukhtiyarov, Yuri; Zhao, Yi; Lala, Deepak S; Singh, Suresh B; McGeehan, Gerard M

    2016-03-15

    Mineralocorticoid receptor (MR) antagonists continue to be a prevalent area of research in the pharmaceutical industry. Herein we report the discovery of various spirooxindole and dibenzoxazepine constructs as potent MR antagonists. SAR analysis of our spirooxindole hit led to highly potent compounds containing polar solubilizing groups, which interact with the helix-11 region of the MR ligand binding domain (LBD). Various dibenzoxazepine moieties were also prepared in an effort to replace a known dibenzoxepane system which interacts with the hydrophobic region of the MR LBD. In addition, an X-ray crystal structure was obtained from a highly potent compound which was shown to exhibit both partial agonist and antagonist modes of action against MR. PMID:26897089

  11. Development of novel NK3 receptor antagonists with reduced environmental impact.

    PubMed

    Yamamoto, Koki; Okazaki, Shiho; Ohno, Hiroaki; Matsuda, Fuko; Ohkura, Satoshi; Maeda, Kei-Ichiro; Fujii, Nobutaka; Oishi, Shinya

    2016-08-15

    The neurokinin B (NKB)-neurokinin-3 receptor (NK3R) signaling positively regulates the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus. The NK3R-selective antagonists may suppress the reproductive functions of mammals. For development of novel NK3R antagonists with reduced environmental toxicity, a structure-activity relationship study of an NK3R antagonist, talnetant, was carried out. Among several talnetant derivatives with labile functional groups in the natural environment, 3-mercaptoquinoline 2f exhibited a comparable biological activity to that of the parent talnetant. Additionally, compound 2f was converted into the disulfide 3f or isothiazolone 8 by air-oxidation, both of which showed no binding affinity to NK3R. PMID:27298001

  12. Effect of Y-25130, a selective 5-hydroxytryptamine3 receptor antagonist, on gastric emptying in mice.

    PubMed

    Haga, K; Asano, K; Inaba, K; Morimoto, Y; Setoguchi, M

    1994-01-01

    The effect of Y-25130 on gastric emptying of nutrient test meals (solid chow) was examined in mice. In a dose range of 0.01-1 mg/kg, p.o., Y-25130 significantly accelerated gastric emptying of solid meals in a dose-dependent manner, at an ED30 of 0.021 mg/kg. Other 5-hydroxytryptamine3 receptor antagonists and prokinetic agents having 5-hydroxytryptamine3 receptor antagonistic properties accelerated the emptying of solid meals in the following rank order of potency: Y-25130 = granisetron > or = tropisetron > ondansetron > cisapride > metoclopramide. The acceleration of the gastric emptying showed a good correlation with the antagonistic potencies of these compounds on 5-hydroxytryptamine3 receptors, determined by the inhibition test of the von Bezold-Jarisch reflex in anesthetized rats (r2 = 0.99). Domperidone (1 and 10 mg/kg, p.o.) and trimebutine (10 and 100 mg/kg, p.o.) failed to increase the rate of emptying from the stomach. Cisplatin (30 mg/kg, i.p.), a chemotherapeutic agent, significantly delayed the gastric emptying of solid meals, and Y-25130 (0.1-1 mg/kg, p.o.) prevented such a delay in emptying in a dose-dependent manner. These results suggest that Y-25130 accelerates the gastric emptying in mice by antagonism of the 5-hydroxytryptamine3 receptor. PMID:7625886

  13. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy.

    PubMed

    Sato, Atsuhisa

    2015-06-01

    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used. PMID:25762415

  14. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns.

    PubMed

    Dogas, Z; Krolo, M; Stuth, E A; Tonkovic-Capin, M; Hopp, F A; McCrimmon, D R; Zuperku, E J

    1998-11-01

    To ascertain the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in shaping and controlling the phasic discharge patterns of medullary respiratory premotor neurons, localized pressure applications of the competitive GABAA receptor antagonist bicuculline (BIC) and the noncompetitive GABAA receptor antagonist picrotoxin (PIC) were studied. Multibarrel micropipettes were used in halothane anesthetized, paralyzed, ventilated, vagotomized dogs to record single unit activity from inspiratory and expiratory neurons in the caudal ventral respiratory group and to picoeject GABAA receptor antagonists. The moving time average of phrenic nerve activity was used to determine respiratory phase durations and to synchronize cycle-triggered histograms of discharge patterns. Picoejection of BIC and PIC had qualitatively different effects on the discharge patterns of respiratory neurons. BIC caused an increase in the discharge rate during the neuron's active phase without inducing activity during the neuron's normally silent phase. The resulting discharge patterns were amplified replicas (x2-3) of the underlying preejection phasic patterns. In contrast, picoejection of PIC did not increase the peak discharge rate during the neuron's active phase but induced a tonic level of activity during the neuron's normally silent phase. The maximum effective BIC dose (15 +/- 1.8 pmol/min) was considerably smaller than that for PIC (280 +/- 53 pmol/min). These findings suggest that GABAA receptors with differential pharmacology mediate distinct functions within the same neuron, 1) gain modulation that is BIC sensitive but PIC insensitive and 2) silent-phase inhibition blocked by PIC. These studies also suggest that the choice of an antagonist is an important consideration in the determination of GABA receptor function within the respiratory motor control system. PMID:9819249

  15. Oxytocin enables maternal behaviour by balancing cortical inhibition.

    PubMed

    Marlin, Bianca J; Mitre, Mariela; D'amour, James A; Chao, Moses V; Froemke, Robert C

    2015-04-23

    Oxytocin is important for social interactions and maternal behaviour. However, little is known about when, where and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behaviour in female mice by enhancing auditory cortical pup call responses. Retrieval behaviour required the left but not right auditory cortex, was accelerated by oxytocin in the left auditory cortex, and oxytocin receptors were preferentially expressed in the left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally precise excitatory and inhibitory responses in the left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  16. Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition

    PubMed Central

    Marlin, Bianca J.; Mitre, Mariela; D’amour, James A.; Chao, Moses V.; Froemke, Robert C.

    2015-01-01

    Oxytocin is important for social interactions and maternal behavior. However, little is known about when, where, and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behavior in female mice by enhancing auditory cortical pup call responses. Retrieval behavior required left but not right auditory cortex, was accelerated by oxytocin in left auditory cortex, and oxytocin receptors were preferentially expressed in left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally-precise excitatory and inhibitory responses in left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  17. Activity of new NOP receptor ligands in a rat peripheral mononeuropathy model: Potentiation of Morphine anti-allodynic activity by NOP receptor antagonists

    PubMed Central

    Khroyan, Taline V.; Polgar, Willma E.; Orduna, Juan; Jiang, Faming; Olsen, Cris; Toll, Lawrence; Zaveri, Nurulain T.

    2009-01-01

    The effect of new NOP receptor agonists and antagonists in the rat chronic constriction injury model was investigated. Intraperitoneally administered NOP receptor agonist SR14150 and antagonists SR16430 and SR14148, had no effect on mechanical allodynia when given alone. The nonselective NOP/mu-opioid receptor agonist SR16435, however, produced an anti-allodynic response, similar to morphine and reversible by naloxone. Notably, co-administration of the NOP receptor antagonists potentiated the anti-allodynic activity of both morphine and SR16435. Increased levels of the NOP receptor are implicated in the reduced efficacy of morphine in neuropathic pain. Our results suggest the utility of NOP receptor antagonists for potentiating opioid efficacy in chronic pain. PMID:19285491

  18. Phase shifts to light are altered by antagonists to neuropeptide receptors.

    PubMed

    Chan, Ryan K; Sterniczuk, Roxanne; Enkhbold, Yaruuna; Jeffers, Ryan T; Basu, Priyoneel; Duong, Bryan; Chow, Sue-Len; Smith, Victoria M; Antle, Michael C

    2016-07-01

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is a heterogeneous structure. Two key populations of cells that receive retinal input and are believed to participate in circadian responses to light are cells that contain vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP). VIP acts primarily through the VPAC2 receptor, while GRP works primarily through the BB2 receptor. Both VIP and GRP phase shift the circadian clock in a manner similar to light when applied to the SCN, both in vivo and in vitro, indicating that they are sufficient to elicit photic-like phase shifts. However, it is not known if they are necessary signals for light to elicit phase shifts. Here we test the hypothesis that GRP and VIP are necessary signaling components for the photic phase shifting of the hamster circadian clock by examining two antagonists for each of these neuropeptides. The BB2 antagonist PD176252 had no effect on light-induced delays on its own, while the BB2 antagonist RC-3095 had the unexpected effect of significantly potentiating both phase delays and advances. Neither of the VIP antagonists ([d-p-Cl-Phe6, Leu17]-VIP, or PG99-465) altered phase shifting responses to light on their own. When the BB2 antagonist PD176252 and the VPAC2 antagonist PG99-465 were delivered together to the SCN, phase delays were significantly attenuated. These results indicate that photic phase shifting requires participation of either VIP or GRP; phase shifts to light are only impaired when signalling in both pathways are inhibited. Additionally, the unexpected potentiation of light-induced phase shifts by RC-3095 should be investigated further for potential chronobiotic applications. PMID:27090819

  19. A possible correlation between oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats.

    PubMed

    Chow, Lok-Hi; Tao, Pao-Luh; Chen, Jin-Chung; Liao, Ruey-Ming; Chang, En-Pei; Huang, Eagle Yi-Kung

    2013-01-01

    In our previous study, we showed that intrathecal (i.t.) administration of angiotensin IV (Ang IV), an insulin-regulated aminopeptidase (IRAP) inhibitor, attenuated inflammatory hyperalgesia in rats. Using the plantar test in rats with carrageenan-induced paw inflammation, we investigated the possible mechanism(s) of this effect. Because i.t. oxytocin was reported to produce a dose-dependent anti-hyperalgesia in rats with inflammation, we speculate that there is a possible correlation between oxytocin-induced and Ang IV-induced anti-hyperalgesia. Using i.t. co-administered atosiban (oxytocin receptor antagonist), the anti-hyperalgesia by Ang IV was completely abolished. This indicated that oxytocin could be the major IRAP substrate responsible for the anti-hyperalgesia by Ang IV. When Ang IV was co-administered with a low dose of oxytocin, there was a significant enhancing effect of Ang IV on oxytocin-induced anti-hyperalgesia. In recent reports, electrical stimulation on the paraventricular hypothalamic nucleus (PVN) was proved to increase oxytocin release at the spinal cord. Our results also showed that Ang IV could prolong the anti-hyperalgesia induced by PVN stimulation. This suggests a possible protective effect of Ang IV on endogenous oxytocin degradation/dysfunctioning. Moreover, we examined the local effect of intraplantarly injected Ang IV in the same model. Our results showed no effect of local Ang IV on hyperalgesia and paw edema, indicating that Ang IV may not regulate the peripheral inflammatory process. Overall, our study suggests that Ang IV may act through the inhibition of the activity of IRAP to reduce the degradation of oxytocin at the spinal cord, thereby leading to anti-hyperalgesia in rats with inflammation. PMID:23142109

  20. Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping.

    PubMed Central

    Keidel, S; LeMotte, P; Apfel, C

    1994-01-01

    The pleiotropic effects of retinoic acid on cell differentiation and proliferation are mediated by two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Recently the synthetic retinoid Ro 41-5253 was identified as a selective RAR alpha antagonist. As demonstrated by gel retardation assays, Ro 41-5253 and two related new RAR alpha antagonists do not influence RAR alpha/RXR alpha heterodimerization and DNA binding. In a limited trypsin digestion assay, complexation of RAR alpha with retinoic acid or several other agonistic retinoids altered the degradation of the receptor such that a 30-kDa proteolytic fragment became resistant to proteolysis. This suggests a ligand-induced conformational change, which may be necessary for the interaction of the DNA-bound RAR alpha/RXR alpha heterodimer with other transcription factors. Our results demonstrate that antagonists compete with agonists for binding to RAR alpha and may induce a different structural alteration, suggested by the tryptic resistance of a shorter 25-kDa protein fragment in the digestion assay. This RAR alpha conformation seems to allow RAR alpha/RXR alpha binding to DNA but not the subsequent transactivation of target genes. Protease mapping with C-terminally truncated receptors revealed that the proposed conformational changes mainly occur in the DE regions of RAR alpha. Complexation of RAR beta, RAR gamma, and RXR alpha, as well as the vitamin D3 receptor, with their natural ligands resulted in a similar resistance of fragments to proteolytic digestion. This could mean that ligand-induced conformational changes are a general feature in the hormonal activation of vitamin D3 and retinoid receptors. Images PMID:8264595

  1. The orally active urotensin receptor antagonist, KR36676, attenuates cellular and cardiac hypertrophy

    PubMed Central

    Oh, K S; Lee, J H; Yi, K Y; Lim, C J; Lee, S; Park, C H; Seo, H W; Lee, B H

    2015-01-01

    Background and Purpose Blockade of the actions of urotensin-II (U-II) mediated by the urotensin (UT) receptor should improve cardiac function and prevent cardiac remodelling in cardiovascular disease. Here, we have evaluated the pharmacological properties of the recently identified UT receptor antagonist, 2-(6,7-dichloro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl)-N-methyl-N-(2-(pyrrolidin-1-yl)-1-(4-(thiophen-3-yl)phenyl) ethyl)acetamide (KR36676). Experimental Approach Pharmacological properties of KR36676 were studied in a range of in vitro assays (receptor binding, calcium mobilization, stress fibre formation, cellular hypertrophy) and in vivo animal models such as cardiac hypertrophy induced by transverse aortic constriction (TAC) or myocardial infarction (MI). Key Results KR36676 displayed high binding affinity for the UT receptor (Ki: 0.7 nM), similar to that of U-II (0.4 nM), and was a potent antagonist at that receptor (IC50: 4.0 nM). U-II-induced stress fibre formation and cellular hypertrophy were significantly inhibited with low concentrations of KR36676 (≥0.01 μM). Oral administration of KR36676 (30 mg·kg−1) in a TAC model in mice attenuated cardiac hypertrophy and myocardial fibrosis. Moreover, KR36676 restored cardiac function and myocyte size in rats with MI-induced cardiac hypertrophy. Conclusions and Implications A highly potent UT receptor antagonist exerted anti-hypertrophic effects not only in infarcted rat hearts but also in pressure-overloaded mouse hearts. KR36676 could be a valuable pharmacological tool in elucidating the complicated physiological role of U-II and UT receptors in cardiac hypertrophy. PMID:25597918

  2. Positron tomography of a radiobrominated analog of SCH 23390: A selective dopamine D1 receptor antagonist

    SciTech Connect

    De Jesus, O.T.; Woolverton, W.L.; Van Moffaert, G.J.C.; Goldberg, L.I.; Dinerstein, R.J.; Yasillo, N.J.; Ortega, C.; Cooper, M.D.; Friedman, A.M.

    1985-05-01

    Alterations in the central dopaminergic system have been hypothesized to underlie several neuropsychiatric disorders. Dopamine (DA) receptors in the CNS have been classified into two classes based on whether linkage to the enzyme adenylate cyclase exists, the D1 receptors, or not, D2 receptors. To date, studies on cerebral DA system by positron tomography (PET) have utilized the butyrophenones which are predominantly D2 antagonists. We have prepared Br-75 or Br-76 labelled 8-bromo analog of SCH 23390, (BrSCH), a highly selective antagonist for DA D1 receptors and have measured its distribution in the intact monkey brain by PET and by postmortem section of the mouse brain. An anesthesized 8.5 kg male rhesus monkey was given, i.v., ca. 2 mCi BrSCH on two occasions and scanned with The University of Chicago PETT VI system. Results revealed that the drug localized specifically in the basal ganglia. In a similar experiment in the same monkey given Br-76-bromospiroperidol (BrSP), a predominantly D2 antagonist, high uptake in the basal ganglia was also observed but the time course for specific localization of BrSCH was much faster than that of BrSP. These results provide evidence the D1 receptors, like D2 receptors, are localized in the caudate nucleus (CN) although BrSCH, compared to BrSP, appear to localize more in the posterior aspect of the CN. In conclusion, BrSCH should be a useful imaging agent to study dopamine D1 receptors in the CNS.

  3. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  4. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  5. Endothelin receptor antagonists for pulmonary arterial hypertension: rationale and place in therapy.

    PubMed

    Price, Laura C; Howard, Luke S G E

    2008-01-01

    The last decade has seen significant advances in the understanding and treatment of pulmonary arterial hypertension (PAH). Three main pathways, involving endothelin, nitric oxide, and prostacyclin, have been identified in its pathogenesis and these have all led to the development of therapies in current use. While the nitric oxide and prostacyclin pathways require augmentation, the endothelin system is overactive in PAH, with increased endothelin synthesis and receptor expression and, therefore, requires blockade. There are two known endothelin receptors. The type A receptor, expressed in pulmonary artery media, mediates vasoconstriction and remodeling, whereas the function of the type B receptor is more complex. Like the type A receptor, the type B receptor mediates vasoconstriction and remodeling effects when expressed on smooth muscle cells and (myo)fibroblasts, yet functions to clear endothelin from the circulation and induce release of endogenous nitric oxide and prostacyclin, when activated in the pulmonary artery endothelium. Consequently, it is not clear from in vitro data whether the optimal strategy is to block only the type A receptor or both receptors. Phase III clinical studies show clear short-term physiologic benefit with both dual and selective endothelin blockade in PAH. Longer-term experience with bosentan, a dual receptor antagonist, has shown improved outcomes compared with historic control data and comparable survival to intravenous prostacyclin therapy. The newer selective blockers, sitaxsentan and ambrisentan, appear to have similar short-term efficacy, but long-term data are as yet either lacking or unpublished. They may be less hepatotoxic than bosentan, although long-term follow-up of patients receiving bosentan has shown this is not a significant problem. On the basis of available evidence, the endothelin receptor antagonists have become first-line therapy for patients with PAH, except in the most severely affected who still require

  6. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor.

    PubMed

    Dinan, L; Whiting, P; Girault, J P; Lafont, R; Dhadialla, T S; Cress, D E; Mugat, B; Antoniewski, C; Lepesant, J A

    1997-11-01

    Two triterpenoids, cucurbitacins B and D, have been isolated from seeds of Iberis umbellata (Cruciferae) and shown to be responsible for the antagonistic activity of a methanolic extract of this species in preventing the 20-hydroxyecdysone (20E)-induced morphological changes in the Drosophila melanogaster BII permanent cell line. With a 20E concentration of 50 nM, cucurbitacins B and D give 50% responses at 1.5 and 10 microM respectively. Both cucurbitacins are able to displace specifically bound radiolabelled 25-deoxy-20-hydroxyecdysone (ponasterone A) from a cell-free preparation of the BII cells containing ecdysteroid receptors. The Kd values for cucurbitacins B and D (5 and 50 microM respectively) are similar to the concentrations required to antagonize 20E activity with whole cells. Cucurbitacin B (cucB) prevents stimulation by 20E of an ecdysteroid-responsive reporter gene in a transfection assay. CucB also prevents the formation of the Drosophila ecdysteroid receptor/Ultraspiracle/20E complex with the hsp27 ecdysteroid response element as demonstrated by gel-shift assay. This is therefore the first definitive evidence for the existence of antagonists acting at the ecdysteroid receptor. Preliminary structure/activity studies indicate the importance of the Delta23-22-oxo functional grouping in the side chain for antagonistic activity. Hexanorcucurbitacin D, which lacks carbon atoms C-22 to C-27, is found to be a weak agonist rather than an antagonist. Moreover, the side chain analogue 5-methylhex-3-en-2-one possesses weak antagonistic activity. PMID:9581538

  7. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor.

    PubMed Central

    Dinan, L; Whiting, P; Girault, J P; Lafont, R; Dhadialla, T S; Cress, D E; Mugat, B; Antoniewski, C; Lepesant, J A

    1997-01-01

    Two triterpenoids, cucurbitacins B and D, have been isolated from seeds of Iberis umbellata (Cruciferae) and shown to be responsible for the antagonistic activity of a methanolic extract of this species in preventing the 20-hydroxyecdysone (20E)-induced morphological changes in the Drosophila melanogaster BII permanent cell line. With a 20E concentration of 50 nM, cucurbitacins B and D give 50% responses at 1.5 and 10 microM respectively. Both cucurbitacins are able to displace specifically bound radiolabelled 25-deoxy-20-hydroxyecdysone (ponasterone A) from a cell-free preparation of the BII cells containing ecdysteroid receptors. The Kd values for cucurbitacins B and D (5 and 50 microM respectively) are similar to the concentrations required to antagonize 20E activity with whole cells. Cucurbitacin B (cucB) prevents stimulation by 20E of an ecdysteroid-responsive reporter gene in a transfection assay. CucB also prevents the formation of the Drosophila ecdysteroid receptor/Ultraspiracle/20E complex with the hsp27 ecdysteroid response element as demonstrated by gel-shift assay. This is therefore the first definitive evidence for the existence of antagonists acting at the ecdysteroid receptor. Preliminary structure/activity studies indicate the importance of the Delta23-22-oxo functional grouping in the side chain for antagonistic activity. Hexanorcucurbitacin D, which lacks carbon atoms C-22 to C-27, is found to be a weak agonist rather than an antagonist. Moreover, the side chain analogue 5-methylhex-3-en-2-one possesses weak antagonistic activity. PMID:9581538

  8. Switching brain serotonin with oxytocin

    PubMed Central

    Mottolese, Raphaelle; Redouté, Jérôme; Costes, Nicolas; Le Bars, Didier; Sirigu, Angela

    2014-01-01

    Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2′-methoxyphenyl-(N-2′-pyridinyl)-p-[18F]fluoro-benzamidoethylpiperazine ([18F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [18F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [18F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders. PMID:24912179

  9. C-C chemokine receptor type 4 antagonist Compound 22 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Moriguchi, Kota; Miyamoto, Katsuichi; Tanaka, Noriko; Ueno, Rino; Nakayama, Takashi; Yoshie, Osamu; Kusunoki, Susumu

    2016-02-15

    Chemokines and chemokine receptors play important roles in the immune response. We previously reported the pathogenic role of C-C chemokine receptor type 4 (CCR4) in experimental autoimmune encephalomyelitis (EAE). Here, we examined whether CCR4 antagonism modulates the disease course of EAE. Wild-type and CCR4-knockout mice were induced EAE and were administered Compound 22, an antagonist of CCR4. Compound 22 significantly ameliorated the severity of EAE in wild-type mice, but not in the CCR4-knockout mice. Compound 22 inhibited Th1 and Th17 polarization of antigen-induced T-cell responses. Therefore, CCR4 antagonists might be potential therapeutic agents for multiple sclerosis. PMID:26857495

  10. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists.

    PubMed

    Greineisen, William E; Turner, Helen

    2010-05-01

    The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered. PMID:20219697

  11. Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse.

    PubMed

    Pu, Yang; Xu, Meng; Liang, Yong; Yang, Kaiting; Guo, Yajun; Yang, Xuanming; Fu, Yang-Xin

    2016-04-01

    Surgical and medical androgen deprivation therapy (ADT) is a cornerstone for prostate cancer treatment, but relapse usually occurs. We herein show that orchiectomy synergizes with immunotherapy, whereas the more widely used treatment of medical ADT involving androgen receptor (AR) antagonists suppresses immunotherapy. Furthermore, we observed that the use of medical ADT could unexpectedly impair the adaptive immune responses through interference with initial T cell priming rather than in the reactivation or expansion phases. Mechanistically, we have revealed that inadvertent immunosuppression might be potentially mediated by a receptor shared with γ-aminobutyric acid. Our data demonstrate that the timing and dosing of antiandrogens are critical to maximizing the antitumor effects of combination therapy. This study highlights an underappreciated mechanism of AR antagonist-mediated immunosuppression and provides a new strategy to enhance immune response and prevent the relapse of advanced prostate cancer. PMID:27053771

  12. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. PMID:26048800

  13. Generation of Oxtr cDNA(HA)-Ires-Cre Mice for Gene Expression in an Oxytocin Receptor Specific Manner.

    PubMed

    Hidema, Shizu; Fukuda, Tomokazu; Hiraoka, Yuichi; Mizukami, Hiroaki; Hayashi, Ryotaro; Otsuka, Ayano; Suzuki, Shingo; Miyazaki, Shinji; Nishimori, Katsuhiko

    2016-05-01

    The neurohypophysial hormone oxytocin (OXT) and its receptor (OXTR) have critical roles in the regulation of pro-social behaviors, including social recognition, pair bonding, parental behavior, and stress-related responses. Supporting this hypothesis, a portion of patients suffering from autism spectrum disorder have mutations, such as single nucleotide polymorphisms, or epigenetic modifications in their OXTR gene. We previously reported that OXTR-deficient mice exhibit pervasive social deficits, indicating the critical role of OXTR in social behaviors. In the present study, we generated Oxtr cDNA(HA)-Ires-Cre knock-in mice, expressing both OXTR and Cre recombinase under the control of the endogenous Oxtr promoter. Knock-in cassette of Oxtr cDNA(HA)-Ires-Cre consisted of Oxtr cDNA tagged with the hemagglutinin epitope at the 3' end (Oxtr cDNA(HA)), internal ribosomal entry site (Ires), and Cre. Cre was expressed in the uterus, mammary gland, kidney, and brain of Oxtr cDNA(HA)-Ires-Cre knock-in mice. Furthermore, the distribution of Cre in the brain was similar to that observed in Oxtr-Venus fluorescent protein expressing mice (Oxtr-Venus), another animal model previously generated by our group. Social behavior of Oxtr cDNA(HA)-Ires-Cre knock-in mice was similar to that of wild-type animals. We demonstrated that this construct is expressed in OXTR-expressing neurons specifically after an infection with the recombinant adeno-associated virus carrying the flip-excision switch vector. Using this system, we showed the transport of the wheat-germ agglutinin tracing molecule from the OXTR-expressing neurons to the innervated neurons in knock-in mice. This study might contribute to the monosynaptic analysis of neuronal circuits and to the optogenetic analysis of neurons expressing OXTR. PMID:26442453

  14. Cardiac effects of muscarinic receptor antagonists used for voiding dysfunction

    PubMed Central

    Andersson, Karl-Erik; Campeau, Lysanne; Olshansky, Brian

    2011-01-01

    Antimuscarinic agents are the main drugs used to treat patients with the overactive bladder (OAB) syndrome, defined as urgency, with or without urgency incontinence, usually with increased daytime frequency and nocturia. Since the treatment is not curative and since OAB is a chronic disease, treatment may be life-long. Antimuscarinics are generally considered to be ‘safe’ drugs, but among the more serious concerns related to their use is the risk of cardiac adverse effects, particularly increases in heart rate (HR) and QT prolongation and induction of polymorphic ventricular tachycardia (torsade de pointes). An elevated resting HR has been linked to overall increased morbidity and mortality, particularly in patients with cardiovascular diseases. QT prolongation and its consequences are not related to blockade of muscarinic receptors, but rather linked to inhibition of the hERG potassium channel in the heart. However, experience with terodiline, an antimuscarinic drug causing torsade de pointes in patients, has placed the whole drug class under scrutiny. The potential of the different antimuscarinic agents to increase HR and/or prolong the QT time has not been extensively explored for all agents in clinical use. Differences between drugs cannot be excluded, but risk assessments based on available evidence are not possible. PMID:21595741

  15. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    SciTech Connect

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi; Lee, Cho-Rong; Park, Chul-Seung; Chang, Sunghoe; Park, Sung-Gyoo; Song, Mi-Ryoung; Kim, Yong-Chul

    2011-04-15

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5 in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted

  16. Benzimidazole-2-carboxamides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Gere, Anikó; Nagy, József; Fodor, László; Galgóczy, Kornél; Fetter, József; Bertha, Ferenc; Agai, Béla; Horváth, Csilla; Farkas, Sándor; Domány, György

    2006-09-01

    A novel series of benzimidazole-2-carboxamide derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of some structural elements, like H-bond donor groups placed on the benzimidazole skeleton and the substitution pattern of the piperidine ring, on the biological activity was studied. Compound 6a showed excellent analgetic activity in the mouse formalin test following po administration. PMID:16782335

  17. An Autoinflammatory Disease with Deficiency of the Interleukin-1–Receptor Antagonist

    PubMed Central

    Aksentijevich, Ivona; Masters, Seth L.; Ferguson, Polly J.; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W.; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D.; Sandler, Netanya G.; Plass, Nicole; Stone, Deborah L.; Turner, Maria L.; Hill, Suvimol; Butman, John A.; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I.; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R.; Chapelle, Dawn; Clarke, Gillian I.; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D.; Gregersen, Peter K.; van Hagen, P. Martin; Hak, A. Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C.; Remmers, Elaine F.; Kastner, Daniel L.; Goldbach-Mansky, Raphaela

    2010-01-01

    Background Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1–receptor antagonist, with prominent involvement of skin and bone. Methods We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1–receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1–pathway genes including IL1RN. Results We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from the Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1–family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1β stimulation. Patients treated with anakinra responded rapidly. Conclusions We propose the term deficiency of the interleukin-1–receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1–receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) PMID:19494218

  18. A review of granisetron, 5-hydroxytryptamine3 receptor antagonists, and other antiemetics.

    PubMed

    Hsu, Eric S

    2010-01-01

    Nausea and vomiting are 2 of the most upsetting adverse reactions of chemotherapy. Current guidelines propose 5-hydroxytryptamine3 (5-HT3) receptor antagonists as a pharmacologic intervention for acute and delayed nausea and vomiting [chemotherapy-induced nausea and vomiting (CINV)] associated with moderately and highly emetogenic chemotherapy. Meanwhile, both postoperative nausea and vomiting (PONV) and postdischarge nausea and vomiting are challenging situations after surgeries and procedures. Prophylactic and therapeutic combinations of antiemetics are recommended in patients at high risk of suffering from PONV and postdischarge nausea and vomiting. Granisetron (Kytril) is a selective 5-HT3 receptor antagonist that does not induce or inhibit the hepatic cytochrome P-450 system in vitro. There are also 4 other antagonists of 5-HT3 receptor (dolasetron, ondansetron, palonosetron, and tropisetron) being metabolized via the CYP2D6 and are subject to potential genetic polymorphism. The launch of a new class of antiemetics, the substance P/neurokinin1 receptor antagonists, was attributed to the scientific update on the central generator responsible for emesis and role of substance P. There has been mounting interest in exploring integrative medicine, either acupuncture or acustimulation of P6 (Nei-Kuwan), to complement the western medicine for prevention and management of nausea and vomiting. The potential application of cannabinoids, either alone or in combination with other agents of different mechanism, could contribute further to improve outcome in CINV. Implementation of future treatment guidelines for more effective management of CINV and PONV could certainly improve the efficacy and outcome of cancer and postoperative care. PMID:20844345

  19. Effects of Olopatadine Hydrochloride, a Histamine H1 Receptor Antagonist, on Histamine-Induced Skin Responses

    PubMed Central

    Hashimoto, Takashi; Ishii, Norito; Hamada, Takahiro; Dainichi, Teruki; Karashima, Tadashi; Nakama, Takekuni; Yasumoto, Shinichiro

    2010-01-01

    Effects of olopatadine hydrochloride, a histamine H1 receptor antagonist, on histamine-induced skin responses were evaluated in 10 healthy subjects in comparison with placebo, fexofenadine hydrochloride, and bepotastine besilate. Olopatadine significantly suppressed histamine-induced wheal, flare, and itch, starting 30 minutes after oral administration. Olopatadine was more effective than fexofenadine and bepotastine. None of the drugs studied impaired performance of word processing tasks. These results suggest that olopatadine can suppress skin symptoms caused by histamine soon after administration. PMID:20886023

  20. Structural insights into Resveratrol’s antagonist and partial agonist actions on estrogen receptor alpha

    PubMed Central

    2013-01-01

    Background Resveratrol, a naturally occurring stilbene, has been categorized as a phytoestrogen due to its ability to compete with natural estrogens for binding to estrogen receptor alpha (ERα) and modulate the biological responses exerted by the receptor. Biological effects of resveratrol (RES) on estrogen receptor alpha (ERα) remain highly controversial, since both estrogenic and anti-estrogenic properties were observed. Results Here, we provide insight into the structural basis of the agonist/antagonist effects of RES on ERα ligand binding domain (LBD). Using atomistic simulation, we found that RES bound ERα monomer in antagonist conformation, where Helix 12 moves away from the ligand pocket and orients into the co-activator binding groove of LBD, is more stable than RES bound ERα in agonist conformation, where Helix 12 lays over the ligand binding pocket. Upon dimerization, the agonistic conformation of RES-ERα dimer becomes more stable compared to the corresponding monomer but still remains less stable compared to the corresponding dimer in antagonist conformation. Interestingly, while the binding pocket and the binding contacts of RES to ERα are similar to those of pure agonist diethylstilbestrol (DES), the binding energy is much less and the hydrogen bonding contacts also differ providing clues for the partial agonistic character of RES on ERα. Conclusions Our Molecular Dynamics simulation of RES-ERα structures with agonist and antagonist orientations of Helix 12 suggests RES action is more similar to Selective Estrogen Receptor Modulator (SERM) opening up the importance of cellular environment and active roles of co-regulator proteins in a given system. Our study reveals that potential co-activators must compete with the Helix 12 and displace it away from the activator binding groove to enhance the agonistic activity. PMID:24160181

  1. Pathophysiology of a severe case of Puumala hantavirus infection successfully treated with bradykinin receptor antagonist icatibant.

    PubMed

    Vaheri, Antti; Strandin, Tomas; Jääskeläinen, Anne J; Vapalahti, Olli; Jarva, Hanna; Lokki, Marja-Liisa; Antonen, Jaakko; Leppänen, Ilona; Mäkelä, Satu; Meri, Seppo; Mustonen, Jukka

    2014-11-01

    We recently described a patient with very severe Puumala hantavirus infection manifested by capillary leakage syndrome and shock. He was successfully treated with the bradykinin receptor antagonist, icatibant (Antonen et al., 2013). Here we report analysis of the pathophysiology which indicated pronounced complement activation, prolonged leukocytosis, extensive fibrinolysis, circulating histones, and defects in liver function. The patient had an uncommon HLA-phenotype, which may have contributed to the severe course of the disease. PMID:25194993

  2. Discovery and characterization of a potent and selective EP4 receptor antagonist.

    PubMed

    Schiffler, Matthew A; Chandrasekhar, Srinivasan; Fisher, Matthew J; Harvey, Anita; Kuklish, Steven L; Wang, Xu-Shan; Warshawsky, Alan M; York, Jeremy S; Yu, Xiao-Peng

    2015-08-15

    EP4 is a prostaglandin E2 receptor that is a target for potential anti-nociceptive therapy. Described herein is a class of amphoteric EP4 antagonists which reverses PGE2-induced suppression of TNFα production in human whole blood. From this class, a potent and highly bioavailable compound (6) has been selected for potential clinical studies. EP4 binding and functional data, selectivity, and pharmacokinetic properties of this compound are included. PMID:26091726

  3. PTH and PTH Antagonist Induce Different Conformational Changes in the PTHR1 Receptor

    PubMed Central

    Thomas, Beena E.; Sharma, Sandhya; Mierke, Dale F.; Rosenblatt, Michael

    2009-01-01

    Interaction of ligands with their specific receptors is accompanied by conformational shifts culminating in receptor activation and expression of hormonal activity. Using an engineered disulfide bond formation strategy, we characterized the relative conformational changes taking place within the PTH type 1 receptor (PTHR1) at the interface of transmembrane (TM)5 and TM6 on binding the PTH agonist, PTH(1-34), compared with the antagonist PTH(7-34). Cysteines were singly incorporated into a portion of the extracellular-facing region of TM5 (365–370), while simultaneously a second cysteine was introduced at position 420, 423, or 425 at the extracellular end of TM6, leading to a total of 18 double cysteine-containing PTHR1 mutants. All mutants, except P366C/V423C and P366C/M425C, were expressed in the cell membrane preparations. In the presence of agonist, H420C and M425C in TM6 formed disulfide bonds with all and with most, respectively, of the substituted cysteines incorporated in TM5. In contrast to the conformational shift induced (or stabilized) by agonist in activating the receptor, antagonist binding produced no detectable change from the basal (inactive) conformation of PTHR1. Our studies provide physicochemical evidence that the extracellular-facing ligand binding regions of receptor, TM5 and TM6, are dynamic and move relative to each other on ligand binding. The distinct differences in receptor conformation induced (or stabilized) by agonist PTH(1-34) compared with antagonist PTH(7-34) begin to provide insight into the early events in and mechanism of PTHR1 activation. PMID:19063682

  4. G-receptor antagonists increased the activating effect of mastoparan on low Km GTPase of mouse PAG.

    PubMed

    Martínez-Peña, Y; Sánchez-Blázquez, P; Garzón, J

    1995-02-01

    Mastoparan activated in a concentration-dependent manner the low Km GTPase activity in P2 fractions from mouse periaquedultal grey matter (PAG). This peptide at 1-10 mM produced increases of 30-70% over the basal value of 90-120 pmol Pi/mg/min. A series of substances displaying antagonist activity at cellular receptors and not modifying the GTPase function, when used at nanomolar and micromolar concentrations enhanced the effect of mastoparan upon this enzyme. These included antagonists of receptors coupling G proteins: naloxone (non selective opioid antagonist), CTOP (m opioid receptors), ICI 174,864 (d opioid receptors), nor-BNI (k opioid receptors), sulpiride (D2 dopaminergic antagonist), idazoxan (a2 adrenergic antagonist). Bicuculline, antagonist of a receptor not linked to G proteins, GABAA, did not alter the effect of mastoparan on the GTPase. The m opioid agonist, DAMGO, prevented naloxone from increasing the function of the mastoparan-activated enzyme. Thus, mastoparan appears to act on Gi/Go proteins at a site not directly related to the receptor binding domain. PMID:7794687

  5. Extended N-Arylsulfonylindoles as 5-HT₆ Receptor Antagonists: Design, Synthesis & Biological Evaluation.

    PubMed

    Vera, Gonzalo; Lagos, Carlos F; Almendras, Sebastián; Hebel, Dan; Flores, Francisco; Valle-Corvalán, Gissella; Pessoa-Mahana, C David; Mella-Raipán, Jaime; Montecinos, Rodrigo; Recabarren-Gajardo, Gonzalo

    2016-01-01

    Based on a known pharmacophore model for 5-HT₆ receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT₆ receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT₆ receptor functional assays. Compounds 2-(4-(2-methoxyphenyl)piperazin-1-yl)-1-(1-tosyl-1H-indol-3-yl)ethanol (4b), 1-(1-(4-iodophenylsulfonyl)-1H-indol-3-yl)-2-(4-(2-methoxyphenyl)piperazin-1-yl)ethanol (4g) and 2-(4-(2-methoxyphenyl)piperazin-1-yl)-1-(1-(naphthalen-1-ylsulfonyl)-1H-indol-3-yl)ethanol (4j) showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83). Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM) in calcium mobilisation functional assay. PMID:27537868

  6. Novel benzo[1,4]diazepin-2-one derivatives as endothelin receptor antagonists.

    PubMed

    Bolli, Martin H; Marfurt, Judith; Grisostomi, Corinna; Boss, Christoph; Binkert, Christoph; Hess, Patrick; Treiber, Alexander; Thorin, Eric; Morrison, Keith; Buchmann, Stephan; Bur, Daniel; Ramuz, Henri; Clozel, Martine; Fischli, Walter; Weller, Thomas

    2004-05-20

    Since its discovery in 1988 by Yanagisawa et al., endothelin (ET), a potent vasoconstrictor, has been widely implicated in the pathophysiology of cardiovascular, cerebrovascular, and renal diseases. Many research groups have embarked on the discovery and development of ET receptor antagonists for the treatment of such diseases. While several compounds, e.g., ambrisentan 2, are in late clinical trials for various indications, one compound (bosentan, Tracleer) is being marketed to treat pulmonary arterial hypertension. Inspired by the structure of ambrisentan 2, we designed a novel class of ET receptor antagonists based on a 1,3,4,5-tetrahydro-1H-benzo[e][1,4]diazepin-2-one scaffold. Here, we report on the preparation as well as the in vitro and in vivo structure-activity relationships of these derivatives. Potent dual ET(A)/ET(B) receptor antagonists with affinities in the low nanomolar range have been identified. In addition, several compounds efficiently reduced arterial blood pressure after oral administration to Dahl salt sensitive rats. In this animal model, the efficacy of the benzo[e][1,4]diazepin-2-one derivative rac-39au was superior to that of racemic ambrisentan, rac-2. PMID:15139756

  7. Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Venitz, Jürgen; Zack, Julia; Gillies, Hunter; Allard, Martine; Regnault, Jean; Dufton, Christopher

    2012-12-01

    The authors review the basic pharmacology and potential for adverse drug-drug interactions (DDIs) of bosentan and ambrisentan, the 2 endothelin receptor antagonists currently approved for pulmonary arterial hypertension (PAH) treatment. Bosentan, an endothelin (ET) receptor-type ET(A) and ET(B) antagonist, is metabolized to active metabolites by and an inducer of cytochrome P450 (CYP)2C9 and CYP3A. Ambrisentan, a selective ET(A) receptor antagonist, is metabolized primarily by uridine 5'diphosphate glucuronosyltransferases (UGTs) 1A9S, 2B7S, and 1A3S and, to a lesser extent, by CYP3A and CYP2C19. Drug interactions observed with bosentan DDI studies have demonstrated a potential for significant clinical implications during PAH management: bosentan is contraindicated with cyclosporine A and glyburide, and additional monitoring/dose adjustments are required when coadministered with hormonal contraceptives, simvastatin, lopinavir/ritonavir, and rifampicin. As bosentan carries a boxed warning regarding risks of liver injury and showed dose-dependant increases in serum aminotransferase abnormalities, drug interactions that increase bosentan exposure are of particular clinical concern. Ambrisentan DDI studies performed to date have shown only one clinically relevant DDI, an interaction with cyclosporine A that requires ambrisentan dose reduction. As the treatment of PAH moves toward multimodal combination therapy, scrutiny should be placed on ensuring that drug combinations achieve maximal clinical benefit while minimizing side effects. PMID:22205719

  8. Interleukin 1 Receptor Antagonist Deficiency Presenting as Infantile Pustulosis Mimicking Infantile Pustular Psoriasis

    PubMed Central

    Minkis, Kira; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Magro, Cynthia; Scott, Rachelle; Davis, Jessica G.; Sardana, Niti; Herzog, Ronit

    2012-01-01

    Background Deficiency of interleukin 1 receptor antagonist (DIRA) is a recently described autoinflammatory syndrome of skin and bone caused by recessive mutations in the gene encoding the interleukin 1 receptor antagonist. Few studies have been published about this debilitating condition. Early identification is critical for targeted lifesaving intervention. Observations A male infant, born to nonconsanguineous Puerto Rican parents, was referred for management of a pustular eruption diagnosed as pustular psoriasis. At 2 months of age, the infant developed a pustular eruption. After extensive evaluation, he was confirmed to be homozygous for a 175-kb genomic deletion on chromosome 2 that includes the IL1RN gene, commonly found in Puerto Ricans. Therapy with anakinra was initiated, with rapid clearance of skin lesions and resolution of systemic inflammation. Conclusions Recent identification of DIRA as a disease entity, compounded by the limited number of reported cases, makes early identification difficult. It is critical to consider this entity in the differential diagnosis of infantile pustulosis. Targeted therapy with the recombinant human interleukin 1 receptor antagonist anakinra can be lifesaving if initiated early. A high carrier frequency of the 175-kb DIRA-associated genomic deletion in the Puerto Rican population strongly supports testing infants presenting with unexplained pustulosis in patients from this geographic region. PMID:22431714

  9. A non-peptide NK1-receptor antagonist, RP 67580, inhibits neurogenic inflammation postsynaptically.

    PubMed

    Moussaoui, S M; Montier, F; Carruette, A; Blanchard, J C; Laduron, P M; Garret, C

    1993-05-01

    1. The non-peptide neurokinin NK1-receptor antagonist, RP 67580 (3aR, 7aR), a perhydroisoindolone derivative, powerfully reduced plasma extravasation in rat hind paw skin induced by local application of xylene (ID50 = 0.03 mg kg-1, i.v.) or capsaicin (ID50 = 0.06 mg kg-1, i.v.), or by i.v. injection of exogenous substance P (SP) or septide ([pGlu6,Pro9]SP(6-11)) (ID50 = 0.04-0.05 mg kg-1, i.v.). RP 67580 (1 mg kg-1, i.v.) also abolished capsaicin-induced nasal fluid hypersecretion (by 82 +/- 5%). These effects were found to be stereospecific, the enantiomer, RP 68651 (3aS, 7aS), being inactive at 1 mg kg-1, i.v. 2. In rats neonatally treated with capsaicin (50 mg kg-1, s.c.), plasma extravasation induced by SP was significantly increased (by 43 +/- 7%). RP 67580 (1 mg kg-1, i.v.) completely inhibited the SP-induced plasma extravasation in capsaicin neonatally treated-animals, as it did in control animals. This result suggests that RP 67580 acts at the postsynaptic level for the inhibition of plasma extravasation. 3. Opioid receptor agonists, mu-(morphine) and kappa-(PD-117302) at 10 mg kg-1, s.c., in contrast to NK1-receptor antagonists, did not inhibit plasma extravasation induced by exogenous SP. They were, however, partially effective against plasma extravasation induced by electrical nerve stimulation (74 +/- 4% and 48 +/- 9% inhibition at 10 mg kg-1, s.c. of morphine and PD-117302, respectively, compared to 90 +/- 3% inhibition obtained with RP 67580, 3 mg kg-1, s.c.). These results indicate the presynaptic action of opioid receptor agonists, in contrast to the postsynaptic action of NK1-receptor antagonists for the inhibition of plasma extravasation.4. Ligature of the saphenous nerve distal to the point of electrical stimulation, local application of lignocaine to the saphenous nerve, neonatal capsaicin pretreatment, and colchicine at very low doses(120 microg kg-1 day-1 given for 3 days) were found to prevent plasma extravasation elicited by electrical nerve

  10. New P2X3 receptor antagonists. Part 1: Discovery and optimization of tricyclic compounds.

    PubMed

    Szántó, Gábor; Makó, Attila; Bata, Imre; Farkas, Bence; Kolok, Sándor; Vastag, Mónika; Cselenyák, Attila

    2016-08-15

    Purinergic P2X3 receptors are trimeric ligand-gated ion channels whose antagonism is an appealing yet challenging and not fully validated drug development idea. With the aim of identification of an orally active, potent human P2X3 receptor antagonist compound that can penetrate the central nervous system, the compound collection of Gedeon Richter was screened. A hit series of tricyclic compounds was subjected to a rapid, two-step optimization process focusing on increasing potency, improving metabolic stability and CNS penetrability. Attempts resulted in compound 65, a potential tool compound for testing P2X3 inhibitory effects in vivo. PMID:27423478

  11. Influence of Receptor Antagonists, Local Anesthetics, and Denervation on Microcirculation

    PubMed Central

    Homann, Heinz H.; Hirsch, Tobias; Steinau, H.U.; Muehlberger, Thomas; Moll, Wibke; Lehnhardt, Marcus; Goertz, Ole

    2011-01-01

    Objective: Impaired microcirculation is one of the most important factors in delayed wound healing. The aim of the study was to investigate the influence of chemical and surgical interruption of sympathetic nerve fibers and α- and β-receptors blockers on muscular microcirculation. Methods: The experiment was performed on a standardized cremaster muscle model of male Wistar rats (n=51). Microcirculation was recorded via transillumination microscopy on each of the 4 test groups and in a control group before and after their respective treatments with one of the following: topical application of bupivacaine, metoprolol, phentolamine, or surgical denervation. The arteriolar diameter and functional capillary density (FCD) as parameter for tissue perfusion were assessed. Results: The α-blocker phentolamine was the only agent that caused a significant dilation of the arteriolar diameter (76.6 ± 6.9 vs 100.0 ± 12.0 µm). However, like bupivacaine, metoprolol, and the surgical sympathectomy, it did not improve FCD as a parameter for tissue perfusion. The strongest vasoconstriction (35.9 ± 4.3 vs 28.6 ± 4.0) and impairment of the FCD (10.0 ± 0.7 vs 4.1 ± 0.9) was induced by the β-blocker metoprolol. Conclusions: This study shows that phentolamine could be an agent for dilating arteriolar diameter, but it did not improve FCD. Whereas the other agents, including sympathectomy, did not alter arteriolar diameter, the β-blocker worsened both investigated parameters. Our results raise the question whether β-blockers negatively influence microcirculation. Therefore, further studies are needed to investigate the potential adverse effects of β-blockers on wound healing. PMID:21283734

  12. Mapping of Kisspeptin Receptor mRNA in the Whole Rat Brain and its Co-Localisation with Oxytocin in the Paraventricular Nucleus.

    PubMed

    Higo, S; Honda, S; Iijima, N; Ozawa, H

    2016-04-01

    The neuropeptide kisspeptin and its receptor play an essential role in reproduction as a potent modulator of the gonadotrophin-releasing hormone (GnRH) neurone. In addition to its reproductive function, kisspeptin signalling is also involved in extra-hypothalamic-pituitary-gonadal (HPG) axis systems, including oxytocin and arginine vasopressin (AVP) secretion. By contrast to the accumulating information for kisspeptin neurones and kisspeptin fibres, the histological distribution and function of the kisspeptin receptor in the rat brain remain poorly characterised. Using in situ hybridisation combined with immunofluorescence, the present study aimed to determine the whole brain map of Kiss1r mRNA (encoding the kisspeptin receptor), and to examine whether oxytocin or AVP neurones express Kiss1r. Neurones with strong Kiss1r expression were observed in several rostral brain areas, including the olfactory bulb, medial septum, diagonal band of Broca and throughout the preoptic area, with the most concentrated population being around 0.5 mm rostral to the bregma. Co-immunofluorescence staining revealed that, in these rostral brain areas, the vast majority of the Kiss1r-expressing neurones co-expressed GnRH. Moderate levels of Kiss1r mRNA were also noted in the rostral periventricular area, paraventricular nucleus (PVN), and throughout the arcuate nucleus. Relatively weak Kiss1r expression was observed in the supraoptic nucleus and supramammillary nuclei. Moderate to weak expression of Kiss1r was also observed in several regions in the midbrain, including the periaqueductal gray and dorsal raphe nucleus. We also examined whether oxytocin and AVP neurones in the PVN co-express Kiss1r. Immunofluorescence revealed the co-expression of Kiss1r in a subset of the oxytocin neurones but not in the AVP neurones in the PVN. The present study provides a fundamental anatomical basis for further examination of the kisspeptin signalling system in the extra-HPG axis, as well as in

  13. Possible Mechanisms for Functional Antagonistic Effect of Ferula assafoetida on Muscarinic Receptors in Tracheal Smooth Muscle

    PubMed Central

    Kiyanmehr, Majid; Boskabady, Mohammad Hossein; Khazdair, Mohammad Reza; Hashemzehi, Milad

    2016-01-01

    Background The contribution of histamine (H1) receptors inhibitory and/or β-adrenoceptors stimulatory mechanisms in the relaxant property of Ferula assa-foetida. (F. asafoetida) was examined in the present study. Methods We evaluated the effect of three concentrations of F. asafoetida extract (2.5, 5, and 10 mg/mL), a muscarinic receptors antagonist, and saline on methacholine concentration-response curve in tracheal smooth muscles incubated with β-adrenergic and histamine (H1) (group 1), and only β-adrenergic (group 2) receptors antagonists. Results EC50 values in the presence of atropine, extract (5 and 10 mg/mL) and maximum responses to methacholine due to the 10 mg/mL extract in both groups and 5 mg/mL extract in group 1 were higher than saline (P < 0.0001, P = 0.0477, and P = 0.0008 in group 1 and P < 0.0001, P = 0.0438, and P = 0.0107 in group 2 for atropine, 5 and 10 mg/mL extract, respectively). Values of concentration ratio minus one (CR-1), in the presence of extracts were lower than atropine in both groups (P = 0.0339 for high extract concentration in group 1 and P < 0.0001 for other extract concentrations in both groups). Conclusion Histamine (H1) receptor blockade affects muscarinic receptors inhibitory property of F. asafoetida in tracheal smooth muscle PMID:27540324

  14. Discovery of piperidine ethers as selective orexin receptor antagonists (SORAs) inspired by filorexant.

    PubMed

    Raheem, Izzat T; Breslin, Michael J; Bruno, Joseph; Cabalu, Tamara D; Cooke, Andrew; Cox, Christopher D; Cui, Donghui; Garson, Susan; Gotter, Anthony L; Fox, Steven V; Harrell, C Meacham; Kuduk, Scott D; Lemaire, Wei; Prueksaritanont, Thomayant; Renger, John J; Stump, Craig; Tannenbaum, Pamela L; Williams, Peter D; Winrow, Christopher J; Coleman, Paul J

    2015-02-01

    Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6. PE-6 displays sub-nanomolar binding affinity and functional potency on OX2R while maintaining >1600-fold binding selectivity and >200-fold functional selectivity versus the orexin 1 receptor (OX1R). PE-6 bears a clean off-target profile, a good overall preclinical pharmacokinetic (PK) profile, and reduces wakefulness with increased NREM and REM sleep when evaluated in vivo in a rat sleep study. Importantly, subtle structural changes to the piperidine ether class impart dramatic changes in receptor selectivity. To this end, our laboratories have identified multiple piperidine ether 2-SORAs, 1-SORAs, and DORAs, providing access to a number of important biological tool compounds from a single structural class. PMID:25577040

  15. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    PubMed Central

    Zeiler, F. A.

    2015-01-01

    Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE. PMID:25649724

  16. Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists.

    PubMed

    Funk, Oliver F; Kettmann, Viktor; Drimal, Jan; Langer, Thierry

    2004-05-20

    Both quantitative and qualitative chemical function based pharmacophore models of endothelin-A (ET(A)) selective receptor antagonists were generated by using the two algorithms HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling software. The input for HypoGen is a training set of 18 ET(A) antagonists exhibiting IC(50) values ranging between 0.19 nM and 67 microM. The best output hypothesis consists of five features: two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features: three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI). It is the result of an input of three highly active, selective, and structurally diverse ET(A) antagonists. The predictive power of the quantitative model could be approved by using a test set of 30 compounds, whose activity values spread over 6 orders of magnitude. The two pharmacophores were tested according to their ability to extract known endothelin antagonists from the 3D molecular structure database of Derwent's World Drug Index. Thereby the main part of selective ET(A) antagonistic entries was detected by the two hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database. Six compounds were chosen from the output hit lists for in vitro testing of their ability to displace endothelin-1 from its receptor. Two of these are new potential lead compounds because they are structurally novel and exhibit satisfactory activity in the binding assay. PMID:15139753

  17. Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts.

    PubMed

    Muñoz, Miguel; Berger, Michael; Rosso, Marisa; Gonzalez-Ortega, Ana; Carranza, Andrés; Coveñas, Rafael

    2014-01-01

    Osteosarcoma is a highly malignant bone tumor in children and adolescents. Aprepitant is a selective high‑affinity antagonist of the human neurokinin‑1 (NK‑1) receptor (NK1R) with robust antitumor activity. No data exist on the presence of NK1R in osteosarcoma and whether this tumor responds to NK1R antagonists. Here, we analyzed the expression of NK1R in the human osteosarcoma cell line MG-63 with western blot analysis and PCR and found significant expression both at the protein and mRNA levels. We further studied the growth inhibitory capacity of aprepitant and other NK1R antagonists on MG-63 in vitro using an MTS cytotoxicity assay and DAPI staining. All antagonists induced tumor growth inhibition and apoptosis. Synergism was observed for the combination of L-733,060 with common cytostatic drugs in MG-63, but not in non-malignant HEK293 cells. Pretreatment of HEK293 with L-733,060 prior to exposure to cytostatic drugs partially protected HEK293 cells from inhibition by these drugs. Furthermore, nanomolar concentrations of substance P (SP), the natural ligand of the NK1R, increased the growth rate of MG‑63 cells and micromolar concentrations of aprepitant inhibited SP-induced growth in a dose‑dependent manner. In vivo, a xenograft for MG-63 was created in nude mice and treated with peritumoral s.c. injections of fosaprepitant, which resulted in a significant reduction of tumor volume. Collectively, we demonstrated for the first time that the NK1R is expressed in human osteosarcoma cell line MG‑63 and that this receptor can be targeted with NK1R antagonists both in vitro as well as in vivo. PMID:24190675

  18. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice.

    PubMed

    Neumann, Susanne; Nir, Eshel A; Eliseeva, Elena; Huang, Wenwei; Marugan, Juan; Xiao, Jingbo; Dulcey, Andrés E; Gershengorn, Marvin C

    2014-01-01

    Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease. PMID:24169564

  19. Discovery of novel dihydrobenzofuran cyclopropane carboxylic acid based calcium sensing receptor antagonists for the treatment of osteoporosis.

    PubMed

    Liang, Gui-Bai; Zhou, Changyou; Huo, Xianghong; Wang, Hank; Yang, Xuelin; Huang, Shaoqiang; Wang, Haisheng; Wilkinson, Hilary; Luo, Lusong; Tang, Wei; Sutton, David; Li, Hong; Zaller, Dennis; Meinke, Peter T

    2016-08-15

    In a search for novel small molecule calcium-sensing receptor (CaSR) antagonists as oral bone anabolic agents, we discovered dihydrobenzofuran cyclopropane carboxylic acid derivatives, such as 12f (IC50=27.6nM), are highly potent calcium-sensing receptor antagonists. Studies in rats established that compound 12f stimulates parathyroid hormone (PTH) release in a fast-acting, pulsatile manner. PMID:27397499

  20. Sex Difference in Oxytocin-Induced Anti-Hyperalgesia at the Spinal Level in Rats with Intraplantar Carrageenan-Induced Inflammation.

    PubMed

    Chow, Lok-Hi; Chen, Yuan-Hao; Wu, Wan-Chuan; Chang, En-Pei; Huang, Eagle Yi-Kung

    2016-01-01

    Previously, we demonstrated intrathecal administration of oxytocin strongly induced anti-hyperalgesia in male rats. By using an oxytocin-receptor antagonist (atosiban), the descending oxytocinergic pathway was found to regulate inflammatory hyperalgesia in our previous study using male rats. The activity of this neural pathway is elevated during hyperalgesia, but whether this effect differs in a sex-dependent manner remains unknown. We conducted plantar tests on adult male and female virgin rats in which paw inflammation was induced using carrageenan. Exogenous (i.t.) application of oxytocin exerted no anti-hyperalgesic effect in female rats, except at an extremely high dose. Female rats exhibited similar extent of hyperalgesia to male rats did when the animals received the same dose of carrageenan. When atosiban was administered alone, the severity of hyperalgesia was not increased in female rats. Moreover, insulin-regulated aminopeptidase (IRAP) was expressed at higher levels in the spinal cords of female rats compared with those of male rats. Oxytocin-induced anti-hyperalgesia exhibits a sex-dependent difference in rats. This difference can partially result from the higher expression of IRAP in the spinal cords of female rats, because IRAP functions as an enzyme that degrades oxytocin. Our study confirms the existence of a sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats. PMID:27606886

  1. 5-HT6 Receptor Antagonists: Potential Efficacy for the Treatment of Cognitive Impairment in Schizophrenia.

    PubMed

    de Bruin, Natasja M W J; Kruse, Chris G

    2015-01-01

    5-hydroxytryptamine6 receptor (5-HT6R) antagonists have shown efficacy in animal models for cognitive impairment in multiple cognitive domains relevant for schizophrenia. Improvements were found with 5-HT6R antagonists in preclinical tests for episodic memory, social cognition, executive function, working memory and several other tests for both learning and memory. In contrast, there is little evidence for efficacy on attention. It will be interesting to further investigate 5-HT6R antagonists in neurodevelopmental animal models which are based on prenatal exposure to specific environmental insults, and are characterized by a high level of face, construct and predictive validity for cognitive impairments associated with schizophrenia. It is also important to do more add-on preclinical studies of 5-HT6 antagonists with antipsychotics. Possible mechanisms of action to improve cognition have been described. 5-HT6R antagonists decrease GABA release and GABAergic interneuron excitability, which subsequently disinhibits glutamate and/or acetylcholine release and results in enhancement of synaptic plasticity. Furthermore, cognition could be improved by 5-HT6R antagonists, because these compounds increase the number of NCAM PSA-immunoreactive neurons in the dendate gyrus, inhibit mTOR and Fyn-tyrosine kinase and interact with DARPP-32. Interestingly, there is increasing preclinical evidence that could support additional benefits of 5-HT6R ligandson comorbid conditions in schizophrenia such as drug abuse, depression, anxiety, obesity andantipsychotic-induced EPS. Finally, we briefly give an overview of the 5-HT6R compounds that are currently in clinical development for the treatment of cognitive impairment in both schizophrenia and Alzheimer's disease. PMID:26044973

  2. Control of gastric acid secretion. Histamine H2-receptor antagonists and H+K(+)-ATPase inhibitors.

    PubMed

    Shamburek, R D; Schubert, M L

    1992-09-01

    Gastric acid secretion is regulated by an intricate interplay of neural (acetylcholine), hormonal (gastrin), and paracrine (histamine, somatostatin) mechanisms. Receptors for each of these agents and the signal transduction pathways to which these receptors are coupled have been identified on the parietal cell. The stimulatory effect of acetylcholine and gastrin is mediated by an increase in cytosolic calcium, whereas that of histamine is mediated by activation of adenylate cyclase and generation of cAMP. Strong potentiation between histamine and either gastrin or acetylcholine reflects postreceptor interaction between the distinct pathways as well as the ability of acetylcholine and gastrin to release histamine from mucosal ECL cells. The inhibitory effects of somatostatin on acid secretion are mediated by receptors coupled by guanine nucleotide-binding proteins to inhibition of adenylate cyclase activity. All the pathways converge on and modulate the activity of the luminal enzyme, H+K(+)-ATPase, the proton pump of the parietal cell. Precise information on the mechanisms involved in gastric acid secretion has led to the development of potent drugs capable of inhibiting acid secretion. These include competitive antagonists that interact with stimulatory receptors (e.g., histamine H2-receptor antagonists) as well as noncompetitive inhibitors of H+K(+)-ATPase (e.g., omeprazole). The histamine H2-receptor antagonists (cimetidine, ranitidine, famotidine, and nizatidine) continue as first-line therapy for peptic ulcer disease and are effective in preventing relapse. Although they are generally well tolerated, histamine H2-receptor antagonists may cause untoward CNS, cardiac, and endocrine effects as well as interference with the absorption, metabolism, and elimination of various drugs. Omeprazole is a weak base that reaches the parietal cell through the bloodstream, diffuses through the cytoplasm, and becomes activated and trapped as a sulfenamide in the acidic

  3. Actions of picrodendrin antagonists on dieldrin-sensitive and -resistant Drosophila GABA receptors.

    PubMed Central

    Hosie, A. M.; Ozoe, Y.; Koike, K.; Ohmoto, T.; Nikaido, T.; Sattelle, D. B.

    1996-01-01

    1. A series of terpenoid compounds, recently isolated from Picrodendron baccatum, share a picrotoxane skeleton with picrotoxinin, an antagonist of ionotropic GABA receptors. Referred to as picrodendrins, they inhibit the binding of [35S]-tert-butylbicyclophosphorothionate (TBPS) to rat GABAA receptors. Hitherto, their effects on GABA receptors have not been investigated electrophysiologically. Under two-electrode voltage-clamp, the actions of picrodendrins and related terpenoids have been assayed on homooligomeric GABA receptors formed by the expression of a Drosophila GABA receptor subunit (RDLac) in Xenopus oocytes. 2. All the terpenoids tested, dose-dependently antagonized currents induced by 30 microM (EC50) GABA. 3. Tutin and its analogues (dihydrotutin and isohyenanchin) differ in the structure of their axial C4 substituents. Of these compounds, tutin, which bears an isopropenyl group at this carbon atom, was the most potent antagonist of RDLac homo-oligomers, whereas isohyenanchin, which bears a hydroxyisopropyl group, was the least potent antagonist tested. 4. Picrodendrins differ mainly in the structure of their C9 substituents. The IC50s of picrodendrins ranged from 17 +/- 1.3 nM (picrodendrin-Q) to 1006 +/- 1.3 nM (picrodendrin-O). As such, the most potent picrodendrins (Q, A and B) were approximately equipotent with picrotoxinin as antagonists of RDLac homo-oligomers. 5. Certain picrodendrin compounds effected a use-dependent blockade of RDLac homo-oligomers. Such a biphasic block was not observed with tutin analogues. 6. Picrotoxin-resistant RDLacA3025 homo-oligomers, which have a single amino acid substitution (A302S) in the 2nd transmembrane region, were markedly less sensitive to picrodendrin-O than the wild-type, dieldrin-sensitive, homo-oligomers. 7. The relative potency of tutin analogues demonstrates that the structure-activity relationship of the C4 substituent of picrotoxane-based compounds is conserved in vertebrates and insects. However, the

  4. Novel class of medications, orexin receptor antagonists, in the treatment of insomnia - critical appraisal of suvorexant.

    PubMed

    Norman, Jessica L; Anderson, Sarah L

    2016-01-01

    Insomnia, a highly prevalent disorder, can be detrimental to patients' overall health and worsen existing comorbidities. Patients may have acute episodes of insomnia related to a traumatic event, but more commonly insomnia occurs chronically. While proper sleep hygiene and behavioral therapy play important roles in the nonpharmacologic management of short-term and chronic insomnia, medications may also be required. Historically, insomnia has been treated with agents such as benzodiazepines, nonbenzodiazepine receptor agonists, and melatonin agonists. Dual orexin receptor antagonists represent a new class of medications for the treatment of insomnia, which block the binding of wakefulness-promoting neuropeptides orexin A and orexin B to their respective receptor sites. Suvorexant (Belsomra) is the first dual orexin receptor antagonist to be approved in the US and Japan and has demonstrated efficacy in decreasing time to sleep onset and increasing total sleep time. Its unique mechanism of action, data to support efficacy and safety over 12 months of use, and relative lack of withdrawal effects when discontinued may represent an alternative for patients with chronic insomnia who cannot tolerate or do not receive benefit from more traditional sleep agents. Suvorexant is effective and well tolerated, but precautions exist for certain patient populations, including females, obese patients, and those with respiratory disease. Suvorexant has only been studied vs placebo, and hence it is unknown how it directly compares with other medications approved by the US Food and Drug Administration for insomnia. Suvorexant is not likely to replace benzodiazepines or nonbenzodiazepine receptor antagonists as a first-line sleep agent but does represent a novel option for the treatment of patients with chronic insomnia. PMID:27471419

  5. Synthesis of 4-(aminoalkyl) substituted 1,3-dioxanes as potent NMDA and σ receptor antagonists.

    PubMed

    Utech, Tina; Köhler, Jens; Wünsch, Bernhard

    2011-06-01

    Elongation of the distance between the oxygen heterocycle and the basic amino moiety or ring expansion of the oxygen heterocycle of the NMDA receptor antagonists dexoxadrol and etoxadrol led to compounds with promising NMDA receptor affinity. Herein the combination of both structural features, i.e. elongation of the O-heterocycle--amine distance with a 1,3-dioxane ring is envisaged. The synthesis of aminoethyl-1,3-dioxanes 13, 22, 23 and 29 was performed by transacetalization of various acetals with pentane-1,3,5-triol, activation of the remaining free OH moiety with tosyl chloride and subsequent nucleophilic substitution. The corresponding 3-aminopropyl derivatives 33-35 were prepared by substitution of the tosylates with KCN and LiAlH4 reduction. The highest NMDA receptor affinity was found for 1,3-dioxanes with a phenyl and an ethyl residue at the acetalic position (23) followed by diphenyl (22) and monophenyl derivatives (13). Generally the NMDA affinity of primary amines is higher than the NMDA affinity of secondary and tertiary amines. Altogether the primary amine 23a (Ki=24 nM) represents the most promising NMDA receptor antagonist of this series exceeding the NMDA affinity of the mono-homologues (2-aminoethyl)-1,3-dioxolanes (3,4) and (aminomethyl)-1,3-dioxanes (5,6). Whereas the primary amine 23a turned out to be selective against σ1 and σ2 receptors the benzylamine 13d was identified as potent (Ki=19 nM) and selective σ1 antagonist, which showed extraordinarily high antiallodynic activity in the capsaicin assay. PMID:21444132

  6. Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat

    PubMed Central

    Shin, AH; Kim, HJ; Thayer, SA

    2012-01-01

    BACKGROUND AND PURPOSE Neurocognitive disorders afflict approximately 20% of HIV-infected patients. HIV-1-infected cells in the brain shed viral proteins such as transactivator of transcription (Tat). Tat elicits cell death and synapse loss via processes initiated by NMDA receptor activation but mediated by separate downstream signalling pathways. Subunit selective NMDA receptor antagonists may differentially modulate survival relative to synaptic changes. EXPERIMENTAL APPROACH Tat-evoked cell death was quantified by measuring propidium iodide uptake into rat hippocampal neurons in culture. The effects of Tat on synaptic changes were measured using an imaging-based assay that quantified clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein. KEY RESULTS Dizocilpine, a non-competitive NMDA receptor antagonist, inhibited Tat-induced synapse loss, subsequent synapse recovery and Tat-induced cell death with comparable potencies. Memantine (10 µM) and ifenprodil (10 µM), which preferentially inhibit GluN2B-containing NMDA receptors, protected from Tat-induced cell death with no effect on synapse loss. Surprisingly, memantine and ifenprodil induced synapse recovery in the presence of Tat. In contrast, the GluN2A-prefering antagonist TCN201 prevented synapse loss and recovery with no effect on cell death. CONCLUSIONS AND IMPLICATIONS Synapse loss is a protective mechanism that enables the cell to cope with excess excitatory input. Thus, memantine and ifenprodil are promising neuroprotective drugs because they spare synaptic changes and promote survival. These GluN2B-preferring drugs induced recovery from Tat-evoked synapse loss, suggesting that synaptic pharmacology changed during the neurotoxic process. NMDA receptor subtypes differentially participate in the adaptation and death induced by excitotoxic insult. PMID:22142193

  7. Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists.

    PubMed

    Riddy, Darren M; Valant, Celine; Rueda, Patricia; Charman, William N; Sexton, Patrick M; Summers, Roger J; Christopoulos, Arthur; Langmead, Christopher J

    2015-10-01

    Drug receptor kinetics is as a key component in drug discovery, development, and efficacy; however, determining kinetic parameters has historically required direct radiolabeling or competition with a labeled tracer. Here we present a simple approach to determining the kinetics of competitive antagonists of G protein-coupled receptors by exploiting the phenomenon of hemi-equilibrium, the state of partial re-equilibration of agonist, antagonist, and receptor in some functional assays. Using functional [Ca(2+)]i-flux and extracellular kinases 1 and 2 phosphorylation assays that have short incubation times and therefore are prone to hemi-equilibrium "behaviors," we investigated a wide range of structurally and physicochemically distinct muscarinic acetylcholine receptor antagonists. Using a combined operational and hemi-equilibrium model of antagonism to both simulate and analyze data, we derived estimates of association and dissociation rates for the test set of antagonists, identifying both rapidly dissociating (4-DAMP, himbacine) and slowly dissociating (tiotropium, glycopyrrolate) ligands. The results demonstrate the importance of assay incubation time and the degree of receptor reserve in applying the analytical model. There was an excellent correlation between estimates of antagonist pK(B), k(on), and k(off) from functional assays and those determined by competition kinetics using whole-cell [(3)H]N-methylscopolamine binding, validating this approach as a rapid and simple method to functionally profile receptor kinetics of competitive antagonists in the absence of a labeled tracer. PMID:26243731

  8. Functionalized Congeners of 1,4-Dihydropyridines as Antagonist Molecular Probes for A3 Adenosine Receptors

    PubMed Central

    Li, An-Hu; Chang, Louis; Ji, Xiao-duo; Melman, Neli; Jacobson, Kenneth A.

    2012-01-01

    4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chemically reactive adenosine A3 antagonists, for the purpose of synthesizing molecular probes for this receptor subtype. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined in radioligand binding in comparison to binding at rat brain A1 and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and phenyl groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure–activity analysis at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-diphenyl groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain derivative containing terminal amine functionalization at the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride derivative appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 μM. PMID:10411465

  9. Effects of the neuropeptide Y (NPY)-receptor antagonist BIBP3226 on vascular NPY-receptors with different ligand requirements.

    PubMed

    Grundemar, L; Ekelund, M

    1996-11-01

    The aim was to examine effects of a newly developed neuropeptide Y (NPY)-receptor antagonist, BIBP3226 and to characterize NPY-receptors in the isolated guinea pig caval vein and human subcutaneous artery, respectively. BIBP3226 < or = 1 microM did not affect the basal tension. Pretreatment with increasing concentrations of BIBP3226 (10 nM-1 microM) resulted in a progressive rightward shift of the concentration-response curve to the Y1-receptor selective agonist [Pro34]NPY in the guinea pig caval vein. Regression analysis of the Schild plot gave a pA2-value of 7.58 (7.20-8.33, 95% confidence interval), slope of regression line 0.96 (0.52-1.39, 95% confidence interval) and a correlation coefficient of 0.78. NPY and the C-terminal NPY 2-36 evoked equipotent concentration-dependent contractions, both of which were sensitive to BIBP3226. Although less potent than NPY 2-36, also the contraction induced by NPY 5-36 was antagonized by BIBP3226. In the human subcutaneous artery [Pro34]NPY but not NPY 2-36 (< or = 0.3 microM) evoked a concentration-dependent contraction. Pretreatment with BIBP3226 (0.1 microM) resulted in a rightward shift of the concentration-response curve to [Pro34]NPY (from 7.38 +/- 0.10 to 6.95 +/- 0.16 (P < 0.05, n = 6). The present study has shown that the Y1-receptor-selective antagonist BIBP3226 potently antagonizes vascular NPY-receptors with different ligand requirements in the guinea pig caval vein and human subcutaneous artery, respectively. It appears that the guinea pig Y1-receptor is much less stringent in its demand on the N-terminal part of NPY than that of human Y1-receptors. PMID:8936561

  10. Oxytocin induces penile erection when injected into the ventral subiculum: role of nitric oxide and glutamic acid.

    PubMed

    Melis, Maria Rosaria; Succu, Salvatora; Cocco, Cristina; Caboni, Emanuela; Sanna, Fabrizio; Boi, Antonio; Ferri, Gian Luca; Argiolas, Antonio

    2010-06-01

    Oxytocin (100 ng) induces penile erection when injected unilaterally into the ventral subiculum of the hippocampus of male rats. The pro-erectile effect started mostly 30 min after treatment and occurred 15 min after an increase in both nitric oxide (NO) production, measured by the concentration of NO(2)(-) and NO(3)(-), the main metabolites of newly formed NO, and extra-cellular glutamic acid concentration in the dialysate obtained from the ventral subiculum by intracerebral microdialysis. These responses were abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (2 microg), an oxytocin receptor antagonist, S-methyl-L-thiocitrulline (SMTC), a selective inhibitor of neuronal NO-synthase (25 microg), and haemoglobin, a NO scavenger (25 microg), given into the ventral subiculum before oxytocin. Unlike d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, SMTC and haemoglobin, (+)MK-801 (5 microg), a noncompetitive antagonist of NMDA receptors abolished oxytocin-induced penile erection, but reduced only partially the increase in NO production and extra-cellular glutamic acid. As NMDA (0.25-1 microg) injected into the ventral subiculum induces penile erection episodes, which also occurred with an increase of NO production and extra-cellular glutamic acid, and NMDA responses were abolished by (+)MK-801 (5 microg), but not by SMTC (25 microg) or haemoglobin (25 microg), injected into the ventral subiculum, these results show that oxytocin injected into the ventral subiculum increases NO production by activating its own receptors. NO in turn increases glutamic acid neurotransmission, leading to penile erection, possibly through neural (glutamatergic) efferent projections from the ventral subiculum to extra-hippocampal brain areas (e.g., prefrontal cortex) modulating the activity of mesolimbic dopaminergic neurons. PMID:20156463

  11. Heterogeneous receptor binding of classical quaternary muscarinic antagonists. I. Bovine tissue distribution.

    PubMed

    Roffel, A F; Ensing, K; in 't Hout, W G; de Zeeuw, R A; Zaagsma, J

    1991-01-01

    In competition experiments with the tertiary radioligand [3H]dexetimide, classical quaternary muscarinic antagonists like ipratropium bromide and N-methylscopolamine bromide distinguished two muscarinic binding sites in bovine brain (total brain minus cerebellum) membranes, in contrast to their tertiary analogues, atropine and scopolamine, which recognized only one binding site. This binding behavior was found to be almost identical in bovine striatal membranes, both in terms of binding affinities and proportions of high (Q1) and low (Q2) affinity binding sites. Both in total brain and in striatal membranes, the Q1/Q2 binding heterogeneity was independent of pirenzepine binding heterogeneity (M1/M2). In peripheral tissues, the binding properties of quaternary muscarinic antagonists varied. Whereas tertiary as well as quaternary compounds showed only high affinity binding towards muscarinic receptors in bovine atrial and left ventricular membranes, heterogeneous binding behavior was observed with quaternary but not with tertiary antagonists in bovine tracheal smooth muscle membranes. The tissue distribution found in the present study suggests that bovine tracheal smooth muscle contraction studies might shed light on the functional significance of the anomalous binding behavior of quaternary muscarinic antagonists. PMID:1824191

  12. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks.

    PubMed

    Wong, Gilbert Y; Gavva, Narender R

    2009-04-01

    The vanilloid receptor TRPV1 is a homotetrameric, non-selective cation channel abundantly expressed in the nociceptors (c-fibers). TRPV1 is considered as a highly validated pain target because, i) its agonists such as capsaicin cause desensitization of TRPV1 channels that relieves pain behaviors in preclinical species, and ii) its antagonists relieve pain behaviors in rodent models of inflammation, osteoarthritis, and cancer. Hence, both agonists and antagonists of TRPV1 are being evaluated as potential analgesics in clinical trials. Clinical trial results of TRPV1 agonists such as resiniferatoxin in interstitial cystitis, NGX 4010 in post-herpetic neuralgia, and 4975 (Adlea) in osteoarthritis, bunionectomy, and Morton's neuroma have been reported. Similarly, clinical trial results of TRPV1 antagonists such as SB-705498 and AMG 517 have also been published recently. Overall, some molecules (e.g., capsaicin) demonstrated potential analgesia in certain conditions (postsurgical pain, postherpetic neuralgia, pain in diabetic neuropathy, osteoarthritis, bunionectomy, and Morton's neuroma), whereas others fell out of the clinic due to on-target liabilities or failed to demonstrate efficacy. This review summarizes recent advances and setbacks of TRPV1 agonists and antagonists in the clinic and predicts future directions. PMID:19150372

  13. Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification.

    PubMed

    Krovat, Eva M; Langer, Thierry

    2003-02-27

    Chemical feature based pharmacophore models were elaborated for angiotensin II receptor subtype 1 (AT(1)) antagonists using both a quantitative and a qualitative approach (Catalyst HypoGen and HipHop algorithms, respectively). The training sets for quantitative model generation consisted of 25 selective AT(1) antagonists exhibiting IC(50) values ranging from 1.3 nM to 150 microM. Additionally, a qualitative pharmacophore hypothesis was derived from multiconformational structure models of the two highly active AT(1) antagonists 4u (IC(50) = 0.2 nM) and 3k (IC(50) = 0.7 nM). In the case of the quantitative model, the best pharmacophore hypothesis consisted of a five-features model (Hypo1: seven points, one hydrophobic aromatic, one hydrophobic aliphatic, a hydrogen bond acceptor, a negative ionizable function, and an aromatic plane function). The best qualitative model consisted of seven features (Hypo2: 11 points, two aromatic rings, two hydrogen bond acceptors, a negative ionizable function, and two hydrophobic functions). The obtained pharmacophore models were validated on a wide set of test molecules. They were shown to be able to identify a range of highly potent AT(1) antagonists, among those a number of recently launched drugs and some candidates presently undergoing clinical tests and/or development phases. The results of our study provide confidence for the utility of the selected chemical feature based pharmacophore models to retrieve structurally diverse compounds with desired biological activity by virtual screening. PMID:12593652

  14. 3D-pharmacophere models for CC chemokine receptor 1 antagonists.

    PubMed

    Liu, Yixi; Andre, Philippe; Wei, Jing; Zhao, Kang

    2009-07-01

    The CC Chemokine Receptor 1 (CCR1) is closely related to various chronic inflammatory diseases like rheumatoid arthritis and multiple sclerosis, and plays a crucial role in transplant rejection. Inhibiting its activity with CCR1 antagonists has been proved to be effective in preventing some diseases. A number of in vivo experiments have been carried out to shed light on the underlying mechanism of the interactions between the CCR1 and its ligands. However, their conclusions are still controversial. In this study, ligand-based computational drug design is applied as a new and effective way to study the structure-activity relationship of CCR1 antagonists. Three-dimensional pharmacophore models were generated for CCR1 antagonists, using both HypoGen and HipHop algorithms in Catalyst software. Two optimal pharmacophore models were defined through careful qualification processes. Both of them have four features: one hydrogen-bond acceptor, one positive ionable and two hydrophobic groups. Additional information was obtained through comparison between the two models. Our results can be valuable tools for the discovery and development of specific, highly potent CCR1 antagonists. For Supplement material, please see the online version of the article. PMID:19689388

  15. Adenosine receptor antagonists inhibit the development of morphine sensitization in the C57BL/6 mouse.

    PubMed

    Weisberg, S P; Kaplan, G B

    1999-04-01

    We examined the effects of adenosine antagonists on the development of morphine sensitization in C57BL/6 mice. Adenosine antagonists or vehicle were repeatedly co-administered intraperitoneally with morphine (10 mg/kg, s.c.) to mice once every other day for 9 days. Two days later, a 10 mg/kg morphine-only challenge was administered to each group. Consistent with sensitization, mice receiving morphine alone developed enhanced ambulatory activity responses to subsequent morphine administrations and, upon morphine-only challenge, had a significantly greater response to morphine than vehicle pretreated animals. The nonselective adenosine antagonist, caffeine, at 10 and 20 mg/kg but not at 5 mg/kg, attenuated the development of sensitization during co-administration with morphine and also following morphine-only challenge. The adenosine A1 selective antagonist 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), at 0.001 and 0.002 mg/kg but not at 0.2 mg/kg, similarly attenuated the development of morphine sensitization. We propose a mechanism which involves an adenosine receptor role in the mesolimbic dopamine system. PMID:10320021

  16. Guanidino acids act as rho1 GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Gavande, Navnath; Wong, Kit Yee; Park, Anna; Premoli, Isabella; Mewett, Kenneth N; Allan, Robin D; Duke, Rujee K; Johnston, Graham A R; Hanrahan, Jane R

    2009-10-01

    GABA(C) receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective agents for this class of receptors. Guanidino analogs related to glycine, beta-alanine and taurine were evaluated at human rho(1)GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining were inactive. (S)-2-guanidinopropionic acid (IC(50) = 2.2 microM) and guanidinoacetic acid (IC(50) = 5.4 microM; K (B) = 7.75 microM [pK (B) = 5.11 +/- 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the beta-alanine and GABA guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced activity indicating that steric effects may impact on activity. The results of this study contribute to the structure-activity-relationship profile required in developing novel therapeutic agents. PMID:19387831

  17. Synthesis and evaluation of novel angiotensin II receptor 1 antagonists as anti-hypertension drugs.

    PubMed

    Bao, Xiaolu; Zhu, Weibo; Zhang, Ruijing; Wen, Caihong; Wang, Li; Yan, Yijia; Tang, Hesheng; Chen, Zhilong

    2016-05-01

    Three new angiotensin II receptor 1 antagonists, 1, 2 and 3 were designed, synthesized and evaluated. The AT1 receptor-binding assays in vitro showed that all the synthesized compounds had nanomolar affinity for the AT1 receptor. From which compound 3 was found to be the most potent ligands with an IC50 value of 2.67±0.23 nM. Biological evaluation in vivo revealed that all the compounds could cause significant decrease on MBP in a dose dependent manner in spontaneously hypertensive rats, and compound 3 especially showed an efficient and long-lasting effect in reducing blood pressure, whose maximal response lowered 41 mmHg of MBP at 10mg/kg and 62 mmHg at 15 mg/kg after oral administration, the significant anti-hypertensive effect lasted beyond 12 h, which is better than the reference compound losartan. The pharmacokinetic experiments showed that compound 3 could be absorbed efficiently and metabolized smoothly both in blood and in tissues in Wistar rats. The acute toxicity assay suggested that it has low toxicity with the LD50 value of 2974.35 mg/kg. These results demonstrate that compound 3 is a potent angiotensin AT1 receptor antagonist which could be considered as a novel anti-hypertension candidate and deserved for further investigation. PMID:27004954

  18. Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists

    PubMed Central

    Mishra, Rama K.; Shum, Andrew K.; Platanias, Leonidas C.; Miller, Richard J.; Schiltz, Gary E.

    2016-01-01

    The chemokine CXCL12 (SDF-1) and its cognate receptor CXCR4 are involved in a large number of physiological processes including HIV-1 infectivity, inflammation, tumorigenesis, stem cell migration, and autoimmune diseases. While previous efforts have identified a number of CXCR4 antagonists, there have been no small molecule agonists reported. Herein, we describe the identification of a novel series of CXCR4 modulators, including the first small molecules to display agonist behavior against this receptor, using a combination of structure- and ligand-based virtual screening. These agonists produce robust calcium mobilization in human melanoma cell lines which can be blocked by the CXCR4-selective antagonist AMD3100. We also demonstrate the ability of these new agonists to induce receptor internalization, ERK activation, and chemotaxis, all hallmarks of CXCR4 activation. Our results describe a new series of biologically relevant small molecules that will enable further study of the CXCR4 receptor and may contribute to the development of new therapeutics. PMID:27456816

  19. Discovery of a 7-arylaminobenzimidazole series as novel CRF1 receptor antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kono, Mitsunori; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Aso, Kazuyoshi

    2016-10-01

    A promising lead compound 1 of a benzimidazole series has been identified as a corticotropin-releasing factor 1 (CRF1) receptor antagonist. In this study, we focused on replacement of a 7-alkylamino group of 1, predicted to occupy a large lipophilic pocket of a CRF1 receptor, with an aryl group. During the course of this examination, we established new synthetic approaches to 2,7-diarylaminobenzimidazoles. The novel synthesis of 7-arylaminobenzimidazoles culminated in the identification of compounds exhibiting inhibitory activities comparable to the alkyl analog 1. A representative compound, p-methoxyanilino analog 16g, showed potent CRF binding inhibitory activity against a human CRF1 receptor and human CRF1 receptor antagonistic activity (IC50=27nM, 56nM, respectively). This compound exhibited ex vivo (125)I-Tyr(0) ((125)I-CRF) binding inhibitory activity in mouse frontal cortex, olfactory bulb, and pituitary gland at 20mg/kg after oral administration. In this report, we discuss the structure-activity-relationship of these 7-arylamino-1H-benzimidazoles and their synthetic method. PMID:27567079

  20. Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists.

    PubMed

    Mishra, Rama K; Shum, Andrew K; Platanias, Leonidas C; Miller, Richard J; Schiltz, Gary E

    2016-01-01

    The chemokine CXCL12 (SDF-1) and its cognate receptor CXCR4 are involved in a large number of physiological processes including HIV-1 infectivity, inflammation, tumorigenesis, stem cell migration, and autoimmune diseases. While previous efforts have identified a number of CXCR4 antagonists, there have been no small molecule agonists reported. Herein, we describe the identification of a novel series of CXCR4 modulators, including the first small molecules to display agonist behavior against this receptor, using a combination of structure- and ligand-based virtual screening. These agonists produce robust calcium mobilization in human melanoma cell lines which can be blocked by the CXCR4-selective antagonist AMD3100. We also demonstrate the ability of these new agonists to induce receptor internalization, ERK activation, and chemotaxis, all hallmarks of CXCR4 activation. Our results describe a new series of biologically relevant small molecules that will enable further study of the CXCR4 receptor and may contribute to the development of new therapeutics. PMID:27456816

  1. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms.

    PubMed

    Tollefsen, Knut-Erik; Harman, Christopher; Smith, Andy; Thomas, Kevin V

    2007-03-01

    The in vitro estrogen receptor (ER) agonist and androgen receptor (AR) antagonist potencies of offshore produced water effluents collected from the Norwegian Sector were determined using recombinant yeast estrogen and androgen screens. Solid phase extraction (SPE) concentrates of the effluents showed E2 agonist activities similar to those previously reported for the United Kingdom (UK) Continental Shelf (<0.1-4 ng E2 L(-1)). No activity was detected in the filtered oil droplets suggesting that produced water ER activity is primarily associated with the dissolved phase. Targeted analysis for methyl- to nonyl-substituted alkylphenol isomers show the occurrence of known ER agonists in the analysed samples. For the first time, AR antagonists were detected in both the dissolved and oil associated phase at concentrations of between 20 and 8000 microg of flutamide equivalents L(-1). The identity of the AR antagonists is unknown, however this represents a significant input into the marine environment of unknown compounds that exert a known biological effect. It is recommended that further analysis using techniques such as bioassay-directed analysis is performed to identify the compounds/groups of compounds that are responsible in order to improve the assessment of the risk posed by produced water discharges to the marine environment. PMID:17258235

  2. Scorpion venom-induced neutrophilia is inhibited by a PAF receptor antagonist in the rat.

    PubMed

    Borges, C M; Silveira, M R; Aparecida, M; Beker, C L; Freire-Maia, L; Teixeira, M M

    2000-04-01

    A dramatic blood neutrophilia is an important feature of the severe envenoming caused by the Brazilian scorpion Tityus serrulatus and may contribute to the development of lung injury in children. We examined the effects of an intravenous injection of T. serrulatus scorpion venom (TsV) on the total number of leukocytes and neutrophils in the blood of anesthetized rats. Injection of TsV (250 microg/kg) induces a significant leukocytosis 2 and 3 h after its injection, explained by an increase in the number of neutrophils. The release of catecholamines and action on adrenoceptors is responsible for most of the systemic manifestations of TsV. However, pretreatment with the beta-adrenoceptor antagonists metoprolol and propranolol or the alpha1-adrenoceptor antagonist prazosin (0.25 mg/kg) did not prevent TsV-induced neutrophilia. Blood neutrophilia induced by TsV occurred simultaneously with a significant reduction of mature neutrophils in bone marrow. Pretreatment with the platelet-activating factor (PAF) receptor antagonists UK-74505 or WEB-2086 prevented TsV-induced increase in blood neutrophils and reduction in the number of neutrophils in the bone marrow. It is concluded that scorpion venom induces blood neutrophilia in rats, explained by a PAF receptor-dependent mobilization of neutrophils from the bone marrow. PMID:10770284

  3. The bradykinin B1 receptor antagonist R-954 inhibits Ehrlich tumor growth in rodents.

    PubMed

    Fernandes, Patricia Dias; Gomes, Niele de Matos; Sirois, Pierre

    2011-09-01

    The present study investigated the effects of a new bradykinin B(1) receptor antagonist, R-954, on the development of Ehrlich ascitic tumor (EAT) induced by the intraperitoneal inoculation of EAT cells in mice and the formation of a solid tumor by the subcutaneous injection of the cells in rat paw. The development of the tumor was associated with an increase in mouse total cell counts in bone marrow (10.8-fold), ascitic fluid (14.6-fold), and blood (12.6-fold). R-954 (2mg/kg, s.c.) significantly reduced the ascitic fluid volume (63.7%) and the mouse weight gain (30.5%) after 10 consecutive days of treatment. The B(1) antagonist as well as the anti-neoplasic drug vincristine also significantly inhibited the increase in total cell count in bone marrow, ascitic fluid, and blood. R-954 reduced significantly the total protein extravasation (57.3%), the production of nitric oxide (56%), PGE(2) production (82%), and TNFα release (85.7%) in mice peritoneal cavity whereas vincristine reduced the release of these inflammatory mediators by 84-94%. The increase in paw edema after intraplantar injection of EAT cells was reduced by approximately 52% by either R-954 or vincristine treatment. In conclusion, this study presents for the first time the antitumoral activity of a new bradykinin B(1) receptor antagonist on ascitic and solid tumors induced by Ehrlich cell inoculation in mice and rats. PMID:21835216

  4. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells

    NASA Astrophysics Data System (ADS)

    Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo

    1994-06-01

    IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

  5. Distribution of cells responsive to 5-HT6 receptor antagonist-induced hypophagia

    PubMed Central

    Garfield, Alastair S.; Burke, Luke K.; Shaw, Jill; Evans, Mark L.; Heisler, Lora K.

    2014-01-01

    The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the 5-HT2C receptor (5-HT2CR) in 5-HT's anorectic effect, pharmacological manipulation of the 5-HT6 receptor (5-HT6R) also reduces appetite and body weight and may be amenable to obesity treatment. However, the neurological circuits that underlie 5-HT6R-induced hypophagia remain to be identified. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation, here we mapped the neuroanatomical targets activated by an anorectic dose of the 5-HT6R antagonist SB-399885 throughout the brain. Furthermore, we quantified SB-399855 activated cells within brain appetitive nuclei, the hypothalamus, dorsal raphe nucleus (DRN) and nucleus of the solitary tract (NTS). Our results reveal that 5-HT6R antagonist-induced hypophagia is associated with significantly increased neuronal activation in two nuclei with an established role in the central control of appetite, the paraventricular nucleus of the hypothalamus (PVH) and the NTS. In contrast, no changes in FOS-IR were observed between treatment groups within other hypothalamic nuclei or DRN. The data presented here provide a first insight into the neural circuitry underlying 5-HT6R antagonist-induced appetite suppression and highlight the PVH and NTS in the coordination of 5-HT6R hypophagia. PMID:24566060

  6. Synthesis and pharmacological evaluation of indolinone derivatives as novel ghrelin receptor antagonists.

    PubMed

    Puleo, Letizia; Marini, Pietro; Avallone, Roberta; Zanchet, Marco; Bandiera, Silvio; Baroni, Marco; Croci, Tiziano

    2012-09-15

    The ghrelin receptor is a G-protein-coupled receptor (GPCR) widely expressed in the brain, stomach and the intestine. It was firstly identified during studies aimed to find synthetic modulators of growth hormone (GH) secretion. GHSR and its endogenous ligand ghrelin were found to be involved in hunger response. Through food intake regulation, they could affect body weight and adiposity. Thus GHSR antagonists rapidly became an attractive target to treat obesity and feeding disorders. In this study we describe the biological properties of new indolinone derivatives identified as a new, chiral class of ghrelin antagonists. Their synthesis as well as the structure-activity relationship will be discussed herein. The in vitro identified compound 14f was a potent GHSR1a antagonist (IC(50) = 7 nM). When tested in vivo, on gastric emptying model, 14f showed an inhibitory intrinsic effect when given alone and it dose dependently inhibited ghrelin stimulation. Compound 14f also reduced food intake stimulated both by fasting condition (high level of endogenous ghrelin) and by icv ghrelin. Moreover this compound improved glucose tolerance in ipGTT test. PMID:22901671

  7. Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors.

    PubMed

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-09-01

    We measured the functional agonist potencies of dopamine agonists including antiparkinson drugs, and functional antagonist potencies of antipsychotics at human dopamine D(2) and D(3) receptors. In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cells expressing low and high densities of human dopamine D(2L) and D(2S) receptors (hD(2L)-Low, hD(2L)-High, hD(2S)-Low and hD(2S)-High, respectively) and human dopamine D(3) Ser-9 and D(3) Gly-9 receptors (hD(3)-Ser-9 and hD(3)-Gly-9, respectively). Cabergoline, bromocriptine, pergolide, (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), talipexole, pramipexole, R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-olhydrochloride (PD128907) and ropinirole behaved as dopamine D(2) and D(3) receptor full agonists and showed higher potencies in hD(2L)-High and hD(2S)-High compared to hD(2L)-Low and hD(2S)-Low. In hD(3)-Ser-9 and hD(3)-Gly-9 compared to hD(2L)-Low and hD(2S)-Low, dopamine, ropinirole, PD128907, and pramipexole potencies were clearly higher; talipexole and 7-OH-DPAT showed slightly higher potencies; pergolide showed slightly lower potency; and, cabergoline and bromocriptine potencies were lower. Aripiprazole acted as an antagonist in hD(2L)-Low; a low intrinsic activity partial agonist in hD(2S)-Low; a moderate partial agonist in hD(3)-Ser-9 and hD(3)-Gly-9; a robust partial agonist in hD(2L)-High; and a full agonist in hD(2S)-High. Amisulpride, sulpiride and perphenazine behaved as preferential antagonists; and chlorpromazine and asenapine behaved as modest preferential antagonists; whereas fluphenazine, haloperidol, and blonanserin behaved as non-preferential antagonists in hD(2S)-Low and hD(2S)-High compared to hD(3)-Ser-9 and hD(3)-Gly-9. These findings may help to elucidate the basis of therapeutic benefit observed with these drugs, with

  8. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and saf